qtest/ahci: export generate_pattern
[qemu/ar7.git] / target-arm / translate-a64.c
blobec0936cf972b5916ccc3f2960eb9e83f824db5b9
1 /*
2 * AArch64 translation
4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de>
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include <stdarg.h>
20 #include <stdlib.h>
21 #include <stdio.h>
22 #include <string.h>
23 #include <inttypes.h>
25 #include "cpu.h"
26 #include "tcg-op.h"
27 #include "qemu/log.h"
28 #include "arm_ldst.h"
29 #include "translate.h"
30 #include "internals.h"
31 #include "qemu/host-utils.h"
33 #include "exec/semihost.h"
34 #include "exec/gen-icount.h"
36 #include "exec/helper-proto.h"
37 #include "exec/helper-gen.h"
39 #include "trace-tcg.h"
41 static TCGv_i64 cpu_X[32];
42 static TCGv_i64 cpu_pc;
44 /* Load/store exclusive handling */
45 static TCGv_i64 cpu_exclusive_high;
47 static const char *regnames[] = {
48 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
49 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
50 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
51 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
54 enum a64_shift_type {
55 A64_SHIFT_TYPE_LSL = 0,
56 A64_SHIFT_TYPE_LSR = 1,
57 A64_SHIFT_TYPE_ASR = 2,
58 A64_SHIFT_TYPE_ROR = 3
61 /* Table based decoder typedefs - used when the relevant bits for decode
62 * are too awkwardly scattered across the instruction (eg SIMD).
64 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
66 typedef struct AArch64DecodeTable {
67 uint32_t pattern;
68 uint32_t mask;
69 AArch64DecodeFn *disas_fn;
70 } AArch64DecodeTable;
72 /* Function prototype for gen_ functions for calling Neon helpers */
73 typedef void NeonGenOneOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32);
74 typedef void NeonGenTwoOpFn(TCGv_i32, TCGv_i32, TCGv_i32);
75 typedef void NeonGenTwoOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32);
76 typedef void NeonGenTwo64OpFn(TCGv_i64, TCGv_i64, TCGv_i64);
77 typedef void NeonGenTwo64OpEnvFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i64);
78 typedef void NeonGenNarrowFn(TCGv_i32, TCGv_i64);
79 typedef void NeonGenNarrowEnvFn(TCGv_i32, TCGv_ptr, TCGv_i64);
80 typedef void NeonGenWidenFn(TCGv_i64, TCGv_i32);
81 typedef void NeonGenTwoSingleOPFn(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
82 typedef void NeonGenTwoDoubleOPFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
83 typedef void NeonGenOneOpFn(TCGv_i64, TCGv_i64);
84 typedef void CryptoTwoOpEnvFn(TCGv_ptr, TCGv_i32, TCGv_i32);
85 typedef void CryptoThreeOpEnvFn(TCGv_ptr, TCGv_i32, TCGv_i32, TCGv_i32);
87 /* initialize TCG globals. */
88 void a64_translate_init(void)
90 int i;
92 cpu_pc = tcg_global_mem_new_i64(TCG_AREG0,
93 offsetof(CPUARMState, pc),
94 "pc");
95 for (i = 0; i < 32; i++) {
96 cpu_X[i] = tcg_global_mem_new_i64(TCG_AREG0,
97 offsetof(CPUARMState, xregs[i]),
98 regnames[i]);
101 cpu_exclusive_high = tcg_global_mem_new_i64(TCG_AREG0,
102 offsetof(CPUARMState, exclusive_high), "exclusive_high");
105 static inline ARMMMUIdx get_a64_user_mem_index(DisasContext *s)
107 /* Return the mmu_idx to use for A64 "unprivileged load/store" insns:
108 * if EL1, access as if EL0; otherwise access at current EL
110 switch (s->mmu_idx) {
111 case ARMMMUIdx_S12NSE1:
112 return ARMMMUIdx_S12NSE0;
113 case ARMMMUIdx_S1SE1:
114 return ARMMMUIdx_S1SE0;
115 case ARMMMUIdx_S2NS:
116 g_assert_not_reached();
117 default:
118 return s->mmu_idx;
122 void aarch64_cpu_dump_state(CPUState *cs, FILE *f,
123 fprintf_function cpu_fprintf, int flags)
125 ARMCPU *cpu = ARM_CPU(cs);
126 CPUARMState *env = &cpu->env;
127 uint32_t psr = pstate_read(env);
128 int i;
130 cpu_fprintf(f, "PC=%016"PRIx64" SP=%016"PRIx64"\n",
131 env->pc, env->xregs[31]);
132 for (i = 0; i < 31; i++) {
133 cpu_fprintf(f, "X%02d=%016"PRIx64, i, env->xregs[i]);
134 if ((i % 4) == 3) {
135 cpu_fprintf(f, "\n");
136 } else {
137 cpu_fprintf(f, " ");
140 cpu_fprintf(f, "PSTATE=%08x (flags %c%c%c%c)\n",
141 psr,
142 psr & PSTATE_N ? 'N' : '-',
143 psr & PSTATE_Z ? 'Z' : '-',
144 psr & PSTATE_C ? 'C' : '-',
145 psr & PSTATE_V ? 'V' : '-');
146 cpu_fprintf(f, "\n");
148 if (flags & CPU_DUMP_FPU) {
149 int numvfpregs = 32;
150 for (i = 0; i < numvfpregs; i += 2) {
151 uint64_t vlo = float64_val(env->vfp.regs[i * 2]);
152 uint64_t vhi = float64_val(env->vfp.regs[(i * 2) + 1]);
153 cpu_fprintf(f, "q%02d=%016" PRIx64 ":%016" PRIx64 " ",
154 i, vhi, vlo);
155 vlo = float64_val(env->vfp.regs[(i + 1) * 2]);
156 vhi = float64_val(env->vfp.regs[((i + 1) * 2) + 1]);
157 cpu_fprintf(f, "q%02d=%016" PRIx64 ":%016" PRIx64 "\n",
158 i + 1, vhi, vlo);
160 cpu_fprintf(f, "FPCR: %08x FPSR: %08x\n",
161 vfp_get_fpcr(env), vfp_get_fpsr(env));
165 void gen_a64_set_pc_im(uint64_t val)
167 tcg_gen_movi_i64(cpu_pc, val);
170 typedef struct DisasCompare64 {
171 TCGCond cond;
172 TCGv_i64 value;
173 } DisasCompare64;
175 static void a64_test_cc(DisasCompare64 *c64, int cc)
177 DisasCompare c32;
179 arm_test_cc(&c32, cc);
181 /* Sign-extend the 32-bit value so that the GE/LT comparisons work
182 * properly. The NE/EQ comparisons are also fine with this choice. */
183 c64->cond = c32.cond;
184 c64->value = tcg_temp_new_i64();
185 tcg_gen_ext_i32_i64(c64->value, c32.value);
187 arm_free_cc(&c32);
190 static void a64_free_cc(DisasCompare64 *c64)
192 tcg_temp_free_i64(c64->value);
195 static void gen_exception_internal(int excp)
197 TCGv_i32 tcg_excp = tcg_const_i32(excp);
199 assert(excp_is_internal(excp));
200 gen_helper_exception_internal(cpu_env, tcg_excp);
201 tcg_temp_free_i32(tcg_excp);
204 static void gen_exception(int excp, uint32_t syndrome, uint32_t target_el)
206 TCGv_i32 tcg_excp = tcg_const_i32(excp);
207 TCGv_i32 tcg_syn = tcg_const_i32(syndrome);
208 TCGv_i32 tcg_el = tcg_const_i32(target_el);
210 gen_helper_exception_with_syndrome(cpu_env, tcg_excp,
211 tcg_syn, tcg_el);
212 tcg_temp_free_i32(tcg_el);
213 tcg_temp_free_i32(tcg_syn);
214 tcg_temp_free_i32(tcg_excp);
217 static void gen_exception_internal_insn(DisasContext *s, int offset, int excp)
219 gen_a64_set_pc_im(s->pc - offset);
220 gen_exception_internal(excp);
221 s->is_jmp = DISAS_EXC;
224 static void gen_exception_insn(DisasContext *s, int offset, int excp,
225 uint32_t syndrome, uint32_t target_el)
227 gen_a64_set_pc_im(s->pc - offset);
228 gen_exception(excp, syndrome, target_el);
229 s->is_jmp = DISAS_EXC;
232 static void gen_ss_advance(DisasContext *s)
234 /* If the singlestep state is Active-not-pending, advance to
235 * Active-pending.
237 if (s->ss_active) {
238 s->pstate_ss = 0;
239 gen_helper_clear_pstate_ss(cpu_env);
243 static void gen_step_complete_exception(DisasContext *s)
245 /* We just completed step of an insn. Move from Active-not-pending
246 * to Active-pending, and then also take the swstep exception.
247 * This corresponds to making the (IMPDEF) choice to prioritize
248 * swstep exceptions over asynchronous exceptions taken to an exception
249 * level where debug is disabled. This choice has the advantage that
250 * we do not need to maintain internal state corresponding to the
251 * ISV/EX syndrome bits between completion of the step and generation
252 * of the exception, and our syndrome information is always correct.
254 gen_ss_advance(s);
255 gen_exception(EXCP_UDEF, syn_swstep(s->ss_same_el, 1, s->is_ldex),
256 default_exception_el(s));
257 s->is_jmp = DISAS_EXC;
260 static inline bool use_goto_tb(DisasContext *s, int n, uint64_t dest)
262 /* No direct tb linking with singlestep (either QEMU's or the ARM
263 * debug architecture kind) or deterministic io
265 if (s->singlestep_enabled || s->ss_active || (s->tb->cflags & CF_LAST_IO)) {
266 return false;
269 /* Only link tbs from inside the same guest page */
270 if ((s->tb->pc & TARGET_PAGE_MASK) != (dest & TARGET_PAGE_MASK)) {
271 return false;
274 return true;
277 static inline void gen_goto_tb(DisasContext *s, int n, uint64_t dest)
279 TranslationBlock *tb;
281 tb = s->tb;
282 if (use_goto_tb(s, n, dest)) {
283 tcg_gen_goto_tb(n);
284 gen_a64_set_pc_im(dest);
285 tcg_gen_exit_tb((intptr_t)tb + n);
286 s->is_jmp = DISAS_TB_JUMP;
287 } else {
288 gen_a64_set_pc_im(dest);
289 if (s->ss_active) {
290 gen_step_complete_exception(s);
291 } else if (s->singlestep_enabled) {
292 gen_exception_internal(EXCP_DEBUG);
293 } else {
294 tcg_gen_exit_tb(0);
295 s->is_jmp = DISAS_TB_JUMP;
300 static void unallocated_encoding(DisasContext *s)
302 /* Unallocated and reserved encodings are uncategorized */
303 gen_exception_insn(s, 4, EXCP_UDEF, syn_uncategorized(),
304 default_exception_el(s));
307 #define unsupported_encoding(s, insn) \
308 do { \
309 qemu_log_mask(LOG_UNIMP, \
310 "%s:%d: unsupported instruction encoding 0x%08x " \
311 "at pc=%016" PRIx64 "\n", \
312 __FILE__, __LINE__, insn, s->pc - 4); \
313 unallocated_encoding(s); \
314 } while (0);
316 static void init_tmp_a64_array(DisasContext *s)
318 #ifdef CONFIG_DEBUG_TCG
319 int i;
320 for (i = 0; i < ARRAY_SIZE(s->tmp_a64); i++) {
321 TCGV_UNUSED_I64(s->tmp_a64[i]);
323 #endif
324 s->tmp_a64_count = 0;
327 static void free_tmp_a64(DisasContext *s)
329 int i;
330 for (i = 0; i < s->tmp_a64_count; i++) {
331 tcg_temp_free_i64(s->tmp_a64[i]);
333 init_tmp_a64_array(s);
336 static TCGv_i64 new_tmp_a64(DisasContext *s)
338 assert(s->tmp_a64_count < TMP_A64_MAX);
339 return s->tmp_a64[s->tmp_a64_count++] = tcg_temp_new_i64();
342 static TCGv_i64 new_tmp_a64_zero(DisasContext *s)
344 TCGv_i64 t = new_tmp_a64(s);
345 tcg_gen_movi_i64(t, 0);
346 return t;
350 * Register access functions
352 * These functions are used for directly accessing a register in where
353 * changes to the final register value are likely to be made. If you
354 * need to use a register for temporary calculation (e.g. index type
355 * operations) use the read_* form.
357 * B1.2.1 Register mappings
359 * In instruction register encoding 31 can refer to ZR (zero register) or
360 * the SP (stack pointer) depending on context. In QEMU's case we map SP
361 * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
362 * This is the point of the _sp forms.
364 static TCGv_i64 cpu_reg(DisasContext *s, int reg)
366 if (reg == 31) {
367 return new_tmp_a64_zero(s);
368 } else {
369 return cpu_X[reg];
373 /* register access for when 31 == SP */
374 static TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
376 return cpu_X[reg];
379 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
380 * representing the register contents. This TCGv is an auto-freed
381 * temporary so it need not be explicitly freed, and may be modified.
383 static TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
385 TCGv_i64 v = new_tmp_a64(s);
386 if (reg != 31) {
387 if (sf) {
388 tcg_gen_mov_i64(v, cpu_X[reg]);
389 } else {
390 tcg_gen_ext32u_i64(v, cpu_X[reg]);
392 } else {
393 tcg_gen_movi_i64(v, 0);
395 return v;
398 static TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
400 TCGv_i64 v = new_tmp_a64(s);
401 if (sf) {
402 tcg_gen_mov_i64(v, cpu_X[reg]);
403 } else {
404 tcg_gen_ext32u_i64(v, cpu_X[reg]);
406 return v;
409 /* We should have at some point before trying to access an FP register
410 * done the necessary access check, so assert that
411 * (a) we did the check and
412 * (b) we didn't then just plough ahead anyway if it failed.
413 * Print the instruction pattern in the abort message so we can figure
414 * out what we need to fix if a user encounters this problem in the wild.
416 static inline void assert_fp_access_checked(DisasContext *s)
418 #ifdef CONFIG_DEBUG_TCG
419 if (unlikely(!s->fp_access_checked || s->fp_excp_el)) {
420 fprintf(stderr, "target-arm: FP access check missing for "
421 "instruction 0x%08x\n", s->insn);
422 abort();
424 #endif
427 /* Return the offset into CPUARMState of an element of specified
428 * size, 'element' places in from the least significant end of
429 * the FP/vector register Qn.
431 static inline int vec_reg_offset(DisasContext *s, int regno,
432 int element, TCGMemOp size)
434 int offs = offsetof(CPUARMState, vfp.regs[regno * 2]);
435 #ifdef HOST_WORDS_BIGENDIAN
436 /* This is complicated slightly because vfp.regs[2n] is
437 * still the low half and vfp.regs[2n+1] the high half
438 * of the 128 bit vector, even on big endian systems.
439 * Calculate the offset assuming a fully bigendian 128 bits,
440 * then XOR to account for the order of the two 64 bit halves.
442 offs += (16 - ((element + 1) * (1 << size)));
443 offs ^= 8;
444 #else
445 offs += element * (1 << size);
446 #endif
447 assert_fp_access_checked(s);
448 return offs;
451 /* Return the offset into CPUARMState of a slice (from
452 * the least significant end) of FP register Qn (ie
453 * Dn, Sn, Hn or Bn).
454 * (Note that this is not the same mapping as for A32; see cpu.h)
456 static inline int fp_reg_offset(DisasContext *s, int regno, TCGMemOp size)
458 int offs = offsetof(CPUARMState, vfp.regs[regno * 2]);
459 #ifdef HOST_WORDS_BIGENDIAN
460 offs += (8 - (1 << size));
461 #endif
462 assert_fp_access_checked(s);
463 return offs;
466 /* Offset of the high half of the 128 bit vector Qn */
467 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
469 assert_fp_access_checked(s);
470 return offsetof(CPUARMState, vfp.regs[regno * 2 + 1]);
473 /* Convenience accessors for reading and writing single and double
474 * FP registers. Writing clears the upper parts of the associated
475 * 128 bit vector register, as required by the architecture.
476 * Note that unlike the GP register accessors, the values returned
477 * by the read functions must be manually freed.
479 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
481 TCGv_i64 v = tcg_temp_new_i64();
483 tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64));
484 return v;
487 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
489 TCGv_i32 v = tcg_temp_new_i32();
491 tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32));
492 return v;
495 static void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
497 TCGv_i64 tcg_zero = tcg_const_i64(0);
499 tcg_gen_st_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64));
500 tcg_gen_st_i64(tcg_zero, cpu_env, fp_reg_hi_offset(s, reg));
501 tcg_temp_free_i64(tcg_zero);
504 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
506 TCGv_i64 tmp = tcg_temp_new_i64();
508 tcg_gen_extu_i32_i64(tmp, v);
509 write_fp_dreg(s, reg, tmp);
510 tcg_temp_free_i64(tmp);
513 static TCGv_ptr get_fpstatus_ptr(void)
515 TCGv_ptr statusptr = tcg_temp_new_ptr();
516 int offset;
518 /* In A64 all instructions (both FP and Neon) use the FPCR;
519 * there is no equivalent of the A32 Neon "standard FPSCR value"
520 * and all operations use vfp.fp_status.
522 offset = offsetof(CPUARMState, vfp.fp_status);
523 tcg_gen_addi_ptr(statusptr, cpu_env, offset);
524 return statusptr;
527 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
528 * than the 32 bit equivalent.
530 static inline void gen_set_NZ64(TCGv_i64 result)
532 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
533 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
536 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
537 static inline void gen_logic_CC(int sf, TCGv_i64 result)
539 if (sf) {
540 gen_set_NZ64(result);
541 } else {
542 tcg_gen_extrl_i64_i32(cpu_ZF, result);
543 tcg_gen_mov_i32(cpu_NF, cpu_ZF);
545 tcg_gen_movi_i32(cpu_CF, 0);
546 tcg_gen_movi_i32(cpu_VF, 0);
549 /* dest = T0 + T1; compute C, N, V and Z flags */
550 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
552 if (sf) {
553 TCGv_i64 result, flag, tmp;
554 result = tcg_temp_new_i64();
555 flag = tcg_temp_new_i64();
556 tmp = tcg_temp_new_i64();
558 tcg_gen_movi_i64(tmp, 0);
559 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
561 tcg_gen_extrl_i64_i32(cpu_CF, flag);
563 gen_set_NZ64(result);
565 tcg_gen_xor_i64(flag, result, t0);
566 tcg_gen_xor_i64(tmp, t0, t1);
567 tcg_gen_andc_i64(flag, flag, tmp);
568 tcg_temp_free_i64(tmp);
569 tcg_gen_extrh_i64_i32(cpu_VF, flag);
571 tcg_gen_mov_i64(dest, result);
572 tcg_temp_free_i64(result);
573 tcg_temp_free_i64(flag);
574 } else {
575 /* 32 bit arithmetic */
576 TCGv_i32 t0_32 = tcg_temp_new_i32();
577 TCGv_i32 t1_32 = tcg_temp_new_i32();
578 TCGv_i32 tmp = tcg_temp_new_i32();
580 tcg_gen_movi_i32(tmp, 0);
581 tcg_gen_extrl_i64_i32(t0_32, t0);
582 tcg_gen_extrl_i64_i32(t1_32, t1);
583 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
584 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
585 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
586 tcg_gen_xor_i32(tmp, t0_32, t1_32);
587 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
588 tcg_gen_extu_i32_i64(dest, cpu_NF);
590 tcg_temp_free_i32(tmp);
591 tcg_temp_free_i32(t0_32);
592 tcg_temp_free_i32(t1_32);
596 /* dest = T0 - T1; compute C, N, V and Z flags */
597 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
599 if (sf) {
600 /* 64 bit arithmetic */
601 TCGv_i64 result, flag, tmp;
603 result = tcg_temp_new_i64();
604 flag = tcg_temp_new_i64();
605 tcg_gen_sub_i64(result, t0, t1);
607 gen_set_NZ64(result);
609 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
610 tcg_gen_extrl_i64_i32(cpu_CF, flag);
612 tcg_gen_xor_i64(flag, result, t0);
613 tmp = tcg_temp_new_i64();
614 tcg_gen_xor_i64(tmp, t0, t1);
615 tcg_gen_and_i64(flag, flag, tmp);
616 tcg_temp_free_i64(tmp);
617 tcg_gen_extrh_i64_i32(cpu_VF, flag);
618 tcg_gen_mov_i64(dest, result);
619 tcg_temp_free_i64(flag);
620 tcg_temp_free_i64(result);
621 } else {
622 /* 32 bit arithmetic */
623 TCGv_i32 t0_32 = tcg_temp_new_i32();
624 TCGv_i32 t1_32 = tcg_temp_new_i32();
625 TCGv_i32 tmp;
627 tcg_gen_extrl_i64_i32(t0_32, t0);
628 tcg_gen_extrl_i64_i32(t1_32, t1);
629 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
630 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
631 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
632 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
633 tmp = tcg_temp_new_i32();
634 tcg_gen_xor_i32(tmp, t0_32, t1_32);
635 tcg_temp_free_i32(t0_32);
636 tcg_temp_free_i32(t1_32);
637 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
638 tcg_temp_free_i32(tmp);
639 tcg_gen_extu_i32_i64(dest, cpu_NF);
643 /* dest = T0 + T1 + CF; do not compute flags. */
644 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
646 TCGv_i64 flag = tcg_temp_new_i64();
647 tcg_gen_extu_i32_i64(flag, cpu_CF);
648 tcg_gen_add_i64(dest, t0, t1);
649 tcg_gen_add_i64(dest, dest, flag);
650 tcg_temp_free_i64(flag);
652 if (!sf) {
653 tcg_gen_ext32u_i64(dest, dest);
657 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
658 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
660 if (sf) {
661 TCGv_i64 result, cf_64, vf_64, tmp;
662 result = tcg_temp_new_i64();
663 cf_64 = tcg_temp_new_i64();
664 vf_64 = tcg_temp_new_i64();
665 tmp = tcg_const_i64(0);
667 tcg_gen_extu_i32_i64(cf_64, cpu_CF);
668 tcg_gen_add2_i64(result, cf_64, t0, tmp, cf_64, tmp);
669 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, tmp);
670 tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
671 gen_set_NZ64(result);
673 tcg_gen_xor_i64(vf_64, result, t0);
674 tcg_gen_xor_i64(tmp, t0, t1);
675 tcg_gen_andc_i64(vf_64, vf_64, tmp);
676 tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
678 tcg_gen_mov_i64(dest, result);
680 tcg_temp_free_i64(tmp);
681 tcg_temp_free_i64(vf_64);
682 tcg_temp_free_i64(cf_64);
683 tcg_temp_free_i64(result);
684 } else {
685 TCGv_i32 t0_32, t1_32, tmp;
686 t0_32 = tcg_temp_new_i32();
687 t1_32 = tcg_temp_new_i32();
688 tmp = tcg_const_i32(0);
690 tcg_gen_extrl_i64_i32(t0_32, t0);
691 tcg_gen_extrl_i64_i32(t1_32, t1);
692 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, cpu_CF, tmp);
693 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, tmp);
695 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
696 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
697 tcg_gen_xor_i32(tmp, t0_32, t1_32);
698 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
699 tcg_gen_extu_i32_i64(dest, cpu_NF);
701 tcg_temp_free_i32(tmp);
702 tcg_temp_free_i32(t1_32);
703 tcg_temp_free_i32(t0_32);
708 * Load/Store generators
712 * Store from GPR register to memory.
714 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
715 TCGv_i64 tcg_addr, int size, int memidx)
717 g_assert(size <= 3);
718 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, MO_TE + size);
721 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
722 TCGv_i64 tcg_addr, int size)
724 do_gpr_st_memidx(s, source, tcg_addr, size, get_mem_index(s));
728 * Load from memory to GPR register
730 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
731 int size, bool is_signed, bool extend, int memidx)
733 TCGMemOp memop = MO_TE + size;
735 g_assert(size <= 3);
737 if (is_signed) {
738 memop += MO_SIGN;
741 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
743 if (extend && is_signed) {
744 g_assert(size < 3);
745 tcg_gen_ext32u_i64(dest, dest);
749 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
750 int size, bool is_signed, bool extend)
752 do_gpr_ld_memidx(s, dest, tcg_addr, size, is_signed, extend,
753 get_mem_index(s));
757 * Store from FP register to memory
759 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, int size)
761 /* This writes the bottom N bits of a 128 bit wide vector to memory */
762 TCGv_i64 tmp = tcg_temp_new_i64();
763 tcg_gen_ld_i64(tmp, cpu_env, fp_reg_offset(s, srcidx, MO_64));
764 if (size < 4) {
765 tcg_gen_qemu_st_i64(tmp, tcg_addr, get_mem_index(s), MO_TE + size);
766 } else {
767 TCGv_i64 tcg_hiaddr = tcg_temp_new_i64();
768 tcg_gen_qemu_st_i64(tmp, tcg_addr, get_mem_index(s), MO_TEQ);
769 tcg_gen_ld_i64(tmp, cpu_env, fp_reg_hi_offset(s, srcidx));
770 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
771 tcg_gen_qemu_st_i64(tmp, tcg_hiaddr, get_mem_index(s), MO_TEQ);
772 tcg_temp_free_i64(tcg_hiaddr);
775 tcg_temp_free_i64(tmp);
779 * Load from memory to FP register
781 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, int size)
783 /* This always zero-extends and writes to a full 128 bit wide vector */
784 TCGv_i64 tmplo = tcg_temp_new_i64();
785 TCGv_i64 tmphi;
787 if (size < 4) {
788 TCGMemOp memop = MO_TE + size;
789 tmphi = tcg_const_i64(0);
790 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), memop);
791 } else {
792 TCGv_i64 tcg_hiaddr;
793 tmphi = tcg_temp_new_i64();
794 tcg_hiaddr = tcg_temp_new_i64();
796 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), MO_TEQ);
797 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
798 tcg_gen_qemu_ld_i64(tmphi, tcg_hiaddr, get_mem_index(s), MO_TEQ);
799 tcg_temp_free_i64(tcg_hiaddr);
802 tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64));
803 tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx));
805 tcg_temp_free_i64(tmplo);
806 tcg_temp_free_i64(tmphi);
810 * Vector load/store helpers.
812 * The principal difference between this and a FP load is that we don't
813 * zero extend as we are filling a partial chunk of the vector register.
814 * These functions don't support 128 bit loads/stores, which would be
815 * normal load/store operations.
817 * The _i32 versions are useful when operating on 32 bit quantities
818 * (eg for floating point single or using Neon helper functions).
821 /* Get value of an element within a vector register */
822 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
823 int element, TCGMemOp memop)
825 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
826 switch (memop) {
827 case MO_8:
828 tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off);
829 break;
830 case MO_16:
831 tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off);
832 break;
833 case MO_32:
834 tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off);
835 break;
836 case MO_8|MO_SIGN:
837 tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off);
838 break;
839 case MO_16|MO_SIGN:
840 tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off);
841 break;
842 case MO_32|MO_SIGN:
843 tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off);
844 break;
845 case MO_64:
846 case MO_64|MO_SIGN:
847 tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off);
848 break;
849 default:
850 g_assert_not_reached();
854 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
855 int element, TCGMemOp memop)
857 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
858 switch (memop) {
859 case MO_8:
860 tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off);
861 break;
862 case MO_16:
863 tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off);
864 break;
865 case MO_8|MO_SIGN:
866 tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off);
867 break;
868 case MO_16|MO_SIGN:
869 tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off);
870 break;
871 case MO_32:
872 case MO_32|MO_SIGN:
873 tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off);
874 break;
875 default:
876 g_assert_not_reached();
880 /* Set value of an element within a vector register */
881 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
882 int element, TCGMemOp memop)
884 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
885 switch (memop) {
886 case MO_8:
887 tcg_gen_st8_i64(tcg_src, cpu_env, vect_off);
888 break;
889 case MO_16:
890 tcg_gen_st16_i64(tcg_src, cpu_env, vect_off);
891 break;
892 case MO_32:
893 tcg_gen_st32_i64(tcg_src, cpu_env, vect_off);
894 break;
895 case MO_64:
896 tcg_gen_st_i64(tcg_src, cpu_env, vect_off);
897 break;
898 default:
899 g_assert_not_reached();
903 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
904 int destidx, int element, TCGMemOp memop)
906 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
907 switch (memop) {
908 case MO_8:
909 tcg_gen_st8_i32(tcg_src, cpu_env, vect_off);
910 break;
911 case MO_16:
912 tcg_gen_st16_i32(tcg_src, cpu_env, vect_off);
913 break;
914 case MO_32:
915 tcg_gen_st_i32(tcg_src, cpu_env, vect_off);
916 break;
917 default:
918 g_assert_not_reached();
922 /* Clear the high 64 bits of a 128 bit vector (in general non-quad
923 * vector ops all need to do this).
925 static void clear_vec_high(DisasContext *s, int rd)
927 TCGv_i64 tcg_zero = tcg_const_i64(0);
929 write_vec_element(s, tcg_zero, rd, 1, MO_64);
930 tcg_temp_free_i64(tcg_zero);
933 /* Store from vector register to memory */
934 static void do_vec_st(DisasContext *s, int srcidx, int element,
935 TCGv_i64 tcg_addr, int size)
937 TCGMemOp memop = MO_TE + size;
938 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
940 read_vec_element(s, tcg_tmp, srcidx, element, size);
941 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), memop);
943 tcg_temp_free_i64(tcg_tmp);
946 /* Load from memory to vector register */
947 static void do_vec_ld(DisasContext *s, int destidx, int element,
948 TCGv_i64 tcg_addr, int size)
950 TCGMemOp memop = MO_TE + size;
951 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
953 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), memop);
954 write_vec_element(s, tcg_tmp, destidx, element, size);
956 tcg_temp_free_i64(tcg_tmp);
959 /* Check that FP/Neon access is enabled. If it is, return
960 * true. If not, emit code to generate an appropriate exception,
961 * and return false; the caller should not emit any code for
962 * the instruction. Note that this check must happen after all
963 * unallocated-encoding checks (otherwise the syndrome information
964 * for the resulting exception will be incorrect).
966 static inline bool fp_access_check(DisasContext *s)
968 assert(!s->fp_access_checked);
969 s->fp_access_checked = true;
971 if (!s->fp_excp_el) {
972 return true;
975 gen_exception_insn(s, 4, EXCP_UDEF, syn_fp_access_trap(1, 0xe, false),
976 s->fp_excp_el);
977 return false;
981 * This utility function is for doing register extension with an
982 * optional shift. You will likely want to pass a temporary for the
983 * destination register. See DecodeRegExtend() in the ARM ARM.
985 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
986 int option, unsigned int shift)
988 int extsize = extract32(option, 0, 2);
989 bool is_signed = extract32(option, 2, 1);
991 if (is_signed) {
992 switch (extsize) {
993 case 0:
994 tcg_gen_ext8s_i64(tcg_out, tcg_in);
995 break;
996 case 1:
997 tcg_gen_ext16s_i64(tcg_out, tcg_in);
998 break;
999 case 2:
1000 tcg_gen_ext32s_i64(tcg_out, tcg_in);
1001 break;
1002 case 3:
1003 tcg_gen_mov_i64(tcg_out, tcg_in);
1004 break;
1006 } else {
1007 switch (extsize) {
1008 case 0:
1009 tcg_gen_ext8u_i64(tcg_out, tcg_in);
1010 break;
1011 case 1:
1012 tcg_gen_ext16u_i64(tcg_out, tcg_in);
1013 break;
1014 case 2:
1015 tcg_gen_ext32u_i64(tcg_out, tcg_in);
1016 break;
1017 case 3:
1018 tcg_gen_mov_i64(tcg_out, tcg_in);
1019 break;
1023 if (shift) {
1024 tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1028 static inline void gen_check_sp_alignment(DisasContext *s)
1030 /* The AArch64 architecture mandates that (if enabled via PSTATE
1031 * or SCTLR bits) there is a check that SP is 16-aligned on every
1032 * SP-relative load or store (with an exception generated if it is not).
1033 * In line with general QEMU practice regarding misaligned accesses,
1034 * we omit these checks for the sake of guest program performance.
1035 * This function is provided as a hook so we can more easily add these
1036 * checks in future (possibly as a "favour catching guest program bugs
1037 * over speed" user selectable option).
1042 * This provides a simple table based table lookup decoder. It is
1043 * intended to be used when the relevant bits for decode are too
1044 * awkwardly placed and switch/if based logic would be confusing and
1045 * deeply nested. Since it's a linear search through the table, tables
1046 * should be kept small.
1048 * It returns the first handler where insn & mask == pattern, or
1049 * NULL if there is no match.
1050 * The table is terminated by an empty mask (i.e. 0)
1052 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1053 uint32_t insn)
1055 const AArch64DecodeTable *tptr = table;
1057 while (tptr->mask) {
1058 if ((insn & tptr->mask) == tptr->pattern) {
1059 return tptr->disas_fn;
1061 tptr++;
1063 return NULL;
1067 * the instruction disassembly implemented here matches
1068 * the instruction encoding classifications in chapter 3 (C3)
1069 * of the ARM Architecture Reference Manual (DDI0487A_a)
1072 /* C3.2.7 Unconditional branch (immediate)
1073 * 31 30 26 25 0
1074 * +----+-----------+-------------------------------------+
1075 * | op | 0 0 1 0 1 | imm26 |
1076 * +----+-----------+-------------------------------------+
1078 static void disas_uncond_b_imm(DisasContext *s, uint32_t insn)
1080 uint64_t addr = s->pc + sextract32(insn, 0, 26) * 4 - 4;
1082 if (insn & (1U << 31)) {
1083 /* C5.6.26 BL Branch with link */
1084 tcg_gen_movi_i64(cpu_reg(s, 30), s->pc);
1087 /* C5.6.20 B Branch / C5.6.26 BL Branch with link */
1088 gen_goto_tb(s, 0, addr);
1091 /* C3.2.1 Compare & branch (immediate)
1092 * 31 30 25 24 23 5 4 0
1093 * +----+-------------+----+---------------------+--------+
1094 * | sf | 0 1 1 0 1 0 | op | imm19 | Rt |
1095 * +----+-------------+----+---------------------+--------+
1097 static void disas_comp_b_imm(DisasContext *s, uint32_t insn)
1099 unsigned int sf, op, rt;
1100 uint64_t addr;
1101 TCGLabel *label_match;
1102 TCGv_i64 tcg_cmp;
1104 sf = extract32(insn, 31, 1);
1105 op = extract32(insn, 24, 1); /* 0: CBZ; 1: CBNZ */
1106 rt = extract32(insn, 0, 5);
1107 addr = s->pc + sextract32(insn, 5, 19) * 4 - 4;
1109 tcg_cmp = read_cpu_reg(s, rt, sf);
1110 label_match = gen_new_label();
1112 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1113 tcg_cmp, 0, label_match);
1115 gen_goto_tb(s, 0, s->pc);
1116 gen_set_label(label_match);
1117 gen_goto_tb(s, 1, addr);
1120 /* C3.2.5 Test & branch (immediate)
1121 * 31 30 25 24 23 19 18 5 4 0
1122 * +----+-------------+----+-------+-------------+------+
1123 * | b5 | 0 1 1 0 1 1 | op | b40 | imm14 | Rt |
1124 * +----+-------------+----+-------+-------------+------+
1126 static void disas_test_b_imm(DisasContext *s, uint32_t insn)
1128 unsigned int bit_pos, op, rt;
1129 uint64_t addr;
1130 TCGLabel *label_match;
1131 TCGv_i64 tcg_cmp;
1133 bit_pos = (extract32(insn, 31, 1) << 5) | extract32(insn, 19, 5);
1134 op = extract32(insn, 24, 1); /* 0: TBZ; 1: TBNZ */
1135 addr = s->pc + sextract32(insn, 5, 14) * 4 - 4;
1136 rt = extract32(insn, 0, 5);
1138 tcg_cmp = tcg_temp_new_i64();
1139 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, rt), (1ULL << bit_pos));
1140 label_match = gen_new_label();
1141 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1142 tcg_cmp, 0, label_match);
1143 tcg_temp_free_i64(tcg_cmp);
1144 gen_goto_tb(s, 0, s->pc);
1145 gen_set_label(label_match);
1146 gen_goto_tb(s, 1, addr);
1149 /* C3.2.2 / C5.6.19 Conditional branch (immediate)
1150 * 31 25 24 23 5 4 3 0
1151 * +---------------+----+---------------------+----+------+
1152 * | 0 1 0 1 0 1 0 | o1 | imm19 | o0 | cond |
1153 * +---------------+----+---------------------+----+------+
1155 static void disas_cond_b_imm(DisasContext *s, uint32_t insn)
1157 unsigned int cond;
1158 uint64_t addr;
1160 if ((insn & (1 << 4)) || (insn & (1 << 24))) {
1161 unallocated_encoding(s);
1162 return;
1164 addr = s->pc + sextract32(insn, 5, 19) * 4 - 4;
1165 cond = extract32(insn, 0, 4);
1167 if (cond < 0x0e) {
1168 /* genuinely conditional branches */
1169 TCGLabel *label_match = gen_new_label();
1170 arm_gen_test_cc(cond, label_match);
1171 gen_goto_tb(s, 0, s->pc);
1172 gen_set_label(label_match);
1173 gen_goto_tb(s, 1, addr);
1174 } else {
1175 /* 0xe and 0xf are both "always" conditions */
1176 gen_goto_tb(s, 0, addr);
1180 /* C5.6.68 HINT */
1181 static void handle_hint(DisasContext *s, uint32_t insn,
1182 unsigned int op1, unsigned int op2, unsigned int crm)
1184 unsigned int selector = crm << 3 | op2;
1186 if (op1 != 3) {
1187 unallocated_encoding(s);
1188 return;
1191 switch (selector) {
1192 case 0: /* NOP */
1193 return;
1194 case 3: /* WFI */
1195 s->is_jmp = DISAS_WFI;
1196 return;
1197 case 1: /* YIELD */
1198 s->is_jmp = DISAS_YIELD;
1199 return;
1200 case 2: /* WFE */
1201 s->is_jmp = DISAS_WFE;
1202 return;
1203 case 4: /* SEV */
1204 case 5: /* SEVL */
1205 /* we treat all as NOP at least for now */
1206 return;
1207 default:
1208 /* default specified as NOP equivalent */
1209 return;
1213 static void gen_clrex(DisasContext *s, uint32_t insn)
1215 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1218 /* CLREX, DSB, DMB, ISB */
1219 static void handle_sync(DisasContext *s, uint32_t insn,
1220 unsigned int op1, unsigned int op2, unsigned int crm)
1222 if (op1 != 3) {
1223 unallocated_encoding(s);
1224 return;
1227 switch (op2) {
1228 case 2: /* CLREX */
1229 gen_clrex(s, insn);
1230 return;
1231 case 4: /* DSB */
1232 case 5: /* DMB */
1233 case 6: /* ISB */
1234 /* We don't emulate caches so barriers are no-ops */
1235 return;
1236 default:
1237 unallocated_encoding(s);
1238 return;
1242 /* C5.6.130 MSR (immediate) - move immediate to processor state field */
1243 static void handle_msr_i(DisasContext *s, uint32_t insn,
1244 unsigned int op1, unsigned int op2, unsigned int crm)
1246 int op = op1 << 3 | op2;
1247 switch (op) {
1248 case 0x05: /* SPSel */
1249 if (s->current_el == 0) {
1250 unallocated_encoding(s);
1251 return;
1253 /* fall through */
1254 case 0x1e: /* DAIFSet */
1255 case 0x1f: /* DAIFClear */
1257 TCGv_i32 tcg_imm = tcg_const_i32(crm);
1258 TCGv_i32 tcg_op = tcg_const_i32(op);
1259 gen_a64_set_pc_im(s->pc - 4);
1260 gen_helper_msr_i_pstate(cpu_env, tcg_op, tcg_imm);
1261 tcg_temp_free_i32(tcg_imm);
1262 tcg_temp_free_i32(tcg_op);
1263 s->is_jmp = DISAS_UPDATE;
1264 break;
1266 default:
1267 unallocated_encoding(s);
1268 return;
1272 static void gen_get_nzcv(TCGv_i64 tcg_rt)
1274 TCGv_i32 tmp = tcg_temp_new_i32();
1275 TCGv_i32 nzcv = tcg_temp_new_i32();
1277 /* build bit 31, N */
1278 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
1279 /* build bit 30, Z */
1280 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
1281 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
1282 /* build bit 29, C */
1283 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
1284 /* build bit 28, V */
1285 tcg_gen_shri_i32(tmp, cpu_VF, 31);
1286 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
1287 /* generate result */
1288 tcg_gen_extu_i32_i64(tcg_rt, nzcv);
1290 tcg_temp_free_i32(nzcv);
1291 tcg_temp_free_i32(tmp);
1294 static void gen_set_nzcv(TCGv_i64 tcg_rt)
1297 TCGv_i32 nzcv = tcg_temp_new_i32();
1299 /* take NZCV from R[t] */
1300 tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
1302 /* bit 31, N */
1303 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
1304 /* bit 30, Z */
1305 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
1306 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
1307 /* bit 29, C */
1308 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
1309 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
1310 /* bit 28, V */
1311 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
1312 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
1313 tcg_temp_free_i32(nzcv);
1316 /* C5.6.129 MRS - move from system register
1317 * C5.6.131 MSR (register) - move to system register
1318 * C5.6.204 SYS
1319 * C5.6.205 SYSL
1320 * These are all essentially the same insn in 'read' and 'write'
1321 * versions, with varying op0 fields.
1323 static void handle_sys(DisasContext *s, uint32_t insn, bool isread,
1324 unsigned int op0, unsigned int op1, unsigned int op2,
1325 unsigned int crn, unsigned int crm, unsigned int rt)
1327 const ARMCPRegInfo *ri;
1328 TCGv_i64 tcg_rt;
1330 ri = get_arm_cp_reginfo(s->cp_regs,
1331 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
1332 crn, crm, op0, op1, op2));
1334 if (!ri) {
1335 /* Unknown register; this might be a guest error or a QEMU
1336 * unimplemented feature.
1338 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
1339 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
1340 isread ? "read" : "write", op0, op1, crn, crm, op2);
1341 unallocated_encoding(s);
1342 return;
1345 /* Check access permissions */
1346 if (!cp_access_ok(s->current_el, ri, isread)) {
1347 unallocated_encoding(s);
1348 return;
1351 if (ri->accessfn) {
1352 /* Emit code to perform further access permissions checks at
1353 * runtime; this may result in an exception.
1355 TCGv_ptr tmpptr;
1356 TCGv_i32 tcg_syn;
1357 uint32_t syndrome;
1359 gen_a64_set_pc_im(s->pc - 4);
1360 tmpptr = tcg_const_ptr(ri);
1361 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
1362 tcg_syn = tcg_const_i32(syndrome);
1363 gen_helper_access_check_cp_reg(cpu_env, tmpptr, tcg_syn);
1364 tcg_temp_free_ptr(tmpptr);
1365 tcg_temp_free_i32(tcg_syn);
1368 /* Handle special cases first */
1369 switch (ri->type & ~(ARM_CP_FLAG_MASK & ~ARM_CP_SPECIAL)) {
1370 case ARM_CP_NOP:
1371 return;
1372 case ARM_CP_NZCV:
1373 tcg_rt = cpu_reg(s, rt);
1374 if (isread) {
1375 gen_get_nzcv(tcg_rt);
1376 } else {
1377 gen_set_nzcv(tcg_rt);
1379 return;
1380 case ARM_CP_CURRENTEL:
1381 /* Reads as current EL value from pstate, which is
1382 * guaranteed to be constant by the tb flags.
