2 * RISC-V Vector Extension Helpers for QEMU.
4 * Copyright (c) 2020 T-Head Semiconductor Co., Ltd. All rights reserved.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
21 #include "exec/memop.h"
22 #include "exec/exec-all.h"
23 #include "exec/helper-proto.h"
24 #include "fpu/softfloat.h"
25 #include "tcg/tcg-gvec-desc.h"
26 #include "internals.h"
29 target_ulong
HELPER(vsetvl
)(CPURISCVState
*env
, target_ulong s1
,
33 RISCVCPU
*cpu
= env_archcpu(env
);
34 uint16_t sew
= 8 << FIELD_EX64(s2
, VTYPE
, VSEW
);
35 uint8_t ediv
= FIELD_EX64(s2
, VTYPE
, VEDIV
);
36 bool vill
= FIELD_EX64(s2
, VTYPE
, VILL
);
37 target_ulong reserved
= FIELD_EX64(s2
, VTYPE
, RESERVED
);
39 if ((sew
> cpu
->cfg
.elen
) || vill
|| (ediv
!= 0) || (reserved
!= 0)) {
40 /* only set vill bit. */
41 env
->vtype
= FIELD_DP64(0, VTYPE
, VILL
, 1);
47 vlmax
= vext_get_vlmax(cpu
, s2
);
60 * Note that vector data is stored in host-endian 64-bit chunks,
61 * so addressing units smaller than that needs a host-endian fixup.
63 #ifdef HOST_WORDS_BIGENDIAN
64 #define H1(x) ((x) ^ 7)
65 #define H1_2(x) ((x) ^ 6)
66 #define H1_4(x) ((x) ^ 4)
67 #define H2(x) ((x) ^ 3)
68 #define H4(x) ((x) ^ 1)
79 static inline uint32_t vext_nf(uint32_t desc
)
81 return FIELD_EX32(simd_data(desc
), VDATA
, NF
);
84 static inline uint32_t vext_mlen(uint32_t desc
)
86 return FIELD_EX32(simd_data(desc
), VDATA
, MLEN
);
89 static inline uint32_t vext_vm(uint32_t desc
)
91 return FIELD_EX32(simd_data(desc
), VDATA
, VM
);
94 static inline uint32_t vext_lmul(uint32_t desc
)
96 return FIELD_EX32(simd_data(desc
), VDATA
, LMUL
);
99 static uint32_t vext_wd(uint32_t desc
)
101 return (simd_data(desc
) >> 11) & 0x1;
105 * Get vector group length in bytes. Its range is [64, 2048].
107 * As simd_desc support at most 256, the max vlen is 512 bits.
108 * So vlen in bytes is encoded as maxsz.
110 static inline uint32_t vext_maxsz(uint32_t desc
)
112 return simd_maxsz(desc
) << vext_lmul(desc
);
116 * This function checks watchpoint before real load operation.
118 * In softmmu mode, the TLB API probe_access is enough for watchpoint check.
119 * In user mode, there is no watchpoint support now.
121 * It will trigger an exception if there is no mapping in TLB
122 * and page table walk can't fill the TLB entry. Then the guest
123 * software can return here after process the exception or never return.
125 static void probe_pages(CPURISCVState
*env
, target_ulong addr
,
126 target_ulong len
, uintptr_t ra
,
127 MMUAccessType access_type
)
129 target_ulong pagelen
= -(addr
| TARGET_PAGE_MASK
);
130 target_ulong curlen
= MIN(pagelen
, len
);
132 probe_access(env
, addr
, curlen
, access_type
,
133 cpu_mmu_index(env
, false), ra
);
136 curlen
= len
- curlen
;
137 probe_access(env
, addr
, curlen
, access_type
,
138 cpu_mmu_index(env
, false), ra
);
142 #ifdef HOST_WORDS_BIGENDIAN
143 static void vext_clear(void *tail
, uint32_t cnt
, uint32_t tot
)
146 * Split the remaining range to two parts.
147 * The first part is in the last uint64_t unit.
148 * The second part start from the next uint64_t unit.
150 int part1
= 0, part2
= tot
- cnt
;
152 part1
= 8 - (cnt
% 8);
153 part2
= tot
- cnt
- part1
;
154 memset(QEMU_ALIGN_PTR_DOWN(tail
, 8), 0, part1
);
155 memset(QEMU_ALIGN_PTR_UP(tail
, 8), 0, part2
);
157 memset(tail
, 0, part2
);
161 static void vext_clear(void *tail
, uint32_t cnt
, uint32_t tot
)
163 memset(tail
, 0, tot
- cnt
);
167 static void clearb(void *vd
, uint32_t idx
, uint32_t cnt
, uint32_t tot
)
169 int8_t *cur
= ((int8_t *)vd
+ H1(idx
));
170 vext_clear(cur
, cnt
, tot
);
173 static void clearh(void *vd
, uint32_t idx
, uint32_t cnt
, uint32_t tot
)
175 int16_t *cur
= ((int16_t *)vd
+ H2(idx
));
176 vext_clear(cur
, cnt
, tot
);
179 static void clearl(void *vd
, uint32_t idx
, uint32_t cnt
, uint32_t tot
)
181 int32_t *cur
= ((int32_t *)vd
+ H4(idx
));
182 vext_clear(cur
, cnt
, tot
);
185 static void clearq(void *vd
, uint32_t idx
, uint32_t cnt
, uint32_t tot
)
187 int64_t *cur
= (int64_t *)vd
+ idx
;
188 vext_clear(cur
, cnt
, tot
);
191 static inline void vext_set_elem_mask(void *v0
, int mlen
, int index
,
194 int idx
= (index
* mlen
) / 64;
195 int pos
= (index
* mlen
) % 64;
196 uint64_t old
= ((uint64_t *)v0
)[idx
];
197 ((uint64_t *)v0
)[idx
] = deposit64(old
, pos
, mlen
, value
);
200 static inline int vext_elem_mask(void *v0
, int mlen
, int index
)
202 int idx
= (index
* mlen
) / 64;
203 int pos
= (index
* mlen
) % 64;
204 return (((uint64_t *)v0
)[idx
] >> pos
) & 1;
207 /* elements operations for load and store */
208 typedef void vext_ldst_elem_fn(CPURISCVState
*env
, target_ulong addr
,
209 uint32_t idx
, void *vd
, uintptr_t retaddr
);
210 typedef void clear_fn(void *vd
, uint32_t idx
, uint32_t cnt
, uint32_t tot
);
212 #define GEN_VEXT_LD_ELEM(NAME, MTYPE, ETYPE, H, LDSUF) \
213 static void NAME(CPURISCVState *env, abi_ptr addr, \
214 uint32_t idx, void *vd, uintptr_t retaddr)\
217 ETYPE *cur = ((ETYPE *)vd + H(idx)); \
218 data = cpu_##LDSUF##_data_ra(env, addr, retaddr); \
222 GEN_VEXT_LD_ELEM(ldb_b, int8_t, int8_t, H1, ldsb)
223 GEN_VEXT_LD_ELEM(ldb_h
, int8_t, int16_t, H2
, ldsb
)
224 GEN_VEXT_LD_ELEM(ldb_w
, int8_t, int32_t, H4
, ldsb
)
225 GEN_VEXT_LD_ELEM(ldb_d
, int8_t, int64_t, H8
, ldsb
)
226 GEN_VEXT_LD_ELEM(ldh_h
, int16_t, int16_t, H2
, ldsw
)
227 GEN_VEXT_LD_ELEM(ldh_w
, int16_t, int32_t, H4
, ldsw
)
228 GEN_VEXT_LD_ELEM(ldh_d
, int16_t, int64_t, H8
, ldsw
)
229 GEN_VEXT_LD_ELEM(ldw_w
, int32_t, int32_t, H4
, ldl
)
230 GEN_VEXT_LD_ELEM(ldw_d
, int32_t, int64_t, H8
, ldl
)
231 GEN_VEXT_LD_ELEM(lde_b
, int8_t, int8_t, H1
, ldsb
)
232 GEN_VEXT_LD_ELEM(lde_h
, int16_t, int16_t, H2
, ldsw
)
233 GEN_VEXT_LD_ELEM(lde_w
, int32_t, int32_t, H4
, ldl
)
234 GEN_VEXT_LD_ELEM(lde_d
, int64_t, int64_t, H8
, ldq
)
235 GEN_VEXT_LD_ELEM(ldbu_b
, uint8_t, uint8_t, H1
, ldub
)
236 GEN_VEXT_LD_ELEM(ldbu_h
, uint8_t, uint16_t, H2
, ldub
)
237 GEN_VEXT_LD_ELEM(ldbu_w
, uint8_t, uint32_t, H4
, ldub
)
238 GEN_VEXT_LD_ELEM(ldbu_d
, uint8_t, uint64_t, H8
, ldub
)
239 GEN_VEXT_LD_ELEM(ldhu_h
, uint16_t, uint16_t, H2
, lduw
)
240 GEN_VEXT_LD_ELEM(ldhu_w
, uint16_t, uint32_t, H4
, lduw
)
241 GEN_VEXT_LD_ELEM(ldhu_d
, uint16_t, uint64_t, H8
, lduw
)
242 GEN_VEXT_LD_ELEM(ldwu_w
, uint32_t, uint32_t, H4
, ldl
)
243 GEN_VEXT_LD_ELEM(ldwu_d
, uint32_t, uint64_t, H8
, ldl
)
245 #define GEN_VEXT_ST_ELEM(NAME, ETYPE, H, STSUF) \
246 static void NAME(CPURISCVState *env, abi_ptr addr, \
247 uint32_t idx, void *vd, uintptr_t retaddr)\
249 ETYPE data = *((ETYPE *)vd + H(idx)); \
250 cpu_##STSUF##_data_ra(env, addr, data, retaddr); \
253 GEN_VEXT_ST_ELEM(stb_b
, int8_t, H1
, stb
)
254 GEN_VEXT_ST_ELEM(stb_h
, int16_t, H2
, stb
)
255 GEN_VEXT_ST_ELEM(stb_w
, int32_t, H4
, stb
)
256 GEN_VEXT_ST_ELEM(stb_d
, int64_t, H8
, stb
)
257 GEN_VEXT_ST_ELEM(sth_h
, int16_t, H2
, stw
)
258 GEN_VEXT_ST_ELEM(sth_w
, int32_t, H4
, stw
)
259 GEN_VEXT_ST_ELEM(sth_d
, int64_t, H8
, stw
)
260 GEN_VEXT_ST_ELEM(stw_w
, int32_t, H4
, stl
)
261 GEN_VEXT_ST_ELEM(stw_d
, int64_t, H8
, stl
)
262 GEN_VEXT_ST_ELEM(ste_b
, int8_t, H1
, stb
)
263 GEN_VEXT_ST_ELEM(ste_h
, int16_t, H2
, stw
)
264 GEN_VEXT_ST_ELEM(ste_w
, int32_t, H4
, stl
)
265 GEN_VEXT_ST_ELEM(ste_d
, int64_t, H8
, stq
)
268 *** stride: access vector element from strided memory
271 vext_ldst_stride(void *vd
, void *v0
, target_ulong base
,
272 target_ulong stride
, CPURISCVState
*env
,
273 uint32_t desc
, uint32_t vm
,
274 vext_ldst_elem_fn
*ldst_elem
, clear_fn
*clear_elem
,
275 uint32_t esz
, uint32_t msz
, uintptr_t ra
,
276 MMUAccessType access_type
)
279 uint32_t nf
= vext_nf(desc
);
280 uint32_t mlen
= vext_mlen(desc
);
281 uint32_t vlmax
= vext_maxsz(desc
) / esz
;
283 /* probe every access*/
284 for (i
= 0; i
< env
->vl
; i
++) {
285 if (!vm
&& !vext_elem_mask(v0
, mlen
, i
)) {
288 probe_pages(env
, base
+ stride
* i
, nf
* msz
, ra
, access_type
);
291 for (i
= 0; i
< env
->vl
; i
++) {
293 if (!vm
&& !vext_elem_mask(v0
, mlen
, i
)) {
297 target_ulong addr
= base
+ stride
* i
+ k
* msz
;
298 ldst_elem(env
, addr
, i
+ k
* vlmax
, vd
, ra
);
302 /* clear tail elements */
304 for (k
= 0; k
< nf
; k
++) {
305 clear_elem(vd
, env
->vl
+ k
* vlmax
, env
->vl
* esz
, vlmax
* esz
);
310 #define GEN_VEXT_LD_STRIDE(NAME, MTYPE, ETYPE, LOAD_FN, CLEAR_FN) \
311 void HELPER(NAME)(void *vd, void * v0, target_ulong base, \
312 target_ulong stride, CPURISCVState *env, \
315 uint32_t vm = vext_vm(desc); \
316 vext_ldst_stride(vd, v0, base, stride, env, desc, vm, LOAD_FN, \
317 CLEAR_FN, sizeof(ETYPE), sizeof(MTYPE), \
318 GETPC(), MMU_DATA_LOAD); \
321 GEN_VEXT_LD_STRIDE(vlsb_v_b
, int8_t, int8_t, ldb_b
, clearb
)
322 GEN_VEXT_LD_STRIDE(vlsb_v_h
, int8_t, int16_t, ldb_h
, clearh
)
323 GEN_VEXT_LD_STRIDE(vlsb_v_w
, int8_t, int32_t, ldb_w
, clearl
)
324 GEN_VEXT_LD_STRIDE(vlsb_v_d
, int8_t, int64_t, ldb_d
, clearq
)
325 GEN_VEXT_LD_STRIDE(vlsh_v_h
, int16_t, int16_t, ldh_h
, clearh
)
326 GEN_VEXT_LD_STRIDE(vlsh_v_w
, int16_t, int32_t, ldh_w
, clearl
)
327 GEN_VEXT_LD_STRIDE(vlsh_v_d
, int16_t, int64_t, ldh_d
, clearq
)
328 GEN_VEXT_LD_STRIDE(vlsw_v_w
, int32_t, int32_t, ldw_w
, clearl
)
329 GEN_VEXT_LD_STRIDE(vlsw_v_d
, int32_t, int64_t, ldw_d
, clearq
)
330 GEN_VEXT_LD_STRIDE(vlse_v_b
, int8_t, int8_t, lde_b
, clearb
)
331 GEN_VEXT_LD_STRIDE(vlse_v_h
, int16_t, int16_t, lde_h
, clearh
)
332 GEN_VEXT_LD_STRIDE(vlse_v_w
, int32_t, int32_t, lde_w
, clearl
)
333 GEN_VEXT_LD_STRIDE(vlse_v_d
, int64_t, int64_t, lde_d
, clearq
)
334 GEN_VEXT_LD_STRIDE(vlsbu_v_b
, uint8_t, uint8_t, ldbu_b
, clearb
)
335 GEN_VEXT_LD_STRIDE(vlsbu_v_h
, uint8_t, uint16_t, ldbu_h
, clearh
)
336 GEN_VEXT_LD_STRIDE(vlsbu_v_w
, uint8_t, uint32_t, ldbu_w
, clearl
)
337 GEN_VEXT_LD_STRIDE(vlsbu_v_d
, uint8_t, uint64_t, ldbu_d
, clearq
)
338 GEN_VEXT_LD_STRIDE(vlshu_v_h
, uint16_t, uint16_t, ldhu_h
, clearh
)
339 GEN_VEXT_LD_STRIDE(vlshu_v_w
, uint16_t, uint32_t, ldhu_w
, clearl
)
340 GEN_VEXT_LD_STRIDE(vlshu_v_d
, uint16_t, uint64_t, ldhu_d
, clearq
)
341 GEN_VEXT_LD_STRIDE(vlswu_v_w
, uint32_t, uint32_t, ldwu_w
, clearl
)
342 GEN_VEXT_LD_STRIDE(vlswu_v_d
, uint32_t, uint64_t, ldwu_d
, clearq
)
344 #define GEN_VEXT_ST_STRIDE(NAME, MTYPE, ETYPE, STORE_FN) \
345 void HELPER(NAME)(void *vd, void *v0, target_ulong base, \
346 target_ulong stride, CPURISCVState *env, \
349 uint32_t vm = vext_vm(desc); \
350 vext_ldst_stride(vd, v0, base, stride, env, desc, vm, STORE_FN, \
351 NULL, sizeof(ETYPE), sizeof(MTYPE), \
352 GETPC(), MMU_DATA_STORE); \
355 GEN_VEXT_ST_STRIDE(vssb_v_b
, int8_t, int8_t, stb_b
)
356 GEN_VEXT_ST_STRIDE(vssb_v_h
, int8_t, int16_t, stb_h
)
357 GEN_VEXT_ST_STRIDE(vssb_v_w
, int8_t, int32_t, stb_w
)
358 GEN_VEXT_ST_STRIDE(vssb_v_d
, int8_t, int64_t, stb_d
)
359 GEN_VEXT_ST_STRIDE(vssh_v_h
, int16_t, int16_t, sth_h
)
360 GEN_VEXT_ST_STRIDE(vssh_v_w
, int16_t, int32_t, sth_w
)
361 GEN_VEXT_ST_STRIDE(vssh_v_d
, int16_t, int64_t, sth_d
)
362 GEN_VEXT_ST_STRIDE(vssw_v_w
, int32_t, int32_t, stw_w
)
363 GEN_VEXT_ST_STRIDE(vssw_v_d
, int32_t, int64_t, stw_d
)
364 GEN_VEXT_ST_STRIDE(vsse_v_b
, int8_t, int8_t, ste_b
)
365 GEN_VEXT_ST_STRIDE(vsse_v_h
, int16_t, int16_t, ste_h
)
366 GEN_VEXT_ST_STRIDE(vsse_v_w
, int32_t, int32_t, ste_w
)
367 GEN_VEXT_ST_STRIDE(vsse_v_d
, int64_t, int64_t, ste_d
)
370 *** unit-stride: access elements stored contiguously in memory
373 /* unmasked unit-stride load and store operation*/
375 vext_ldst_us(void *vd
, target_ulong base
, CPURISCVState
*env
, uint32_t desc
,
376 vext_ldst_elem_fn
*ldst_elem
, clear_fn
*clear_elem
,
377 uint32_t esz
, uint32_t msz
, uintptr_t ra
,
378 MMUAccessType access_type
)
381 uint32_t nf
= vext_nf(desc
);
382 uint32_t vlmax
= vext_maxsz(desc
) / esz
;
384 /* probe every access */
385 probe_pages(env
, base
, env
->vl
* nf
* msz
, ra
, access_type
);
386 /* load bytes from guest memory */
387 for (i
= 0; i
< env
->vl
; i
++) {
390 target_ulong addr
= base
+ (i
* nf
+ k
) * msz
;
391 ldst_elem(env
, addr
, i
+ k
* vlmax
, vd
, ra
);
395 /* clear tail elements */
397 for (k
= 0; k
< nf
; k
++) {
398 clear_elem(vd
, env
->vl
+ k
* vlmax
, env
->vl
* esz
, vlmax
* esz
);
404 * masked unit-stride load and store operation will be a special case of stride,
405 * stride = NF * sizeof (MTYPE)
408 #define GEN_VEXT_LD_US(NAME, MTYPE, ETYPE, LOAD_FN, CLEAR_FN) \
409 void HELPER(NAME##_mask)(void *vd, void *v0, target_ulong base, \
410 CPURISCVState *env, uint32_t desc) \
412 uint32_t stride = vext_nf(desc) * sizeof(MTYPE); \
413 vext_ldst_stride(vd, v0, base, stride, env, desc, false, LOAD_FN, \
414 CLEAR_FN, sizeof(ETYPE), sizeof(MTYPE), \
415 GETPC(), MMU_DATA_LOAD); \
418 void HELPER(NAME)(void *vd, void *v0, target_ulong base, \
419 CPURISCVState *env, uint32_t desc) \
421 vext_ldst_us(vd, base, env, desc, LOAD_FN, CLEAR_FN, \
422 sizeof(ETYPE), sizeof(MTYPE), GETPC(), MMU_DATA_LOAD); \
425 GEN_VEXT_LD_US(vlb_v_b
, int8_t, int8_t, ldb_b
, clearb
)
426 GEN_VEXT_LD_US(vlb_v_h
, int8_t, int16_t, ldb_h
, clearh
)
427 GEN_VEXT_LD_US(vlb_v_w
, int8_t, int32_t, ldb_w
, clearl
)
428 GEN_VEXT_LD_US(vlb_v_d
, int8_t, int64_t, ldb_d
, clearq
)
429 GEN_VEXT_LD_US(vlh_v_h
, int16_t, int16_t, ldh_h
, clearh
)
430 GEN_VEXT_LD_US(vlh_v_w
, int16_t, int32_t, ldh_w
, clearl
)
431 GEN_VEXT_LD_US(vlh_v_d
, int16_t, int64_t, ldh_d
, clearq
)
432 GEN_VEXT_LD_US(vlw_v_w
, int32_t, int32_t, ldw_w
, clearl
)
433 GEN_VEXT_LD_US(vlw_v_d
, int32_t, int64_t, ldw_d
, clearq
)
434 GEN_VEXT_LD_US(vle_v_b
, int8_t, int8_t, lde_b
, clearb
)
435 GEN_VEXT_LD_US(vle_v_h
, int16_t, int16_t, lde_h
, clearh
)
436 GEN_VEXT_LD_US(vle_v_w
, int32_t, int32_t, lde_w
, clearl
)
437 GEN_VEXT_LD_US(vle_v_d
, int64_t, int64_t, lde_d
, clearq
)
438 GEN_VEXT_LD_US(vlbu_v_b
, uint8_t, uint8_t, ldbu_b
, clearb
)
439 GEN_VEXT_LD_US(vlbu_v_h
, uint8_t, uint16_t, ldbu_h
, clearh
)
440 GEN_VEXT_LD_US(vlbu_v_w
, uint8_t, uint32_t, ldbu_w
, clearl
)
441 GEN_VEXT_LD_US(vlbu_v_d
, uint8_t, uint64_t, ldbu_d
, clearq
)
442 GEN_VEXT_LD_US(vlhu_v_h
, uint16_t, uint16_t, ldhu_h
, clearh
)
443 GEN_VEXT_LD_US(vlhu_v_w
, uint16_t, uint32_t, ldhu_w
, clearl
)
444 GEN_VEXT_LD_US(vlhu_v_d
, uint16_t, uint64_t, ldhu_d
, clearq
)
445 GEN_VEXT_LD_US(vlwu_v_w
, uint32_t, uint32_t, ldwu_w
, clearl
)
446 GEN_VEXT_LD_US(vlwu_v_d
, uint32_t, uint64_t, ldwu_d
, clearq
)
448 #define GEN_VEXT_ST_US(NAME, MTYPE, ETYPE, STORE_FN) \
449 void HELPER(NAME##_mask)(void *vd, void *v0, target_ulong base, \
450 CPURISCVState *env, uint32_t desc) \
452 uint32_t stride = vext_nf(desc) * sizeof(MTYPE); \
453 vext_ldst_stride(vd, v0, base, stride, env, desc, false, STORE_FN, \
454 NULL, sizeof(ETYPE), sizeof(MTYPE), \
455 GETPC(), MMU_DATA_STORE); \
458 void HELPER(NAME)(void *vd, void *v0, target_ulong base, \
459 CPURISCVState *env, uint32_t desc) \
461 vext_ldst_us(vd, base, env, desc, STORE_FN, NULL, \
462 sizeof(ETYPE), sizeof(MTYPE), GETPC(), MMU_DATA_STORE);\
465 GEN_VEXT_ST_US(vsb_v_b
, int8_t, int8_t , stb_b
)
466 GEN_VEXT_ST_US(vsb_v_h
, int8_t, int16_t, stb_h
)
467 GEN_VEXT_ST_US(vsb_v_w
, int8_t, int32_t, stb_w
)
468 GEN_VEXT_ST_US(vsb_v_d
, int8_t, int64_t, stb_d
)
469 GEN_VEXT_ST_US(vsh_v_h
, int16_t, int16_t, sth_h
)
470 GEN_VEXT_ST_US(vsh_v_w
, int16_t, int32_t, sth_w
)
471 GEN_VEXT_ST_US(vsh_v_d
, int16_t, int64_t, sth_d
)
472 GEN_VEXT_ST_US(vsw_v_w
, int32_t, int32_t, stw_w
)
473 GEN_VEXT_ST_US(vsw_v_d
, int32_t, int64_t, stw_d
)
474 GEN_VEXT_ST_US(vse_v_b
, int8_t, int8_t , ste_b
)
475 GEN_VEXT_ST_US(vse_v_h
, int16_t, int16_t, ste_h
)
476 GEN_VEXT_ST_US(vse_v_w
, int32_t, int32_t, ste_w
)
477 GEN_VEXT_ST_US(vse_v_d
, int64_t, int64_t, ste_d
)
480 *** index: access vector element from indexed memory
482 typedef target_ulong
vext_get_index_addr(target_ulong base
,
483 uint32_t idx
, void *vs2
);
485 #define GEN_VEXT_GET_INDEX_ADDR(NAME, ETYPE, H) \
486 static target_ulong NAME(target_ulong base, \
487 uint32_t idx, void *vs2) \
489 return (base + *((ETYPE *)vs2 + H(idx))); \
492 GEN_VEXT_GET_INDEX_ADDR(idx_b
, int8_t, H1
)
493 GEN_VEXT_GET_INDEX_ADDR(idx_h
, int16_t, H2
)
494 GEN_VEXT_GET_INDEX_ADDR(idx_w
, int32_t, H4
)
495 GEN_VEXT_GET_INDEX_ADDR(idx_d
, int64_t, H8
)
498 vext_ldst_index(void *vd
, void *v0
, target_ulong base
,
499 void *vs2
, CPURISCVState
*env
, uint32_t desc
,
500 vext_get_index_addr get_index_addr
,
501 vext_ldst_elem_fn
*ldst_elem
,
502 clear_fn
*clear_elem
,
503 uint32_t esz
, uint32_t msz
, uintptr_t ra
,
504 MMUAccessType access_type
)
507 uint32_t nf
= vext_nf(desc
);
508 uint32_t vm
= vext_vm(desc
);
509 uint32_t mlen
= vext_mlen(desc
);
510 uint32_t vlmax
= vext_maxsz(desc
) / esz
;
512 /* probe every access*/
513 for (i
= 0; i
< env
->vl
; i
++) {
514 if (!vm
&& !vext_elem_mask(v0
, mlen
, i
)) {
517 probe_pages(env
, get_index_addr(base
, i
, vs2
), nf
* msz
, ra
,
520 /* load bytes from guest memory */
521 for (i
= 0; i
< env
->vl
; i
++) {
523 if (!vm
&& !vext_elem_mask(v0
, mlen
, i
)) {
527 abi_ptr addr
= get_index_addr(base
, i
, vs2
) + k
* msz
;
528 ldst_elem(env
, addr
, i
+ k
* vlmax
, vd
, ra
);
532 /* clear tail elements */
534 for (k
= 0; k
< nf
; k
