Travis support for the acceptance tests
[qemu/ar7.git] / slirp / slirp.c
blob51de41fc021684019ff5b77fc1bbc0f0cbb86a47
1 /*
2 * libslirp glue
4 * Copyright (c) 2004-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "qemu/osdep.h"
25 #include "qemu-common.h"
26 #include "qemu/timer.h"
27 #include "qemu/error-report.h"
28 #include "chardev/char-fe.h"
29 #include "migration/register.h"
30 #include "slirp.h"
31 #include "hw/hw.h"
32 #include "qemu/cutils.h"
34 #ifndef _WIN32
35 #include <net/if.h>
36 #endif
38 /* host loopback address */
39 struct in_addr loopback_addr;
40 /* host loopback network mask */
41 unsigned long loopback_mask;
43 /* emulated hosts use the MAC addr 52:55:IP:IP:IP:IP */
44 static const uint8_t special_ethaddr[ETH_ALEN] = {
45 0x52, 0x55, 0x00, 0x00, 0x00, 0x00
48 u_int curtime;
50 static QTAILQ_HEAD(slirp_instances, Slirp) slirp_instances =
51 QTAILQ_HEAD_INITIALIZER(slirp_instances);
53 static struct in_addr dns_addr;
54 #ifndef _WIN32
55 static struct in6_addr dns6_addr;
56 #endif
57 static u_int dns_addr_time;
58 #ifndef _WIN32
59 static u_int dns6_addr_time;
60 #endif
62 #define TIMEOUT_FAST 2 /* milliseconds */
63 #define TIMEOUT_SLOW 499 /* milliseconds */
64 /* for the aging of certain requests like DNS */
65 #define TIMEOUT_DEFAULT 1000 /* milliseconds */
67 #ifdef _WIN32
69 int get_dns_addr(struct in_addr *pdns_addr)
71 FIXED_INFO *FixedInfo=NULL;
72 ULONG BufLen;
73 DWORD ret;
74 IP_ADDR_STRING *pIPAddr;
75 struct in_addr tmp_addr;
77 if (dns_addr.s_addr != 0 && (curtime - dns_addr_time) < TIMEOUT_DEFAULT) {
78 *pdns_addr = dns_addr;
79 return 0;
82 FixedInfo = (FIXED_INFO *)GlobalAlloc(GPTR, sizeof(FIXED_INFO));
83 BufLen = sizeof(FIXED_INFO);
85 if (ERROR_BUFFER_OVERFLOW == GetNetworkParams(FixedInfo, &BufLen)) {
86 if (FixedInfo) {
87 GlobalFree(FixedInfo);
88 FixedInfo = NULL;
90 FixedInfo = GlobalAlloc(GPTR, BufLen);
93 if ((ret = GetNetworkParams(FixedInfo, &BufLen)) != ERROR_SUCCESS) {
94 printf("GetNetworkParams failed. ret = %08x\n", (u_int)ret );
95 if (FixedInfo) {
96 GlobalFree(FixedInfo);
97 FixedInfo = NULL;
99 return -1;
102 pIPAddr = &(FixedInfo->DnsServerList);
103 inet_aton(pIPAddr->IpAddress.String, &tmp_addr);
104 *pdns_addr = tmp_addr;
105 dns_addr = tmp_addr;
106 dns_addr_time = curtime;
107 if (FixedInfo) {
108 GlobalFree(FixedInfo);
109 FixedInfo = NULL;
111 return 0;
114 int get_dns6_addr(struct in6_addr *pdns6_addr, uint32_t *scope_id)
116 return -1;
119 static void winsock_cleanup(void)
121 WSACleanup();
124 #else
126 static int get_dns_addr_cached(void *pdns_addr, void *cached_addr,
127 socklen_t addrlen,
128 struct stat *cached_stat, u_int *cached_time)
130 struct stat old_stat;
131 if (curtime - *cached_time < TIMEOUT_DEFAULT) {
132 memcpy(pdns_addr, cached_addr, addrlen);
133 return 0;
135 old_stat = *cached_stat;
136 if (stat("/etc/resolv.conf", cached_stat) != 0) {
137 return -1;
139 if (cached_stat->st_dev == old_stat.st_dev
140 && cached_stat->st_ino == old_stat.st_ino
141 && cached_stat->st_size == old_stat.st_size
142 && cached_stat->st_mtime == old_stat.st_mtime) {
143 memcpy(pdns_addr, cached_addr, addrlen);
144 return 0;
146 return 1;
149 static int get_dns_addr_resolv_conf(int af, void *pdns_addr, void *cached_addr,
150 socklen_t addrlen, uint32_t *scope_id,
151 u_int *cached_time)
153 char buff[512];
154 char buff2[257];
155 FILE *f;
156 int found = 0;
157 void *tmp_addr = alloca(addrlen);
158 unsigned if_index;
160 f = fopen("/etc/resolv.conf", "r");
161 if (!f)
162 return -1;
164 #ifdef DEBUG
165 fprintf(stderr, "IP address of your DNS(s): ");
166 #endif
167 while (fgets(buff, 512, f) != NULL) {
168 if (sscanf(buff, "nameserver%*[ \t]%256s", buff2) == 1) {
169 char *c = strchr(buff2, '%');
170 if (c) {
171 if_index = if_nametoindex(c + 1);
172 *c = '\0';
173 } else {
174 if_index = 0;
177 if (!inet_pton(af, buff2, tmp_addr)) {
178 continue;
180 /* If it's the first one, set it to dns_addr */
181 if (!found) {
182 memcpy(pdns_addr, tmp_addr, addrlen);
183 memcpy(cached_addr, tmp_addr, addrlen);
184 if (scope_id) {
185 *scope_id = if_index;
187 *cached_time = curtime;
189 #ifdef DEBUG
190 else
191 fprintf(stderr, ", ");
192 #endif
193 if (++found > 3) {
194 #ifdef DEBUG
195 fprintf(stderr, "(more)");
196 #endif
197 break;
199 #ifdef DEBUG
200 else {
201 char s[INET6_ADDRSTRLEN];
202 const char *res = inet_ntop(af, tmp_addr, s, sizeof(s));
203 if (!res) {
204 res = "(string conversion error)";
206 fprintf(stderr, "%s", res);
208 #endif
211 fclose(f);
212 if (!found)
213 return -1;
214 return 0;
217 int get_dns_addr(struct in_addr *pdns_addr)
219 static struct stat dns_addr_stat;
221 if (dns_addr.s_addr != 0) {
222 int ret;
223 ret = get_dns_addr_cached(pdns_addr, &dns_addr, sizeof(dns_addr),
224 &dns_addr_stat, &dns_addr_time);
225 if (ret <= 0) {
226 return ret;
229 return get_dns_addr_resolv_conf(AF_INET, pdns_addr, &dns_addr,