1384 tcg_rt = cpu_reg(s, rt);
1385 tcg_gen_movi_i64(tcg_rt, s->current_el << 2);
1386 return;
1387 case ARM_CP_DC_ZVA:
1388 /* Writes clear the aligned block of memory which rt points into. */
1389 tcg_rt = cpu_reg(s, rt);
1390 gen_helper_dc_zva(cpu_env, tcg_rt);
1391 return;
1392 default:
1393 break;
1396 if ((s->tb->cflags & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
1397 gen_io_start();
1400 tcg_rt = cpu_reg(s, rt);
1402 if (isread) {
1403 if (ri->type & ARM_CP_CONST) {
1404 tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
1405 } else if (ri->readfn) {
1406 TCGv_ptr tmpptr;
1407 tmpptr = tcg_const_ptr(ri);
1408 gen_helper_get_cp_reg64(tcg_rt, cpu_env, tmpptr);
1409 tcg_temp_free_ptr(tmpptr);
1410 } else {
1411 tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset);
1413 } else {
1414 if (ri->type & ARM_CP_CONST) {
1415 /* If not forbidden by access permissions, treat as WI */
1416 return;
1417 } else if (ri->writefn) {
1418 TCGv_ptr tmpptr;
1419 tmpptr = tcg_const_ptr(ri);
1420 gen_helper_set_cp_reg64(cpu_env, tmpptr, tcg_rt);
1421 tcg_temp_free_ptr(tmpptr);
1422 } else {
1423 tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset);
1427 if ((s->tb->cflags & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
1428 /* I/O operations must end the TB here (whether read or write) */
1429 gen_io_end();
1430 s->is_jmp = DISAS_UPDATE;
1431 } else if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
1432 /* We default to ending the TB on a coprocessor register write,
1433 * but allow this to be suppressed by the register definition
1434 * (usually only necessary to work around guest bugs).
1436 s->is_jmp = DISAS_UPDATE;
1440 /* C3.2.4 System
1441 * 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0
1442 * +---------------------+---+-----+-----+-------+-------+-----+------+
1443 * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt |
1444 * +---------------------+---+-----+-----+-------+-------+-----+------+
1446 static void disas_system(DisasContext *s, uint32_t insn)
1448 unsigned int l, op0, op1, crn, crm, op2, rt;
1449 l = extract32(insn, 21, 1);
1450 op0 = extract32(insn, 19, 2);
1451 op1 = extract32(insn, 16, 3);
1452 crn = extract32(insn, 12, 4);
1453 crm = extract32(insn, 8, 4);
1454 op2 = extract32(insn, 5, 3);
1455 rt = extract32(insn, 0, 5);
1457 if (op0 == 0) {
1458 if (l || rt != 31) {
1459 unallocated_encoding(s);
1460 return;
1462 switch (crn) {
1463 case 2: /* C5.6.68 HINT */
1464 handle_hint(s, insn, op1, op2, crm);
1465 break;
1466 case 3: /* CLREX, DSB, DMB, ISB */
1467 handle_sync(s, insn, op1, op2, crm);
1468 break;
1469 case 4: /* C5.6.130 MSR (immediate) */
1470 handle_msr_i(s, insn, op1, op2, crm);
1471 break;
1472 default:
1473 unallocated_encoding(s);
1474 break;
1476 return;
1478 handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt);
1481 /* C3.2.3 Exception generation
1483 * 31 24 23 21 20 5 4 2 1 0
1484 * +-----------------+-----+------------------------+-----+----+
1485 * | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL |
1486 * +-----------------------+------------------------+----------+
1488 static void disas_exc(DisasContext *s, uint32_t insn)
1490 int opc = extract32(insn, 21, 3);
1491 int op2_ll = extract32(insn, 0, 5);
1492 int imm16 = extract32(insn, 5, 16);
1493 TCGv_i32 tmp;
1495 switch (opc) {
1496 case 0:
1497 /* For SVC, HVC and SMC we advance the single-step state
1498 * machine before taking the exception. This is architecturally
1499 * mandated, to ensure that single-stepping a system call
1500 * instruction works properly.
1502 switch (op2_ll) {
1503 case 1:
1504 gen_ss_advance(s);
1505 gen_exception_insn(s, 0, EXCP_SWI, syn_aa64_svc(imm16),
1506 default_exception_el(s));
1507 break;
1508 case 2:
1509 if (s->current_el == 0) {
1510 unallocated_encoding(s);
1511 break;
1513 /* The pre HVC helper handles cases when HVC gets trapped
1514 * as an undefined insn by runtime configuration.
1516 gen_a64_set_pc_im(s->pc - 4);
1517 gen_helper_pre_hvc(cpu_env);
1518 gen_ss_advance(s);
1519 gen_exception_insn(s, 0, EXCP_HVC, syn_aa64_hvc(imm16), 2);
1520 break;
1521 case 3:
1522 if (s->current_el == 0) {
1523 unallocated_encoding(s);
1524 break;
1526 gen_a64_set_pc_im(s->pc - 4);
1527 tmp = tcg_const_i32(syn_aa64_smc(imm16));
1528 gen_helper_pre_smc(cpu_env, tmp);
1529 tcg_temp_free_i32(tmp);
1530 gen_ss_advance(s);
1531 gen_exception_insn(s, 0, EXCP_SMC, syn_aa64_smc(imm16), 3);
1532 break;
1533 default:
1534 unallocated_encoding(s);
1535 break;
1537 break;
1538 case 1:
1539 if (op2_ll != 0) {
1540 unallocated_encoding(s);
1541 break;
1543 /* BRK */
1544 gen_exception_insn(s, 4, EXCP_BKPT, syn_aa64_bkpt(imm16),
1545 default_exception_el(s));
1546 break;
1547 case 2:
1548 if (op2_ll != 0) {
1549 unallocated_encoding(s);
1550 break;
1552 /* HLT. This has two purposes.
1553 * Architecturally, it is an external halting debug instruction.
1554 * Since QEMU doesn't implement external debug, we treat this as
1555 * it is required for halting debug disabled: it will UNDEF.
1556 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
1558 if (semihosting_enabled() && imm16 == 0xf000) {
1559 #ifndef CONFIG_USER_ONLY
1560 /* In system mode, don't allow userspace access to semihosting,
1561 * to provide some semblance of security (and for consistency
1562 * with our 32-bit semihosting).
1564 if (s->current_el == 0) {
1565 unsupported_encoding(s, insn);
1566 break;
1568 #endif
1569 gen_exception_internal_insn(s, 0, EXCP_SEMIHOST);
1570 } else {
1571 unsupported_encoding(s, insn);
1573 break;
1574 case 5:
1575 if (op2_ll < 1 || op2_ll > 3) {
1576 unallocated_encoding(s);
1577 break;
1579 /* DCPS1, DCPS2, DCPS3 */
1580 unsupported_encoding(s, insn);
1581 break;
1582 default:
1583 unallocated_encoding(s);
1584 break;
1588 /* C3.2.7 Unconditional branch (register)
1589 * 31 25 24 21 20 16 15 10 9 5 4 0
1590 * +---------------+-------+-------+-------+------+-------+
1591 * | 1 1 0 1 0 1 1 | opc | op2 | op3 | Rn | op4 |
1592 * +---------------+-------+-------+-------+------+-------+
1594 static void disas_uncond_b_reg(DisasContext *s, uint32_t insn)
1596 unsigned int opc, op2, op3, rn, op4;
1598 opc = extract32(insn, 21, 4);
1599 op2 = extract32(insn, 16, 5);
1600 op3 = extract32(insn, 10, 6);
1601 rn = extract32(insn, 5, 5);
1602 op4 = extract32(insn, 0, 5);
1604 if (op4 != 0x0 || op3 != 0x0 || op2 != 0x1f) {
1605 unallocated_encoding(s);
1606 return;
1609 switch (opc) {
1610 case 0: /* BR */
1611 case 2: /* RET */
1612 tcg_gen_mov_i64(cpu_pc, cpu_reg(s, rn));
1613 break;
1614 case 1: /* BLR */
1615 tcg_gen_mov_i64(cpu_pc, cpu_reg(s, rn));
1616 tcg_gen_movi_i64(cpu_reg(s, 30), s->pc);
1617 break;
1618 case 4: /* ERET */
1619 if (s->current_el == 0) {
1620 unallocated_encoding(s);
1621 return;
1623 gen_helper_exception_return(cpu_env);
1624 s->is_jmp = DISAS_JUMP;
1625 return;
1626 case 5: /* DRPS */
1627 if (rn != 0x1f) {
1628 unallocated_encoding(s);
1629 } else {
1630 unsupported_encoding(s, insn);
1632 return;
1633 default:
1634 unallocated_encoding(s);
1635 return;
1638 s->is_jmp = DISAS_JUMP;
1641 /* C3.2 Branches, exception generating and system instructions */
1642 static void disas_b_exc_sys(DisasContext *s, uint32_t insn)
1644 switch (extract32(insn, 25, 7)) {
1645 case 0x0a: case 0x0b:
1646 case 0x4a: case 0x4b: /* Unconditional branch (immediate) */
1647 disas_uncond_b_imm(s, insn);
1648 break;
1649 case 0x1a: case 0x5a: /* Compare & branch (immediate) */
1650 disas_comp_b_imm(s, insn);
1651 break;
1652 case 0x1b: case 0x5b: /* Test & branch (immediate) */
1653 disas_test_b_imm(s, insn);
1654 break;
1655 case 0x2a: /* Conditional branch (immediate) */
1656 disas_cond_b_imm(s, insn);
1657 break;
1658 case 0x6a: /* Exception generation / System */
1659 if (insn & (1 << 24)) {
1660 disas_system(s, insn);
1661 } else {
1662 disas_exc(s, insn);
1664 break;
1665 case 0x6b: /* Unconditional branch (register) */
1666 disas_uncond_b_reg(s, insn);
1667 break;
1668 default:
1669 unallocated_encoding(s);
1670 break;
1675 * Load/Store exclusive instructions are implemented by remembering
1676 * the value/address loaded, and seeing if these are the same
1677 * when the store is performed. This is not actually the architecturally
1678 * mandated semantics, but it works for typical guest code sequences
1679 * and avoids having to monitor regular stores.
1681 * In system emulation mode only one CPU will be running at once, so
1682 * this sequence is effectively atomic. In user emulation mode we
1683 * throw an exception and handle the atomic operation elsewhere.
1685 static void gen_load_exclusive(DisasContext *s, int rt, int rt2,
1686 TCGv_i64 addr, int size, bool is_pair)
1688 TCGv_i64 tmp = tcg_temp_new_i64();
1689 TCGMemOp memop = MO_TE + size;
1691 g_assert(size <= 3);
1692 tcg_gen_qemu_ld_i64(tmp, addr, get_mem_index(s), memop);
1694 if (is_pair) {
1695 TCGv_i64 addr2 = tcg_temp_new_i64();
1696 TCGv_i64 hitmp = tcg_temp_new_i64();
1698 g_assert(size >= 2);
1699 tcg_gen_addi_i64(addr2, addr, 1 << size);
1700 tcg_gen_qemu_ld_i64(hitmp, addr2, get_mem_index(s), memop);
1701 tcg_temp_free_i64(addr2);
1702 tcg_gen_mov_i64(cpu_exclusive_high, hitmp);
1703 tcg_gen_mov_i64(cpu_reg(s, rt2), hitmp);
1704 tcg_temp_free_i64(hitmp);
1707 tcg_gen_mov_i64(cpu_exclusive_val, tmp);
1708 tcg_gen_mov_i64(cpu_reg(s, rt), tmp);
1710 tcg_temp_free_i64(tmp);
1711 tcg_gen_mov_i64(cpu_exclusive_addr, addr);
1714 #ifdef CONFIG_USER_ONLY
1715 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
1716 TCGv_i64 addr, int size, int is_pair)
1718 tcg_gen_mov_i64(cpu_exclusive_test, addr);
1719 tcg_gen_movi_i32(cpu_exclusive_info,
1720 size | is_pair << 2 | (rd << 4) | (rt << 9) | (rt2 << 14));
1721 gen_exception_internal_insn(s, 4, EXCP_STREX);
1723 #else
1724 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
1725 TCGv_i64 inaddr, int size, int is_pair)
1727 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
1728 * && (!is_pair || env->exclusive_high == [addr + datasize])) {
1729 * [addr] = {Rt};
1730 * if (is_pair) {
1731 * [addr + datasize] = {Rt2};
1733 * {Rd} = 0;
1734 * } else {
1735 * {Rd} = 1;
1737 * env->exclusive_addr = -1;
1739 TCGLabel *fail_label = gen_new_label();
1740 TCGLabel *done_label = gen_new_label();
1741 TCGv_i64 addr = tcg_temp_local_new_i64();
1742 TCGv_i64 tmp;
1744 /* Copy input into a local temp so it is not trashed when the
1745 * basic block ends at the branch insn.
1747 tcg_gen_mov_i64(addr, inaddr);
1748 tcg_gen_brcond_i64(TCG_COND_NE, addr, cpu_exclusive_addr, fail_label);
1750 tmp = tcg_temp_new_i64();
1751 tcg_gen_qemu_ld_i64(tmp, addr, get_mem_index(s), MO_TE + size);
1752 tcg_gen_brcond_i64(TCG_COND_NE, tmp, cpu_exclusive_val, fail_label);
1753 tcg_temp_free_i64(tmp);
1755 if (is_pair) {
1756 TCGv_i64 addrhi = tcg_temp_new_i64();
1757 TCGv_i64 tmphi = tcg_temp_new_i64();
1759 tcg_gen_addi_i64(addrhi, addr, 1 << size);
1760 tcg_gen_qemu_ld_i64(tmphi, addrhi, get_mem_index(s), MO_TE + size);
1761 tcg_gen_brcond_i64(TCG_COND_NE, tmphi, cpu_exclusive_high, fail_label);
1763 tcg_temp_free_i64(tmphi);
1764 tcg_temp_free_i64(addrhi);
1767 /* We seem to still have the exclusive monitor, so do the store */
1768 tcg_gen_qemu_st_i64(cpu_reg(s, rt), addr, get_mem_index(s), MO_TE + size);
1769 if (is_pair) {
1770 TCGv_i64 addrhi = tcg_temp_new_i64();
1772 tcg_gen_addi_i64(addrhi, addr, 1 << size);
1773 tcg_gen_qemu_st_i64(cpu_reg(s, rt2), addrhi,
1774 get_mem_index(s), MO_TE + size);
1775 tcg_temp_free_i64(addrhi);
1778 tcg_temp_free_i64(addr);
1780 tcg_gen_movi_i64(cpu_reg(s, rd), 0);
1781 tcg_gen_br(done_label);
1782 gen_set_label(fail_label);
1783 tcg_gen_movi_i64(cpu_reg(s, rd), 1);
1784 gen_set_label(done_label);
1785 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1788 #endif
1790 /* C3.3.6 Load/store exclusive
1792 * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0
1793 * +-----+-------------+----+---+----+------+----+-------+------+------+
1794 * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt |
1795 * +-----+-------------+----+---+----+------+----+-------+------+------+
1797 * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit
1798 * L: 0 -> store, 1 -> load
1799 * o2: 0 -> exclusive, 1 -> not
1800 * o1: 0 -> single register, 1 -> register pair
1801 * o0: 1 -> load-acquire/store-release, 0 -> not
1803 * o0 == 0 AND o2 == 1 is un-allocated
1804 * o1 == 1 is un-allocated except for 32 and 64 bit sizes
1806 static void disas_ldst_excl(DisasContext *s, uint32_t insn)
1808 int rt = extract32(insn, 0, 5);
1809 int rn = extract32(insn, 5, 5);
1810 int rt2 = extract32(insn, 10, 5);
1811 int is_lasr = extract32(insn, 15, 1);
1812 int rs = extract32(insn, 16, 5);
1813 int is_pair = extract32(insn, 21, 1);
1814 int is_store = !extract32(insn, 22, 1);
1815 int is_excl = !extract32(insn, 23, 1);
1816 int size = extract32(insn, 30, 2);
1817 TCGv_i64 tcg_addr;
1819 if ((!is_excl && !is_lasr) ||
1820 (is_pair && size < 2)) {
1821 unallocated_encoding(s);
1822 return;
1825 if (rn == 31) {
1826 gen_check_sp_alignment(s);
1828 tcg_addr = read_cpu_reg_sp(s, rn, 1);
1830 /* Note that since TCG is single threaded load-acquire/store-release
1831 * semantics require no extra if (is_lasr) { ... } handling.
1834 if (is_excl) {
1835 if (!is_store) {
1836 s->is_ldex = true;
1837 gen_load_exclusive(s, rt, rt2, tcg_addr, size, is_pair);
1838 } else {
1839 gen_store_exclusive(s, rs, rt, rt2, tcg_addr, size, is_pair);
1841 } else {
1842 TCGv_i64 tcg_rt = cpu_reg(s, rt);
1843 if (is_store) {
1844 do_gpr_st(s, tcg_rt, tcg_addr, size);
1845 } else {
1846 do_gpr_ld(s, tcg_rt, tcg_addr, size, false, false);
1848 if (is_pair) {
1849 TCGv_i64 tcg_rt2 = cpu_reg(s, rt);
1850 tcg_gen_addi_i64(tcg_addr, tcg_addr, 1 << size);
1851 if (is_store) {
1852 do_gpr_st(s, tcg_rt2, tcg_addr, size);
1853 } else {
1854 do_gpr_ld(s, tcg_rt2, tcg_addr, size, false, false);
1861 * C3.3.5 Load register (literal)
1863 * 31 30 29 27 26 25 24 23 5 4 0
1864 * +-----+-------+---+-----+-------------------+-------+
1865 * | opc | 0 1 1 | V | 0 0 | imm19 | Rt |
1866 * +-----+-------+---+-----+-------------------+-------+
1868 * V: 1 -> vector (simd/fp)
1869 * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit,
1870 * 10-> 32 bit signed, 11 -> prefetch
1871 * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated)
1873 static void disas_ld_lit(DisasContext *s, uint32_t insn)
1875 int rt = extract32(insn, 0, 5);
1876 int64_t imm = sextract32(insn, 5, 19) << 2;
1877 bool is_vector = extract32(insn, 26, 1);
1878 int opc = extract32(insn, 30, 2);
1879 bool is_signed = false;
1880 int size = 2;
1881 TCGv_i64 tcg_rt, tcg_addr;
1883 if (is_vector) {
1884 if (opc == 3) {
1885 unallocated_encoding(s);
1886 return;
1888 size = 2 + opc;
1889 if (!fp_access_check(s)) {
1890 return;
1892 } else {
1893 if (opc == 3) {
1894 /* PRFM (literal) : prefetch */
1895 return;
1897 size = 2 + extract32(opc, 0, 1);
1898 is_signed = extract32(opc, 1, 1);
1901 tcg_rt = cpu_reg(s, rt);
1903 tcg_addr = tcg_const_i64((s->pc - 4) + imm);
1904 if (is_vector) {
1905 do_fp_ld(s, rt, tcg_addr, size);
1906 } else {
1907 do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, false);
1909 tcg_temp_free_i64(tcg_addr);
1913 * C5.6.80 LDNP (Load Pair - non-temporal hint)
1914 * C5.6.81 LDP (Load Pair - non vector)
1915 * C5.6.82 LDPSW (Load Pair Signed Word - non vector)
1916 * C5.6.176 STNP (Store Pair - non-temporal hint)
1917 * C5.6.177 STP (Store Pair - non vector)
1918 * C6.3.165 LDNP (Load Pair of SIMD&FP - non-temporal hint)
1919 * C6.3.165 LDP (Load Pair of SIMD&FP)
1920 * C6.3.284 STNP (Store Pair of SIMD&FP - non-temporal hint)
1921 * C6.3.284 STP (Store Pair of SIMD&FP)
1923 * 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0
1924 * +-----+-------+---+---+-------+---+-----------------------------+
1925 * | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt |
1926 * +-----+-------+---+---+-------+---+-------+-------+------+------+
1928 * opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit
1929 * LDPSW 01
1930 * LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit
1931 * V: 0 -> GPR, 1 -> Vector
1932 * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index,
1933 * 10 -> signed offset, 11 -> pre-index
1934 * L: 0 -> Store 1 -> Load
1936 * Rt, Rt2 = GPR or SIMD registers to be stored
1937 * Rn = general purpose register containing address
1938 * imm7 = signed offset (multiple of 4 or 8 depending on size)
1940 static void disas_ldst_pair(DisasContext *s, uint32_t insn)
1942 int rt = extract32(insn, 0, 5);
1943 int rn = extract32(insn, 5, 5);
1944 int rt2 = extract32(insn, 10, 5);
1945 uint64_t offset = sextract64(insn, 15, 7);
1946 int index = extract32(insn, 23, 2);
1947 bool is_vector = extract32(insn, 26, 1);
1948 bool is_load = extract32(insn, 22, 1);
1949 int opc = extract32(insn, 30, 2);
1951 bool is_signed = false;
1952 bool postindex = false;
1953 bool wback = false;
1955 TCGv_i64 tcg_addr; /* calculated address */
1956 int size;
1958 if (opc == 3) {
1959 unallocated_encoding(s);
1960 return;
1963 if (is_vector) {
1964 size = 2 + opc;
1965 } else {
1966 size = 2 + extract32(opc, 1, 1);
1967 is_signed = extract32(opc, 0, 1);
1968 if (!is_load && is_signed) {
1969 unallocated_encoding(s);
1970 return;
1974 switch (index) {
1975 case 1: /* post-index */
1976 postindex = true;
1977 wback = true;
1978 break;
1979 case 0:
1980 /* signed offset with "non-temporal" hint. Since we don't emulate
1981 * caches we don't care about hints to the cache system about
1982 * data access patterns, and handle this identically to plain
1983 * signed offset.
1985 if (is_signed) {
1986 /* There is no non-temporal-hint version of LDPSW */
1987 unallocated_encoding(s);
1988 return;
1990 postindex = false;
1991 break;
1992 case 2: /* signed offset, rn not updated */
1993 postindex = false;
1994 break;
1995 case 3: /* pre-index */
1996 postindex = false;
1997 wback = true;
1998 break;
2001 if (is_vector && !fp_access_check(s)) {
2002 return;
2005 offset <<= size;
2007 if (rn == 31) {
2008 gen_check_sp_alignment(s);
2011 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2013 if (!postindex) {
2014 tcg_gen_addi_i64(tcg_addr, tcg_addr, offset);
2017 if (is_vector) {
2018 if (is_load) {
2019 do_fp_ld(s, rt, tcg_addr, size);
2020 } else {
2021 do_fp_st(s, rt, tcg_addr, size);
2023 } else {
2024 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2025 if (is_load) {
2026 do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, false);
2027 } else {
2028 do_gpr_st(s, tcg_rt, tcg_addr, size);
2031 tcg_gen_addi_i64(tcg_addr, tcg_addr, 1 << size);
2032 if (is_vector) {
2033 if (is_load) {
2034 do_fp_ld(s, rt2, tcg_addr, size);
2035 } else {
2036 do_fp_st(s, rt2, tcg_addr, size);
2038 } else {
2039 TCGv_i64 tcg_rt2 = cpu_reg(s, rt2);
2040 if (is_load) {
2041 do_gpr_ld(s, tcg_rt2, tcg_addr, size, is_signed, false);
2042 } else {
2043 do_gpr_st(s, tcg_rt2, tcg_addr, size);
2047 if (wback) {
2048 if (postindex) {
2049 tcg_gen_addi_i64(tcg_addr, tcg_addr, offset - (1 << size));
2050 } else {
2051 tcg_gen_subi_i64(tcg_addr, tcg_addr, 1 << size);
2053 tcg_gen_mov_i64(cpu_reg_sp(s, rn), tcg_addr);
2058 * C3.3.8 Load/store (immediate post-indexed)
2059 * C3.3.9 Load/store (immediate pre-indexed)
2060 * C3.3.12 Load/store (unscaled immediate)
2062 * 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0
2063 * +----+-------+---+-----+-----+---+--------+-----+------+------+
2064 * |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt |
2065 * +----+-------+---+-----+-----+---+--------+-----+------+------+
2067 * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback)
2068 10 -> unprivileged
2069 * V = 0 -> non-vector
2070 * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit
2071 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
2073 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn)
2075 int rt = extract32(insn, 0, 5);
2076 int rn = extract32(insn, 5, 5);
2077 int imm9 = sextract32(insn, 12, 9);
2078 int opc = extract32(insn, 22, 2);
2079 int size = extract32(insn, 30, 2);
2080 int idx = extract32(insn, 10, 2);
2081 bool is_signed = false;
2082 bool is_store = false;
2083 bool is_extended = false;
2084 bool is_unpriv = (idx == 2);
2085 bool is_vector = extract32(insn, 26, 1);
2086 bool post_index;
2087 bool writeback;
2089 TCGv_i64 tcg_addr;
2091 if (is_vector) {
2092 size |= (opc & 2) << 1;
2093 if (size > 4 || is_unpriv) {
2094 unallocated_encoding(s);
2095 return;
2097 is_store = ((opc & 1) == 0);
2098 if (!fp_access_check(s)) {
2099 return;
2101 } else {
2102 if (size == 3 && opc == 2) {
2103 /* PRFM - prefetch */
2104 if (is_unpriv) {
2105 unallocated_encoding(s);
2106 return;
2108 return;
2110 if (opc == 3 && size > 1) {
2111 unallocated_encoding(s);
2112 return;
2114 is_store = (opc == 0);
2115 is_signed = opc & (1<<1);
2116 is_extended = (size < 3) && (opc & 1);
2119 switch (idx) {
2120 case 0:
2121 case 2:
2122 post_index = false;
2123 writeback = false;
2124 break;
2125 case 1:
2126 post_index = true;
2127 writeback = true;
2128 break;
2129 case 3:
2130 post_index = false;
2131 writeback = true;
2132 break;
2135 if (rn == 31) {
2136 gen_check_sp_alignment(s);
2138 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2140 if (!post_index) {
2141 tcg_gen_addi_i64(tcg_addr, tcg_addr, imm9);
2144 if (is_vector) {
2145 if (is_store) {
2146 do_fp_st(s, rt, tcg_addr, size);
2147 } else {
2148 do_fp_ld(s, rt, tcg_addr, size);
2150 } else {
2151 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2152 int memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s);
2154 if (is_store) {
2155 do_gpr_st_memidx(s, tcg_rt, tcg_addr, size, memidx);
2156 } else {
2157 do_gpr_ld_memidx(s, tcg_rt, tcg_addr, size,
2158 is_signed, is_extended, memidx);
2162 if (writeback) {
2163 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
2164 if (post_index) {
2165 tcg_gen_addi_i64(tcg_addr, tcg_addr, imm9);
2167 tcg_gen_mov_i64(tcg_rn, tcg_addr);
2172 * C3.3.10 Load/store (register offset)
2174 * 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0
2175 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
2176 * |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt |
2177 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
2179 * For non-vector:
2180 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
2181 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
2182 * For vector:
2183 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
2184 * opc<0>: 0 -> store, 1 -> load
2185 * V: 1 -> vector/simd
2186 * opt: extend encoding (see DecodeRegExtend)
2187 * S: if S=1 then scale (essentially index by sizeof(size))
2188 * Rt: register to transfer into/out of
2189 * Rn: address register or SP for base
2190 * Rm: offset register or ZR for offset
2192 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn)
2194 int rt = extract32(insn, 0, 5);
2195 int rn = extract32(insn, 5, 5);
2196 int shift = extract32(insn, 12, 1);
2197 int rm = extract32(insn, 16, 5);
2198 int opc = extract32(insn, 22, 2);
2199 int opt = extract32(insn, 13, 3);
2200 int size = extract32(insn, 30, 2);
2201 bool is_signed = false;
2202 bool is_store = false;
2203 bool is_extended = false;
2204 bool is_vector = extract32(insn, 26, 1);
2206 TCGv_i64 tcg_rm;
2207 TCGv_i64 tcg_addr;
2209 if (extract32(opt, 1, 1) == 0) {
2210 unallocated_encoding(s);
2211 return;
2214 if (is_vector) {
2215 size |= (opc & 2) << 1;
2216 if (size > 4) {
2217 unallocated_encoding(s);
2218 return;
2220 is_store = !extract32(opc, 0, 1);
2221 if (!fp_access_check(s)) {
2222 return;
2224 } else {
2225 if (size == 3 && opc == 2) {
2226 /* PRFM - prefetch */
2227 return;
2229 if (opc == 3 && size > 1) {
2230 unallocated_encoding(s);
2231 return;
2233 is_store = (opc == 0);
2234 is_signed = extract32(opc, 1, 1);
2235 is_extended = (size < 3) && extract32(opc, 0, 1);
2238 if (rn == 31) {
2239 gen_check_sp_alignment(s);
2241 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2243 tcg_rm = read_cpu_reg(s, rm, 1);
2244 ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0);
2246 tcg_gen_add_i64(tcg_addr, tcg_addr, tcg_rm);
2248 if (is_vector) {
2249 if (is_store) {
2250 do_fp_st(s, rt, tcg_addr, size);
2251 } else {
2252 do_fp_ld(s, rt, tcg_addr, size);
2254 } else {
2255 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2256 if (is_store) {
2257 do_gpr_st(s, tcg_rt, tcg_addr, size);
2258 } else {
2259 do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, is_extended);
2265 * C3.3.13 Load/store (unsigned immediate)
2267 * 31 30 29 27 26 25 24 23 22 21 10 9 5
2268 * +----+-------+---+-----+-----+------------+-------+------+
2269 * |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt |
2270 * +----+-------+---+-----+-----+------------+-------+------+
2272 * For non-vector:
2273 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
2274 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
2275 * For vector:
2276 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
2277 * opc<0>: 0 -> store, 1 -> load
2278 * Rn: base address register (inc SP)
2279 * Rt: target register
2281 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn)
2283 int rt = extract32(insn, 0, 5);
2284 int rn = extract32(insn, 5, 5);
2285 unsigned int imm12 = extract32(insn, 10, 12);
2286 bool is_vector = extract32(insn, 26, 1);
2287 int size = extract32(insn, 30, 2);
2288 int opc = extract32(insn, 22, 2);
2289 unsigned int offset;
2291 TCGv_i64 tcg_addr;
2293 bool is_store;
2294 bool is_signed = false;
2295 bool is_extended = false;
2297 if (is_vector) {
2298 size |= (opc & 2) << 1;
2299 if (size > 4) {
2300 unallocated_encoding(s);
2301 return;
2303 is_store = !extract32(opc, 0, 1);
2304 if (!fp_access_check(s)) {
2305 return;
2307 } else {
2308 if (size == 3 && opc == 2) {
2309 /* PRFM - prefetch */
2310 return;
2312 if (opc == 3 && size > 1) {
2313 unallocated_encoding(s);
2314 return;
2316 is_store = (opc == 0);
2317 is_signed = extract32(opc, 1, 1);
2318 is_extended = (size < 3) && extract32(opc, 0, 1);
2321 if (rn == 31) {
2322 gen_check_sp_alignment(s);
2324 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2325 offset = imm12 << size;
2326 tcg_gen_addi_i64(tcg_addr, tcg_addr, offset);
2328 if (is_vector) {
2329 if (is_store) {
2330 do_fp_st(s, rt, tcg_addr, size);
2331 } else {
2332 do_fp_ld(s, rt, tcg_addr, size);
2334 } else {
2335 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2336 if (is_store) {
2337 do_gpr_st(s, tcg_rt, tcg_addr, size);
2338 } else {
2339 do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, is_extended);
2344 /* Load/store register (all forms) */
2345 static void disas_ldst_reg(DisasContext *s, uint32_t insn)
2347 switch (extract32(insn, 24, 2)) {
2348 case 0:
2349 if (extract32(insn, 21, 1) == 1 && extract32(insn, 10, 2) == 2) {
2350 disas_ldst_reg_roffset(s, insn);
2351 } else {
2352 /* Load/store register (unscaled immediate)
2353 * Load/store immediate pre/post-indexed
2354 * Load/store register unprivileged
2356 disas_ldst_reg_imm9(s, insn);
2358 break;
2359 case 1:
2360 disas_ldst_reg_unsigned_imm(s, insn);
2361 break;
2362 default:
2363 unallocated_encoding(s);
2364 break;
2368 /* C3.3.1 AdvSIMD load/store multiple structures
2370 * 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0
2371 * +---+---+---------------+---+-------------+--------+------+------+------+
2372 * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt |
2373 * +---+---+---------------+---+-------------+--------+------+------+------+
2375 * C3.3.2 AdvSIMD load/store multiple structures (post-indexed)
2377 * 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0
2378 * +---+---+---------------+---+---+---------+--------+------+------+------+
2379 * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt |
2380 * +---+---+---------------+---+---+---------+--------+------+------+------+
2382 * Rt: first (or only) SIMD&FP register to be transferred
2383 * Rn: base address or SP
2384 * Rm (post-index only): post-index register (when !31) or size dependent #imm
2386 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn)
2388 int rt = extract32(insn, 0, 5);
2389 int rn = extract32(insn, 5, 5);
2390 int size = extract32(insn, 10, 2);
2391 int opcode = extract32(insn, 12, 4);
2392 bool is_store = !extract32(insn, 22, 1);
2393 bool is_postidx = extract32(insn, 23, 1);
2394 bool is_q = extract32(insn, 30, 1);
2395 TCGv_i64 tcg_addr, tcg_rn;
2397 int ebytes = 1 << size;
2398 int elements = (is_q ? 128 : 64) / (8 << size);
2399 int rpt; /* num iterations */
2400 int selem; /* structure elements */
2401 int r;
2403 if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) {
2404 unallocated_encoding(s);
2405 return;
2408 /* From the shared decode logic */
2409 switch (opcode) {
2410 case 0x0:
2411 rpt = 1;
2412 selem = 4;
2413 break;
2414 case 0x2:
2415 rpt = 4;
2416 selem = 1;
2417 break;
2418 case 0x4:
2419 rpt = 1;
2420 selem = 3;
2421 break;
2422 case 0x6:
2423 rpt = 3;
2424 selem = 1;
2425 break;
2426 case 0x7:
2427 rpt = 1;
2428 selem = 1;
2429 break;
2430 case 0x8:
2431 rpt = 1;
2432 selem = 2;
2433 break;
2434 case 0xa:
2435 rpt = 2;
2436 selem = 1;
2437 break;
2438 default:
2439 unallocated_encoding(s);
2440 return;
2443 if (size == 3 && !is_q && selem != 1) {
2444 /* reserved */
2445 unallocated_encoding(s);
2446 return;
2449 if (!fp_access_check(s)) {
2450 return;
2453 if (rn == 31) {
2454 gen_check_sp_alignment(s);
2457 tcg_rn = cpu_reg_sp(s, rn);
2458 tcg_addr = tcg_temp_new_i64();
2459 tcg_gen_mov_i64(tcg_addr, tcg_rn);
2461 for (r = 0; r < rpt; r++) {
2462 int e;
2463 for (e = 0; e < elements; e++) {
2464 int tt = (rt + r) % 32;
2465 int xs;
2466 for (xs = 0; xs < selem; xs++) {
2467 if (is_store) {
2468 do_vec_st(s, tt, e, tcg_addr, size);
2469 } else {
2470 do_vec_ld(s, tt, e, tcg_addr, size);
2472 /* For non-quad operations, setting a slice of the low
2473 * 64 bits of the register clears the high 64 bits (in
2474 * the ARM ARM pseudocode this is implicit in the fact
2475 * that 'rval' is a 64 bit wide variable). We optimize
2476 * by noticing that we only need to do this the first
2477 * time we touch a register.
2479 if (!is_q && e == 0 && (r == 0 || xs == selem - 1)) {
2480 clear_vec_high(s, tt);
2483 tcg_gen_addi_i64(tcg_addr, tcg_addr, ebytes);
2484 tt = (tt + 1) % 32;
2489 if (is_postidx) {
2490 int rm = extract32(insn, 16, 5);
2491 if (rm == 31) {
2492 tcg_gen_mov_i64(tcg_rn, tcg_addr);
2493 } else {
2494 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
2497 tcg_temp_free_i64(tcg_addr);
2500 /* C3.3.3 AdvSIMD load/store single structure
2502 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
2503 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
2504 * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt |
2505 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
2507 * C3.3.4 AdvSIMD load/store single structure (post-indexed)
2509 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
2510 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
2511 * | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt |
2512 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
2514 * Rt: first (or only) SIMD&FP register to be transferred
2515 * Rn: base address or SP
2516 * Rm (post-index only): post-index register (when !31) or size dependent #imm
2517 * index = encoded in Q:S:size dependent on size
2519 * lane_size = encoded in R, opc
2520 * transfer width = encoded in opc, S, size
2522 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn)
2524 int rt = extract32(insn, 0, 5);
2525 int rn = extract32(insn, 5, 5);
2526 int size = extract32(insn, 10, 2);
2527 int S = extract32(insn, 12, 1);
2528 int opc = extract32(insn, 13, 3);
2529 int R = extract32(insn, 21, 1);
2530 int is_load = extract32(insn, 22, 1);
2531 int is_postidx = extract32(insn, 23, 1);
2532 int is_q = extract32(insn, 30, 1);
2534 int scale = extract32(opc, 1, 2);
2535 int selem = (extract32(opc, 0, 1) << 1 | R) + 1;
2536 bool replicate = false;
2537 int index = is_q << 3 | S << 2 | size;
2538 int ebytes, xs;
2539 TCGv_i64 tcg_addr, tcg_rn;
2541 switch (scale) {
2542 case 3:
2543 if (!is_load || S) {
2544 unallocated_encoding(s);
2545 return;
2547 scale = size;
2548 replicate = true;
2549 break;
2550 case 0:
2551 break;
2552 case 1:
2553 if (extract32(size, 0, 1)) {
2554 unallocated_encoding(s);
2555 return;
2557 index >>= 1;
2558 break;
2559 case 2:
2560 if (extract32(size, 1, 1)) {
2561 unallocated_encoding(s);
2562 return;
2564 if (!extract32(size, 0, 1)) {
2565 index >>= 2;
2566 } else {
2567 if (S) {
2568 unallocated_encoding(s);
2569 return;
2571 index >>= 3;
2572 scale = 3;
2574 break;
2575 default:
2576 g_assert_not_reached();
2579 if (!fp_access_check(s)) {
2580 return;
2583 ebytes = 1 << scale;
2585 if (rn == 31) {
2586 gen_check_sp_alignment(s);
2589 tcg_rn = cpu_reg_sp(s, rn);
2590 tcg_addr = tcg_temp_new_i64();
2591 tcg_gen_mov_i64(tcg_addr, tcg_rn);
2593 for (xs = 0; xs < selem; xs++) {
2594 if (replicate) {
2595 /* Load and replicate to all elements */
2596 uint64_t mulconst;
2597 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
2599 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr,
2600 get_mem_index(s), MO_TE + scale);
2601 switch (scale) {
2602 case 0:
2603 mulconst = 0x0101010101010101ULL;
2604 break;
2605 case 1:
2606 mulconst = 0x0001000100010001ULL;
2607 break;
2608 case 2:
2609 mulconst = 0x0000000100000001ULL;
2610 break;
2611 case 3:
2612 mulconst = 0;
2613 break;
2614 default:
2615 g_assert_not_reached();
2617 if (mulconst) {
2618 tcg_gen_muli_i64(tcg_tmp, tcg_tmp, mulconst);
2620 write_vec_element(s, tcg_tmp, rt, 0, MO_64);
2621 if (is_q) {
2622 write_vec_element(s, tcg_tmp, rt, 1, MO_64);
2623 } else {
2624 clear_vec_high(s, rt);
2626 tcg_temp_free_i64(tcg_tmp);
2627 } else {
2628 /* Load/store one element per register */
2629 if (is_load) {
2630 do_vec_ld(s, rt, index, tcg_addr, MO_TE + scale);
2631 } else {
2632 do_vec_st(s, rt, index, tcg_addr, MO_TE + scale);
2635 tcg_gen_addi_i64(tcg_addr, tcg_addr, ebytes);
2636 rt = (rt + 1) % 32;
2639 if (is_postidx) {
2640 int rm = extract32(insn, 16, 5);
2641 if (rm == 31) {
2642 tcg_gen_mov_i64(tcg_rn, tcg_addr);
2643 } else {
2644 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
2647 tcg_temp_free_i64(tcg_addr);
2650 /* C3.3 Loads and stores */
2651 static void disas_ldst(DisasContext *s, uint32_t insn)
2653 switch (extract32(insn, 24, 6)) {
2654 case 0x08: /* Load/store exclusive */
2655 disas_ldst_excl(s, insn);
2656 break;
2657 case 0x18: case 0x1c: /* Load register (literal) */
2658 disas_ld_lit(s, insn);
2659 break;
2660 case 0x28: case 0x29:
2661 case 0x2c: case 0x2d: /* Load/store pair (all forms) */
2662 disas_ldst_pair(s, insn);
2663 break;
2664 case 0x38: case 0x39:
2665 case 0x3c: case 0x3d: /* Load/store register (all forms) */
2666 disas_ldst_reg(s, insn);
2667 break;
2668 case 0x0c: /* AdvSIMD load/store multiple structures */
2669 disas_ldst_multiple_struct(s, insn);
2670 break;
2671 case 0x0d: /* AdvSIMD load/store single structure */
2672 disas_ldst_single_struct(s, insn);
2673 break;
2674 default:
2675 unallocated_encoding(s);
2676 break;
2680 /* C3.4.6 PC-rel. addressing
2681 * 31 30 29 28 24 23 5 4 0
2682 * +----+-------+-----------+-------------------+------+
2683 * | op | immlo | 1 0 0 0 0 | immhi | Rd |
2684 * +----+-------+-----------+-------------------+------+
2686 static void disas_pc_rel_adr(DisasContext *s, uint32_t insn)
2688 unsigned int page, rd;
2689 uint64_t base;
2690 uint64_t offset;
2692 page = extract32(insn, 31, 1);
2693 /* SignExtend(immhi:immlo) -> offset */
2694 offset = sextract64(insn, 5, 19);
2695 offset = offset << 2 | extract32(insn, 29, 2);
2696 rd = extract32(insn, 0, 5);
2697 base = s->pc - 4;
2699 if (page) {
2700 /* ADRP (page based) */
2701 base &= ~0xfff;
2702 offset <<= 12;
2705 tcg_gen_movi_i64(cpu_reg(s, rd), base + offset);
2709 * C3.4.1 Add/subtract (immediate)
2711 * 31 30 29 28 24 23 22 21 10 9 5 4 0
2712 * +--+--+--+-----------+-----+-------------+-----+-----+
2713 * |sf|op| S| 1 0 0 0 1 |shift| imm12 | Rn | Rd |
2714 * +--+--+--+-----------+-----+-------------+-----+-----+
2716 * sf: 0 -> 32bit, 1 -> 64bit
2717 * op: 0 -> add , 1 -> sub
2718 * S: 1 -> set flags
2719 * shift: 00 -> LSL imm by 0, 01 -> LSL imm by 12
2721 static void disas_add_sub_imm(DisasContext *s, uint32_t insn)
2723 int rd = extract32(insn, 0, 5);
2724 int rn = extract32(insn, 5, 5);
2725 uint64_t imm = extract32(insn, 10, 12);
2726 int shift = extract32(insn, 22, 2);
2727 bool setflags = extract32(insn, 29, 1);
2728 bool sub_op = extract32(insn, 30, 1);
2729 bool is_64bit = extract32(insn, 31, 1);
2731 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
2732 TCGv_i64 tcg_rd = setflags ? cpu_reg(s, rd) : cpu_reg_sp(s, rd);
2733 TCGv_i64 tcg_result;
2735 switch (shift) {
2736 case 0x0:
2737 break;
2738 case 0x1:
2739 imm <<= 12;
2740 break;
2741 default:
2742 unallocated_encoding(s);
2743 return;
2746 tcg_result = tcg_temp_new_i64();
2747 if (!setflags) {
2748 if (sub_op) {
2749 tcg_gen_subi_i64(tcg_result, tcg_rn, imm);
2750 } else {
2751 tcg_gen_addi_i64(tcg_result, tcg_rn, imm);
2753 } else {
2754 TCGv_i64 tcg_imm = tcg_const_i64(imm);
2755 if (sub_op) {
2756 gen_sub_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
2757 } else {
2758 gen_add_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
2760 tcg_temp_free_i64(tcg_imm);
2763 if (is_64bit) {
2764 tcg_gen_mov_i64(tcg_rd, tcg_result);
2765 } else {
2766 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
2769 tcg_temp_free_i64(tcg_result);
2772 /* The input should be a value in the bottom e bits (with higher
2773 * bits zero); returns that value replicated into every element
2774 * of size e in a 64 bit integer.