++) {
535 clear_elem(vd
, env
->vl
+ k
* vlmax
, env
->vl
* esz
, vlmax
* esz
);
540 #define GEN_VEXT_LD_INDEX(NAME, MTYPE, ETYPE, INDEX_FN, LOAD_FN, CLEAR_FN) \
541 void HELPER(NAME)(void *vd, void *v0, target_ulong base, \
542 void *vs2, CPURISCVState *env, uint32_t desc) \
544 vext_ldst_index(vd, v0, base, vs2, env, desc, INDEX_FN, \
545 LOAD_FN, CLEAR_FN, sizeof(ETYPE), sizeof(MTYPE), \
546 GETPC(), MMU_DATA_LOAD); \
549 GEN_VEXT_LD_INDEX(vlxb_v_b
, int8_t, int8_t, idx_b
, ldb_b
, clearb
)
550 GEN_VEXT_LD_INDEX(vlxb_v_h
, int8_t, int16_t, idx_h
, ldb_h
, clearh
)
551 GEN_VEXT_LD_INDEX(vlxb_v_w
, int8_t, int32_t, idx_w
, ldb_w
, clearl
)
552 GEN_VEXT_LD_INDEX(vlxb_v_d
, int8_t, int64_t, idx_d
, ldb_d
, clearq
)
553 GEN_VEXT_LD_INDEX(vlxh_v_h
, int16_t, int16_t, idx_h
, ldh_h
, clearh
)
554 GEN_VEXT_LD_INDEX(vlxh_v_w
, int16_t, int32_t, idx_w
, ldh_w
, clearl
)
555 GEN_VEXT_LD_INDEX(vlxh_v_d
, int16_t, int64_t, idx_d
, ldh_d
, clearq
)
556 GEN_VEXT_LD_INDEX(vlxw_v_w
, int32_t, int32_t, idx_w
, ldw_w
, clearl
)
557 GEN_VEXT_LD_INDEX(vlxw_v_d
, int32_t, int64_t, idx_d
, ldw_d
, clearq
)
558 GEN_VEXT_LD_INDEX(vlxe_v_b
, int8_t, int8_t, idx_b
, lde_b
, clearb
)
559 GEN_VEXT_LD_INDEX(vlxe_v_h
, int16_t, int16_t, idx_h
, lde_h
, clearh
)
560 GEN_VEXT_LD_INDEX(vlxe_v_w
, int32_t, int32_t, idx_w
, lde_w
, clearl
)
561 GEN_VEXT_LD_INDEX(vlxe_v_d
, int64_t, int64_t, idx_d
, lde_d
, clearq
)
562 GEN_VEXT_LD_INDEX(vlxbu_v_b
, uint8_t, uint8_t, idx_b
, ldbu_b
, clearb
)
563 GEN_VEXT_LD_INDEX(vlxbu_v_h
, uint8_t, uint16_t, idx_h
, ldbu_h
, clearh
)
564 GEN_VEXT_LD_INDEX(vlxbu_v_w
, uint8_t, uint32_t, idx_w
, ldbu_w
, clearl
)
565 GEN_VEXT_LD_INDEX(vlxbu_v_d
, uint8_t, uint64_t, idx_d
, ldbu_d
, clearq
)
566 GEN_VEXT_LD_INDEX(vlxhu_v_h
, uint16_t, uint16_t, idx_h
, ldhu_h
, clearh
)
567 GEN_VEXT_LD_INDEX(vlxhu_v_w
, uint16_t, uint32_t, idx_w
, ldhu_w
, clearl
)
568 GEN_VEXT_LD_INDEX(vlxhu_v_d
, uint16_t, uint64_t, idx_d
, ldhu_d
, clearq
)
569 GEN_VEXT_LD_INDEX(vlxwu_v_w
, uint32_t, uint32_t, idx_w
, ldwu_w
, clearl
)
570 GEN_VEXT_LD_INDEX(vlxwu_v_d
, uint32_t, uint64_t, idx_d
, ldwu_d
, clearq
)
572 #define GEN_VEXT_ST_INDEX(NAME, MTYPE, ETYPE, INDEX_FN, STORE_FN)\
573 void HELPER(NAME)(void *vd, void *v0, target_ulong base, \
574 void *vs2, CPURISCVState *env, uint32_t desc) \
576 vext_ldst_index(vd, v0, base, vs2, env, desc, INDEX_FN, \
577 STORE_FN, NULL, sizeof(ETYPE), sizeof(MTYPE),\
578 GETPC(), MMU_DATA_STORE); \
581 GEN_VEXT_ST_INDEX(vsxb_v_b
, int8_t, int8_t, idx_b
, stb_b
)
582 GEN_VEXT_ST_INDEX(vsxb_v_h
, int8_t, int16_t, idx_h
, stb_h
)
583 GEN_VEXT_ST_INDEX(vsxb_v_w
, int8_t, int32_t, idx_w
, stb_w
)
584 GEN_VEXT_ST_INDEX(vsxb_v_d
, int8_t, int64_t, idx_d
, stb_d
)
585 GEN_VEXT_ST_INDEX(vsxh_v_h
, int16_t, int16_t, idx_h
, sth_h
)
586 GEN_VEXT_ST_INDEX(vsxh_v_w
, int16_t, int32_t, idx_w
, sth_w
)
587 GEN_VEXT_ST_INDEX(vsxh_v_d
, int16_t, int64_t, idx_d
, sth_d
)
588 GEN_VEXT_ST_INDEX(vsxw_v_w
, int32_t, int32_t, idx_w
, stw_w
)
589 GEN_VEXT_ST_INDEX(vsxw_v_d
, int32_t, int64_t, idx_d
, stw_d
)
590 GEN_VEXT_ST_INDEX(vsxe_v_b
, int8_t, int8_t, idx_b
, ste_b
)
591 GEN_VEXT_ST_INDEX(vsxe_v_h
, int16_t, int16_t, idx_h
, ste_h
)
592 GEN_VEXT_ST_INDEX(vsxe_v_w
, int32_t, int32_t, idx_w
, ste_w
)
593 GEN_VEXT_ST_INDEX(vsxe_v_d
, int64_t, int64_t, idx_d
, ste_d
)
596 *** unit-stride fault-only-fisrt load instructions
599 vext_ldff(void *vd
, void *v0
, target_ulong base
,
600 CPURISCVState
*env
, uint32_t desc
,
601 vext_ldst_elem_fn
*ldst_elem
,
602 clear_fn
*clear_elem
,
603 uint32_t esz
, uint32_t msz
, uintptr_t ra
)
606 uint32_t i
, k
, vl
= 0;
607 uint32_t mlen
= vext_mlen(desc
);
608 uint32_t nf
= vext_nf(desc
);
609 uint32_t vm
= vext_vm(desc
);
610 uint32_t vlmax
= vext_maxsz(desc
) / esz
;
611 target_ulong addr
, offset
, remain
;
613 /* probe every access*/
614 for (i
= 0; i
< env
->vl
; i
++) {
615 if (!vm
&& !vext_elem_mask(v0
, mlen
, i
)) {
618 addr
= base
+ nf
* i
* msz
;
620 probe_pages(env
, addr
, nf
* msz
, ra
, MMU_DATA_LOAD
);
622 /* if it triggers an exception, no need to check watchpoint */
625 offset
= -(addr
| TARGET_PAGE_MASK
);
626 host
= tlb_vaddr_to_host(env
, addr
, MMU_DATA_LOAD
,
627 cpu_mmu_index(env
, false));
629 #ifdef CONFIG_USER_ONLY
630 if (page_check_range(addr
, nf
* msz
, PAGE_READ
) < 0) {
635 probe_pages(env
, addr
, nf
* msz
, ra
, MMU_DATA_LOAD
);
641 if (remain
<= offset
) {
650 /* load bytes from guest memory */
654 for (i
= 0; i
< env
->vl
; i
++) {
656 if (!vm
&& !vext_elem_mask(v0
, mlen
, i
)) {
660 target_ulong addr
= base
+ (i
* nf
+ k
) * msz
;
661 ldst_elem(env
, addr
, i
+ k
* vlmax
, vd
, ra
);
665 /* clear tail elements */
669 for (k
= 0; k
< nf
; k
++) {
670 clear_elem(vd
, env
->vl
+ k
* vlmax
, env
->vl
* esz
, vlmax
* esz
);
674 #define GEN_VEXT_LDFF(NAME, MTYPE, ETYPE, LOAD_FN, CLEAR_FN) \
675 void HELPER(NAME)(void *vd, void *v0, target_ulong base, \
676 CPURISCVState *env, uint32_t desc) \
678 vext_ldff(vd, v0, base, env, desc, LOAD_FN, CLEAR_FN, \
679 sizeof(ETYPE), sizeof(MTYPE), GETPC()); \
682 GEN_VEXT_LDFF(vlbff_v_b
, int8_t, int8_t, ldb_b
, clearb
)
683 GEN_VEXT_LDFF(vlbff_v_h
, int8_t, int16_t, ldb_h
, clearh
)
684 GEN_VEXT_LDFF(vlbff_v_w
, int8_t, int32_t, ldb_w
, clearl
)
685 GEN_VEXT_LDFF(vlbff_v_d
, int8_t, int64_t, ldb_d
, clearq
)
686 GEN_VEXT_LDFF(vlhff_v_h
, int16_t, int16_t, ldh_h
, clearh
)
687 GEN_VEXT_LDFF(vlhff_v_w
, int16_t, int32_t, ldh_w
, clearl
)
688 GEN_VEXT_LDFF(vlhff_v_d
, int16_t, int64_t, ldh_d
, clearq
)
689 GEN_VEXT_LDFF(vlwff_v_w
, int32_t, int32_t, ldw_w
, clearl
)
690 GEN_VEXT_LDFF(vlwff_v_d
, int32_t, int64_t, ldw_d
, clearq
)
691 GEN_VEXT_LDFF(vleff_v_b
, int8_t, int8_t, lde_b
, clearb
)
692 GEN_VEXT_LDFF(vleff_v_h
, int16_t, int16_t, lde_h
, clearh
)
693 GEN_VEXT_LDFF(vleff_v_w
, int32_t, int32_t, lde_w
, clearl
)
694 GEN_VEXT_LDFF(vleff_v_d
, int64_t, int64_t, lde_d
, clearq
)
695 GEN_VEXT_LDFF(vlbuff_v_b
, uint8_t, uint8_t, ldbu_b
, clearb
)
696 GEN_VEXT_LDFF(vlbuff_v_h
, uint8_t, uint16_t, ldbu_h
, clearh
)
697 GEN_VEXT_LDFF(vlbuff_v_w
, uint8_t, uint32_t, ldbu_w
, clearl
)
698 GEN_VEXT_LDFF(vlbuff_v_d
, uint8_t, uint64_t, ldbu_d
, clearq
)
699 GEN_VEXT_LDFF(vlhuff_v_h
, uint16_t, uint16_t, ldhu_h
, clearh
)
700 GEN_VEXT_LDFF(vlhuff_v_w
, uint16_t, uint32_t, ldhu_w
, clearl
)
701 GEN_VEXT_LDFF(vlhuff_v_d
, uint16_t, uint64_t, ldhu_d
, clearq
)
702 GEN_VEXT_LDFF(vlwuff_v_w
, uint32_t, uint32_t, ldwu_w
, clearl
)
703 GEN_VEXT_LDFF(vlwuff_v_d
, uint32_t, uint64_t, ldwu_d
, clearq
)
706 *** Vector AMO Operations (Zvamo)
708 typedef void vext_amo_noatomic_fn(void *vs3
, target_ulong addr
,
709 uint32_t wd
, uint32_t idx
, CPURISCVState
*env
,
712 /* no atomic opreation for vector atomic insructions */
713 #define DO_SWAP(N, M) (M)
714 #define DO_AND(N, M) (N & M)
715 #define DO_XOR(N, M) (N ^ M)
716 #define DO_OR(N, M) (N | M)
717 #define DO_ADD(N, M) (N + M)
719 #define GEN_VEXT_AMO_NOATOMIC_OP(NAME, ESZ, MSZ, H, DO_OP, SUF) \
721 vext_##NAME##_noatomic_op(void *vs3, target_ulong addr, \
722 uint32_t wd, uint32_t idx, \
723 CPURISCVState *env, uintptr_t retaddr)\
725 typedef int##ESZ##_t ETYPE; \
726 typedef int##MSZ##_t MTYPE; \
727 typedef uint##MSZ##_t UMTYPE __attribute__((unused)); \
728 ETYPE *pe3 = (ETYPE *)vs3 + H(idx); \
729 MTYPE a = cpu_ld##SUF##_data(env, addr), b = *pe3; \
731 cpu_st##SUF##_data(env, addr, DO_OP(a, b)); \
738 #define DO_MAX(N, M) ((N) >= (M) ? (N) : (M))
739 #define DO_MIN(N, M) ((N) >= (M) ? (M) : (N))
741 /* Unsigned min/max */
742 #define DO_MAXU(N, M) DO_MAX((UMTYPE)N, (UMTYPE)M)
743 #define DO_MINU(N, M) DO_MIN((UMTYPE)N, (UMTYPE)M)
745 GEN_VEXT_AMO_NOATOMIC_OP(vamoswapw_v_w
, 32, 32, H4
, DO_SWAP
, l
)
746 GEN_VEXT_AMO_NOATOMIC_OP(vamoaddw_v_w
, 32, 32, H4
, DO_ADD
, l
)
747 GEN_VEXT_AMO_NOATOMIC_OP(vamoxorw_v_w
, 32, 32, H4
, DO_XOR
, l
)
748 GEN_VEXT_AMO_NOATOMIC_OP(vamoandw_v_w
, 32, 32, H4
, DO_AND
, l
)
749 GEN_VEXT_AMO_NOATOMIC_OP(vamoorw_v_w
, 32, 32, H4
, DO_OR
, l
)
750 GEN_VEXT_AMO_NOATOMIC_OP(vamominw_v_w
, 32, 32, H4
, DO_MIN
, l
)
751 GEN_VEXT_AMO_NOATOMIC_OP(vamomaxw_v_w
, 32, 32, H4
, DO_MAX
, l
)
752 GEN_VEXT_AMO_NOATOMIC_OP(vamominuw_v_w
, 32, 32, H4
, DO_MINU
, l
)
753 GEN_VEXT_AMO_NOATOMIC_OP(vamomaxuw_v_w
, 32, 32, H4
, DO_MAXU
, l
)
754 GEN_VEXT_AMO_NOATOMIC_OP(vamoswapw_v_d
, 64, 32, H8
, DO_SWAP
, l
)
755 GEN_VEXT_AMO_NOATOMIC_OP(vamoswapd_v_d
, 64, 64, H8
, DO_SWAP
, q
)
756 GEN_VEXT_AMO_NOATOMIC_OP(vamoaddw_v_d
, 64, 32, H8
, DO_ADD
, l
)
757 GEN_VEXT_AMO_NOATOMIC_OP(vamoaddd_v_d
, 64, 64, H8
, DO_ADD
, q
)
758 GEN_VEXT_AMO_NOATOMIC_OP(vamoxorw_v_d
, 64, 32, H8
, DO_XOR
, l
)
759 GEN_VEXT_AMO_NOATOMIC_OP(vamoxord_v_d
, 64, 64, H8
, DO_XOR
, q
)
760 GEN_VEXT_AMO_NOATOMIC_OP(vamoandw_v_d
, 64, 32, H8
, DO_AND
, l
)
761 GEN_VEXT_AMO_NOATOMIC_OP(vamoandd_v_d
, 64, 64, H8
, DO_AND
, q
)
762 GEN_VEXT_AMO_NOATOMIC_OP(vamoorw_v_d
, 64, 32, H8
, DO_OR
, l
)
763 GEN_VEXT_AMO_NOATOMIC_OP(vamoord_v_d
, 64, 64, H8
, DO_OR
, q
)
764 GEN_VEXT_AMO_NOATOMIC_OP(vamominw_v_d
, 64, 32, H8
, DO_MIN
, l
)
765 GEN_VEXT_AMO_NOATOMIC_OP(vamomind_v_d
, 64, 64, H8
, DO_MIN
, q
)
766 GEN_VEXT_AMO_NOATOMIC_OP(vamomaxw_v_d
, 64, 32, H8
, DO_MAX
, l
)
767 GEN_VEXT_AMO_NOATOMIC_OP(vamomaxd_v_d
, 64, 64, H8
, DO_MAX
, q
)
768 GEN_VEXT_AMO_NOATOMIC_OP(vamominuw_v_d
, 64, 32, H8
, DO_MINU
, l
)
769 GEN_VEXT_AMO_NOATOMIC_OP(vamominud_v_d
, 64, 64, H8
, DO_MINU
, q
)
770 GEN_VEXT_AMO_NOATOMIC_OP(vamomaxuw_v_d
, 64, 32, H8
, DO_MAXU
, l
)
771 GEN_VEXT_AMO_NOATOMIC_OP(vamomaxud_v_d
, 64, 64, H8
, DO_MAXU
, q
)
774 vext_amo_noatomic(void *vs3
, void *v0
, target_ulong base
,
775 void *vs2
, CPURISCVState
*env
, uint32_t desc
,
776 vext_get_index_addr get_index_addr
,
777 vext_amo_noatomic_fn
*noatomic_op
,
778 clear_fn
*clear_elem
,
779 uint32_t esz
, uint32_t msz
, uintptr_t ra
)
783 uint32_t wd
= vext_wd(desc
);
784 uint32_t vm
= vext_vm(desc
);
785 uint32_t mlen
= vext_mlen(desc
);
786 uint32_t vlmax
= vext_maxsz(desc
) / esz
;
788 for (i
= 0; i
< env
->vl
; i
++) {
789 if (!vm
&& !vext_elem_mask(v0
, mlen
, i
)) {
792 probe_pages(env
, get_index_addr(base
, i
, vs2
), msz
, ra
, MMU_DATA_LOAD
);
793 probe_pages(env
, get_index_addr(base
, i
, vs2
), msz
, ra
, MMU_DATA_STORE
);
795 for (i
= 0; i
< env
->vl
; i
++) {
796 if (!vm
&& !vext_elem_mask(v0
, mlen
, i
)) {
799 addr
= get_index_addr(base
, i
, vs2
);
800 noatomic_op(vs3
, addr
, wd
, i
, env
, ra
);
802 clear_elem(vs3
, env
->vl
, env
->vl
* esz
, vlmax
* esz
);
805 #define GEN_VEXT_AMO(NAME, MTYPE, ETYPE, INDEX_FN, CLEAR_FN) \
806 void HELPER(NAME)(void *vs3, void *v0, target_ulong base, \
807 void *vs2, CPURISCVState *env, uint32_t desc) \
809 vext_amo_noatomic(vs3, v0, base, vs2, env, desc, \
810 INDEX_FN, vext_##NAME##_noatomic_op, \
811 CLEAR_FN, sizeof(ETYPE), sizeof(MTYPE), \
815 GEN_VEXT_AMO(vamoswapw_v_d
, int32_t, int64_t, idx_d
, clearq
)
816 GEN_VEXT_AMO(vamoswapd_v_d
, int64_t, int64_t, idx_d
, clearq
)
817 GEN_VEXT_AMO(vamoaddw_v_d
, int32_t, int64_t, idx_d
, clearq
)
818 GEN_VEXT_AMO(vamoaddd_v_d
, int64_t, int64_t, idx_d
, clearq
)
819 GEN_VEXT_AMO(vamoxorw_v_d
, int32_t, int64_t, idx_d
, clearq
)
820 GEN_VEXT_AMO(vamoxord_v_d
, int64_t, int64_t, idx_d
, clearq
)
821 GEN_VEXT_AMO(vamoandw_v_d
, int32_t, int64_t, idx_d
, clearq
)
822 GEN_VEXT_AMO(vamoandd_v_d
, int64_t, int64_t, idx_d
, clearq
)
823 GEN_VEXT_AMO(vamoorw_v_d
, int32_t, int64_t, idx_d
, clearq
)
824 GEN_VEXT_AMO(vamoord_v_d
, int64_t, int64_t, idx_d
, clearq
)
825 GEN_VEXT_AMO(vamominw_v_d
, int32_t, int64_t, idx_d
, clearq
)
826 GEN_VEXT_AMO(vamomind_v_d
, int64_t, int64_t, idx_d
, clearq
)
827 GEN_VEXT_AMO(vamomaxw_v_d
, int32_t, int64_t, idx_d
, clearq
)
828 GEN_VEXT_AMO(vamomaxd_v_d
, int64_t, int64_t, idx_d
, clearq
)
829 GEN_VEXT_AMO(vamominuw_v_d
, uint32_t, uint64_t, idx_d
, clearq
)
830 GEN_VEXT_AMO(vamominud_v_d
, uint64_t, uint64_t, idx_d
, clearq
)
831 GEN_VEXT_AMO(vamomaxuw_v_d
, uint32_t, uint64_t, idx_d
, clearq
)
832 GEN_VEXT_AMO(vamomaxud_v_d
, uint64_t, uint64_t, idx_d
, clearq
)
833 GEN_VEXT_AMO(vamoswapw_v_w
, int32_t, int32_t, idx_w
, clearl
)
834 GEN_VEXT_AMO(vamoaddw_v_w
, int32_t, int32_t, idx_w
, clearl
)
835 GEN_VEXT_AMO(vamoxorw_v_w
, int32_t, int32_t, idx_w
, clearl
)
836 GEN_VEXT_AMO(vamoandw_v_w
, int32_t, int32_t, idx_w
, clearl
)
837 GEN_VEXT_AMO(vamoorw_v_w
, int32_t, int32_t, idx_w
, clearl
)
838 GEN_VEXT_AMO(vamominw_v_w
, int32_t, int32_t, idx_w
, clearl
)
839 GEN_VEXT_AMO(vamomaxw_v_w
, int32_t, int32_t, idx_w
, clearl
)
840 GEN_VEXT_AMO(vamominuw_v_w
, uint32_t, uint32_t, idx_w
, clearl
)
841 GEN_VEXT_AMO(vamomaxuw_v_w
, uint32_t, uint32_t, idx_w
, clearl
)
844 *** Vector Integer Arithmetic Instructions
847 /* expand macro args before macro */
848 #define RVVCALL(macro, ...) macro(__VA_ARGS__)
850 /* (TD, T1, T2, TX1, TX2) */
851 #define OP_SSS_B int8_t, int8_t, int8_t, int8_t, int8_t
852 #define OP_SSS_H int16_t, int16_t, int16_t, int16_t, int16_t
853 #define OP_SSS_W int32_t, int32_t, int32_t, int32_t, int32_t
854 #define OP_SSS_D int64_t, int64_t, int64_t, int64_t, int64_t
855 #define OP_UUU_B uint8_t, uint8_t, uint8_t, uint8_t, uint8_t
856 #define OP_UUU_H uint16_t, uint16_t, uint16_t, uint16_t, uint16_t
857 #define OP_UUU_W uint32_t, uint32_t, uint32_t, uint32_t, uint32_t
858 #define OP_UUU_D uint64_t, uint64_t, uint64_t, uint64_t, uint64_t
859 #define OP_SUS_B int8_t, uint8_t, int8_t, uint8_t, int8_t
860 #define OP_SUS_H int16_t, uint16_t, int16_t, uint16_t, int16_t
861 #define OP_SUS_W int32_t, uint32_t, int32_t, uint32_t, int32_t
862 #define OP_SUS_D int64_t, uint64_t, int64_t, uint64_t, int64_t
863 #define WOP_UUU_B uint16_t, uint8_t, uint8_t, uint16_t, uint16_t
864 #define WOP_UUU_H uint32_t, uint16_t, uint16_t, uint32_t, uint32_t
865 #define WOP_UUU_W uint64_t, uint32_t, uint32_t, uint64_t, uint64_t
866 #define WOP_SSS_B int16_t, int8_t, int8_t, int16_t, int16_t
867 #define WOP_SSS_H int32_t, int16_t, int16_t, int32_t, int32_t
868 #define WOP_SSS_W int64_t, int32_t, int32_t, int64_t, int64_t
869 #define WOP_SUS_B int16_t, uint8_t, int8_t, uint16_t, int16_t
870 #define WOP_SUS_H int32_t, uint16_t, int16_t, uint32_t, int32_t
871 #define WOP_SUS_W int64_t, uint32_t, int32_t, uint64_t, int64_t
872 #define WOP_SSU_B int16_t, int8_t, uint8_t, int16_t, uint16_t
873 #define WOP_SSU_H int32_t, int16_t, uint16_t, int32_t, uint32_t
874 #define WOP_SSU_W int64_t, int32_t, uint32_t, int64_t, uint64_t
875 #define NOP_SSS_B int8_t, int8_t, int16_t, int8_t, int16_t
876 #define NOP_SSS_H int16_t, int16_t, int32_t, int16_t, int32_t
877 #define NOP_SSS_W int32_t, int32_t, int64_t, int32_t, int64_t
878 #define NOP_UUU_B uint8_t, uint8_t, uint16_t, uint8_t, uint16_t
879 #define NOP_UUU_H uint16_t, uint16_t, uint32_t, uint16_t, uint32_t
880 #define NOP_UUU_W uint32_t, uint32_t, uint64_t, uint32_t, uint64_t
882 /* operation of two vector elements */
883 typedef void opivv2_fn(void *vd
, void *vs1
, void *vs2
, int i
);
885 #define OPIVV2(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP) \
886 static void do_##NAME(void *vd, void *vs1, void *vs2, int i) \
888 TX1 s1 = *((T1 *)vs1 + HS1(i)); \
889 TX2 s2 = *((T2 *)vs2 + HS2(i)); \
890 *((TD *)vd + HD(i)) = OP(s2, s1); \
892 #define DO_SUB(N, M) (N - M)
893 #define DO_RSUB(N, M) (M - N)
895 RVVCALL(OPIVV2
, vadd_vv_b
, OP_SSS_B
, H1
, H1
, H1
, DO_ADD
)
896 RVVCALL(OPIVV2
, vadd_vv_h
, OP_SSS_H
, H2
, H2
, H2
, DO_ADD
)
897 RVVCALL(OPIVV2
, vadd_vv_w
, OP_SSS_W
, H4
, H4
, H4
, DO_ADD
)
898 RVVCALL(OPIVV2
, vadd_vv_d
, OP_SSS_D
, H8
, H8
, H8
, DO_ADD
)
899 RVVCALL(OPIVV2
, vsub_vv_b
, OP_SSS_B
, H1
, H1
, H1
, DO_SUB
)
900 RVVCALL(OPIVV2
, vsub_vv_h
, OP_SSS_H
, H2
, H2
, H2
, DO_SUB
)
901 RVVCALL(OPIVV2
, vsub_vv_w
, OP_SSS_W
, H4
, H4
, H4
, DO_SUB
)
902 RVVCALL(OPIVV2
, vsub_vv_d
, OP_SSS_D
, H8
, H8
, H8
, DO_SUB
)
904 static void do_vext_vv(void *vd
, void *v0
, void *vs1
, void *vs2
,
905 CPURISCVState
*env
, uint32_t desc
,
906 uint32_t esz
, uint32_t dsz
,
907 opivv2_fn
*fn
, clear_fn
*clearfn
)
909 uint32_t vlmax
= vext_maxsz(desc
) / esz
;
910 uint32_t mlen
= vext_mlen(desc
);
911 uint32_t vm
= vext_vm(desc
);
912 uint32_t vl
= env
->vl
;
915 for (i
= 0; i
< vl
; i
++) {
916 if (!vm
&& !vext_elem_mask(v0
, mlen
, i
)) {
921 clearfn(vd
, vl
, vl
* dsz
, vlmax
* dsz
);
924 /* generate the helpers for OPIVV */
925 #define GEN_VEXT_VV(NAME, ESZ, DSZ, CLEAR_FN) \
926 void HELPER(NAME)(void *vd, void *v0, void *vs1, \
927 void *vs2, CPURISCVState *env, \
930 do_vext_vv(vd, v0, vs1, vs2, env, desc, ESZ, DSZ, \
931 do_##NAME, CLEAR_FN); \
934 GEN_VEXT_VV(vadd_vv_b
, 1, 1, clearb
)
935 GEN_VEXT_VV(vadd_vv_h
, 2, 2, clearh
)
936 GEN_VEXT_VV(vadd_vv_w
, 4, 4, clearl
)
937 GEN_VEXT_VV(vadd_vv_d
, 8, 8, clearq
)
938 GEN_VEXT_VV(vsub_vv_b
, 1, 1, clearb
)
939 GEN_VEXT_VV(vsub_vv_h
, 2, 2, clearh
)
940 GEN_VEXT_VV(vsub_vv_w
, 4, 4, clearl
)
941 GEN_VEXT_VV(vsub_vv_d
, 8, 8, clearq
)
943 typedef void opivx2_fn(void *vd
, target_long s1
, void *vs2
, int i
);
946 * (T1)s1 gives the real operator type.
947 * (TX1)(T1)s1 expands the operator type of widen or narrow operations.