230 sizeof(dns_addr), NULL, &dns_addr_time);
233 int get_dns6_addr(struct in6_addr *pdns6_addr, uint32_t *scope_id)
235 static struct stat dns6_addr_stat;
237 if (!in6_zero(&dns6_addr)) {
238 int ret;
239 ret = get_dns_addr_cached(pdns6_addr, &dns6_addr, sizeof(dns6_addr),
240 &dns6_addr_stat, &dns6_addr_time);
241 if (ret <= 0) {
242 return ret;
245 return get_dns_addr_resolv_conf(AF_INET6, pdns6_addr, &dns6_addr,
246 sizeof(dns6_addr),
247 scope_id, &dns6_addr_time);
250 #endif
252 static void slirp_init_once(void)
254 static int initialized;
255 #ifdef _WIN32
256 WSADATA Data;
257 #endif
259 if (initialized) {
260 return;
262 initialized = 1;
264 #ifdef _WIN32
265 WSAStartup(MAKEWORD(2,0), &Data);
266 atexit(winsock_cleanup);
267 #endif
269 loopback_addr.s_addr = htonl(INADDR_LOOPBACK);
270 loopback_mask = htonl(IN_CLASSA_NET);
273 static void slirp_state_save(QEMUFile *f, void *opaque);
274 static int slirp_state_load(QEMUFile *f, void *opaque, int version_id);
276 static SaveVMHandlers savevm_slirp_state = {
277 .save_state = slirp_state_save,
278 .load_state = slirp_state_load,
281 Slirp *slirp_init(int restricted, bool in_enabled, struct in_addr vnetwork,
282 struct in_addr vnetmask, struct in_addr vhost,
283 bool in6_enabled,
284 struct in6_addr vprefix_addr6, uint8_t vprefix_len,
285 struct in6_addr vhost6, const char *vhostname,
286 const char *tftp_server_name,
287 const char *tftp_path, const char *bootfile,
288 struct in_addr vdhcp_start, struct in_addr vnameserver,
289 struct in6_addr vnameserver6, const char **vdnssearch,
290 const char *vdomainname, void *opaque)
292 Slirp *slirp = g_malloc0(sizeof(Slirp));
294 slirp_init_once();
296 slirp->grand = g_rand_new();
297 slirp->restricted = restricted;
299 slirp->in_enabled = in_enabled;
300 slirp->in6_enabled = in6_enabled;
302 if_init(slirp);
303 ip_init(slirp);
304 ip6_init(slirp);
306 /* Initialise mbufs *after* setting the MTU */
307 m_init(slirp);
309 slirp->vnetwork_addr = vnetwork;
310 slirp->vnetwork_mask = vnetmask;
311 slirp->vhost_addr = vhost;
312 slirp->vprefix_addr6 = vprefix_addr6;
313 slirp->vprefix_len = vprefix_len;
314 slirp->vhost_addr6 = vhost6;
315 if (vhostname) {
316 pstrcpy(slirp->client_hostname, sizeof(slirp->client_hostname),
317 vhostname);
319 slirp->tftp_prefix = g_strdup(tftp_path);
320 slirp->bootp_filename = g_strdup(bootfile);
321 slirp->vdomainname = g_strdup(vdomainname);
322 slirp->vdhcp_startaddr = vdhcp_start;
323 slirp->vnameserver_addr = vnameserver;
324 slirp->vnameserver_addr6 = vnameserver6;
325 slirp->tftp_server_name = g_strdup(tftp_server_name);
327 if (vdnssearch) {
328 translate_dnssearch(slirp, vdnssearch);
331 slirp->opaque = opaque;
333 register_savevm_live(NULL, "slirp", 0, 4, &savevm_slirp_state, slirp);
335 QTAILQ_INSERT_TAIL(&slirp_instances, slirp, entry);
337 return slirp;
340 void slirp_cleanup(Slirp *slirp)
342 QTAILQ_REMOVE(&slirp_instances, slirp, entry);
344 unregister_savevm(NULL, "slirp", slirp);
346 ip_cleanup(slirp);
347 ip6_cleanup(slirp);
348 m_cleanup(slirp);
350 g_rand_free(slirp->grand);
352 g_free(slirp->vdnssearch);
353 g_free(slirp->tftp_prefix);
354 g_free(slirp->bootp_filename);
355 g_free(slirp->vdomainname);
356 g_free(slirp);
359 #define CONN_CANFSEND(so) (((so)->so_state & (SS_FCANTSENDMORE|SS_ISFCONNECTED)) == SS_ISFCONNECTED)
360 #define CONN_CANFRCV(so) (((so)->so_state & (SS_FCANTRCVMORE|SS_ISFCONNECTED)) == SS_ISFCONNECTED)
362 static void slirp_update_timeout(uint32_t *timeout)
364 Slirp *slirp;
365 uint32_t t;
367 if (*timeout <= TIMEOUT_FAST) {
368 return;
371 t = MIN(1000, *timeout);
373 /* If we have tcp timeout with slirp, then we will fill @timeout with
374 * more precise value.
376 QTAILQ_FOREACH(slirp, &slirp_instances, entry) {
377 if (slirp->time_fasttimo) {
378 *timeout = TIMEOUT_FAST;
379 return;
381 if (slirp->do_slowtimo) {
382 t = MIN(TIMEOUT_SLOW, t);
385 *timeout = t;
388 void slirp_pollfds_fill(GArray *pollfds, uint32_t *timeout)
390 Slirp *slirp;
391 struct socket *so, *so_next;
393 if (QTAILQ_EMPTY(&slirp_instances)) {
394 return;
398 * First, TCP sockets
401 QTAILQ_FOREACH(slirp, &slirp_instances, entry) {
403 * *_slowtimo needs calling if there are IP fragments
404 * in the fragment queue, or there are TCP connections active
406 slirp->do_slowtimo = ((slirp->tcb.so_next != &slirp->tcb) ||
407 (&slirp->ipq.ip_link != slirp->ipq.ip_link.next));
409 for (so = slirp->tcb.so_next; so != &slirp->tcb;
410 so = so_next) {
411 int events = 0;
413 so_next = so->so_next;
415 so->pollfds_idx = -1;
418 * See if we need a tcp_fasttimo
420 if (slirp->time_fasttimo == 0 &&
421 so->so_tcpcb->t_flags & TF_DELACK) {
422 slirp->time_fasttimo = curtime; /* Flag when want a fasttimo */
426 * NOFDREF can include still connecting to local-host,
427 * newly socreated() sockets etc. Don't want to select these.