2776 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
2778 assert(e != 0);
2779 while (e < 64) {
2780 mask |= mask << e;
2781 e *= 2;
2783 return mask;
2786 /* Return a value with the bottom len bits set (where 0 < len <= 64) */
2787 static inline uint64_t bitmask64(unsigned int length)
2789 assert(length > 0 && length <= 64);
2790 return ~0ULL >> (64 - length);
2793 /* Simplified variant of pseudocode DecodeBitMasks() for the case where we
2794 * only require the wmask. Returns false if the imms/immr/immn are a reserved
2795 * value (ie should cause a guest UNDEF exception), and true if they are
2796 * valid, in which case the decoded bit pattern is written to result.
2798 static bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
2799 unsigned int imms, unsigned int immr)
2801 uint64_t mask;
2802 unsigned e, levels, s, r;
2803 int len;
2805 assert(immn < 2 && imms < 64 && immr < 64);
2807 /* The bit patterns we create here are 64 bit patterns which
2808 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
2809 * 64 bits each. Each element contains the same value: a run
2810 * of between 1 and e-1 non-zero bits, rotated within the
2811 * element by between 0 and e-1 bits.
2813 * The element size and run length are encoded into immn (1 bit)
2814 * and imms (6 bits) as follows:
2815 * 64 bit elements: immn = 1, imms = <length of run - 1>
2816 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
2817 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
2818 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1>
2819 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
2820 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
2821 * Notice that immn = 0, imms = 11111x is the only combination
2822 * not covered by one of the above options; this is reserved.
2823 * Further, <length of run - 1> all-ones is a reserved pattern.
2825 * In all cases the rotation is by immr % e (and immr is 6 bits).
2828 /* First determine the element size */
2829 len = 31 - clz32((immn << 6) | (~imms & 0x3f));
2830 if (len < 1) {
2831 /* This is the immn == 0, imms == 0x11111x case */
2832 return false;
2834 e = 1 << len;
2836 levels = e - 1;
2837 s = imms & levels;
2838 r = immr & levels;
2840 if (s == levels) {
2841 /* <length of run - 1> mustn't be all-ones. */
2842 return false;
2845 /* Create the value of one element: s+1 set bits rotated
2846 * by r within the element (which is e bits wide)...
2848 mask = bitmask64(s + 1);
2849 if (r) {
2850 mask = (mask >> r) | (mask << (e - r));
2851 mask &= bitmask64(e);
2853 /* ...then replicate the element over the whole 64 bit value */
2854 mask = bitfield_replicate(mask, e);
2855 *result = mask;
2856 return true;
2859 /* C3.4.4 Logical (immediate)
2860 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
2861 * +----+-----+-------------+---+------+------+------+------+
2862 * | sf | opc | 1 0 0 1 0 0 | N | immr | imms | Rn | Rd |
2863 * +----+-----+-------------+---+------+------+------+------+
2865 static void disas_logic_imm(DisasContext *s, uint32_t insn)
2867 unsigned int sf, opc, is_n, immr, imms, rn, rd;
2868 TCGv_i64 tcg_rd, tcg_rn;
2869 uint64_t wmask;
2870 bool is_and = false;
2872 sf = extract32(insn, 31, 1);
2873 opc = extract32(insn, 29, 2);
2874 is_n = extract32(insn, 22, 1);
2875 immr = extract32(insn, 16, 6);
2876 imms = extract32(insn, 10, 6);
2877 rn = extract32(insn, 5, 5);
2878 rd = extract32(insn, 0, 5);
2880 if (!sf && is_n) {
2881 unallocated_encoding(s);
2882 return;
2885 if (opc == 0x3) { /* ANDS */
2886 tcg_rd = cpu_reg(s, rd);
2887 } else {
2888 tcg_rd = cpu_reg_sp(s, rd);
2890 tcg_rn = cpu_reg(s, rn);
2892 if (!logic_imm_decode_wmask(&wmask, is_n, imms, immr)) {
2893 /* some immediate field values are reserved */
2894 unallocated_encoding(s);
2895 return;
2898 if (!sf) {
2899 wmask &= 0xffffffff;
2902 switch (opc) {
2903 case 0x3: /* ANDS */
2904 case 0x0: /* AND */
2905 tcg_gen_andi_i64(tcg_rd, tcg_rn, wmask);
2906 is_and = true;
2907 break;
2908 case 0x1: /* ORR */
2909 tcg_gen_ori_i64(tcg_rd, tcg_rn, wmask);
2910 break;
2911 case 0x2: /* EOR */
2912 tcg_gen_xori_i64(tcg_rd, tcg_rn, wmask);
2913 break;
2914 default:
2915 assert(FALSE); /* must handle all above */
2916 break;
2919 if (!sf && !is_and) {
2920 /* zero extend final result; we know we can skip this for AND
2921 * since the immediate had the high 32 bits clear.
2923 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
2926 if (opc == 3) { /* ANDS */
2927 gen_logic_CC(sf, tcg_rd);
2932 * C3.4.5 Move wide (immediate)
2934 * 31 30 29 28 23 22 21 20 5 4 0
2935 * +--+-----+-------------+-----+----------------+------+
2936 * |sf| opc | 1 0 0 1 0 1 | hw | imm16 | Rd |
2937 * +--+-----+-------------+-----+----------------+------+
2939 * sf: 0 -> 32 bit, 1 -> 64 bit
2940 * opc: 00 -> N, 10 -> Z, 11 -> K
2941 * hw: shift/16 (0,16, and sf only 32, 48)
2943 static void disas_movw_imm(DisasContext *s, uint32_t insn)
2945 int rd = extract32(insn, 0, 5);
2946 uint64_t imm = extract32(insn, 5, 16);
2947 int sf = extract32(insn, 31, 1);
2948 int opc = extract32(insn, 29, 2);
2949 int pos = extract32(insn, 21, 2) << 4;
2950 TCGv_i64 tcg_rd = cpu_reg(s, rd);
2951 TCGv_i64 tcg_imm;
2953 if (!sf && (pos >= 32)) {
2954 unallocated_encoding(s);
2955 return;
2958 switch (opc) {
2959 case 0: /* MOVN */
2960 case 2: /* MOVZ */
2961 imm <<= pos;
2962 if (opc == 0) {
2963 imm = ~imm;
2965 if (!sf) {
2966 imm &= 0xffffffffu;
2968 tcg_gen_movi_i64(tcg_rd, imm);
2969 break;
2970 case 3: /* MOVK */
2971 tcg_imm = tcg_const_i64(imm);
2972 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_imm, pos, 16);
2973 tcg_temp_free_i64(tcg_imm);
2974 if (!sf) {
2975 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
2977 break;
2978 default:
2979 unallocated_encoding(s);
2980 break;
2984 /* C3.4.2 Bitfield
2985 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
2986 * +----+-----+-------------+---+------+------+------+------+
2987 * | sf | opc | 1 0 0 1 1 0 | N | immr | imms | Rn | Rd |
2988 * +----+-----+-------------+---+------+------+------+------+
2990 static void disas_bitfield(DisasContext *s, uint32_t insn)
2992 unsigned int sf, n, opc, ri, si, rn, rd, bitsize, pos, len;
2993 TCGv_i64 tcg_rd, tcg_tmp;
2995 sf = extract32(insn, 31, 1);
2996 opc = extract32(insn, 29, 2);
2997 n = extract32(insn, 22, 1);
2998 ri = extract32(insn, 16, 6);
2999 si = extract32(insn, 10, 6);
3000 rn = extract32(insn, 5, 5);
3001 rd = extract32(insn, 0, 5);
3002 bitsize = sf ? 64 : 32;
3004 if (sf != n || ri >= bitsize || si >= bitsize || opc > 2) {
3005 unallocated_encoding(s);
3006 return;
3009 tcg_rd = cpu_reg(s, rd);
3011 /* Suppress the zero-extend for !sf. Since RI and SI are constrained
3012 to be smaller than bitsize, we'll never reference data outside the
3013 low 32-bits anyway. */
3014 tcg_tmp = read_cpu_reg(s, rn, 1);
3016 /* Recognize the common aliases. */
3017 if (opc == 0) { /* SBFM */
3018 if (ri == 0) {
3019 if (si == 7) { /* SXTB */
3020 tcg_gen_ext8s_i64(tcg_rd, tcg_tmp);
3021 goto done;
3022 } else if (si == 15) { /* SXTH */
3023 tcg_gen_ext16s_i64(tcg_rd, tcg_tmp);
3024 goto done;
3025 } else if (si == 31) { /* SXTW */
3026 tcg_gen_ext32s_i64(tcg_rd, tcg_tmp);
3027 goto done;
3030 if (si == 63 || (si == 31 && ri <= si)) { /* ASR */
3031 if (si == 31) {
3032 tcg_gen_ext32s_i64(tcg_tmp, tcg_tmp);
3034 tcg_gen_sari_i64(tcg_rd, tcg_tmp, ri);
3035 goto done;
3037 } else if (opc == 2) { /* UBFM */
3038 if (ri == 0) { /* UXTB, UXTH, plus non-canonical AND */
3039 tcg_gen_andi_i64(tcg_rd, tcg_tmp, bitmask64(si + 1));
3040 return;
3042 if (si == 63 || (si == 31 && ri <= si)) { /* LSR */
3043 if (si == 31) {
3044 tcg_gen_ext32u_i64(tcg_tmp, tcg_tmp);
3046 tcg_gen_shri_i64(tcg_rd, tcg_tmp, ri);
3047 return;
3049 if (si + 1 == ri && si != bitsize - 1) { /* LSL */
3050 int shift = bitsize - 1 - si;
3051 tcg_gen_shli_i64(tcg_rd, tcg_tmp, shift);
3052 goto done;
3056 if (opc != 1) { /* SBFM or UBFM */
3057 tcg_gen_movi_i64(tcg_rd, 0);
3060 /* do the bit move operation */
3061 if (si >= ri) {
3062 /* Wd<s-r:0> = Wn<s:r> */
3063 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
3064 pos = 0;
3065 len = (si - ri) + 1;
3066 } else {
3067 /* Wd<32+s-r,32-r> = Wn<s:0> */
3068 pos = bitsize - ri;
3069 len = si + 1;
3072 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
3074 if (opc == 0) { /* SBFM - sign extend the destination field */
3075 tcg_gen_shli_i64(tcg_rd, tcg_rd, 64 - (pos + len));
3076 tcg_gen_sari_i64(tcg_rd, tcg_rd, 64 - (pos + len));
3079 done:
3080 if (!sf) { /* zero extend final result */
3081 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3085 /* C3.4.3 Extract
3086 * 31 30 29 28 23 22 21 20 16 15 10 9 5 4 0
3087 * +----+------+-------------+---+----+------+--------+------+------+
3088 * | sf | op21 | 1 0 0 1 1 1 | N | o0 | Rm | imms | Rn | Rd |
3089 * +----+------+-------------+---+----+------+--------+------+------+
3091 static void disas_extract(DisasContext *s, uint32_t insn)
3093 unsigned int sf, n, rm, imm, rn, rd, bitsize, op21, op0;
3095 sf = extract32(insn, 31, 1);
3096 n = extract32(insn, 22, 1);
3097 rm = extract32(insn, 16, 5);
3098 imm = extract32(insn, 10, 6);
3099 rn = extract32(insn, 5, 5);
3100 rd = extract32(insn, 0, 5);
3101 op21 = extract32(insn, 29, 2);
3102 op0 = extract32(insn, 21, 1);
3103 bitsize = sf ? 64 : 32;
3105 if (sf != n || op21 || op0 || imm >= bitsize) {
3106 unallocated_encoding(s);
3107 } else {
3108 TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
3110 tcg_rd = cpu_reg(s, rd);
3112 if (unlikely(imm == 0)) {
3113 /* tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
3114 * so an extract from bit 0 is a special case.
3116 if (sf) {
3117 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, rm));
3118 } else {
3119 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rm));
3121 } else if (rm == rn) { /* ROR */
3122 tcg_rm = cpu_reg(s, rm);
3123 if (sf) {
3124 tcg_gen_rotri_i64(tcg_rd, tcg_rm, imm);
3125 } else {
3126 TCGv_i32 tmp = tcg_temp_new_i32();
3127 tcg_gen_extrl_i64_i32(tmp, tcg_rm);
3128 tcg_gen_rotri_i32(tmp, tmp, imm);
3129 tcg_gen_extu_i32_i64(tcg_rd, tmp);
3130 tcg_temp_free_i32(tmp);
3132 } else {
3133 tcg_rm = read_cpu_reg(s, rm, sf);
3134 tcg_rn = read_cpu_reg(s, rn, sf);
3135 tcg_gen_shri_i64(tcg_rm, tcg_rm, imm);
3136 tcg_gen_shli_i64(tcg_rn, tcg_rn, bitsize - imm);
3137 tcg_gen_or_i64(tcg_rd, tcg_rm, tcg_rn);
3138 if (!sf) {
3139 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3145 /* C3.4 Data processing - immediate */
3146 static void disas_data_proc_imm(DisasContext *s, uint32_t insn)
3148 switch (extract32(insn, 23, 6)) {
3149 case 0x20: case 0x21: /* PC-rel. addressing */
3150 disas_pc_rel_adr(s, insn);
3151 break;
3152 case 0x22: case 0x23: /* Add/subtract (immediate) */
3153 disas_add_sub_imm(s, insn);
3154 break;
3155 case 0x24: /* Logical (immediate) */
3156 disas_logic_imm(s, insn);
3157 break;
3158 case 0x25: /* Move wide (immediate) */
3159 disas_movw_imm(s, insn);
3160 break;
3161 case 0x26: /* Bitfield */
3162 disas_bitfield(s, insn);
3163 break;
3164 case 0x27: /* Extract */
3165 disas_extract(s, insn);
3166 break;
3167 default:
3168 unallocated_encoding(s);
3169 break;
3173 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
3174 * Note that it is the caller's responsibility to ensure that the
3175 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
3176 * mandated semantics for out of range shifts.
3178 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
3179 enum a64_shift_type shift_type, TCGv_i64 shift_amount)
3181 switch (shift_type) {
3182 case A64_SHIFT_TYPE_LSL:
3183 tcg_gen_shl_i64(dst, src, shift_amount);
3184 break;
3185 case A64_SHIFT_TYPE_LSR:
3186 tcg_gen_shr_i64(dst, src, shift_amount);
3187 break;
3188 case A64_SHIFT_TYPE_ASR:
3189 if (!sf) {
3190 tcg_gen_ext32s_i64(dst, src);
3192 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
3193 break;
3194 case A64_SHIFT_TYPE_ROR:
3195 if (sf) {
3196 tcg_gen_rotr_i64(dst, src, shift_amount);
3197 } else {
3198 TCGv_i32 t0, t1;
3199 t0 = tcg_temp_new_i32();
3200 t1 = tcg_temp_new_i32();
3201 tcg_gen_extrl_i64_i32(t0, src);
3202 tcg_gen_extrl_i64_i32(t1, shift_amount);
3203 tcg_gen_rotr_i32(t0, t0, t1);
3204 tcg_gen_extu_i32_i64(dst, t0);
3205 tcg_temp_free_i32(t0);
3206 tcg_temp_free_i32(t1);
3208 break;
3209 default:
3210 assert(FALSE); /* all shift types should be handled */
3211 break;
3214 if (!sf) { /* zero extend final result */
3215 tcg_gen_ext32u_i64(dst, dst);
3219 /* Shift a TCGv src by immediate, put result in dst.
3220 * The shift amount must be in range (this should always be true as the
3221 * relevant instructions will UNDEF on bad shift immediates).
3223 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
3224 enum a64_shift_type shift_type, unsigned int shift_i)
3226 assert(shift_i < (sf ? 64 : 32));
3228 if (shift_i == 0) {
3229 tcg_gen_mov_i64(dst, src);
3230 } else {
3231 TCGv_i64 shift_const;
3233 shift_const = tcg_const_i64(shift_i);
3234 shift_reg(dst, src, sf, shift_type, shift_const);
3235 tcg_temp_free_i64(shift_const);
3239 /* C3.5.10 Logical (shifted register)
3240 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
3241 * +----+-----+-----------+-------+---+------+--------+------+------+
3242 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd |
3243 * +----+-----+-----------+-------+---+------+--------+------+------+
3245 static void disas_logic_reg(DisasContext *s, uint32_t insn)
3247 TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
3248 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
3250 sf = extract32(insn, 31, 1);
3251 opc = extract32(insn, 29, 2);
3252 shift_type = extract32(insn, 22, 2);
3253 invert = extract32(insn, 21, 1);
3254 rm = extract32(insn, 16, 5);
3255 shift_amount = extract32(insn, 10, 6);
3256 rn = extract32(insn, 5, 5);
3257 rd = extract32(insn, 0, 5);
3259 if (!sf && (shift_amount & (1 << 5))) {
3260 unallocated_encoding(s);
3261 return;
3264 tcg_rd = cpu_reg(s, rd);
3266 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
3267 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
3268 * register-register MOV and MVN, so it is worth special casing.
3270 tcg_rm = cpu_reg(s, rm);
3271 if (invert) {
3272 tcg_gen_not_i64(tcg_rd, tcg_rm);
3273 if (!sf) {
3274 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3276 } else {
3277 if (sf) {
3278 tcg_gen_mov_i64(tcg_rd, tcg_rm);
3279 } else {
3280 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
3283 return;
3286 tcg_rm = read_cpu_reg(s, rm, sf);
3288 if (shift_amount) {
3289 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
3292 tcg_rn = cpu_reg(s, rn);
3294 switch (opc | (invert << 2)) {
3295 case 0: /* AND */
3296 case 3: /* ANDS */
3297 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
3298 break;
3299 case 1: /* ORR */
3300 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
3301 break;
3302 case 2: /* EOR */
3303 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
3304 break;
3305 case 4: /* BIC */
3306 case 7: /* BICS */
3307 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
3308 break;
3309 case 5: /* ORN */
3310 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
3311 break;
3312 case 6: /* EON */
3313 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
3314 break;
3315 default:
3316 assert(FALSE);
3317 break;
3320 if (!sf) {
3321 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3324 if (opc == 3) {
3325 gen_logic_CC(sf, tcg_rd);
3330 * C3.5.1 Add/subtract (extended register)
3332 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0|
3333 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
3334 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd |
3335 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
3337 * sf: 0 -> 32bit, 1 -> 64bit
3338 * op: 0 -> add , 1 -> sub
3339 * S: 1 -> set flags
3340 * opt: 00
3341 * option: extension type (see DecodeRegExtend)
3342 * imm3: optional shift to Rm
3344 * Rd = Rn + LSL(extend(Rm), amount)
3346 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
3348 int rd = extract32(insn, 0, 5);
3349 int rn = extract32(insn, 5, 5);
3350 int imm3 = extract32(insn, 10, 3);
3351 int option = extract32(insn, 13, 3);
3352 int rm = extract32(insn, 16, 5);
3353 bool setflags = extract32(insn, 29, 1);
3354 bool sub_op = extract32(insn, 30, 1);
3355 bool sf = extract32(insn, 31, 1);
3357 TCGv_i64 tcg_rm, tcg_rn; /* temps */
3358 TCGv_i64 tcg_rd;
3359 TCGv_i64 tcg_result;
3361 if (imm3 > 4) {
3362 unallocated_encoding(s);
3363 return;
3366 /* non-flag setting ops may use SP */
3367 if (!setflags) {
3368 tcg_rd = cpu_reg_sp(s, rd);
3369 } else {
3370 tcg_rd = cpu_reg(s, rd);
3372 tcg_rn = read_cpu_reg_sp(s, rn, sf);
3374 tcg_rm = read_cpu_reg(s, rm, sf);
3375 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
3377 tcg_result = tcg_temp_new_i64();
3379 if (!setflags) {
3380 if (sub_op) {
3381 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
3382 } else {
3383 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
3385 } else {
3386 if (sub_op) {
3387 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
3388 } else {
3389 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
3393 if (sf) {
3394 tcg_gen_mov_i64(tcg_rd, tcg_result);
3395 } else {
3396 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
3399 tcg_temp_free_i64(tcg_result);
3403 * C3.5.2 Add/subtract (shifted register)
3405 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
3406 * +--+--+--+-----------+-----+--+-------+---------+------+------+
3407 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd |
3408 * +--+--+--+-----------+-----+--+-------+---------+------+------+
3410 * sf: 0 -> 32bit, 1 -> 64bit
3411 * op: 0 -> add , 1 -> sub
3412 * S: 1 -> set flags
3413 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
3414 * imm6: Shift amount to apply to Rm before the add/sub
3416 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
3418 int rd = extract32(insn, 0, 5);
3419 int rn = extract32(insn, 5, 5);
3420 int imm6 = extract32(insn, 10, 6);
3421 int rm = extract32(insn, 16, 5);
3422 int shift_type = extract32(insn, 22, 2);
3423 bool setflags = extract32(insn, 29, 1);
3424 bool sub_op = extract32(insn, 30, 1);
3425 bool sf = extract32(insn, 31, 1);
3427 TCGv_i64 tcg_rd = cpu_reg(s, rd);
3428 TCGv_i64 tcg_rn, tcg_rm;
3429 TCGv_i64 tcg_result;
3431 if ((shift_type == 3) || (!sf && (imm6 > 31))) {
3432 unallocated_encoding(s);
3433 return;
3436 tcg_rn = read_cpu_reg(s, rn, sf);
3437 tcg_rm = read_cpu_reg(s, rm, sf);
3439 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
3441 tcg_result = tcg_temp_new_i64();
3443 if (!setflags) {
3444 if (sub_op) {
3445 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
3446 } else {
3447 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
3449 } else {
3450 if (sub_op) {
3451 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
3452 } else {
3453 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
3457 if (sf) {
3458 tcg_gen_mov_i64(tcg_rd, tcg_result);
3459 } else {
3460 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
3463 tcg_temp_free_i64(tcg_result);
3466 /* C3.5.9 Data-processing (3 source)
3468 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0
3469 +--+------+-----------+------+------+----+------+------+------+
3470 |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd |
3471 +--+------+-----------+------+------+----+------+------+------+
3474 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
3476 int rd = extract32(insn, 0, 5);
3477 int rn = extract32(insn, 5, 5);
3478 int ra = extract32(insn, 10, 5);
3479 int rm = extract32(insn, 16, 5);
3480 int op_id = (extract32(insn, 29, 3) << 4) |
3481 (extract32(insn, 21, 3) << 1) |
3482 extract32(insn, 15, 1);
3483 bool sf = extract32(insn, 31, 1);
3484 bool is_sub = extract32(op_id, 0, 1);
3485 bool is_high = extract32(op_id, 2, 1);
3486 bool is_signed = false;
3487 TCGv_i64 tcg_op1;
3488 TCGv_i64 tcg_op2;
3489 TCGv_i64 tcg_tmp;
3491 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
3492 switch (op_id) {
3493 case 0x42: /* SMADDL */
3494 case 0x43: /* SMSUBL */
3495 case 0x44: /* SMULH */
3496 is_signed = true;
3497 break;
3498 case 0x0: /* MADD (32bit) */
3499 case 0x1: /* MSUB (32bit) */
3500 case 0x40: /* MADD (64bit) */
3501 case 0x41: /* MSUB (64bit) */
3502 case 0x4a: /* UMADDL */
3503 case 0x4b: /* UMSUBL */
3504 case 0x4c: /* UMULH */
3505 break;
3506 default:
3507 unallocated_encoding(s);
3508 return;
3511 if (is_high) {
3512 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
3513 TCGv_i64 tcg_rd = cpu_reg(s, rd);
3514 TCGv_i64 tcg_rn = cpu_reg(s, rn);
3515 TCGv_i64 tcg_rm = cpu_reg(s, rm);
3517 if (is_signed) {
3518 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
3519 } else {
3520 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
3523 tcg_temp_free_i64(low_bits);
3524 return;
3527 tcg_op1 = tcg_temp_new_i64();
3528 tcg_op2 = tcg_temp_new_i64();
3529 tcg_tmp = tcg_temp_new_i64();
3531 if (op_id < 0x42) {
3532 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
3533 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
3534 } else {
3535 if (is_signed) {
3536 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
3537 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
3538 } else {
3539 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
3540 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
3544 if (ra == 31 && !is_sub) {
3545 /* Special-case MADD with rA == XZR; it is the standard MUL alias */
3546 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
3547 } else {
3548 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
3549 if (is_sub) {
3550 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
3551 } else {
3552 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
3556 if (!sf) {
3557 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
3560 tcg_temp_free_i64(tcg_op1);
3561 tcg_temp_free_i64(tcg_op2);
3562 tcg_temp_free_i64(tcg_tmp);
3565 /* C3.5.3 - Add/subtract (with carry)
3566 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0
3567 * +--+--+--+------------------------+------+---------+------+-----+
3568 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | opcode2 | Rn | Rd |
3569 * +--+--+--+------------------------+------+---------+------+-----+
3570 * [000000]
3573 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
3575 unsigned int sf, op, setflags, rm, rn, rd;
3576 TCGv_i64 tcg_y, tcg_rn, tcg_rd;
3578 if (extract32(insn, 10, 6) != 0) {
3579 unallocated_encoding(s);
3580 return;
3583 sf = extract32(insn, 31, 1);
3584 op = extract32(insn, 30, 1);
3585 setflags = extract32(insn, 29, 1);
3586 rm = extract32(insn, 16, 5);
3587 rn = extract32(insn, 5, 5);
3588 rd = extract32(insn, 0, 5);
3590 tcg_rd = cpu_reg(s, rd);
3591 tcg_rn = cpu_reg(s, rn);
3593 if (op) {
3594 tcg_y = new_tmp_a64(s);
3595 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
3596 } else {
3597 tcg_y = cpu_reg(s, rm);
3600 if (setflags) {
3601 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
3602 } else {
3603 gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
3607 /* C3.5.4 - C3.5.5 Conditional compare (immediate / register)
3608 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
3609 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
3610 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv |
3611 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
3612 * [1] y [0] [0]
3614 static void disas_cc(DisasContext *s, uint32_t insn)
3616 unsigned int sf, op, y, cond, rn, nzcv, is_imm;
3617 TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
3618 TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
3619 DisasCompare c;
3621 if (!extract32(insn, 29, 1)) {
3622 unallocated_encoding(s);
3623 return;
3625 if (insn & (1 << 10 | 1 << 4)) {
3626 unallocated_encoding(s);
3627 return;
3629 sf = extract32(insn, 31, 1);
3630 op = extract32(insn, 30, 1);
3631 is_imm = extract32(insn, 11, 1);
3632 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
3633 cond = extract32(insn, 12, 4);
3634 rn = extract32(insn, 5, 5);
3635 nzcv = extract32(insn, 0, 4);
3637 /* Set T0 = !COND. */
3638 tcg_t0 = tcg_temp_new_i32();
3639 arm_test_cc(&c, cond);
3640 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
3641 arm_free_cc(&c);
3643 /* Load the arguments for the new comparison. */
3644 if (is_imm) {
3645 tcg_y = new_tmp_a64(s);
3646 tcg_gen_movi_i64(tcg_y, y);
3647 } else {
3648 tcg_y = cpu_reg(s, y);
3650 tcg_rn = cpu_reg(s, rn);
3652 /* Set the flags for the new comparison. */
3653 tcg_tmp = tcg_temp_new_i64();
3654 if (op) {
3655 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
3656 } else {
3657 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
3659 tcg_temp_free_i64(tcg_tmp);
3661 /* If COND was false, force the flags to #nzcv. Compute two masks
3662 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
3663 * For tcg hosts that support ANDC, we can make do with just T1.
3664 * In either case, allow the tcg optimizer to delete any unused mask.
3666 tcg_t1 = tcg_temp_new_i32();
3667 tcg_t2 = tcg_temp_new_i32();
3668 tcg_gen_neg_i32(tcg_t1, tcg_t0);
3669 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
3671 if (nzcv & 8) { /* N */
3672 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
3673 } else {
3674 if (TCG_TARGET_HAS_andc_i32) {
3675 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
3676 } else {
3677 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
3680 if (nzcv & 4) { /* Z */
3681 if (TCG_TARGET_HAS_andc_i32) {
3682 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
3683 } else {
3684 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
3686 } else {
3687 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
3689 if (nzcv & 2) { /* C */
3690 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
3691 } else {
3692 if (TCG_TARGET_HAS_andc_i32) {
3693 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
3694 } else {
3695 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
3698 if (nzcv & 1) { /* V */
3699 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
3700 } else {
3701 if (TCG_TARGET_HAS_andc_i32) {
3702 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
3703 } else {
3704 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
3707 tcg_temp_free_i32(tcg_t0);
3708 tcg_temp_free_i32(tcg_t1);
3709 tcg_temp_free_i32(tcg_t2);
3712 /* C3.5.6 Conditional select
3713 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0
3714 * +----+----+---+-----------------+------+------+-----+------+------+
3715 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd |
3716 * +----+----+---+-----------------+------+------+-----+------+------+
3718 static void disas_cond_select(DisasContext *s, uint32_t insn)
3720 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
3721 TCGv_i64 tcg_rd, zero;
3722 DisasCompare64 c;
3724 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
3725 /* S == 1 or op2<1> == 1 */
3726 unallocated_encoding(s);
3727 return;
3729 sf = extract32(insn, 31, 1);
3730 else_inv = extract32(insn, 30, 1);
3731 rm = extract32(insn, 16, 5);
3732 cond = extract32(insn, 12, 4);
3733 else_inc = extract32(insn, 10, 1);
3734 rn = extract32(insn, 5, 5);
3735 rd = extract32(insn, 0, 5);
3737 tcg_rd = cpu_reg(s, rd);
3739 a64_test_cc(&c, cond);
3740 zero = tcg_const_i64(0);
3742 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
3743 /* CSET & CSETM. */
3744 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero);
3745 if (else_inv) {
3746 tcg_gen_neg_i64(tcg_rd, tcg_rd);
3748 } else {
3749 TCGv_i64 t_true = cpu_reg(s, rn);
3750 TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
3751 if (else_inv && else_inc) {
3752 tcg_gen_neg_i64(t_false, t_false);
3753 } else if (else_inv) {
3754 tcg_gen_not_i64(t_false, t_false);
3755 } else if (else_inc) {
3756 tcg_gen_addi_i64(t_false, t_false, 1);
3758 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
3761 tcg_temp_free_i64(zero);
3762 a64_free_cc(&c);
3764 if (!sf) {
3765 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3769 static void handle_clz(DisasContext *s, unsigned int sf,
3770 unsigned int rn, unsigned int rd)
3772 TCGv_i64 tcg_rd, tcg_rn;
3773 tcg_rd = cpu_reg(s, rd);
3774 tcg_rn = cpu_reg(s, rn);
3776 if (sf) {
3777 gen_helper_clz64(tcg_rd, tcg_rn);
3778 } else {
3779 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
3780 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
3781 gen_helper_clz(tcg_tmp32, tcg_tmp32);
3782 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
3783 tcg_temp_free_i32(tcg_tmp32);
3787 static void handle_cls(DisasContext *s, unsigned int sf,
3788 unsigned int rn, unsigned int rd)
3790 TCGv_i64 tcg_rd, tcg_rn;
3791 tcg_rd = cpu_reg(s, rd);
3792 tcg_rn = cpu_reg(s, rn);
3794 if (sf) {
3795 gen_helper_cls64(tcg_rd, tcg_rn);
3796 } else {
3797 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
3798 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
3799 gen_helper_cls32(tcg_tmp32, tcg_tmp32);
3800 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
3801 tcg_temp_free_i32(tcg_tmp32);
3805 static void handle_rbit(DisasContext *s, unsigned int sf,
3806 unsigned int rn, unsigned int rd)
3808 TCGv_i64 tcg_rd, tcg_rn;
3809 tcg_rd = cpu_reg(s, rd);
3810 tcg_rn = cpu_reg(s, rn);
3812 if (sf) {
3813 gen_helper_rbit64(tcg_rd, tcg_rn);
3814 } else {
3815 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
3816 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
3817 gen_helper_rbit(tcg_tmp32, tcg_tmp32);
3818 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
3819 tcg_temp_free_i32(tcg_tmp32);
3823 /* C5.6.149 REV with sf==1, opcode==3 ("REV64") */
3824 static void handle_rev64(DisasContext *s, unsigned int sf,
3825 unsigned int rn, unsigned int rd)
3827 if (!sf) {
3828 unallocated_encoding(s);
3829 return;
3831 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
3834 /* C5.6.149 REV with sf==0, opcode==2
3835 * C5.6.151 REV32 (sf==1, opcode==2)
3837 static void handle_rev32(DisasContext *s, unsigned int sf,
3838 unsigned int rn, unsigned int rd)
3840 TCGv_i64 tcg_rd = cpu_reg(s, rd);
3842 if (sf) {
3843 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3844 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
3846 /* bswap32_i64 requires zero high word */
3847 tcg_gen_ext32u_i64(tcg_tmp, tcg_rn);
3848 tcg_gen_bswap32_i64(tcg_rd, tcg_tmp);
3849 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 32);
3850 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp);
3851 tcg_gen_concat32_i64(tcg_rd, tcg_rd, tcg_tmp);
3853 tcg_temp_free_i64(tcg_tmp);
3854 } else {
3855 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rn));
3856 tcg_gen_bswap32_i64(tcg_rd, tcg_rd);
3860 /* C5.6.150 REV16 (opcode==1) */
3861 static void handle_rev16(DisasContext *s, unsigned int sf,
3862 unsigned int rn, unsigned int rd)
3864 TCGv_i64 tcg_rd = cpu_reg(s, rd);
3865 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3866 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
3868 tcg_gen_andi_i64(tcg_tmp, tcg_rn, 0xffff);
3869 tcg_gen_bswap16_i64(tcg_rd, tcg_tmp);
3871 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 16);
3872 tcg_gen_andi_i64(tcg_tmp, tcg_tmp, 0xffff);
3873 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp);
3874 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, 16, 16);
3876 if (sf) {
3877 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 32);
3878 tcg_gen_andi_i64(tcg_tmp, tcg_tmp, 0xffff);
3879 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp);
3880 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, 32, 16);
3882 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 48);
3883 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp);
3884 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, 48, 16);
3887 tcg_temp_free_i64(tcg_tmp);
3890 /* C3.5.7 Data-processing (1 source)
3891 * 31 30 29 28 21 20 16 15 10 9 5 4 0
3892 * +----+---+---+-----------------+---------+--------+------+------+
3893 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd |
3894 * +----+---+---+-----------------+---------+--------+------+------+
3896 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
3898 unsigned int sf, opcode, rn, rd;
3900 if (extract32(insn, 29, 1) || extract32(insn, 16, 5)) {
3901 unallocated_encoding(s);
3902 return;
3905 sf = extract32(insn, 31, 1);
3906 opcode = extract32(insn, 10, 6);
3907 rn = extract32(insn, 5, 5);
3908 rd = extract32(insn, 0, 5);
3910 switch (opcode) {
3911 case 0: /* RBIT */
3912 handle_rbit(s, sf, rn, rd);
3913 break;
3914 case 1: /* REV16 */
3915 handle_rev16(s, sf, rn, rd);
3916 break;
3917 case 2: /* REV32 */
3918 handle_rev32(s, sf, rn, rd);
3919 break;
3920 case 3: /* REV64 */
3921 handle_rev64(s, sf, rn, rd);
3922 break;
3923 case 4: /* CLZ */
3924 handle_clz(s, sf, rn, rd);
3925 break;
3926 case 5: /* CLS */
3927 handle_cls(s, sf, rn, rd);
3928 break;
3932 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
3933 unsigned int rm, unsigned int rn, unsigned int rd)
3935 TCGv_i64 tcg_n, tcg_m, tcg_rd;
3936 tcg_rd = cpu_reg(s, rd);
3938 if (!sf && is_signed) {
3939 tcg_n = new_tmp_a64(s);
3940 tcg_m = new_tmp_a64(s);
3941 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
3942 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
3943 } else {
3944 tcg_n = read_cpu_reg(s, rn, sf);
3945 tcg_m = read_cpu_reg(s, rm, sf);
3948 if (is_signed) {
3949 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
3950 } else {
3951 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
3954 if (!sf) { /* zero extend final result */
3955 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3959 /* C5.6.115 LSLV, C5.6.118 LSRV, C5.6.17 ASRV, C5.6.154 RORV */
3960 static void handle_shift_reg(DisasContext *s,
3961 enum a64_shift_type shift_type, unsigned int sf,
3962 unsigned int rm, unsigned int rn, unsigned int rd)
3964 TCGv_i64 tcg_shift = tcg_temp_new_i64();
3965 TCGv_i64 tcg_rd = cpu_reg(s, rd);
3966 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
3968 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
3969 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
3970 tcg_temp_free_i64(tcg_shift);
3973 /* CRC32[BHWX], CRC32C[BHWX] */
3974 static void handle_crc32(DisasContext *s,
3975 unsigned int sf, unsigned int sz, bool crc32c,
3976 unsigned int rm, unsigned int rn, unsigned int rd)
3978 TCGv_i64 tcg_acc, tcg_val;
3979 TCGv_i32 tcg_bytes;
3981 if (!arm_dc_feature(s, ARM_FEATURE_CRC)
3982 || (sf == 1 && sz != 3)
3983 || (sf == 0 && sz == 3)) {
3984 unallocated_encoding(s);
3985 return;
3988 if (sz == 3) {
3989 tcg_val = cpu_reg(s, rm);
3990 } else {
3991 uint64_t mask;
3992 switch (sz) {
3993 case 0:
3994 mask = 0xFF;
3995 break;
3996 case 1:
3997 mask = 0xFFFF;
3998 break;
3999 case 2:
4000 mask = 0xFFFFFFFF;
4001 break;
4002 default:
4003 g_assert_not_reached();
4005 tcg_val = new_tmp_a64(s);
4006 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
4009 tcg_acc = cpu_reg(s, rn);
4010 tcg_bytes = tcg_const_i32(1 << sz);
4012 if (crc32c) {
4013 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
4014 } else {
4015 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
4018 tcg_temp_free_i32(tcg_bytes);
4021 /* C3.5.8 Data-processing (2 source)
4022 * 31 30 29 28 21 20 16 15 10 9 5 4 0
4023 * +----+---+---+-----------------+------+--------+------+------+
4024 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd |
4025 * +----+---+---+-----------------+------+--------+------+------+
4027 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
4029 unsigned int sf, rm, opcode, rn, rd;
4030 sf = extract32(insn, 31, 1);
4031 rm = extract32(insn, 16, 5);
4032 opcode = extract32(insn, 10, 6);
4033 rn = extract32(insn, 5, 5);
4034 rd = extract32(insn, 0, 5);
4036 if (extract32(insn, 29, 1)) {
4037 unallocated_encoding(s);
4038 return;
4041 switch (opcode) {
4042 case 2: /* UDIV */
4043 handle_div(s, false, sf, rm, rn, rd);
4044 break;
4045 case 3: /* SDIV */
4046 handle_div(s, true, sf, rm, rn, rd);
4047 break;
4048 case 8: /* LSLV */
4049 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
4050 break;
4051 case 9: /* LSRV */
4052 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
4053 break;
4054 case 10: /* ASRV */
4055 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
4056 break;
4057 case 11: /* RORV */
4058 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
4059 break;
4060 case 16:
4061 case 17:
4062 case 18:
4063 case 19:
4064 case 20:
4065 case 21:
4066 case 22:
4067 case 23: /* CRC32 */
4069 int sz = extract32(opcode, 0, 2);
4070 bool crc32c = extract32(opcode, 2, 1);
4071 handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
4072 break;
4074 default:
4075 unallocated_encoding(s);
4076 break;
4080 /* C3.5 Data processing - register */
4081 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
4083 switch (extract32(insn, 24, 5)) {
4084 case 0x0a: /* Logical (shifted register) */
4085 disas_logic_reg(s, insn);
4086 break;
4087 case 0x0b: /* Add/subtract */
4088 if (insn & (1 << 21)) { /* (extended register) */
4089 disas_add_sub_ext_reg(s, insn);
4090 } else {
4091 disas_add_sub_reg(s, insn);
4093 break;
4094 case 0x1b: /* Data-processing (3 source) */
4095 disas_data_proc_3src(s, insn);
4096 break;
4097 case 0x1a:
4098 switch (extract32(insn, 21, 3)) {
4099 case 0x0: /* Add/subtract (with carry) */
4100 disas_adc_sbc(s, insn);
4101 break;
4102 case 0x2: /* Conditional compare */
4103 disas_cc(s, insn); /* both imm and reg forms */
4104 break;
4105 case 0x4: /* Conditional select */
4106 disas_cond_select(s, insn);
4107 break;
4108 case 0x6: /* Data-processing */
4109 if (insn & (1 << 30)) { /* (1 source) */
4110 disas_data_proc_1src(s, insn);
4111 } else { /* (2 source) */
4112 disas_data_proc_2src(s, insn);
4114 break;
4115 default:
4116 unallocated_encoding(s);
4117 break;
4119 break;
4120 default:
4121 unallocated_encoding(s);
4122 break;
4126 static void handle_fp_compare(DisasContext *s, bool is_double,
4127 unsigned int rn, unsigned int rm,
4128 bool cmp_with_zero, bool signal_all_nans)
4130 TCGv_i64 tcg_flags = tcg_temp_new_i64();
4131 TCGv_ptr fpst = get_fpstatus_ptr();
4133 if (is_double) {
4134 TCGv_i64 tcg_vn, tcg_vm;
4136 tcg_vn = read_fp_dreg(s, rn);
4137 if (cmp_with_zero) {