949 #define OPIVX2(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP) \
950 static void do_##NAME(void *vd, target_long s1, void *vs2, int i) \
952 TX2 s2 = *((T2 *)vs2 + HS2(i)); \
953 *((TD *)vd + HD(i)) = OP(s2, (TX1)(T1)s1); \
956 RVVCALL(OPIVX2
, vadd_vx_b
, OP_SSS_B
, H1
, H1
, DO_ADD
)
957 RVVCALL(OPIVX2
, vadd_vx_h
, OP_SSS_H
, H2
, H2
, DO_ADD
)
958 RVVCALL(OPIVX2
, vadd_vx_w
, OP_SSS_W
, H4
, H4
, DO_ADD
)
959 RVVCALL(OPIVX2
, vadd_vx_d
, OP_SSS_D
, H8
, H8
, DO_ADD
)
960 RVVCALL(OPIVX2
, vsub_vx_b
, OP_SSS_B
, H1
, H1
, DO_SUB
)
961 RVVCALL(OPIVX2
, vsub_vx_h
, OP_SSS_H
, H2
, H2
, DO_SUB
)
962 RVVCALL(OPIVX2
, vsub_vx_w
, OP_SSS_W
, H4
, H4
, DO_SUB
)
963 RVVCALL(OPIVX2
, vsub_vx_d
, OP_SSS_D
, H8
, H8
, DO_SUB
)
964 RVVCALL(OPIVX2
, vrsub_vx_b
, OP_SSS_B
, H1
, H1
, DO_RSUB
)
965 RVVCALL(OPIVX2
, vrsub_vx_h
, OP_SSS_H
, H2
, H2
, DO_RSUB
)
966 RVVCALL(OPIVX2
, vrsub_vx_w
, OP_SSS_W
, H4
, H4
, DO_RSUB
)
967 RVVCALL(OPIVX2
, vrsub_vx_d
, OP_SSS_D
, H8
, H8
, DO_RSUB
)
969 static void do_vext_vx(void *vd
, void *v0
, target_long s1
, void *vs2
,
970 CPURISCVState
*env
, uint32_t desc
,
971 uint32_t esz
, uint32_t dsz
,
972 opivx2_fn fn
, clear_fn
*clearfn
)
974 uint32_t vlmax
= vext_maxsz(desc
) / esz
;
975 uint32_t mlen
= vext_mlen(desc
);
976 uint32_t vm
= vext_vm(desc
);
977 uint32_t vl
= env
->vl
;
980 for (i
= 0; i
< vl
; i
++) {
981 if (!vm
&& !vext_elem_mask(v0
, mlen
, i
)) {
986 clearfn(vd
, vl
, vl
* dsz
, vlmax
* dsz
);
989 /* generate the helpers for OPIVX */
990 #define GEN_VEXT_VX(NAME, ESZ, DSZ, CLEAR_FN) \
991 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, \
992 void *vs2, CPURISCVState *env, \
995 do_vext_vx(vd, v0, s1, vs2, env, desc, ESZ, DSZ, \
996 do_##NAME, CLEAR_FN); \
999 GEN_VEXT_VX(vadd_vx_b
, 1, 1, clearb
)
1000 GEN_VEXT_VX(vadd_vx_h
, 2, 2, clearh
)
1001 GEN_VEXT_VX(vadd_vx_w
, 4, 4, clearl
)
1002 GEN_VEXT_VX(vadd_vx_d
, 8, 8, clearq
)
1003 GEN_VEXT_VX(vsub_vx_b
, 1, 1, clearb
)
1004 GEN_VEXT_VX(vsub_vx_h
, 2, 2, clearh
)
1005 GEN_VEXT_VX(vsub_vx_w
, 4, 4, clearl
)
1006 GEN_VEXT_VX(vsub_vx_d
, 8, 8, clearq
)
1007 GEN_VEXT_VX(vrsub_vx_b
, 1, 1, clearb
)
1008 GEN_VEXT_VX(vrsub_vx_h
, 2, 2, clearh
)
1009 GEN_VEXT_VX(vrsub_vx_w
, 4, 4, clearl
)
1010 GEN_VEXT_VX(vrsub_vx_d
, 8, 8, clearq
)
1012 void HELPER(vec_rsubs8
)(void *d
, void *a
, uint64_t b
, uint32_t desc
)
1014 intptr_t oprsz
= simd_oprsz(desc
);
1017 for (i
= 0; i
< oprsz
; i
+= sizeof(uint8_t)) {
1018 *(uint8_t *)(d
+ i
) = (uint8_t)b
- *(uint8_t *)(a
+ i
);
1022 void HELPER(vec_rsubs16
)(void *d
, void *a
, uint64_t b
, uint32_t desc
)
1024 intptr_t oprsz
= simd_oprsz(desc
);
1027 for (i
= 0; i
< oprsz
; i
+= sizeof(uint16_t)) {
1028 *(uint16_t *)(d
+ i
) = (uint16_t)b
- *(uint16_t *)(a
+ i
);
1032 void HELPER(vec_rsubs32
)(void *d
, void *a
, uint64_t b
, uint32_t desc
)
1034 intptr_t oprsz
= simd_oprsz(desc
);
1037 for (i
= 0; i
< oprsz
; i
+= sizeof(uint32_t)) {
1038 *(uint32_t *)(d
+ i
) = (uint32_t)b
- *(uint32_t *)(a
+ i
);
1042 void HELPER(vec_rsubs64
)(void *d
, void *a
, uint64_t b
, uint32_t desc
)
1044 intptr_t oprsz
= simd_oprsz(desc
);
1047 for (i
= 0; i
< oprsz
; i
+= sizeof(uint64_t)) {
1048 *(uint64_t *)(d
+ i
) = b
- *(uint64_t *)(a
+ i
);
1052 /* Vector Widening Integer Add/Subtract */
1053 #define WOP_UUU_B uint16_t, uint8_t, uint8_t, uint16_t, uint16_t
1054 #define WOP_UUU_H uint32_t, uint16_t, uint16_t, uint32_t, uint32_t
1055 #define WOP_UUU_W uint64_t, uint32_t, uint32_t, uint64_t, uint64_t
1056 #define WOP_SSS_B int16_t, int8_t, int8_t, int16_t, int16_t
1057 #define WOP_SSS_H int32_t, int16_t, int16_t, int32_t, int32_t
1058 #define WOP_SSS_W int64_t, int32_t, int32_t, int64_t, int64_t
1059 #define WOP_WUUU_B uint16_t, uint8_t, uint16_t, uint16_t, uint16_t
1060 #define WOP_WUUU_H uint32_t, uint16_t, uint32_t, uint32_t, uint32_t
1061 #define WOP_WUUU_W uint64_t, uint32_t, uint64_t, uint64_t, uint64_t
1062 #define WOP_WSSS_B int16_t, int8_t, int16_t, int16_t, int16_t
1063 #define WOP_WSSS_H int32_t, int16_t, int32_t, int32_t, int32_t
1064 #define WOP_WSSS_W int64_t, int32_t, int64_t, int64_t, int64_t
1065 RVVCALL(OPIVV2
, vwaddu_vv_b
, WOP_UUU_B
, H2
, H1
, H1
, DO_ADD
)
1066 RVVCALL(OPIVV2
, vwaddu_vv_h
, WOP_UUU_H
, H4
, H2
, H2
, DO_ADD
)
1067 RVVCALL(OPIVV2
, vwaddu_vv_w
, WOP_UUU_W
, H8
, H4
, H4
, DO_ADD
)
1068 RVVCALL(OPIVV2
, vwsubu_vv_b
, WOP_UUU_B
, H2
, H1
, H1
, DO_SUB
)
1069 RVVCALL(OPIVV2
, vwsubu_vv_h
, WOP_UUU_H
, H4
, H2
, H2
, DO_SUB
)
1070 RVVCALL(OPIVV2
, vwsubu_vv_w
, WOP_UUU_W
, H8
, H4
, H4
, DO_SUB
)
1071 RVVCALL(OPIVV2
, vwadd_vv_b
, WOP_SSS_B
, H2
, H1
, H1
, DO_ADD
)
1072 RVVCALL(OPIVV2
, vwadd_vv_h
, WOP_SSS_H
, H4
, H2
, H2
, DO_ADD
)
1073 RVVCALL(OPIVV2
, vwadd_vv_w
, WOP_SSS_W
, H8
, H4
, H4
, DO_ADD
)
1074 RVVCALL(OPIVV2
, vwsub_vv_b
, WOP_SSS_B
, H2
, H1
, H1
, DO_SUB
)
1075 RVVCALL(OPIVV2
, vwsub_vv_h
, WOP_SSS_H
, H4
, H2
, H2
, DO_SUB
)
1076 RVVCALL(OPIVV2
, vwsub_vv_w
, WOP_SSS_W
, H8
, H4
, H4
, DO_SUB
)
1077 RVVCALL(OPIVV2
, vwaddu_wv_b
, WOP_WUUU_B
, H2
, H1
, H1
, DO_ADD
)
1078 RVVCALL(OPIVV2
, vwaddu_wv_h
, WOP_WUUU_H
, H4
, H2
, H2
, DO_ADD
)
1079 RVVCALL(OPIVV2
, vwaddu_wv_w
, WOP_WUUU_W
, H8
, H4
, H4
, DO_ADD
)
1080 RVVCALL(OPIVV2
, vwsubu_wv_b
, WOP_WUUU_B
, H2
, H1
, H1
, DO_SUB
)
1081 RVVCALL(OPIVV2
, vwsubu_wv_h
, WOP_WUUU_H
, H4
, H2
, H2
, DO_SUB
)
1082 RVVCALL(OPIVV2
, vwsubu_wv_w
, WOP_WUUU_W
, H8
, H4
, H4
, DO_SUB
)
1083 RVVCALL(OPIVV2
, vwadd_wv_b
, WOP_WSSS_B
, H2
, H1
, H1
, DO_ADD
)
1084 RVVCALL(OPIVV2
, vwadd_wv_h
, WOP_WSSS_H
, H4
, H2
, H2
, DO_ADD
)
1085 RVVCALL(OPIVV2
, vwadd_wv_w
, WOP_WSSS_W
, H8
, H4
, H4
, DO_ADD
)
1086 RVVCALL(OPIVV2
, vwsub_wv_b
, WOP_WSSS_B
, H2
, H1
, H1
, DO_SUB
)
1087 RVVCALL(OPIVV2
, vwsub_wv_h
, WOP_WSSS_H
, H4
, H2
, H2
, DO_SUB
)
1088 RVVCALL(OPIVV2
, vwsub_wv_w
, WOP_WSSS_W
, H8
, H4
, H4
, DO_SUB
)
1089 GEN_VEXT_VV(vwaddu_vv_b
, 1, 2, clearh
)
1090 GEN_VEXT_VV(vwaddu_vv_h
, 2, 4, clearl
)
1091 GEN_VEXT_VV(vwaddu_vv_w
, 4, 8, clearq
)
1092 GEN_VEXT_VV(vwsubu_vv_b
, 1, 2, clearh
)
1093 GEN_VEXT_VV(vwsubu_vv_h
, 2, 4, clearl
)
1094 GEN_VEXT_VV(vwsubu_vv_w
, 4, 8, clearq
)
1095 GEN_VEXT_VV(vwadd_vv_b
, 1, 2, clearh
)
1096 GEN_VEXT_VV(vwadd_vv_h
, 2, 4, clearl
)
1097 GEN_VEXT_VV(vwadd_vv_w
, 4, 8, clearq
)
1098 GEN_VEXT_VV(vwsub_vv_b
, 1, 2, clearh
)
1099 GEN_VEXT_VV(vwsub_vv_h
, 2, 4, clearl
)
1100 GEN_VEXT_VV(vwsub_vv_w
, 4, 8, clearq
)
1101 GEN_VEXT_VV(vwaddu_wv_b
, 1, 2, clearh
)
1102 GEN_VEXT_VV(vwaddu_wv_h
, 2, 4, clearl
)
1103 GEN_VEXT_VV(vwaddu_wv_w
, 4, 8, clearq
)
1104 GEN_VEXT_VV(vwsubu_wv_b
, 1, 2, clearh
)
1105 GEN_VEXT_VV(vwsubu_wv_h
, 2, 4, clearl
)
1106 GEN_VEXT_VV(vwsubu_wv_w
, 4, 8, clearq
)
1107 GEN_VEXT_VV(vwadd_wv_b
, 1, 2, clearh
)
1108 GEN_VEXT_VV(vwadd_wv_h
, 2, 4, clearl
)
1109 GEN_VEXT_VV(vwadd_wv_w
, 4, 8, clearq
)
1110 GEN_VEXT_VV(vwsub_wv_b
, 1, 2, clearh
)
1111 GEN_VEXT_VV(vwsub_wv_h
, 2, 4, clearl
)
1112 GEN_VEXT_VV(vwsub_wv_w
, 4, 8, clearq
)
1114 RVVCALL(OPIVX2
, vwaddu_vx_b
, WOP_UUU_B
, H2
, H1
, DO_ADD
)
1115 RVVCALL(OPIVX2
, vwaddu_vx_h
, WOP_UUU_H
, H4
, H2
, DO_ADD
)
1116 RVVCALL(OPIVX2
, vwaddu_vx_w
, WOP_UUU_W
, H8
, H4
, DO_ADD
)
1117 RVVCALL(OPIVX2
, vwsubu_vx_b
, WOP_UUU_B
, H2
, H1
, DO_SUB
)
1118 RVVCALL(OPIVX2
, vwsubu_vx_h
, WOP_UUU_H
, H4
, H2
, DO_SUB
)
1119 RVVCALL(OPIVX2
, vwsubu_vx_w
, WOP_UUU_W
, H8
, H4
, DO_SUB
)
1120 RVVCALL(OPIVX2
, vwadd_vx_b
, WOP_SSS_B
, H2
, H1
, DO_ADD
)
1121 RVVCALL(OPIVX2
, vwadd_vx_h
, WOP_SSS_H
, H4
, H2
, DO_ADD
)
1122 RVVCALL(OPIVX2
, vwadd_vx_w
, WOP_SSS_W
, H8
, H4
, DO_ADD
)
1123 RVVCALL(OPIVX2
, vwsub_vx_b
, WOP_SSS_B
, H2
, H1
, DO_SUB
)
1124 RVVCALL(OPIVX2
, vwsub_vx_h
, WOP_SSS_H
, H4
, H2
, DO_SUB
)
1125 RVVCALL(OPIVX2
, vwsub_vx_w
, WOP_SSS_W
, H8
, H4
, DO_SUB
)
1126 RVVCALL(OPIVX2
, vwaddu_wx_b
, WOP_WUUU_B
, H2
, H1
, DO_ADD
)
1127 RVVCALL(OPIVX2
, vwaddu_wx_h
, WOP_WUUU_H
, H4
, H2
, DO_ADD
)
1128 RVVCALL(OPIVX2
, vwaddu_wx_w
, WOP_WUUU_W
, H8
, H4
, DO_ADD
)
1129 RVVCALL(OPIVX2
, vwsubu_wx_b
, WOP_WUUU_B
, H2
, H1
, DO_SUB
)
1130 RVVCALL(OPIVX2
, vwsubu_wx_h
, WOP_WUUU_H
, H4
, H2
, DO_SUB
)
1131 RVVCALL(OPIVX2
, vwsubu_wx_w
, WOP_WUUU_W
, H8
, H4
, DO_SUB
)
1132 RVVCALL(OPIVX2
, vwadd_wx_b
, WOP_WSSS_B
, H2
, H1
, DO_ADD
)
1133 RVVCALL(OPIVX2
, vwadd_wx_h
, WOP_WSSS_H
, H4
, H2
, DO_ADD
)
1134 RVVCALL(OPIVX2
, vwadd_wx_w
, WOP_WSSS_W
, H8
, H4
, DO_ADD
)
1135 RVVCALL(OPIVX2
, vwsub_wx_b
, WOP_WSSS_B
, H2
, H1
, DO_SUB
)
1136 RVVCALL(OPIVX2
, vwsub_wx_h
, WOP_WSSS_H
, H4
, H2
, DO_SUB
)
1137 RVVCALL(OPIVX2
, vwsub_wx_w
, WOP_WSSS_W
, H8
, H4
, DO_SUB
)
1138 GEN_VEXT_VX(vwaddu_vx_b
, 1, 2, clearh
)
1139 GEN_VEXT_VX(vwaddu_vx_h
, 2, 4, clearl
)
1140 GEN_VEXT_VX(vwaddu_vx_w
, 4, 8, clearq
)
1141 GEN_VEXT_VX(vwsubu_vx_b
, 1, 2, clearh
)
1142 GEN_VEXT_VX(vwsubu_vx_h
, 2, 4, clearl
)
1143 GEN_VEXT_VX(vwsubu_vx_w
, 4, 8, clearq
)
1144 GEN_VEXT_VX(vwadd_vx_b
, 1, 2, clearh
)
1145 GEN_VEXT_VX(vwadd_vx_h
, 2, 4, clearl
)
1146 GEN_VEXT_VX(vwadd_vx_w
, 4, 8, clearq
)
1147 GEN_VEXT_VX(vwsub_vx_b
, 1, 2, clearh
)
1148 GEN_VEXT_VX(vwsub_vx_h
, 2, 4, clearl
)
1149 GEN_VEXT_VX(vwsub_vx_w
, 4, 8, clearq
)
1150 GEN_VEXT_VX(vwaddu_wx_b
, 1, 2, clearh
)
1151 GEN_VEXT_VX(vwaddu_wx_h
, 2, 4, clearl
)
1152 GEN_VEXT_VX(vwaddu_wx_w
, 4, 8, clearq
)
1153 GEN_VEXT_VX(vwsubu_wx_b
, 1, 2, clearh
)
1154 GEN_VEXT_VX(vwsubu_wx_h
, 2, 4, clearl
)
1155 GEN_VEXT_VX(vwsubu_wx_w
, 4, 8, clearq
)
1156 GEN_VEXT_VX(vwadd_wx_b
, 1, 2, clearh
)
1157 GEN_VEXT_VX(vwadd_wx_h
, 2, 4, clearl
)
1158 GEN_VEXT_VX(vwadd_wx_w
, 4, 8, clearq
)
1159 GEN_VEXT_VX(vwsub_wx_b
, 1, 2, clearh
)
1160 GEN_VEXT_VX(vwsub_wx_h
, 2, 4, clearl
)
1161 GEN_VEXT_VX(vwsub_wx_w
, 4, 8, clearq
)
1163 /* Vector Integer Add-with-Carry / Subtract-with-Borrow Instructions */
1164 #define DO_VADC(N, M, C) (N + M + C)
1165 #define DO_VSBC(N, M, C) (N - M - C)
1167 #define GEN_VEXT_VADC_VVM(NAME, ETYPE, H, DO_OP, CLEAR_FN) \
1168 void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2, \
1169 CPURISCVState *env, uint32_t desc) \
1171 uint32_t mlen = vext_mlen(desc); \
1172 uint32_t vl = env->vl; \
1173 uint32_t esz = sizeof(ETYPE); \
1174 uint32_t vlmax = vext_maxsz(desc) / esz; \
1177 for (i = 0; i < vl; i++) { \
1178 ETYPE s1 = *((ETYPE *)vs1 + H(i)); \
1179 ETYPE s2 = *((ETYPE *)vs2 + H(i)); \
1180 uint8_t carry = vext_elem_mask(v0, mlen, i); \
1182 *((ETYPE *)vd + H(i)) = DO_OP(s2, s1, carry); \
1184 CLEAR_FN(vd, vl, vl * esz, vlmax * esz); \
1187 GEN_VEXT_VADC_VVM(vadc_vvm_b
, uint8_t, H1
, DO_VADC
, clearb
)
1188 GEN_VEXT_VADC_VVM(vadc_vvm_h
, uint16_t, H2
, DO_VADC
, clearh
)
1189 GEN_VEXT_VADC_VVM(vadc_vvm_w
, uint32_t, H4
, DO_VADC
, clearl
)
1190 GEN_VEXT_VADC_VVM(vadc_vvm_d
, uint64_t, H8
, DO_VADC
, clearq
)
1192 GEN_VEXT_VADC_VVM(vsbc_vvm_b
, uint8_t, H1
, DO_VSBC
, clearb
)
1193 GEN_VEXT_VADC_VVM(vsbc_vvm_h
, uint16_t, H2
, DO_VSBC
, clearh
)
1194 GEN_VEXT_VADC_VVM(vsbc_vvm_w
, uint32_t, H4
, DO_VSBC
, clearl
)
1195 GEN_VEXT_VADC_VVM(vsbc_vvm_d
, uint64_t, H8
, DO_VSBC
, clearq
)
1197 #define GEN_VEXT_VADC_VXM(NAME, ETYPE, H, DO_OP, CLEAR_FN) \
1198 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2, \
1199 CPURISCVState *env, uint32_t desc) \
1201 uint32_t mlen = vext_mlen(desc); \
1202 uint32_t vl = env->vl; \
1203 uint32_t esz = sizeof(ETYPE); \
1204 uint32_t vlmax = vext_maxsz(desc) / esz; \
1207 for (i = 0; i < vl; i++) { \
1208 ETYPE s2 = *((ETYPE *)vs2 + H(i)); \
1209 uint8_t carry = vext_elem_mask(v0, mlen, i); \
1211 *((ETYPE *)vd + H(i)) = DO_OP(s2, (ETYPE)(target_long)s1, carry);\
1213 CLEAR_FN(vd, vl, vl * esz, vlmax * esz); \
1216 GEN_VEXT_VADC_VXM(vadc_vxm_b
, uint8_t, H1
, DO_VADC
, clearb
)
1217 GEN_VEXT_VADC_VXM(vadc_vxm_h
, uint16_t, H2
, DO_VADC
, clearh
)
1218 GEN_VEXT_VADC_VXM(vadc_vxm_w
, uint32_t, H4
, DO_VADC
, clearl
)
1219 GEN_VEXT_VADC_VXM(vadc_vxm_d
, uint64_t, H8
, DO_VADC
, clearq
)
1221 GEN_VEXT_VADC_VXM(vsbc_vxm_b
, uint8_t, H1
, DO_VSBC
, clearb
)
1222 GEN_VEXT_VADC_VXM(vsbc_vxm_h
, uint16_t, H2
, DO_VSBC
, clearh
)
1223 GEN_VEXT_VADC_VXM(vsbc_vxm_w
, uint32_t, H4
, DO_VSBC
, clearl
)
1224 GEN_VEXT_VADC_VXM(vsbc_vxm_d
, uint64_t, H8
, DO_VSBC
, clearq
)
1226 #define DO_MADC(N, M, C) (C ? (__typeof(N))(N + M + 1) <= N : \
1227 (__typeof(N))(N + M) < N)
1228 #define DO_MSBC(N, M, C) (C ? N <= M : N < M)
1230 #define GEN_VEXT_VMADC_VVM(NAME, ETYPE, H, DO_OP) \
1231 void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2, \
1232 CPURISCVState *env, uint32_t desc) \
1234 uint32_t mlen = vext_mlen(desc); \
1235 uint32_t vl = env->vl; \
1236 uint32_t vlmax = vext_maxsz(desc) / sizeof(ETYPE); \
1239 for (i = 0; i < vl; i++) { \
1240 ETYPE s1 = *((ETYPE *)vs1 + H(i)); \
1241 ETYPE s2 = *((ETYPE *)vs2 + H(i)); \
1242 uint8_t carry = vext_elem_mask(v0, mlen, i); \
1244 vext_set_elem_mask(vd, mlen, i, DO_OP(s2, s1, carry));\
1246 for (; i < vlmax; i++) { \
1247 vext_set_elem_mask(vd, mlen, i, 0); \
1251 GEN_VEXT_VMADC_VVM(vmadc_vvm_b
, uint8_t, H1
, DO_MADC
)
1252 GEN_VEXT_VMADC_VVM(vmadc_vvm_h
, uint16_t, H2
, DO_MADC
)
1253 GEN_VEXT_VMADC_VVM(vmadc_vvm_w
, uint32_t, H4
, DO_MADC
)
1254 GEN_VEXT_VMADC_VVM(vmadc_vvm_d
, uint64_t, H8
, DO_MADC
)
1256 GEN_VEXT_VMADC_VVM(vmsbc_vvm_b
, uint8_t, H1
, DO_MSBC
)
1257 GEN_VEXT_VMADC_VVM(vmsbc_vvm_h
, uint16_t, H2
, DO_MSBC
)
1258 GEN_VEXT_VMADC_VVM(vmsbc_vvm_w
, uint32_t, H4
, DO_MSBC
)
1259 GEN_VEXT_VMADC_VVM(vmsbc_vvm_d
, uint64_t, H8
, DO_MSBC
)
1261 #define GEN_VEXT_VMADC_VXM(NAME, ETYPE, H, DO_OP) \
1262 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, \
1263 void *vs2, CPURISCVState *env, uint32_t desc) \
1265 uint32_t mlen = vext_mlen(desc); \
1266 uint32_t vl = env->vl; \
1267 uint32_t vlmax = vext_maxsz(desc) / sizeof(ETYPE); \
1270 for (i = 0; i < vl; i++) { \
1271 ETYPE s2 = *((ETYPE *)vs2 + H(i)); \
1272 uint8_t carry = vext_elem_mask(v0, mlen, i); \
1274 vext_set_elem_mask(vd, mlen, i, \
1275 DO_OP(s2, (ETYPE)(target_long)s1, carry)); \
1277 for (; i < vlmax; i++) { \
1278 vext_set_elem_mask(vd, mlen, i, 0); \
1282 GEN_VEXT_VMADC_VXM(vmadc_vxm_b
, uint8_t, H1
, DO_MADC
)
1283 GEN_VEXT_VMADC_VXM(vmadc_vxm_h
, uint16_t, H2
, DO_MADC
)
1284 GEN_VEXT_VMADC_VXM(vmadc_vxm_w
, uint32_t, H4
, DO_MADC
)
1285 GEN_VEXT_VMADC_VXM(vmadc_vxm_d
, uint64_t, H8
, DO_MADC
)
1287 GEN_VEXT_VMADC_VXM(vmsbc_vxm_b
, uint8_t, H1
, DO_MSBC
)
1288 GEN_VEXT_VMADC_VXM(vmsbc_vxm_h
, uint16_t, H2
, DO_MSBC
)
1289 GEN_VEXT_VMADC_VXM(vmsbc_vxm_w
, uint32_t, H4
, DO_MSBC
)
1290 GEN_VEXT_VMADC_VXM(vmsbc_vxm_d
, uint64_t, H8
, DO_MSBC
)
1292 /* Vector Bitwise Logical Instructions */
1293 RVVCALL(OPIVV2
, vand_vv_b
, OP_SSS_B
, H1
, H1
, H1
, DO_AND
)
1294 RVVCALL(OPIVV2
, vand_vv_h
, OP_SSS_H
, H2
, H2
, H2
, DO_AND
)
1295 RVVCALL(OPIVV2
, vand_vv_w
, OP_SSS_W
, H4
, H4
, H4
, DO_AND
)
1296 RVVCALL(OPIVV2
, vand_vv_d
, OP_SSS_D
, H8
, H8
, H8
, DO_AND
)
1297 RVVCALL(OPIVV2
, vor_vv_b
, OP_SSS_B
, H1
, H1
, H1
, DO_OR
)
1298 RVVCALL(OPIVV2
, vor_vv_h
, OP_SSS_H
, H2
, H2
, H2
, DO_OR
)
1299 RVVCALL(OPIVV2
, vor_vv_w
, OP_SSS_W
, H4
, H4
, H4
, DO_OR
)
1300 RVVCALL(OPIVV2
, vor_vv_d
, OP_SSS_D
, H8
, H8
, H8
, DO_OR
)
1301 RVVCALL(OPIVV2
, vxor_vv_b
, OP_SSS_B
, H1
, H1
, H1
, DO_XOR
)
1302 RVVCALL(OPIVV2
, vxor_vv_h
, OP_SSS_H
, H2
, H2
, H2
, DO_XOR
)
1303 RVVCALL(OPIVV2
, vxor_vv_w
, OP_SSS_W
, H4
, H4
, H4
, DO_XOR
)
1304 RVVCALL(OPIVV2
, vxor_vv_d
, OP_SSS_D
, H8
, H8
, H8
, DO_XOR
)
1305 GEN_VEXT_VV(vand_vv_b
, 1, 1, clearb
)
1306 GEN_VEXT_VV(vand_vv_h
, 2, 2, clearh
)
1307 GEN_VEXT_VV(vand_vv_w
, 4, 4, clearl
)
1308 GEN_VEXT_VV(vand_vv_d
, 8, 8, clearq
)
1309 GEN_VEXT_VV(vor_vv_b
, 1, 1, clearb
)
1310 GEN_VEXT_VV(vor_vv_h
, 2, 2, clearh
)
1311 GEN_VEXT_VV(vor_vv_w
, 4, 4, clearl
)
1312 GEN_VEXT_VV(vor_vv_d
, 8, 8, clearq
)
1313 GEN_VEXT_VV(vxor_vv_b
, 1, 1, clearb
)
1314 GEN_VEXT_VV(vxor_vv_h
, 2, 2, clearh
)
1315 GEN_VEXT_VV(vxor_vv_w
, 4, 4, clearl
)
1316 GEN_VEXT_VV(vxor_vv_d
, 8, 8, clearq
)
1318 RVVCALL(OPIVX2
, vand_vx_b
, OP_SSS_B
, H1
, H1
, DO_AND
)
1319 RVVCALL(OPIVX2
, vand_vx_h
, OP_SSS_H
, H2
, H2
, DO_AND
)
1320 RVVCALL(OPIVX2
, vand_vx_w
, OP_SSS_W
, H4
, H4
, DO_AND
)
1321 RVVCALL(OPIVX2
, vand_vx_d
, OP_SSS_D
, H8
, H8
, DO_AND
)
1322 RVVCALL(OPIVX2
, vor_vx_b
, OP_SSS_B
, H1
, H1
, DO_OR
)
1323 RVVCALL(OPIVX2
, vor_vx_h
, OP_SSS_H
, H2
, H2
, DO_OR
)
1324 RVVCALL(OPIVX2
, vor_vx_w
, OP_SSS_W
, H4
, H4
, DO_OR
)
1325 RVVCALL(OPIVX2
, vor_vx_d
, OP_SSS_D
, H8
, H8
, DO_OR
)
1326 RVVCALL(OPIVX2
, vxor_vx_b
, OP_SSS_B
, H1
, H1
, DO_XOR
)
1327 RVVCALL(OPIVX2
, vxor_vx_h
, OP_SSS_H
, H2
, H2
, DO_XOR
)
1328 RVVCALL(OPIVX2
, vxor_vx_w
, OP_SSS_W
, H4
, H4
, DO_XOR
)
1329 RVVCALL(OPIVX2
, vxor_vx_d
, OP_SSS_D
, H8
, H8
, DO_XOR
)
1330 GEN_VEXT_VX(vand_vx_b
, 1, 1, clearb
)
1331 GEN_VEXT_VX(vand_vx_h
, 2, 2, clearh
)
1332 GEN_VEXT_VX(vand_vx_w
, 4, 4, clearl
)
1333 GEN_VEXT_VX(vand_vx_d
, 8, 8, clearq
)
1334 GEN_VEXT_VX(vor_vx_b
, 1, 1, clearb
)
1335 GEN_VEXT_VX(vor_vx_h
, 2, 2, clearh
)
1336 GEN_VEXT_VX(vor_vx_w
, 4, 4, clearl
)
1337 GEN_VEXT_VX(vor_vx_d
, 8, 8, clearq
)
1338 GEN_VEXT_VX(vxor_vx_b
, 1, 1, clearb
)
1339 GEN_VEXT_VX(vxor_vx_h
, 2, 2, clearh
)
1340 GEN_VEXT_VX(vxor_vx_w
, 4, 4, clearl
)
1341 GEN_VEXT_VX(vxor_vx_d
, 8, 8, clearq
)
1343 /* Vector Single-Width Bit Shift Instructions */
1344 #define DO_SLL(N, M) (N << (M))
1345 #define DO_SRL(N, M) (N >> (M))
1347 /* generate the helpers for shift instructions with two vector operators */