429 if (so->so_state & SS_NOFDREF || so->s == -1) {
430 continue;
434 * Set for reading sockets which are accepting
436 if (so->so_state & SS_FACCEPTCONN) {
437 GPollFD pfd = {
438 .fd = so->s,
439 .events = G_IO_IN | G_IO_HUP | G_IO_ERR,
441 so->pollfds_idx = pollfds->len;
442 g_array_append_val(pollfds, pfd);
443 continue;
447 * Set for writing sockets which are connecting
449 if (so->so_state & SS_ISFCONNECTING) {
450 GPollFD pfd = {
451 .fd = so->s,
452 .events = G_IO_OUT | G_IO_ERR,
454 so->pollfds_idx = pollfds->len;
455 g_array_append_val(pollfds, pfd);
456 continue;
460 * Set for writing if we are connected, can send more, and
461 * we have something to send
463 if (CONN_CANFSEND(so) && so->so_rcv.sb_cc) {
464 events |= G_IO_OUT | G_IO_ERR;
468 * Set for reading (and urgent data) if we are connected, can
469 * receive more, and we have room for it XXX /2 ?
471 if (CONN_CANFRCV(so) &&
472 (so->so_snd.sb_cc < (so->so_snd.sb_datalen/2))) {
473 events |= G_IO_IN | G_IO_HUP | G_IO_ERR | G_IO_PRI;
476 if (events) {
477 GPollFD pfd = {
478 .fd = so->s,
479 .events = events,
481 so->pollfds_idx = pollfds->len;
482 g_array_append_val(pollfds, pfd);
487 * UDP sockets
489 for (so = slirp->udb.so_next; so != &slirp->udb;
490 so = so_next) {
491 so_next = so->so_next;
493 so->pollfds_idx = -1;
496 * See if it's timed out
498 if (so->so_expire) {
499 if (so->so_expire <= curtime) {
500 udp_detach(so);
501 continue;
502 } else {
503 slirp->do_slowtimo = true; /* Let socket expire */
508 * When UDP packets are received from over the
509 * link, they're sendto()'d straight away, so
510 * no need for setting for writing
511 * Limit the number of packets queued by this session
512 * to 4. Note that even though we try and limit this
513 * to 4 packets, the session could have more queued
514 * if the packets needed to be fragmented
515 * (XXX <= 4 ?)
517 if ((so->so_state & SS_ISFCONNECTED) && so->so_queued <= 4) {
518 GPollFD pfd = {
519 .fd = so->s,
520 .events = G_IO_IN | G_IO_HUP | G_IO_ERR,
522 so->pollfds_idx = pollfds->len;
523 g_array_append_val(pollfds, pfd);
528 * ICMP sockets
530 for (so = slirp->icmp.so_next; so != &slirp->icmp;
531 so = so_next) {
532 so_next = so->so_next;
534 so->pollfds_idx = -1;
537 * See if it's timed out
539 if (so->so_expire) {
540 if (so->so_expire <= curtime) {
541 icmp_detach(so);
542 continue;
543 } else {
544 slirp->do_slowtimo = true; /* Let socket expire */
548 if (so->so_state & SS_ISFCONNECTED) {
549 GPollFD pfd = {
550 .fd = so->s,
551 .events = G_IO_IN | G_IO_HUP | G_IO_ERR,
553 so->pollfds_idx = pollfds->len;
554 g_array_append_val(pollfds, pfd);
558 slirp_update_timeout(timeout);
561 void slirp_pollfds_poll(GArray *pollfds, int select_error)
563 Slirp *slirp;
564 struct socket *so, *so_next;
565 int ret;
567 if (QTAILQ_EMPTY(&slirp_instances)) {
568 return;
571 curtime = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
573 QTAILQ_FOREACH(slirp, &slirp_instances, entry) {
575 * See if anything has timed out
577 if (slirp->time_fasttimo &&
578 ((curtime - slirp->time_fasttimo) >= TIMEOUT_FAST)) {
579 tcp_fasttimo(slirp);
580 slirp->time_fasttimo = 0;
582 if (slirp->do_slowtimo &&
583 ((curtime - slirp->last_slowtimo) >= TIMEOUT_SLOW)) {
584 ip_slowtimo(slirp);
585 tcp_slowtimo(slirp);
586 slirp->last_slowtimo = curtime;
590 * Check sockets
592 if (!select_error) {
594 * Check TCP sockets
596 for (so = slirp->tcb.so_next; so != &slirp->tcb;
597 so = so_next) {
598 int revents;
600 so_next = so->so_next;
602 revents = 0;
603 if (so->pollfds_idx != -1) {
604 revents = g_array_index(pollfds, GPollFD,
605 so->pollfds_idx).revents;
608 if (so->so_state & SS_NOFDREF || so->s == -1) {
609 continue;
613 * Check for URG data
614 * This will soread as well, so no need to
615 * test for G_IO_IN below if this succeeds
617 if (revents & G_IO_PRI) {
618 ret = sorecvoob(so);
619 if (ret < 0) {
620 /* Socket error might have resulted in the socket being
621 * removed, do not try to do anything more with it. */
622 continue;
626 * Check sockets for reading
628 else if (revents & (G_IO_IN | G_IO_HUP | G_IO_ERR)) {
630 * Check for incoming connections
632 if (so->so_state & SS_FACCEPTCONN) {
633 tcp_connect(so);
634 continue;
635 } /* else */
636 ret = soread(so);
638 /* Output it if we read something */
639 if (ret > 0) {
640 tcp_output(sototcpcb(so));
642 if (ret < 0) {
643 /* Socket error might have resulted in the socket being
644 * removed, do not try to do anything more with it. */
645 continue;
650 * Check sockets for writing
652 if (!(so->so_state & SS_NOFDREF) &&
653 (revents & (G_IO_OUT | G_IO_ERR))) {
655 * Check for non-blocking, still-connecting sockets
657 if (so->so_state & SS_ISFCONNECTING) {
658 /* Connected */
659 so->so_state &= ~SS_ISFCONNECTING;
661 ret = send(so->s, (const void *) &ret, 0, 0);
662 if (ret < 0) {
663 /* XXXXX Must fix, zero bytes is a NOP */
664 if (errno == EAGAIN || errno == EWOULDBLOCK ||
665 errno == EINPROGRESS || errno == ENOTCONN) {
666 continue;
669 /* else failed */
670 so->so_state &= SS_PERSISTENT_MASK;
671 so->so_state |= SS_NOFDREF;
673 /* else so->so_state &= ~SS_ISFCONNECTING; */
676 * Continue tcp_input
678 tcp_input((struct mbuf *)NULL, sizeof(struct ip), so,
679 so->so_ffamily);
680 /* continue; */
681 } else {
682 ret = sowrite(so);
683 if (ret > 0) {
684 /* Call tcp_output in case we need to send a window
685 * update to the guest, otherwise it will be stuck
686 * until it sends a window probe. */
687 tcp_output(sototcpcb(so));
693 * Probe a still-connecting, non-blocking socket
694 * to check if it's still alive
696 #ifdef PROBE_CONN
697 if (so->so_state & SS_ISFCONNECTING) {
698 ret = qemu_recv(so->s, &ret, 0, 0);
700 if (ret < 0) {
701 /* XXX */
702 if (errno == EAGAIN || errno == EWOULDBLOCK ||
703 errno == EINPROGRESS || errno == ENOTCONN) {
704 continue; /* Still connecting, continue */
707 /* else failed */
708 so->so_state &= SS_PERSISTENT_MASK;
709 so->so_state |= SS_NOFDREF;
711 /* tcp_input will take care of it */
712 } else {
713 ret = send(so->s, &ret, 0, 0);
714 if (ret < 0) {
715 /* XXX */
716 if (errno == EAGAIN || errno == EWOULDBLOCK ||
717 errno == EINPROGRESS || errno == ENOTCONN) {
718 continue;
720 /* else failed */
721 so->so_state &= SS_PERSISTENT_MASK;
722 so->so_state |= SS_NOFDREF;
723 } else {
724 so->so_state &= ~SS_ISFCONNECTING;
728 tcp_input((struct mbuf *)NULL, sizeof(struct ip), so,
729 so->so_ffamily);
730 } /* SS_ISFCONNECTING */
731 #endif
735 * Now UDP sockets.