4138 tcg_vm = tcg_const_i64(0);
4139 } else {
4140 tcg_vm = read_fp_dreg(s, rm);
4142 if (signal_all_nans) {
4143 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4144 } else {
4145 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4147 tcg_temp_free_i64(tcg_vn);
4148 tcg_temp_free_i64(tcg_vm);
4149 } else {
4150 TCGv_i32 tcg_vn, tcg_vm;
4152 tcg_vn = read_fp_sreg(s, rn);
4153 if (cmp_with_zero) {
4154 tcg_vm = tcg_const_i32(0);
4155 } else {
4156 tcg_vm = read_fp_sreg(s, rm);
4158 if (signal_all_nans) {
4159 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4160 } else {
4161 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4163 tcg_temp_free_i32(tcg_vn);
4164 tcg_temp_free_i32(tcg_vm);
4167 tcg_temp_free_ptr(fpst);
4169 gen_set_nzcv(tcg_flags);
4171 tcg_temp_free_i64(tcg_flags);
4174 /* C3.6.22 Floating point compare
4175 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0
4176 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
4177 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 |
4178 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
4180 static void disas_fp_compare(DisasContext *s, uint32_t insn)
4182 unsigned int mos, type, rm, op, rn, opc, op2r;
4184 mos = extract32(insn, 29, 3);
4185 type = extract32(insn, 22, 2); /* 0 = single, 1 = double */
4186 rm = extract32(insn, 16, 5);
4187 op = extract32(insn, 14, 2);
4188 rn = extract32(insn, 5, 5);
4189 opc = extract32(insn, 3, 2);
4190 op2r = extract32(insn, 0, 3);
4192 if (mos || op || op2r || type > 1) {
4193 unallocated_encoding(s);
4194 return;
4197 if (!fp_access_check(s)) {
4198 return;
4201 handle_fp_compare(s, type, rn, rm, opc & 1, opc & 2);
4204 /* C3.6.23 Floating point conditional compare
4205 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
4206 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
4207 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv |
4208 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
4210 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
4212 unsigned int mos, type, rm, cond, rn, op, nzcv;
4213 TCGv_i64 tcg_flags;
4214 TCGLabel *label_continue = NULL;
4216 mos = extract32(insn, 29, 3);
4217 type = extract32(insn, 22, 2); /* 0 = single, 1 = double */
4218 rm = extract32(insn, 16, 5);
4219 cond = extract32(insn, 12, 4);
4220 rn = extract32(insn, 5, 5);
4221 op = extract32(insn, 4, 1);
4222 nzcv = extract32(insn, 0, 4);
4224 if (mos || type > 1) {
4225 unallocated_encoding(s);
4226 return;
4229 if (!fp_access_check(s)) {
4230 return;
4233 if (cond < 0x0e) { /* not always */
4234 TCGLabel *label_match = gen_new_label();
4235 label_continue = gen_new_label();
4236 arm_gen_test_cc(cond, label_match);
4237 /* nomatch: */
4238 tcg_flags = tcg_const_i64(nzcv << 28);
4239 gen_set_nzcv(tcg_flags);
4240 tcg_temp_free_i64(tcg_flags);
4241 tcg_gen_br(label_continue);
4242 gen_set_label(label_match);
4245 handle_fp_compare(s, type, rn, rm, false, op);
4247 if (cond < 0x0e) {
4248 gen_set_label(label_continue);
4252 /* C3.6.24 Floating point conditional select
4253 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
4254 * +---+---+---+-----------+------+---+------+------+-----+------+------+
4255 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd |
4256 * +---+---+---+-----------+------+---+------+------+-----+------+------+
4258 static void disas_fp_csel(DisasContext *s, uint32_t insn)
4260 unsigned int mos, type, rm, cond, rn, rd;
4261 TCGv_i64 t_true, t_false, t_zero;
4262 DisasCompare64 c;
4264 mos = extract32(insn, 29, 3);
4265 type = extract32(insn, 22, 2); /* 0 = single, 1 = double */
4266 rm = extract32(insn, 16, 5);
4267 cond = extract32(insn, 12, 4);
4268 rn = extract32(insn, 5, 5);
4269 rd = extract32(insn, 0, 5);
4271 if (mos || type > 1) {
4272 unallocated_encoding(s);
4273 return;
4276 if (!fp_access_check(s)) {
4277 return;
4280 /* Zero extend sreg inputs to 64 bits now. */
4281 t_true = tcg_temp_new_i64();
4282 t_false = tcg_temp_new_i64();
4283 read_vec_element(s, t_true, rn, 0, type ? MO_64 : MO_32);
4284 read_vec_element(s, t_false, rm, 0, type ? MO_64 : MO_32);
4286 a64_test_cc(&c, cond);
4287 t_zero = tcg_const_i64(0);
4288 tcg_gen_movcond_i64(c.cond, t_true, c.value, t_zero, t_true, t_false);
4289 tcg_temp_free_i64(t_zero);
4290 tcg_temp_free_i64(t_false);
4291 a64_free_cc(&c);
4293 /* Note that sregs write back zeros to the high bits,
4294 and we've already done the zero-extension. */
4295 write_fp_dreg(s, rd, t_true);
4296 tcg_temp_free_i64(t_true);
4299 /* C3.6.25 Floating-point data-processing (1 source) - single precision */
4300 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
4302 TCGv_ptr fpst;
4303 TCGv_i32 tcg_op;
4304 TCGv_i32 tcg_res;
4306 fpst = get_fpstatus_ptr();
4307 tcg_op = read_fp_sreg(s, rn);
4308 tcg_res = tcg_temp_new_i32();
4310 switch (opcode) {
4311 case 0x0: /* FMOV */
4312 tcg_gen_mov_i32(tcg_res, tcg_op);
4313 break;
4314 case 0x1: /* FABS */
4315 gen_helper_vfp_abss(tcg_res, tcg_op);
4316 break;
4317 case 0x2: /* FNEG */
4318 gen_helper_vfp_negs(tcg_res, tcg_op);
4319 break;
4320 case 0x3: /* FSQRT */
4321 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
4322 break;
4323 case 0x8: /* FRINTN */
4324 case 0x9: /* FRINTP */
4325 case 0xa: /* FRINTM */
4326 case 0xb: /* FRINTZ */
4327 case 0xc: /* FRINTA */
4329 TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
4331 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
4332 gen_helper_rints(tcg_res, tcg_op, fpst);
4334 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
4335 tcg_temp_free_i32(tcg_rmode);
4336 break;
4338 case 0xe: /* FRINTX */
4339 gen_helper_rints_exact(tcg_res, tcg_op, fpst);
4340 break;
4341 case 0xf: /* FRINTI */
4342 gen_helper_rints(tcg_res, tcg_op, fpst);
4343 break;
4344 default:
4345 abort();
4348 write_fp_sreg(s, rd, tcg_res);
4350 tcg_temp_free_ptr(fpst);
4351 tcg_temp_free_i32(tcg_op);
4352 tcg_temp_free_i32(tcg_res);
4355 /* C3.6.25 Floating-point data-processing (1 source) - double precision */
4356 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
4358 TCGv_ptr fpst;
4359 TCGv_i64 tcg_op;
4360 TCGv_i64 tcg_res;
4362 fpst = get_fpstatus_ptr();
4363 tcg_op = read_fp_dreg(s, rn);
4364 tcg_res = tcg_temp_new_i64();
4366 switch (opcode) {
4367 case 0x0: /* FMOV */
4368 tcg_gen_mov_i64(tcg_res, tcg_op);
4369 break;
4370 case 0x1: /* FABS */
4371 gen_helper_vfp_absd(tcg_res, tcg_op);
4372 break;
4373 case 0x2: /* FNEG */
4374 gen_helper_vfp_negd(tcg_res, tcg_op);
4375 break;
4376 case 0x3: /* FSQRT */
4377 gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env);
4378 break;
4379 case 0x8: /* FRINTN */
4380 case 0x9: /* FRINTP */
4381 case 0xa: /* FRINTM */
4382 case 0xb: /* FRINTZ */
4383 case 0xc: /* FRINTA */
4385 TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
4387 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
4388 gen_helper_rintd(tcg_res, tcg_op, fpst);
4390 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
4391 tcg_temp_free_i32(tcg_rmode);
4392 break;
4394 case 0xe: /* FRINTX */
4395 gen_helper_rintd_exact(tcg_res, tcg_op, fpst);
4396 break;
4397 case 0xf: /* FRINTI */
4398 gen_helper_rintd(tcg_res, tcg_op, fpst);
4399 break;
4400 default:
4401 abort();
4404 write_fp_dreg(s, rd, tcg_res);
4406 tcg_temp_free_ptr(fpst);
4407 tcg_temp_free_i64(tcg_op);
4408 tcg_temp_free_i64(tcg_res);
4411 static void handle_fp_fcvt(DisasContext *s, int opcode,
4412 int rd, int rn, int dtype, int ntype)
4414 switch (ntype) {
4415 case 0x0:
4417 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
4418 if (dtype == 1) {
4419 /* Single to double */
4420 TCGv_i64 tcg_rd = tcg_temp_new_i64();
4421 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env);
4422 write_fp_dreg(s, rd, tcg_rd);
4423 tcg_temp_free_i64(tcg_rd);
4424 } else {
4425 /* Single to half */
4426 TCGv_i32 tcg_rd = tcg_temp_new_i32();
4427 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, cpu_env);
4428 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
4429 write_fp_sreg(s, rd, tcg_rd);
4430 tcg_temp_free_i32(tcg_rd);
4432 tcg_temp_free_i32(tcg_rn);
4433 break;
4435 case 0x1:
4437 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
4438 TCGv_i32 tcg_rd = tcg_temp_new_i32();
4439 if (dtype == 0) {
4440 /* Double to single */
4441 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env);
4442 } else {
4443 /* Double to half */
4444 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, cpu_env);
4445 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
4447 write_fp_sreg(s, rd, tcg_rd);
4448 tcg_temp_free_i32(tcg_rd);
4449 tcg_temp_free_i64(tcg_rn);
4450 break;
4452 case 0x3:
4454 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
4455 tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
4456 if (dtype == 0) {
4457 /* Half to single */
4458 TCGv_i32 tcg_rd = tcg_temp_new_i32();
4459 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, cpu_env);
4460 write_fp_sreg(s, rd, tcg_rd);
4461 tcg_temp_free_i32(tcg_rd);
4462 } else {
4463 /* Half to double */
4464 TCGv_i64 tcg_rd = tcg_temp_new_i64();
4465 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, cpu_env);
4466 write_fp_dreg(s, rd, tcg_rd);
4467 tcg_temp_free_i64(tcg_rd);
4469 tcg_temp_free_i32(tcg_rn);
4470 break;
4472 default:
4473 abort();
4477 /* C3.6.25 Floating point data-processing (1 source)
4478 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0
4479 * +---+---+---+-----------+------+---+--------+-----------+------+------+
4480 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd |
4481 * +---+---+---+-----------+------+---+--------+-----------+------+------+
4483 static void disas_fp_1src(DisasContext *s, uint32_t insn)
4485 int type = extract32(insn, 22, 2);
4486 int opcode = extract32(insn, 15, 6);
4487 int rn = extract32(insn, 5, 5);
4488 int rd = extract32(insn, 0, 5);
4490 switch (opcode) {
4491 case 0x4: case 0x5: case 0x7:
4493 /* FCVT between half, single and double precision */
4494 int dtype = extract32(opcode, 0, 2);
4495 if (type == 2 || dtype == type) {
4496 unallocated_encoding(s);
4497 return;
4499 if (!fp_access_check(s)) {
4500 return;
4503 handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
4504 break;
4506 case 0x0 ... 0x3:
4507 case 0x8 ... 0xc:
4508 case 0xe ... 0xf:
4509 /* 32-to-32 and 64-to-64 ops */
4510 switch (type) {
4511 case 0:
4512 if (!fp_access_check(s)) {
4513 return;
4516 handle_fp_1src_single(s, opcode, rd, rn);
4517 break;
4518 case 1:
4519 if (!fp_access_check(s)) {
4520 return;
4523 handle_fp_1src_double(s, opcode, rd, rn);
4524 break;
4525 default:
4526 unallocated_encoding(s);
4528 break;
4529 default:
4530 unallocated_encoding(s);
4531 break;
4535 /* C3.6.26 Floating-point data-processing (2 source) - single precision */
4536 static void handle_fp_2src_single(DisasContext *s, int opcode,
4537 int rd, int rn, int rm)
4539 TCGv_i32 tcg_op1;
4540 TCGv_i32 tcg_op2;
4541 TCGv_i32 tcg_res;
4542 TCGv_ptr fpst;
4544 tcg_res = tcg_temp_new_i32();
4545 fpst = get_fpstatus_ptr();
4546 tcg_op1 = read_fp_sreg(s, rn);
4547 tcg_op2 = read_fp_sreg(s, rm);
4549 switch (opcode) {
4550 case 0x0: /* FMUL */
4551 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
4552 break;
4553 case 0x1: /* FDIV */
4554 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
4555 break;
4556 case 0x2: /* FADD */
4557 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
4558 break;
4559 case 0x3: /* FSUB */
4560 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
4561 break;
4562 case 0x4: /* FMAX */
4563 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
4564 break;
4565 case 0x5: /* FMIN */
4566 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
4567 break;
4568 case 0x6: /* FMAXNM */
4569 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
4570 break;
4571 case 0x7: /* FMINNM */
4572 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
4573 break;
4574 case 0x8: /* FNMUL */
4575 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
4576 gen_helper_vfp_negs(tcg_res, tcg_res);
4577 break;
4580 write_fp_sreg(s, rd, tcg_res);
4582 tcg_temp_free_ptr(fpst);
4583 tcg_temp_free_i32(tcg_op1);
4584 tcg_temp_free_i32(tcg_op2);
4585 tcg_temp_free_i32(tcg_res);
4588 /* C3.6.26 Floating-point data-processing (2 source) - double precision */
4589 static void handle_fp_2src_double(DisasContext *s, int opcode,
4590 int rd, int rn, int rm)
4592 TCGv_i64 tcg_op1;
4593 TCGv_i64 tcg_op2;
4594 TCGv_i64 tcg_res;
4595 TCGv_ptr fpst;
4597 tcg_res = tcg_temp_new_i64();
4598 fpst = get_fpstatus_ptr();
4599 tcg_op1 = read_fp_dreg(s, rn);
4600 tcg_op2 = read_fp_dreg(s, rm);
4602 switch (opcode) {
4603 case 0x0: /* FMUL */
4604 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
4605 break;
4606 case 0x1: /* FDIV */
4607 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
4608 break;
4609 case 0x2: /* FADD */
4610 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
4611 break;
4612 case 0x3: /* FSUB */
4613 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
4614 break;
4615 case 0x4: /* FMAX */
4616 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
4617 break;
4618 case 0x5: /* FMIN */
4619 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
4620 break;
4621 case 0x6: /* FMAXNM */
4622 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
4623 break;
4624 case 0x7: /* FMINNM */
4625 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
4626 break;
4627 case 0x8: /* FNMUL */
4628 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
4629 gen_helper_vfp_negd(tcg_res, tcg_res);
4630 break;
4633 write_fp_dreg(s, rd, tcg_res);
4635 tcg_temp_free_ptr(fpst);
4636 tcg_temp_free_i64(tcg_op1);
4637 tcg_temp_free_i64(tcg_op2);
4638 tcg_temp_free_i64(tcg_res);
4641 /* C3.6.26 Floating point data-processing (2 source)
4642 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
4643 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
4644 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd |
4645 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
4647 static void disas_fp_2src(DisasContext *s, uint32_t insn)
4649 int type = extract32(insn, 22, 2);
4650 int rd = extract32(insn, 0, 5);
4651 int rn = extract32(insn, 5, 5);
4652 int rm = extract32(insn, 16, 5);
4653 int opcode = extract32(insn, 12, 4);
4655 if (opcode > 8) {
4656 unallocated_encoding(s);
4657 return;
4660 switch (type) {
4661 case 0:
4662 if (!fp_access_check(s)) {
4663 return;
4665 handle_fp_2src_single(s, opcode, rd, rn, rm);
4666 break;
4667 case 1:
4668 if (!fp_access_check(s)) {
4669 return;
4671 handle_fp_2src_double(s, opcode, rd, rn, rm);
4672 break;
4673 default:
4674 unallocated_encoding(s);
4678 /* C3.6.27 Floating-point data-processing (3 source) - single precision */
4679 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1,
4680 int rd, int rn, int rm, int ra)
4682 TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
4683 TCGv_i32 tcg_res = tcg_temp_new_i32();
4684 TCGv_ptr fpst = get_fpstatus_ptr();
4686 tcg_op1 = read_fp_sreg(s, rn);
4687 tcg_op2 = read_fp_sreg(s, rm);
4688 tcg_op3 = read_fp_sreg(s, ra);
4690 /* These are fused multiply-add, and must be done as one
4691 * floating point operation with no rounding between the
4692 * multiplication and addition steps.
4693 * NB that doing the negations here as separate steps is
4694 * correct : an input NaN should come out with its sign bit
4695 * flipped if it is a negated-input.
4697 if (o1 == true) {
4698 gen_helper_vfp_negs(tcg_op3, tcg_op3);
4701 if (o0 != o1) {
4702 gen_helper_vfp_negs(tcg_op1, tcg_op1);
4705 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
4707 write_fp_sreg(s, rd, tcg_res);
4709 tcg_temp_free_ptr(fpst);
4710 tcg_temp_free_i32(tcg_op1);
4711 tcg_temp_free_i32(tcg_op2);
4712 tcg_temp_free_i32(tcg_op3);
4713 tcg_temp_free_i32(tcg_res);
4716 /* C3.6.27 Floating-point data-processing (3 source) - double precision */
4717 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1,
4718 int rd, int rn, int rm, int ra)
4720 TCGv_i64 tcg_op1, tcg_op2, tcg_op3;
4721 TCGv_i64 tcg_res = tcg_temp_new_i64();
4722 TCGv_ptr fpst = get_fpstatus_ptr();
4724 tcg_op1 = read_fp_dreg(s, rn);
4725 tcg_op2 = read_fp_dreg(s, rm);
4726 tcg_op3 = read_fp_dreg(s, ra);
4728 /* These are fused multiply-add, and must be done as one
4729 * floating point operation with no rounding between the
4730 * multiplication and addition steps.
4731 * NB that doing the negations here as separate steps is
4732 * correct : an input NaN should come out with its sign bit
4733 * flipped if it is a negated-input.
4735 if (o1 == true) {
4736 gen_helper_vfp_negd(tcg_op3, tcg_op3);
4739 if (o0 != o1) {
4740 gen_helper_vfp_negd(tcg_op1, tcg_op1);
4743 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
4745 write_fp_dreg(s, rd, tcg_res);
4747 tcg_temp_free_ptr(fpst);
4748 tcg_temp_free_i64(tcg_op1);
4749 tcg_temp_free_i64(tcg_op2);
4750 tcg_temp_free_i64(tcg_op3);
4751 tcg_temp_free_i64(tcg_res);
4754 /* C3.6.27 Floating point data-processing (3 source)
4755 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0
4756 * +---+---+---+-----------+------+----+------+----+------+------+------+
4757 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd |
4758 * +---+---+---+-----------+------+----+------+----+------+------+------+
4760 static void disas_fp_3src(DisasContext *s, uint32_t insn)
4762 int type = extract32(insn, 22, 2);
4763 int rd = extract32(insn, 0, 5);
4764 int rn = extract32(insn, 5, 5);
4765 int ra = extract32(insn, 10, 5);
4766 int rm = extract32(insn, 16, 5);
4767 bool o0 = extract32(insn, 15, 1);
4768 bool o1 = extract32(insn, 21, 1);
4770 switch (type) {
4771 case 0:
4772 if (!fp_access_check(s)) {
4773 return;
4775 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra);
4776 break;
4777 case 1:
4778 if (!fp_access_check(s)) {
4779 return;
4781 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra);
4782 break;
4783 default:
4784 unallocated_encoding(s);
4788 /* C3.6.28 Floating point immediate
4789 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0
4790 * +---+---+---+-----------+------+---+------------+-------+------+------+
4791 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd |
4792 * +---+---+---+-----------+------+---+------------+-------+------+------+
4794 static void disas_fp_imm(DisasContext *s, uint32_t insn)
4796 int rd = extract32(insn, 0, 5);
4797 int imm8 = extract32(insn, 13, 8);
4798 int is_double = extract32(insn, 22, 2);
4799 uint64_t imm;
4800 TCGv_i64 tcg_res;
4802 if (is_double > 1) {
4803 unallocated_encoding(s);
4804 return;
4807 if (!fp_access_check(s)) {
4808 return;
4811 /* The imm8 encodes the sign bit, enough bits to represent
4812 * an exponent in the range 01....1xx to 10....0xx,
4813 * and the most significant 4 bits of the mantissa; see
4814 * VFPExpandImm() in the v8 ARM ARM.
4816 if (is_double) {
4817 imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
4818 (extract32(imm8, 6, 1) ? 0x3fc0 : 0x4000) |
4819 extract32(imm8, 0, 6);
4820 imm <<= 48;
4821 } else {
4822 imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
4823 (extract32(imm8, 6, 1) ? 0x3e00 : 0x4000) |
4824 (extract32(imm8, 0, 6) << 3);
4825 imm <<= 16;
4828 tcg_res = tcg_const_i64(imm);
4829 write_fp_dreg(s, rd, tcg_res);
4830 tcg_temp_free_i64(tcg_res);
4833 /* Handle floating point <=> fixed point conversions. Note that we can
4834 * also deal with fp <=> integer conversions as a special case (scale == 64)
4835 * OPTME: consider handling that special case specially or at least skipping
4836 * the call to scalbn in the helpers for zero shifts.
4838 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
4839 bool itof, int rmode, int scale, int sf, int type)
4841 bool is_signed = !(opcode & 1);
4842 bool is_double = type;
4843 TCGv_ptr tcg_fpstatus;
4844 TCGv_i32 tcg_shift;
4846 tcg_fpstatus = get_fpstatus_ptr();
4848 tcg_shift = tcg_const_i32(64 - scale);
4850 if (itof) {
4851 TCGv_i64 tcg_int = cpu_reg(s, rn);
4852 if (!sf) {
4853 TCGv_i64 tcg_extend = new_tmp_a64(s);
4855 if (is_signed) {
4856 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
4857 } else {
4858 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
4861 tcg_int = tcg_extend;
4864 if (is_double) {
4865 TCGv_i64 tcg_double = tcg_temp_new_i64();
4866 if (is_signed) {
4867 gen_helper_vfp_sqtod(tcg_double, tcg_int,
4868 tcg_shift, tcg_fpstatus);
4869 } else {
4870 gen_helper_vfp_uqtod(tcg_double, tcg_int,
4871 tcg_shift, tcg_fpstatus);
4873 write_fp_dreg(s, rd, tcg_double);
4874 tcg_temp_free_i64(tcg_double);
4875 } else {
4876 TCGv_i32 tcg_single = tcg_temp_new_i32();
4877 if (is_signed) {
4878 gen_helper_vfp_sqtos(tcg_single, tcg_int,
4879 tcg_shift, tcg_fpstatus);
4880 } else {
4881 gen_helper_vfp_uqtos(tcg_single, tcg_int,
4882 tcg_shift, tcg_fpstatus);
4884 write_fp_sreg(s, rd, tcg_single);
4885 tcg_temp_free_i32(tcg_single);
4887 } else {
4888 TCGv_i64 tcg_int = cpu_reg(s, rd);
4889 TCGv_i32 tcg_rmode;
4891 if (extract32(opcode, 2, 1)) {
4892 /* There are too many rounding modes to all fit into rmode,
4893 * so FCVTA[US] is a special case.
4895 rmode = FPROUNDING_TIEAWAY;
4898 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
4900 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
4902 if (is_double) {
4903 TCGv_i64 tcg_double = read_fp_dreg(s, rn);
4904 if (is_signed) {
4905 if (!sf) {
4906 gen_helper_vfp_tosld(tcg_int, tcg_double,
4907 tcg_shift, tcg_fpstatus);
4908 } else {
4909 gen_helper_vfp_tosqd(tcg_int, tcg_double,
4910 tcg_shift, tcg_fpstatus);
4912 } else {
4913 if (!sf) {
4914 gen_helper_vfp_tould(tcg_int, tcg_double,
4915 tcg_shift, tcg_fpstatus);
4916 } else {
4917 gen_helper_vfp_touqd(tcg_int, tcg_double,
4918 tcg_shift, tcg_fpstatus);
4921 tcg_temp_free_i64(tcg_double);
4922 } else {
4923 TCGv_i32 tcg_single = read_fp_sreg(s, rn);
4924 if (sf) {
4925 if (is_signed) {
4926 gen_helper_vfp_tosqs(tcg_int, tcg_single,
4927 tcg_shift, tcg_fpstatus);
4928 } else {
4929 gen_helper_vfp_touqs(tcg_int, tcg_single,
4930 tcg_shift, tcg_fpstatus);
4932 } else {
4933 TCGv_i32 tcg_dest = tcg_temp_new_i32();
4934 if (is_signed) {
4935 gen_helper_vfp_tosls(tcg_dest, tcg_single,
4936 tcg_shift, tcg_fpstatus);
4937 } else {
4938 gen_helper_vfp_touls(tcg_dest, tcg_single,
4939 tcg_shift, tcg_fpstatus);
4941 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
4942 tcg_temp_free_i32(tcg_dest);
4944 tcg_temp_free_i32(tcg_single);
4947 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
4948 tcg_temp_free_i32(tcg_rmode);
4950 if (!sf) {
4951 tcg_gen_ext32u_i64(tcg_int, tcg_int);
4955 tcg_temp_free_ptr(tcg_fpstatus);
4956 tcg_temp_free_i32(tcg_shift);
4959 /* C3.6.29 Floating point <-> fixed point conversions
4960 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
4961 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
4962 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd |
4963 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
4965 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
4967 int rd = extract32(insn, 0, 5);
4968 int rn = extract32(insn, 5, 5);
4969 int scale = extract32(insn, 10, 6);
4970 int opcode = extract32(insn, 16, 3);
4971 int rmode = extract32(insn, 19, 2);
4972 int type = extract32(insn, 22, 2);
4973 bool sbit = extract32(insn, 29, 1);
4974 bool sf = extract32(insn, 31, 1);
4975 bool itof;
4977 if (sbit || (type > 1)
4978 || (!sf && scale < 32)) {
4979 unallocated_encoding(s);
4980 return;
4983 switch ((rmode << 3) | opcode) {
4984 case 0x2: /* SCVTF */
4985 case 0x3: /* UCVTF */
4986 itof = true;
4987 break;
4988 case 0x18: /* FCVTZS */
4989 case 0x19: /* FCVTZU */
4990 itof = false;
4991 break;
4992 default:
4993 unallocated_encoding(s);
4994 return;
4997 if (!fp_access_check(s)) {
4998 return;
5001 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
5004 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
5006 /* FMOV: gpr to or from float, double, or top half of quad fp reg,
5007 * without conversion.
5010 if (itof) {
5011 TCGv_i64 tcg_rn = cpu_reg(s, rn);
5013 switch (type) {
5014 case 0:
5016 /* 32 bit */
5017 TCGv_i64 tmp = tcg_temp_new_i64();
5018 tcg_gen_ext32u_i64(tmp, tcg_rn);
5019 tcg_gen_st_i64(tmp, cpu_env, fp_reg_offset(s, rd, MO_64));
5020 tcg_gen_movi_i64(tmp, 0);
5021 tcg_gen_st_i64(tmp, cpu_env, fp_reg_hi_offset(s, rd));
5022 tcg_temp_free_i64(tmp);
5023 break;
5025 case 1:
5027 /* 64 bit */
5028 TCGv_i64 tmp = tcg_const_i64(0);
5029 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_offset(s, rd, MO_64));
5030 tcg_gen_st_i64(tmp, cpu_env, fp_reg_hi_offset(s, rd));
5031 tcg_temp_free_i64(tmp);
5032 break;
5034 case 2:
5035 /* 64 bit to top half. */
5036 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd));
5037 break;
5039 } else {
5040 TCGv_i64 tcg_rd = cpu_reg(s, rd);
5042 switch (type) {
5043 case 0:
5044 /* 32 bit */
5045 tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32));
5046 break;
5047 case 1:
5048 /* 64 bit */
5049 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64));
5050 break;
5051 case 2:
5052 /* 64 bits from top half */
5053 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn));
5054 break;
5059 /* C3.6.30 Floating point <-> integer conversions
5060 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
5061 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
5062 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
5063 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
5065 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
5067 int rd = extract32(insn, 0, 5);
5068 int rn = extract32(insn, 5, 5);
5069 int opcode = extract32(insn, 16, 3);
5070 int rmode = extract32(insn, 19, 2);
5071 int type = extract32(insn, 22, 2);
5072 bool sbit = extract32(insn, 29, 1);
5073 bool sf = extract32(insn, 31, 1);
5075 if (sbit) {
5076 unallocated_encoding(s);
5077 return;
5080 if (opcode > 5) {
5081 /* FMOV */
5082 bool itof = opcode & 1;
5084 if (rmode >= 2) {
5085 unallocated_encoding(s);
5086 return;
5089 switch (sf << 3 | type << 1 | rmode) {
5090 case 0x0: /* 32 bit */
5091 case 0xa: /* 64 bit */
5092 case 0xd: /* 64 bit to top half of quad */
5093 break;
5094 default:
5095 /* all other sf/type/rmode combinations are invalid */
5096 unallocated_encoding(s);
5097 break;
5100 if (!fp_access_check(s)) {
5101 return;
5103 handle_fmov(s, rd, rn, type, itof);
5104 } else {
5105 /* actual FP conversions */
5106 bool itof = extract32(opcode, 1, 1);
5108 if (type > 1 || (rmode != 0 && opcode > 1)) {
5109 unallocated_encoding(s);
5110 return;
5113 if (!fp_access_check(s)) {
5114 return;
5116 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
5120 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
5121 * 31 30 29 28 25 24 0
5122 * +---+---+---+---------+-----------------------------+
5123 * | | 0 | | 1 1 1 1 | |
5124 * +---+---+---+---------+-----------------------------+
5126 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
5128 if (extract32(insn, 24, 1)) {
5129 /* Floating point data-processing (3 source) */
5130 disas_fp_3src(s, insn);
5131 } else if (extract32(insn, 21, 1) == 0) {
5132 /* Floating point to fixed point conversions */
5133 disas_fp_fixed_conv(s, insn);
5134 } else {
5135 switch (extract32(insn, 10, 2)) {
5136 case 1:
5137 /* Floating point conditional compare */
5138 disas_fp_ccomp(s, insn);
5139 break;
5140 case 2:
5141 /* Floating point data-processing (2 source) */
5142 disas_fp_2src(s, insn);
5143 break;
5144 case 3:
5145 /* Floating point conditional select */
5146 disas_fp_csel(s, insn);
5147 break;
5148 case 0:
5149 switch (ctz32(extract32(insn, 12, 4))) {
5150 case 0: /* [15:12] == xxx1 */
5151 /* Floating point immediate */
5152 disas_fp_imm(s, insn);
5153 break;
5154 case 1: /* [15:12] == xx10 */
5155 /* Floating point compare */
5156 disas_fp_compare(s, insn);
5157 break;
5158 case 2: /* [15:12] == x100 */
5159 /* Floating point data-processing (1 source) */
5160 disas_fp_1src(s, insn);
5161 break;
5162 case 3: /* [15:12] == 1000 */
5163 unallocated_encoding(s);
5164 break;
5165 default: /* [15:12] == 0000 */
5166 /* Floating point <-> integer conversions */
5167 disas_fp_int_conv(s, insn);
5168 break;
5170 break;
5175 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
5176 int pos)
5178 /* Extract 64 bits from the middle of two concatenated 64 bit
5179 * vector register slices left:right. The extracted bits start
5180 * at 'pos' bits into the right (least significant) side.
5181 * We return the result in tcg_right, and guarantee not to
5182 * trash tcg_left.
5184 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
5185 assert(pos > 0 && pos < 64);
5187 tcg_gen_shri_i64(tcg_right, tcg_right, pos);
5188 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
5189 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
5191 tcg_temp_free_i64(tcg_tmp);
5194 /* C3.6.1 EXT
5195 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0
5196 * +---+---+-------------+-----+---+------+---+------+---+------+------+
5197 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd |
5198 * +---+---+-------------+-----+---+------+---+------+---+------+------+
5200 static void disas_simd_ext(DisasContext *s, uint32_t insn)
5202 int is_q = extract32(insn, 30, 1);
5203 int op2 = extract32(insn, 22, 2);
5204 int imm4 = extract32(insn, 11, 4);
5205 int rm = extract32(insn, 16, 5);
5206 int rn = extract32(insn, 5, 5);
5207 int rd = extract32(insn, 0, 5);
5208 int pos = imm4 << 3;
5209 TCGv_i64 tcg_resl, tcg_resh;
5211 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
5212 unallocated_encoding(s);
5213 return;
5216 if (!fp_access_check(s)) {
5217 return;
5220 tcg_resh = tcg_temp_new_i64();
5221 tcg_resl = tcg_temp_new_i64();
5223 /* Vd gets bits starting at pos bits into Vm:Vn. This is
5224 * either extracting 128 bits from a 128:128 concatenation, or
5225 * extracting 64 bits from a 64:64 concatenation.
5227 if (!is_q) {
5228 read_vec_element(s, tcg_resl, rn, 0, MO_64);
5229 if (pos != 0) {
5230 read_vec_element(s, tcg_resh, rm, 0, MO_64);
5231 do_ext64(s, tcg_resh, tcg_resl, pos);
5233 tcg_gen_movi_i64(tcg_resh, 0);
5234 } else {
5235 TCGv_i64 tcg_hh;
5236 typedef struct {
5237 int reg;
5238 int elt;
5239 } EltPosns;
5240 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
5241 EltPosns *elt = eltposns;
5243 if (pos >= 64) {
5244 elt++;
5245 pos -= 64;
5248 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
5249 elt++;
5250 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
5251 elt++;
5252 if (pos != 0) {
5253 do_ext64(s, tcg_resh, tcg_resl, pos);
5254 tcg_hh = tcg_temp_new_i64();
5255 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
5256 do_ext64(s, tcg_hh, tcg_resh, pos);
5257 tcg_temp_free_i64(tcg_hh);
5261 write_vec_element(s, tcg_resl, rd, 0, MO_64);
5262 tcg_temp_free_i64(tcg_resl);
5263 write_vec_element(s, tcg_resh, rd, 1, MO_64);
5264 tcg_temp_free_i64(tcg_resh);
5267 /* C3.6.2 TBL/TBX
5268 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
5269 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
5270 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd |
5271 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
5273 static void disas_simd_tb(DisasContext *s, uint32_t insn)
5275 int op2 = extract32(insn, 22, 2);
5276 int is_q = extract32(insn, 30, 1);
5277 int rm = extract32(insn, 16, 5);
5278 int rn = extract32(insn, 5, 5);
5279 int rd = extract32(insn, 0, 5);
5280 int is_tblx = extract32(insn, 12, 1);
5281 int len = extract32(insn, 13, 2);
5282 TCGv_i64 tcg_resl, tcg_resh, tcg_idx;
5283 TCGv_i32 tcg_regno, tcg_numregs;
5285 if (op2 != 0) {
5286 unallocated_encoding(s);
5287 return;
5290 if (!fp_access_check(s)) {
5291 return;
5294 /* This does a table lookup: for every byte element in the input
5295 * we index into a table formed from up to four vector registers,
5296 * and then the output is the result of the lookups. Our helper
5297 * function does the lookup operation for a single 64 bit part of
5298 * the input.
5300 tcg_resl = tcg_temp_new_i64();
5301 tcg_resh = tcg_temp_new_i64();
5303 if (is_tblx) {
5304 read_vec_element(s, tcg_resl, rd, 0, MO_64);
5305 } else {
5306 tcg_gen_movi_i64(tcg_resl, 0);
5308 if (is_tblx && is_q) {
5309 read_vec_element(s, tcg_resh, rd, 1, MO_64);
5310 } else {
5311 tcg_gen_movi_i64(tcg_resh, 0);
5314 tcg_idx = tcg_temp_new_i64();
5315 tcg_regno = tcg_const_i32(rn);
5316 tcg_numregs = tcg_const_i32(len + 1);
5317 read_vec_element(s, tcg_idx, rm, 0, MO_64);
5318 gen_helper_simd_tbl(tcg_resl, cpu_env, tcg_resl, tcg_idx,
5319 tcg_regno, tcg_numregs);
5320 if (is_q) {
5321 read_vec_element(s, tcg_idx, rm, 1, MO_64);
5322 gen_helper_simd_tbl(tcg_resh, cpu_env, tcg_resh, tcg_idx,
5323 tcg_regno, tcg_numregs);
5325 tcg_temp_free_i64(tcg_idx);
5326 tcg_temp_free_i32(tcg_regno);
5327 tcg_temp_free_i32(tcg_numregs);
5329 write_vec_element(s, tcg_resl, rd, 0, MO_64);
5330 tcg_temp_free_i64(tcg_resl);
5331 write_vec_element(s, tcg_resh, rd, 1, MO_64);
5332 tcg_temp_free_i64(tcg_resh);
5335 /* C3.6.3 ZIP/UZP/TRN
5336 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
5337 * +---+---+-------------+------+---+------+---+------------------+------+
5338 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd |
5339 * +---+---+-------------+------+---+------+---+------------------+------+
5341 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
5343 int rd = extract32(insn, 0, 5);
5344 int rn = extract32(insn, 5, 5);
5345 int rm = extract32(insn, 16, 5);
5346 int size = extract32(insn, 22, 2);
5347 /* opc field bits [1:0] indicate ZIP/UZP/TRN;
5348 * bit 2 indicates 1 vs 2 variant of the insn.
5350 int opcode = extract32(insn, 12, 2);
5351 bool part = extract32(insn, 14, 1);
5352 bool is_q = extract32(insn, 30, 1);
5353 int esize = 8 << size;
5354 int i, ofs;
5355 int datasize = is_q ? 128 : 64;
5356 int elements = datasize / esize;
5357 TCGv_i64 tcg_res, tcg_resl, tcg_resh;
5359 if (opcode == 0 || (size == 3 && !is_q)) {
5360 unallocated_encoding(s);
5361 return;
5364 if (!fp_access_check(s)) {
5365 return;
5368 tcg_resl = tcg_const_i64(0);
5369 tcg_resh = tcg_const_i64(0);
5370 tcg_res = tcg_temp_new_i64();
5372 for (i = 0; i < elements; i++) {
5373 switch (opcode) {
5374 case 1: /* UZP1/2 */
5376 int midpoint = elements / 2;
5377 if (i < midpoint) {
5378 read_vec_element(s, tcg_res, rn, 2 * i + part, size);
5379 } else {
5380 read_vec_element(s, tcg_res, rm,
5381 2 * (i - midpoint) + part, size);
5383 break;
5385 case 2: /* TRN1/2 */
5386 if (i & 1) {
5387 read_vec_element(s, tcg_res, rm, (i & ~1) + part, size);
5388 } else {
5389 read_vec_element(s, tcg_res, rn, (i & ~1) + part, size);
5391 break;
5392 case 3: /* ZIP1/2 */
5394 int base = part * elements / 2;
5395 if (i & 1) {
5396 read_vec_element(s, tcg_res, rm, base + (i >> 1), size);
5397 } else {
5398 read_vec_element(s, tcg_res, rn, base + (i >> 1), size);
5400 break;
5402 default:
5403 g_assert_not_reached();
5406 ofs = i * esize;
5407 if (ofs < 64) {
5408 tcg_gen_shli_i64(tcg_res, tcg_res, ofs);
5409 tcg_gen_or_i64(tcg_resl, tcg_resl, tcg_res);
5410 } else {
5411 tcg_gen_shli_i64(tcg_res, tcg_res, ofs - 64);
5412 tcg_gen_or_i64(tcg_resh, tcg_resh, tcg_res);
5416 tcg_temp_free_i64(tcg_res);
5418 write_vec_element(s, tcg_resl, rd, 0, MO_64);
5419 tcg_temp_free_i64(tcg_resl);
5420 write_vec_element(s, tcg_resh, rd, 1, MO_64);
5421 tcg_temp_free_i64(tcg_resh);
5424 static void do_minmaxop(DisasContext *s, TCGv_i32 tcg_elt1, TCGv_i32 tcg_elt2,
5425 int opc, bool is_min, TCGv_ptr fpst)
5427 /* Helper function for disas_simd_across_lanes: do a single precision
5428 * min/max operation on the specified two inputs,
5429 * and return the result in tcg_elt1.
5431 if (opc == 0xc) {
5432 if (is_min) {
5433 gen_helper_vfp_minnums(tcg_elt1, tcg_elt1, tcg_elt2, fpst);
5434 } else {
5435 gen_helper_vfp_maxnums(tcg_elt1, tcg_elt1, tcg_elt2, fpst);
5437 } else {
5438 assert(opc == 0xf);
5439 if (is_min) {
5440 gen_helper_vfp_mins(tcg_elt1, tcg_elt1, tcg_elt2, fpst);
5441 } else {
5442 gen_helper_vfp_maxs(tcg_elt1, tcg_elt1, tcg_elt2, fpst);
5447 /* C3.6.4 AdvSIMD across lanes
5448 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
5449 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
5450 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
5451 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
5453 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
5455 int rd = extract32(insn, 0, 5);
5456 int rn = extract32(insn, 5, 5);
5457 int size = extract32(insn, 22, 2);
5458 int opcode = extract32(insn, 12, 5);
5459 bool is_q = extract32(insn, 30, 1);
5460 bool is_u = extract32(insn, 29, 1);
5461 bool is_fp = false;
5462 bool is_min = false;
5463 int esize;
5464 int elements;
5465 int i;
5466 TCGv_i64 tcg_res, tcg_elt;
5468 switch (opcode) {
5469 case 0x1b: /* ADDV */
5470 if (is_u) {
5471 unallocated_encoding(s);
5472 return;
5474 /* fall through */
5475 case 0x3: /* SADDLV, UADDLV */
5476 case 0xa: /* SMAXV, UMAXV */
5477 case 0x1a: /* SMINV, UMINV */
5478 if (size == 3 || (size == 2 && !is_q)) {
5479 unallocated_encoding(s);
5480 return;
5482 break;
5483 case 0xc: /* FMAXNMV, FMINNMV */
5484 case 0xf: /* FMAXV, FMINV */
5485 if (!is_u || !is_q || extract32(size, 0, 1)) {
5486 unallocated_encoding(s);
5487 return;
5489 /* Bit 1 of size field encodes min vs max, and actual size is always
5490 * 32 bits: adjust the size variable so following code can rely on it
5492 is_min = extract32(size, 1, 1);
5493 is_fp = true;
5494 size = 2;
5495 break;
5496 default:
5497 unallocated_encoding(s);
5498 return;
5501 if (!fp_access_check(s)) {
5502 return;
5505 esize = 8 << size;
5506 elements = (is_q ? 128 : 64) / esize;
5508 tcg_res = tcg_temp_new_i64();
5509 tcg_elt = tcg_temp_new_i64();
5511 /* These instructions operate across all lanes of a vector
5512 * to produce a single result. We can guarantee that a 64
5513 * bit intermediate is sufficient:
5514 * + for [US]ADDLV the maximum element size is 32 bits, and
5515 * the result type is 64 bits
5516 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the
5517 * same as the element size, which is 32 bits at most
5518 * For the integer operations we can choose to work at 64
5519 * or 32 bits and truncate at the end; for simplicity
5520 * we use 64 bits always. The floating point
5521 * ops do require 32 bit intermediates, though.