1348 #define GEN_VEXT_SHIFT_VV(NAME, TS1, TS2, HS1, HS2, OP, MASK, CLEAR_FN) \
1349 void HELPER(NAME)(void *vd, void *v0, void *vs1, \
1350 void *vs2, CPURISCVState *env, uint32_t desc) \
1352 uint32_t mlen = vext_mlen(desc); \
1353 uint32_t vm = vext_vm(desc); \
1354 uint32_t vl = env->vl; \
1355 uint32_t esz = sizeof(TS1); \
1356 uint32_t vlmax = vext_maxsz(desc) / esz; \
1359 for (i = 0; i < vl; i++) { \
1360 if (!vm && !vext_elem_mask(v0, mlen, i)) { \
1363 TS1 s1 = *((TS1 *)vs1 + HS1(i)); \
1364 TS2 s2 = *((TS2 *)vs2 + HS2(i)); \
1365 *((TS1 *)vd + HS1(i)) = OP(s2, s1 & MASK); \
1367 CLEAR_FN(vd, vl, vl * esz, vlmax * esz); \
1370 GEN_VEXT_SHIFT_VV(vsll_vv_b
, uint8_t, uint8_t, H1
, H1
, DO_SLL
, 0x7, clearb
)
1371 GEN_VEXT_SHIFT_VV(vsll_vv_h
, uint16_t, uint16_t, H2
, H2
, DO_SLL
, 0xf, clearh
)
1372 GEN_VEXT_SHIFT_VV(vsll_vv_w
, uint32_t, uint32_t, H4
, H4
, DO_SLL
, 0x1f, clearl
)
1373 GEN_VEXT_SHIFT_VV(vsll_vv_d
, uint64_t, uint64_t, H8
, H8
, DO_SLL
, 0x3f, clearq
)
1375 GEN_VEXT_SHIFT_VV(vsrl_vv_b
, uint8_t, uint8_t, H1
, H1
, DO_SRL
, 0x7, clearb
)
1376 GEN_VEXT_SHIFT_VV(vsrl_vv_h
, uint16_t, uint16_t, H2
, H2
, DO_SRL
, 0xf, clearh
)
1377 GEN_VEXT_SHIFT_VV(vsrl_vv_w
, uint32_t, uint32_t, H4
, H4
, DO_SRL
, 0x1f, clearl
)
1378 GEN_VEXT_SHIFT_VV(vsrl_vv_d
, uint64_t, uint64_t, H8
, H8
, DO_SRL
, 0x3f, clearq
)
1380 GEN_VEXT_SHIFT_VV(vsra_vv_b
, uint8_t, int8_t, H1
, H1
, DO_SRL
, 0x7, clearb
)
1381 GEN_VEXT_SHIFT_VV(vsra_vv_h
, uint16_t, int16_t, H2
, H2
, DO_SRL
, 0xf, clearh
)
1382 GEN_VEXT_SHIFT_VV(vsra_vv_w
, uint32_t, int32_t, H4
, H4
, DO_SRL
, 0x1f, clearl
)
1383 GEN_VEXT_SHIFT_VV(vsra_vv_d
, uint64_t, int64_t, H8
, H8
, DO_SRL
, 0x3f, clearq
)
1385 /* generate the helpers for shift instructions with one vector and one scalar */
1386 #define GEN_VEXT_SHIFT_VX(NAME, TD, TS2, HD, HS2, OP, MASK, CLEAR_FN) \
1387 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, \
1388 void *vs2, CPURISCVState *env, uint32_t desc) \
1390 uint32_t mlen = vext_mlen(desc); \
1391 uint32_t vm = vext_vm(desc); \
1392 uint32_t vl = env->vl; \
1393 uint32_t esz = sizeof(TD); \
1394 uint32_t vlmax = vext_maxsz(desc) / esz; \
1397 for (i = 0; i < vl; i++) { \
1398 if (!vm && !vext_elem_mask(v0, mlen, i)) { \
1401 TS2 s2 = *((TS2 *)vs2 + HS2(i)); \
1402 *((TD *)vd + HD(i)) = OP(s2, s1 & MASK); \
1404 CLEAR_FN(vd, vl, vl * esz, vlmax * esz); \
1407 GEN_VEXT_SHIFT_VX(vsll_vx_b
, uint8_t, int8_t, H1
, H1
, DO_SLL
, 0x7, clearb
)
1408 GEN_VEXT_SHIFT_VX(vsll_vx_h
, uint16_t, int16_t, H2
, H2
, DO_SLL
, 0xf, clearh
)
1409 GEN_VEXT_SHIFT_VX(vsll_vx_w
, uint32_t, int32_t, H4
, H4
, DO_SLL
, 0x1f, clearl
)
1410 GEN_VEXT_SHIFT_VX(vsll_vx_d
, uint64_t, int64_t, H8
, H8
, DO_SLL
, 0x3f, clearq
)
1412 GEN_VEXT_SHIFT_VX(vsrl_vx_b
, uint8_t, uint8_t, H1
, H1
, DO_SRL
, 0x7, clearb
)
1413 GEN_VEXT_SHIFT_VX(vsrl_vx_h
, uint16_t, uint16_t, H2
, H2
, DO_SRL
, 0xf, clearh
)
1414 GEN_VEXT_SHIFT_VX(vsrl_vx_w
, uint32_t, uint32_t, H4
, H4
, DO_SRL
, 0x1f, clearl
)
1415 GEN_VEXT_SHIFT_VX(vsrl_vx_d
, uint64_t, uint64_t, H8
, H8
, DO_SRL
, 0x3f, clearq
)
1417 GEN_VEXT_SHIFT_VX(vsra_vx_b
, int8_t, int8_t, H1
, H1
, DO_SRL
, 0x7, clearb
)
1418 GEN_VEXT_SHIFT_VX(vsra_vx_h
, int16_t, int16_t, H2
, H2
, DO_SRL
, 0xf, clearh
)
1419 GEN_VEXT_SHIFT_VX(vsra_vx_w
, int32_t, int32_t, H4
, H4
, DO_SRL
, 0x1f, clearl
)
1420 GEN_VEXT_SHIFT_VX(vsra_vx_d
, int64_t, int64_t, H8
, H8
, DO_SRL
, 0x3f, clearq
)
1422 /* Vector Narrowing Integer Right Shift Instructions */
1423 GEN_VEXT_SHIFT_VV(vnsrl_vv_b
, uint8_t, uint16_t, H1
, H2
, DO_SRL
, 0xf, clearb
)
1424 GEN_VEXT_SHIFT_VV(vnsrl_vv_h
, uint16_t, uint32_t, H2
, H4
, DO_SRL
, 0x1f, clearh
)
1425 GEN_VEXT_SHIFT_VV(vnsrl_vv_w
, uint32_t, uint64_t, H4
, H8
, DO_SRL
, 0x3f, clearl
)
1426 GEN_VEXT_SHIFT_VV(vnsra_vv_b
, uint8_t, int16_t, H1
, H2
, DO_SRL
, 0xf, clearb
)
1427 GEN_VEXT_SHIFT_VV(vnsra_vv_h
, uint16_t, int32_t, H2
, H4
, DO_SRL
, 0x1f, clearh
)
1428 GEN_VEXT_SHIFT_VV(vnsra_vv_w
, uint32_t, int64_t, H4
, H8
, DO_SRL
, 0x3f, clearl
)
1429 GEN_VEXT_SHIFT_VX(vnsrl_vx_b
, uint8_t, uint16_t, H1
, H2
, DO_SRL
, 0xf, clearb
)
1430 GEN_VEXT_SHIFT_VX(vnsrl_vx_h
, uint16_t, uint32_t, H2
, H4
, DO_SRL
, 0x1f, clearh
)
1431 GEN_VEXT_SHIFT_VX(vnsrl_vx_w
, uint32_t, uint64_t, H4
, H8
, DO_SRL
, 0x3f, clearl
)
1432 GEN_VEXT_SHIFT_VX(vnsra_vx_b
, int8_t, int16_t, H1
, H2
, DO_SRL
, 0xf, clearb
)
1433 GEN_VEXT_SHIFT_VX(vnsra_vx_h
, int16_t, int32_t, H2
, H4
, DO_SRL
, 0x1f, clearh
)
1434 GEN_VEXT_SHIFT_VX(vnsra_vx_w
, int32_t, int64_t, H4
, H8
, DO_SRL
, 0x3f, clearl
)
1436 /* Vector Integer Comparison Instructions */
1437 #define DO_MSEQ(N, M) (N == M)
1438 #define DO_MSNE(N, M) (N != M)
1439 #define DO_MSLT(N, M) (N < M)
1440 #define DO_MSLE(N, M) (N <= M)
1441 #define DO_MSGT(N, M) (N > M)
1443 #define GEN_VEXT_CMP_VV(NAME, ETYPE, H, DO_OP) \
1444 void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2, \
1445 CPURISCVState *env, uint32_t desc) \
1447 uint32_t mlen = vext_mlen(desc); \
1448 uint32_t vm = vext_vm(desc); \
1449 uint32_t vl = env->vl; \
1450 uint32_t vlmax = vext_maxsz(desc) / sizeof(ETYPE); \
1453 for (i = 0; i < vl; i++) { \
1454 ETYPE s1 = *((ETYPE *)vs1 + H(i)); \
1455 ETYPE s2 = *((ETYPE *)vs2 + H(i)); \
1456 if (!vm && !vext_elem_mask(v0, mlen, i)) { \
1459 vext_set_elem_mask(vd, mlen, i, DO_OP(s2, s1)); \
1461 for (; i < vlmax; i++) { \
1462 vext_set_elem_mask(vd, mlen, i, 0); \
1466 GEN_VEXT_CMP_VV(vmseq_vv_b
, uint8_t, H1
, DO_MSEQ
)
1467 GEN_VEXT_CMP_VV(vmseq_vv_h
, uint16_t, H2
, DO_MSEQ
)
1468 GEN_VEXT_CMP_VV(vmseq_vv_w
, uint32_t, H4
, DO_MSEQ
)
1469 GEN_VEXT_CMP_VV(vmseq_vv_d
, uint64_t, H8
, DO_MSEQ
)
1471 GEN_VEXT_CMP_VV(vmsne_vv_b
, uint8_t, H1
, DO_MSNE
)
1472 GEN_VEXT_CMP_VV(vmsne_vv_h
, uint16_t, H2
, DO_MSNE
)
1473 GEN_VEXT_CMP_VV(vmsne_vv_w
, uint32_t, H4
, DO_MSNE
)
1474 GEN_VEXT_CMP_VV(vmsne_vv_d
, uint64_t, H8
, DO_MSNE
)
1476 GEN_VEXT_CMP_VV(vmsltu_vv_b
, uint8_t, H1
, DO_MSLT
)
1477 GEN_VEXT_CMP_VV(vmsltu_vv_h
, uint16_t, H2
, DO_MSLT
)
1478 GEN_VEXT_CMP_VV(vmsltu_vv_w
, uint32_t, H4
, DO_MSLT
)
1479 GEN_VEXT_CMP_VV(vmsltu_vv_d
, uint64_t, H8
, DO_MSLT
)
1481 GEN_VEXT_CMP_VV(vmslt_vv_b
, int8_t, H1
, DO_MSLT
)
1482 GEN_VEXT_CMP_VV(vmslt_vv_h
, int16_t, H2
, DO_MSLT
)
1483 GEN_VEXT_CMP_VV(vmslt_vv_w
, int32_t, H4
, DO_MSLT
)
1484 GEN_VEXT_CMP_VV(vmslt_vv_d
, int64_t, H8
, DO_MSLT
)
1486 GEN_VEXT_CMP_VV(vmsleu_vv_b
, uint8_t, H1
, DO_MSLE
)
1487 GEN_VEXT_CMP_VV(vmsleu_vv_h
, uint16_t, H2
, DO_MSLE
)
1488 GEN_VEXT_CMP_VV(vmsleu_vv_w
, uint32_t, H4
, DO_MSLE
)
1489 GEN_VEXT_CMP_VV(vmsleu_vv_d
, uint64_t, H8
, DO_MSLE
)
1491 GEN_VEXT_CMP_VV(vmsle_vv_b
, int8_t, H1
, DO_MSLE
)
1492 GEN_VEXT_CMP_VV(vmsle_vv_h
, int16_t, H2
, DO_MSLE
)
1493 GEN_VEXT_CMP_VV(vmsle_vv_w
, int32_t, H4
, DO_MSLE
)
1494 GEN_VEXT_CMP_VV(vmsle_vv_d
, int64_t, H8
, DO_MSLE
)
1496 #define GEN_VEXT_CMP_VX(NAME, ETYPE, H, DO_OP) \
1497 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2, \
1498 CPURISCVState *env, uint32_t desc) \
1500 uint32_t mlen = vext_mlen(desc); \
1501 uint32_t vm = vext_vm(desc); \
1502 uint32_t vl = env->vl; \
1503 uint32_t vlmax = vext_maxsz(desc) / sizeof(ETYPE); \
1506 for (i = 0; i < vl; i++) { \
1507 ETYPE s2 = *((ETYPE *)vs2 + H(i)); \
1508 if (!vm && !vext_elem_mask(v0, mlen, i)) { \
1511 vext_set_elem_mask(vd, mlen, i, \
1512 DO_OP(s2, (ETYPE)(target_long)s1)); \
1514 for (; i < vlmax; i++) { \
1515 vext_set_elem_mask(vd, mlen, i, 0); \
1519 GEN_VEXT_CMP_VX(vmseq_vx_b
, uint8_t, H1
, DO_MSEQ
)
1520 GEN_VEXT_CMP_VX(vmseq_vx_h
, uint16_t, H2
, DO_MSEQ
)
1521 GEN_VEXT_CMP_VX(vmseq_vx_w
, uint32_t, H4
, DO_MSEQ
)
1522 GEN_VEXT_CMP_VX(vmseq_vx_d
, uint64_t, H8
, DO_MSEQ
)
1524 GEN_VEXT_CMP_VX(vmsne_vx_b
, uint8_t, H1
, DO_MSNE
)
1525 GEN_VEXT_CMP_VX(vmsne_vx_h
, uint16_t, H2
, DO_MSNE
)
1526 GEN_VEXT_CMP_VX(vmsne_vx_w
, uint32_t, H4
, DO_MSNE
)
1527 GEN_VEXT_CMP_VX(vmsne_vx_d
, uint64_t, H8
, DO_MSNE
)
1529 GEN_VEXT_CMP_VX(vmsltu_vx_b
, uint8_t, H1
, DO_MSLT
)
1530 GEN_VEXT_CMP_VX(vmsltu_vx_h
, uint16_t, H2
, DO_MSLT
)
1531 GEN_VEXT_CMP_VX(vmsltu_vx_w
, uint32_t, H4
, DO_MSLT
)
1532 GEN_VEXT_CMP_VX(vmsltu_vx_d
, uint64_t, H8
, DO_MSLT
)
1534 GEN_VEXT_CMP_VX(vmslt_vx_b
, int8_t, H1
, DO_MSLT
)
1535 GEN_VEXT_CMP_VX(vmslt_vx_h
, int16_t, H2
, DO_MSLT
)
1536 GEN_VEXT_CMP_VX(vmslt_vx_w
, int32_t, H4
, DO_MSLT
)
1537 GEN_VEXT_CMP_VX(vmslt_vx_d
, int64_t, H8
, DO_MSLT
)
1539 GEN_VEXT_CMP_VX(vmsleu_vx_b
, uint8_t, H1
, DO_MSLE
)
1540 GEN_VEXT_CMP_VX(vmsleu_vx_h
, uint16_t, H2
, DO_MSLE
)
1541 GEN_VEXT_CMP_VX(vmsleu_vx_w
, uint32_t, H4
, DO_MSLE
)
1542 GEN_VEXT_CMP_VX(vmsleu_vx_d
, uint64_t, H8
, DO_MSLE
)
1544 GEN_VEXT_CMP_VX(vmsle_vx_b
, int8_t, H1
, DO_MSLE
)
1545 GEN_VEXT_CMP_VX(vmsle_vx_h
, int16_t, H2
, DO_MSLE
)
1546 GEN_VEXT_CMP_VX(vmsle_vx_w
, int32_t, H4
, DO_MSLE
)
1547 GEN_VEXT_CMP_VX(vmsle_vx_d
, int64_t, H8
, DO_MSLE
)
1549 GEN_VEXT_CMP_VX(vmsgtu_vx_b
, uint8_t, H1
, DO_MSGT
)
1550 GEN_VEXT_CMP_VX(vmsgtu_vx_h
, uint16_t, H2
, DO_MSGT
)
1551 GEN_VEXT_CMP_VX(vmsgtu_vx_w
, uint32_t, H4
, DO_MSGT
)
1552 GEN_VEXT_CMP_VX(vmsgtu_vx_d
, uint64_t, H8
, DO_MSGT
)
1554 GEN_VEXT_CMP_VX(vmsgt_vx_b
, int8_t, H1
, DO_MSGT
)
1555 GEN_VEXT_CMP_VX(vmsgt_vx_h
, int16_t, H2
, DO_MSGT
)
1556 GEN_VEXT_CMP_VX(vmsgt_vx_w
, int32_t, H4
, DO_MSGT
)
1557 GEN_VEXT_CMP_VX(vmsgt_vx_d
, int64_t, H8
, DO_MSGT
)
1559 /* Vector Integer Min/Max Instructions */
1560 RVVCALL(OPIVV2
, vminu_vv_b
, OP_UUU_B
, H1
, H1
, H1
, DO_MIN
)
1561 RVVCALL(OPIVV2
, vminu_vv_h
, OP_UUU_H
, H2
, H2
, H2
, DO_MIN
)
1562 RVVCALL(OPIVV2
, vminu_vv_w
, OP_UUU_W
, H4
, H4
, H4
, DO_MIN
)
1563 RVVCALL(OPIVV2
, vminu_vv_d
, OP_UUU_D
, H8
, H8
, H8
, DO_MIN
)
1564 RVVCALL(OPIVV2
, vmin_vv_b
, OP_SSS_B
, H1
, H1
, H1
, DO_MIN
)
1565 RVVCALL(OPIVV2
, vmin_vv_h
, OP_SSS_H
, H2
, H2
, H2
, DO_MIN
)
1566 RVVCALL(OPIVV2
, vmin_vv_w
, OP_SSS_W
, H4
, H4
, H4
, DO_MIN
)
1567 RVVCALL(OPIVV2
, vmin_vv_d
, OP_SSS_D
, H8
, H8
, H8
, DO_MIN
)
1568 RVVCALL(OPIVV2
, vmaxu_vv_b
, OP_UUU_B
, H1
, H1
, H1
, DO_MAX
)
1569 RVVCALL(OPIVV2
, vmaxu_vv_h
, OP_UUU_H
, H2
, H2
, H2
, DO_MAX
)
1570 RVVCALL(OPIVV2
, vmaxu_vv_w
, OP_UUU_W
, H4
, H4
, H4
, DO_MAX
)
1571 RVVCALL(OPIVV2
, vmaxu_vv_d
, OP_UUU_D
, H8
, H8
, H8
, DO_MAX
)
1572 RVVCALL(OPIVV2
, vmax_vv_b
, OP_SSS_B
, H1
, H1
, H1
, DO_MAX
)
1573 RVVCALL(OPIVV2
, vmax_vv_h
, OP_SSS_H
, H2
, H2
, H2
, DO_MAX
)
1574 RVVCALL(OPIVV2
, vmax_vv_w
, OP_SSS_W
, H4
, H4
, H4
, DO_MAX
)
1575 RVVCALL(OPIVV2
, vmax_vv_d
, OP_SSS_D
, H8
, H8
, H8
, DO_MAX
)
1576 GEN_VEXT_VV(vminu_vv_b
, 1, 1, clearb
)
1577 GEN_VEXT_VV(vminu_vv_h
, 2, 2, clearh
)
1578 GEN_VEXT_VV(vminu_vv_w
, 4, 4, clearl
)
1579 GEN_VEXT_VV(vminu_vv_d
, 8, 8, clearq
)
1580 GEN_VEXT_VV(vmin_vv_b
, 1, 1, clearb
)
1581 GEN_VEXT_VV(vmin_vv_h
, 2, 2, clearh
)
1582 GEN_VEXT_VV(vmin_vv_w
, 4, 4, clearl
)
1583 GEN_VEXT_VV(vmin_vv_d
, 8, 8, clearq
)
1584 GEN_VEXT_VV(vmaxu_vv_b
, 1, 1, clearb
)
1585 GEN_VEXT_VV(vmaxu_vv_h
, 2, 2, clearh
)
1586 GEN_VEXT_VV(vmaxu_vv_w
, 4, 4, clearl
)
1587 GEN_VEXT_VV(vmaxu_vv_d
, 8, 8, clearq
)
1588 GEN_VEXT_VV(vmax_vv_b
, 1, 1, clearb
)
1589 GEN_VEXT_VV(vmax_vv_h
, 2, 2, clearh
)
1590 GEN_VEXT_VV(vmax_vv_w
, 4, 4, clearl
)
1591 GEN_VEXT_VV(vmax_vv_d
, 8, 8, clearq
)
1593 RVVCALL(OPIVX2
, vminu_vx_b
, OP_UUU_B
, H1
, H1
, DO_MIN
)
1594 RVVCALL(OPIVX2
, vminu_vx_h
, OP_UUU_H
, H2
, H2
, DO_MIN
)
1595 RVVCALL(OPIVX2
, vminu_vx_w
, OP_UUU_W
, H4
, H4
, DO_MIN
)
1596 RVVCALL(OPIVX2
, vminu_vx_d
, OP_UUU_D
, H8
, H8
, DO_MIN
)
1597 RVVCALL(OPIVX2
, vmin_vx_b
, OP_SSS_B
, H1
, H1
, DO_MIN
)
1598 RVVCALL(OPIVX2
, vmin_vx_h
, OP_SSS_H
, H2
, H2
, DO_MIN
)
1599 RVVCALL(OPIVX2
, vmin_vx_w
, OP_SSS_W
, H4
, H4
, DO_MIN
)
1600 RVVCALL(OPIVX2
, vmin_vx_d
, OP_SSS_D
, H8
, H8
, DO_MIN
)
1601 RVVCALL(OPIVX2
, vmaxu_vx_b
, OP_UUU_B
, H1
, H1
, DO_MAX
)
1602 RVVCALL(OPIVX2
, vmaxu_vx_h
, OP_UUU_H
, H2
, H2
, DO_MAX
)
1603 RVVCALL(OPIVX2
, vmaxu_vx_w
, OP_UUU_W
, H4
, H4
, DO_MAX
)
1604 RVVCALL(OPIVX2
, vmaxu_vx_d
, OP_UUU_D
, H8
, H8
, DO_MAX
)
1605 RVVCALL(OPIVX2
, vmax_vx_b
, OP_SSS_B
, H1
, H1
, DO_MAX
)
1606 RVVCALL(OPIVX2
, vmax_vx_h
, OP_SSS_H
, H2
, H2
, DO_MAX
)
1607 RVVCALL(OPIVX2
, vmax_vx_w
, OP_SSS_W
, H4
, H4
, DO_MAX
)
1608 RVVCALL(OPIVX2
, vmax_vx_d
, OP_SSS_D
, H8
, H8
, DO_MAX
)
1609 GEN_VEXT_VX(vminu_vx_b
, 1, 1, clearb
)
1610 GEN_VEXT_VX(vminu_vx_h
, 2, 2, clearh
)
1611 GEN_VEXT_VX(vminu_vx_w
, 4, 4, clearl
)
1612 GEN_VEXT_VX(vminu_vx_d
, 8, 8, clearq
)
1613 GEN_VEXT_VX(vmin_vx_b
, 1, 1, clearb
)
1614 GEN_VEXT_VX(vmin_vx_h
, 2, 2, clearh
)
1615 GEN_VEXT_VX(vmin_vx_w
, 4, 4, clearl
)
1616 GEN_VEXT_VX(vmin_vx_d
, 8, 8, clearq
)
1617 GEN_VEXT_VX(vmaxu_vx_b
, 1, 1, clearb
)
1618 GEN_VEXT_VX(vmaxu_vx_h
, 2, 2, clearh
)
1619 GEN_VEXT_VX(vmaxu_vx_w
, 4, 4, clearl
)
1620 GEN_VEXT_VX(vmaxu_vx_d
, 8, 8, clearq
)
1621 GEN_VEXT_VX(vmax_vx_b
, 1, 1, clearb
)
1622 GEN_VEXT_VX(vmax_vx_h
, 2, 2, clearh
)
1623 GEN_VEXT_VX(vmax_vx_w
, 4, 4, clearl
)
1624 GEN_VEXT_VX(vmax_vx_d
, 8, 8, clearq
)
1626 /* Vector Single-Width Integer Multiply Instructions */
1627 #define DO_MUL(N, M) (N * M)
1628 RVVCALL(OPIVV2
, vmul_vv_b
, OP_SSS_B
, H1
, H1
, H1
, DO_MUL
)
1629 RVVCALL(OPIVV2
, vmul_vv_h
, OP_SSS_H
, H2
, H2
, H2
, DO_MUL
)
1630 RVVCALL(OPIVV2
, vmul_vv_w
, OP_SSS_W
, H4
, H4
, H4
, DO_MUL
)
1631 RVVCALL(OPIVV2
, vmul_vv_d
, OP_SSS_D
, H8
, H8
, H8
, DO_MUL
)
1632 GEN_VEXT_VV(vmul_vv_b
, 1, 1, clearb
)
1633 GEN_VEXT_VV(vmul_vv_h
, 2, 2, clearh
)
1634 GEN_VEXT_VV(vmul_vv_w
, 4, 4, clearl
)
1635 GEN_VEXT_VV(vmul_vv_d
, 8, 8, clearq
)
1637 static int8_t do_mulh_b(int8_t s2
, int8_t s1
)
1639 return (int16_t)s2
* (int16_t)s1
>> 8;
1642 static int16_t do_mulh_h(int16_t s2
, int16_t s1
)
1644 return (int32_t)s2
* (int32_t)s1
>> 16;
1647 static int32_t do_mulh_w(int32_t s2
, int32_t s1
)
1649 return (int64_t)s2
* (int64_t)s1
>> 32;
1652 static int64_t do_mulh_d(int64_t s2
, int64_t s1
)
1654 uint64_t hi_64
, lo_64
;
1656 muls64(&lo_64
, &hi_64
, s1
, s2
);
1660 static uint8_t do_mulhu_b(uint8_t s2
, uint8_t s1
)
1662 return (uint16_t)s2
* (uint16_t)s1
>> 8;
1665 static uint16_t do_mulhu_h(uint16_t s2
, uint16_t s1
)
1667 return (uint32_t)s2
* (uint32_t)s1
>> 16;
1670 static uint32_t do_mulhu_w(uint32_t s2
, uint32_t s1
)
1672 return (uint64_t)s2
* (uint64_t)s1
>> 32;
1675 static uint64_t do_mulhu_d(uint64_t s2
, uint64_t s1
)
1677 uint64_t hi_64
, lo_64
;
1679 mulu64(&lo_64
, &hi_64
, s2
, s1
);
1683 static int8_t do_mulhsu_b(int8_t s2
, uint8_t s1
)
1685 return (int16_t)s2
* (uint16_t)s1
>> 8;
1688 static int16_t do_mulhsu_h(int16_t s2
, uint16_t s1
)
1690 return (int32_t)s2
* (uint32_t)s1
>> 16;
1693 static int32_t do_mulhsu_w(int32_t s2
, uint32_t s1
)
1695 return (int64_t)s2
* (uint64_t)s1
>> 32;
1699 * Let A = signed operand,
1700 * B = unsigned operand
1701 * P = mulu64(A, B), unsigned product
1703 * LET X = 2 ** 64 - A, 2's complement of A
1704 * SP = signed product
1708 * = -(2 ** 64 - A) * B
1709 * = A * B - 2 ** 64 * B
1714 * HI_P -= (A < 0 ? B : 0)
1717 static int64_t do_mulhsu_d(int64_t s2
, uint64_t s1
)
1719 uint64_t hi_64
, lo_64
;
1721 mulu64(&lo_64
, &hi_64
, s2
, s1
);
1723 hi_64
-= s2
< 0 ? s1
: 0;
1727 RVVCALL(OPIVV2
, vmulh_vv_b
, OP_SSS_B
, H1
, H1
, H1
, do_mulh_b
)
1728 RVVCALL(OPIVV2
, vmulh_vv_h
, OP_SSS_H
, H2
, H2
, H2
, do_mulh_h
)
1729 RVVCALL(OPIVV2
, vmulh_vv_w
, OP_SSS_W
, H4
, H4
, H4
, do_mulh_w
)
1730 RVVCALL(OPIVV2
, vmulh_vv_d
, OP_SSS_D
, H8
, H8
, H8
, do_mulh_d
)
1731 RVVCALL(OPIVV2
, vmulhu_vv_b
, OP_UUU_B
, H1
, H1
, H1
, do_mulhu_b
)
1732 RVVCALL(OPIVV2
, vmulhu_vv_h
, OP_UUU_H
, H2
, H2
, H2
, do_mulhu_h
)
1733 RVVCALL(OPIVV2
, vmulhu_vv_w
, OP_UUU_W
, H4
, H4
, H4
, do_mulhu_w
)
1734 RVVCALL(OPIVV2
, vmulhu_vv_d
, OP_UUU_D
, H8
, H8
, H8
, do_mulhu_d
)
1735 RVVCALL(OPIVV2
, vmulhsu_vv_b
, OP_SUS_B
, H1
, H1
, H1
, do_mulhsu_b
)
1736 RVVCALL(OPIVV2
, vmulhsu_vv_h
, OP_SUS_H
, H2
, H2
, H2
, do_mulhsu_h
)
1737 RVVCALL(OPIVV2
, vmulhsu_vv_w
, OP_SUS_W
, H4
, H4
, H4
, do_mulhsu_w
)
1738 RVVCALL(OPIVV2
, vmulhsu_vv_d
, OP_SUS_D
, H8
, H8
, H8
, do_mulhsu_d
)
1739 GEN_VEXT_VV(vmulh_vv_b
, 1, 1, clearb
)
1740 GEN_VEXT_VV(vmulh_vv_h
, 2, 2, clearh
)
1741 GEN_VEXT_VV(vmulh_vv_w
, 4, 4, clearl
)
1742 GEN_VEXT_VV(vmulh_vv_d
, 8, 8, clearq
)
1743 GEN_VEXT_VV(vmulhu_vv_b
, 1, 1, clearb
)
1744 GEN_VEXT_VV(vmulhu_vv_h
, 2, 2, clearh
)
1745 GEN_VEXT_VV(vmulhu_vv_w
, 4, 4, clearl
)
1746 GEN_VEXT_VV(vmulhu_vv_d
, 8, 8, clearq
)
1747 GEN_VEXT_VV(vmulhsu_vv_b
, 1, 1, clearb
)
1748 GEN_VEXT_VV(vmulhsu_vv_h
, 2, 2, clearh
)
1749 GEN_VEXT_VV(vmulhsu_vv_w
, 4, 4, clearl
)
1750 GEN_VEXT_VV(vmulhsu_vv_d
, 8, 8, clearq
)
1752 RVVCALL(OPIVX2
, vmul_vx_b
, OP_SSS_B
, H1
, H1
, DO_MUL
)
1753 RVVCALL(OPIVX2
, vmul_vx_h
, OP_SSS_H
, H2
, H2
, DO_MUL
)
1754 RVVCALL(OPIVX2
, vmul_vx_w
, OP_SSS_W
, H4
, H4
, DO_MUL
)
1755 RVVCALL(OPIVX2
, vmul_vx_d
, OP_SSS_D
, H8
, H8
, DO_MUL
)
1756 RVVCALL(OPIVX2
, vmulh_vx_b
, OP_SSS_B
, H1
, H1
, do_mulh_b
)
1757 RVVCALL(OPIVX2
, vmulh_vx_h
, OP_SSS_H
, H2
, H2
, do_mulh_h
)
1758 RVVCALL(OPIVX2
, vmulh_vx_w
, OP_SSS_W
, H4
, H4
, do_mulh_w
)
1759 RVVCALL(OPIVX2
, vmulh_vx_d
, OP_SSS_D
, H8
, H8
, do_mulh_d
)
1760 RVVCALL(OPIVX2
, vmulhu_vx_b
, OP_UUU_B
, H1
, H1
, do_mulhu_b
)
1761 RVVCALL(OPIVX2
, vmulhu_vx_h
, OP_UUU_H
, H2
, H2
, do_mulhu_h
)
1762 RVVCALL(OPIVX2
, vmulhu_vx_w
, OP_UUU_W
, H4
, H4
, do_mulhu_w
)
1763 RVVCALL(OPIVX2
, vmulhu_vx_d
, OP_UUU_D
, H8
, H8