736 * Incoming packets are sent straight away, they're not buffered.
737 * Incoming UDP data isn't buffered either.
739 for (so = slirp->udb.so_next; so != &slirp->udb;
740 so = so_next) {
741 int revents;
743 so_next = so->so_next;
745 revents = 0;
746 if (so->pollfds_idx != -1) {
747 revents = g_array_index(pollfds, GPollFD,
748 so->pollfds_idx).revents;
751 if (so->s != -1 &&
752 (revents & (G_IO_IN | G_IO_HUP | G_IO_ERR))) {
753 sorecvfrom(so);
758 * Check incoming ICMP relies.
760 for (so = slirp->icmp.so_next; so != &slirp->icmp;
761 so = so_next) {
762 int revents;
764 so_next = so->so_next;
766 revents = 0;
767 if (so->pollfds_idx != -1) {
768 revents = g_array_index(pollfds, GPollFD,
769 so->pollfds_idx).revents;
772 if (so->s != -1 &&
773 (revents & (G_IO_IN | G_IO_HUP | G_IO_ERR))) {
774 icmp_receive(so);
779 if_start(slirp);
783 static void arp_input(Slirp *slirp, const uint8_t *pkt, int pkt_len)
785 struct slirp_arphdr *ah = (struct slirp_arphdr *)(pkt + ETH_HLEN);
786 uint8_t arp_reply[MAX(ETH_HLEN + sizeof(struct slirp_arphdr), 64)];
787 struct ethhdr *reh = (struct ethhdr *)arp_reply;
788 struct slirp_arphdr *rah = (struct slirp_arphdr *)(arp_reply + ETH_HLEN);
789 int ar_op;
790 struct ex_list *ex_ptr;
792 if (!slirp->in_enabled) {
793 return;
796 ar_op = ntohs(ah->ar_op);
797 switch(ar_op) {
798 case ARPOP_REQUEST:
799 if (ah->ar_tip == ah->ar_sip) {
800 /* Gratuitous ARP */
801 arp_table_add(slirp, ah->ar_sip, ah->ar_sha);
802 return;
805 if ((ah->ar_tip & slirp->vnetwork_mask.s_addr) ==
806 slirp->vnetwork_addr.s_addr) {
807 if (ah->ar_tip == slirp->vnameserver_addr.s_addr ||
808 ah->ar_tip == slirp->vhost_addr.s_addr)
809 goto arp_ok;
810 for (ex_ptr = slirp->exec_list; ex_ptr; ex_ptr = ex_ptr->ex_next) {
811 if (ex_ptr->ex_addr.s_addr == ah->ar_tip)
812 goto arp_ok;
814 return;
815 arp_ok:
816 memset(arp_reply, 0, sizeof(arp_reply));
818 arp_table_add(slirp, ah->ar_sip, ah->ar_sha);
820 /* ARP request for alias/dns mac address */
821 memcpy(reh->h_dest, pkt + ETH_ALEN, ETH_ALEN);
822 memcpy(reh->h_source, special_ethaddr, ETH_ALEN - 4);
823 memcpy(&reh->h_source[2], &ah->ar_tip, 4);
824 reh->h_proto = htons(ETH_P_ARP);
826 rah->ar_hrd = htons(1);
827 rah->ar_pro = htons(ETH_P_IP);
828 rah->ar_hln = ETH_ALEN;
829 rah->ar_pln = 4;
830 rah->ar_op = htons(ARPOP_REPLY);
831 memcpy(rah->ar_sha, reh->h_source, ETH_ALEN);
832 rah->ar_sip = ah->ar_tip;
833 memcpy(rah->ar_tha, ah->ar_sha, ETH_ALEN);
834 rah->ar_tip = ah->ar_sip;
835 slirp_output(slirp->opaque, arp_reply, sizeof(arp_reply));
837 break;
838 case ARPOP_REPLY:
839 arp_table_add(slirp, ah->ar_sip, ah->ar_sha);
840 break;
841 default:
842 break;
846 void slirp_input(Slirp *slirp, const uint8_t *pkt, int pkt_len)
848 struct mbuf *m;
849 int proto;
851 if (pkt_len < ETH_HLEN)
852 return;
854 proto = ntohs(*(uint16_t *)(pkt + 12));
855 switch(proto) {
856 case ETH_P_ARP:
857 arp_input(slirp, pkt, pkt_len);
858 break;
859 case ETH_P_IP:
860 case ETH_P_IPV6:
861 m = m_get(slirp);
862 if (!m)
863 return;
864 /* Note: we add 2 to align the IP header on 4 bytes,
865 * and add the margin for the tcpiphdr overhead */
866 if (M_FREEROOM(m) < pkt_len + TCPIPHDR_DELTA + 2) {
867 m_inc(m, pkt_len + TCPIPHDR_DELTA + 2);
869 m->m_len = pkt_len + TCPIPHDR_DELTA + 2;
870 memcpy(m->m_data + TCPIPHDR_DELTA + 2, pkt, pkt_len);
872 m->m_data += TCPIPHDR_DELTA + 2 + ETH_HLEN;
873 m->m_len -= TCPIPHDR_DELTA + 2 + ETH_HLEN;
875 if (proto == ETH_P_IP) {
876 ip_input(m);
877 } else if (proto == ETH_P_IPV6) {
878 ip6_input(m);
880 break;
882 case ETH_P_NCSI:
883 ncsi_input(slirp, pkt, pkt_len);
884 break;
886 default:
887 break;
891 /* Prepare the IPv4 packet to be sent to the ethernet device. Returns 1 if no
892 * packet should be sent, 0 if the packet must be re-queued, 2 if the packet
893 * is ready to go.