5523 if (!is_fp) {
5524 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
5526 for (i = 1; i < elements; i++) {
5527 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
5529 switch (opcode) {
5530 case 0x03: /* SADDLV / UADDLV */
5531 case 0x1b: /* ADDV */
5532 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
5533 break;
5534 case 0x0a: /* SMAXV / UMAXV */
5535 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
5536 tcg_res,
5537 tcg_res, tcg_elt, tcg_res, tcg_elt);
5538 break;
5539 case 0x1a: /* SMINV / UMINV */
5540 tcg_gen_movcond_i64(is_u ? TCG_COND_LEU : TCG_COND_LE,
5541 tcg_res,
5542 tcg_res, tcg_elt, tcg_res, tcg_elt);
5543 break;
5544 break;
5545 default:
5546 g_assert_not_reached();
5550 } else {
5551 /* Floating point ops which work on 32 bit (single) intermediates.
5552 * Note that correct NaN propagation requires that we do these
5553 * operations in exactly the order specified by the pseudocode.
5555 TCGv_i32 tcg_elt1 = tcg_temp_new_i32();
5556 TCGv_i32 tcg_elt2 = tcg_temp_new_i32();
5557 TCGv_i32 tcg_elt3 = tcg_temp_new_i32();
5558 TCGv_ptr fpst = get_fpstatus_ptr();
5560 assert(esize == 32);
5561 assert(elements == 4);
5563 read_vec_element(s, tcg_elt, rn, 0, MO_32);
5564 tcg_gen_extrl_i64_i32(tcg_elt1, tcg_elt);
5565 read_vec_element(s, tcg_elt, rn, 1, MO_32);
5566 tcg_gen_extrl_i64_i32(tcg_elt2, tcg_elt);
5568 do_minmaxop(s, tcg_elt1, tcg_elt2, opcode, is_min, fpst);
5570 read_vec_element(s, tcg_elt, rn, 2, MO_32);
5571 tcg_gen_extrl_i64_i32(tcg_elt2, tcg_elt);
5572 read_vec_element(s, tcg_elt, rn, 3, MO_32);
5573 tcg_gen_extrl_i64_i32(tcg_elt3, tcg_elt);
5575 do_minmaxop(s, tcg_elt2, tcg_elt3, opcode, is_min, fpst);
5577 do_minmaxop(s, tcg_elt1, tcg_elt2, opcode, is_min, fpst);
5579 tcg_gen_extu_i32_i64(tcg_res, tcg_elt1);
5580 tcg_temp_free_i32(tcg_elt1);
5581 tcg_temp_free_i32(tcg_elt2);
5582 tcg_temp_free_i32(tcg_elt3);
5583 tcg_temp_free_ptr(fpst);
5586 tcg_temp_free_i64(tcg_elt);
5588 /* Now truncate the result to the width required for the final output */
5589 if (opcode == 0x03) {
5590 /* SADDLV, UADDLV: result is 2*esize */
5591 size++;
5594 switch (size) {
5595 case 0:
5596 tcg_gen_ext8u_i64(tcg_res, tcg_res);
5597 break;
5598 case 1:
5599 tcg_gen_ext16u_i64(tcg_res, tcg_res);
5600 break;
5601 case 2:
5602 tcg_gen_ext32u_i64(tcg_res, tcg_res);
5603 break;
5604 case 3:
5605 break;
5606 default:
5607 g_assert_not_reached();
5610 write_fp_dreg(s, rd, tcg_res);
5611 tcg_temp_free_i64(tcg_res);
5614 /* C6.3.31 DUP (Element, Vector)
5616 * 31 30 29 21 20 16 15 10 9 5 4 0
5617 * +---+---+-------------------+--------+-------------+------+------+
5618 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
5619 * +---+---+-------------------+--------+-------------+------+------+
5621 * size: encoded in imm5 (see ARM ARM LowestSetBit())
5623 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn,
5624 int imm5)
5626 int size = ctz32(imm5);
5627 int esize = 8 << size;
5628 int elements = (is_q ? 128 : 64) / esize;
5629 int index, i;
5630 TCGv_i64 tmp;
5632 if (size > 3 || (size == 3 && !is_q)) {
5633 unallocated_encoding(s);
5634 return;
5637 if (!fp_access_check(s)) {
5638 return;
5641 index = imm5 >> (size + 1);
5643 tmp = tcg_temp_new_i64();
5644 read_vec_element(s, tmp, rn, index, size);
5646 for (i = 0; i < elements; i++) {
5647 write_vec_element(s, tmp, rd, i, size);
5650 if (!is_q) {
5651 clear_vec_high(s, rd);
5654 tcg_temp_free_i64(tmp);
5657 /* C6.3.31 DUP (element, scalar)
5658 * 31 21 20 16 15 10 9 5 4 0
5659 * +-----------------------+--------+-------------+------+------+
5660 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
5661 * +-----------------------+--------+-------------+------+------+
5663 static void handle_simd_dupes(DisasContext *s, int rd, int rn,
5664 int imm5)
5666 int size = ctz32(imm5);
5667 int index;
5668 TCGv_i64 tmp;
5670 if (size > 3) {
5671 unallocated_encoding(s);
5672 return;
5675 if (!fp_access_check(s)) {
5676 return;
5679 index = imm5 >> (size + 1);
5681 /* This instruction just extracts the specified element and
5682 * zero-extends it into the bottom of the destination register.
5684 tmp = tcg_temp_new_i64();
5685 read_vec_element(s, tmp, rn, index, size);
5686 write_fp_dreg(s, rd, tmp);
5687 tcg_temp_free_i64(tmp);
5690 /* C6.3.32 DUP (General)
5692 * 31 30 29 21 20 16 15 10 9 5 4 0
5693 * +---+---+-------------------+--------+-------------+------+------+
5694 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd |
5695 * +---+---+-------------------+--------+-------------+------+------+
5697 * size: encoded in imm5 (see ARM ARM LowestSetBit())
5699 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn,
5700 int imm5)
5702 int size = ctz32(imm5);
5703 int esize = 8 << size;
5704 int elements = (is_q ? 128 : 64)/esize;
5705 int i = 0;
5707 if (size > 3 || ((size == 3) && !is_q)) {
5708 unallocated_encoding(s);
5709 return;
5712 if (!fp_access_check(s)) {
5713 return;
5716 for (i = 0; i < elements; i++) {
5717 write_vec_element(s, cpu_reg(s, rn), rd, i, size);
5719 if (!is_q) {
5720 clear_vec_high(s, rd);
5724 /* C6.3.150 INS (Element)
5726 * 31 21 20 16 15 14 11 10 9 5 4 0
5727 * +-----------------------+--------+------------+---+------+------+
5728 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
5729 * +-----------------------+--------+------------+---+------+------+
5731 * size: encoded in imm5 (see ARM ARM LowestSetBit())
5732 * index: encoded in imm5<4:size+1>
5734 static void handle_simd_inse(DisasContext *s, int rd, int rn,
5735 int imm4, int imm5)
5737 int size = ctz32(imm5);
5738 int src_index, dst_index;
5739 TCGv_i64 tmp;
5741 if (size > 3) {
5742 unallocated_encoding(s);
5743 return;
5746 if (!fp_access_check(s)) {
5747 return;
5750 dst_index = extract32(imm5, 1+size, 5);
5751 src_index = extract32(imm4, size, 4);
5753 tmp = tcg_temp_new_i64();
5755 read_vec_element(s, tmp, rn, src_index, size);
5756 write_vec_element(s, tmp, rd, dst_index, size);
5758 tcg_temp_free_i64(tmp);
5762 /* C6.3.151 INS (General)
5764 * 31 21 20 16 15 10 9 5 4 0
5765 * +-----------------------+--------+-------------+------+------+
5766 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd |
5767 * +-----------------------+--------+-------------+------+------+
5769 * size: encoded in imm5 (see ARM ARM LowestSetBit())
5770 * index: encoded in imm5<4:size+1>
5772 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5)
5774 int size = ctz32(imm5);
5775 int idx;
5777 if (size > 3) {
5778 unallocated_encoding(s);
5779 return;
5782 if (!fp_access_check(s)) {
5783 return;
5786 idx = extract32(imm5, 1 + size, 4 - size);
5787 write_vec_element(s, cpu_reg(s, rn), rd, idx, size);
5791 * C6.3.321 UMOV (General)
5792 * C6.3.237 SMOV (General)
5794 * 31 30 29 21 20 16 15 12 10 9 5 4 0
5795 * +---+---+-------------------+--------+-------------+------+------+
5796 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd |
5797 * +---+---+-------------------+--------+-------------+------+------+
5799 * U: unsigned when set
5800 * size: encoded in imm5 (see ARM ARM LowestSetBit())
5802 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed,
5803 int rn, int rd, int imm5)
5805 int size = ctz32(imm5);
5806 int element;
5807 TCGv_i64 tcg_rd;
5809 /* Check for UnallocatedEncodings */
5810 if (is_signed) {
5811 if (size > 2 || (size == 2 && !is_q)) {
5812 unallocated_encoding(s);
5813 return;
5815 } else {
5816 if (size > 3
5817 || (size < 3 && is_q)
5818 || (size == 3 && !is_q)) {
5819 unallocated_encoding(s);
5820 return;
5824 if (!fp_access_check(s)) {
5825 return;
5828 element = extract32(imm5, 1+size, 4);
5830 tcg_rd = cpu_reg(s, rd);
5831 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0));
5832 if (is_signed && !is_q) {
5833 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5837 /* C3.6.5 AdvSIMD copy
5838 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
5839 * +---+---+----+-----------------+------+---+------+---+------+------+
5840 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
5841 * +---+---+----+-----------------+------+---+------+---+------+------+
5843 static void disas_simd_copy(DisasContext *s, uint32_t insn)
5845 int rd = extract32(insn, 0, 5);
5846 int rn = extract32(insn, 5, 5);
5847 int imm4 = extract32(insn, 11, 4);
5848 int op = extract32(insn, 29, 1);
5849 int is_q = extract32(insn, 30, 1);
5850 int imm5 = extract32(insn, 16, 5);
5852 if (op) {
5853 if (is_q) {
5854 /* INS (element) */
5855 handle_simd_inse(s, rd, rn, imm4, imm5);
5856 } else {
5857 unallocated_encoding(s);
5859 } else {
5860 switch (imm4) {
5861 case 0:
5862 /* DUP (element - vector) */
5863 handle_simd_dupe(s, is_q, rd, rn, imm5);
5864 break;
5865 case 1:
5866 /* DUP (general) */
5867 handle_simd_dupg(s, is_q, rd, rn, imm5);
5868 break;
5869 case 3:
5870 if (is_q) {
5871 /* INS (general) */
5872 handle_simd_insg(s, rd, rn, imm5);
5873 } else {
5874 unallocated_encoding(s);
5876 break;
5877 case 5:
5878 case 7:
5879 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */
5880 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5);
5881 break;
5882 default:
5883 unallocated_encoding(s);
5884 break;
5889 /* C3.6.6 AdvSIMD modified immediate
5890 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0
5891 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
5892 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd |
5893 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
5895 * There are a number of operations that can be carried out here:
5896 * MOVI - move (shifted) imm into register
5897 * MVNI - move inverted (shifted) imm into register
5898 * ORR - bitwise OR of (shifted) imm with register
5899 * BIC - bitwise clear of (shifted) imm with register
5901 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
5903 int rd = extract32(insn, 0, 5);
5904 int cmode = extract32(insn, 12, 4);
5905 int cmode_3_1 = extract32(cmode, 1, 3);
5906 int cmode_0 = extract32(cmode, 0, 1);
5907 int o2 = extract32(insn, 11, 1);
5908 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
5909 bool is_neg = extract32(insn, 29, 1);
5910 bool is_q = extract32(insn, 30, 1);
5911 uint64_t imm = 0;
5912 TCGv_i64 tcg_rd, tcg_imm;
5913 int i;
5915 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) {
5916 unallocated_encoding(s);
5917 return;
5920 if (!fp_access_check(s)) {
5921 return;
5924 /* See AdvSIMDExpandImm() in ARM ARM */
5925 switch (cmode_3_1) {
5926 case 0: /* Replicate(Zeros(24):imm8, 2) */
5927 case 1: /* Replicate(Zeros(16):imm8:Zeros(8), 2) */
5928 case 2: /* Replicate(Zeros(8):imm8:Zeros(16), 2) */
5929 case 3: /* Replicate(imm8:Zeros(24), 2) */
5931 int shift = cmode_3_1 * 8;
5932 imm = bitfield_replicate(abcdefgh << shift, 32);
5933 break;
5935 case 4: /* Replicate(Zeros(8):imm8, 4) */
5936 case 5: /* Replicate(imm8:Zeros(8), 4) */
5938 int shift = (cmode_3_1 & 0x1) * 8;
5939 imm = bitfield_replicate(abcdefgh << shift, 16);
5940 break;
5942 case 6:
5943 if (cmode_0) {
5944 /* Replicate(Zeros(8):imm8:Ones(16), 2) */
5945 imm = (abcdefgh << 16) | 0xffff;
5946 } else {
5947 /* Replicate(Zeros(16):imm8:Ones(8), 2) */
5948 imm = (abcdefgh << 8) | 0xff;
5950 imm = bitfield_replicate(imm, 32);
5951 break;
5952 case 7:
5953 if (!cmode_0 && !is_neg) {
5954 imm = bitfield_replicate(abcdefgh, 8);
5955 } else if (!cmode_0 && is_neg) {
5956 int i;
5957 imm = 0;
5958 for (i = 0; i < 8; i++) {
5959 if ((abcdefgh) & (1 << i)) {
5960 imm |= 0xffULL << (i * 8);
5963 } else if (cmode_0) {
5964 if (is_neg) {
5965 imm = (abcdefgh & 0x3f) << 48;
5966 if (abcdefgh & 0x80) {
5967 imm |= 0x8000000000000000ULL;
5969 if (abcdefgh & 0x40) {
5970 imm |= 0x3fc0000000000000ULL;
5971 } else {
5972 imm |= 0x4000000000000000ULL;
5974 } else {
5975 imm = (abcdefgh & 0x3f) << 19;
5976 if (abcdefgh & 0x80) {
5977 imm |= 0x80000000;
5979 if (abcdefgh & 0x40) {
5980 imm |= 0x3e000000;
5981 } else {
5982 imm |= 0x40000000;
5984 imm |= (imm << 32);
5987 break;
5990 if (cmode_3_1 != 7 && is_neg) {
5991 imm = ~imm;
5994 tcg_imm = tcg_const_i64(imm);
5995 tcg_rd = new_tmp_a64(s);
5997 for (i = 0; i < 2; i++) {
5998 int foffs = i ? fp_reg_hi_offset(s, rd) : fp_reg_offset(s, rd, MO_64);
6000 if (i == 1 && !is_q) {
6001 /* non-quad ops clear high half of vector */
6002 tcg_gen_movi_i64(tcg_rd, 0);
6003 } else if ((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9) {
6004 tcg_gen_ld_i64(tcg_rd, cpu_env, foffs);
6005 if (is_neg) {
6006 /* AND (BIC) */
6007 tcg_gen_and_i64(tcg_rd, tcg_rd, tcg_imm);
6008 } else {
6009 /* ORR */
6010 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_imm);
6012 } else {
6013 /* MOVI */
6014 tcg_gen_mov_i64(tcg_rd, tcg_imm);
6016 tcg_gen_st_i64(tcg_rd, cpu_env, foffs);
6019 tcg_temp_free_i64(tcg_imm);
6022 /* C3.6.7 AdvSIMD scalar copy
6023 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
6024 * +-----+----+-----------------+------+---+------+---+------+------+
6025 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
6026 * +-----+----+-----------------+------+---+------+---+------+------+
6028 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn)
6030 int rd = extract32(insn, 0, 5);
6031 int rn = extract32(insn, 5, 5);
6032 int imm4 = extract32(insn, 11, 4);
6033 int imm5 = extract32(insn, 16, 5);
6034 int op = extract32(insn, 29, 1);
6036 if (op != 0 || imm4 != 0) {
6037 unallocated_encoding(s);
6038 return;
6041 /* DUP (element, scalar) */
6042 handle_simd_dupes(s, rd, rn, imm5);
6045 /* C3.6.8 AdvSIMD scalar pairwise
6046 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
6047 * +-----+---+-----------+------+-----------+--------+-----+------+------+
6048 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
6049 * +-----+---+-----------+------+-----------+--------+-----+------+------+
6051 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn)
6053 int u = extract32(insn, 29, 1);
6054 int size = extract32(insn, 22, 2);
6055 int opcode = extract32(insn, 12, 5);
6056 int rn = extract32(insn, 5, 5);
6057 int rd = extract32(insn, 0, 5);
6058 TCGv_ptr fpst;
6060 /* For some ops (the FP ones), size[1] is part of the encoding.
6061 * For ADDP strictly it is not but size[1] is always 1 for valid
6062 * encodings.
6064 opcode |= (extract32(size, 1, 1) << 5);
6066 switch (opcode) {
6067 case 0x3b: /* ADDP */
6068 if (u || size != 3) {
6069 unallocated_encoding(s);
6070 return;
6072 if (!fp_access_check(s)) {
6073 return;
6076 TCGV_UNUSED_PTR(fpst);
6077 break;
6078 case 0xc: /* FMAXNMP */
6079 case 0xd: /* FADDP */
6080 case 0xf: /* FMAXP */
6081 case 0x2c: /* FMINNMP */
6082 case 0x2f: /* FMINP */
6083 /* FP op, size[0] is 32 or 64 bit */
6084 if (!u) {
6085 unallocated_encoding(s);
6086 return;
6088 if (!fp_access_check(s)) {
6089 return;
6092 size = extract32(size, 0, 1) ? 3 : 2;
6093 fpst = get_fpstatus_ptr();
6094 break;
6095 default:
6096 unallocated_encoding(s);
6097 return;
6100 if (size == 3) {
6101 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
6102 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
6103 TCGv_i64 tcg_res = tcg_temp_new_i64();
6105 read_vec_element(s, tcg_op1, rn, 0, MO_64);
6106 read_vec_element(s, tcg_op2, rn, 1, MO_64);
6108 switch (opcode) {
6109 case 0x3b: /* ADDP */
6110 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2);
6111 break;
6112 case 0xc: /* FMAXNMP */
6113 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6114 break;
6115 case 0xd: /* FADDP */
6116 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
6117 break;
6118 case 0xf: /* FMAXP */
6119 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
6120 break;
6121 case 0x2c: /* FMINNMP */
6122 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6123 break;
6124 case 0x2f: /* FMINP */
6125 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
6126 break;
6127 default:
6128 g_assert_not_reached();
6131 write_fp_dreg(s, rd, tcg_res);
6133 tcg_temp_free_i64(tcg_op1);
6134 tcg_temp_free_i64(tcg_op2);
6135 tcg_temp_free_i64(tcg_res);
6136 } else {
6137 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
6138 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
6139 TCGv_i32 tcg_res = tcg_temp_new_i32();
6141 read_vec_element_i32(s, tcg_op1, rn, 0, MO_32);
6142 read_vec_element_i32(s, tcg_op2, rn, 1, MO_32);
6144 switch (opcode) {
6145 case 0xc: /* FMAXNMP */
6146 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
6147 break;
6148 case 0xd: /* FADDP */
6149 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
6150 break;
6151 case 0xf: /* FMAXP */
6152 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
6153 break;
6154 case 0x2c: /* FMINNMP */
6155 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
6156 break;
6157 case 0x2f: /* FMINP */
6158 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
6159 break;
6160 default:
6161 g_assert_not_reached();
6164 write_fp_sreg(s, rd, tcg_res);
6166 tcg_temp_free_i32(tcg_op1);
6167 tcg_temp_free_i32(tcg_op2);
6168 tcg_temp_free_i32(tcg_res);
6171 if (!TCGV_IS_UNUSED_PTR(fpst)) {
6172 tcg_temp_free_ptr(fpst);
6177 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
6179 * This code is handles the common shifting code and is used by both
6180 * the vector and scalar code.
6182 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
6183 TCGv_i64 tcg_rnd, bool accumulate,
6184 bool is_u, int size, int shift)
6186 bool extended_result = false;
6187 bool round = !TCGV_IS_UNUSED_I64(tcg_rnd);
6188 int ext_lshift = 0;
6189 TCGv_i64 tcg_src_hi;
6191 if (round && size == 3) {
6192 extended_result = true;
6193 ext_lshift = 64 - shift;
6194 tcg_src_hi = tcg_temp_new_i64();
6195 } else if (shift == 64) {
6196 if (!accumulate && is_u) {
6197 /* result is zero */
6198 tcg_gen_movi_i64(tcg_res, 0);
6199 return;
6203 /* Deal with the rounding step */
6204 if (round) {
6205 if (extended_result) {
6206 TCGv_i64 tcg_zero = tcg_const_i64(0);
6207 if (!is_u) {
6208 /* take care of sign extending tcg_res */
6209 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
6210 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
6211 tcg_src, tcg_src_hi,
6212 tcg_rnd, tcg_zero);
6213 } else {
6214 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
6215 tcg_src, tcg_zero,
6216 tcg_rnd, tcg_zero);
6218 tcg_temp_free_i64(tcg_zero);
6219 } else {
6220 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
6224 /* Now do the shift right */
6225 if (round && extended_result) {
6226 /* extended case, >64 bit precision required */
6227 if (ext_lshift == 0) {
6228 /* special case, only high bits matter */
6229 tcg_gen_mov_i64(tcg_src, tcg_src_hi);
6230 } else {
6231 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
6232 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
6233 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
6235 } else {
6236 if (is_u) {
6237 if (shift == 64) {
6238 /* essentially shifting in 64 zeros */
6239 tcg_gen_movi_i64(tcg_src, 0);
6240 } else {
6241 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
6243 } else {
6244 if (shift == 64) {
6245 /* effectively extending the sign-bit */
6246 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
6247 } else {
6248 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
6253 if (accumulate) {
6254 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
6255 } else {
6256 tcg_gen_mov_i64(tcg_res, tcg_src);
6259 if (extended_result) {
6260 tcg_temp_free_i64(tcg_src_hi);
6264 /* Common SHL/SLI - Shift left with an optional insert */
6265 static void handle_shli_with_ins(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
6266 bool insert, int shift)
6268 if (insert) { /* SLI */
6269 tcg_gen_deposit_i64(tcg_res, tcg_res, tcg_src, shift, 64 - shift);
6270 } else { /* SHL */
6271 tcg_gen_shli_i64(tcg_res, tcg_src, shift);
6275 /* SRI: shift right with insert */
6276 static void handle_shri_with_ins(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
6277 int size, int shift)
6279 int esize = 8 << size;
6281 /* shift count same as element size is valid but does nothing;
6282 * special case to avoid potential shift by 64.
6284 if (shift != esize) {
6285 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
6286 tcg_gen_deposit_i64(tcg_res, tcg_res, tcg_src, 0, esize - shift);
6290 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
6291 static void handle_scalar_simd_shri(DisasContext *s,
6292 bool is_u, int immh, int immb,
6293 int opcode, int rn, int rd)
6295 const int size = 3;
6296 int immhb = immh << 3 | immb;
6297 int shift = 2 * (8 << size) - immhb;
6298 bool accumulate = false;
6299 bool round = false;
6300 bool insert = false;
6301 TCGv_i64 tcg_rn;
6302 TCGv_i64 tcg_rd;
6303 TCGv_i64 tcg_round;
6305 if (!extract32(immh, 3, 1)) {
6306 unallocated_encoding(s);
6307 return;
6310 if (!fp_access_check(s)) {
6311 return;
6314 switch (opcode) {
6315 case 0x02: /* SSRA / USRA (accumulate) */
6316 accumulate = true;
6317 break;
6318 case 0x04: /* SRSHR / URSHR (rounding) */
6319 round = true;
6320 break;
6321 case 0x06: /* SRSRA / URSRA (accum + rounding) */
6322 accumulate = round = true;
6323 break;
6324 case 0x08: /* SRI */
6325 insert = true;
6326 break;
6329 if (round) {
6330 uint64_t round_const = 1ULL << (shift - 1);
6331 tcg_round = tcg_const_i64(round_const);
6332 } else {
6333 TCGV_UNUSED_I64(tcg_round);
6336 tcg_rn = read_fp_dreg(s, rn);
6337 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
6339 if (insert) {
6340 handle_shri_with_ins(tcg_rd, tcg_rn, size, shift);
6341 } else {
6342 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
6343 accumulate, is_u, size, shift);
6346 write_fp_dreg(s, rd, tcg_rd);
6348 tcg_temp_free_i64(tcg_rn);
6349 tcg_temp_free_i64(tcg_rd);
6350 if (round) {
6351 tcg_temp_free_i64(tcg_round);
6355 /* SHL/SLI - Scalar shift left */
6356 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
6357 int immh, int immb, int opcode,
6358 int rn, int rd)
6360 int size = 32 - clz32(immh) - 1;
6361 int immhb = immh << 3 | immb;
6362 int shift = immhb - (8 << size);
6363 TCGv_i64 tcg_rn = new_tmp_a64(s);
6364 TCGv_i64 tcg_rd = new_tmp_a64(s);
6366 if (!extract32(immh, 3, 1)) {
6367 unallocated_encoding(s);
6368 return;
6371 if (!fp_access_check(s)) {
6372 return;
6375 tcg_rn = read_fp_dreg(s, rn);
6376 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
6378 handle_shli_with_ins(tcg_rd, tcg_rn, insert, shift);
6380 write_fp_dreg(s, rd, tcg_rd);
6382 tcg_temp_free_i64(tcg_rn);
6383 tcg_temp_free_i64(tcg_rd);
6386 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
6387 * (signed/unsigned) narrowing */
6388 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
6389 bool is_u_shift, bool is_u_narrow,
6390 int immh, int immb, int opcode,
6391 int rn, int rd)
6393 int immhb = immh << 3 | immb;
6394 int size = 32 - clz32(immh) - 1;
6395 int esize = 8 << size;
6396 int shift = (2 * esize) - immhb;
6397 int elements = is_scalar ? 1 : (64 / esize);
6398 bool round = extract32(opcode, 0, 1);
6399 TCGMemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
6400 TCGv_i64 tcg_rn, tcg_rd, tcg_round;
6401 TCGv_i32 tcg_rd_narrowed;
6402 TCGv_i64 tcg_final;
6404 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
6405 { gen_helper_neon_narrow_sat_s8,
6406 gen_helper_neon_unarrow_sat8 },
6407 { gen_helper_neon_narrow_sat_s16,
6408 gen_helper_neon_unarrow_sat16 },
6409 { gen_helper_neon_narrow_sat_s32,
6410 gen_helper_neon_unarrow_sat32 },
6411 { NULL, NULL },
6413 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
6414 gen_helper_neon_narrow_sat_u8,
6415 gen_helper_neon_narrow_sat_u16,
6416 gen_helper_neon_narrow_sat_u32,
6417 NULL
6419 NeonGenNarrowEnvFn *narrowfn;
6421 int i;
6423 assert(size < 4);
6425 if (extract32(immh, 3, 1)) {
6426 unallocated_encoding(s);
6427 return;
6430 if (!fp_access_check(s)) {
6431 return;
6434 if (is_u_shift) {
6435 narrowfn = unsigned_narrow_fns[size];
6436 } else {
6437 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
6440 tcg_rn = tcg_temp_new_i64();
6441 tcg_rd = tcg_temp_new_i64();
6442 tcg_rd_narrowed = tcg_temp_new_i32();
6443 tcg_final = tcg_const_i64(0);
6445 if (round) {
6446 uint64_t round_const = 1ULL << (shift - 1);
6447 tcg_round = tcg_const_i64(round_const);
6448 } else {
6449 TCGV_UNUSED_I64(tcg_round);
6452 for (i = 0; i < elements; i++) {
6453 read_vec_element(s, tcg_rn, rn, i, ldop);
6454 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
6455 false, is_u_shift, size+1, shift);
6456 narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd);
6457 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
6458 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
6461 if (!is_q) {
6462 clear_vec_high(s, rd);
6463 write_vec_element(s, tcg_final, rd, 0, MO_64);
6464 } else {
6465 write_vec_element(s, tcg_final, rd, 1, MO_64);
6468 if (round) {
6469 tcg_temp_free_i64(tcg_round);
6471 tcg_temp_free_i64(tcg_rn);
6472 tcg_temp_free_i64(tcg_rd);
6473 tcg_temp_free_i32(tcg_rd_narrowed);
6474 tcg_temp_free_i64(tcg_final);
6475 return;
6478 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
6479 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
6480 bool src_unsigned, bool dst_unsigned,
6481 int immh, int immb, int rn, int rd)
6483 int immhb = immh << 3 | immb;
6484 int size = 32 - clz32(immh) - 1;
6485 int shift = immhb - (8 << size);
6486 int pass;
6488 assert(immh != 0);
6489 assert(!(scalar && is_q));
6491 if (!scalar) {
6492 if (!is_q && extract32(immh, 3, 1)) {
6493 unallocated_encoding(s);
6494 return;
6497 /* Since we use the variable-shift helpers we must
6498 * replicate the shift count into each element of
6499 * the tcg_shift value.
6501 switch (size) {
6502 case 0:
6503 shift |= shift << 8;
6504 /* fall through */
6505 case 1:
6506 shift |= shift << 16;
6507 break;
6508 case 2:
6509 case 3:
6510 break;
6511 default:
6512 g_assert_not_reached();
6516 if (!fp_access_check(s)) {
6517 return;
6520 if (size == 3) {
6521 TCGv_i64 tcg_shift = tcg_const_i64(shift);
6522 static NeonGenTwo64OpEnvFn * const fns[2][2] = {
6523 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
6524 { NULL, gen_helper_neon_qshl_u64 },
6526 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
6527 int maxpass = is_q ? 2 : 1;
6529 for (pass = 0; pass < maxpass; pass++) {
6530 TCGv_i64 tcg_op = tcg_temp_new_i64();
6532 read_vec_element(s, tcg_op, rn, pass, MO_64);
6533 genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
6534 write_vec_element(s, tcg_op, rd, pass, MO_64);
6536 tcg_temp_free_i64(tcg_op);
6538 tcg_temp_free_i64(tcg_shift);
6540 if (!is_q) {
6541 clear_vec_high(s, rd);
6543 } else {
6544 TCGv_i32 tcg_shift = tcg_const_i32(shift);
6545 static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
6547 { gen_helper_neon_qshl_s8,
6548 gen_helper_neon_qshl_s16,
6549 gen_helper_neon_qshl_s32 },
6550 { gen_helper_neon_qshlu_s8,
6551 gen_helper_neon_qshlu_s16,
6552 gen_helper_neon_qshlu_s32 }
6553 }, {
6554 { NULL, NULL, NULL },
6555 { gen_helper_neon_qshl_u8,
6556 gen_helper_neon_qshl_u16,
6557 gen_helper_neon_qshl_u32 }
6560 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
6561 TCGMemOp memop = scalar ? size : MO_32;
6562 int maxpass = scalar ? 1 : is_q ? 4 : 2;
6564 for (pass = 0; pass < maxpass; pass++) {
6565 TCGv_i32 tcg_op = tcg_temp_new_i32();
6567 read_vec_element_i32(s, tcg_op, rn, pass, memop);
6568 genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
6569 if (scalar) {
6570 switch (size) {
6571 case 0:
6572 tcg_gen_ext8u_i32(tcg_op, tcg_op);
6573 break;
6574 case 1:
6575 tcg_gen_ext16u_i32(tcg_op, tcg_op);
6576 break;
6577 case 2:
6578 break;
6579 default:
6580 g_assert_not_reached();
6582 write_fp_sreg(s, rd, tcg_op);
6583 } else {
6584 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
6587 tcg_temp_free_i32(tcg_op);
6589 tcg_temp_free_i32(tcg_shift);
6591 if (!is_q && !scalar) {
6592 clear_vec_high(s, rd);
6597 /* Common vector code for handling integer to FP conversion */
6598 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
6599 int elements, int is_signed,
6600 int fracbits, int size)
6602 bool is_double = size == 3 ? true : false;
6603 TCGv_ptr tcg_fpst = get_fpstatus_ptr();
6604 TCGv_i32 tcg_shift = tcg_const_i32(fracbits);
6605 TCGv_i64 tcg_int = tcg_temp_new_i64();
6606 TCGMemOp mop = size | (is_signed ? MO_SIGN : 0);
6607 int pass;
6609 for (pass = 0; pass < elements; pass++) {
6610 read_vec_element(s, tcg_int, rn, pass, mop);
6612 if (is_double) {
6613 TCGv_i64 tcg_double = tcg_temp_new_i64();
6614 if (is_signed) {
6615 gen_helper_vfp_sqtod(tcg_double, tcg_int,
6616 tcg_shift, tcg_fpst);
6617 } else {
6618 gen_helper_vfp_uqtod(tcg_double, tcg_int,
6619 tcg_shift, tcg_fpst);
6621 if (elements == 1) {
6622 write_fp_dreg(s, rd, tcg_double);
6623 } else {
6624 write_vec_element(s, tcg_double, rd, pass, MO_64);
6626 tcg_temp_free_i64(tcg_double);
6627 } else {
6628 TCGv_i32 tcg_single = tcg_temp_new_i32();
6629 if (is_signed) {
6630 gen_helper_vfp_sqtos(tcg_single, tcg_int,
6631 tcg_shift, tcg_fpst);
6632 } else {
6633 gen_helper_vfp_uqtos(tcg_single, tcg_int,
6634 tcg_shift, tcg_fpst);
6636 if (elements == 1) {
6637 write_fp_sreg(s, rd, tcg_single);
6638 } else {
6639 write_vec_element_i32(s, tcg_single, rd, pass, MO_32);
6641 tcg_temp_free_i32(tcg_single);
6645 if (!is_double && elements == 2) {
6646 clear_vec_high(s, rd);
6649 tcg_temp_free_i64(tcg_int);
6650 tcg_temp_free_ptr(tcg_fpst);
6651 tcg_temp_free_i32(tcg_shift);
6654 /* UCVTF/SCVTF - Integer to FP conversion */
6655 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
6656 bool is_q, bool is_u,
6657 int immh, int immb, int opcode,
6658 int rn, int rd)
6660 bool is_double = extract32(immh, 3, 1);
6661 int size = is_double ? MO_64 : MO_32;
6662 int elements;
6663 int immhb = immh << 3 | immb;
6664 int fracbits = (is_double ? 128 : 64) - immhb;
6666 if (!extract32(immh, 2, 2)) {
6667 unallocated_encoding(s);
6668 return;
6671 if (is_scalar) {
6672 elements = 1;
6673 } else {
6674 elements = is_double ? 2 : is_q ? 4 : 2;
6675 if (is_double && !is_q) {
6676 unallocated_encoding(s);
6677 return;
6681 if (!fp_access_check(s)) {
6682 return;
6685 /* immh == 0 would be a failure of the decode logic */
6686 g_assert(immh);
6688 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
6691 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
6692 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
6693 bool is_q, bool is_u,
6694 int immh, int immb, int rn, int rd)
6696 bool is_double = extract32(immh, 3, 1);
6697 int immhb = immh << 3 | immb;
6698 int fracbits = (is_double ? 128 : 64) - immhb;
6699 int pass;
6700 TCGv_ptr tcg_fpstatus;
6701 TCGv_i32 tcg_rmode, tcg_shift;
6703 if (!extract32(immh, 2, 2)) {
6704 unallocated_encoding(s);
6705 return;
6708 if (!is_scalar && !is_q && is_double) {
6709 unallocated_encoding(s);
6710 return;
6713 if (!fp_access_check(s)) {
6714 return;
6717 assert(!(is_scalar && is_q));
6719 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(FPROUNDING_ZERO));
6720 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
6721 tcg_fpstatus = get_fpstatus_ptr();
6722 tcg_shift = tcg_const_i32(fracbits);
6724 if (is_double) {
6725 int maxpass = is_scalar ? 1 : 2;
6727 for (pass = 0; pass < maxpass; pass++) {
6728 TCGv_i64 tcg_op = tcg_temp_new_i64();
6730 read_vec_element(s, tcg_op, rn, pass, MO_64);
6731 if (is_u) {
6732 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
6733 } else {
6734 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
6736 write_vec_element(s, tcg_op, rd, pass, MO_64);
6737 tcg_temp_free_i64(tcg_op);
6739 if (!is_q) {
6740 clear_vec_high(s, rd);
6742 } else {
6743 int maxpass = is_scalar ? 1 : is_q ? 4 : 2;
6744 for (pass = 0; pass < maxpass; pass++) {
6745 TCGv_i32 tcg_op = tcg_temp_new_i32();
6747 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
6748 if (is_u) {
6749 gen_helper_vfp_touls(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
6750 } else {
6751 gen_helper_vfp_tosls(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
6753 if (is_scalar) {
6754 write_fp_sreg(s, rd, tcg_op);
6755 } else {
6756 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
6758 tcg_temp_free_i32(tcg_op);
6760 if (!is_q && !is_scalar) {
6761 clear_vec_high(s, rd);
6765 tcg_temp_free_ptr(tcg_fpstatus);
6766 tcg_temp_free_i32(tcg_shift);
6767 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
6768 tcg_temp_free_i32(tcg_rmode);
6771 /* C3.6.9 AdvSIMD scalar shift by immediate
6772 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
6773 * +-----+---+-------------+------+------+--------+---+------+------+
6774 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
6775 * +-----+---+-------------+------+------+--------+---+------+------+
6777 * This is the scalar version so it works on a fixed sized registers
6779 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
6781 int rd = extract32(insn, 0, 5);
6782 int rn = extract32(insn, 5, 5);
6783 int opcode = extract32(insn, 11, 5);
6784 int immb = extract32(insn, 16, 3);
6785 int immh = extract32(insn, 19, 4);
6786 bool is_u = extract32(insn, 29, 1);
6788 if (immh == 0) {
6789 unallocated_encoding(s);
6790 return;
6793 switch (opcode) {
6794 case 0x08: /* SRI */
6795 if (!is_u) {
6796 unallocated_encoding(s);
6797 return;
6799 /* fall through */
6800 case 0x00: /* SSHR / USHR */
6801 case 0x02: /* SSRA / USRA */
6802 case 0x04: /* SRSHR / URSHR */
6803 case 0x06: /* SRSRA / URSRA */
6804 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
6805 break;
6806 case 0x0a: /* SHL / SLI */
6807 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
6808 break;
6809 case 0x1c: /* SCVTF, UCVTF */
6810 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
6811 opcode, rn, rd);
6812 break;
6813 case 0x10: /* SQSHRUN, SQSHRUN2 */
6814 case 0x11: /* SQRSHRUN, SQRSHRUN2 */
6815 if (!is_u) {
6816 unallocated_encoding(s);
6817 return;
6819 handle_vec_simd_sqshrn(s, true, false, false, true,
6820 immh, immb, opcode, rn, rd);
6821 break;
6822 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
6823 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
6824 handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
6825 immh, immb, opcode, rn, rd);
6826 break;
6827 case 0xc: /* SQSHLU */
6828 if (!is_u) {
6829 unallocated_encoding(s);
6830 return;
6832 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
6833 break;
6834 case 0xe: /* SQSHL, UQSHL */
6835 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
6836 break;
6837 case 0x1f: /* FCVTZS, FCVTZU */
6838 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
6839 break;
6840 default:
6841 unallocated_encoding(s);
6842 break;
6846 /* C3.6.10 AdvSIMD scalar three different
6847 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
6848 * +-----+---+-----------+------+---+------+--------+-----+------+------+
6849 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
6850 * +-----+---+-----------+------+---+------+--------+-----+------+------+
6852 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
6854 bool is_u = extract32(insn, 29, 1);
6855 int size = extract32(insn, 22, 2);
6856 int opcode = extract32(insn, 12, 4);
6857 int rm = extract32(insn, 16, 5);
6858 int rn = extract32(insn, 5, 5);
6859 int rd = extract32(insn, 0, 5);
6861 if (is_u) {
6862 unallocated_encoding(s);
6863 return;
6866 switch (opcode) {
6867 case 0x9: /* SQDMLAL, SQDMLAL2 */
6868 case 0xb: /* SQDMLSL, SQDMLSL2 */
6869 case 0xd: /* SQDMULL, SQDMULL2 */
6870 if (size == 0 || size == 3) {
6871 unallocated_encoding(s);
6872 return;
6874 break;
6875 default:
6876 unallocated_encoding(s);
6877 return;
6880 if (!fp_access_check(s)) {
6881 return;
6884 if (size == 2) {
6885 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
6886 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
6887 TCGv_i64 tcg_res = tcg_temp_new_i64();
6889 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
6890 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
6892 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
6893 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res);
6895 switch (opcode) {
6896 case 0xd: /* SQDMULL, SQDMULL2 */
6897 break;
6898 case 0xb: /* SQDMLSL, SQDMLSL2 */
6899 tcg_gen_neg_i64(tcg_res, tcg_res);
6900 /* fall through */
6901 case 0x9: /* SQDMLAL, SQDMLAL2 */
6902 read_vec_element(s, tcg_op1, rd, 0, MO_64);
6903 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env,
6904 tcg_res, tcg_op1);
6905 break;
6906 default:
6907 g_assert_not_reached();
6910 write_fp_dreg(s, rd, tcg_res);
6912 tcg_temp_free_i64(tcg_op1);
6913 tcg_temp_free_i64(tcg_op2);
6914 tcg_temp_free_i64(tcg_res);
6915 } else {
6916 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
6917 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
6918 TCGv_i64 tcg_res = tcg_temp_new_i64();
6920 read_vec_element_i32(s, tcg_op1, rn, 0, MO_16);
6921 read_vec_element_i32(s, tcg_op2, rm, 0, MO_16);
6923 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
6924 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res);
6926 switch (opcode) {
6927 case 0xd: /* SQDMULL, SQDMULL2 */
6928 break;
6929 case 0xb: /* SQDMLSL, SQDMLSL2 */
6930 gen_helper_neon_negl_u32(tcg_res, tcg_res);
6931 /* fall through */
6932 case 0x9: /* SQDMLAL, SQDMLAL2 */
6934 TCGv_i64 tcg_op3 = tcg_temp_new_i64();
6935 read_vec_element(s, tcg_op3, rd, 0, MO_32);
6936 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env,
6937 tcg_res, tcg_op3);
6938 tcg_temp_free_i64(tcg_op3);
6939 break;
6941 default:
6942 g_assert_not_reached();
6945 tcg_gen_ext32u_i64(tcg_res, tcg_res);
6946 write_fp_dreg(s, rd, tcg_res);
6948 tcg_temp_free_i32(tcg_op1);
6949 tcg_temp_free_i32(tcg_op2);
6950 tcg_temp_free_i64(tcg_res);
6954 static void handle_3same_64(DisasContext *s, int opcode, bool u,
6955 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm)
6957 /* Handle 64x64->64 opcodes which are shared between the scalar
6958 * and vector 3-same groups. We cover every opcode where size == 3
6959 * is valid in either the three-reg-same (integer, not pairwise)
6960 * or scalar-three-reg-same groups. (Some opcodes are not yet
6961 * implemented.)