, do_mulhu_d
)
1764 RVVCALL(OPIVX2
, vmulhsu_vx_b
, OP_SUS_B
, H1
, H1
, do_mulhsu_b
)
1765 RVVCALL(OPIVX2
, vmulhsu_vx_h
, OP_SUS_H
, H2
, H2
, do_mulhsu_h
)
1766 RVVCALL(OPIVX2
, vmulhsu_vx_w
, OP_SUS_W
, H4
, H4
, do_mulhsu_w
)
1767 RVVCALL(OPIVX2
, vmulhsu_vx_d
, OP_SUS_D
, H8
, H8
, do_mulhsu_d
)
1768 GEN_VEXT_VX(vmul_vx_b
, 1, 1, clearb
)
1769 GEN_VEXT_VX(vmul_vx_h
, 2, 2, clearh
)
1770 GEN_VEXT_VX(vmul_vx_w
, 4, 4, clearl
)
1771 GEN_VEXT_VX(vmul_vx_d
, 8, 8, clearq
)
1772 GEN_VEXT_VX(vmulh_vx_b
, 1, 1, clearb
)
1773 GEN_VEXT_VX(vmulh_vx_h
, 2, 2, clearh
)
1774 GEN_VEXT_VX(vmulh_vx_w
, 4, 4, clearl
)
1775 GEN_VEXT_VX(vmulh_vx_d
, 8, 8, clearq
)
1776 GEN_VEXT_VX(vmulhu_vx_b
, 1, 1, clearb
)
1777 GEN_VEXT_VX(vmulhu_vx_h
, 2, 2, clearh
)
1778 GEN_VEXT_VX(vmulhu_vx_w
, 4, 4, clearl
)
1779 GEN_VEXT_VX(vmulhu_vx_d
, 8, 8, clearq
)
1780 GEN_VEXT_VX(vmulhsu_vx_b
, 1, 1, clearb
)
1781 GEN_VEXT_VX(vmulhsu_vx_h
, 2, 2, clearh
)
1782 GEN_VEXT_VX(vmulhsu_vx_w
, 4, 4, clearl
)
1783 GEN_VEXT_VX(vmulhsu_vx_d
, 8, 8, clearq
)
1785 /* Vector Integer Divide Instructions */
1786 #define DO_DIVU(N, M) (unlikely(M == 0) ? (__typeof(N))(-1) : N / M)
1787 #define DO_REMU(N, M) (unlikely(M == 0) ? N : N % M)
1788 #define DO_DIV(N, M) (unlikely(M == 0) ? (__typeof(N))(-1) :\
1789 unlikely((N == -N) && (M == (__typeof(N))(-1))) ? N : N / M)
1790 #define DO_REM(N, M) (unlikely(M == 0) ? N :\
1791 unlikely((N == -N) && (M == (__typeof(N))(-1))) ? 0 : N % M)
1793 RVVCALL(OPIVV2
, vdivu_vv_b
, OP_UUU_B
, H1
, H1
, H1
, DO_DIVU
)
1794 RVVCALL(OPIVV2
, vdivu_vv_h
, OP_UUU_H
, H2
, H2
, H2
, DO_DIVU
)
1795 RVVCALL(OPIVV2
, vdivu_vv_w
, OP_UUU_W
, H4
, H4
, H4
, DO_DIVU
)
1796 RVVCALL(OPIVV2
, vdivu_vv_d
, OP_UUU_D
, H8
, H8
, H8
, DO_DIVU
)
1797 RVVCALL(OPIVV2
, vdiv_vv_b
, OP_SSS_B
, H1
, H1
, H1
, DO_DIV
)
1798 RVVCALL(OPIVV2
, vdiv_vv_h
, OP_SSS_H
, H2
, H2
, H2
, DO_DIV
)
1799 RVVCALL(OPIVV2
, vdiv_vv_w
, OP_SSS_W
, H4
, H4
, H4
, DO_DIV
)
1800 RVVCALL(OPIVV2
, vdiv_vv_d
, OP_SSS_D
, H8
, H8
, H8
, DO_DIV
)
1801 RVVCALL(OPIVV2
, vremu_vv_b
, OP_UUU_B
, H1
, H1
, H1
, DO_REMU
)
1802 RVVCALL(OPIVV2
, vremu_vv_h
, OP_UUU_H
, H2
, H2
, H2
, DO_REMU
)
1803 RVVCALL(OPIVV2
, vremu_vv_w
, OP_UUU_W
, H4
, H4
, H4
, DO_REMU
)
1804 RVVCALL(OPIVV2
, vremu_vv_d
, OP_UUU_D
, H8
, H8
, H8
, DO_REMU
)
1805 RVVCALL(OPIVV2
, vrem_vv_b
, OP_SSS_B
, H1
, H1
, H1
, DO_REM
)
1806 RVVCALL(OPIVV2
, vrem_vv_h
, OP_SSS_H
, H2
, H2
, H2
, DO_REM
)
1807 RVVCALL(OPIVV2
, vrem_vv_w
, OP_SSS_W
, H4
, H4
, H4
, DO_REM
)
1808 RVVCALL(OPIVV2
, vrem_vv_d
, OP_SSS_D
, H8
, H8
, H8
, DO_REM
)
1809 GEN_VEXT_VV(vdivu_vv_b
, 1, 1, clearb
)
1810 GEN_VEXT_VV(vdivu_vv_h
, 2, 2, clearh
)
1811 GEN_VEXT_VV(vdivu_vv_w
, 4, 4, clearl
)
1812 GEN_VEXT_VV(vdivu_vv_d
, 8, 8, clearq
)
1813 GEN_VEXT_VV(vdiv_vv_b
, 1, 1, clearb
)
1814 GEN_VEXT_VV(vdiv_vv_h
, 2, 2, clearh
)
1815 GEN_VEXT_VV(vdiv_vv_w
, 4, 4, clearl
)
1816 GEN_VEXT_VV(vdiv_vv_d
, 8, 8, clearq
)
1817 GEN_VEXT_VV(vremu_vv_b
, 1, 1, clearb
)
1818 GEN_VEXT_VV(vremu_vv_h
, 2, 2, clearh
)
1819 GEN_VEXT_VV(vremu_vv_w
, 4, 4, clearl
)
1820 GEN_VEXT_VV(vremu_vv_d
, 8, 8, clearq
)
1821 GEN_VEXT_VV(vrem_vv_b
, 1, 1, clearb
)
1822 GEN_VEXT_VV(vrem_vv_h
, 2, 2, clearh
)
1823 GEN_VEXT_VV(vrem_vv_w
, 4, 4, clearl
)
1824 GEN_VEXT_VV(vrem_vv_d
, 8, 8, clearq
)
1826 RVVCALL(OPIVX2
, vdivu_vx_b
, OP_UUU_B
, H1
, H1
, DO_DIVU
)
1827 RVVCALL(OPIVX2
, vdivu_vx_h
, OP_UUU_H
, H2
, H2
, DO_DIVU
)
1828 RVVCALL(OPIVX2
, vdivu_vx_w
, OP_UUU_W
, H4
, H4
, DO_DIVU
)
1829 RVVCALL(OPIVX2
, vdivu_vx_d
, OP_UUU_D
, H8
, H8
, DO_DIVU
)
1830 RVVCALL(OPIVX2
, vdiv_vx_b
, OP_SSS_B
, H1
, H1
, DO_DIV
)
1831 RVVCALL(OPIVX2
, vdiv_vx_h
, OP_SSS_H
, H2
, H2
, DO_DIV
)
1832 RVVCALL(OPIVX2
, vdiv_vx_w
, OP_SSS_W
, H4
, H4
, DO_DIV
)
1833 RVVCALL(OPIVX2
, vdiv_vx_d
, OP_SSS_D
, H8
, H8
, DO_DIV
)
1834 RVVCALL(OPIVX2
, vremu_vx_b
, OP_UUU_B
, H1
, H1
, DO_REMU
)
1835 RVVCALL(OPIVX2
, vremu_vx_h
, OP_UUU_H
, H2
, H2
, DO_REMU
)
1836 RVVCALL(OPIVX2
, vremu_vx_w
, OP_UUU_W
, H4
, H4
, DO_REMU
)
1837 RVVCALL(OPIVX2
, vremu_vx_d
, OP_UUU_D
, H8
, H8
, DO_REMU
)
1838 RVVCALL(OPIVX2
, vrem_vx_b
, OP_SSS_B
, H1
, H1
, DO_REM
)
1839 RVVCALL(OPIVX2
, vrem_vx_h
, OP_SSS_H
, H2
, H2
, DO_REM
)
1840 RVVCALL(OPIVX2
, vrem_vx_w
, OP_SSS_W
, H4
, H4
, DO_REM
)
1841 RVVCALL(OPIVX2
, vrem_vx_d
, OP_SSS_D
, H8
, H8
, DO_REM
)
1842 GEN_VEXT_VX(vdivu_vx_b
, 1, 1, clearb
)
1843 GEN_VEXT_VX(vdivu_vx_h
, 2, 2, clearh
)
1844 GEN_VEXT_VX(vdivu_vx_w
, 4, 4, clearl
)
1845 GEN_VEXT_VX(vdivu_vx_d
, 8, 8, clearq
)
1846 GEN_VEXT_VX(vdiv_vx_b
, 1, 1, clearb
)
1847 GEN_VEXT_VX(vdiv_vx_h
, 2, 2, clearh
)
1848 GEN_VEXT_VX(vdiv_vx_w
, 4, 4, clearl
)
1849 GEN_VEXT_VX(vdiv_vx_d
, 8, 8, clearq
)
1850 GEN_VEXT_VX(vremu_vx_b
, 1, 1, clearb
)
1851 GEN_VEXT_VX(vremu_vx_h
, 2, 2, clearh
)
1852 GEN_VEXT_VX(vremu_vx_w
, 4, 4, clearl
)
1853 GEN_VEXT_VX(vremu_vx_d
, 8, 8, clearq
)
1854 GEN_VEXT_VX(vrem_vx_b
, 1, 1, clearb
)
1855 GEN_VEXT_VX(vrem_vx_h
, 2, 2, clearh
)
1856 GEN_VEXT_VX(vrem_vx_w
, 4, 4, clearl
)
1857 GEN_VEXT_VX(vrem_vx_d
, 8, 8, clearq
)
1859 /* Vector Widening Integer Multiply Instructions */
1860 RVVCALL(OPIVV2
, vwmul_vv_b
, WOP_SSS_B
, H2
, H1
, H1
, DO_MUL
)
1861 RVVCALL(OPIVV2
, vwmul_vv_h
, WOP_SSS_H
, H4
, H2
, H2
, DO_MUL
)
1862 RVVCALL(OPIVV2
, vwmul_vv_w
, WOP_SSS_W
, H8
, H4
, H4
, DO_MUL
)
1863 RVVCALL(OPIVV2
, vwmulu_vv_b
, WOP_UUU_B
, H2
, H1
, H1
, DO_MUL
)
1864 RVVCALL(OPIVV2
, vwmulu_vv_h
, WOP_UUU_H
, H4
, H2
, H2
, DO_MUL
)
1865 RVVCALL(OPIVV2
, vwmulu_vv_w
, WOP_UUU_W
, H8
, H4
, H4
, DO_MUL
)
1866 RVVCALL(OPIVV2
, vwmulsu_vv_b
, WOP_SUS_B
, H2
, H1
, H1
, DO_MUL
)
1867 RVVCALL(OPIVV2
, vwmulsu_vv_h
, WOP_SUS_H
, H4
, H2
, H2
, DO_MUL
)
1868 RVVCALL(OPIVV2
, vwmulsu_vv_w
, WOP_SUS_W
, H8
, H4
, H4
, DO_MUL
)
1869 GEN_VEXT_VV(vwmul_vv_b
, 1, 2, clearh
)
1870 GEN_VEXT_VV(vwmul_vv_h
, 2, 4, clearl
)
1871 GEN_VEXT_VV(vwmul_vv_w
, 4, 8, clearq
)
1872 GEN_VEXT_VV(vwmulu_vv_b
, 1, 2, clearh
)
1873 GEN_VEXT_VV(vwmulu_vv_h
, 2, 4, clearl
)
1874 GEN_VEXT_VV(vwmulu_vv_w
, 4, 8, clearq
)
1875 GEN_VEXT_VV(vwmulsu_vv_b
, 1, 2, clearh
)
1876 GEN_VEXT_VV(vwmulsu_vv_h
, 2, 4, clearl
)
1877 GEN_VEXT_VV(vwmulsu_vv_w
, 4, 8, clearq
)
1879 RVVCALL(OPIVX2
, vwmul_vx_b
, WOP_SSS_B
, H2
, H1
, DO_MUL
)
1880 RVVCALL(OPIVX2
, vwmul_vx_h
, WOP_SSS_H
, H4
, H2
, DO_MUL
)
1881 RVVCALL(OPIVX2
, vwmul_vx_w
, WOP_SSS_W
, H8
, H4
, DO_MUL
)
1882 RVVCALL(OPIVX2
, vwmulu_vx_b
, WOP_UUU_B
, H2
, H1
, DO_MUL
)
1883 RVVCALL(OPIVX2
, vwmulu_vx_h
, WOP_UUU_H
, H4
, H2
, DO_MUL
)
1884 RVVCALL(OPIVX2
, vwmulu_vx_w
, WOP_UUU_W
, H8
, H4
, DO_MUL
)
1885 RVVCALL(OPIVX2
, vwmulsu_vx_b
, WOP_SUS_B
, H2
, H1
, DO_MUL
)
1886 RVVCALL(OPIVX2
, vwmulsu_vx_h
, WOP_SUS_H
, H4
, H2
, DO_MUL
)
1887 RVVCALL(OPIVX2
, vwmulsu_vx_w
, WOP_SUS_W
, H8
, H4
, DO_MUL
)
1888 GEN_VEXT_VX(vwmul_vx_b
, 1, 2, clearh
)
1889 GEN_VEXT_VX(vwmul_vx_h
, 2, 4, clearl
)
1890 GEN_VEXT_VX(vwmul_vx_w
, 4, 8, clearq
)
1891 GEN_VEXT_VX(vwmulu_vx_b
, 1, 2, clearh
)
1892 GEN_VEXT_VX(vwmulu_vx_h
, 2, 4, clearl
)
1893 GEN_VEXT_VX(vwmulu_vx_w
, 4, 8, clearq
)
1894 GEN_VEXT_VX(vwmulsu_vx_b
, 1, 2, clearh
)
1895 GEN_VEXT_VX(vwmulsu_vx_h
, 2, 4, clearl
)
1896 GEN_VEXT_VX(vwmulsu_vx_w
, 4, 8, clearq
)
1898 /* Vector Single-Width Integer Multiply-Add Instructions */
1899 #define OPIVV3(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP) \
1900 static void do_##NAME(void *vd, void *vs1, void *vs2, int i) \
1902 TX1 s1 = *((T1 *)vs1 + HS1(i)); \
1903 TX2 s2 = *((T2 *)vs2 + HS2(i)); \
1904 TD d = *((TD *)vd + HD(i)); \
1905 *((TD *)vd + HD(i)) = OP(s2, s1, d); \
1908 #define DO_MACC(N, M, D) (M * N + D)
1909 #define DO_NMSAC(N, M, D) (-(M * N) + D)
1910 #define DO_MADD(N, M, D) (M * D + N)
1911 #define DO_NMSUB(N, M, D) (-(M * D) + N)
1912 RVVCALL(OPIVV3
, vmacc_vv_b
, OP_SSS_B
, H1
, H1
, H1
, DO_MACC
)
1913 RVVCALL(OPIVV3
, vmacc_vv_h
, OP_SSS_H
, H2
, H2
, H2
, DO_MACC
)
1914 RVVCALL(OPIVV3
, vmacc_vv_w
, OP_SSS_W
, H4
, H4
, H4
, DO_MACC
)
1915 RVVCALL(OPIVV3
, vmacc_vv_d
, OP_SSS_D
, H8
, H8
, H8
, DO_MACC
)
1916 RVVCALL(OPIVV3
, vnmsac_vv_b
, OP_SSS_B
, H1
, H1
, H1
, DO_NMSAC
)
1917 RVVCALL(OPIVV3
, vnmsac_vv_h
, OP_SSS_H
, H2
, H2
, H2
, DO_NMSAC
)
1918 RVVCALL(OPIVV3
, vnmsac_vv_w
, OP_SSS_W
, H4
, H4
, H4
, DO_NMSAC
)
1919 RVVCALL(OPIVV3
, vnmsac_vv_d
, OP_SSS_D
, H8
, H8
, H8
, DO_NMSAC
)
1920 RVVCALL(OPIVV3
, vmadd_vv_b
, OP_SSS_B
, H1
, H1
, H1
, DO_MADD
)
1921 RVVCALL(OPIVV3
, vmadd_vv_h
, OP_SSS_H
, H2
, H2
, H2
, DO_MADD
)
1922 RVVCALL(OPIVV3
, vmadd_vv_w
, OP_SSS_W
, H4
, H4
, H4
, DO_MADD
)
1923 RVVCALL(OPIVV3
, vmadd_vv_d
, OP_SSS_D
, H8
, H8
, H8
, DO_MADD
)
1924 RVVCALL(OPIVV3
, vnmsub_vv_b
, OP_SSS_B
, H1
, H1
, H1
, DO_NMSUB
)
1925 RVVCALL(OPIVV3
, vnmsub_vv_h
, OP_SSS_H
, H2
, H2
, H2
, DO_NMSUB
)
1926 RVVCALL(OPIVV3
, vnmsub_vv_w
, OP_SSS_W
, H4
, H4
, H4
, DO_NMSUB
)
1927 RVVCALL(OPIVV3
, vnmsub_vv_d
, OP_SSS_D
, H8
, H8
, H8
, DO_NMSUB
)
1928 GEN_VEXT_VV(vmacc_vv_b
, 1, 1, clearb
)
1929 GEN_VEXT_VV(vmacc_vv_h
, 2, 2, clearh
)
1930 GEN_VEXT_VV(vmacc_vv_w
, 4, 4, clearl
)
1931 GEN_VEXT_VV(vmacc_vv_d
, 8, 8, clearq
)
1932 GEN_VEXT_VV(vnmsac_vv_b
, 1, 1, clearb
)
1933 GEN_VEXT_VV(vnmsac_vv_h
, 2, 2, clearh
)
1934 GEN_VEXT_VV(vnmsac_vv_w
, 4, 4, clearl
)
1935 GEN_VEXT_VV(vnmsac_vv_d
, 8, 8, clearq
)
1936 GEN_VEXT_VV(vmadd_vv_b
, 1, 1, clearb
)
1937 GEN_VEXT_VV(vmadd_vv_h
, 2, 2, clearh
)
1938 GEN_VEXT_VV(vmadd_vv_w
, 4, 4, clearl
)
1939 GEN_VEXT_VV(vmadd_vv_d
, 8, 8, clearq
)
1940 GEN_VEXT_VV(vnmsub_vv_b
, 1, 1, clearb
)
1941 GEN_VEXT_VV(vnmsub_vv_h
, 2, 2, clearh
)
1942 GEN_VEXT_VV(vnmsub_vv_w
, 4, 4, clearl
)
1943 GEN_VEXT_VV(vnmsub_vv_d
, 8, 8, clearq
)
1945 #define OPIVX3(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP) \
1946 static void do_##NAME(void *vd, target_long s1, void *vs2, int i) \
1948 TX2 s2 = *((T2 *)vs2 + HS2(i)); \
1949 TD d = *((TD *)vd + HD(i)); \
1950 *((TD *)vd + HD(i)) = OP(s2, (TX1)(T1)s1, d); \
1953 RVVCALL(OPIVX3
, vmacc_vx_b
, OP_SSS_B
, H1
, H1
, DO_MACC
)
1954 RVVCALL(OPIVX3
, vmacc_vx_h
, OP_SSS_H
, H2
, H2
, DO_MACC
)
1955 RVVCALL(OPIVX3
, vmacc_vx_w
, OP_SSS_W
, H4
, H4
, DO_MACC
)
1956 RVVCALL(OPIVX3
, vmacc_vx_d
, OP_SSS_D
, H8
, H8
, DO_MACC
)
1957 RVVCALL(OPIVX3
, vnmsac_vx_b
, OP_SSS_B
, H1
, H1
, DO_NMSAC
)
1958 RVVCALL(OPIVX3
, vnmsac_vx_h
, OP_SSS_H
, H2
, H2
, DO_NMSAC
)
1959 RVVCALL(OPIVX3
, vnmsac_vx_w
, OP_SSS_W
, H4
, H4
, DO_NMSAC
)
1960 RVVCALL(OPIVX3
, vnmsac_vx_d
, OP_SSS_D
, H8
, H8
, DO_NMSAC
)
1961 RVVCALL(OPIVX3
, vmadd_vx_b
, OP_SSS_B
, H1
, H1
, DO_MADD
)
1962 RVVCALL(OPIVX3
, vmadd_vx_h
, OP_SSS_H
, H2
, H2
, DO_MADD
)
1963 RVVCALL(OPIVX3
, vmadd_vx_w
, OP_SSS_W
, H4
, H4
, DO_MADD
)
1964 RVVCALL(OPIVX3
, vmadd_vx_d
, OP_SSS_D
, H8
, H8
, DO_MADD
)
1965 RVVCALL(OPIVX3
, vnmsub_vx_b
, OP_SSS_B
, H1
, H1
, DO_NMSUB
)
1966 RVVCALL(OPIVX3
, vnmsub_vx_h
, OP_SSS_H
, H2
, H2
, DO_NMSUB
)
1967 RVVCALL(OPIVX3
, vnmsub_vx_w
, OP_SSS_W
, H4
, H4
, DO_NMSUB
)
1968 RVVCALL(OPIVX3
, vnmsub_vx_d
, OP_SSS_D
, H8
, H8
, DO_NMSUB
)
1969 GEN_VEXT_VX(vmacc_vx_b
, 1, 1, clearb
)
1970 GEN_VEXT_VX(vmacc_vx_h
, 2, 2, clearh
)
1971 GEN_VEXT_VX(vmacc_vx_w
, 4, 4, clearl
)
1972 GEN_VEXT_VX(vmacc_vx_d
, 8, 8, clearq
)
1973 GEN_VEXT_VX(vnmsac_vx_b
, 1, 1, clearb
)
1974 GEN_VEXT_VX(vnmsac_vx_h
, 2, 2, clearh
)
1975 GEN_VEXT_VX(vnmsac_vx_w
, 4, 4, clearl
)
1976 GEN_VEXT_VX(vnmsac_vx_d
, 8, 8, clearq
)
1977 GEN_VEXT_VX(vmadd_vx_b
, 1, 1, clearb
)
1978 GEN_VEXT_VX(vmadd_vx_h
, 2, 2, clearh
)
1979 GEN_VEXT_VX(vmadd_vx_w
, 4, 4, clearl
)
1980 GEN_VEXT_VX(vmadd_vx_d
, 8, 8, clearq
)
1981 GEN_VEXT_VX(vnmsub_vx_b
, 1, 1, clearb
)
1982 GEN_VEXT_VX(vnmsub_vx_h
, 2, 2, clearh
)
1983 GEN_VEXT_VX(vnmsub_vx_w
, 4, 4, clearl
)
1984 GEN_VEXT_VX(vnmsub_vx_d
, 8, 8, clearq
)
1986 /* Vector Widening Integer Multiply-Add Instructions */
1987 RVVCALL(OPIVV3
, vwmaccu_vv_b
, WOP_UUU_B
, H2
, H1
, H1
, DO_MACC
)
1988 RVVCALL(OPIVV3
, vwmaccu_vv_h
, WOP_UUU_H
, H4
, H2
, H2
, DO_MACC
)
1989 RVVCALL(OPIVV3
, vwmaccu_vv_w
, WOP_UUU_W
, H8
, H4
, H4
, DO_MACC
)
1990 RVVCALL(OPIVV3
, vwmacc_vv_b
, WOP_SSS_B
, H2
, H1
, H1
, DO_MACC
)
1991 RVVCALL(OPIVV3
, vwmacc_vv_h
, WOP_SSS_H
, H4
, H2
, H2
, DO_MACC
)
1992 RVVCALL(OPIVV3
, vwmacc_vv_w
, WOP_SSS_W
, H8
, H4
, H4
, DO_MACC
)
1993 RVVCALL(OPIVV3
, vwmaccsu_vv_b
, WOP_SSU_B
, H2
, H1
, H1
, DO_MACC
)
1994 RVVCALL(OPIVV3
, vwmaccsu_vv_h
, WOP_SSU_H
, H4
, H2
, H2
, DO_MACC
)
1995 RVVCALL(OPIVV3
, vwmaccsu_vv_w
, WOP_SSU_W
, H8
, H4
, H4
, DO_MACC
)
1996 GEN_VEXT_VV(vwmaccu_vv_b
, 1, 2, clearh
)
1997 GEN_VEXT_VV(vwmaccu_vv_h
, 2, 4, clearl
)
1998 GEN_VEXT_VV(vwmaccu_vv_w
, 4, 8, clearq
)
1999 GEN_VEXT_VV(vwmacc_vv_b
, 1, 2, clearh
)
2000 GEN_VEXT_VV(vwmacc_vv_h
, 2, 4, clearl
)
2001 GEN_VEXT_VV(vwmacc_vv_w
, 4, 8, clearq
)
2002 GEN_VEXT_VV(vwmaccsu_vv_b
, 1, 2, clearh
)
2003 GEN_VEXT_VV(vwmaccsu_vv_h
, 2, 4, clearl
)
2004 GEN_VEXT_VV(vwmaccsu_vv_w
, 4, 8, clearq
)
2006 RVVCALL(OPIVX3
, vwmaccu_vx_b
, WOP_UUU_B
, H2
, H1
, DO_MACC
)
2007 RVVCALL(OPIVX3
, vwmaccu_vx_h
, WOP_UUU_H
, H4
, H2
, DO_MACC
)
2008 RVVCALL(OPIVX3
, vwmaccu_vx_w
, WOP_UUU_W
, H8
, H4
, DO_MACC
)
2009 RVVCALL(OPIVX3
, vwmacc_vx_b
, WOP_SSS_B
, H2
, H1
, DO_MACC
)
2010 RVVCALL(OPIVX3
, vwmacc_vx_h
, WOP_SSS_H
, H4
, H2
, DO_MACC
)
2011 RVVCALL(OPIVX3
, vwmacc_vx_w
, WOP_SSS_W
, H8
, H4
, DO_MACC
)
2012 RVVCALL(OPIVX3
, vwmaccsu_vx_b
, WOP_SSU_B
, H2
, H1
, DO_MACC
)
2013 RVVCALL(OPIVX3
, vwmaccsu_vx_h
, WOP_SSU_H
, H4
, H2
, DO_MACC
)
2014 RVVCALL(OPIVX3
, vwmaccsu_vx_w
, WOP_SSU_W
, H8
, H4
, DO_MACC
)
2015 RVVCALL(OPIVX3
, vwmaccus_vx_b
, WOP_SUS_B
, H2
, H1
, DO_MACC
)
2016 RVVCALL(OPIVX3
, vwmaccus_vx_h
, WOP_SUS_H
, H4
, H2
, DO_MACC
)
2017 RVVCALL(OPIVX3
, vwmaccus_vx_w
, WOP_SUS_W
, H8
, H4
, DO_MACC
)
2018 GEN_VEXT_VX(vwmaccu_vx_b
, 1, 2, clearh
)
2019 GEN_VEXT_VX(vwmaccu_vx_h
, 2, 4, clearl
)
2020 GEN_VEXT_VX(vwmaccu_vx_w
, 4, 8, clearq
)
2021 GEN_VEXT_VX(vwmacc_vx_b
, 1, 2, clearh
)
2022 GEN_VEXT_VX(vwmacc_vx_h
, 2, 4, clearl
)
2023 GEN_VEXT_VX(vwmacc_vx_w
, 4, 8, clearq
)
2024 GEN_VEXT_VX(vwmaccsu_vx_b
, 1, 2, clearh
)
2025 GEN_VEXT_VX(vwmaccsu_vx_h
, 2, 4, clearl
)
2026 GEN_VEXT_VX(vwmaccsu_vx_w
, 4, 8, clearq
)
2027 GEN_VEXT_VX(vwmaccus_vx_b
, 1, 2, clearh
)
2028 GEN_VEXT_VX(vwmaccus_vx_h
, 2, 4, clearl
)
2029 GEN_VEXT_VX(vwmaccus_vx_w
, 4, 8, clearq
)
2031 /* Vector Integer Merge and Move Instructions */
2032 #define GEN_VEXT_VMV_VV(NAME, ETYPE, H, CLEAR_FN) \
2033 void HELPER(NAME)(void *vd, void *vs1, CPURISCVState *env, \
2036 uint32_t vl = env->vl; \
2037 uint32_t esz = sizeof(ETYPE); \
2038 uint32_t vlmax = vext_maxsz(desc) / esz; \
2041 for (i = 0; i < vl; i++) { \
2042 ETYPE s1 = *((ETYPE *)vs1 + H(i)); \
2043 *((ETYPE *)vd + H(i)) = s1; \
2045 CLEAR_FN(vd, vl, vl * esz, vlmax * esz); \
2048 GEN_VEXT_VMV_VV(vmv_v_v_b
, int8_t, H1
, clearb
)
2049 GEN_VEXT_VMV_VV(vmv_v_v_h
, int16_t, H2
, clearh
)
2050 GEN_VEXT_VMV_VV(vmv_v_v_w
, int32_t, H4
, clearl
)
2051 GEN_VEXT_VMV_VV(vmv_v_v_d
, int64_t, H8
, clearq
)
2053 #define GEN_VEXT_VMV_VX(NAME, ETYPE, H, CLEAR_FN) \
2054 void HELPER(NAME)(void *vd, uint64_t s1, CPURISCVState *env, \
2057 uint32_t vl = env->vl; \
2058 uint32_t esz = sizeof(ETYPE); \
2059 uint32_t vlmax = vext_maxsz(desc) / esz; \
2062 for (i = 0; i < vl; i++) { \
2063 *((ETYPE *)vd + H(i)) = (ETYPE)s1; \
2065 CLEAR_FN(vd, vl, vl * esz, vlmax * esz); \
2068 GEN_VEXT_VMV_VX(vmv_v_x_b
, int8_t, H1
, clearb
)
2069 GEN_VEXT_VMV_VX(vmv_v_x_h
, int16_t, H2
, clearh
)
2070 GEN_VEXT_VMV_VX(vmv_v_x_w
, int32_t, H4
, clearl
)
2071 GEN_VEXT_VMV_VX(vmv_v_x_d
, int64_t, H8
, clearq
)
2073 #define GEN_VEXT_VMERGE_VV(NAME, ETYPE, H, CLEAR_FN) \
2074 void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2, \
2075 CPURISCVState *env, uint32_t desc) \
2077 uint32_t mlen = vext_mlen(desc); \
2078 uint32_t vl = env->vl; \
2079 uint32_t esz = sizeof(ETYPE); \
2080 uint32_t vlmax = vext_maxsz(desc) / esz; \
2083 for (i = 0; i < vl; i++) { \
2084 ETYPE *vt = (!vext_elem_mask(v0, mlen, i) ? vs2 : vs1); \
2085 *((ETYPE *)vd + H(i)) = *(vt + H(i)); \
2087 CLEAR_FN(vd, vl, vl * esz, vlmax * esz); \
2090 GEN_VEXT_VMERGE_VV(vmerge_vvm_b
, int8_t, H1
, clearb
)
2091 GEN_VEXT_VMERGE_VV(vmerge_vvm_h
, int16_t, H2
, clearh
)
2092 GEN_VEXT_VMERGE_VV(vmerge_vvm_w
, int32_t, H4
, clearl
)
2093 GEN_VEXT_VMERGE_VV(vmerge_vvm_d
, int64_t, H8
, clearq
)
2095 #define GEN_VEXT_VMERGE_VX(NAME, ETYPE, H, CLEAR_FN) \
2096 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, \
2097 void *vs2, CPURISCVState *env, uint32_t desc) \
2099 uint32_t mlen = vext_mlen(desc); \
2100 uint32_t vl = env->vl; \
2101 uint32_t esz = sizeof(ETYPE); \
2102 uint32_t vlmax = vext_maxsz(desc) / esz; \
2105 for (i = 0; i < vl; i++) { \
2106 ETYPE s2 = *((ETYPE *)vs2 + H(i)); \
2107 ETYPE d = (!vext_elem_mask(v0, mlen, i) ? s2 : \
2108 (ETYPE)(target_long)s1); \
2109 *((ETYPE *)vd + H(i)) = d; \
2111 CLEAR_FN(vd, vl, vl * esz, vlmax * esz); \
2114 GEN_VEXT_VMERGE_VX(vmerge_vxm_b
, int8_t, H1
, clearb
)
2115 GEN_VEXT_VMERGE_VX(vmerge_vxm_h
, int16_t, H2
, clearh
)
2116 GEN_VEXT_VMERGE_VX(vmerge_vxm_w
, int32_t, H4
, clearl
)
2117 GEN_VEXT_VMERGE_VX(vmerge_vxm_d
, int64_t, H8
, clearq
)
2120 *** Vector Fixed-Point Arithmetic Instructions
2123 /* Vector Single-Width Saturating Add and Subtract */
2126 * As fixed point instructions probably have round mode and saturation,
2127 * define common macros for fixed point here.