895 static int if_encap4(Slirp *slirp, struct mbuf *ifm, struct ethhdr *eh,
896 uint8_t ethaddr[ETH_ALEN])
898 const struct ip *iph = (const struct ip *)ifm->m_data;
900 if (iph->ip_dst.s_addr == 0) {
901 /* 0.0.0.0 can not be a destination address, something went wrong,
902 * avoid making it worse */
903 return 1;
905 if (!arp_table_search(slirp, iph->ip_dst.s_addr, ethaddr)) {
906 uint8_t arp_req[ETH_HLEN + sizeof(struct slirp_arphdr)];
907 struct ethhdr *reh = (struct ethhdr *)arp_req;
908 struct slirp_arphdr *rah = (struct slirp_arphdr *)(arp_req + ETH_HLEN);
910 if (!ifm->resolution_requested) {
911 /* If the client addr is not known, send an ARP request */
912 memset(reh->h_dest, 0xff, ETH_ALEN);
913 memcpy(reh->h_source, special_ethaddr, ETH_ALEN - 4);
914 memcpy(&reh->h_source[2], &slirp->vhost_addr, 4);
915 reh->h_proto = htons(ETH_P_ARP);
916 rah->ar_hrd = htons(1);
917 rah->ar_pro = htons(ETH_P_IP);
918 rah->ar_hln = ETH_ALEN;
919 rah->ar_pln = 4;
920 rah->ar_op = htons(ARPOP_REQUEST);
922 /* source hw addr */
923 memcpy(rah->ar_sha, special_ethaddr, ETH_ALEN - 4);
924 memcpy(&rah->ar_sha[2], &slirp->vhost_addr, 4);
926 /* source IP */
927 rah->ar_sip = slirp->vhost_addr.s_addr;
929 /* target hw addr (none) */
930 memset(rah->ar_tha, 0, ETH_ALEN);
932 /* target IP */
933 rah->ar_tip = iph->ip_dst.s_addr;
934 slirp->client_ipaddr = iph->ip_dst;
935 slirp_output(slirp->opaque, arp_req, sizeof(arp_req));
936 ifm->resolution_requested = true;
938 /* Expire request and drop outgoing packet after 1 second */
939 ifm->expiration_date = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + 1000000000ULL;
941 return 0;
942 } else {
943 memcpy(eh->h_source, special_ethaddr, ETH_ALEN - 4);
944 /* XXX: not correct */
945 memcpy(&eh->h_source[2], &slirp->vhost_addr, 4);
946 eh->h_proto = htons(ETH_P_IP);
948 /* Send this */
949 return 2;
953 /* Prepare the IPv6 packet to be sent to the ethernet device. Returns 1 if no
954 * packet should be sent, 0 if the packet must be re-queued, 2 if the packet
955 * is ready to go.
957 static int if_encap6(Slirp *slirp, struct mbuf *ifm, struct ethhdr *eh,
958 uint8_t ethaddr[ETH_ALEN])
960 const struct ip6 *ip6h = mtod(ifm, const struct ip6 *);
961 if (!ndp_table_search(slirp, ip6h->ip_dst, ethaddr)) {
962 if (!ifm->resolution_requested) {
963 ndp_send_ns(slirp, ip6h->ip_dst);
964 ifm->resolution_requested = true;
965 ifm->expiration_date =
966 qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + 1000000000ULL;
968 return 0;
969 } else {
970 eh->h_proto = htons(ETH_P_IPV6);
971 in6_compute_ethaddr(ip6h->ip_src, eh->h_source);
973 /* Send this */
974 return 2;
978 /* Output the IP packet to the ethernet device. Returns 0 if the packet must be
979 * re-queued.