6963 TCGCond cond;
6965 switch (opcode) {
6966 case 0x1: /* SQADD */
6967 if (u) {
6968 gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
6969 } else {
6970 gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
6972 break;
6973 case 0x5: /* SQSUB */
6974 if (u) {
6975 gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
6976 } else {
6977 gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
6979 break;
6980 case 0x6: /* CMGT, CMHI */
6981 /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0.
6982 * We implement this using setcond (test) and then negating.
6984 cond = u ? TCG_COND_GTU : TCG_COND_GT;
6985 do_cmop:
6986 tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm);
6987 tcg_gen_neg_i64(tcg_rd, tcg_rd);
6988 break;
6989 case 0x7: /* CMGE, CMHS */
6990 cond = u ? TCG_COND_GEU : TCG_COND_GE;
6991 goto do_cmop;
6992 case 0x11: /* CMTST, CMEQ */
6993 if (u) {
6994 cond = TCG_COND_EQ;
6995 goto do_cmop;
6997 /* CMTST : test is "if (X & Y != 0)". */
6998 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
6999 tcg_gen_setcondi_i64(TCG_COND_NE, tcg_rd, tcg_rd, 0);
7000 tcg_gen_neg_i64(tcg_rd, tcg_rd);
7001 break;
7002 case 0x8: /* SSHL, USHL */
7003 if (u) {
7004 gen_helper_neon_shl_u64(tcg_rd, tcg_rn, tcg_rm);
7005 } else {
7006 gen_helper_neon_shl_s64(tcg_rd, tcg_rn, tcg_rm);
7008 break;
7009 case 0x9: /* SQSHL, UQSHL */
7010 if (u) {
7011 gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7012 } else {
7013 gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7015 break;
7016 case 0xa: /* SRSHL, URSHL */
7017 if (u) {
7018 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm);
7019 } else {
7020 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm);
7022 break;
7023 case 0xb: /* SQRSHL, UQRSHL */
7024 if (u) {
7025 gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7026 } else {
7027 gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7029 break;
7030 case 0x10: /* ADD, SUB */
7031 if (u) {
7032 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm);
7033 } else {
7034 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm);
7036 break;
7037 default:
7038 g_assert_not_reached();
7042 /* Handle the 3-same-operands float operations; shared by the scalar
7043 * and vector encodings. The caller must filter out any encodings
7044 * not allocated for the encoding it is dealing with.
7046 static void handle_3same_float(DisasContext *s, int size, int elements,
7047 int fpopcode, int rd, int rn, int rm)
7049 int pass;
7050 TCGv_ptr fpst = get_fpstatus_ptr();
7052 for (pass = 0; pass < elements; pass++) {
7053 if (size) {
7054 /* Double */
7055 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
7056 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
7057 TCGv_i64 tcg_res = tcg_temp_new_i64();
7059 read_vec_element(s, tcg_op1, rn, pass, MO_64);
7060 read_vec_element(s, tcg_op2, rm, pass, MO_64);
7062 switch (fpopcode) {
7063 case 0x39: /* FMLS */
7064 /* As usual for ARM, separate negation for fused multiply-add */
7065 gen_helper_vfp_negd(tcg_op1, tcg_op1);
7066 /* fall through */
7067 case 0x19: /* FMLA */
7068 read_vec_element(s, tcg_res, rd, pass, MO_64);
7069 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2,
7070 tcg_res, fpst);
7071 break;
7072 case 0x18: /* FMAXNM */
7073 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
7074 break;
7075 case 0x1a: /* FADD */
7076 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
7077 break;
7078 case 0x1b: /* FMULX */
7079 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst);
7080 break;
7081 case 0x1c: /* FCMEQ */
7082 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7083 break;
7084 case 0x1e: /* FMAX */
7085 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
7086 break;
7087 case 0x1f: /* FRECPS */
7088 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7089 break;
7090 case 0x38: /* FMINNM */
7091 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
7092 break;
7093 case 0x3a: /* FSUB */
7094 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
7095 break;
7096 case 0x3e: /* FMIN */
7097 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
7098 break;
7099 case 0x3f: /* FRSQRTS */
7100 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7101 break;
7102 case 0x5b: /* FMUL */
7103 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
7104 break;
7105 case 0x5c: /* FCMGE */
7106 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7107 break;
7108 case 0x5d: /* FACGE */
7109 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7110 break;
7111 case 0x5f: /* FDIV */
7112 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
7113 break;
7114 case 0x7a: /* FABD */
7115 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
7116 gen_helper_vfp_absd(tcg_res, tcg_res);
7117 break;
7118 case 0x7c: /* FCMGT */
7119 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7120 break;
7121 case 0x7d: /* FACGT */
7122 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7123 break;
7124 default:
7125 g_assert_not_reached();
7128 write_vec_element(s, tcg_res, rd, pass, MO_64);
7130 tcg_temp_free_i64(tcg_res);
7131 tcg_temp_free_i64(tcg_op1);
7132 tcg_temp_free_i64(tcg_op2);
7133 } else {
7134 /* Single */
7135 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
7136 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
7137 TCGv_i32 tcg_res = tcg_temp_new_i32();
7139 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
7140 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
7142 switch (fpopcode) {
7143 case 0x39: /* FMLS */
7144 /* As usual for ARM, separate negation for fused multiply-add */
7145 gen_helper_vfp_negs(tcg_op1, tcg_op1);
7146 /* fall through */
7147 case 0x19: /* FMLA */
7148 read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
7149 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2,
7150 tcg_res, fpst);
7151 break;
7152 case 0x1a: /* FADD */
7153 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
7154 break;
7155 case 0x1b: /* FMULX */
7156 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst);
7157 break;
7158 case 0x1c: /* FCMEQ */
7159 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7160 break;
7161 case 0x1e: /* FMAX */
7162 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
7163 break;
7164 case 0x1f: /* FRECPS */
7165 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7166 break;
7167 case 0x18: /* FMAXNM */
7168 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
7169 break;
7170 case 0x38: /* FMINNM */
7171 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
7172 break;
7173 case 0x3a: /* FSUB */
7174 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
7175 break;
7176 case 0x3e: /* FMIN */
7177 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
7178 break;
7179 case 0x3f: /* FRSQRTS */
7180 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7181 break;
7182 case 0x5b: /* FMUL */
7183 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
7184 break;
7185 case 0x5c: /* FCMGE */
7186 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7187 break;
7188 case 0x5d: /* FACGE */
7189 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7190 break;
7191 case 0x5f: /* FDIV */
7192 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
7193 break;
7194 case 0x7a: /* FABD */
7195 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
7196 gen_helper_vfp_abss(tcg_res, tcg_res);
7197 break;
7198 case 0x7c: /* FCMGT */
7199 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7200 break;
7201 case 0x7d: /* FACGT */
7202 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7203 break;
7204 default:
7205 g_assert_not_reached();
7208 if (elements == 1) {
7209 /* scalar single so clear high part */
7210 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
7212 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res);
7213 write_vec_element(s, tcg_tmp, rd, pass, MO_64);
7214 tcg_temp_free_i64(tcg_tmp);
7215 } else {
7216 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
7219 tcg_temp_free_i32(tcg_res);
7220 tcg_temp_free_i32(tcg_op1);
7221 tcg_temp_free_i32(tcg_op2);
7225 tcg_temp_free_ptr(fpst);
7227 if ((elements << size) < 4) {
7228 /* scalar, or non-quad vector op */
7229 clear_vec_high(s, rd);
7233 /* C3.6.11 AdvSIMD scalar three same
7234 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
7235 * +-----+---+-----------+------+---+------+--------+---+------+------+
7236 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
7237 * +-----+---+-----------+------+---+------+--------+---+------+------+
7239 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn)
7241 int rd = extract32(insn, 0, 5);
7242 int rn = extract32(insn, 5, 5);
7243 int opcode = extract32(insn, 11, 5);
7244 int rm = extract32(insn, 16, 5);
7245 int size = extract32(insn, 22, 2);
7246 bool u = extract32(insn, 29, 1);
7247 TCGv_i64 tcg_rd;
7249 if (opcode >= 0x18) {
7250 /* Floating point: U, size[1] and opcode indicate operation */
7251 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6);
7252 switch (fpopcode) {
7253 case 0x1b: /* FMULX */
7254 case 0x1f: /* FRECPS */
7255 case 0x3f: /* FRSQRTS */
7256 case 0x5d: /* FACGE */
7257 case 0x7d: /* FACGT */
7258 case 0x1c: /* FCMEQ */
7259 case 0x5c: /* FCMGE */
7260 case 0x7c: /* FCMGT */
7261 case 0x7a: /* FABD */
7262 break;
7263 default:
7264 unallocated_encoding(s);
7265 return;
7268 if (!fp_access_check(s)) {
7269 return;
7272 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm);
7273 return;
7276 switch (opcode) {
7277 case 0x1: /* SQADD, UQADD */
7278 case 0x5: /* SQSUB, UQSUB */
7279 case 0x9: /* SQSHL, UQSHL */
7280 case 0xb: /* SQRSHL, UQRSHL */
7281 break;
7282 case 0x8: /* SSHL, USHL */
7283 case 0xa: /* SRSHL, URSHL */
7284 case 0x6: /* CMGT, CMHI */
7285 case 0x7: /* CMGE, CMHS */
7286 case 0x11: /* CMTST, CMEQ */
7287 case 0x10: /* ADD, SUB (vector) */
7288 if (size != 3) {
7289 unallocated_encoding(s);
7290 return;
7292 break;
7293 case 0x16: /* SQDMULH, SQRDMULH (vector) */
7294 if (size != 1 && size != 2) {
7295 unallocated_encoding(s);
7296 return;
7298 break;
7299 default:
7300 unallocated_encoding(s);
7301 return;
7304 if (!fp_access_check(s)) {
7305 return;
7308 tcg_rd = tcg_temp_new_i64();
7310 if (size == 3) {
7311 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
7312 TCGv_i64 tcg_rm = read_fp_dreg(s, rm);
7314 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm);
7315 tcg_temp_free_i64(tcg_rn);
7316 tcg_temp_free_i64(tcg_rm);
7317 } else {
7318 /* Do a single operation on the lowest element in the vector.
7319 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with
7320 * no side effects for all these operations.
7321 * OPTME: special-purpose helpers would avoid doing some
7322 * unnecessary work in the helper for the 8 and 16 bit cases.
7324 NeonGenTwoOpEnvFn *genenvfn;
7325 TCGv_i32 tcg_rn = tcg_temp_new_i32();
7326 TCGv_i32 tcg_rm = tcg_temp_new_i32();
7327 TCGv_i32 tcg_rd32 = tcg_temp_new_i32();
7329 read_vec_element_i32(s, tcg_rn, rn, 0, size);
7330 read_vec_element_i32(s, tcg_rm, rm, 0, size);
7332 switch (opcode) {
7333 case 0x1: /* SQADD, UQADD */
7335 static NeonGenTwoOpEnvFn * const fns[3][2] = {
7336 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
7337 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
7338 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
7340 genenvfn = fns[size][u];
7341 break;
7343 case 0x5: /* SQSUB, UQSUB */
7345 static NeonGenTwoOpEnvFn * const fns[3][2] = {
7346 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
7347 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
7348 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
7350 genenvfn = fns[size][u];
7351 break;
7353 case 0x9: /* SQSHL, UQSHL */
7355 static NeonGenTwoOpEnvFn * const fns[3][2] = {
7356 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
7357 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
7358 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
7360 genenvfn = fns[size][u];
7361 break;
7363 case 0xb: /* SQRSHL, UQRSHL */
7365 static NeonGenTwoOpEnvFn * const fns[3][2] = {
7366 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
7367 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
7368 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
7370 genenvfn = fns[size][u];
7371 break;
7373 case 0x16: /* SQDMULH, SQRDMULH */
7375 static NeonGenTwoOpEnvFn * const fns[2][2] = {
7376 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
7377 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
7379 assert(size == 1 || size == 2);
7380 genenvfn = fns[size - 1][u];
7381 break;
7383 default:
7384 g_assert_not_reached();
7387 genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm);
7388 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32);
7389 tcg_temp_free_i32(tcg_rd32);
7390 tcg_temp_free_i32(tcg_rn);
7391 tcg_temp_free_i32(tcg_rm);
7394 write_fp_dreg(s, rd, tcg_rd);
7396 tcg_temp_free_i64(tcg_rd);
7399 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
7400 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
7401 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
7403 /* Handle 64->64 opcodes which are shared between the scalar and
7404 * vector 2-reg-misc groups. We cover every integer opcode where size == 3
7405 * is valid in either group and also the double-precision fp ops.
7406 * The caller only need provide tcg_rmode and tcg_fpstatus if the op
7407 * requires them.
7409 TCGCond cond;
7411 switch (opcode) {
7412 case 0x4: /* CLS, CLZ */
7413 if (u) {
7414 gen_helper_clz64(tcg_rd, tcg_rn);
7415 } else {
7416 gen_helper_cls64(tcg_rd, tcg_rn);
7418 break;
7419 case 0x5: /* NOT */
7420 /* This opcode is shared with CNT and RBIT but we have earlier
7421 * enforced that size == 3 if and only if this is the NOT insn.
7423 tcg_gen_not_i64(tcg_rd, tcg_rn);
7424 break;
7425 case 0x7: /* SQABS, SQNEG */
7426 if (u) {
7427 gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn);
7428 } else {
7429 gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn);
7431 break;
7432 case 0xa: /* CMLT */
7433 /* 64 bit integer comparison against zero, result is
7434 * test ? (2^64 - 1) : 0. We implement via setcond(!test) and
7435 * subtracting 1.
7437 cond = TCG_COND_LT;
7438 do_cmop:
7439 tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0);
7440 tcg_gen_neg_i64(tcg_rd, tcg_rd);
7441 break;
7442 case 0x8: /* CMGT, CMGE */
7443 cond = u ? TCG_COND_GE : TCG_COND_GT;
7444 goto do_cmop;
7445 case 0x9: /* CMEQ, CMLE */
7446 cond = u ? TCG_COND_LE : TCG_COND_EQ;
7447 goto do_cmop;
7448 case 0xb: /* ABS, NEG */
7449 if (u) {
7450 tcg_gen_neg_i64(tcg_rd, tcg_rn);
7451 } else {
7452 TCGv_i64 tcg_zero = tcg_const_i64(0);
7453 tcg_gen_neg_i64(tcg_rd, tcg_rn);
7454 tcg_gen_movcond_i64(TCG_COND_GT, tcg_rd, tcg_rn, tcg_zero,
7455 tcg_rn, tcg_rd);
7456 tcg_temp_free_i64(tcg_zero);
7458 break;
7459 case 0x2f: /* FABS */
7460 gen_helper_vfp_absd(tcg_rd, tcg_rn);
7461 break;
7462 case 0x6f: /* FNEG */
7463 gen_helper_vfp_negd(tcg_rd, tcg_rn);
7464 break;
7465 case 0x7f: /* FSQRT */
7466 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env);
7467 break;
7468 case 0x1a: /* FCVTNS */
7469 case 0x1b: /* FCVTMS */
7470 case 0x1c: /* FCVTAS */
7471 case 0x3a: /* FCVTPS */
7472 case 0x3b: /* FCVTZS */
7474 TCGv_i32 tcg_shift = tcg_const_i32(0);
7475 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
7476 tcg_temp_free_i32(tcg_shift);
7477 break;
7479 case 0x5a: /* FCVTNU */
7480 case 0x5b: /* FCVTMU */
7481 case 0x5c: /* FCVTAU */
7482 case 0x7a: /* FCVTPU */
7483 case 0x7b: /* FCVTZU */
7485 TCGv_i32 tcg_shift = tcg_const_i32(0);
7486 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
7487 tcg_temp_free_i32(tcg_shift);
7488 break;
7490 case 0x18: /* FRINTN */
7491 case 0x19: /* FRINTM */
7492 case 0x38: /* FRINTP */
7493 case 0x39: /* FRINTZ */
7494 case 0x58: /* FRINTA */
7495 case 0x79: /* FRINTI */
7496 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
7497 break;
7498 case 0x59: /* FRINTX */
7499 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
7500 break;
7501 default:
7502 g_assert_not_reached();
7506 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
7507 bool is_scalar, bool is_u, bool is_q,
7508 int size, int rn, int rd)
7510 bool is_double = (size == 3);
7511 TCGv_ptr fpst;
7513 if (!fp_access_check(s)) {
7514 return;
7517 fpst = get_fpstatus_ptr();
7519 if (is_double) {
7520 TCGv_i64 tcg_op = tcg_temp_new_i64();
7521 TCGv_i64 tcg_zero = tcg_const_i64(0);
7522 TCGv_i64 tcg_res = tcg_temp_new_i64();
7523 NeonGenTwoDoubleOPFn *genfn;
7524 bool swap = false;
7525 int pass;
7527 switch (opcode) {
7528 case 0x2e: /* FCMLT (zero) */
7529 swap = true;
7530 /* fallthrough */
7531 case 0x2c: /* FCMGT (zero) */
7532 genfn = gen_helper_neon_cgt_f64;
7533 break;
7534 case 0x2d: /* FCMEQ (zero) */
7535 genfn = gen_helper_neon_ceq_f64;
7536 break;
7537 case 0x6d: /* FCMLE (zero) */
7538 swap = true;
7539 /* fall through */
7540 case 0x6c: /* FCMGE (zero) */
7541 genfn = gen_helper_neon_cge_f64;
7542 break;
7543 default:
7544 g_assert_not_reached();
7547 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
7548 read_vec_element(s, tcg_op, rn, pass, MO_64);
7549 if (swap) {
7550 genfn(tcg_res, tcg_zero, tcg_op, fpst);
7551 } else {
7552 genfn(tcg_res, tcg_op, tcg_zero, fpst);
7554 write_vec_element(s, tcg_res, rd, pass, MO_64);
7556 if (is_scalar) {
7557 clear_vec_high(s, rd);
7560 tcg_temp_free_i64(tcg_res);
7561 tcg_temp_free_i64(tcg_zero);
7562 tcg_temp_free_i64(tcg_op);
7563 } else {
7564 TCGv_i32 tcg_op = tcg_temp_new_i32();
7565 TCGv_i32 tcg_zero = tcg_const_i32(0);
7566 TCGv_i32 tcg_res = tcg_temp_new_i32();
7567 NeonGenTwoSingleOPFn *genfn;
7568 bool swap = false;
7569 int pass, maxpasses;
7571 switch (opcode) {
7572 case 0x2e: /* FCMLT (zero) */
7573 swap = true;
7574 /* fall through */
7575 case 0x2c: /* FCMGT (zero) */
7576 genfn = gen_helper_neon_cgt_f32;
7577 break;
7578 case 0x2d: /* FCMEQ (zero) */
7579 genfn = gen_helper_neon_ceq_f32;
7580 break;
7581 case 0x6d: /* FCMLE (zero) */
7582 swap = true;
7583 /* fall through */
7584 case 0x6c: /* FCMGE (zero) */
7585 genfn = gen_helper_neon_cge_f32;
7586 break;
7587 default:
7588 g_assert_not_reached();
7591 if (is_scalar) {
7592 maxpasses = 1;
7593 } else {
7594 maxpasses = is_q ? 4 : 2;
7597 for (pass = 0; pass < maxpasses; pass++) {
7598 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
7599 if (swap) {
7600 genfn(tcg_res, tcg_zero, tcg_op, fpst);
7601 } else {
7602 genfn(tcg_res, tcg_op, tcg_zero, fpst);
7604 if (is_scalar) {
7605 write_fp_sreg(s, rd, tcg_res);
7606 } else {
7607 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
7610 tcg_temp_free_i32(tcg_res);
7611 tcg_temp_free_i32(tcg_zero);
7612 tcg_temp_free_i32(tcg_op);
7613 if (!is_q && !is_scalar) {
7614 clear_vec_high(s, rd);
7618 tcg_temp_free_ptr(fpst);
7621 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
7622 bool is_scalar, bool is_u, bool is_q,
7623 int size, int rn, int rd)
7625 bool is_double = (size == 3);
7626 TCGv_ptr fpst = get_fpstatus_ptr();
7628 if (is_double) {
7629 TCGv_i64 tcg_op = tcg_temp_new_i64();
7630 TCGv_i64 tcg_res = tcg_temp_new_i64();
7631 int pass;
7633 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
7634 read_vec_element(s, tcg_op, rn, pass, MO_64);
7635 switch (opcode) {
7636 case 0x3d: /* FRECPE */
7637 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
7638 break;
7639 case 0x3f: /* FRECPX */
7640 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
7641 break;
7642 case 0x7d: /* FRSQRTE */
7643 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
7644 break;
7645 default:
7646 g_assert_not_reached();
7648 write_vec_element(s, tcg_res, rd, pass, MO_64);
7650 if (is_scalar) {
7651 clear_vec_high(s, rd);
7654 tcg_temp_free_i64(tcg_res);
7655 tcg_temp_free_i64(tcg_op);
7656 } else {
7657 TCGv_i32 tcg_op = tcg_temp_new_i32();
7658 TCGv_i32 tcg_res = tcg_temp_new_i32();
7659 int pass, maxpasses;
7661 if (is_scalar) {
7662 maxpasses = 1;
7663 } else {
7664 maxpasses = is_q ? 4 : 2;
7667 for (pass = 0; pass < maxpasses; pass++) {
7668 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
7670 switch (opcode) {
7671 case 0x3c: /* URECPE */
7672 gen_helper_recpe_u32(tcg_res, tcg_op, fpst);
7673 break;
7674 case 0x3d: /* FRECPE */
7675 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
7676 break;
7677 case 0x3f: /* FRECPX */
7678 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
7679 break;
7680 case 0x7d: /* FRSQRTE */
7681 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
7682 break;
7683 default:
7684 g_assert_not_reached();
7687 if (is_scalar) {
7688 write_fp_sreg(s, rd, tcg_res);
7689 } else {
7690 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
7693 tcg_temp_free_i32(tcg_res);
7694 tcg_temp_free_i32(tcg_op);
7695 if (!is_q && !is_scalar) {
7696 clear_vec_high(s, rd);
7699 tcg_temp_free_ptr(fpst);
7702 static void handle_2misc_narrow(DisasContext *s, bool scalar,
7703 int opcode, bool u, bool is_q,
7704 int size, int rn, int rd)
7706 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
7707 * in the source becomes a size element in the destination).
7709 int pass;
7710 TCGv_i32 tcg_res[2];
7711 int destelt = is_q ? 2 : 0;
7712 int passes = scalar ? 1 : 2;
7714 if (scalar) {
7715 tcg_res[1] = tcg_const_i32(0);
7718 for (pass = 0; pass < passes; pass++) {
7719 TCGv_i64 tcg_op = tcg_temp_new_i64();
7720 NeonGenNarrowFn *genfn = NULL;
7721 NeonGenNarrowEnvFn *genenvfn = NULL;
7723 if (scalar) {
7724 read_vec_element(s, tcg_op, rn, pass, size + 1);
7725 } else {
7726 read_vec_element(s, tcg_op, rn, pass, MO_64);
7728 tcg_res[pass] = tcg_temp_new_i32();
7730 switch (opcode) {
7731 case 0x12: /* XTN, SQXTUN */
7733 static NeonGenNarrowFn * const xtnfns[3] = {
7734 gen_helper_neon_narrow_u8,
7735 gen_helper_neon_narrow_u16,
7736 tcg_gen_extrl_i64_i32,
7738 static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
7739 gen_helper_neon_unarrow_sat8,
7740 gen_helper_neon_unarrow_sat16,
7741 gen_helper_neon_unarrow_sat32,
7743 if (u) {
7744 genenvfn = sqxtunfns[size];
7745 } else {
7746 genfn = xtnfns[size];
7748 break;
7750 case 0x14: /* SQXTN, UQXTN */
7752 static NeonGenNarrowEnvFn * const fns[3][2] = {
7753 { gen_helper_neon_narrow_sat_s8,
7754 gen_helper_neon_narrow_sat_u8 },
7755 { gen_helper_neon_narrow_sat_s16,
7756 gen_helper_neon_narrow_sat_u16 },
7757 { gen_helper_neon_narrow_sat_s32,
7758 gen_helper_neon_narrow_sat_u32 },
7760 genenvfn = fns[size][u];
7761 break;
7763 case 0x16: /* FCVTN, FCVTN2 */
7764 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
7765 if (size == 2) {
7766 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env);
7767 } else {
7768 TCGv_i32 tcg_lo = tcg_temp_new_i32();
7769 TCGv_i32 tcg_hi = tcg_temp_new_i32();
7770 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
7771 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, cpu_env);
7772 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, cpu_env);
7773 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
7774 tcg_temp_free_i32(tcg_lo);
7775 tcg_temp_free_i32(tcg_hi);
7777 break;
7778 case 0x56: /* FCVTXN, FCVTXN2 */
7779 /* 64 bit to 32 bit float conversion
7780 * with von Neumann rounding (round to odd)
7782 assert(size == 2);
7783 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env);
7784 break;
7785 default:
7786 g_assert_not_reached();
7789 if (genfn) {
7790 genfn(tcg_res[pass], tcg_op);
7791 } else if (genenvfn) {
7792 genenvfn(tcg_res[pass], cpu_env, tcg_op);
7795 tcg_temp_free_i64(tcg_op);
7798 for (pass = 0; pass < 2; pass++) {
7799 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
7800 tcg_temp_free_i32(tcg_res[pass]);
7802 if (!is_q) {
7803 clear_vec_high(s, rd);
7807 /* Remaining saturating accumulating ops */
7808 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u,
7809 bool is_q, int size, int rn, int rd)
7811 bool is_double = (size == 3);
7813 if (is_double) {
7814 TCGv_i64 tcg_rn = tcg_temp_new_i64();
7815 TCGv_i64 tcg_rd = tcg_temp_new_i64();
7816 int pass;
7818 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
7819 read_vec_element(s, tcg_rn, rn, pass, MO_64);
7820 read_vec_element(s, tcg_rd, rd, pass, MO_64);
7822 if (is_u) { /* USQADD */
7823 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
7824 } else { /* SUQADD */
7825 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
7827 write_vec_element(s, tcg_rd, rd, pass, MO_64);
7829 if (is_scalar) {
7830 clear_vec_high(s, rd);
7833 tcg_temp_free_i64(tcg_rd);
7834 tcg_temp_free_i64(tcg_rn);
7835 } else {
7836 TCGv_i32 tcg_rn = tcg_temp_new_i32();
7837 TCGv_i32 tcg_rd = tcg_temp_new_i32();
7838 int pass, maxpasses;
7840 if (is_scalar) {
7841 maxpasses = 1;
7842 } else {
7843 maxpasses = is_q ? 4 : 2;
7846 for (pass = 0; pass < maxpasses; pass++) {
7847 if (is_scalar) {
7848 read_vec_element_i32(s, tcg_rn, rn, pass, size);
7849 read_vec_element_i32(s, tcg_rd, rd, pass, size);
7850 } else {
7851 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32);
7852 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
7855 if (is_u) { /* USQADD */
7856 switch (size) {
7857 case 0:
7858 gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
7859 break;
7860 case 1:
7861 gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
7862 break;
7863 case 2:
7864 gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
7865 break;
7866 default:
7867 g_assert_not_reached();
7869 } else { /* SUQADD */
7870 switch (size) {
7871 case 0:
7872 gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
7873 break;
7874 case 1:
7875 gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
7876 break;
7877 case 2:
7878 gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
7879 break;
7880 default:
7881 g_assert_not_reached();
7885 if (is_scalar) {
7886 TCGv_i64 tcg_zero = tcg_const_i64(0);
7887 write_vec_element(s, tcg_zero, rd, 0, MO_64);
7888 tcg_temp_free_i64(tcg_zero);
7890 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
7893 if (!is_q) {
7894 clear_vec_high(s, rd);
7897 tcg_temp_free_i32(tcg_rd);
7898 tcg_temp_free_i32(tcg_rn);
7902 /* C3.6.12 AdvSIMD scalar two reg misc
7903 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
7904 * +-----+---+-----------+------+-----------+--------+-----+------+------+
7905 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
7906 * +-----+---+-----------+------+-----------+--------+-----+------+------+
7908 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
7910 int rd = extract32(insn, 0, 5);
7911 int rn = extract32(insn, 5, 5);
7912 int opcode = extract32(insn, 12, 5);
7913 int size = extract32(insn, 22, 2);
7914 bool u = extract32(insn, 29, 1);
7915 bool is_fcvt = false;
7916 int rmode;
7917 TCGv_i32 tcg_rmode;
7918 TCGv_ptr tcg_fpstatus;
7920 switch (opcode) {
7921 case 0x3: /* USQADD / SUQADD*/
7922 if (!fp_access_check(s)) {
7923 return;
7925 handle_2misc_satacc(s, true, u, false, size, rn, rd);
7926 return;
7927 case 0x7: /* SQABS / SQNEG */
7928 break;
7929 case 0xa: /* CMLT */
7930 if (u) {
7931 unallocated_encoding(s);
7932 return;
7934 /* fall through */
7935 case 0x8: /* CMGT, CMGE */
7936 case 0x9: /* CMEQ, CMLE */
7937 case 0xb: /* ABS, NEG */
7938 if (size != 3) {
7939 unallocated_encoding(s);
7940 return;
7942 break;
7943 case 0x12: /* SQXTUN */
7944 if (!u) {
7945 unallocated_encoding(s);
7946 return;
7948 /* fall through */
7949 case 0x14: /* SQXTN, UQXTN */
7950 if (size == 3) {
7951 unallocated_encoding(s);
7952 return;
7954 if (!fp_access_check(s)) {
7955 return;
7957 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
7958 return;
7959 case 0xc ... 0xf:
7960 case 0x16 ... 0x1d:
7961 case 0x1f:
7962 /* Floating point: U, size[1] and opcode indicate operation;
7963 * size[0] indicates single or double precision.
7965 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
7966 size = extract32(size, 0, 1) ? 3 : 2;
7967 switch (opcode) {
7968 case 0x2c: /* FCMGT (zero) */
7969 case 0x2d: /* FCMEQ (zero) */
7970 case 0x2e: /* FCMLT (zero) */
7971 case 0x6c: /* FCMGE (zero) */
7972 case 0x6d: /* FCMLE (zero) */
7973 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
7974 return;
7975 case 0x1d: /* SCVTF */
7976 case 0x5d: /* UCVTF */
7978 bool is_signed = (opcode == 0x1d);
7979 if (!fp_access_check(s)) {
7980 return;
7982 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
7983 return;
7985 case 0x3d: /* FRECPE */
7986 case 0x3f: /* FRECPX */
7987 case 0x7d: /* FRSQRTE */
7988 if (!fp_access_check(s)) {
7989 return;
7991 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
7992 return;
7993 case 0x1a: /* FCVTNS */
7994 case 0x1b: /* FCVTMS */
7995 case 0x3a: /* FCVTPS */
7996 case 0x3b: /* FCVTZS */
7997 case 0x5a: /* FCVTNU */
7998 case 0x5b: /* FCVTMU */
7999 case 0x7a: /* FCVTPU */
8000 case 0x7b: /* FCVTZU */
8001 is_fcvt = true;
8002 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
8003 break;
8004 case 0x1c: /* FCVTAS */
8005 case 0x5c: /* FCVTAU */
8006 /* TIEAWAY doesn't fit in the usual rounding mode encoding */
8007 is_fcvt = true;
8008 rmode = FPROUNDING_TIEAWAY;
8009 break;
8010 case 0x56: /* FCVTXN, FCVTXN2 */
8011 if (size == 2) {
8012 unallocated_encoding(s);
8013 return;
8015 if (!fp_access_check(s)) {
8016 return;
8018 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
8019 return;
8020 default:
8021 unallocated_encoding(s);
8022 return;
8024 break;
8025 default:
8026 unallocated_encoding(s);
8027 return;
8030 if (!fp_access_check(s)) {
8031 return;
8034 if (is_fcvt) {
8035 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
8036 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
8037 tcg_fpstatus = get_fpstatus_ptr();
8038 } else {
8039 TCGV_UNUSED_I32(tcg_rmode);
8040 TCGV_UNUSED_PTR(tcg_fpstatus);
8043 if (size == 3) {
8044 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
8045 TCGv_i64 tcg_rd = tcg_temp_new_i64();
8047 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
8048 write_fp_dreg(s, rd, tcg_rd);
8049 tcg_temp_free_i64(tcg_rd);
8050 tcg_temp_free_i64(tcg_rn);
8051 } else {
8052 TCGv_i32 tcg_rn = tcg_temp_new_i32();
8053 TCGv_i32 tcg_rd = tcg_temp_new_i32();
8055 read_vec_element_i32(s, tcg_rn, rn, 0, size);
8057 switch (opcode) {
8058 case 0x7: /* SQABS, SQNEG */
8060 NeonGenOneOpEnvFn *genfn;
8061 static NeonGenOneOpEnvFn * const fns[3][2] = {
8062 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
8063 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
8064 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
8066 genfn = fns[size][u];
8067 genfn(tcg_rd, cpu_env, tcg_rn);
8068 break;
8070 case 0x1a: /* FCVTNS */
8071 case 0x1b: /* FCVTMS */
8072 case 0x1c: /* FCVTAS */
8073 case 0x3a: /* FCVTPS */
8074 case 0x3b: /* FCVTZS */
8076 TCGv_i32 tcg_shift = tcg_const_i32(0);
8077 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
8078 tcg_temp_free_i32(tcg_shift);
8079 break;
8081 case 0x5a: /* FCVTNU */
8082 case 0x5b: /* FCVTMU */
8083 case 0x5c: /* FCVTAU */
8084 case 0x7a: /* FCVTPU */
8085 case 0x7b: /* FCVTZU */
8087 TCGv_i32 tcg_shift = tcg_const_i32(0);
8088 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
8089 tcg_temp_free_i32(tcg_shift);
8090 break;
8092 default:
8093 g_assert_not_reached();
8096 write_fp_sreg(s, rd, tcg_rd);
8097 tcg_temp_free_i32(tcg_rd);
8098 tcg_temp_free_i32(tcg_rn);
8101 if (is_fcvt) {
8102 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
8103 tcg_temp_free_i32(tcg_rmode);
8104 tcg_temp_free_ptr(tcg_fpstatus);
8108 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
8109 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
8110 int immh, int immb, int opcode, int rn, int rd)
8112 int size = 32 - clz32(immh) - 1;
8113 int immhb = immh << 3 | immb;
8114 int shift = 2 * (8 << size) - immhb;
8115 bool accumulate = false;
8116 bool round = false;
8117 bool insert = false;
8118 int dsize = is_q ? 128 : 64;
8119 int esize = 8 << size;
8120 int elements = dsize/esize;
8121 TCGMemOp memop = size | (is_u ? 0 : MO_SIGN);
8122 TCGv_i64 tcg_rn = new_tmp_a64(s);
8123 TCGv_i64 tcg_rd = new_tmp_a64(s);
8124 TCGv_i64 tcg_round;
8125 int i;
8127 if (extract32(immh, 3, 1) && !is_q) {
8128 unallocated_encoding(s);
8129 return;
8132 if (size > 3 && !is_q) {
8133 unallocated_encoding(s);
8134 return;
8137 if (!fp_access_check(s)) {
8138 return;
8141 switch (opcode) {
8142 case 0x02: /* SSRA / USRA (accumulate) */
8143 accumulate = true;
8144 break;
8145 case 0x04: /* SRSHR / URSHR (rounding) */
8146 round = true;
8147 break;
8148 case 0x06: /* SRSRA / URSRA (accum + rounding) */
8149 accumulate = round = true;
8150 break;
8151 case 0x08: /* SRI */
8152 insert = true;
8153 break;
8156 if (round) {
8157 uint64_t round_const = 1ULL << (shift - 1);
8158 tcg_round = tcg_const_i64(round_const);
8159 } else {
8160 TCGV_UNUSED_I64(tcg_round);
8163 for (i = 0; i < elements; i++) {
8164 read_vec_element(s, tcg_rn, rn, i, memop);
8165 if (accumulate || insert) {
8166 read_vec_element(s, tcg_rd, rd, i, memop);
8169 if (insert) {
8170 handle_shri_with_ins(tcg_rd, tcg_rn, size, shift);
8171 } else {
8172 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8173 accumulate, is_u, size, shift);
8176 write_vec_element(s, tcg_rd, rd, i, size);
8179 if (!is_q) {
8180 clear_vec_high(s, rd);
8183 if (round) {
8184 tcg_temp_free_i64(tcg_round);
8188 /* SHL/SLI - Vector shift left */
8189 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
8190 int immh, int immb, int opcode, int rn, int rd)
8192 int size = 32 - clz32(immh) - 1;
8193 int immhb = immh << 3 | immb;
8194 int shift = immhb - (8 << size);
8195 int dsize = is_q ? 128 : 64;
8196 int esize = 8 << size;
8197 int elements = dsize/esize;
8198 TCGv_i64 tcg_rn = new_tmp_a64(s);
8199 TCGv_i64 tcg_rd = new_tmp_a64(s);
8200 int i;
8202 if (extract32(immh, 3, 1) && !is_q) {
8203 unallocated_encoding(s);
8204 return;
8207 if (size > 3 && !is_q) {
8208 unallocated_encoding(s);
8209 return;
8212 if (!fp_access_check(s)) {
8213 return;
8216 for (i = 0; i < elements; i++) {
8217 read_vec_element(s, tcg_rn, rn, i, size);
8218 if (insert) {
8219 read_vec_element(s, tcg_rd, rd, i, size);
8222 handle_shli_with_ins(tcg_rd, tcg_rn, insert, shift);
8224 write_vec_element(s, tcg_rd, rd, i, size);
8227 if (!is_q) {
8228 clear_vec_high(s, rd);
8232 /* USHLL/SHLL - Vector shift left with widening */
8233 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
8234 int immh, int immb, int opcode, int rn, int rd)
8236 int size = 32 - clz32(immh) - 1;
8237 int immhb = immh << 3 | immb;
8238 int shift = immhb - (8 << size);
8239 int dsize = 64;
8240 int esize = 8 << size;
8241 int elements = dsize/esize;
8242 TCGv_i64 tcg_rn = new_tmp_a64(s);
8243 TCGv_i64 tcg_rd = new_tmp_a64(s);
8244 int i;
8246 if (size >= 3) {
8247 unallocated_encoding(s);
8248 return;
8251 if (!fp_access_check(s)) {
8252 return;
8255 /* For the LL variants the store is larger than the load,
8256 * so if rd == rn we would overwrite parts of our input.
8257 * So load everything right now and use shifts in the main loop.
8259 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
8261 for (i = 0; i < elements; i++) {
8262 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
8263 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
8264 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
8265 write_vec_element(s, tcg_rd, rd, i, size + 1);
8269 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
8270 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
8271 int immh, int immb, int opcode, int rn, int rd)
8273 int immhb = immh << 3 | immb;
8274 int size = 32 - clz32(immh) - 1;
8275 int dsize = 64;
8276 int esize = 8 << size;
8277 int elements = dsize/esize;
8278 int shift = (2 * esize) - immhb;
8279 bool round = extract32(opcode, 0, 1);
8280 TCGv_i64 tcg_rn, tcg_rd, tcg_final;
8281 TCGv_i64 tcg_round;
8282 int i;
8284 if (extract32(immh, 3, 1)) {
8285 unallocated_encoding(s);
8286 return;
8289 if (!fp_access_check(s)) {
8290 return;
8293 tcg_rn = tcg_temp_new_i64();
8294 tcg_rd = tcg_temp_new_i64();
8295 tcg_final = tcg_temp_new_i64();
8296 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
8298 if (round) {
8299 uint64_t round_const = 1ULL << (shift - 1);
8300 tcg_round = tcg_const_i64(round_const);
8301 } else {
8302 TCGV_UNUSED_I64(tcg_round);
8305 for (i = 0; i < elements; i++) {
8306 read_vec_element(s, tcg_rn, rn, i, size+1);
8307 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8308 false, true, size+1, shift);
8310 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
8313 if (!is_q) {
8314 clear_vec_high(s, rd);
8315 write_vec_element(s, tcg_final, rd, 0, MO_64);
8316 } else {
8317 write_vec_element(s, tcg_final, rd, 1, MO_64);
8320 if (round) {
8321 tcg_temp_free_i64(tcg_round);
8323 tcg_temp_free_i64(tcg_rn);
8324 tcg_temp_free_i64(tcg_rd);
8325 tcg_temp_free_i64(tcg_final);
8326 return;
8330 /* C3.6.14 AdvSIMD shift by immediate
8331 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
8332 * +---+---+---+-------------+------+------+--------+---+------+------+
8333 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
8334 * +---+---+---+-------------+------+------+--------+---+------+------+
8336 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
8338 int rd = extract32(insn, 0, 5);
8339 int rn = extract32(insn, 5, 5);
8340 int opcode = extract32(insn, 11, 5);
8341 int immb = extract32(insn, 16, 3);
8342 int immh = extract32(insn, 19, 4);
8343 bool is_u = extract32(insn, 29, 1);
8344 bool is_q = extract32(insn, 30, 1);
8346 switch (opcode) {
8347 case 0x08: /* SRI */
8348 if (!is_u) {
8349 unallocated_encoding(s);
8350 return;
8352 /* fall through */
8353 case 0x00: /* SSHR / USHR */
8354 case 0x02: /* SSRA / USRA (accumulate) */
8355 case 0x04: /* SRSHR / URSHR (rounding) */
8356 case 0x06: /* SRSRA / URSRA (accum + rounding) */
8357 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
8358 break;
8359 case 0x0a: /* SHL / SLI */
8360 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
8361 break;
8362 case 0x10: /* SHRN */
8363 case 0x11: /* RSHRN / SQRSHRUN */
8364 if (is_u) {
8365 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
8366 opcode, rn, rd);
8367 } else {
8368 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
8370 break;
8371 case 0x12: /* SQSHRN / UQSHRN */
8372 case 0x13: /* SQRSHRN / UQRSHRN */
8373 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
8374 opcode, rn, rd);
8375 break;
8376 case 0x14: /* SSHLL / USHLL */
8377 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
8378 break;
8379 case 0x1c: /* SCVTF / UCVTF */
8380 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
8381 opcode, rn, rd);
8382 break;
8383 case 0xc: /* SQSHLU */
8384 if (!is_u) {
8385 unallocated_encoding(s);
8386 return;
8388 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
8389 break;
8390 case 0xe: /* SQSHL, UQSHL */
8391 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
8392 break;
8393 case 0x1f: /* FCVTZS/ FCVTZU */
8394 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
8395 return;
8396 default:
8397 unallocated_encoding(s);
8398 return;
8402 /* Generate code to do a "long" addition or subtraction, ie one done in
8403 * TCGv_i64 on vector lanes twice the width specified by size.