2129 typedef void opivv2_rm_fn(void *vd
, void *vs1
, void *vs2
, int i
,
2130 CPURISCVState
*env
, int vxrm
);
2132 #define OPIVV2_RM(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP) \
2133 static inline void \
2134 do_##NAME(void *vd, void *vs1, void *vs2, int i, \
2135 CPURISCVState *env, int vxrm) \
2137 TX1 s1 = *((T1 *)vs1 + HS1(i)); \
2138 TX2 s2 = *((T2 *)vs2 + HS2(i)); \
2139 *((TD *)vd + HD(i)) = OP(env, vxrm, s2, s1); \
2143 vext_vv_rm_1(void *vd
, void *v0
, void *vs1
, void *vs2
,
2145 uint32_t vl
, uint32_t vm
, uint32_t mlen
, int vxrm
,
2148 for (uint32_t i
= 0; i
< vl
; i
++) {
2149 if (!vm
&& !vext_elem_mask(v0
, mlen
, i
)) {
2152 fn(vd
, vs1
, vs2
, i
, env
, vxrm
);
2157 vext_vv_rm_2(void *vd
, void *v0
, void *vs1
, void *vs2
,
2159 uint32_t desc
, uint32_t esz
, uint32_t dsz
,
2160 opivv2_rm_fn
*fn
, clear_fn
*clearfn
)
2162 uint32_t vlmax
= vext_maxsz(desc
) / esz
;
2163 uint32_t mlen
= vext_mlen(desc
);
2164 uint32_t vm
= vext_vm(desc
);
2165 uint32_t vl
= env
->vl
;
2167 switch (env
->vxrm
) {
2169 vext_vv_rm_1(vd
, v0
, vs1
, vs2
,
2170 env
, vl
, vm
, mlen
, 0, fn
);
2173 vext_vv_rm_1(vd
, v0
, vs1
, vs2
,
2174 env
, vl
, vm
, mlen
, 1, fn
);
2177 vext_vv_rm_1(vd
, v0
, vs1
, vs2
,
2178 env
, vl
, vm
, mlen
, 2, fn
);
2181 vext_vv_rm_1(vd
, v0
, vs1
, vs2
,
2182 env
, vl
, vm
, mlen
, 3, fn
);
2186 clearfn(vd
, vl
, vl
* dsz
, vlmax
* dsz
);
2189 /* generate helpers for fixed point instructions with OPIVV format */
2190 #define GEN_VEXT_VV_RM(NAME, ESZ, DSZ, CLEAR_FN) \
2191 void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2, \
2192 CPURISCVState *env, uint32_t desc) \
2194 vext_vv_rm_2(vd, v0, vs1, vs2, env, desc, ESZ, DSZ, \
2195 do_##NAME, CLEAR_FN); \
2198 static inline uint8_t saddu8(CPURISCVState
*env
, int vxrm
, uint8_t a
, uint8_t b
)
2200 uint8_t res
= a
+ b
;
2208 static inline uint16_t saddu16(CPURISCVState
*env
, int vxrm
, uint16_t a
,
2211 uint16_t res
= a
+ b
;
2219 static inline uint32_t saddu32(CPURISCVState
*env
, int vxrm
, uint32_t a
,
2222 uint32_t res
= a
+ b
;
2230 static inline uint64_t saddu64(CPURISCVState
*env
, int vxrm
, uint64_t a
,
2233 uint64_t res
= a
+ b
;
2241 RVVCALL(OPIVV2_RM
, vsaddu_vv_b
, OP_UUU_B
, H1
, H1
, H1
, saddu8
)
2242 RVVCALL(OPIVV2_RM
, vsaddu_vv_h
, OP_UUU_H
, H2
, H2
, H2
, saddu16
)
2243 RVVCALL(OPIVV2_RM
, vsaddu_vv_w
, OP_UUU_W
, H4
, H4
, H4
, saddu32
)
2244 RVVCALL(OPIVV2_RM
, vsaddu_vv_d
, OP_UUU_D
, H8
, H8
, H8
, saddu64
)
2245 GEN_VEXT_VV_RM(vsaddu_vv_b
, 1, 1, clearb
)
2246 GEN_VEXT_VV_RM(vsaddu_vv_h
, 2, 2, clearh
)
2247 GEN_VEXT_VV_RM(vsaddu_vv_w
, 4, 4, clearl
)
2248 GEN_VEXT_VV_RM(vsaddu_vv_d
, 8, 8, clearq
)
2250 typedef void opivx2_rm_fn(void *vd
, target_long s1
, void *vs2
, int i
,
2251 CPURISCVState
*env
, int vxrm
);
2253 #define OPIVX2_RM(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP) \
2254 static inline void \
2255 do_##NAME(void *vd, target_long s1, void *vs2, int i, \
2256 CPURISCVState *env, int vxrm) \
2258 TX2 s2 = *((T2 *)vs2 + HS2(i)); \
2259 *((TD *)vd + HD(i)) = OP(env, vxrm, s2, (TX1)(T1)s1); \
2263 vext_vx_rm_1(void *vd
, void *v0
, target_long s1
, void *vs2
,
2265 uint32_t vl
, uint32_t vm
, uint32_t mlen
, int vxrm
,
2268 for (uint32_t i
= 0; i
< vl
; i
++) {
2269 if (!vm
&& !vext_elem_mask(v0
, mlen
, i
)) {
2272 fn(vd
, s1
, vs2
, i
, env
, vxrm
);
2277 vext_vx_rm_2(void *vd
, void *v0
, target_long s1
, void *vs2
,
2279 uint32_t desc
, uint32_t esz
, uint32_t dsz
,
2280 opivx2_rm_fn
*fn
, clear_fn
*clearfn
)
2282 uint32_t vlmax
= vext_maxsz(desc
) / esz
;
2283 uint32_t mlen
= vext_mlen(desc
);
2284 uint32_t vm
= vext_vm(desc
);
2285 uint32_t vl
= env
->vl
;
2287 switch (env
->vxrm
) {
2289 vext_vx_rm_1(vd
, v0
, s1
, vs2
,
2290 env
, vl
, vm
, mlen
, 0, fn
);
2293 vext_vx_rm_1(vd
, v0
, s1
, vs2
,
2294 env
, vl
, vm
, mlen
, 1, fn
);
2297 vext_vx_rm_1(vd
, v0
, s1
, vs2
,
2298 env
, vl
, vm
, mlen
, 2, fn
);
2301 vext_vx_rm_1(vd
, v0
, s1
, vs2
,
2302 env
, vl
, vm
, mlen
, 3, fn
);
2306 clearfn(vd
, vl
, vl
* dsz
, vlmax
* dsz
);
2309 /* generate helpers for fixed point instructions with OPIVX format */
2310 #define GEN_VEXT_VX_RM(NAME, ESZ, DSZ, CLEAR_FN) \
2311 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, \
2312 void *vs2, CPURISCVState *env, uint32_t desc) \
2314 vext_vx_rm_2(vd, v0, s1, vs2, env, desc, ESZ, DSZ, \
2315 do_##NAME, CLEAR_FN); \
2318 RVVCALL(OPIVX2_RM
, vsaddu_vx_b
, OP_UUU_B
, H1
, H1
, saddu8
)
2319 RVVCALL(OPIVX2_RM
, vsaddu_vx_h
, OP_UUU_H
, H2
, H2
, saddu16
)
2320 RVVCALL(OPIVX2_RM
, vsaddu_vx_w
, OP_UUU_W
, H4
, H4
, saddu32
)
2321 RVVCALL(OPIVX2_RM
, vsaddu_vx_d
, OP_UUU_D
, H8
, H8
, saddu64
)
2322 GEN_VEXT_VX_RM(vsaddu_vx_b
, 1, 1, clearb
)
2323 GEN_VEXT_VX_RM(vsaddu_vx_h
, 2, 2, clearh
)
2324 GEN_VEXT_VX_RM(vsaddu_vx_w
, 4, 4, clearl
)
2325 GEN_VEXT_VX_RM(vsaddu_vx_d
, 8, 8, clearq
)
2327 static inline int8_t sadd8(CPURISCVState
*env
, int vxrm
, int8_t a
, int8_t b
)
2330 if ((res
^ a
) & (res
^ b
) & INT8_MIN
) {
2331 res
= a
> 0 ? INT8_MAX
: INT8_MIN
;
2337 static inline int16_t sadd16(CPURISCVState
*env
, int vxrm
, int16_t a
, int16_t b
)
2339 int16_t res
= a
+ b
;
2340 if ((res
^ a
) & (res
^ b
) & INT16_MIN
) {
2341 res
= a
> 0 ? INT16_MAX
: INT16_MIN
;
2347 static inline int32_t sadd32(CPURISCVState
*env
, int vxrm
, int32_t a
, int32_t b
)
2349 int32_t res
= a
+ b
;
2350 if ((res
^ a
) & (res
^ b
) & INT32_MIN
) {
2351 res
= a
> 0 ? INT32_MAX
: INT32_MIN
;
2357 static inline int64_t sadd64(CPURISCVState
*env
, int vxrm
, int64_t a
, int64_t b
)
2359 int64_t res
= a
+ b
;
2360 if ((res
^ a
) & (res
^ b
) & INT64_MIN
) {
2361 res
= a
> 0 ? INT64_MAX
: INT64_MIN
;
2367 RVVCALL(OPIVV2_RM
, vsadd_vv_b
, OP_SSS_B
, H1
, H1
, H1
, sadd8
)
2368 RVVCALL(OPIVV2_RM
, vsadd_vv_h
, OP_SSS_H
, H2
, H2
, H2
, sadd16
)
2369 RVVCALL(OPIVV2_RM
, vsadd_vv_w
, OP_SSS_W
, H4
, H4
, H4
, sadd32
)
2370 RVVCALL(OPIVV2_RM
, vsadd_vv_d
, OP_SSS_D
, H8
, H8
, H8
, sadd64
)
2371 GEN_VEXT_VV_RM(vsadd_vv_b
, 1, 1, clearb
)
2372 GEN_VEXT_VV_RM(vsadd_vv_h
, 2, 2, clearh
)
2373 GEN_VEXT_VV_RM(vsadd_vv_w
, 4, 4, clearl
)
2374 GEN_VEXT_VV_RM(vsadd_vv_d
, 8, 8, clearq
)
2376 RVVCALL(OPIVX2_RM
, vsadd_vx_b
, OP_SSS_B
, H1
, H1
, sadd8
)
2377 RVVCALL(OPIVX2_RM
, vsadd_vx_h
, OP_SSS_H
, H2
, H2
, sadd16
)
2378 RVVCALL(OPIVX2_RM
, vsadd_vx_w
, OP_SSS_W
, H4
, H4
, sadd32
)
2379 RVVCALL(OPIVX2_RM
, vsadd_vx_d
, OP_SSS_D
, H8
, H8
, sadd64
)
2380 GEN_VEXT_VX_RM(vsadd_vx_b
, 1, 1, clearb
)
2381 GEN_VEXT_VX_RM(vsadd_vx_h
, 2, 2, clearh
)
2382 GEN_VEXT_VX_RM(vsadd_vx_w
, 4, 4, clearl
)
2383 GEN_VEXT_VX_RM(vsadd_vx_d
, 8, 8, clearq
)
2385 static inline uint8_t ssubu8(CPURISCVState
*env
, int vxrm
, uint8_t a
, uint8_t b
)
2387 uint8_t res
= a
- b
;
2395 static inline uint16_t ssubu16(CPURISCVState
*env
, int vxrm
, uint16_t a
,
2398 uint16_t res
= a
- b
;
2406 static inline uint32_t ssubu32(CPURISCVState
*env
, int vxrm
, uint32_t a
,
2409 uint32_t res
= a
- b
;
2417 static inline uint64_t ssubu64(CPURISCVState
*env
, int vxrm
, uint64_t a
,
2420 uint64_t res
= a
- b
;
2428 RVVCALL(OPIVV2_RM
, vssubu_vv_b
, OP_UUU_B
, H1
, H1
, H1
, ssubu8
)
2429 RVVCALL(OPIVV2_RM
, vssubu_vv_h
, OP_UUU_H
, H2
, H2
, H2
, ssubu16
)
2430 RVVCALL(OPIVV2_RM
, vssubu_vv_w
, OP_UUU_W
, H4
, H4
, H4
, ssubu32
)
2431 RVVCALL(OPIVV2_RM
, vssubu_vv_d
, OP_UUU_D
, H8
, H8
, H8
, ssubu64
)
2432 GEN_VEXT_VV_RM(vssubu_vv_b
, 1, 1, clearb
)
2433 GEN_VEXT_VV_RM(vssubu_vv_h
, 2, 2, clearh
)
2434 GEN_VEXT_VV_RM(vssubu_vv_w
, 4, 4, clearl
)
2435 GEN_VEXT_VV_RM(vssubu_vv_d
, 8, 8, clearq
)
2437 RVVCALL(OPIVX2_RM
, vssubu_vx_b
, OP_UUU_B
, H1
, H1
, ssubu8
)
2438 RVVCALL(OPIVX2_RM
, vssubu_vx_h
, OP_UUU_H
, H2
, H2
, ssubu16
)
2439 RVVCALL(OPIVX2_RM
, vssubu_vx_w
, OP_UUU_W
, H4
, H4
, ssubu32
)
2440 RVVCALL(OPIVX2_RM
, vssubu_vx_d
, OP_UUU_D
, H8
, H8
, ssubu64
)
2441 GEN_VEXT_VX_RM(vssubu_vx_b
, 1, 1, clearb
)
2442 GEN_VEXT_VX_RM(vssubu_vx_h
, 2, 2, clearh
)
2443 GEN_VEXT_VX_RM(vssubu_vx_w
, 4, 4, clearl
)
2444 GEN_VEXT_VX_RM(vssubu_vx_d
, 8, 8, clearq
)
2446 static inline int8_t ssub8(CPURISCVState
*env
, int vxrm
, int8_t a
, int8_t b
)
2449 if ((res
^ a
) & (a
^ b
) & INT8_MIN
) {
2450 res
= a
>= 0 ? INT8_MAX
: INT8_MIN
;
2456 static inline int16_t ssub16(CPURISCVState
*env
, int vxrm
, int16_t a
, int16_t b
)
2458 int16_t res
= a
- b
;
2459 if ((res
^ a
) & (a
^ b
) & INT16_MIN
) {
2460 res
= a
>= 0 ? INT16_MAX
: INT16_MIN
;
2466 static inline int32_t ssub32(CPURISCVState
*env
, int vxrm
, int32_t a
, int32_t b
)
2468 int32_t res
= a
- b
;
2469 if ((res
^ a
) & (a
^ b
) & INT32_MIN
) {
2470 res
= a
>= 0 ? INT32_MAX
: INT32_MIN
;
2476 static inline int64_t ssub64(CPURISCVState
*env
, int vxrm
, int64_t a
, int64_t b
)
2478 int64_t res
= a
- b
;
2479 if ((res
^ a
) & (a
^ b
) & INT64_MIN
) {
2480 res
= a
>= 0 ? INT64_MAX
: INT64_MIN
;
2486 RVVCALL(OPIVV2_RM
, vssub_vv_b
, OP_SSS_B
, H1
, H1
, H1
, ssub8
)
2487 RVVCALL(OPIVV2_RM
, vssub_vv_h
, OP_SSS_H
, H2
, H2
, H2
, ssub16
)
2488 RVVCALL(OPIVV2_RM
, vssub_vv_w
, OP_SSS_W
, H4
, H4
, H4
, ssub32
)
2489 RVVCALL(OPIVV2_RM
, vssub_vv_d
, OP_SSS_D
, H8
, H8
, H8
, ssub64
)
2490 GEN_VEXT_VV_RM(vssub_vv_b
, 1, 1, clearb
)
2491 GEN_VEXT_VV_RM(vssub_vv_h
, 2, 2, clearh
)
2492 GEN_VEXT_VV_RM(vssub_vv_w
, 4, 4, clearl
)
2493 GEN_VEXT_VV_RM(vssub_vv_d
, 8, 8, clearq
)
2495 RVVCALL(OPIVX2_RM
, vssub_vx_b
, OP_SSS_B
, H1
, H1
, ssub8
)
2496 RVVCALL(OPIVX2_RM
, vssub_vx_h
, OP_SSS_H
, H2
, H2
, ssub16
)
2497 RVVCALL(OPIVX2_RM
, vssub_vx_w
, OP_SSS_W
, H4
, H4
, ssub32
)
2498 RVVCALL(OPIVX2_RM
, vssub_vx_d
, OP_SSS_D
, H8
, H8
, ssub64
)
2499 GEN_VEXT_VX_RM(vssub_vx_b
, 1, 1, clearb
)
2500 GEN_VEXT_VX_RM(vssub_vx_h
, 2, 2, clearh
)
2501 GEN_VEXT_VX_RM(vssub_vx_w
, 4, 4, clearl
)
2502 GEN_VEXT_VX_RM(vssub_vx_d
, 8, 8, clearq
)
2504 /* Vector Single-Width Averaging Add and Subtract */
2505 static inline uint8_t get_round(int vxrm
, uint64_t v
, uint8_t shift
)
2507 uint8_t d
= extract64(v
, shift
, 1);
2511 if (shift
== 0 || shift
> 64) {
2515 d1
= extract64(v
, shift
- 1, 1);
2516 D1
= extract64(v
, 0, shift
);
2517 if (vxrm
== 0) { /* round-to-nearest-up (add +0.5 LSB) */
2519 } else if (vxrm
== 1) { /* round-to-nearest-even */
2521 D2
= extract64(v
, 0, shift
- 1);
2522 return d1
& ((D2
!= 0) | d
);
2526 } else if (vxrm
== 3) { /* round-to-odd (OR bits into LSB, aka "jam") */
2527 return !d
& (D1
!= 0);
2529 return 0; /* round-down (truncate) */
2532 static inline int32_t aadd32(CPURISCVState
*env
, int vxrm
, int32_t a
, int32_t b
)
2534 int64_t res
= (int64_t)a
+ b
;
2535 uint8_t round
= get_round(vxrm
, res
, 1);
2537 return (res
>> 1) + round
;
2540 static inline int64_t aadd64(CPURISCVState
*env
, int vxrm
, int64_t a
, int64_t b
)
2542 int64_t res
= a
+ b
;
2543 uint8_t round
= get_round(vxrm
, res
, 1);
2544 int64_t over
= (res
^ a
) & (res
^ b
) & INT64_MIN
;
2546 /* With signed overflow, bit 64 is inverse of bit 63. */
2547 return ((res
>> 1) ^ over
) + round
;
2550 RVVCALL(OPIVV2_RM
, vaadd_vv_b
, OP_SSS_B
, H1
, H1
, H1
, aadd32
)
2551 RVVCALL(OPIVV2_RM
, vaadd_vv_h
, OP_SSS_H
, H2
, H2
, H2
, aadd32
)
2552 RVVCALL(OPIVV2_RM
, vaadd_vv_w
, OP_SSS_W
, H4
, H4
, H4
, aadd32
)
2553 RVVCALL(OPIVV2_RM
, vaadd_vv_d
, OP_SSS_D
, H8
, H8
, H8
, aadd64
)
2554 GEN_VEXT_VV_RM(vaadd_vv_b
, 1, 1, clearb
)
2555 GEN_VEXT_VV_RM(vaadd_vv_h
, 2, 2, clearh
)
2556 GEN_VEXT_VV_RM(vaadd_vv_w
, 4, 4, clearl
)
2557 GEN_VEXT_VV_RM(vaadd_vv_d
, 8, 8, clearq
)
2559 RVVCALL(OPIVX2_RM
, vaadd_vx_b
, OP_SSS_B
, H1
, H1
, aadd32
)
2560 RVVCALL(OPIVX2_RM
, vaadd_vx_h
, OP_SSS_H
, H2
, H2
, aadd32
)
2561 RVVCALL(OPIVX2_RM
, vaadd_vx_w
, OP_SSS_W
, H4
, H4
, aadd32
)
2562 RVVCALL(OPIVX2_RM
, vaadd_vx_d
, OP_SSS_D
, H8
, H8
, aadd64
)
2563 GEN_VEXT_VX_RM(vaadd_vx_b
, 1, 1, clearb
)
2564 GEN_VEXT_VX_RM(vaadd_vx_h
, 2, 2, clearh
)
2565 GEN_VEXT_VX_RM(vaadd_vx_w
, 4, 4, clearl
)
2566 GEN_VEXT_VX_RM(vaadd_vx_d
, 8, 8, clearq
)
2568 static inline int32_t asub32(CPURISCVState
*env
, int vxrm
, int32_t a
, int32_t b
)
2570 int64_t res
= (int64_t)a
- b
;
2571 uint8_t round
= get_round(vxrm
, res
, 1);
2573 return (res
>> 1) + round
;
2576 static inline int64_t asub64(CPURISCVState
*env
, int vxrm
, int64_t a
, int64_t b
)
2578 int64_t res
= (int64_t)a
- b
;
2579 uint8_t round
= get_round(vxrm
, res
, 1);
2580 int64_t over
= (res
^ a
) & (a
^ b
) & INT64_MIN
;
2582 /* With signed overflow, bit 64 is inverse of bit 63. */
2583 return ((res
>> 1) ^ over
) + round
;
2586 RVVCALL(OPIVV2_RM
, vasub_vv_b
, OP_SSS_B
, H1
, H1
, H1
, asub32
)
2587 RVVCALL(OPIVV2_RM
, vasub_vv_h
, OP_SSS_H
, H2
, H2
, H2
, asub32
)
2588 RVVCALL(OPIVV2_RM
, vasub_vv_w
, OP_SSS_W
, H4
, H4
, H4
, asub32
)
2589 RVVCALL(OPIVV2_RM
, vasub_vv_d
, OP_SSS_D
, H8
, H8
, H8
, asub64
)
2590 GEN_VEXT_VV_RM(vasub_vv_b
, 1, 1, clearb
)
2591 GEN_VEXT_VV_RM(vasub_vv_h
, 2, 2, clearh
)
2592 GEN_VEXT_VV_RM(vasub_vv_w
, 4, 4, clearl
)
2593 GEN_VEXT_VV_RM(vasub_vv_d
, 8, 8, clearq
)
2595 RVVCALL(OPIVX2_RM
, vasub_vx_b
, OP_SSS_B
, H1
, H1
, asub32
)
2596 RVVCALL(OPIVX2_RM
, vasub_vx_h
, OP_SSS_H
, H2
, H2
, asub32
)
2597 RVVCALL(OPIVX2_RM
, vasub_vx_w
, OP_SSS_W
, H4
, H4
, asub32
)
2598 RVVCALL(OPIVX2_RM
, vasub_vx_d
, OP_SSS_D
, H8
, H8
, asub64
)
2599 GEN_VEXT_VX_RM(vasub_vx_b
, 1, 1, clearb
)
2600 GEN_VEXT_VX_RM(vasub_vx_h
, 2, 2, clearh
)
2601 GEN_VEXT_VX_RM(vasub_vx_w
, 4, 4, clearl
)
2602 GEN_VEXT_VX_RM(vasub_vx_d
, 8, 8, clearq
)
2604 /* Vector Single-Width Fractional Multiply with Rounding and Saturation */
2605 static inline int8_t vsmul8(CPURISCVState
*env
, int vxrm
, int8_t a
, int8_t b
)
2610 res
= (int16_t)a
* (int16_t)b
;
2611 round
= get_round(vxrm
, res
, 7);
2612 res
= (res
>> 7) + round
;
2614 if (res
> INT8_MAX
) {
2617 } else if (res
< INT8_MIN
) {
2625 static int16_t vsmul16(CPURISCVState
*env
, int vxrm
, int16_t a
, int16_t b
)
2630 res
= (int32_t)a
* (int32_t)b
;
2631 round
= get_round(vxrm
, res
, 15);
2632 res
= (res
>> 15) + round
;
2634 if (res
> INT16_MAX
) {
2637 } else if (res
< INT16_MIN
) {
2645 static int32_t vsmul32(CPURISCVState
*env
, int vxrm
, int32_t a
, int32_t b
)
2650 res
= (int64_t)a
* (int64_t)b
;
2651 round
= get_round(vxrm
, res
, 31);
2652 res
= (res
>> 31) + round
;
2654 if (res
> INT32_MAX
) {
2657 } else if (res
< INT32_MIN
) {
2665 static int64_t vsmul64(CPURISCVState
*env
, int vxrm
, int64_t a
, int64_t b
)
2668 uint64_t hi_64
, lo_64
;
2671 if (a
== INT64_MIN
&& b
== INT64_MIN
) {
2676 muls64(&lo_64
, &hi_64
, a
, b
);
2677 round
= get_round(vxrm
, lo_64
, 63);
2679 * Cannot overflow, as there are always
2680 * 2 sign bits after multiply.