981 int if_encap(Slirp *slirp, struct mbuf *ifm)
983 uint8_t buf[1600];
984 struct ethhdr *eh = (struct ethhdr *)buf;
985 uint8_t ethaddr[ETH_ALEN];
986 const struct ip *iph = (const struct ip *)ifm->m_data;
987 int ret;
989 if (ifm->m_len + ETH_HLEN > sizeof(buf)) {
990 return 1;
993 switch (iph->ip_v) {
994 case IPVERSION:
995 ret = if_encap4(slirp, ifm, eh, ethaddr);
996 if (ret < 2) {
997 return ret;
999 break;
1001 case IP6VERSION:
1002 ret = if_encap6(slirp, ifm, eh, ethaddr);
1003 if (ret < 2) {
1004 return ret;
1006 break;
1008 default:
1009 g_assert_not_reached();
1010 break;
1013 memcpy(eh->h_dest, ethaddr, ETH_ALEN);
1014 DEBUG_ARGS((dfd, " src = %02x:%02x:%02x:%02x:%02x:%02x\n",
1015 eh->h_source[0], eh->h_source[1], eh->h_source[2],
1016 eh->h_source[3], eh->h_source[4], eh->h_source[5]));
1017 DEBUG_ARGS((dfd, " dst = %02x:%02x:%02x:%02x:%02x:%02x\n",
1018 eh->h_dest[0], eh->h_dest[1], eh->h_dest[2],
1019 eh->h_dest[3], eh->h_dest[4], eh->h_dest[5]));
1020 memcpy(buf + sizeof(struct ethhdr), ifm->m_data, ifm->m_len);
1021 slirp_output(slirp->opaque, buf, ifm->m_len + ETH_HLEN);
1022 return 1;
1025 /* Drop host forwarding rule, return 0 if found. */
1026 int slirp_remove_hostfwd(Slirp *slirp, int is_udp, struct in_addr host_addr,
1027 int host_port)
1029 struct socket *so;
1030 struct socket *head = (is_udp ? &slirp->udb : &slirp->tcb);
1031 struct sockaddr_in addr;
1032 int port = htons(host_port);
1033 socklen_t addr_len;
1035 for (so = head->so_next; so != head; so = so->so_next) {
1036 addr_len = sizeof(addr);
1037 if ((so->so_state & SS_HOSTFWD) &&
1038 getsockname(so->s, (struct sockaddr *)&addr, &addr_len) == 0 &&
1039 addr.sin_addr.s_addr == host_addr.s_addr &&
1040 addr.sin_port == port) {
1041 close(so->s);
1042 sofree(so);
1043 return 0;
1047 return -1;
1050 int slirp_add_hostfwd(Slirp *slirp, int is_udp, struct in_addr host_addr,
1051 int host_port, struct in_addr guest_addr, int guest_port)
1053 if (!guest_addr.s_addr) {
1054 guest_addr = slirp->vdhcp_startaddr;
1056 if (is_udp) {
1057 if (!udp_listen(slirp, host_addr.s_addr, htons(host_port),
1058 guest_addr.s_addr, htons(guest_port), SS_HOSTFWD))
1059 return -1;
1060 } else {
1061 if (!tcp_listen(slirp, host_addr.s_addr, htons(host_port),
1062 guest_addr.s_addr, htons(guest_port), SS_HOSTFWD))
1063 return -1;
1065 return 0;
1068 int slirp_add_exec(Slirp *slirp, int do_pty, const void *args,
1069 struct in_addr *guest_addr, int guest_port)
1071 if (!guest_addr->s_addr) {
1072 guest_addr->s_addr = slirp->vnetwork_addr.s_addr |
1073 (htonl(0x0204) & ~slirp->vnetwork_mask.s_addr);
1075 if ((guest_addr->s_addr & slirp->vnetwork_mask.s_addr) !=
1076 slirp->vnetwork_addr.s_addr ||
1077 guest_addr->s_addr == slirp->vhost_addr.s_addr ||
1078 guest_addr->s_addr == slirp->vnameserver_addr.s_addr) {
1079 return -1;
1081 return add_exec(&slirp->exec_list, do_pty, (char *)args, *guest_addr,
1082 htons(guest_port));
1085 ssize_t slirp_send(struct socket *so, const void *buf, size_t len, int flags)
1087 if (so->s == -1 && so->extra) {
1088 /* XXX this blocks entire thread. Rewrite to use
1089 * qemu_chr_fe_write and background I/O callbacks */
1090 qemu_chr_fe_write_all(so->extra, buf, len);
1091 return len;
1094 return send(so->s, buf, len, flags);
1097 static struct socket *
1098 slirp_find_ctl_socket(Slirp *slirp, struct in_addr guest_addr, int guest_port)
1100 struct socket *so;
1102 for (so = slirp->tcb.so_next; so != &slirp->tcb; so = so->so_next) {
1103 if (so->so_faddr.s_addr == guest_addr.s_addr &&
1104 htons(so->so_fport) == guest_port) {
1105 return so;
1108 return NULL;
1111 size_t slirp_socket_can_recv(Slirp *slirp, struct in_addr guest_addr,
1112 int guest_port)
1114 struct iovec iov[2];
1115 struct socket *so;
1117 so = slirp_find_ctl_socket(slirp, guest_addr, guest_port);
1119 if (!so || so->so_state & SS_NOFDREF) {
1120 return 0;
1123 if (!CONN_CANFRCV(so) || so->so_snd.sb_cc >= (so->so_snd.sb_datalen/2)) {
1124 return 0;
1127 return sopreprbuf(so, iov, NULL);
1130 void slirp_socket_recv(Slirp *slirp, struct in_addr guest_addr, int guest_port,
1131 const uint8_t *buf, int size)
1133 int ret;
1134 struct socket *so = slirp_find_ctl_socket(slirp, guest_addr, guest_port);
1136 if (!so)
1137 return;
1139 ret = soreadbuf(so, (const char *)buf, size);
1141 if (ret > 0)
1142 tcp_output(sototcpcb(so));
1145 static int slirp_tcp_post_load(void *opaque, int version)
1147 tcp_template((struct tcpcb *)opaque);
1149 return 0;
1152 static const VMStateDescription vmstate_slirp_tcp = {
1153 .name = "slirp-tcp",
1154 .version_id = 0,
1155 .post_load = slirp_tcp_post_load,
1156 .fields = (VMStateField[]) {
1157 VMSTATE_INT16(t_state, struct tcpcb),
1158 VMSTATE_INT16_ARRAY(t_timer, struct tcpcb, TCPT_NTIMERS),
1159 VMSTATE_INT16(t_rxtshift, struct tcpcb),
1160 VMSTATE_INT16(t_rxtcur, struct tcpcb),
1161 VMSTATE_INT16(t_dupacks, struct tcpcb),
1162 VMSTATE_UINT16(t_maxseg, struct tcpcb),
1163 VMSTATE_UINT8(t_force, struct tcpcb),
1164 VMSTATE_UINT16(t_flags, struct tcpcb),
1165 VMSTATE_UINT32(snd_una, struct tcpcb),
1166 VMSTATE_UINT32(snd_nxt, struct tcpcb),
1167 VMSTATE_UINT32(snd_up, struct tcpcb),
1168 VMSTATE_UINT32(snd_wl1, struct tcpcb),
1169 VMSTATE_UINT32(snd_wl2, struct tcpcb),
1170 VMSTATE_UINT32(iss, struct tcpcb),
1171 VMSTATE_UINT32(snd_wnd, struct tcpcb),
1172 VMSTATE_UINT32(rcv_wnd, struct tcpcb),
1173 VMSTATE_UINT32(rcv_nxt, struct tcpcb),
1174 VMSTATE_UINT32(rcv_up, struct tcpcb),
1175 VMSTATE_UINT32(irs, struct tcpcb),
1176 VMSTATE_UINT32(rcv_adv, struct tcpcb),
1177 VMSTATE_UINT32(snd_max, struct tcpcb),
1178 VMSTATE_UINT32(snd_cwnd, struct tcpcb),
1179 VMSTATE_UINT32(snd_ssthresh, struct tcpcb),
1180 VMSTATE_INT16(t_idle, struct tcpcb),
1181 VMSTATE_INT16(t_rtt, struct tcpcb),
1182 VMSTATE_UINT32(t_rtseq, struct tcpcb),
1183 VMSTATE_INT16(t_srtt, struct tcpcb),
1184 VMSTATE_INT16(t_rttvar, struct tcpcb),
1185 VMSTATE_UINT16(t_rttmin, struct tcpcb),
1186 VMSTATE_UINT32(max_sndwnd, struct tcpcb),
1187 VMSTATE_UINT8(t_oobflags, struct tcpcb),
1188 VMSTATE_UINT8(t_iobc, struct tcpcb),
1189 VMSTATE_INT16(t_softerror, struct tcpcb),
1190 VMSTATE_UINT8(snd_scale, struct tcpcb),
1191 VMSTATE_UINT8(rcv_scale, struct tcpcb),
1192 VMSTATE_UINT8(request_r_scale, struct tcpcb),
1193 VMSTATE_UINT8(requested_s_scale, struct tcpcb),
1194 VMSTATE_UINT32(ts_recent, struct tcpcb),
1195 VMSTATE_UINT32(ts_recent_age, struct tcpcb),
1196 VMSTATE_UINT32(last_ack_sent, struct tcpcb),
1197 VMSTATE_END_OF_LIST()
1201 /* The sbuf has a pair of pointers that are migrated as offsets;
1202 * we calculate the offsets and restore the pointers using
1203 * pre_save/post_load on a tmp structure.