8405 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
8406 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
8408 static NeonGenTwo64OpFn * const fns[3][2] = {
8409 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
8410 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
8411 { tcg_gen_add_i64, tcg_gen_sub_i64 },
8413 NeonGenTwo64OpFn *genfn;
8414 assert(size < 3);
8416 genfn = fns[size][is_sub];
8417 genfn(tcg_res, tcg_op1, tcg_op2);
8420 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
8421 int opcode, int rd, int rn, int rm)
8423 /* 3-reg-different widening insns: 64 x 64 -> 128 */
8424 TCGv_i64 tcg_res[2];
8425 int pass, accop;
8427 tcg_res[0] = tcg_temp_new_i64();
8428 tcg_res[1] = tcg_temp_new_i64();
8430 /* Does this op do an adding accumulate, a subtracting accumulate,
8431 * or no accumulate at all?
8433 switch (opcode) {
8434 case 5:
8435 case 8:
8436 case 9:
8437 accop = 1;
8438 break;
8439 case 10:
8440 case 11:
8441 accop = -1;
8442 break;
8443 default:
8444 accop = 0;
8445 break;
8448 if (accop != 0) {
8449 read_vec_element(s, tcg_res[0], rd, 0, MO_64);
8450 read_vec_element(s, tcg_res[1], rd, 1, MO_64);
8453 /* size == 2 means two 32x32->64 operations; this is worth special
8454 * casing because we can generally handle it inline.
8456 if (size == 2) {
8457 for (pass = 0; pass < 2; pass++) {
8458 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8459 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8460 TCGv_i64 tcg_passres;
8461 TCGMemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
8463 int elt = pass + is_q * 2;
8465 read_vec_element(s, tcg_op1, rn, elt, memop);
8466 read_vec_element(s, tcg_op2, rm, elt, memop);
8468 if (accop == 0) {
8469 tcg_passres = tcg_res[pass];
8470 } else {
8471 tcg_passres = tcg_temp_new_i64();
8474 switch (opcode) {
8475 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
8476 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
8477 break;
8478 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
8479 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
8480 break;
8481 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
8482 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
8484 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
8485 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
8487 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
8488 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
8489 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
8490 tcg_passres,
8491 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
8492 tcg_temp_free_i64(tcg_tmp1);
8493 tcg_temp_free_i64(tcg_tmp2);
8494 break;
8496 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
8497 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
8498 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
8499 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
8500 break;
8501 case 9: /* SQDMLAL, SQDMLAL2 */
8502 case 11: /* SQDMLSL, SQDMLSL2 */
8503 case 13: /* SQDMULL, SQDMULL2 */
8504 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
8505 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
8506 tcg_passres, tcg_passres);
8507 break;
8508 default:
8509 g_assert_not_reached();
8512 if (opcode == 9 || opcode == 11) {
8513 /* saturating accumulate ops */
8514 if (accop < 0) {
8515 tcg_gen_neg_i64(tcg_passres, tcg_passres);
8517 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
8518 tcg_res[pass], tcg_passres);
8519 } else if (accop > 0) {
8520 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
8521 } else if (accop < 0) {
8522 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
8525 if (accop != 0) {
8526 tcg_temp_free_i64(tcg_passres);
8529 tcg_temp_free_i64(tcg_op1);
8530 tcg_temp_free_i64(tcg_op2);
8532 } else {
8533 /* size 0 or 1, generally helper functions */
8534 for (pass = 0; pass < 2; pass++) {
8535 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
8536 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
8537 TCGv_i64 tcg_passres;
8538 int elt = pass + is_q * 2;
8540 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
8541 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
8543 if (accop == 0) {
8544 tcg_passres = tcg_res[pass];
8545 } else {
8546 tcg_passres = tcg_temp_new_i64();
8549 switch (opcode) {
8550 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
8551 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
8553 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
8554 static NeonGenWidenFn * const widenfns[2][2] = {
8555 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
8556 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
8558 NeonGenWidenFn *widenfn = widenfns[size][is_u];
8560 widenfn(tcg_op2_64, tcg_op2);
8561 widenfn(tcg_passres, tcg_op1);
8562 gen_neon_addl(size, (opcode == 2), tcg_passres,
8563 tcg_passres, tcg_op2_64);
8564 tcg_temp_free_i64(tcg_op2_64);
8565 break;
8567 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
8568 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
8569 if (size == 0) {
8570 if (is_u) {
8571 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
8572 } else {
8573 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
8575 } else {
8576 if (is_u) {
8577 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
8578 } else {
8579 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
8582 break;
8583 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
8584 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
8585 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
8586 if (size == 0) {
8587 if (is_u) {
8588 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
8589 } else {
8590 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
8592 } else {
8593 if (is_u) {
8594 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
8595 } else {
8596 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
8599 break;
8600 case 9: /* SQDMLAL, SQDMLAL2 */
8601 case 11: /* SQDMLSL, SQDMLSL2 */
8602 case 13: /* SQDMULL, SQDMULL2 */
8603 assert(size == 1);
8604 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
8605 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
8606 tcg_passres, tcg_passres);
8607 break;
8608 case 14: /* PMULL */
8609 assert(size == 0);
8610 gen_helper_neon_mull_p8(tcg_passres, tcg_op1, tcg_op2);
8611 break;
8612 default:
8613 g_assert_not_reached();
8615 tcg_temp_free_i32(tcg_op1);
8616 tcg_temp_free_i32(tcg_op2);
8618 if (accop != 0) {
8619 if (opcode == 9 || opcode == 11) {
8620 /* saturating accumulate ops */
8621 if (accop < 0) {
8622 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
8624 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
8625 tcg_res[pass],
8626 tcg_passres);
8627 } else {
8628 gen_neon_addl(size, (accop < 0), tcg_res[pass],
8629 tcg_res[pass], tcg_passres);
8631 tcg_temp_free_i64(tcg_passres);
8636 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
8637 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
8638 tcg_temp_free_i64(tcg_res[0]);
8639 tcg_temp_free_i64(tcg_res[1]);
8642 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
8643 int opcode, int rd, int rn, int rm)
8645 TCGv_i64 tcg_res[2];
8646 int part = is_q ? 2 : 0;
8647 int pass;
8649 for (pass = 0; pass < 2; pass++) {
8650 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8651 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
8652 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
8653 static NeonGenWidenFn * const widenfns[3][2] = {
8654 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
8655 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
8656 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
8658 NeonGenWidenFn *widenfn = widenfns[size][is_u];
8660 read_vec_element(s, tcg_op1, rn, pass, MO_64);
8661 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
8662 widenfn(tcg_op2_wide, tcg_op2);
8663 tcg_temp_free_i32(tcg_op2);
8664 tcg_res[pass] = tcg_temp_new_i64();
8665 gen_neon_addl(size, (opcode == 3),
8666 tcg_res[pass], tcg_op1, tcg_op2_wide);
8667 tcg_temp_free_i64(tcg_op1);
8668 tcg_temp_free_i64(tcg_op2_wide);
8671 for (pass = 0; pass < 2; pass++) {
8672 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
8673 tcg_temp_free_i64(tcg_res[pass]);
8677 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
8679 tcg_gen_addi_i64(in, in, 1U << 31);
8680 tcg_gen_extrh_i64_i32(res, in);
8683 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
8684 int opcode, int rd, int rn, int rm)
8686 TCGv_i32 tcg_res[2];
8687 int part = is_q ? 2 : 0;
8688 int pass;
8690 for (pass = 0; pass < 2; pass++) {
8691 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8692 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8693 TCGv_i64 tcg_wideres = tcg_temp_new_i64();
8694 static NeonGenNarrowFn * const narrowfns[3][2] = {
8695 { gen_helper_neon_narrow_high_u8,
8696 gen_helper_neon_narrow_round_high_u8 },
8697 { gen_helper_neon_narrow_high_u16,
8698 gen_helper_neon_narrow_round_high_u16 },
8699 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
8701 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
8703 read_vec_element(s, tcg_op1, rn, pass, MO_64);
8704 read_vec_element(s, tcg_op2, rm, pass, MO_64);
8706 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
8708 tcg_temp_free_i64(tcg_op1);
8709 tcg_temp_free_i64(tcg_op2);
8711 tcg_res[pass] = tcg_temp_new_i32();
8712 gennarrow(tcg_res[pass], tcg_wideres);
8713 tcg_temp_free_i64(tcg_wideres);
8716 for (pass = 0; pass < 2; pass++) {
8717 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
8718 tcg_temp_free_i32(tcg_res[pass]);
8720 if (!is_q) {
8721 clear_vec_high(s, rd);
8725 static void handle_pmull_64(DisasContext *s, int is_q, int rd, int rn, int rm)
8727 /* PMULL of 64 x 64 -> 128 is an odd special case because it
8728 * is the only three-reg-diff instruction which produces a
8729 * 128-bit wide result from a single operation. However since
8730 * it's possible to calculate the two halves more or less
8731 * separately we just use two helper calls.
8733 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8734 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8735 TCGv_i64 tcg_res = tcg_temp_new_i64();
8737 read_vec_element(s, tcg_op1, rn, is_q, MO_64);
8738 read_vec_element(s, tcg_op2, rm, is_q, MO_64);
8739 gen_helper_neon_pmull_64_lo(tcg_res, tcg_op1, tcg_op2);
8740 write_vec_element(s, tcg_res, rd, 0, MO_64);
8741 gen_helper_neon_pmull_64_hi(tcg_res, tcg_op1, tcg_op2);
8742 write_vec_element(s, tcg_res, rd, 1, MO_64);
8744 tcg_temp_free_i64(tcg_op1);
8745 tcg_temp_free_i64(tcg_op2);
8746 tcg_temp_free_i64(tcg_res);
8749 /* C3.6.15 AdvSIMD three different
8750 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
8751 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
8752 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
8753 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
8755 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
8757 /* Instructions in this group fall into three basic classes
8758 * (in each case with the operation working on each element in
8759 * the input vectors):
8760 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
8761 * 128 bit input)
8762 * (2) wide 64 x 128 -> 128
8763 * (3) narrowing 128 x 128 -> 64
8764 * Here we do initial decode, catch unallocated cases and
8765 * dispatch to separate functions for each class.
8767 int is_q = extract32(insn, 30, 1);
8768 int is_u = extract32(insn, 29, 1);
8769 int size = extract32(insn, 22, 2);
8770 int opcode = extract32(insn, 12, 4);
8771 int rm = extract32(insn, 16, 5);
8772 int rn = extract32(insn, 5, 5);
8773 int rd = extract32(insn, 0, 5);
8775 switch (opcode) {
8776 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
8777 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
8778 /* 64 x 128 -> 128 */
8779 if (size == 3) {
8780 unallocated_encoding(s);
8781 return;
8783 if (!fp_access_check(s)) {
8784 return;
8786 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
8787 break;
8788 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
8789 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
8790 /* 128 x 128 -> 64 */
8791 if (size == 3) {
8792 unallocated_encoding(s);
8793 return;
8795 if (!fp_access_check(s)) {
8796 return;
8798 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
8799 break;
8800 case 14: /* PMULL, PMULL2 */
8801 if (is_u || size == 1 || size == 2) {
8802 unallocated_encoding(s);
8803 return;
8805 if (size == 3) {
8806 if (!arm_dc_feature(s, ARM_FEATURE_V8_PMULL)) {
8807 unallocated_encoding(s);
8808 return;
8810 if (!fp_access_check(s)) {
8811 return;
8813 handle_pmull_64(s, is_q, rd, rn, rm);
8814 return;
8816 goto is_widening;
8817 case 9: /* SQDMLAL, SQDMLAL2 */
8818 case 11: /* SQDMLSL, SQDMLSL2 */
8819 case 13: /* SQDMULL, SQDMULL2 */
8820 if (is_u || size == 0) {
8821 unallocated_encoding(s);
8822 return;
8824 /* fall through */
8825 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
8826 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
8827 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
8828 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
8829 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
8830 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
8831 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
8832 /* 64 x 64 -> 128 */
8833 if (size == 3) {
8834 unallocated_encoding(s);
8835 return;
8837 is_widening:
8838 if (!fp_access_check(s)) {
8839 return;
8842 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
8843 break;
8844 default:
8845 /* opcode 15 not allocated */
8846 unallocated_encoding(s);
8847 break;
8851 /* Logic op (opcode == 3) subgroup of C3.6.16. */
8852 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn)
8854 int rd = extract32(insn, 0, 5);
8855 int rn = extract32(insn, 5, 5);
8856 int rm = extract32(insn, 16, 5);
8857 int size = extract32(insn, 22, 2);
8858 bool is_u = extract32(insn, 29, 1);
8859 bool is_q = extract32(insn, 30, 1);
8860 TCGv_i64 tcg_op1, tcg_op2, tcg_res[2];
8861 int pass;
8863 if (!fp_access_check(s)) {
8864 return;
8867 tcg_op1 = tcg_temp_new_i64();
8868 tcg_op2 = tcg_temp_new_i64();
8869 tcg_res[0] = tcg_temp_new_i64();
8870 tcg_res[1] = tcg_temp_new_i64();
8872 for (pass = 0; pass < (is_q ? 2 : 1); pass++) {
8873 read_vec_element(s, tcg_op1, rn, pass, MO_64);
8874 read_vec_element(s, tcg_op2, rm, pass, MO_64);
8876 if (!is_u) {
8877 switch (size) {
8878 case 0: /* AND */
8879 tcg_gen_and_i64(tcg_res[pass], tcg_op1, tcg_op2);
8880 break;
8881 case 1: /* BIC */
8882 tcg_gen_andc_i64(tcg_res[pass], tcg_op1, tcg_op2);
8883 break;
8884 case 2: /* ORR */
8885 tcg_gen_or_i64(tcg_res[pass], tcg_op1, tcg_op2);
8886 break;
8887 case 3: /* ORN */
8888 tcg_gen_orc_i64(tcg_res[pass], tcg_op1, tcg_op2);
8889 break;
8891 } else {
8892 if (size != 0) {
8893 /* B* ops need res loaded to operate on */
8894 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
8897 switch (size) {
8898 case 0: /* EOR */
8899 tcg_gen_xor_i64(tcg_res[pass], tcg_op1, tcg_op2);
8900 break;
8901 case 1: /* BSL bitwise select */
8902 tcg_gen_xor_i64(tcg_op1, tcg_op1, tcg_op2);
8903 tcg_gen_and_i64(tcg_op1, tcg_op1, tcg_res[pass]);
8904 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op1);
8905 break;
8906 case 2: /* BIT, bitwise insert if true */
8907 tcg_gen_xor_i64(tcg_op1, tcg_op1, tcg_res[pass]);
8908 tcg_gen_and_i64(tcg_op1, tcg_op1, tcg_op2);
8909 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
8910 break;
8911 case 3: /* BIF, bitwise insert if false */
8912 tcg_gen_xor_i64(tcg_op1, tcg_op1, tcg_res[pass]);
8913 tcg_gen_andc_i64(tcg_op1, tcg_op1, tcg_op2);
8914 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
8915 break;
8920 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
8921 if (!is_q) {
8922 tcg_gen_movi_i64(tcg_res[1], 0);
8924 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
8926 tcg_temp_free_i64(tcg_op1);
8927 tcg_temp_free_i64(tcg_op2);
8928 tcg_temp_free_i64(tcg_res[0]);
8929 tcg_temp_free_i64(tcg_res[1]);
8932 /* Helper functions for 32 bit comparisons */
8933 static void gen_max_s32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
8935 tcg_gen_movcond_i32(TCG_COND_GE, res, op1, op2, op1, op2);
8938 static void gen_max_u32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
8940 tcg_gen_movcond_i32(TCG_COND_GEU, res, op1, op2, op1, op2);
8943 static void gen_min_s32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
8945 tcg_gen_movcond_i32(TCG_COND_LE, res, op1, op2, op1, op2);
8948 static void gen_min_u32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
8950 tcg_gen_movcond_i32(TCG_COND_LEU, res, op1, op2, op1, op2);
8953 /* Pairwise op subgroup of C3.6.16.
8955 * This is called directly or via the handle_3same_float for float pairwise
8956 * operations where the opcode and size are calculated differently.
8958 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode,
8959 int size, int rn, int rm, int rd)
8961 TCGv_ptr fpst;
8962 int pass;
8964 /* Floating point operations need fpst */
8965 if (opcode >= 0x58) {
8966 fpst = get_fpstatus_ptr();
8967 } else {
8968 TCGV_UNUSED_PTR(fpst);
8971 if (!fp_access_check(s)) {
8972 return;
8975 /* These operations work on the concatenated rm:rn, with each pair of
8976 * adjacent elements being operated on to produce an element in the result.
8978 if (size == 3) {
8979 TCGv_i64 tcg_res[2];
8981 for (pass = 0; pass < 2; pass++) {
8982 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8983 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8984 int passreg = (pass == 0) ? rn : rm;
8986 read_vec_element(s, tcg_op1, passreg, 0, MO_64);
8987 read_vec_element(s, tcg_op2, passreg, 1, MO_64);
8988 tcg_res[pass] = tcg_temp_new_i64();
8990 switch (opcode) {
8991 case 0x17: /* ADDP */
8992 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
8993 break;
8994 case 0x58: /* FMAXNMP */
8995 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
8996 break;
8997 case 0x5a: /* FADDP */
8998 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
8999 break;
9000 case 0x5e: /* FMAXP */
9001 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9002 break;
9003 case 0x78: /* FMINNMP */
9004 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9005 break;
9006 case 0x7e: /* FMINP */
9007 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9008 break;
9009 default:
9010 g_assert_not_reached();
9013 tcg_temp_free_i64(tcg_op1);
9014 tcg_temp_free_i64(tcg_op2);
9017 for (pass = 0; pass < 2; pass++) {
9018 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
9019 tcg_temp_free_i64(tcg_res[pass]);
9021 } else {
9022 int maxpass = is_q ? 4 : 2;
9023 TCGv_i32 tcg_res[4];
9025 for (pass = 0; pass < maxpass; pass++) {
9026 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
9027 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
9028 NeonGenTwoOpFn *genfn = NULL;
9029 int passreg = pass < (maxpass / 2) ? rn : rm;
9030 int passelt = (is_q && (pass & 1)) ? 2 : 0;
9032 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32);
9033 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32);
9034 tcg_res[pass] = tcg_temp_new_i32();
9036 switch (opcode) {
9037 case 0x17: /* ADDP */
9039 static NeonGenTwoOpFn * const fns[3] = {
9040 gen_helper_neon_padd_u8,
9041 gen_helper_neon_padd_u16,
9042 tcg_gen_add_i32,
9044 genfn = fns[size];
9045 break;
9047 case 0x14: /* SMAXP, UMAXP */
9049 static NeonGenTwoOpFn * const fns[3][2] = {
9050 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 },
9051 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 },
9052 { gen_max_s32, gen_max_u32 },
9054 genfn = fns[size][u];
9055 break;
9057 case 0x15: /* SMINP, UMINP */
9059 static NeonGenTwoOpFn * const fns[3][2] = {
9060 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 },
9061 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 },
9062 { gen_min_s32, gen_min_u32 },
9064 genfn = fns[size][u];
9065 break;
9067 /* The FP operations are all on single floats (32 bit) */
9068 case 0x58: /* FMAXNMP */
9069 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9070 break;
9071 case 0x5a: /* FADDP */
9072 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9073 break;
9074 case 0x5e: /* FMAXP */
9075 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9076 break;
9077 case 0x78: /* FMINNMP */
9078 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9079 break;
9080 case 0x7e: /* FMINP */
9081 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9082 break;
9083 default:
9084 g_assert_not_reached();
9087 /* FP ops called directly, otherwise call now */
9088 if (genfn) {
9089 genfn(tcg_res[pass], tcg_op1, tcg_op2);
9092 tcg_temp_free_i32(tcg_op1);
9093 tcg_temp_free_i32(tcg_op2);
9096 for (pass = 0; pass < maxpass; pass++) {
9097 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
9098 tcg_temp_free_i32(tcg_res[pass]);
9100 if (!is_q) {
9101 clear_vec_high(s, rd);
9105 if (!TCGV_IS_UNUSED_PTR(fpst)) {
9106 tcg_temp_free_ptr(fpst);
9110 /* Floating point op subgroup of C3.6.16. */
9111 static void disas_simd_3same_float(DisasContext *s, uint32_t insn)
9113 /* For floating point ops, the U, size[1] and opcode bits
9114 * together indicate the operation. size[0] indicates single
9115 * or double.
9117 int fpopcode = extract32(insn, 11, 5)
9118 | (extract32(insn, 23, 1) << 5)
9119 | (extract32(insn, 29, 1) << 6);
9120 int is_q = extract32(insn, 30, 1);
9121 int size = extract32(insn, 22, 1);
9122 int rm = extract32(insn, 16, 5);
9123 int rn = extract32(insn, 5, 5);
9124 int rd = extract32(insn, 0, 5);
9126 int datasize = is_q ? 128 : 64;
9127 int esize = 32 << size;
9128 int elements = datasize / esize;
9130 if (size == 1 && !is_q) {
9131 unallocated_encoding(s);
9132 return;
9135 switch (fpopcode) {
9136 case 0x58: /* FMAXNMP */
9137 case 0x5a: /* FADDP */
9138 case 0x5e: /* FMAXP */
9139 case 0x78: /* FMINNMP */
9140 case 0x7e: /* FMINP */
9141 if (size && !is_q) {
9142 unallocated_encoding(s);
9143 return;
9145 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32,
9146 rn, rm, rd);
9147 return;
9148 case 0x1b: /* FMULX */
9149 case 0x1f: /* FRECPS */
9150 case 0x3f: /* FRSQRTS */
9151 case 0x5d: /* FACGE */
9152 case 0x7d: /* FACGT */
9153 case 0x19: /* FMLA */
9154 case 0x39: /* FMLS */
9155 case 0x18: /* FMAXNM */
9156 case 0x1a: /* FADD */
9157 case 0x1c: /* FCMEQ */
9158 case 0x1e: /* FMAX */
9159 case 0x38: /* FMINNM */
9160 case 0x3a: /* FSUB */
9161 case 0x3e: /* FMIN */
9162 case 0x5b: /* FMUL */
9163 case 0x5c: /* FCMGE */
9164 case 0x5f: /* FDIV */
9165 case 0x7a: /* FABD */
9166 case 0x7c: /* FCMGT */
9167 if (!fp_access_check(s)) {
9168 return;
9171 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm);
9172 return;
9173 default:
9174 unallocated_encoding(s);
9175 return;
9179 /* Integer op subgroup of C3.6.16. */
9180 static void disas_simd_3same_int(DisasContext *s, uint32_t insn)
9182 int is_q = extract32(insn, 30, 1);
9183 int u = extract32(insn, 29, 1);
9184 int size = extract32(insn, 22, 2);
9185 int opcode = extract32(insn, 11, 5);
9186 int rm = extract32(insn, 16, 5);
9187 int rn = extract32(insn, 5, 5);
9188 int rd = extract32(insn, 0, 5);
9189 int pass;
9191 switch (opcode) {
9192 case 0x13: /* MUL, PMUL */
9193 if (u && size != 0) {
9194 unallocated_encoding(s);
9195 return;
9197 /* fall through */
9198 case 0x0: /* SHADD, UHADD */
9199 case 0x2: /* SRHADD, URHADD */
9200 case 0x4: /* SHSUB, UHSUB */
9201 case 0xc: /* SMAX, UMAX */
9202 case 0xd: /* SMIN, UMIN */
9203 case 0xe: /* SABD, UABD */
9204 case 0xf: /* SABA, UABA */
9205 case 0x12: /* MLA, MLS */
9206 if (size == 3) {
9207 unallocated_encoding(s);
9208 return;
9210 break;
9211 case 0x16: /* SQDMULH, SQRDMULH */
9212 if (size == 0 || size == 3) {
9213 unallocated_encoding(s);
9214 return;
9216 break;
9217 default:
9218 if (size == 3 && !is_q) {
9219 unallocated_encoding(s);
9220 return;
9222 break;
9225 if (!fp_access_check(s)) {
9226 return;
9229 if (size == 3) {
9230 assert(is_q);
9231 for (pass = 0; pass < 2; pass++) {
9232 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9233 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9234 TCGv_i64 tcg_res = tcg_temp_new_i64();
9236 read_vec_element(s, tcg_op1, rn, pass, MO_64);
9237 read_vec_element(s, tcg_op2, rm, pass, MO_64);
9239 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2);
9241 write_vec_element(s, tcg_res, rd, pass, MO_64);
9243 tcg_temp_free_i64(tcg_res);
9244 tcg_temp_free_i64(tcg_op1);
9245 tcg_temp_free_i64(tcg_op2);
9247 } else {
9248 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
9249 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
9250 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
9251 TCGv_i32 tcg_res = tcg_temp_new_i32();
9252 NeonGenTwoOpFn *genfn = NULL;
9253 NeonGenTwoOpEnvFn *genenvfn = NULL;
9255 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
9256 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
9258 switch (opcode) {
9259 case 0x0: /* SHADD, UHADD */
9261 static NeonGenTwoOpFn * const fns[3][2] = {
9262 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 },
9263 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 },
9264 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 },
9266 genfn = fns[size][u];
9267 break;
9269 case 0x1: /* SQADD, UQADD */
9271 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9272 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
9273 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
9274 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
9276 genenvfn = fns[size][u];
9277 break;
9279 case 0x2: /* SRHADD, URHADD */
9281 static NeonGenTwoOpFn * const fns[3][2] = {
9282 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 },
9283 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 },
9284 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 },
9286 genfn = fns[size][u];
9287 break;
9289 case 0x4: /* SHSUB, UHSUB */
9291 static NeonGenTwoOpFn * const fns[3][2] = {
9292 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 },
9293 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 },
9294 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 },
9296 genfn = fns[size][u];
9297 break;
9299 case 0x5: /* SQSUB, UQSUB */
9301 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9302 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
9303 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
9304 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
9306 genenvfn = fns[size][u];
9307 break;
9309 case 0x6: /* CMGT, CMHI */
9311 static NeonGenTwoOpFn * const fns[3][2] = {
9312 { gen_helper_neon_cgt_s8, gen_helper_neon_cgt_u8 },
9313 { gen_helper_neon_cgt_s16, gen_helper_neon_cgt_u16 },
9314 { gen_helper_neon_cgt_s32, gen_helper_neon_cgt_u32 },
9316 genfn = fns[size][u];
9317 break;
9319 case 0x7: /* CMGE, CMHS */
9321 static NeonGenTwoOpFn * const fns[3][2] = {
9322 { gen_helper_neon_cge_s8, gen_helper_neon_cge_u8 },
9323 { gen_helper_neon_cge_s16, gen_helper_neon_cge_u16 },
9324 { gen_helper_neon_cge_s32, gen_helper_neon_cge_u32 },
9326 genfn = fns[size][u];
9327 break;
9329 case 0x8: /* SSHL, USHL */
9331 static NeonGenTwoOpFn * const fns[3][2] = {
9332 { gen_helper_neon_shl_s8, gen_helper_neon_shl_u8 },
9333 { gen_helper_neon_shl_s16, gen_helper_neon_shl_u16 },
9334 { gen_helper_neon_shl_s32, gen_helper_neon_shl_u32 },
9336 genfn = fns[size][u];
9337 break;
9339 case 0x9: /* SQSHL, UQSHL */
9341 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9342 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
9343 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
9344 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
9346 genenvfn = fns[size][u];
9347 break;
9349 case 0xa: /* SRSHL, URSHL */
9351 static NeonGenTwoOpFn * const fns[3][2] = {
9352 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 },
9353 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 },
9354 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 },
9356 genfn = fns[size][u];
9357 break;
9359 case 0xb: /* SQRSHL, UQRSHL */
9361 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9362 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
9363 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
9364 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
9366 genenvfn = fns[size][u];
9367 break;
9369 case 0xc: /* SMAX, UMAX */
9371 static NeonGenTwoOpFn * const fns[3][2] = {
9372 { gen_helper_neon_max_s8, gen_helper_neon_max_u8 },
9373 { gen_helper_neon_max_s16, gen_helper_neon_max_u16 },
9374 { gen_max_s32, gen_max_u32 },
9376 genfn = fns[size][u];
9377 break;
9380 case 0xd: /* SMIN, UMIN */
9382 static NeonGenTwoOpFn * const fns[3][2] = {
9383 { gen_helper_neon_min_s8, gen_helper_neon_min_u8 },
9384 { gen_helper_neon_min_s16, gen_helper_neon_min_u16 },
9385 { gen_min_s32, gen_min_u32 },
9387 genfn = fns[size][u];
9388 break;
9390 case 0xe: /* SABD, UABD */
9391 case 0xf: /* SABA, UABA */
9393 static NeonGenTwoOpFn * const fns[3][2] = {
9394 { gen_helper_neon_abd_s8, gen_helper_neon_abd_u8 },
9395 { gen_helper_neon_abd_s16, gen_helper_neon_abd_u16 },
9396 { gen_helper_neon_abd_s32, gen_helper_neon_abd_u32 },
9398 genfn = fns[size][u];
9399 break;
9401 case 0x10: /* ADD, SUB */
9403 static NeonGenTwoOpFn * const fns[3][2] = {
9404 { gen_helper_neon_add_u8, gen_helper_neon_sub_u8 },
9405 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
9406 { tcg_gen_add_i32, tcg_gen_sub_i32 },
9408 genfn = fns[size][u];
9409 break;
9411 case 0x11: /* CMTST, CMEQ */
9413 static NeonGenTwoOpFn * const fns[3][2] = {
9414 { gen_helper_neon_tst_u8, gen_helper_neon_ceq_u8 },
9415 { gen_helper_neon_tst_u16, gen_helper_neon_ceq_u16 },
9416 { gen_helper_neon_tst_u32, gen_helper_neon_ceq_u32 },
9418 genfn = fns[size][u];
9419 break;
9421 case 0x13: /* MUL, PMUL */
9422 if (u) {
9423 /* PMUL */
9424 assert(size == 0);
9425 genfn = gen_helper_neon_mul_p8;
9426 break;
9428 /* fall through : MUL */
9429 case 0x12: /* MLA, MLS */
9431 static NeonGenTwoOpFn * const fns[3] = {
9432 gen_helper_neon_mul_u8,
9433 gen_helper_neon_mul_u16,
9434 tcg_gen_mul_i32,
9436 genfn = fns[size];
9437 break;
9439 case 0x16: /* SQDMULH, SQRDMULH */
9441 static NeonGenTwoOpEnvFn * const fns[2][2] = {
9442 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
9443 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
9445 assert(size == 1 || size == 2);
9446 genenvfn = fns[size - 1][u];
9447 break;
9449 default:
9450 g_assert_not_reached();
9453 if (genenvfn) {
9454 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2);
9455 } else {
9456 genfn(tcg_res, tcg_op1, tcg_op2);
9459 if (opcode == 0xf || opcode == 0x12) {
9460 /* SABA, UABA, MLA, MLS: accumulating ops */
9461 static NeonGenTwoOpFn * const fns[3][2] = {
9462 { gen_helper_neon_add_u8, gen_helper_neon_sub_u8 },
9463 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
9464 { tcg_gen_add_i32, tcg_gen_sub_i32 },
9466 bool is_sub = (opcode == 0x12 && u); /* MLS */
9468 genfn = fns[size][is_sub];
9469 read_vec_element_i32(s, tcg_op1, rd, pass, MO_32);
9470 genfn(tcg_res, tcg_op1, tcg_res);
9473 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9475 tcg_temp_free_i32(tcg_res);
9476 tcg_temp_free_i32(tcg_op1);
9477 tcg_temp_free_i32(tcg_op2);
9481 if (!is_q) {
9482 clear_vec_high(s, rd);
9486 /* C3.6.16 AdvSIMD three same
9487 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
9488 * +---+---+---+-----------+------+---+------+--------+---+------+------+
9489 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
9490 * +---+---+---+-----------+------+---+------+--------+---+------+------+
9492 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn)
9494 int opcode = extract32(insn, 11, 5);
9496 switch (opcode) {
9497 case 0x3: /* logic ops */
9498 disas_simd_3same_logic(s, insn);
9499 break;
9500 case 0x17: /* ADDP */
9501 case 0x14: /* SMAXP, UMAXP */
9502 case 0x15: /* SMINP, UMINP */
9504 /* Pairwise operations */
9505 int is_q = extract32(insn, 30, 1);
9506 int u = extract32(insn, 29, 1);
9507 int size = extract32(insn, 22, 2);
9508 int rm = extract32(insn, 16, 5);
9509 int rn = extract32(insn, 5, 5);
9510 int rd = extract32(insn, 0, 5);
9511 if (opcode == 0x17) {
9512 if (u || (size == 3 && !is_q)) {
9513 unallocated_encoding(s);
9514 return;
9516 } else {
9517 if (size == 3) {
9518 unallocated_encoding(s);
9519 return;
9522 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd);
9523 break;
9525 case 0x18 ... 0x31:
9526 /* floating point ops, sz[1] and U are part of opcode */
9527 disas_simd_3same_float(s, insn);
9528 break;
9529 default:
9530 disas_simd_3same_int(s, insn);
9531 break;
9535 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
9536 int size, int rn, int rd)
9538 /* Handle 2-reg-misc ops which are widening (so each size element
9539 * in the source becomes a 2*size element in the destination.
9540 * The only instruction like this is FCVTL.
9542 int pass;
9544 if (size == 3) {
9545 /* 32 -> 64 bit fp conversion */
9546 TCGv_i64 tcg_res[2];
9547 int srcelt = is_q ? 2 : 0;
9549 for (pass = 0; pass < 2; pass++) {
9550 TCGv_i32 tcg_op = tcg_temp_new_i32();
9551 tcg_res[pass] = tcg_temp_new_i64();
9553 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
9554 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env);
9555 tcg_temp_free_i32(tcg_op);
9557 for (pass = 0; pass < 2; pass++) {
9558 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
9559 tcg_temp_free_i64(tcg_res[pass]);
9561 } else {
9562 /* 16 -> 32 bit fp conversion */
9563 int srcelt = is_q ? 4 : 0;
9564 TCGv_i32 tcg_res[4];
9566 for (pass = 0; pass < 4; pass++) {
9567 tcg_res[pass] = tcg_temp_new_i32();
9569 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
9570 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
9571 cpu_env);
9573 for (pass = 0; pass < 4; pass++) {
9574 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
9575 tcg_temp_free_i32(tcg_res[pass]);
9580 static void handle_rev(DisasContext *s, int opcode, bool u,
9581 bool is_q, int size, int rn, int rd)
9583 int op = (opcode << 1) | u;
9584 int opsz = op + size;
9585 int grp_size = 3 - opsz;
9586 int dsize = is_q ? 128 : 64;
9587 int i;
9589 if (opsz >= 3) {
9590 unallocated_encoding(s);
9591 return;
9594 if (!fp_access_check(s)) {
9595 return;
9598 if (size == 0) {
9599 /* Special case bytes, use bswap op on each group of elements */
9600 int groups = dsize / (8 << grp_size);
9602 for (i = 0; i < groups; i++) {
9603 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
9605 read_vec_element(s, tcg_tmp, rn, i, grp_size);
9606 switch (grp_size) {
9607 case MO_16:
9608 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp);
9609 break;
9610 case MO_32:
9611 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp);
9612 break;
9613 case MO_64:
9614 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
9615 break;
9616 default:
9617 g_assert_not_reached();
9619 write_vec_element(s, tcg_tmp, rd, i, grp_size);
9620 tcg_temp_free_i64(tcg_tmp);
9622 if (!is_q) {
9623 clear_vec_high(s, rd);
9625 } else {
9626 int revmask = (1 << grp_size) - 1;
9627 int esize = 8 << size;
9628 int elements = dsize / esize;
9629 TCGv_i64 tcg_rn = tcg_temp_new_i64();
9630 TCGv_i64 tcg_rd = tcg_const_i64(0);
9631 TCGv_i64 tcg_rd_hi = tcg_const_i64(0);
9633 for (i = 0; i < elements; i++) {
9634 int e_rev = (i & 0xf) ^ revmask;
9635 int off = e_rev * esize;
9636 read_vec_element(s, tcg_rn, rn, i, size);
9637 if (off >= 64) {
9638 tcg_gen_deposit_i64(tcg_rd_hi, tcg_rd_hi,
9639 tcg_rn, off - 64, esize);
9640 } else {
9641 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, off, esize);
9644 write_vec_element(s, tcg_rd, rd, 0, MO_64);
9645 write_vec_element(s, tcg_rd_hi, rd, 1, MO_64);
9647 tcg_temp_free_i64(tcg_rd_hi);
9648 tcg_temp_free_i64(tcg_rd);
9649 tcg_temp_free_i64(tcg_rn);
9653 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
9654 bool is_q, int size, int rn, int rd)
9656 /* Implement the pairwise operations from 2-misc:
9657 * SADDLP, UADDLP, SADALP, UADALP.
9658 * These all add pairs of elements in the input to produce a
9659 * double-width result element in the output (possibly accumulating).
9661 bool accum = (opcode == 0x6);
9662 int maxpass = is_q ? 2 : 1;
9663 int pass;
9664 TCGv_i64 tcg_res[2];
9666 if (size == 2) {
9667 /* 32 + 32 -> 64 op */
9668 TCGMemOp memop = size + (u ? 0 : MO_SIGN);
9670 for (pass = 0; pass < maxpass; pass++) {
9671 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9672 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9674 tcg_res[pass] = tcg_temp_new_i64();
9676 read_vec_element(s, tcg_op1, rn, pass * 2, memop);
9677 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
9678 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
9679 if (accum) {
9680 read_vec_element(s, tcg_op1, rd, pass, MO_64);
9681 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
9684 tcg_temp_free_i64(tcg_op1);
9685 tcg_temp_free_i64(tcg_op2);
9687 } else {
9688 for (pass = 0; pass < maxpass; pass++) {
9689 TCGv_i64 tcg_op = tcg_temp_new_i64();
9690 NeonGenOneOpFn *genfn;
9691 static NeonGenOneOpFn * const fns[2][2] = {
9692 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 },
9693 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 },
9696 genfn = fns[size][u];
9698 tcg_res[pass] = tcg_temp_new_i64();
9700 read_vec_element(s, tcg_op, rn, pass, MO_64);
9701 genfn(tcg_res[pass], tcg_op);
9703 if (accum) {
9704 read_vec_element(s, tcg_op, rd, pass, MO_64);
9705 if (size == 0) {
9706 gen_helper_neon_addl_u16(tcg_res[pass],
9707 tcg_res[pass], tcg_op);
9708 } else {
9709 gen_helper_neon_addl_u32(tcg_res[pass],
9710 tcg_res[pass], tcg_op);
9713 tcg_temp_free_i64(tcg_op);
9716 if (!is_q) {
9717 tcg_res[1] = tcg_const_i64(0);
9719 for (pass = 0; pass < 2; pass++) {
9720 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
9721 tcg_temp_free_i64(tcg_res[pass]);
9725 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
9727 /* Implement SHLL and SHLL2 */
9728 int pass;
9729 int part = is_q ? 2 : 0;
9730 TCGv_i64 tcg_res[2];
9732 for (pass = 0; pass < 2; pass++) {
9733 static NeonGenWidenFn * const widenfns[3] = {
9734 gen_helper_neon_widen_u8,
9735 gen_helper_neon_widen_u16,
9736 tcg_gen_extu_i32_i64,
9738 NeonGenWidenFn *widenfn = widenfns[size];
9739 TCGv_i32 tcg_op = tcg_temp_new_i32();
9741 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
9742 tcg_res[pass] = tcg_temp_new_i64();
9743 widenfn(tcg_res[pass], tcg_op);
9744 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
9746 tcg_temp_free_i32(tcg_op);
9749 for (pass = 0; pass < 2; pass++) {
9750 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
9751 tcg_temp_free_i64(tcg_res[pass]);
9755 /* C3.6.17 AdvSIMD two reg misc
9756 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
9757 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
9758 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
9759 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
9761 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
9763 int size = extract32(insn, 22, 2);
9764 int opcode = extract32(insn, 12, 5);
9765 bool u = extract32(insn, 29, 1);
9766 bool is_q = extract32(insn, 30, 1);
9767 int rn = extract32(insn, 5, 5);
9768 int rd = extract32(insn, 0, 5);
9769 bool need_fpstatus = false;
9770 bool need_rmode = false;
9771 int rmode = -1;
9772 TCGv_i32 tcg_rmode;
9773 TCGv_ptr tcg_fpstatus;
9775 switch (opcode) {
9776 case 0x0: /* REV64, REV32 */
9777 case 0x1: /* REV16 */
9778 handle_rev(s, opcode, u, is_q, size, rn, rd);
9779 return;
9780 case 0x5: /* CNT, NOT, RBIT */
9781 if (u && size == 0) {
9782 /* NOT: adjust size so we can use the 64-bits-at-a-time loop. */
9783 size = 3;
9784 break;
9785 } else if (u && size == 1) {
9786 /* RBIT */
9787 break;
9788 } else if (!u && size == 0) {
9789 /* CNT */
9790 break;
9792 unallocated_encoding(s);
9793 return;
9794 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
9795 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
9796 if (size == 3) {
9797 unallocated_encoding(s);
9798 return;
9800 if (!fp_access_check(s)) {
9801 return;
9804 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
9805 return;
9806 case 0x4: /* CLS, CLZ */
9807 if (size == 3) {
9808 unallocated_encoding(s);
9809 return;
9811 break;
9812 case 0x2: /* SADDLP, UADDLP */
9813 case 0x6: /* SADALP, UADALP */
9814 if (size == 3) {
9815 unallocated_encoding(s);
9816 return;
9818 if (!fp_access_check(s)) {
9819 return;
9821 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
9822 return;
9823 case 0x13: /* SHLL, SHLL2 */
9824 if (u == 0 || size == 3) {
9825 unallocated_encoding(s);
9826 return;
9828 if (!fp_access_check(s)) {
9829 return;
9831 handle_shll(s, is_q, size, rn, rd);
9832 return;
9833 case 0xa: /* CMLT */
9834 if (u == 1) {
9835 unallocated_encoding(s);
9836 return;
9838 /* fall through */
9839 case 0x8: /* CMGT, CMGE */
9840 case 0x9: /* CMEQ, CMLE */
9841 case 0xb: /* ABS, NEG */
9842 if (size == 3 && !is_q) {
9843 unallocated_encoding(s);
9844 return;
9846 break;
9847 case 0x3: /* SUQADD, USQADD */
9848 if (size == 3 && !is_q) {
9849 unallocated_encoding(s);
9850 return;
9852 if (!fp_access_check(s)) {
9853 return;
9855 handle_2misc_satacc(s, false, u, is_q, size, rn, rd);
9856 return;
9857 case 0x7: /* SQABS, SQNEG */
9858 if (size == 3 && !is_q) {
9859 unallocated_encoding(s);
9860 return;
9862 break;
9863 case 0xc ... 0xf:
9864 case 0x16 ... 0x1d:
9865 case 0x1f:
9867 /* Floating point: U, size[1] and opcode indicate operation;
9868 * size[0] indicates single or double precision.