2682 res
= (hi_64
<< 1) | (lo_64
>> 63);
2684 if (res
== INT64_MAX
) {
2693 RVVCALL(OPIVV2_RM
, vsmul_vv_b
, OP_SSS_B
, H1
, H1
, H1
, vsmul8
)
2694 RVVCALL(OPIVV2_RM
, vsmul_vv_h
, OP_SSS_H
, H2
, H2
, H2
, vsmul16
)
2695 RVVCALL(OPIVV2_RM
, vsmul_vv_w
, OP_SSS_W
, H4
, H4
, H4
, vsmul32
)
2696 RVVCALL(OPIVV2_RM
, vsmul_vv_d
, OP_SSS_D
, H8
, H8
, H8
, vsmul64
)
2697 GEN_VEXT_VV_RM(vsmul_vv_b
, 1, 1, clearb
)
2698 GEN_VEXT_VV_RM(vsmul_vv_h
, 2, 2, clearh
)
2699 GEN_VEXT_VV_RM(vsmul_vv_w
, 4, 4, clearl
)
2700 GEN_VEXT_VV_RM(vsmul_vv_d
, 8, 8, clearq
)
2702 RVVCALL(OPIVX2_RM
, vsmul_vx_b
, OP_SSS_B
, H1
, H1
, vsmul8
)
2703 RVVCALL(OPIVX2_RM
, vsmul_vx_h
, OP_SSS_H
, H2
, H2
, vsmul16
)
2704 RVVCALL(OPIVX2_RM
, vsmul_vx_w
, OP_SSS_W
, H4
, H4
, vsmul32
)
2705 RVVCALL(OPIVX2_RM
, vsmul_vx_d
, OP_SSS_D
, H8
, H8
, vsmul64
)
2706 GEN_VEXT_VX_RM(vsmul_vx_b
, 1, 1, clearb
)
2707 GEN_VEXT_VX_RM(vsmul_vx_h
, 2, 2, clearh
)
2708 GEN_VEXT_VX_RM(vsmul_vx_w
, 4, 4, clearl
)
2709 GEN_VEXT_VX_RM(vsmul_vx_d
, 8, 8, clearq
)
2711 /* Vector Widening Saturating Scaled Multiply-Add */
2712 static inline uint16_t
2713 vwsmaccu8(CPURISCVState
*env
, int vxrm
, uint8_t a
, uint8_t b
,
2717 uint16_t res
= (uint16_t)a
* b
;
2719 round
= get_round(vxrm
, res
, 4);
2720 res
= (res
>> 4) + round
;
2721 return saddu16(env
, vxrm
, c
, res
);
2724 static inline uint32_t
2725 vwsmaccu16(CPURISCVState
*env
, int vxrm
, uint16_t a
, uint16_t b
,
2729 uint32_t res
= (uint32_t)a
* b
;
2731 round
= get_round(vxrm
, res
, 8);
2732 res
= (res
>> 8) + round
;
2733 return saddu32(env
, vxrm
, c
, res
);
2736 static inline uint64_t
2737 vwsmaccu32(CPURISCVState
*env
, int vxrm
, uint32_t a
, uint32_t b
,
2741 uint64_t res
= (uint64_t)a
* b
;
2743 round
= get_round(vxrm
, res
, 16);
2744 res
= (res
>> 16) + round
;
2745 return saddu64(env
, vxrm
, c
, res
);
2748 #define OPIVV3_RM(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP) \
2749 static inline void \
2750 do_##NAME(void *vd, void *vs1, void *vs2, int i, \
2751 CPURISCVState *env, int vxrm) \
2753 TX1 s1 = *((T1 *)vs1 + HS1(i)); \
2754 TX2 s2 = *((T2 *)vs2 + HS2(i)); \
2755 TD d = *((TD *)vd + HD(i)); \
2756 *((TD *)vd + HD(i)) = OP(env, vxrm, s2, s1, d); \
2759 RVVCALL(OPIVV3_RM
, vwsmaccu_vv_b
, WOP_UUU_B
, H2
, H1
, H1
, vwsmaccu8
)
2760 RVVCALL(OPIVV3_RM
, vwsmaccu_vv_h
, WOP_UUU_H
, H4
, H2
, H2
, vwsmaccu16
)
2761 RVVCALL(OPIVV3_RM
, vwsmaccu_vv_w
, WOP_UUU_W
, H8
, H4
, H4
, vwsmaccu32
)
2762 GEN_VEXT_VV_RM(vwsmaccu_vv_b
, 1, 2, clearh
)
2763 GEN_VEXT_VV_RM(vwsmaccu_vv_h
, 2, 4, clearl
)
2764 GEN_VEXT_VV_RM(vwsmaccu_vv_w
, 4, 8, clearq
)
2766 #define OPIVX3_RM(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP) \
2767 static inline void \
2768 do_##NAME(void *vd, target_long s1, void *vs2, int i, \
2769 CPURISCVState *env, int vxrm) \
2771 TX2 s2 = *((T2 *)vs2 + HS2(i)); \
2772 TD d = *((TD *)vd + HD(i)); \
2773 *((TD *)vd + HD(i)) = OP(env, vxrm, s2, (TX1)(T1)s1, d); \
2776 RVVCALL(OPIVX3_RM
, vwsmaccu_vx_b
, WOP_UUU_B
, H2
, H1
, vwsmaccu8
)
2777 RVVCALL(OPIVX3_RM
, vwsmaccu_vx_h
, WOP_UUU_H
, H4
, H2
, vwsmaccu16
)
2778 RVVCALL(OPIVX3_RM
, vwsmaccu_vx_w
, WOP_UUU_W
, H8
, H4
, vwsmaccu32
)
2779 GEN_VEXT_VX_RM(vwsmaccu_vx_b
, 1, 2, clearh
)
2780 GEN_VEXT_VX_RM(vwsmaccu_vx_h
, 2, 4, clearl
)
2781 GEN_VEXT_VX_RM(vwsmaccu_vx_w
, 4, 8, clearq
)
2783 static inline int16_t
2784 vwsmacc8(CPURISCVState
*env
, int vxrm
, int8_t a
, int8_t b
, int16_t c
)
2787 int16_t res
= (int16_t)a
* b
;
2789 round
= get_round(vxrm
, res
, 4);
2790 res
= (res
>> 4) + round
;
2791 return sadd16(env
, vxrm
, c
, res
);
2794 static inline int32_t
2795 vwsmacc16(CPURISCVState
*env
, int vxrm
, int16_t a
, int16_t b
, int32_t c
)
2798 int32_t res
= (int32_t)a
* b
;
2800 round
= get_round(vxrm
, res
, 8);
2801 res
= (res
>> 8) + round
;
2802 return sadd32(env
, vxrm
, c
, res
);
2806 static inline int64_t
2807 vwsmacc32(CPURISCVState
*env
, int vxrm
, int32_t a
, int32_t b
, int64_t c
)
2810 int64_t res
= (int64_t)a
* b
;
2812 round
= get_round(vxrm
, res
, 16);
2813 res
= (res
>> 16) + round
;
2814 return sadd64(env
, vxrm
, c
, res
);
2817 RVVCALL(OPIVV3_RM
, vwsmacc_vv_b
, WOP_SSS_B
, H2
, H1
, H1
, vwsmacc8
)
2818 RVVCALL(OPIVV3_RM
, vwsmacc_vv_h
, WOP_SSS_H
, H4
, H2
, H2
, vwsmacc16
)
2819 RVVCALL(OPIVV3_RM
, vwsmacc_vv_w
, WOP_SSS_W
, H8
, H4
, H4
, vwsmacc32
)
2820 GEN_VEXT_VV_RM(vwsmacc_vv_b
, 1, 2, clearh
)
2821 GEN_VEXT_VV_RM(vwsmacc_vv_h
, 2, 4, clearl
)
2822 GEN_VEXT_VV_RM(vwsmacc_vv_w
, 4, 8, clearq
)
2823 RVVCALL(OPIVX3_RM
, vwsmacc_vx_b
, WOP_SSS_B
, H2
, H1
, vwsmacc8
)
2824 RVVCALL(OPIVX3_RM
, vwsmacc_vx_h
, WOP_SSS_H
, H4
, H2
, vwsmacc16
)
2825 RVVCALL(OPIVX3_RM
, vwsmacc_vx_w
, WOP_SSS_W
, H8
, H4
, vwsmacc32
)
2826 GEN_VEXT_VX_RM(vwsmacc_vx_b
, 1, 2, clearh
)
2827 GEN_VEXT_VX_RM(vwsmacc_vx_h
, 2, 4, clearl
)
2828 GEN_VEXT_VX_RM(vwsmacc_vx_w
, 4, 8, clearq
)
2830 static inline int16_t
2831 vwsmaccsu8(CPURISCVState
*env
, int vxrm
, uint8_t a
, int8_t b
, int16_t c
)
2834 int16_t res
= a
* (int16_t)b
;
2836 round
= get_round(vxrm
, res
, 4);
2837 res
= (res
>> 4) + round
;
2838 return ssub16(env
, vxrm
, c
, res
);
2841 static inline int32_t
2842 vwsmaccsu16(CPURISCVState
*env
, int vxrm
, uint16_t a
, int16_t b
, uint32_t c
)
2845 int32_t res
= a
* (int32_t)b
;
2847 round
= get_round(vxrm
, res
, 8);
2848 res
= (res
>> 8) + round
;
2849 return ssub32(env
, vxrm
, c
, res
);
2852 static inline int64_t
2853 vwsmaccsu32(CPURISCVState
*env
, int vxrm
, uint32_t a
, int32_t b
, int64_t c
)
2856 int64_t res
= a
* (int64_t)b
;
2858 round
= get_round(vxrm
, res
, 16);
2859 res
= (res
>> 16) + round
;
2860 return ssub64(env
, vxrm
, c
, res
);
2863 RVVCALL(OPIVV3_RM
, vwsmaccsu_vv_b
, WOP_SSU_B
, H2
, H1
, H1
, vwsmaccsu8
)
2864 RVVCALL(OPIVV3_RM
, vwsmaccsu_vv_h
, WOP_SSU_H
, H4
, H2
, H2
, vwsmaccsu16
)
2865 RVVCALL(OPIVV3_RM
, vwsmaccsu_vv_w
, WOP_SSU_W
, H8
, H4
, H4
, vwsmaccsu32
)
2866 GEN_VEXT_VV_RM(vwsmaccsu_vv_b
, 1, 2, clearh
)
2867 GEN_VEXT_VV_RM(vwsmaccsu_vv_h
, 2, 4, clearl
)
2868 GEN_VEXT_VV_RM(vwsmaccsu_vv_w
, 4, 8, clearq
)
2869 RVVCALL(OPIVX3_RM
, vwsmaccsu_vx_b
, WOP_SSU_B
, H2
, H1
, vwsmaccsu8
)
2870 RVVCALL(OPIVX3_RM
, vwsmaccsu_vx_h
, WOP_SSU_H
, H4
, H2
, vwsmaccsu16
)
2871 RVVCALL(OPIVX3_RM
, vwsmaccsu_vx_w
, WOP_SSU_W
, H8
, H4
, vwsmaccsu32
)
2872 GEN_VEXT_VX_RM(vwsmaccsu_vx_b
, 1, 2, clearh
)
2873 GEN_VEXT_VX_RM(vwsmaccsu_vx_h
, 2, 4, clearl
)
2874 GEN_VEXT_VX_RM(vwsmaccsu_vx_w
, 4, 8, clearq
)
2876 static inline int16_t
2877 vwsmaccus8(CPURISCVState
*env
, int vxrm
, int8_t a
, uint8_t b
, int16_t c
)
2880 int16_t res
= (int16_t)a
* b
;
2882 round
= get_round(vxrm
, res
, 4);
2883 res
= (res
>> 4) + round
;
2884 return ssub16(env
, vxrm
, c
, res
);
2887 static inline int32_t
2888 vwsmaccus16(CPURISCVState
*env
, int vxrm
, int16_t a
, uint16_t b
, int32_t c
)
2891 int32_t res
= (int32_t)a
* b
;
2893 round
= get_round(vxrm
, res
, 8);
2894 res
= (res
>> 8) + round
;
2895 return ssub32(env
, vxrm
, c
, res
);
2898 static inline int64_t
2899 vwsmaccus32(CPURISCVState
*env
, int vxrm
, int32_t a
, uint32_t b
, int64_t c
)
2902 int64_t res
= (int64_t)a
* b
;
2904 round
= get_round(vxrm
, res
, 16);
2905 res
= (res
>> 16) + round
;
2906 return ssub64(env
, vxrm
, c
, res
);
2909 RVVCALL(OPIVX3_RM
, vwsmaccus_vx_b
, WOP_SUS_B
, H2
, H1
, vwsmaccus8
)
2910 RVVCALL(OPIVX3_RM
, vwsmaccus_vx_h
, WOP_SUS_H
, H4
, H2
, vwsmaccus16
)
2911 RVVCALL(OPIVX3_RM
, vwsmaccus_vx_w
, WOP_SUS_W
, H8
, H4
, vwsmaccus32
)
2912 GEN_VEXT_VX_RM(vwsmaccus_vx_b
, 1, 2, clearh
)
2913 GEN_VEXT_VX_RM(vwsmaccus_vx_h
, 2, 4, clearl
)
2914 GEN_VEXT_VX_RM(vwsmaccus_vx_w
, 4, 8, clearq
)
2916 /* Vector Single-Width Scaling Shift Instructions */
2917 static inline uint8_t
2918 vssrl8(CPURISCVState
*env
, int vxrm
, uint8_t a
, uint8_t b
)
2920 uint8_t round
, shift
= b
& 0x7;
2923 round
= get_round(vxrm
, a
, shift
);
2924 res
= (a
>> shift
) + round
;
2927 static inline uint16_t
2928 vssrl16(CPURISCVState
*env
, int vxrm
, uint16_t a
, uint16_t b
)
2930 uint8_t round
, shift
= b
& 0xf;
2933 round
= get_round(vxrm
, a
, shift
);
2934 res
= (a
>> shift
) + round
;
2937 static inline uint32_t
2938 vssrl32(CPURISCVState
*env
, int vxrm
, uint32_t a
, uint32_t b
)
2940 uint8_t round
, shift
= b
& 0x1f;
2943 round
= get_round(vxrm
, a
, shift
);
2944 res
= (a
>> shift
) + round
;
2947 static inline uint64_t
2948 vssrl64(CPURISCVState
*env
, int vxrm
, uint64_t a
, uint64_t b
)
2950 uint8_t round
, shift
= b
& 0x3f;
2953 round
= get_round(vxrm
, a
, shift
);
2954 res
= (a
>> shift
) + round
;
2957 RVVCALL(OPIVV2_RM
, vssrl_vv_b
, OP_UUU_B
, H1
, H1
, H1
, vssrl8
)
2958 RVVCALL(OPIVV2_RM
, vssrl_vv_h
, OP_UUU_H
, H2
, H2
, H2
, vssrl16
)
2959 RVVCALL(OPIVV2_RM
, vssrl_vv_w
, OP_UUU_W
, H4
, H4
, H4
, vssrl32
)
2960 RVVCALL(OPIVV2_RM
, vssrl_vv_d
, OP_UUU_D
, H8
, H8
, H8
, vssrl64
)
2961 GEN_VEXT_VV_RM(vssrl_vv_b
, 1, 1, clearb
)
2962 GEN_VEXT_VV_RM(vssrl_vv_h
, 2, 2, clearh
)
2963 GEN_VEXT_VV_RM(vssrl_vv_w
, 4, 4, clearl
)
2964 GEN_VEXT_VV_RM(vssrl_vv_d
, 8, 8, clearq
)
2966 RVVCALL(OPIVX2_RM
, vssrl_vx_b
, OP_UUU_B
, H1
, H1
, vssrl8
)
2967 RVVCALL(OPIVX2_RM
, vssrl_vx_h
, OP_UUU_H
, H2
, H2
, vssrl16
)
2968 RVVCALL(OPIVX2_RM
, vssrl_vx_w
, OP_UUU_W
, H4
, H4
, vssrl32
)
2969 RVVCALL(OPIVX2_RM
, vssrl_vx_d
, OP_UUU_D
, H8
, H8
, vssrl64
)
2970 GEN_VEXT_VX_RM(vssrl_vx_b
, 1, 1, clearb
)
2971 GEN_VEXT_VX_RM(vssrl_vx_h
, 2, 2, clearh
)
2972 GEN_VEXT_VX_RM(vssrl_vx_w
, 4, 4, clearl
)
2973 GEN_VEXT_VX_RM(vssrl_vx_d
, 8, 8, clearq
)
2975 static inline int8_t
2976 vssra8(CPURISCVState
*env
, int vxrm
, int8_t a
, int8_t b
)
2978 uint8_t round
, shift
= b
& 0x7;
2981 round
= get_round(vxrm
, a
, shift
);
2982 res
= (a
>> shift
) + round
;
2985 static inline int16_t
2986 vssra16(CPURISCVState
*env
, int vxrm
, int16_t a
, int16_t b
)
2988 uint8_t round
, shift
= b
& 0xf;
2991 round
= get_round(vxrm
, a
, shift
);
2992 res
= (a
>> shift
) + round
;
2995 static inline int32_t
2996 vssra32(CPURISCVState
*env
, int vxrm
, int32_t a
, int32_t b
)
2998 uint8_t round
, shift
= b
& 0x1f;
3001 round
= get_round(vxrm
, a
, shift
);
3002 res
= (a
>> shift
) + round
;
3005 static inline int64_t
3006 vssra64(CPURISCVState
*env
, int vxrm
, int64_t a
, int64_t b
)
3008 uint8_t round
, shift
= b
& 0x3f;
3011 round
= get_round(vxrm
, a
, shift
);
3012 res
= (a
>> shift
) + round
;
3016 RVVCALL(OPIVV2_RM
, vssra_vv_b
, OP_SSS_B
, H1
, H1
, H1
, vssra8
)
3017 RVVCALL(OPIVV2_RM
, vssra_vv_h
, OP_SSS_H
, H2
, H2
, H2
, vssra16
)
3018 RVVCALL(OPIVV2_RM
, vssra_vv_w
, OP_SSS_W
, H4
, H4
, H4
, vssra32
)
3019 RVVCALL(OPIVV2_RM
, vssra_vv_d
, OP_SSS_D
, H8
, H8
, H8
, vssra64
)
3020 GEN_VEXT_VV_RM(vssra_vv_b
, 1, 1, clearb
)
3021 GEN_VEXT_VV_RM(vssra_vv_h
, 2, 2, clearh
)
3022 GEN_VEXT_VV_RM(vssra_vv_w
, 4, 4, clearl
)
3023 GEN_VEXT_VV_RM(vssra_vv_d
, 8, 8, clearq
)
3025 RVVCALL(OPIVX2_RM
, vssra_vx_b
, OP_SSS_B
, H1
, H1
, vssra8
)
3026 RVVCALL(OPIVX2_RM
, vssra_vx_h
, OP_SSS_H
, H2
, H2
, vssra16
)
3027 RVVCALL(OPIVX2_RM
, vssra_vx_w
, OP_SSS_W
, H4
, H4
, vssra32
)
3028 RVVCALL(OPIVX2_RM
, vssra_vx_d
, OP_SSS_D
, H8
, H8
, vssra64
)
3029 GEN_VEXT_VX_RM(vssra_vx_b
, 1, 1, clearb
)
3030 GEN_VEXT_VX_RM(vssra_vx_h
, 2, 2, clearh
)
3031 GEN_VEXT_VX_RM(vssra_vx_w
, 4, 4, clearl
)
3032 GEN_VEXT_VX_RM(vssra_vx_d
, 8, 8, clearq
)
3034 /* Vector Narrowing Fixed-Point Clip Instructions */
3035 static inline int8_t
3036 vnclip8(CPURISCVState
*env
, int vxrm
, int16_t a
, int8_t b
)
3038 uint8_t round
, shift
= b
& 0xf;
3041 round
= get_round(vxrm
, a
, shift
);
3042 res
= (a
>> shift
) + round
;
3043 if (res
> INT8_MAX
) {
3046 } else if (res
< INT8_MIN
) {
3054 static inline int16_t
3055 vnclip16(CPURISCVState
*env
, int vxrm
, int32_t a
, int16_t b
)
3057 uint8_t round
, shift
= b
& 0x1f;
3060 round
= get_round(vxrm
, a
, shift
);
3061 res
= (a
>> shift
) + round
;
3062 if (res
> INT16_MAX
) {
3065 } else if (res
< INT16_MIN
) {
3073 static inline int32_t
3074 vnclip32(CPURISCVState
*env
, int vxrm
, int64_t a
, int32_t b
)
3076 uint8_t round
, shift
= b
& 0x3f;
3079 round
= get_round(vxrm
, a
, shift
);
3080 res
= (a
>> shift
) + round
;
3081 if (res
> INT32_MAX
) {
3084 } else if (res
< INT32_MIN
) {
3092 RVVCALL(OPIVV2_RM
, vnclip_vv_b
, NOP_SSS_B
, H1
, H2
, H1
, vnclip8
)
3093 RVVCALL(OPIVV2_RM
, vnclip_vv_h
, NOP_SSS_H
, H2
, H4
, H2
, vnclip16
)
3094 RVVCALL(OPIVV2_RM
, vnclip_vv_w
, NOP_SSS_W
, H4
, H8
, H4
, vnclip32
)
3095 GEN_VEXT_VV_RM(vnclip_vv_b
, 1, 1, clearb
)
3096 GEN_VEXT_VV_RM(vnclip_vv_h
, 2, 2, clearh
)
3097 GEN_VEXT_VV_RM(vnclip_vv_w
, 4, 4, clearl
)
3099 RVVCALL(OPIVX2_RM
, vnclip_vx_b
, NOP_SSS_B
, H1
, H2
, vnclip8
)
3100 RVVCALL(OPIVX2_RM
, vnclip_vx_h
, NOP_SSS_H
, H2
, H4
, vnclip16
)
3101 RVVCALL(OPIVX2_RM
, vnclip_vx_w
, NOP_SSS_W
, H4
, H8
, vnclip32
)
3102 GEN_VEXT_VX_RM(vnclip_vx_b
, 1, 1, clearb
)
3103 GEN_VEXT_VX_RM(vnclip_vx_h
, 2, 2, clearh
)
3104 GEN_VEXT_VX_RM(vnclip_vx_w
, 4, 4, clearl
)
3106 static inline uint8_t
3107 vnclipu8(CPURISCVState
*env
, int vxrm
, uint16_t a
, uint8_t b
)
3109 uint8_t round
, shift
= b
& 0xf;
3112 round
= get_round(vxrm
, a
, shift
);
3113 res
= (a
>> shift
) + round
;
3114 if (res
> UINT8_MAX
) {
3122 static inline uint16_t
3123 vnclipu16(CPURISCVState
*env
, int vxrm
, uint32_t a
, uint16_t b
)
3125 uint8_t round
, shift
= b
& 0x1f;
3128 round
= get_round(vxrm
, a
, shift
);
3129 res
= (a
>> shift
) + round
;
3130 if (res
> UINT16_MAX
) {
3138 static inline uint32_t
3139 vnclipu32(CPURISCVState
*env
, int vxrm
, uint64_t a
, uint32_t b
)
3141 uint8_t round
, shift
= b
& 0x3f;
3144 round
= get_round(vxrm
, a
, shift
);
3145 res
= (a
>> shift
) + round
;
3146 if (res
> UINT32_MAX
) {
3154 RVVCALL(OPIVV2_RM
, vnclipu_vv_b
, NOP_UUU_B
, H1
, H2
, H1
, vnclipu8
)
3155 RVVCALL(OPIVV2_RM
, vnclipu_vv_h
, NOP_UUU_H
, H2
, H4
, H2
, vnclipu16
)
3156 RVVCALL(OPIVV2_RM
, vnclipu_vv_w
, NOP_UUU_W
, H4
, H8
, H4
, vnclipu32
)
3157 GEN_VEXT_VV_RM(vnclipu_vv_b
, 1, 1, clearb
)
3158 GEN_VEXT_VV_RM(vnclipu_vv_h
, 2, 2, clearh
)
3159 GEN_VEXT_VV_RM(vnclipu_vv_w
, 4, 4, clearl
)
3161 RVVCALL(OPIVX2_RM
, vnclipu_vx_b
, NOP_UUU_B
, H1
, H2
, vnclipu8
)
3162 RVVCALL(OPIVX2_RM
, vnclipu_vx_h
, NOP_UUU_H
, H2
, H4
, vnclipu16
)
3163 RVVCALL(OPIVX2_RM
, vnclipu_vx_w
, NOP_UUU_W
, H4
, H8
, vnclipu32
)
3164 GEN_VEXT_VX_RM(vnclipu_vx_b
, 1, 1, clearb
)
3165 GEN_VEXT_VX_RM(vnclipu_vx_h
, 2, 2, clearh
)
3166 GEN_VEXT_VX_RM(vnclipu_vx_w
, 4, 4, clearl
)
3169 *** Vector Float Point Arithmetic Instructions
3171 /* Vector Single-Width Floating-Point Add/Subtract Instructions */
3172 #define OPFVV2(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP) \
3173 static void do_##NAME(void *vd, void *vs1, void *vs2, int i, \
3174 CPURISCVState *env) \
3176 TX1 s1 = *((T1 *)vs1 + HS1(i)); \
3177 TX2 s2 = *((T2 *)vs2 + HS2(i)); \
3178 *((TD *)vd + HD(i)) = OP(s2, s1, &env->fp_status); \
3181 #define GEN_VEXT_VV_ENV(NAME, ESZ, DSZ, CLEAR_FN) \
3182 void HELPER(NAME)(void *vd, void *v0, void *vs1, \
3183 void *vs2, CPURISCVState *env, \
3186 uint32_t vlmax = vext_maxsz(desc) / ESZ; \
3187 uint32_t mlen = vext_mlen(desc); \
3188 uint32_t vm = vext_vm(desc); \
3189 uint32_t vl = env->vl; \
3192 for (i = 0; i < vl; i++) { \
3193 if (!vm && !vext_elem_mask(v0, mlen, i)) { \
3196 do_##NAME(vd, vs1, vs2, i, env); \
3198 CLEAR_FN(vd, vl, vl * DSZ, vlmax * DSZ); \
3201 RVVCALL(OPFVV2
, vfadd_vv_h
, OP_UUU_H
, H2
, H2
, H2
, float16_add
)
3202 RVVCALL(OPFVV2
, vfadd_vv_w
, OP_UUU_W
, H4
, H4
, H4
, float32_add
)
3203 RVVCALL(OPFVV2
, vfadd_vv_d
, OP_UUU_D
, H8
, H8
, H8
, float64_add
)
3204 GEN_VEXT_VV_ENV(vfadd_vv_h
, 2, 2, clearh
)
3205 GEN_VEXT_VV_ENV(vfadd_vv_w
, 4, 4, clearl
)
3206 GEN_VEXT_VV_ENV(vfadd_vv_d
, 8, 8, clearq
)
3208 #define OPFVF2(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP) \
3209 static void do_##NAME(void *vd, uint64_t s1, void *vs2, int i, \
3210 CPURISCVState *env) \
3212 TX2 s2 = *((T2 *)vs2 + HS2(i)); \
3213 *((TD *)vd + HD(i)) = OP(s2, (TX1)(T1)s1, &env->fp_status);\
3216 #define GEN_VEXT_VF(NAME, ESZ, DSZ, CLEAR_FN) \
3217 void HELPER(NAME)(void *vd, void *v0, uint64_t s1, \
3218 void *vs2, CPURISCVState *env, \
3221 uint32_t vlmax = vext_maxsz(desc) / ESZ; \
3222 uint32_t mlen = vext_mlen(desc); \
3223 uint32_t vm = vext_vm(desc); \
3224 uint32_t vl = env->vl; \
3227 for (i = 0; i < vl; i++) { \
3228 if (!vm && !vext_elem_mask(v0, mlen, i)) { \
3231 do_##NAME(vd, s1, vs2, i, env); \
3233 CLEAR_FN(vd, vl, vl * DSZ, vlmax * DSZ); \
3236 RVVCALL(OPFVF2
, vfadd_vf_h
, OP_UUU_H
, H2
, H2
, float16_add
)
3237 RVVCALL(OPFVF2
, vfadd_vf_w
, OP_UUU_W
, H4
, H4
, float32_add
)
3238 RVVCALL(OPFVF2
, vfadd_vf_d
, OP_UUU_D
, H8
, H8
, float64_add
)
3239 GEN_VEXT_VF(vfadd_vf_h
, 2, 2, clearh
)
3240 GEN_VEXT_VF(vfadd_vf_w
, 4, 4, clearl
)
3241 GEN_VEXT_VF(vfadd_vf_d
, 8, 8, clearq
)
3243 RVVCALL(OPFVV2
, vfsub_vv_h
, OP_UUU_H
, H2
, H2
, H2
, float16_sub
)
3244 RVVCALL(OPFVV2
, vfsub_vv_w
, OP_UUU_W
, H4
, H4
, H4
, float32_sub
)
3245 RVVCALL(OPFVV2
, vfsub_vv_d
, OP_UUU_D
, H8
, H8
, H8
, float64_sub
)
3246 GEN_VEXT_VV_ENV(vfsub_vv_h
, 2, 2, clearh
)
3247 GEN_VEXT_VV_ENV(vfsub_vv_w
, 4, 4, clearl
)
3248 GEN_VEXT_VV_ENV(vfsub_vv_d
, 8, 8, clearq
)
3249 RVVCALL(OPFVF2
, vfsub_vf_h
, OP_UUU_H
, H2
, H2
, float16_sub
)
3250 RVVCALL(OPFVF2
, vfsub_vf_w
, OP_UUU_W
, H4
, H4
, float32_sub
)
3251 RVVCALL(OPFVF2
, vfsub_vf_d
, OP_UUU_D
, H8
, H8
, float64_sub
)
3252 GEN_VEXT_VF(vfsub_vf_h
, 2, 2, clearh
)
3253 GEN_VEXT_VF(vfsub_vf_w
, 4, 4, clearl
)
3254 GEN_VEXT_VF(vfsub_vf_d
, 8, 8, clearq
)
3256 static uint16_t float16_rsub(uint16_t a
, uint16_t b
, float_status
*s
)
3258 return float16_sub(b
, a
, s
);
3261 static uint32_t float32_rsub(uint32_t a
, uint32_t b
, float_status
*s
)
3263 return float32_sub(b
, a
, s
);
3266 static uint64_t float64_rsub(uint64_t a
, uint64_t b
, float_status
*s
)
3268 return float64_sub(b
, a
, s
);
3271 RVVCALL(OPFVF2
, vfrsub_vf_h
, OP_UUU_H
, H2
, H2
, float16_rsub
)
3272 RVVCALL(OPFVF2
, vfrsub_vf_w
, OP_UUU_W
, H4
, H4
, float32_rsub
)
3273 RVVCALL(OPFVF2
, vfrsub_vf_d
, OP_UUU_D
, H8
, H8
, float64_rsub
)
3274 GEN_VEXT_VF(vfrsub_vf_h
, 2, 2, clearh
)
3275 GEN_VEXT_VF(vfrsub_vf_w
, 4, 4, clearl
)
3276 GEN_VEXT_VF(vfrsub_vf_d
, 8, 8, clearq
)
3278 /* Vector Widening Floating-Point Add/Subtract Instructions */
3279 static uint32_t vfwadd16(uint16_t a
, uint16_t b
, float_status
*s
)
3281 return float32_add(float16_to_float32(a
, true, s
),
3282 float16_to_float32(b
, true, s
), s
);
3285 static uint64_t vfwadd32(uint32_t a
, uint32_t b
, float_status
*s
)
3287 return float64_add(float32_to_float64(a
, s
),
3288 float32_to_float64(b
, s
), s
);
3292 RVVCALL(OPFVV2
, vfwadd_vv_h
, WOP_UUU_H
, H4
, H2
, H2
, vfwadd16
)
3293 RVVCALL(OPFVV2
, vfwadd_vv_w
, WOP_UUU_W
, H8
, H4
, H4
, vfwadd32
)
3294 GEN_VEXT_VV_ENV(vfwadd_vv_h
, 2, 4, clearl
)
3295 GEN_VEXT_VV_ENV(vfwadd_vv_w
, 4, 8, clearq
)
3296 RVVCALL(OPFVF2
, vfwadd_vf_h
, WOP_UUU_H
, H4
, H2
, vfwadd16
)
3297 RVVCALL(OPFVF2
, vfwadd_vf_w
, WOP_UUU_W
, H8
, H4
, vfwadd32
)
3298 GEN_VEXT_VF(vfwadd_vf_h
, 2, 4, clearl
)
3299 GEN_VEXT_VF(vfwadd_vf_w
, 4, 8, clearq
)
3301 static uint32_t vfwsub16(uint16_t a
, uint16_t b
, float_status
*s
)
3303 return float32_sub(float16_to_float32(a
, true, s
),
3304 float16_to_float32(b
, true, s
), s
);
3307 static uint64_t vfwsub32(uint32_t a
, uint32_t b
, float_status
*s
)
3309 return float64_sub(float32_to_float64(a
, s
),
3310 float32_to_float64(b
, s
), s
);
3314 RVVCALL(OPFVV2
, vfwsub_vv_h
, WOP_UUU_H
, H4
, H2
, H2
, vfwsub16
)
3315 RVVCALL(OPFVV2
, vfwsub_vv_w
, WOP_UUU_W
, H8
, H4
, H4
, vfwsub32
)
3316 GEN_VEXT_VV_ENV(vfwsub_vv_h
, 2, 4, clearl
)
3317 GEN_VEXT_VV_ENV(vfwsub_vv_w
, 4, 8, clearq
)
3318 RVVCALL(OPFVF2
, vfwsub_vf_h
, WOP_UUU_H
, H4
, H2
, vfwsub16
)
3319 RVVCALL(OPFVF2
, vfwsub_vf_w
, WOP_UUU_W
, H8
, H4
, vfwsub32
)
3320 GEN_VEXT_VF(vfwsub_vf_h
, 2, 4, clearl
)
3321 GEN_VEXT_VF(vfwsub_vf_w
, 4, 8, clearq
)
3323 static uint32_t vfwaddw16(uint32_t a
, uint16_t b
, float_status
*s
)
3325 return float32_add(a