1205 struct sbuf_tmp {
1206 struct sbuf *parent;
1207 uint32_t roff, woff;
1210 static int sbuf_tmp_pre_save(void *opaque)
1212 struct sbuf_tmp *tmp = opaque;
1213 tmp->woff = tmp->parent->sb_wptr - tmp->parent->sb_data;
1214 tmp->roff = tmp->parent->sb_rptr - tmp->parent->sb_data;
1216 return 0;
1219 static int sbuf_tmp_post_load(void *opaque, int version)
1221 struct sbuf_tmp *tmp = opaque;
1222 uint32_t requested_len = tmp->parent->sb_datalen;
1224 /* Allocate the buffer space used by the field after the tmp */
1225 sbreserve(tmp->parent, tmp->parent->sb_datalen);
1227 if (tmp->parent->sb_datalen != requested_len) {
1228 return -ENOMEM;
1230 if (tmp->woff >= requested_len ||
1231 tmp->roff >= requested_len) {
1232 error_report("invalid sbuf offsets r/w=%u/%u len=%u",
1233 tmp->roff, tmp->woff, requested_len);
1234 return -EINVAL;
1237 tmp->parent->sb_wptr = tmp->parent->sb_data + tmp->woff;
1238 tmp->parent->sb_rptr = tmp->parent->sb_data + tmp->roff;
1240 return 0;
1244 static const VMStateDescription vmstate_slirp_sbuf_tmp = {
1245 .name = "slirp-sbuf-tmp",
1246 .post_load = sbuf_tmp_post_load,
1247 .pre_save = sbuf_tmp_pre_save,
1248 .version_id = 0,
1249 .fields = (VMStateField[]) {
1250 VMSTATE_UINT32(woff, struct sbuf_tmp),
1251 VMSTATE_UINT32(roff, struct sbuf_tmp),
1252 VMSTATE_END_OF_LIST()
1256 static const VMStateDescription vmstate_slirp_sbuf = {
1257 .name = "slirp-sbuf",
1258 .version_id = 0,
1259 .fields = (VMStateField[]) {
1260 VMSTATE_UINT32(sb_cc, struct sbuf),
1261 VMSTATE_UINT32(sb_datalen, struct sbuf),
1262 VMSTATE_WITH_TMP(struct sbuf, struct sbuf_tmp, vmstate_slirp_sbuf_tmp),
1263 VMSTATE_VBUFFER_UINT32(sb_data, struct sbuf, 0, NULL, sb_datalen),
1264 VMSTATE_END_OF_LIST()
1268 static bool slirp_older_than_v4(void *opaque, int version_id)
1270 return version_id < 4;
1273 static bool slirp_family_inet(void *opaque, int version_id)
1275 union slirp_sockaddr *ssa = (union slirp_sockaddr *)opaque;
1276 return ssa->ss.ss_family == AF_INET;
1279 static int slirp_socket_pre_load(void *opaque)
1281 struct socket *so = opaque;
1282 if (tcp_attach(so) < 0) {
1283 return -ENOMEM;
1285 /* Older versions don't load these fields */
1286 so->so_ffamily = AF_INET;
1287 so->so_lfamily = AF_INET;
1288 return 0;
1291 #ifndef _WIN32
1292 #define VMSTATE_SIN4_ADDR(f, s, t) VMSTATE_UINT32_TEST(f, s, t)
1293 #else
1294 /* Win uses u_long rather than uint32_t - but it's still 32bits long */
1295 #define VMSTATE_SIN4_ADDR(f, s, t) VMSTATE_SINGLE_TEST(f, s, t, 0, \
1296 vmstate_info_uint32, u_long)
1297 #endif
1299 /* The OS provided ss_family field isn't that portable; it's size
1300 * and type varies (16/8 bit, signed, unsigned)
1301 * and the values it contains aren't fully portable.