9870 int is_double = extract32(size, 0, 1);
9871 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
9872 size = is_double ? 3 : 2;
9873 switch (opcode) {
9874 case 0x2f: /* FABS */
9875 case 0x6f: /* FNEG */
9876 if (size == 3 && !is_q) {
9877 unallocated_encoding(s);
9878 return;
9880 break;
9881 case 0x1d: /* SCVTF */
9882 case 0x5d: /* UCVTF */
9884 bool is_signed = (opcode == 0x1d) ? true : false;
9885 int elements = is_double ? 2 : is_q ? 4 : 2;
9886 if (is_double && !is_q) {
9887 unallocated_encoding(s);
9888 return;
9890 if (!fp_access_check(s)) {
9891 return;
9893 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
9894 return;
9896 case 0x2c: /* FCMGT (zero) */
9897 case 0x2d: /* FCMEQ (zero) */
9898 case 0x2e: /* FCMLT (zero) */
9899 case 0x6c: /* FCMGE (zero) */
9900 case 0x6d: /* FCMLE (zero) */
9901 if (size == 3 && !is_q) {
9902 unallocated_encoding(s);
9903 return;
9905 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
9906 return;
9907 case 0x7f: /* FSQRT */
9908 if (size == 3 && !is_q) {
9909 unallocated_encoding(s);
9910 return;
9912 break;
9913 case 0x1a: /* FCVTNS */
9914 case 0x1b: /* FCVTMS */
9915 case 0x3a: /* FCVTPS */
9916 case 0x3b: /* FCVTZS */
9917 case 0x5a: /* FCVTNU */
9918 case 0x5b: /* FCVTMU */
9919 case 0x7a: /* FCVTPU */
9920 case 0x7b: /* FCVTZU */
9921 need_fpstatus = true;
9922 need_rmode = true;
9923 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
9924 if (size == 3 && !is_q) {
9925 unallocated_encoding(s);
9926 return;
9928 break;
9929 case 0x5c: /* FCVTAU */
9930 case 0x1c: /* FCVTAS */
9931 need_fpstatus = true;
9932 need_rmode = true;
9933 rmode = FPROUNDING_TIEAWAY;
9934 if (size == 3 && !is_q) {
9935 unallocated_encoding(s);
9936 return;
9938 break;
9939 case 0x3c: /* URECPE */
9940 if (size == 3) {
9941 unallocated_encoding(s);
9942 return;
9944 /* fall through */
9945 case 0x3d: /* FRECPE */
9946 case 0x7d: /* FRSQRTE */
9947 if (size == 3 && !is_q) {
9948 unallocated_encoding(s);
9949 return;
9951 if (!fp_access_check(s)) {
9952 return;
9954 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
9955 return;
9956 case 0x56: /* FCVTXN, FCVTXN2 */
9957 if (size == 2) {
9958 unallocated_encoding(s);
9959 return;
9961 /* fall through */
9962 case 0x16: /* FCVTN, FCVTN2 */
9963 /* handle_2misc_narrow does a 2*size -> size operation, but these
9964 * instructions encode the source size rather than dest size.
9966 if (!fp_access_check(s)) {
9967 return;
9969 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
9970 return;
9971 case 0x17: /* FCVTL, FCVTL2 */
9972 if (!fp_access_check(s)) {
9973 return;
9975 handle_2misc_widening(s, opcode, is_q, size, rn, rd);
9976 return;
9977 case 0x18: /* FRINTN */
9978 case 0x19: /* FRINTM */
9979 case 0x38: /* FRINTP */
9980 case 0x39: /* FRINTZ */
9981 need_rmode = true;
9982 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
9983 /* fall through */
9984 case 0x59: /* FRINTX */
9985 case 0x79: /* FRINTI */
9986 need_fpstatus = true;
9987 if (size == 3 && !is_q) {
9988 unallocated_encoding(s);
9989 return;
9991 break;
9992 case 0x58: /* FRINTA */
9993 need_rmode = true;
9994 rmode = FPROUNDING_TIEAWAY;
9995 need_fpstatus = true;
9996 if (size == 3 && !is_q) {
9997 unallocated_encoding(s);
9998 return;
10000 break;
10001 case 0x7c: /* URSQRTE */
10002 if (size == 3) {
10003 unallocated_encoding(s);
10004 return;
10006 need_fpstatus = true;
10007 break;
10008 default:
10009 unallocated_encoding(s);
10010 return;
10012 break;
10014 default:
10015 unallocated_encoding(s);
10016 return;
10019 if (!fp_access_check(s)) {
10020 return;
10023 if (need_fpstatus) {
10024 tcg_fpstatus = get_fpstatus_ptr();
10025 } else {
10026 TCGV_UNUSED_PTR(tcg_fpstatus);
10028 if (need_rmode) {
10029 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
10030 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
10031 } else {
10032 TCGV_UNUSED_I32(tcg_rmode);
10035 if (size == 3) {
10036 /* All 64-bit element operations can be shared with scalar 2misc */
10037 int pass;
10039 for (pass = 0; pass < (is_q ? 2 : 1); pass++) {
10040 TCGv_i64 tcg_op = tcg_temp_new_i64();
10041 TCGv_i64 tcg_res = tcg_temp_new_i64();
10043 read_vec_element(s, tcg_op, rn, pass, MO_64);
10045 handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
10046 tcg_rmode, tcg_fpstatus);
10048 write_vec_element(s, tcg_res, rd, pass, MO_64);
10050 tcg_temp_free_i64(tcg_res);
10051 tcg_temp_free_i64(tcg_op);
10053 } else {
10054 int pass;
10056 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
10057 TCGv_i32 tcg_op = tcg_temp_new_i32();
10058 TCGv_i32 tcg_res = tcg_temp_new_i32();
10059 TCGCond cond;
10061 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
10063 if (size == 2) {
10064 /* Special cases for 32 bit elements */
10065 switch (opcode) {
10066 case 0xa: /* CMLT */
10067 /* 32 bit integer comparison against zero, result is
10068 * test ? (2^32 - 1) : 0. We implement via setcond(test)
10069 * and inverting.
10071 cond = TCG_COND_LT;
10072 do_cmop:
10073 tcg_gen_setcondi_i32(cond, tcg_res, tcg_op, 0);
10074 tcg_gen_neg_i32(tcg_res, tcg_res);
10075 break;
10076 case 0x8: /* CMGT, CMGE */
10077 cond = u ? TCG_COND_GE : TCG_COND_GT;
10078 goto do_cmop;
10079 case 0x9: /* CMEQ, CMLE */
10080 cond = u ? TCG_COND_LE : TCG_COND_EQ;
10081 goto do_cmop;
10082 case 0x4: /* CLS */
10083 if (u) {
10084 gen_helper_clz32(tcg_res, tcg_op);
10085 } else {
10086 gen_helper_cls32(tcg_res, tcg_op);
10088 break;
10089 case 0x7: /* SQABS, SQNEG */
10090 if (u) {
10091 gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op);
10092 } else {
10093 gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op);
10095 break;
10096 case 0xb: /* ABS, NEG */
10097 if (u) {
10098 tcg_gen_neg_i32(tcg_res, tcg_op);
10099 } else {
10100 TCGv_i32 tcg_zero = tcg_const_i32(0);
10101 tcg_gen_neg_i32(tcg_res, tcg_op);
10102 tcg_gen_movcond_i32(TCG_COND_GT, tcg_res, tcg_op,
10103 tcg_zero, tcg_op, tcg_res);
10104 tcg_temp_free_i32(tcg_zero);
10106 break;
10107 case 0x2f: /* FABS */
10108 gen_helper_vfp_abss(tcg_res, tcg_op);
10109 break;
10110 case 0x6f: /* FNEG */
10111 gen_helper_vfp_negs(tcg_res, tcg_op);
10112 break;
10113 case 0x7f: /* FSQRT */
10114 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
10115 break;
10116 case 0x1a: /* FCVTNS */
10117 case 0x1b: /* FCVTMS */
10118 case 0x1c: /* FCVTAS */
10119 case 0x3a: /* FCVTPS */
10120 case 0x3b: /* FCVTZS */
10122 TCGv_i32 tcg_shift = tcg_const_i32(0);
10123 gen_helper_vfp_tosls(tcg_res, tcg_op,
10124 tcg_shift, tcg_fpstatus);
10125 tcg_temp_free_i32(tcg_shift);
10126 break;
10128 case 0x5a: /* FCVTNU */
10129 case 0x5b: /* FCVTMU */
10130 case 0x5c: /* FCVTAU */
10131 case 0x7a: /* FCVTPU */
10132 case 0x7b: /* FCVTZU */
10134 TCGv_i32 tcg_shift = tcg_const_i32(0);
10135 gen_helper_vfp_touls(tcg_res, tcg_op,
10136 tcg_shift, tcg_fpstatus);
10137 tcg_temp_free_i32(tcg_shift);
10138 break;
10140 case 0x18: /* FRINTN */
10141 case 0x19: /* FRINTM */
10142 case 0x38: /* FRINTP */
10143 case 0x39: /* FRINTZ */
10144 case 0x58: /* FRINTA */
10145 case 0x79: /* FRINTI */
10146 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
10147 break;
10148 case 0x59: /* FRINTX */
10149 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
10150 break;
10151 case 0x7c: /* URSQRTE */
10152 gen_helper_rsqrte_u32(tcg_res, tcg_op, tcg_fpstatus);
10153 break;
10154 default:
10155 g_assert_not_reached();
10157 } else {
10158 /* Use helpers for 8 and 16 bit elements */
10159 switch (opcode) {
10160 case 0x5: /* CNT, RBIT */
10161 /* For these two insns size is part of the opcode specifier
10162 * (handled earlier); they always operate on byte elements.
10164 if (u) {
10165 gen_helper_neon_rbit_u8(tcg_res, tcg_op);
10166 } else {
10167 gen_helper_neon_cnt_u8(tcg_res, tcg_op);
10169 break;
10170 case 0x7: /* SQABS, SQNEG */
10172 NeonGenOneOpEnvFn *genfn;
10173 static NeonGenOneOpEnvFn * const fns[2][2] = {
10174 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
10175 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
10177 genfn = fns[size][u];
10178 genfn(tcg_res, cpu_env, tcg_op);
10179 break;
10181 case 0x8: /* CMGT, CMGE */
10182 case 0x9: /* CMEQ, CMLE */
10183 case 0xa: /* CMLT */
10185 static NeonGenTwoOpFn * const fns[3][2] = {
10186 { gen_helper_neon_cgt_s8, gen_helper_neon_cgt_s16 },
10187 { gen_helper_neon_cge_s8, gen_helper_neon_cge_s16 },
10188 { gen_helper_neon_ceq_u8, gen_helper_neon_ceq_u16 },
10190 NeonGenTwoOpFn *genfn;
10191 int comp;
10192 bool reverse;
10193 TCGv_i32 tcg_zero = tcg_const_i32(0);
10195 /* comp = index into [CMGT, CMGE, CMEQ, CMLE, CMLT] */
10196 comp = (opcode - 0x8) * 2 + u;
10197 /* ...but LE, LT are implemented as reverse GE, GT */
10198 reverse = (comp > 2);
10199 if (reverse) {
10200 comp = 4 - comp;
10202 genfn = fns[comp][size];
10203 if (reverse) {
10204 genfn(tcg_res, tcg_zero, tcg_op);
10205 } else {
10206 genfn(tcg_res, tcg_op, tcg_zero);
10208 tcg_temp_free_i32(tcg_zero);
10209 break;
10211 case 0xb: /* ABS, NEG */
10212 if (u) {
10213 TCGv_i32 tcg_zero = tcg_const_i32(0);
10214 if (size) {
10215 gen_helper_neon_sub_u16(tcg_res, tcg_zero, tcg_op);
10216 } else {
10217 gen_helper_neon_sub_u8(tcg_res, tcg_zero, tcg_op);
10219 tcg_temp_free_i32(tcg_zero);
10220 } else {
10221 if (size) {
10222 gen_helper_neon_abs_s16(tcg_res, tcg_op);
10223 } else {
10224 gen_helper_neon_abs_s8(tcg_res, tcg_op);
10227 break;
10228 case 0x4: /* CLS, CLZ */
10229 if (u) {
10230 if (size == 0) {
10231 gen_helper_neon_clz_u8(tcg_res, tcg_op);
10232 } else {
10233 gen_helper_neon_clz_u16(tcg_res, tcg_op);
10235 } else {
10236 if (size == 0) {
10237 gen_helper_neon_cls_s8(tcg_res, tcg_op);
10238 } else {
10239 gen_helper_neon_cls_s16(tcg_res, tcg_op);
10242 break;
10243 default:
10244 g_assert_not_reached();
10248 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
10250 tcg_temp_free_i32(tcg_res);
10251 tcg_temp_free_i32(tcg_op);
10254 if (!is_q) {
10255 clear_vec_high(s, rd);
10258 if (need_rmode) {
10259 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
10260 tcg_temp_free_i32(tcg_rmode);
10262 if (need_fpstatus) {
10263 tcg_temp_free_ptr(tcg_fpstatus);
10267 /* C3.6.13 AdvSIMD scalar x indexed element
10268 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
10269 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
10270 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
10271 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
10272 * C3.6.18 AdvSIMD vector x indexed element
10273 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
10274 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
10275 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
10276 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
10278 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
10280 /* This encoding has two kinds of instruction:
10281 * normal, where we perform elt x idxelt => elt for each
10282 * element in the vector
10283 * long, where we perform elt x idxelt and generate a result of
10284 * double the width of the input element
10285 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
10287 bool is_scalar = extract32(insn, 28, 1);
10288 bool is_q = extract32(insn, 30, 1);
10289 bool u = extract32(insn, 29, 1);
10290 int size = extract32(insn, 22, 2);
10291 int l = extract32(insn, 21, 1);
10292 int m = extract32(insn, 20, 1);
10293 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
10294 int rm = extract32(insn, 16, 4);
10295 int opcode = extract32(insn, 12, 4);
10296 int h = extract32(insn, 11, 1);
10297 int rn = extract32(insn, 5, 5);
10298 int rd = extract32(insn, 0, 5);
10299 bool is_long = false;
10300 bool is_fp = false;
10301 int index;
10302 TCGv_ptr fpst;
10304 switch (opcode) {
10305 case 0x0: /* MLA */
10306 case 0x4: /* MLS */
10307 if (!u || is_scalar) {
10308 unallocated_encoding(s);
10309 return;
10311 break;
10312 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10313 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10314 case 0xa: /* SMULL, SMULL2, UMULL, UMULL2 */
10315 if (is_scalar) {
10316 unallocated_encoding(s);
10317 return;
10319 is_long = true;
10320 break;
10321 case 0x3: /* SQDMLAL, SQDMLAL2 */
10322 case 0x7: /* SQDMLSL, SQDMLSL2 */
10323 case 0xb: /* SQDMULL, SQDMULL2 */
10324 is_long = true;
10325 /* fall through */
10326 case 0xc: /* SQDMULH */
10327 case 0xd: /* SQRDMULH */
10328 if (u) {
10329 unallocated_encoding(s);
10330 return;
10332 break;
10333 case 0x8: /* MUL */
10334 if (u || is_scalar) {
10335 unallocated_encoding(s);
10336 return;
10338 break;
10339 case 0x1: /* FMLA */
10340 case 0x5: /* FMLS */
10341 if (u) {
10342 unallocated_encoding(s);
10343 return;
10345 /* fall through */
10346 case 0x9: /* FMUL, FMULX */
10347 if (!extract32(size, 1, 1)) {
10348 unallocated_encoding(s);
10349 return;
10351 is_fp = true;
10352 break;
10353 default:
10354 unallocated_encoding(s);
10355 return;
10358 if (is_fp) {
10359 /* low bit of size indicates single/double */
10360 size = extract32(size, 0, 1) ? 3 : 2;
10361 if (size == 2) {
10362 index = h << 1 | l;
10363 } else {
10364 if (l || !is_q) {
10365 unallocated_encoding(s);
10366 return;
10368 index = h;
10370 rm |= (m << 4);
10371 } else {
10372 switch (size) {
10373 case 1:
10374 index = h << 2 | l << 1 | m;
10375 break;
10376 case 2:
10377 index = h << 1 | l;
10378 rm |= (m << 4);
10379 break;
10380 default:
10381 unallocated_encoding(s);
10382 return;
10386 if (!fp_access_check(s)) {
10387 return;
10390 if (is_fp) {
10391 fpst = get_fpstatus_ptr();
10392 } else {
10393 TCGV_UNUSED_PTR(fpst);
10396 if (size == 3) {
10397 TCGv_i64 tcg_idx = tcg_temp_new_i64();
10398 int pass;
10400 assert(is_fp && is_q && !is_long);
10402 read_vec_element(s, tcg_idx, rm, index, MO_64);
10404 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10405 TCGv_i64 tcg_op = tcg_temp_new_i64();
10406 TCGv_i64 tcg_res = tcg_temp_new_i64();
10408 read_vec_element(s, tcg_op, rn, pass, MO_64);
10410 switch (opcode) {
10411 case 0x5: /* FMLS */
10412 /* As usual for ARM, separate negation for fused multiply-add */
10413 gen_helper_vfp_negd(tcg_op, tcg_op);
10414 /* fall through */
10415 case 0x1: /* FMLA */
10416 read_vec_element(s, tcg_res, rd, pass, MO_64);
10417 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
10418 break;
10419 case 0x9: /* FMUL, FMULX */
10420 if (u) {
10421 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst);
10422 } else {
10423 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst);
10425 break;
10426 default:
10427 g_assert_not_reached();
10430 write_vec_element(s, tcg_res, rd, pass, MO_64);
10431 tcg_temp_free_i64(tcg_op);
10432 tcg_temp_free_i64(tcg_res);
10435 if (is_scalar) {
10436 clear_vec_high(s, rd);
10439 tcg_temp_free_i64(tcg_idx);
10440 } else if (!is_long) {
10441 /* 32 bit floating point, or 16 or 32 bit integer.
10442 * For the 16 bit scalar case we use the usual Neon helpers and
10443 * rely on the fact that 0 op 0 == 0 with no side effects.
10445 TCGv_i32 tcg_idx = tcg_temp_new_i32();
10446 int pass, maxpasses;
10448 if (is_scalar) {
10449 maxpasses = 1;
10450 } else {
10451 maxpasses = is_q ? 4 : 2;
10454 read_vec_element_i32(s, tcg_idx, rm, index, size);
10456 if (size == 1 && !is_scalar) {
10457 /* The simplest way to handle the 16x16 indexed ops is to duplicate
10458 * the index into both halves of the 32 bit tcg_idx and then use
10459 * the usual Neon helpers.
10461 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
10464 for (pass = 0; pass < maxpasses; pass++) {
10465 TCGv_i32 tcg_op = tcg_temp_new_i32();
10466 TCGv_i32 tcg_res = tcg_temp_new_i32();
10468 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
10470 switch (opcode) {
10471 case 0x0: /* MLA */
10472 case 0x4: /* MLS */
10473 case 0x8: /* MUL */
10475 static NeonGenTwoOpFn * const fns[2][2] = {
10476 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
10477 { tcg_gen_add_i32, tcg_gen_sub_i32 },
10479 NeonGenTwoOpFn *genfn;
10480 bool is_sub = opcode == 0x4;
10482 if (size == 1) {
10483 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
10484 } else {
10485 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
10487 if (opcode == 0x8) {
10488 break;
10490 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
10491 genfn = fns[size - 1][is_sub];
10492 genfn(tcg_res, tcg_op, tcg_res);
10493 break;
10495 case 0x5: /* FMLS */
10496 /* As usual for ARM, separate negation for fused multiply-add */
10497 gen_helper_vfp_negs(tcg_op, tcg_op);
10498 /* fall through */
10499 case 0x1: /* FMLA */
10500 read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
10501 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
10502 break;
10503 case 0x9: /* FMUL, FMULX */
10504 if (u) {
10505 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst);
10506 } else {
10507 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst);
10509 break;
10510 case 0xc: /* SQDMULH */
10511 if (size == 1) {
10512 gen_helper_neon_qdmulh_s16(tcg_res, cpu_env,
10513 tcg_op, tcg_idx);
10514 } else {
10515 gen_helper_neon_qdmulh_s32(tcg_res, cpu_env,
10516 tcg_op, tcg_idx);
10518 break;
10519 case 0xd: /* SQRDMULH */
10520 if (size == 1) {
10521 gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env,
10522 tcg_op, tcg_idx);
10523 } else {
10524 gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env,
10525 tcg_op, tcg_idx);
10527 break;
10528 default:
10529 g_assert_not_reached();
10532 if (is_scalar) {
10533 write_fp_sreg(s, rd, tcg_res);
10534 } else {
10535 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
10538 tcg_temp_free_i32(tcg_op);
10539 tcg_temp_free_i32(tcg_res);
10542 tcg_temp_free_i32(tcg_idx);
10544 if (!is_q) {
10545 clear_vec_high(s, rd);
10547 } else {
10548 /* long ops: 16x16->32 or 32x32->64 */
10549 TCGv_i64 tcg_res[2];
10550 int pass;
10551 bool satop = extract32(opcode, 0, 1);
10552 TCGMemOp memop = MO_32;
10554 if (satop || !u) {
10555 memop |= MO_SIGN;
10558 if (size == 2) {
10559 TCGv_i64 tcg_idx = tcg_temp_new_i64();
10561 read_vec_element(s, tcg_idx, rm, index, memop);
10563 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10564 TCGv_i64 tcg_op = tcg_temp_new_i64();
10565 TCGv_i64 tcg_passres;
10566 int passelt;
10568 if (is_scalar) {
10569 passelt = 0;
10570 } else {
10571 passelt = pass + (is_q * 2);
10574 read_vec_element(s, tcg_op, rn, passelt, memop);
10576 tcg_res[pass] = tcg_temp_new_i64();
10578 if (opcode == 0xa || opcode == 0xb) {
10579 /* Non-accumulating ops */
10580 tcg_passres = tcg_res[pass];
10581 } else {
10582 tcg_passres = tcg_temp_new_i64();
10585 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
10586 tcg_temp_free_i64(tcg_op);
10588 if (satop) {
10589 /* saturating, doubling */
10590 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
10591 tcg_passres, tcg_passres);
10594 if (opcode == 0xa || opcode == 0xb) {
10595 continue;
10598 /* Accumulating op: handle accumulate step */
10599 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10601 switch (opcode) {
10602 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10603 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10604 break;
10605 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10606 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10607 break;
10608 case 0x7: /* SQDMLSL, SQDMLSL2 */
10609 tcg_gen_neg_i64(tcg_passres, tcg_passres);
10610 /* fall through */
10611 case 0x3: /* SQDMLAL, SQDMLAL2 */
10612 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
10613 tcg_res[pass],
10614 tcg_passres);
10615 break;
10616 default:
10617 g_assert_not_reached();
10619 tcg_temp_free_i64(tcg_passres);
10621 tcg_temp_free_i64(tcg_idx);
10623 if (is_scalar) {
10624 clear_vec_high(s, rd);
10626 } else {
10627 TCGv_i32 tcg_idx = tcg_temp_new_i32();
10629 assert(size == 1);
10630 read_vec_element_i32(s, tcg_idx, rm, index, size);
10632 if (!is_scalar) {
10633 /* The simplest way to handle the 16x16 indexed ops is to
10634 * duplicate the index into both halves of the 32 bit tcg_idx
10635 * and then use the usual Neon helpers.
10637 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
10640 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10641 TCGv_i32 tcg_op = tcg_temp_new_i32();
10642 TCGv_i64 tcg_passres;
10644 if (is_scalar) {
10645 read_vec_element_i32(s, tcg_op, rn, pass, size);
10646 } else {
10647 read_vec_element_i32(s, tcg_op, rn,
10648 pass + (is_q * 2), MO_32);
10651 tcg_res[pass] = tcg_temp_new_i64();
10653 if (opcode == 0xa || opcode == 0xb) {
10654 /* Non-accumulating ops */
10655 tcg_passres = tcg_res[pass];
10656 } else {
10657 tcg_passres = tcg_temp_new_i64();
10660 if (memop & MO_SIGN) {
10661 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
10662 } else {
10663 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
10665 if (satop) {
10666 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
10667 tcg_passres, tcg_passres);
10669 tcg_temp_free_i32(tcg_op);
10671 if (opcode == 0xa || opcode == 0xb) {
10672 continue;
10675 /* Accumulating op: handle accumulate step */
10676 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10678 switch (opcode) {
10679 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10680 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
10681 tcg_passres);
10682 break;
10683 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10684 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
10685 tcg_passres);
10686 break;
10687 case 0x7: /* SQDMLSL, SQDMLSL2 */
10688 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
10689 /* fall through */
10690 case 0x3: /* SQDMLAL, SQDMLAL2 */
10691 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
10692 tcg_res[pass],
10693 tcg_passres);
10694 break;
10695 default:
10696 g_assert_not_reached();
10698 tcg_temp_free_i64(tcg_passres);
10700 tcg_temp_free_i32(tcg_idx);
10702 if (is_scalar) {
10703 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
10707 if (is_scalar) {
10708 tcg_res[1] = tcg_const_i64(0);
10711 for (pass = 0; pass < 2; pass++) {
10712 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10713 tcg_temp_free_i64(tcg_res[pass]);
10717 if (!TCGV_IS_UNUSED_PTR(fpst)) {
10718 tcg_temp_free_ptr(fpst);
10722 /* C3.6.19 Crypto AES
10723 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
10724 * +-----------------+------+-----------+--------+-----+------+------+
10725 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
10726 * +-----------------+------+-----------+--------+-----+------+------+
10728 static void disas_crypto_aes(DisasContext *s, uint32_t insn)
10730 int size = extract32(insn, 22, 2);
10731 int opcode = extract32(insn, 12, 5);
10732 int rn = extract32(insn, 5, 5);
10733 int rd = extract32(insn, 0, 5);
10734 int decrypt;
10735 TCGv_i32 tcg_rd_regno, tcg_rn_regno, tcg_decrypt;
10736 CryptoThreeOpEnvFn *genfn;
10738 if (!arm_dc_feature(s, ARM_FEATURE_V8_AES)
10739 || size != 0) {
10740 unallocated_encoding(s);
10741 return;
10744 switch (opcode) {
10745 case 0x4: /* AESE */
10746 decrypt = 0;
10747 genfn = gen_helper_crypto_aese;
10748 break;
10749 case 0x6: /* AESMC */
10750 decrypt = 0;
10751 genfn = gen_helper_crypto_aesmc;
10752 break;
10753 case 0x5: /* AESD */
10754 decrypt = 1;
10755 genfn = gen_helper_crypto_aese;
10756 break;
10757 case 0x7: /* AESIMC */
10758 decrypt = 1;
10759 genfn = gen_helper_crypto_aesmc;
10760 break;
10761 default:
10762 unallocated_encoding(s);
10763 return;
10766 /* Note that we convert the Vx register indexes into the
10767 * index within the vfp.regs[] array, so we can share the
10768 * helper with the AArch32 instructions.
10770 tcg_rd_regno = tcg_const_i32(rd << 1);
10771 tcg_rn_regno = tcg_const_i32(rn << 1);
10772 tcg_decrypt = tcg_const_i32(decrypt);
10774 genfn(cpu_env, tcg_rd_regno, tcg_rn_regno, tcg_decrypt);
10776 tcg_temp_free_i32(tcg_rd_regno);
10777 tcg_temp_free_i32(tcg_rn_regno);
10778 tcg_temp_free_i32(tcg_decrypt);
10781 /* C3.6.20 Crypto three-reg SHA
10782 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
10783 * +-----------------+------+---+------+---+--------+-----+------+------+
10784 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd |
10785 * +-----------------+------+---+------+---+--------+-----+------+------+
10787 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn)
10789 int size = extract32(insn, 22, 2);
10790 int opcode = extract32(insn, 12, 3);
10791 int rm = extract32(insn, 16, 5);
10792 int rn = extract32(insn, 5, 5);
10793 int rd = extract32(insn, 0, 5);
10794 CryptoThreeOpEnvFn *genfn;
10795 TCGv_i32 tcg_rd_regno, tcg_rn_regno, tcg_rm_regno;
10796 int feature = ARM_FEATURE_V8_SHA256;
10798 if (size != 0) {
10799 unallocated_encoding(s);
10800 return;
10803 switch (opcode) {
10804 case 0: /* SHA1C */
10805 case 1: /* SHA1P */
10806 case 2: /* SHA1M */
10807 case 3: /* SHA1SU0 */
10808 genfn = NULL;
10809 feature = ARM_FEATURE_V8_SHA1;
10810 break;
10811 case 4: /* SHA256H */
10812 genfn = gen_helper_crypto_sha256h;
10813 break;
10814 case 5: /* SHA256H2 */
10815 genfn = gen_helper_crypto_sha256h2;
10816 break;
10817 case 6: /* SHA256SU1 */
10818 genfn = gen_helper_crypto_sha256su1;
10819 break;
10820 default:
10821 unallocated_encoding(s);
10822 return;
10825 if (!arm_dc_feature(s, feature)) {
10826 unallocated_encoding(s);
10827 return;
10830 tcg_rd_regno = tcg_const_i32(rd << 1);
10831 tcg_rn_regno = tcg_const_i32(rn << 1);
10832 tcg_rm_regno = tcg_const_i32(rm << 1);
10834 if (genfn) {
10835 genfn(cpu_env, tcg_rd_regno, tcg_rn_regno, tcg_rm_regno);
10836 } else {
10837 TCGv_i32 tcg_opcode = tcg_const_i32(opcode);
10839 gen_helper_crypto_sha1_3reg(cpu_env, tcg_rd_regno,
10840 tcg_rn_regno, tcg_rm_regno, tcg_opcode);
10841 tcg_temp_free_i32(tcg_opcode);
10844 tcg_temp_free_i32(tcg_rd_regno);
10845 tcg_temp_free_i32(tcg_rn_regno);
10846 tcg_temp_free_i32(tcg_rm_regno);
10849 /* C3.6.21 Crypto two-reg SHA
10850 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
10851 * +-----------------+------+-----------+--------+-----+------+------+
10852 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
10853 * +-----------------+------+-----------+--------+-----+------+------+
10855 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn)
10857 int size = extract32(insn, 22, 2);
10858 int opcode = extract32(insn, 12, 5);
10859 int rn = extract32(insn, 5, 5);
10860 int rd = extract32(insn, 0, 5);
10861 CryptoTwoOpEnvFn *genfn;
10862 int feature;
10863 TCGv_i32 tcg_rd_regno, tcg_rn_regno;
10865 if (size != 0) {
10866 unallocated_encoding(s);
10867 return;
10870 switch (opcode) {
10871 case 0: /* SHA1H */
10872 feature = ARM_FEATURE_V8_SHA1;
10873 genfn = gen_helper_crypto_sha1h;
10874 break;
10875 case 1: /* SHA1SU1 */
10876 feature = ARM_FEATURE_V8_SHA1;
10877 genfn = gen_helper_crypto_sha1su1;
10878 break;
10879 case 2: /* SHA256SU0 */
10880 feature = ARM_FEATURE_V8_SHA256;
10881 genfn = gen_helper_crypto_sha256su0;
10882 break;
10883 default:
10884 unallocated_encoding(s);
10885 return;
10888 if (!arm_dc_feature(s, feature)) {
10889 unallocated_encoding(s);
10890 return;
10893 tcg_rd_regno = tcg_const_i32(rd << 1);
10894 tcg_rn_regno = tcg_const_i32(rn << 1);
10896 genfn(cpu_env, tcg_rd_regno, tcg_rn_regno);
10898 tcg_temp_free_i32(tcg_rd_regno);
10899 tcg_temp_free_i32(tcg_rn_regno);
10902 /* C3.6 Data processing - SIMD, inc Crypto
10904 * As the decode gets a little complex we are using a table based
10905 * approach for this part of the decode.
10907 static const AArch64DecodeTable data_proc_simd[] = {
10908 /* pattern , mask , fn */
10909 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same },
10910 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
10911 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
10912 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
10913 { 0x0e000400, 0x9fe08400, disas_simd_copy },
10914 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
10915 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
10916 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
10917 { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
10918 { 0x0e000000, 0xbf208c00, disas_simd_tb },
10919 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
10920 { 0x2e000000, 0xbf208400, disas_simd_ext },
10921 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same },
10922 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
10923 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
10924 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise },
10925 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy },
10926 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
10927 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
10928 { 0x4e280800, 0xff3e0c00, disas_crypto_aes },
10929 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha },
10930 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha },
10931 { 0x00000000, 0x00000000, NULL }
10934 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
10936 /* Note that this is called with all non-FP cases from
10937 * table C3-6 so it must UNDEF for entries not specifically
10938 * allocated to instructions in that table.
10940 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
10941 if (fn) {
10942 fn(s, insn);
10943 } else {
10944 unallocated_encoding(s);
10948 /* C3.6 Data processing - SIMD and floating point */
10949 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
10951 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
10952 disas_data_proc_fp(s, insn);
10953 } else {
10954 /* SIMD, including crypto */
10955 disas_data_proc_simd(s, insn);
10959 /* C3.1 A64 instruction index by encoding */
10960 static void disas_a64_insn(CPUARMState *env, DisasContext *s)
10962 uint32_t insn;
10964 insn = arm_ldl_code(env, s->pc, s->bswap_code);
10965 s->insn = insn;
10966 s->pc += 4;
10968 s->fp_access_checked = false;
10970 switch (extract32(insn, 25, 4)) {
10971 case 0x0: case 0x1: case 0x2: case 0x3: /* UNALLOCATED */
10972 unallocated_encoding(s);
10973 break;
10974 case 0x8: case 0x9: /* Data processing - immediate */
10975 disas_data_proc_imm(s, insn);
10976 break;
10977 case 0xa: case 0xb: /* Branch, exception generation and system insns */
10978 disas_b_exc_sys(s, insn);
10979 break;
10980 case 0x4:
10981 case 0x6:
10982 case 0xc:
10983 case 0xe: /* Loads and stores */
10984 disas_ldst(s, insn);
10985 break;
10986 case 0x5:
10987 case 0xd: /* Data processing - register */
10988 disas_data_proc_reg(s, insn);
10989 break;
10990 case 0x7:
10991 case 0xf: /* Data processing - SIMD and floating point */
10992 disas_data_proc_simd_fp(s, insn);
10993 break;
10994 default:
10995 assert(FALSE); /* all 15 cases should be handled above */
10996 break;
10999 /* if we allocated any temporaries, free them here */
11000 free_tmp_a64(s);
11003 void gen_intermediate_code_internal_a64(ARMCPU *cpu,
11004 TranslationBlock *tb,
11005 bool search_pc)
11007 CPUState *cs = CPU(cpu);
11008 CPUARMState *env = &cpu->env;
11009 DisasContext dc1, *dc = &dc1;
11010 CPUBreakpoint *bp;
11011 int j, lj;
11012 target_ulong pc_start;
11013 target_ulong next_page_start;
11014 int num_insns;
11015 int max_insns;
11017 pc_start = tb->pc;
11019 dc->tb = tb;
11021 dc->is_jmp = DISAS_NEXT;
11022 dc->pc = pc_start;
11023 dc->singlestep_enabled = cs->singlestep_enabled;
11024 dc->condjmp = 0;
11026 dc->aarch64 = 1;
11027 /* If we are coming from secure EL0 in a system with a 32-bit EL3, then
11028 * there is no secure EL1, so we route exceptions to EL3.
11030 dc->secure_routed_to_el3 = arm_feature(env, ARM_FEATURE_EL3) &&
11031 !arm_el_is_aa64(env, 3);
11032 dc->thumb = 0;
11033 dc->bswap_code = 0;
11034 dc->condexec_mask = 0;
11035 dc->condexec_cond = 0;
11036 dc->mmu_idx = ARM_TBFLAG_MMUIDX(tb->flags);
11037 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
11038 #if !defined(CONFIG_USER_ONLY)
11039 dc->user = (dc->current_el == 0);
11040 #endif
11041 dc->fp_excp_el = ARM_TBFLAG_FPEXC_EL(tb->flags);
11042 dc->vec_len = 0;
11043 dc->vec_stride = 0;
11044 dc->cp_regs = cpu->cp_regs;
11045 dc->features = env->features;
11047 /* Single step state. The code-generation logic here is:
11048 * SS_ACTIVE == 0:
11049 * generate code with no special handling for single-stepping (except
11050 * that anything that can make us go to SS_ACTIVE == 1 must end the TB;
11051 * this happens anyway because those changes are all system register or
11052 * PSTATE writes).
11053 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
11054 * emit code for one insn
11055 * emit code to clear PSTATE.SS
11056 * emit code to generate software step exception for completed step
11057 * end TB (as usual for having generated an exception)
11058 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
11059 * emit code to generate a software step exception
11060 * end the TB
11062 dc->ss_active = ARM_TBFLAG_SS_ACTIVE(tb->flags);
11063 dc->pstate_ss = ARM_TBFLAG_PSTATE_SS(tb->flags);
11064 dc->is_ldex = false;
11065 dc->ss_same_el = (arm_debug_target_el(env) == dc->current_el);
11067 init_tmp_a64_array(dc);
11069 next_page_start = (pc_start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
11070 lj = -1;
11071 num_insns = 0;
11072 max_insns = tb->cflags & CF_COUNT_MASK;
11073 if (max_insns == 0) {
11074 max_insns = CF_COUNT_MASK;
11077 gen_tb_start(tb);
11079 tcg_clear_temp_count();
11081 do {
11082 if (unlikely(!QTAILQ_EMPTY(&cs->breakpoints))) {
11083 QTAILQ_FOREACH(bp, &cs->breakpoints, entry) {
11084 if (bp->pc == dc->pc) {
11085 gen_exception_internal_insn(dc, 0, EXCP_DEBUG);
11086 /* Advance PC so that clearing the breakpoint will
11087 invalidate this TB. */
11088 dc->pc += 2;
11089 goto done_generating;
11094 if (search_pc) {
11095 j = tcg_op_buf_count();
11096 if (lj < j) {
11097 lj++;
11098 while (lj < j) {
11099 tcg_ctx.gen_opc_instr_start[lj++] = 0;
11102 tcg_ctx.gen_opc_pc[lj] = dc->pc;
11103 tcg_ctx.gen_opc_instr_start[lj] = 1;
11104 tcg_ctx.gen_opc_icount[lj] = num_insns;
11107 if (num_insns + 1 == max_insns && (tb->cflags & CF_LAST_IO)) {
11108 gen_io_start();
11111 if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_OP | CPU_LOG_TB_OP_OPT))) {
11112 tcg_gen_debug_insn_start(dc->pc);
11115 if (dc->ss_active && !dc->pstate_ss) {
11116 /* Singlestep state is Active-pending.
11117 * If we're in this state at the start of a TB then either
11118 * a) we just took an exception to an EL which is being debugged
11119 * and this is the first insn in the exception handler
11120 * b) debug exceptions were masked and we just unmasked them
11121 * without changing EL (eg by clearing PSTATE.D)
11122 * In either case we're going to take a swstep exception in the
11123 * "did not step an insn" case, and so the syndrome ISV and EX
11124 * bits should be zero.
11126 assert(num_insns == 0);
11127 gen_exception(EXCP_UDEF, syn_swstep(dc->ss_same_el, 0, 0),
11128 default_exception_el(dc));
11129 dc->is_jmp = DISAS_EXC;
11130 break;
11133 disas_a64_insn(env, dc);
11135 if (tcg_check_temp_count()) {
11136 fprintf(stderr, "TCG temporary leak before "TARGET_FMT_lx"\n",
11137 dc->pc);
11140 /* Translation stops when a conditional branch is encountered.
11141 * Otherwise the subsequent code could get translated several times.
11142 * Also stop translation when a page boundary is reached. This
11143 * ensures prefetch aborts occur at the right place.
11145 num_insns++;
11146 } while (!dc->is_jmp && !tcg_op_buf_full() &&
11147 !cs->singlestep_enabled &&
11148 !singlestep &&
11149 !dc->ss_active &&
11150 dc->pc < next_page_start &&
11151 num_insns < max_insns);
11153 if (tb->cflags & CF_LAST_IO) {
11154 gen_io_end();
11157 if (unlikely(cs->singlestep_enabled || dc->ss_active)
11158 && dc->is_jmp != DISAS_EXC) {
11159 /* Note that this means single stepping WFI doesn't halt the CPU.
11160 * For conditional branch insns this is harmless unreachable code as
11161 * gen_goto_tb() has already handled emitting the debug exception
11162 * (and thus a tb-jump is not possible when singlestepping).
11164 assert(dc->is_jmp != DISAS_TB_JUMP);
11165 if (dc->is_jmp != DISAS_JUMP) {
11166 gen_a64_set_pc_im(dc->pc);
11168 if (cs->singlestep_enabled) {
11169 gen_exception_internal(EXCP_DEBUG);
11170 } else {
11171 gen_step_complete_exception(dc);
11173 } else {
11174 switch (dc->is_jmp) {
11175 case DISAS_NEXT:
11176 gen_goto_tb(dc, 1, dc->pc);
11177 break;
11178 default:
11179 case DISAS_UPDATE:
11180 gen_a64_set_pc_im(dc->pc);
11181 /* fall through */
11182 case DISAS_JUMP:
11183 /* indicate that the hash table must be used to find the next TB */
11184 tcg_gen_exit_tb(0);
11185 break;
11186 case DISAS_TB_JUMP:
11187 case DISAS_EXC:
11188 case DISAS_SWI:
11189 break;
11190 case DISAS_WFE:
11191 gen_a64_set_pc_im(dc->pc);
11192 gen_helper_wfe(cpu_env);
11193 break;
11194 case DISAS_YIELD:
11195 gen_a64_set_pc_im(dc->pc);
11196 gen_helper_yield(cpu_env);
11197 break;
11198 case DISAS_WFI:
11199 /* This is a special case because we don't want to just halt the CPU
11200 * if trying to debug across a WFI.
11202 gen_a64_set_pc_im(dc->pc);
11203 gen_helper_wfi(cpu_env);
11204 /* The helper doesn't necessarily throw an exception, but we
11205 * must go back to the main loop to check for interrupts anyway.
11207 tcg_gen_exit_tb(0);
11208 break;
11212 done_generating:
11213 gen_tb_end(tb, num_insns);
11215 #ifdef DEBUG_DISAS
11216 if (qemu_loglevel_mask(CPU_LOG_TB_IN_ASM)) {
11217 qemu_log("----------------\n");
11218 qemu_log("IN: %s\n", lookup_symbol(pc_start));
11219 log_target_disas(cs, pc_start, dc->pc - pc_start,
11220 4 | (dc->bswap_code << 1));
11221 qemu_log("\n");
11223 #endif
11224 if (search_pc) {
11225 j = tcg_op_buf_count();
11226 lj++;
11227 while (lj <= j) {
11228 tcg_ctx.gen_opc_instr_start[lj++] = 0;
11230 } else {
11231 tb->size = dc->pc - pc_start;
11232 tb->icount = num_insns;