1303 typedef struct SS_FamilyTmpStruct {
1304 union slirp_sockaddr *parent;
1305 uint16_t portable_family;
1306 } SS_FamilyTmpStruct;
1308 #define SS_FAMILY_MIG_IPV4 2 /* Linux, BSD, Win... */
1309 #define SS_FAMILY_MIG_IPV6 10 /* Linux */
1310 #define SS_FAMILY_MIG_OTHER 0xffff
1312 static int ss_family_pre_save(void *opaque)
1314 SS_FamilyTmpStruct *tss = opaque;
1316 tss->portable_family = SS_FAMILY_MIG_OTHER;
1318 if (tss->parent->ss.ss_family == AF_INET) {
1319 tss->portable_family = SS_FAMILY_MIG_IPV4;
1320 } else if (tss->parent->ss.ss_family == AF_INET6) {
1321 tss->portable_family = SS_FAMILY_MIG_IPV6;
1324 return 0;
1327 static int ss_family_post_load(void *opaque, int version_id)
1329 SS_FamilyTmpStruct *tss = opaque;
1331 switch (tss->portable_family) {
1332 case SS_FAMILY_MIG_IPV4:
1333 tss->parent->ss.ss_family = AF_INET;
1334 break;
1335 case SS_FAMILY_MIG_IPV6:
1336 case 23: /* compatibility: AF_INET6 from mingw */
1337 case 28: /* compatibility: AF_INET6 from FreeBSD sys/socket.h */
1338 tss->parent->ss.ss_family = AF_INET6;
1339 break;
1340 default:
1341 error_report("invalid ss_family type %x", tss->portable_family);
1342 return -EINVAL;
1345 return 0;
1348 static const VMStateDescription vmstate_slirp_ss_family = {
1349 .name = "slirp-socket-addr/ss_family",
1350 .pre_save = ss_family_pre_save,
1351 .post_load = ss_family_post_load,
1352 .fields = (VMStateField[]) {
1353 VMSTATE_UINT16(portable_family, SS_FamilyTmpStruct),
1354 VMSTATE_END_OF_LIST()
1358 static const VMStateDescription vmstate_slirp_socket_addr = {
1359 .name = "slirp-socket-addr",
1360 .version_id = 4,
1361 .fields = (VMStateField[]) {
1362 VMSTATE_WITH_TMP(union slirp_sockaddr, SS_FamilyTmpStruct,
1363 vmstate_slirp_ss_family),
1364 VMSTATE_SIN4_ADDR(sin.sin_addr.s_addr, union slirp_sockaddr,
1365 slirp_family_inet),
1366 VMSTATE_UINT16_TEST(sin.sin_port, union slirp_sockaddr,
1367 slirp_family_inet),
1369 #if 0
1370 /* Untested: Needs checking by someone with IPv6 test */
1371 VMSTATE_BUFFER_TEST(sin6.sin6_addr, union slirp_sockaddr,
1372 slirp_family_inet6),
1373 VMSTATE_UINT16_TEST(sin6.sin6_port, union slirp_sockaddr,
1374 slirp_family_inet6),
1375 VMSTATE_UINT32_TEST(sin6.sin6_flowinfo, union slirp_sockaddr,
1376 slirp_family_inet6),
1377 VMSTATE_UINT32_TEST(sin6.sin6_scope_id, union slirp_sockaddr,
1378 slirp_family_inet6),
1379 #endif
1381 VMSTATE_END_OF_LIST()
1385 static const VMStateDescription vmstate_slirp_socket = {
1386 .name = "slirp-socket",
1387 .version_id = 4,
1388 .pre_load = slirp_socket_pre_load,
1389 .fields = (VMStateField[]) {
1390 VMSTATE_UINT32(so_urgc, struct socket),
1391 /* Pre-v4 versions */
1392 VMSTATE_SIN4_ADDR(so_faddr.s_addr, struct socket,
1393 slirp_older_than_v4),
1394 VMSTATE_SIN4_ADDR(so_laddr.s_addr, struct socket,
1395 slirp_older_than_v4),
1396 VMSTATE_UINT16_TEST(so_fport, struct socket, slirp_older_than_v4),
1397 VMSTATE_UINT16_TEST(so_lport, struct socket, slirp_older_than_v4),
1398 /* v4 and newer */
1399 VMSTATE_STRUCT(fhost, struct socket, 4, vmstate_slirp_socket_addr,
1400 union slirp_sockaddr),
1401 VMSTATE_STRUCT(lhost, struct socket, 4, vmstate_slirp_socket_addr,
1402 union slirp_sockaddr),
1404 VMSTATE_UINT8(so_iptos, struct socket),
1405 VMSTATE_UINT8(so_emu, struct socket),
1406 VMSTATE_UINT8(so_type, struct socket),
1407 VMSTATE_INT32(so_state, struct socket),
1408 VMSTATE_STRUCT(so_rcv, struct socket, 0, vmstate_slirp_sbuf,
1409 struct sbuf),
1410 VMSTATE_STRUCT(so_snd, struct socket, 0, vmstate_slirp_sbuf,
1411 struct sbuf),
1412 VMSTATE_STRUCT_POINTER(so_tcpcb, struct socket, vmstate_slirp_tcp,
1413 struct tcpcb),
1414 VMSTATE_END_OF_LIST()
1418 static const VMStateDescription vmstate_slirp_bootp_client = {
1419 .name = "slirp_bootpclient",
1420 .fields = (VMStateField[]) {
1421 VMSTATE_UINT16(allocated, BOOTPClient),
1422 VMSTATE_BUFFER(macaddr, BOOTPClient),
1423 VMSTATE_END_OF_LIST()
1427 static const VMStateDescription vmstate_slirp = {
1428 .name = "slirp",
1429 .version_id = 4,
1430 .fields = (VMStateField[]) {
1431 VMSTATE_UINT16_V(ip_id, Slirp, 2),
1432 VMSTATE_STRUCT_ARRAY(bootp_clients, Slirp, NB_BOOTP_CLIENTS, 3,
1433 vmstate_slirp_bootp_client, BOOTPClient),
1434 VMSTATE_END_OF_LIST()
1438 static void slirp_state_save(QEMUFile *f, void *opaque)
1440 Slirp *slirp = opaque;
1441 struct ex_list *ex_ptr;
1443 for (ex_ptr = slirp->exec_list; ex_ptr; ex_ptr = ex_ptr->ex_next)
1444 if (ex_ptr->ex_pty == 3) {
1445 struct socket *so;
1446 so = slirp_find_ctl_socket(slirp, ex_ptr->ex_addr,
1447 ntohs(ex_ptr->ex_fport));
1448 if (!so)
1449 continue;
1451 qemu_put_byte(f, 42);
1452 vmstate_save_state(f, &vmstate_slirp_socket, so, NULL);
1454 qemu_put_byte(f, 0);
1456 vmstate_save_state(f, &vmstate_slirp, slirp, NULL);
1460 static int slirp_state_load(QEMUFile *f, void *opaque, int version_id)
1462 Slirp *slirp = opaque;
1463 struct ex_list *ex_ptr;
1465 while (qemu_get_byte(f)) {
1466 int ret;
1467 struct socket *so = socreate(slirp);
1469 if (!so)
1470 return -ENOMEM;
1472 ret = vmstate_load_state(f, &vmstate_slirp_socket, so, version_id);
1474 if (ret < 0)
1475 return ret;
1477 if ((so->so_faddr.s_addr & slirp->vnetwork_mask.s_addr) !=
1478 slirp->vnetwork_addr.s_addr) {
1479 return -EINVAL;
1481 for (ex_ptr = slirp->exec_list; ex_ptr; ex_ptr = ex_ptr->ex_next) {
1482 if (ex_ptr->ex_pty == 3 &&
1483 so->so_faddr.s_addr == ex_ptr->ex_addr.s_addr &&
1484 so->so_fport == ex_ptr->ex_fport) {
1485 break;
1488 if (!ex_ptr)
1489 return -EINVAL;
1491 so->extra = (void *)ex_ptr->ex_exec;
1494 return vmstate_load_state(f, &vmstate_slirp, slirp, version_id);