, float16_to_float32(b
, true, s
), s
);
3328 static uint64_t vfwaddw32(uint64_t a
, uint32_t b
, float_status
*s
)
3330 return float64_add(a
, float32_to_float64(b
, s
), s
);
3333 RVVCALL(OPFVV2
, vfwadd_wv_h
, WOP_WUUU_H
, H4
, H2
, H2
, vfwaddw16
)
3334 RVVCALL(OPFVV2
, vfwadd_wv_w
, WOP_WUUU_W
, H8
, H4
, H4
, vfwaddw32
)
3335 GEN_VEXT_VV_ENV(vfwadd_wv_h
, 2, 4, clearl
)
3336 GEN_VEXT_VV_ENV(vfwadd_wv_w
, 4, 8, clearq
)
3337 RVVCALL(OPFVF2
, vfwadd_wf_h
, WOP_WUUU_H
, H4
, H2
, vfwaddw16
)
3338 RVVCALL(OPFVF2
, vfwadd_wf_w
, WOP_WUUU_W
, H8
, H4
, vfwaddw32
)
3339 GEN_VEXT_VF(vfwadd_wf_h
, 2, 4, clearl
)
3340 GEN_VEXT_VF(vfwadd_wf_w
, 4, 8, clearq
)
3342 static uint32_t vfwsubw16(uint32_t a
, uint16_t b
, float_status
*s
)
3344 return float32_sub(a
, float16_to_float32(b
, true, s
), s
);
3347 static uint64_t vfwsubw32(uint64_t a
, uint32_t b
, float_status
*s
)
3349 return float64_sub(a
, float32_to_float64(b
, s
), s
);
3352 RVVCALL(OPFVV2
, vfwsub_wv_h
, WOP_WUUU_H
, H4
, H2
, H2
, vfwsubw16
)
3353 RVVCALL(OPFVV2
, vfwsub_wv_w
, WOP_WUUU_W
, H8
, H4
, H4
, vfwsubw32
)
3354 GEN_VEXT_VV_ENV(vfwsub_wv_h
, 2, 4, clearl
)
3355 GEN_VEXT_VV_ENV(vfwsub_wv_w
, 4, 8, clearq
)
3356 RVVCALL(OPFVF2
, vfwsub_wf_h
, WOP_WUUU_H
, H4
, H2
, vfwsubw16
)
3357 RVVCALL(OPFVF2
, vfwsub_wf_w
, WOP_WUUU_W
, H8
, H4
, vfwsubw32
)
3358 GEN_VEXT_VF(vfwsub_wf_h
, 2, 4, clearl
)
3359 GEN_VEXT_VF(vfwsub_wf_w
, 4, 8, clearq
)
3361 /* Vector Single-Width Floating-Point Multiply/Divide Instructions */
3362 RVVCALL(OPFVV2
, vfmul_vv_h
, OP_UUU_H
, H2
, H2
, H2
, float16_mul
)
3363 RVVCALL(OPFVV2
, vfmul_vv_w
, OP_UUU_W
, H4
, H4
, H4
, float32_mul
)
3364 RVVCALL(OPFVV2
, vfmul_vv_d
, OP_UUU_D
, H8
, H8
, H8
, float64_mul
)
3365 GEN_VEXT_VV_ENV(vfmul_vv_h
, 2, 2, clearh
)
3366 GEN_VEXT_VV_ENV(vfmul_vv_w
, 4, 4, clearl
)
3367 GEN_VEXT_VV_ENV(vfmul_vv_d
, 8, 8, clearq
)
3368 RVVCALL(OPFVF2
, vfmul_vf_h
, OP_UUU_H
, H2
, H2
, float16_mul
)
3369 RVVCALL(OPFVF2
, vfmul_vf_w
, OP_UUU_W
, H4
, H4
, float32_mul
)
3370 RVVCALL(OPFVF2
, vfmul_vf_d
, OP_UUU_D
, H8
, H8
, float64_mul
)
3371 GEN_VEXT_VF(vfmul_vf_h
, 2, 2, clearh
)
3372 GEN_VEXT_VF(vfmul_vf_w
, 4, 4, clearl
)
3373 GEN_VEXT_VF(vfmul_vf_d
, 8, 8, clearq
)
3375 RVVCALL(OPFVV2
, vfdiv_vv_h
, OP_UUU_H
, H2
, H2
, H2
, float16_div
)
3376 RVVCALL(OPFVV2
, vfdiv_vv_w
, OP_UUU_W
, H4
, H4
, H4
, float32_div
)
3377 RVVCALL(OPFVV2
, vfdiv_vv_d
, OP_UUU_D
, H8
, H8
, H8
, float64_div
)
3378 GEN_VEXT_VV_ENV(vfdiv_vv_h
, 2, 2, clearh
)
3379 GEN_VEXT_VV_ENV(vfdiv_vv_w
, 4, 4, clearl
)
3380 GEN_VEXT_VV_ENV(vfdiv_vv_d
, 8, 8, clearq
)
3381 RVVCALL(OPFVF2
, vfdiv_vf_h
, OP_UUU_H
, H2
, H2
, float16_div
)
3382 RVVCALL(OPFVF2
, vfdiv_vf_w
, OP_UUU_W
, H4
, H4
, float32_div
)
3383 RVVCALL(OPFVF2
, vfdiv_vf_d
, OP_UUU_D
, H8
, H8
, float64_div
)
3384 GEN_VEXT_VF(vfdiv_vf_h
, 2, 2, clearh
)
3385 GEN_VEXT_VF(vfdiv_vf_w
, 4, 4, clearl
)
3386 GEN_VEXT_VF(vfdiv_vf_d
, 8, 8, clearq
)
3388 static uint16_t float16_rdiv(uint16_t a
, uint16_t b
, float_status
*s
)
3390 return float16_div(b
, a
, s
);
3393 static uint32_t float32_rdiv(uint32_t a
, uint32_t b
, float_status
*s
)
3395 return float32_div(b
, a
, s
);
3398 static uint64_t float64_rdiv(uint64_t a
, uint64_t b
, float_status
*s
)
3400 return float64_div(b
, a
, s
);
3403 RVVCALL(OPFVF2
, vfrdiv_vf_h
, OP_UUU_H
, H2
, H2
, float16_rdiv
)
3404 RVVCALL(OPFVF2
, vfrdiv_vf_w
, OP_UUU_W
, H4
, H4
, float32_rdiv
)
3405 RVVCALL(OPFVF2
, vfrdiv_vf_d
, OP_UUU_D
, H8
, H8
, float64_rdiv
)
3406 GEN_VEXT_VF(vfrdiv_vf_h
, 2, 2, clearh
)
3407 GEN_VEXT_VF(vfrdiv_vf_w
, 4, 4, clearl
)
3408 GEN_VEXT_VF(vfrdiv_vf_d
, 8, 8, clearq
)
3410 /* Vector Widening Floating-Point Multiply */
3411 static uint32_t vfwmul16(uint16_t a
, uint16_t b
, float_status
*s
)
3413 return float32_mul(float16_to_float32(a
, true, s
),
3414 float16_to_float32(b
, true, s
), s
);
3417 static uint64_t vfwmul32(uint32_t a
, uint32_t b
, float_status
*s
)
3419 return float64_mul(float32_to_float64(a
, s
),
3420 float32_to_float64(b
, s
), s
);
3423 RVVCALL(OPFVV2
, vfwmul_vv_h
, WOP_UUU_H
, H4
, H2
, H2
, vfwmul16
)
3424 RVVCALL(OPFVV2
, vfwmul_vv_w
, WOP_UUU_W
, H8
, H4
, H4
, vfwmul32
)
3425 GEN_VEXT_VV_ENV(vfwmul_vv_h
, 2, 4, clearl
)
3426 GEN_VEXT_VV_ENV(vfwmul_vv_w
, 4, 8, clearq
)
3427 RVVCALL(OPFVF2
, vfwmul_vf_h
, WOP_UUU_H
, H4
, H2
, vfwmul16
)
3428 RVVCALL(OPFVF2
, vfwmul_vf_w
, WOP_UUU_W
, H8
, H4
, vfwmul32
)
3429 GEN_VEXT_VF(vfwmul_vf_h
, 2, 4, clearl
)
3430 GEN_VEXT_VF(vfwmul_vf_w
, 4, 8, clearq
)
3432 /* Vector Single-Width Floating-Point Fused Multiply-Add Instructions */
3433 #define OPFVV3(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP) \
3434 static void do_##NAME(void *vd, void *vs1, void *vs2, int i, \
3435 CPURISCVState *env) \
3437 TX1 s1 = *((T1 *)vs1 + HS1(i)); \
3438 TX2 s2 = *((T2 *)vs2 + HS2(i)); \
3439 TD d = *((TD *)vd + HD(i)); \
3440 *((TD *)vd + HD(i)) = OP(s2, s1, d, &env->fp_status); \
3443 static uint16_t fmacc16(uint16_t a
, uint16_t b
, uint16_t d
, float_status
*s
)
3445 return float16_muladd(a
, b
, d
, 0, s
);
3448 static uint32_t fmacc32(uint32_t a
, uint32_t b
, uint32_t d
, float_status
*s
)
3450 return float32_muladd(a
, b
, d
, 0, s
);
3453 static uint64_t fmacc64(uint64_t a
, uint64_t b
, uint64_t d
, float_status
*s
)
3455 return float64_muladd(a
, b
, d
, 0, s
);
3458 RVVCALL(OPFVV3
, vfmacc_vv_h
, OP_UUU_H
, H2
, H2
, H2
, fmacc16
)
3459 RVVCALL(OPFVV3
, vfmacc_vv_w
, OP_UUU_W
, H4
, H4
, H4
, fmacc32
)
3460 RVVCALL(OPFVV3
, vfmacc_vv_d
, OP_UUU_D
, H8
, H8
, H8
, fmacc64
)
3461 GEN_VEXT_VV_ENV(vfmacc_vv_h
, 2, 2, clearh
)
3462 GEN_VEXT_VV_ENV(vfmacc_vv_w
, 4, 4, clearl
)
3463 GEN_VEXT_VV_ENV(vfmacc_vv_d
, 8, 8, clearq
)
3465 #define OPFVF3(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP) \
3466 static void do_##NAME(void *vd, uint64_t s1, void *vs2, int i, \
3467 CPURISCVState *env) \
3469 TX2 s2 = *((T2 *)vs2 + HS2(i)); \
3470 TD d = *((TD *)vd + HD(i)); \
3471 *((TD *)vd + HD(i)) = OP(s2, (TX1)(T1)s1, d, &env->fp_status);\
3474 RVVCALL(OPFVF3
, vfmacc_vf_h
, OP_UUU_H
, H2
, H2
, fmacc16
)
3475 RVVCALL(OPFVF3
, vfmacc_vf_w
, OP_UUU_W
, H4
, H4
, fmacc32
)
3476 RVVCALL(OPFVF3
, vfmacc_vf_d
, OP_UUU_D
, H8
, H8
, fmacc64
)
3477 GEN_VEXT_VF(vfmacc_vf_h
, 2, 2, clearh
)
3478 GEN_VEXT_VF(vfmacc_vf_w
, 4, 4, clearl
)
3479 GEN_VEXT_VF(vfmacc_vf_d
, 8, 8, clearq
)
3481 static uint16_t fnmacc16(uint16_t a
, uint16_t b
, uint16_t d
, float_status
*s
)
3483 return float16_muladd(a
, b
, d
,
3484 float_muladd_negate_c
| float_muladd_negate_product
, s
);
3487 static uint32_t fnmacc32(uint32_t a
, uint32_t b
, uint32_t d
, float_status
*s
)
3489 return float32_muladd(a
, b
, d
,
3490 float_muladd_negate_c
| float_muladd_negate_product
, s
);
3493 static uint64_t fnmacc64(uint64_t a
, uint64_t b
, uint64_t d
, float_status
*s
)
3495 return float64_muladd(a
, b
, d
,
3496 float_muladd_negate_c
| float_muladd_negate_product
, s
);
3499 RVVCALL(OPFVV3
, vfnmacc_vv_h
, OP_UUU_H
, H2
, H2
, H2
, fnmacc16
)
3500 RVVCALL(OPFVV3
, vfnmacc_vv_w
, OP_UUU_W
, H4
, H4
, H4
, fnmacc32
)
3501 RVVCALL(OPFVV3
, vfnmacc_vv_d
, OP_UUU_D
, H8
, H8
, H8
, fnmacc64
)
3502 GEN_VEXT_VV_ENV(vfnmacc_vv_h
, 2, 2, clearh
)
3503 GEN_VEXT_VV_ENV(vfnmacc_vv_w
, 4, 4, clearl
)
3504 GEN_VEXT_VV_ENV(vfnmacc_vv_d
, 8, 8, clearq
)
3505 RVVCALL(OPFVF3
, vfnmacc_vf_h
, OP_UUU_H
, H2
, H2
, fnmacc16
)
3506 RVVCALL(OPFVF3
, vfnmacc_vf_w
, OP_UUU_W
, H4
, H4
, fnmacc32
)
3507 RVVCALL(OPFVF3
, vfnmacc_vf_d
, OP_UUU_D
, H8
, H8
, fnmacc64
)
3508 GEN_VEXT_VF(vfnmacc_vf_h
, 2, 2, clearh
)
3509 GEN_VEXT_VF(vfnmacc_vf_w
, 4, 4, clearl
)
3510 GEN_VEXT_VF(vfnmacc_vf_d
, 8, 8, clearq
)
3512 static uint16_t fmsac16(uint16_t a
, uint16_t b
, uint16_t d
, float_status
*s
)
3514 return float16_muladd(a
, b
, d
, float_muladd_negate_c
, s
);
3517 static uint32_t fmsac32(uint32_t a
, uint32_t b
, uint32_t d
, float_status
*s
)
3519 return float32_muladd(a
, b
, d
, float_muladd_negate_c
, s
);
3522 static uint64_t fmsac64(uint64_t a
, uint64_t b
, uint64_t d
, float_status
*s
)
3524 return float64_muladd(a
, b
, d
, float_muladd_negate_c
, s
);
3527 RVVCALL(OPFVV3
, vfmsac_vv_h
, OP_UUU_H
, H2
, H2
, H2
, fmsac16
)
3528 RVVCALL(OPFVV3
, vfmsac_vv_w
, OP_UUU_W
, H4
, H4
, H4
, fmsac32
)
3529 RVVCALL(OPFVV3
, vfmsac_vv_d
, OP_UUU_D
, H8
, H8
, H8
, fmsac64
)
3530 GEN_VEXT_VV_ENV(vfmsac_vv_h
, 2, 2, clearh
)
3531 GEN_VEXT_VV_ENV(vfmsac_vv_w
, 4, 4, clearl
)
3532 GEN_VEXT_VV_ENV(vfmsac_vv_d
, 8, 8, clearq
)
3533 RVVCALL(OPFVF3
, vfmsac_vf_h
, OP_UUU_H
, H2
, H2
, fmsac16
)
3534 RVVCALL(OPFVF3
, vfmsac_vf_w
, OP_UUU_W
, H4
, H4
, fmsac32
)
3535 RVVCALL(OPFVF3
, vfmsac_vf_d
, OP_UUU_D
, H8
, H8
, fmsac64
)
3536 GEN_VEXT_VF(vfmsac_vf_h
, 2, 2, clearh
)
3537 GEN_VEXT_VF(vfmsac_vf_w
, 4, 4, clearl
)
3538 GEN_VEXT_VF(vfmsac_vf_d
, 8, 8, clearq
)
3540 static uint16_t fnmsac16(uint16_t a
, uint16_t b
, uint16_t d
, float_status
*s
)
3542 return float16_muladd(a
, b
, d
, float_muladd_negate_product
, s
);
3545 static uint32_t fnmsac32(uint32_t a
, uint32_t b
, uint32_t d
, float_status
*s
)
3547 return float32_muladd(a
, b
, d
, float_muladd_negate_product
, s
);
3550 static uint64_t fnmsac64(uint64_t a
, uint64_t b
, uint64_t d
, float_status
*s
)
3552 return float64_muladd(a
, b
, d
, float_muladd_negate_product
, s
);
3555 RVVCALL(OPFVV3
, vfnmsac_vv_h
, OP_UUU_H
, H2
, H2
, H2
, fnmsac16
)
3556 RVVCALL(OPFVV3
, vfnmsac_vv_w
, OP_UUU_W
, H4
, H4
, H4
, fnmsac32
)
3557 RVVCALL(OPFVV3
, vfnmsac_vv_d
, OP_UUU_D
, H8
, H8
, H8
, fnmsac64
)
3558 GEN_VEXT_VV_ENV(vfnmsac_vv_h
, 2, 2, clearh
)
3559 GEN_VEXT_VV_ENV(vfnmsac_vv_w
, 4, 4, clearl
)
3560 GEN_VEXT_VV_ENV(vfnmsac_vv_d
, 8, 8, clearq
)
3561 RVVCALL(OPFVF3
, vfnmsac_vf_h
, OP_UUU_H
, H2
, H2
, fnmsac16
)
3562 RVVCALL(OPFVF3
, vfnmsac_vf_w
, OP_UUU_W
, H4
, H4
, fnmsac32
)
3563 RVVCALL(OPFVF3
, vfnmsac_vf_d
, OP_UUU_D
, H8
, H8
, fnmsac64
)
3564 GEN_VEXT_VF(vfnmsac_vf_h
, 2, 2, clearh
)
3565 GEN_VEXT_VF(vfnmsac_vf_w
, 4, 4, clearl
)
3566 GEN_VEXT_VF(vfnmsac_vf_d
, 8, 8, clearq
)
3568 static uint16_t fmadd16(uint16_t a
, uint16_t b
, uint16_t d
, float_status
*s
)
3570 return float16_muladd(d
, b
, a
, 0, s
);
3573 static uint32_t fmadd32(uint32_t a
, uint32_t b
, uint32_t d
, float_status
*s
)
3575 return float32_muladd(d
, b
, a
, 0, s
);
3578 static uint64_t fmadd64(uint64_t a
, uint64_t b
, uint64_t d
, float_status
*s
)
3580 return float64_muladd(d
, b
, a
, 0, s
);
3583 RVVCALL(OPFVV3
, vfmadd_vv_h
, OP_UUU_H
, H2
, H2
, H2
, fmadd16
)
3584 RVVCALL(OPFVV3
, vfmadd_vv_w
, OP_UUU_W
, H4
, H4
, H4
, fmadd32
)
3585 RVVCALL(OPFVV3
, vfmadd_vv_d
, OP_UUU_D
, H8
, H8
, H8
, fmadd64
)
3586 GEN_VEXT_VV_ENV(vfmadd_vv_h
, 2, 2, clearh
)
3587 GEN_VEXT_VV_ENV(vfmadd_vv_w
, 4, 4, clearl
)
3588 GEN_VEXT_VV_ENV(vfmadd_vv_d
, 8, 8, clearq
)
3589 RVVCALL(OPFVF3
, vfmadd_vf_h
, OP_UUU_H
, H2
, H2
, fmadd16
)
3590 RVVCALL(OPFVF3
, vfmadd_vf_w
, OP_UUU_W
, H4
, H4
, fmadd32
)
3591 RVVCALL(OPFVF3
, vfmadd_vf_d
, OP_UUU_D
, H8
, H8
, fmadd64
)
3592 GEN_VEXT_VF(vfmadd_vf_h
, 2, 2, clearh
)
3593 GEN_VEXT_VF(vfmadd_vf_w
, 4, 4, clearl
)
3594 GEN_VEXT_VF(vfmadd_vf_d
, 8, 8, clearq
)
3596 static uint16_t fnmadd16(uint16_t a
, uint16_t b
, uint16_t d
, float_status
*s
)
3598 return float16_muladd(d
, b
, a
,
3599 float_muladd_negate_c
| float_muladd_negate_product
, s
);
3602 static uint32_t fnmadd32(uint32_t a
, uint32_t b
, uint32_t d
, float_status
*s
)
3604 return float32_muladd(d
, b
, a
,
3605 float_muladd_negate_c
| float_muladd_negate_product
, s
);
3608 static uint64_t fnmadd64(uint64_t a
, uint64_t b
, uint64_t d
, float_status
*s
)
3610 return float64_muladd(d
, b
, a
,
3611 float_muladd_negate_c
| float_muladd_negate_product
, s
);
3614 RVVCALL(OPFVV3
, vfnmadd_vv_h
, OP_UUU_H
, H2
, H2
, H2
, fnmadd16
)
3615 RVVCALL(OPFVV3
, vfnmadd_vv_w
, OP_UUU_W
, H4
, H4
, H4
, fnmadd32
)
3616 RVVCALL(OPFVV3
, vfnmadd_vv_d
, OP_UUU_D
, H8
, H8
, H8
, fnmadd64
)
3617 GEN_VEXT_VV_ENV(vfnmadd_vv_h
, 2, 2, clearh
)
3618 GEN_VEXT_VV_ENV(vfnmadd_vv_w
, 4, 4, clearl
)
3619 GEN_VEXT_VV_ENV(vfnmadd_vv_d
, 8, 8, clearq
)
3620 RVVCALL(OPFVF3
, vfnmadd_vf_h
, OP_UUU_H
, H2
, H2
, fnmadd16
)
3621 RVVCALL(OPFVF3
, vfnmadd_vf_w
, OP_UUU_W
, H4
, H4
, fnmadd32
)
3622 RVVCALL(OPFVF3
, vfnmadd_vf_d
, OP_UUU_D
, H8
, H8
, fnmadd64
)
3623 GEN_VEXT_VF(vfnmadd_vf_h
, 2, 2, clearh
)
3624 GEN_VEXT_VF(vfnmadd_vf_w
, 4, 4, clearl
)
3625 GEN_VEXT_VF(vfnmadd_vf_d
, 8, 8, clearq
)
3627 static uint16_t fmsub16(uint16_t a
, uint16_t b
, uint16_t d
, float_status
*s
)
3629 return float16_muladd(d
, b
, a
, float_muladd_negate_c
, s
);
3632 static uint32_t fmsub32(uint32_t a
, uint32_t b
, uint32_t d
, float_status
*s
)
3634 return float32_muladd(d
, b
, a
, float_muladd_negate_c
, s
);
3637 static uint64_t fmsub64(uint64_t a
, uint64_t b
, uint64_t d
, float_status
*s
)
3639 return float64_muladd(d
, b
, a
, float_muladd_negate_c
, s
);
3642 RVVCALL(OPFVV3
, vfmsub_vv_h
, OP_UUU_H
, H2
, H2
, H2
, fmsub16
)
3643 RVVCALL(OPFVV3
, vfmsub_vv_w
, OP_UUU_W
, H4
, H4
, H4
, fmsub32
)
3644 RVVCALL(OPFVV3
, vfmsub_vv_d
, OP_UUU_D
, H8
, H8
, H8
, fmsub64
)
3645 GEN_VEXT_VV_ENV(vfmsub_vv_h
, 2, 2, clearh
)
3646 GEN_VEXT_VV_ENV(vfmsub_vv_w
, 4, 4, clearl
)
3647 GEN_VEXT_VV_ENV(vfmsub_vv_d
, 8, 8, clearq
)
3648 RVVCALL(OPFVF3
, vfmsub_vf_h
, OP_UUU_H
, H2
, H2
, fmsub16
)
3649 RVVCALL(OPFVF3
, vfmsub_vf_w
, OP_UUU_W
, H4
, H4
, fmsub32
)
3650 RVVCALL(OPFVF3
, vfmsub_vf_d
, OP_UUU_D
, H8
, H8
, fmsub64
)
3651 GEN_VEXT_VF(vfmsub_vf_h
, 2, 2, clearh
)
3652 GEN_VEXT_VF(vfmsub_vf_w
, 4, 4, clearl
)
3653 GEN_VEXT_VF(vfmsub_vf_d
, 8, 8, clearq
)
3655 static uint16_t fnmsub16(uint16_t a
, uint16_t b
, uint16_t d
, float_status
*s
)
3657 return float16_muladd(d
, b
, a
, float_muladd_negate_product
, s
);
3660 static uint32_t fnmsub32(uint32_t a
, uint32_t b
, uint32_t d
, float_status
*s
)
3662 return float32_muladd(d
, b
, a
, float_muladd_negate_product
, s
);
3665 static uint64_t fnmsub64(uint64_t a
, uint64_t b
, uint64_t d
, float_status
*s
)
3667 return float64_muladd(d
, b
, a
, float_muladd_negate_product
, s
);
3670 RVVCALL(OPFVV3
, vfnmsub_vv_h
, OP_UUU_H
, H2
, H2
, H2
, fnmsub16
)
3671 RVVCALL(OPFVV3
, vfnmsub_vv_w
, OP_UUU_W
, H4
, H4
, H4
, fnmsub32
)
3672 RVVCALL(OPFVV3
, vfnmsub_vv_d
, OP_UUU_D
, H8
, H8
, H8
, fnmsub64
)
3673 GEN_VEXT_VV_ENV(vfnmsub_vv_h
, 2, 2, clearh
)
3674 GEN_VEXT_VV_ENV(vfnmsub_vv_w
, 4, 4, clearl
)
3675 GEN_VEXT_VV_ENV(vfnmsub_vv_d
, 8, 8, clearq
)
3676 RVVCALL(OPFVF3
, vfnmsub_vf_h
, OP_UUU_H
, H2
, H2
, fnmsub16
)
3677 RVVCALL(OPFVF3
, vfnmsub_vf_w
, OP_UUU_W
, H4
, H4
, fnmsub32
)
3678 RVVCALL(OPFVF3
, vfnmsub_vf_d
, OP_UUU_D
, H8
, H8
, fnmsub64
)
3679 GEN_VEXT_VF(vfnmsub_vf_h
, 2, 2, clearh
)
3680 GEN_VEXT_VF(vfnmsub_vf_w
, 4, 4, clearl
)
3681 GEN_VEXT_VF(vfnmsub_vf_d
, 8, 8, clearq
)
3683 /* Vector Widening Floating-Point Fused Multiply-Add Instructions */
3684 static uint32_t fwmacc16(uint16_t a
, uint16_t b
, uint32_t d
, float_status
*s
)
3686 return float32_muladd(float16_to_float32(a
, true, s
),
3687 float16_to_float32(b
, true, s
), d
, 0, s
);
3690 static uint64_t fwmacc32(uint32_t a
, uint32_t b
, uint64_t d
, float_status
*s
)
3692 return float64_muladd(float32_to_float64(a
, s
),
3693 float32_to_float64(b
, s
), d
, 0, s
);
3696 RVVCALL(OPFVV3
, vfwmacc_vv_h
, WOP_UUU_H
, H4
, H2
, H2
, fwmacc16
)
3697 RVVCALL(OPFVV3
, vfwmacc_vv_w
, WOP_UUU_W
, H8
, H4
, H4
, fwmacc32
)
3698 GEN_VEXT_VV_ENV(vfwmacc_vv_h
, 2, 4, clearl
)
3699 GEN_VEXT_VV_ENV(vfwmacc_vv_w
, 4, 8, clearq
)
3700 RVVCALL(OPFVF3
, vfwmacc_vf_h
, WOP_UUU_H
, H4
, H2
, fwmacc16
)
3701 RVVCALL(OPFVF3
, vfwmacc_vf_w
, WOP_UUU_W
, H8
, H4
, fwmacc32
)
3702 GEN_VEXT_VF(vfwmacc_vf_h
, 2, 4, clearl
)
3703 GEN_VEXT_VF(vfwmacc_vf_w
, 4, 8, clearq
)
3705 static uint32_t fwnmacc16(uint16_t a
, uint16_t b
, uint32_t d
, float_status
*s
)
3707 return float32_muladd(float16_to_float32(a
, true, s
),
3708 float16_to_float32(b
, true, s
), d
,
3709 float_muladd_negate_c
| float_muladd_negate_product
, s
);
3712 static uint64_t fwnmacc32(uint32_t a
, uint32_t b
, uint64_t d
, float_status
*s
)
3714 return float64_muladd(float32_to_float64(a
, s
),
3715 float32_to_float64(b
, s
), d
,
3716 float_muladd_negate_c
| float_muladd_negate_product
, s
);
3719 RVVCALL(OPFVV3
, vfwnmacc_vv_h
, WOP_UUU_H
, H4
, H2
, H2
, fwnmacc16
)
3720 RVVCALL(OPFVV3
, vfwnmacc_vv_w
, WOP_UUU_W
, H8
, H4
, H4
, fwnmacc32
)
3721 GEN_VEXT_VV_ENV(vfwnmacc_vv_h
, 2, 4, clearl
)
3722 GEN_VEXT_VV_ENV(vfwnmacc_vv_w
, 4, 8, clearq
)
3723 RVVCALL(OPFVF3
, vfwnmacc_vf_h
, WOP_UUU_H
, H4
, H2
, fwnmacc16
)
3724 RVVCALL(OPFVF3
, vfwnmacc_vf_w
, WOP_UUU_W
, H8
, H4
, fwnmacc32
)
3725 GEN_VEXT_VF(vfwnmacc_vf_h
, 2, 4, clearl
)
3726 GEN_VEXT_VF(vfwnmacc_vf_w
, 4, 8, clearq
)
3728 static uint32_t fwmsac16(uint16_t a
, uint16_t b
, uint32_t d
, float_status
*s
)
3730 return float32_muladd(float16_to_float32(a
, true, s
),
3731 float16_to_float32(b
, true, s
), d
,
3732 float_muladd_negate_c
, s
);
3735 static uint64_t fwmsac32(uint32_t a
, uint32_t b
, uint64_t d
, float_status
*s
)
3737 return float64_muladd(float32_to_float64(a
, s
),
3738 float32_to_float64(b
, s
), d
,
3739 float_muladd_negate_c
, s
);
3742 RVVCALL(OPFVV3
, vfwmsac_vv_h
, WOP_UUU_H
, H4
, H2
, H2
, fwmsac16
)
3743 RVVCALL(OPFVV3
, vfwmsac_vv_w
, WOP_UUU_W
, H8
, H4
, H4
, fwmsac32
)
3744 GEN_VEXT_VV_ENV(vfwmsac_vv_h
, 2, 4, clearl
)
3745 GEN_VEXT_VV_ENV(vfwmsac_vv_w
, 4, 8, clearq
)
3746 RVVCALL(OPFVF3
, vfwmsac_vf_h
, WOP_UUU_H
, H4
, H2
, fwmsac16
)
3747 RVVCALL(OPFVF3
, vfwmsac_vf_w
, WOP_UUU_W
, H8
, H4
, fwmsac32
)
3748 GEN_VEXT_VF(vfwmsac_vf_h
, 2, 4, clearl
)
3749 GEN_VEXT_VF(vfwmsac_vf_w
, 4, 8, clearq
)
3751 static uint32_t fwnmsac16(uint16_t a
, uint16_t b
, uint32_t d
, float_status
*s
)
3753 return float32_muladd(float16_to_float32(a
, true, s
),
3754 float16_to_float32(b
, true, s
), d
,
3755 float_muladd_negate_product
, s
);
3758 static uint64_t fwnmsac32(uint32_t a
, uint32_t b
, uint64_t d
, float_status
*s
)
3760 return float64_muladd(float32_to_float64(a
, s
),
3761 float32_to_float64(b
, s
), d
,
3762 float_muladd_negate_product
, s
);
3765 RVVCALL(OPFVV3
, vfwnmsac_vv_h
, WOP_UUU_H
, H4
, H2
, H2
, fwnmsac16
)
3766 RVVCALL(OPFVV3
, vfwnmsac_vv_w
, WOP_UUU_W
, H8
, H4
, H4
, fwnmsac32
)
3767 GEN_VEXT_VV_ENV(vfwnmsac_vv_h
, 2, 4, clearl
)
3768 GEN_VEXT_VV_ENV(vfwnmsac_vv_w
, 4, 8, clearq
)
3769 RVVCALL(OPFVF3
, vfwnmsac_vf_h
, WOP_UUU_H
, H4
, H2
, fwnmsac16
)
3770 RVVCALL(OPFVF3
, vfwnmsac_vf_w
, WOP_UUU_W
, H8
, H4
, fwnmsac32
)
3771 GEN_VEXT_VF(vfwnmsac_vf_h
, 2, 4, clearl
)
3772 GEN_VEXT_VF(vfwnmsac_vf_w
, 4, 8, clearq
)
3774 /* Vector Floating-Point Square-Root Instruction */
3776 #define OP_UU_H uint16_t, uint16_t, uint16_t
3777 #define OP_UU_W uint32_t, uint32_t, uint32_t
3778 #define OP_UU_D uint64_t, uint64_t, uint64_t
3780 #define OPFVV1(NAME, TD, T2, TX2, HD, HS2, OP) \
3781 static void do_##NAME(void *vd, void *vs2, int i, \
3782 CPURISCVState *env) \
3784 TX2 s2 = *((T2 *)vs2 + HS2(i)); \
3785 *((TD *)vd + HD(i)) = OP(s2, &env->fp_status); \
3788 #define GEN_VEXT_V_ENV(NAME, ESZ, DSZ, CLEAR_FN) \
3789 void HELPER(NAME)(void *vd, void *v0, void *vs2, \
3790 CPURISCVState *env, uint32_t desc) \
3792 uint32_t vlmax = vext_maxsz(desc) / ESZ; \
3793 uint32_t mlen = vext_mlen(desc); \
3794 uint32_t vm = vext_vm(desc); \
3795 uint32_t vl = env->vl; \
3801 for (i = 0; i < vl; i++) { \
3802 if (!vm && !vext_elem_mask(v0, mlen, i)) { \
3805 do_##NAME(vd, vs2, i, env); \
3807 CLEAR_FN(vd, vl, vl * DSZ, vlmax * DSZ); \
3810 RVVCALL(OPFVV1
, vfsqrt_v_h
, OP_UU_H
, H2
, H2
, float16_sqrt
)
3811 RVVCALL(OPFVV1
, vfsqrt_v_w
, OP_UU_W
, H4
, H4
, float32_sqrt
)
3812 RVVCALL(OPFVV1
, vfsqrt_v_d
, OP_UU_D
, H8
, H8
, float64_sqrt
)
3813 GEN_VEXT_V_ENV(vfsqrt_v_h
, 2, 2, clearh
)
3814 GEN_VEXT_V_ENV(vfsqrt_v_w
, 4, 4, clearl
)
3815 GEN_VEXT_V_ENV(vfsqrt_v_d
, 8, 8, clearq
)
3817 /* Vector Floating-Point MIN/MAX Instructions */
3818 RVVCALL(OPFVV2
, vfmin_vv_h
, OP_UUU_H
, H2
, H2
, H2
, float16_minnum
)
3819 RVVCALL(OPFVV2
, vfmin_vv_w
, OP_UUU_W
, H4
, H4
, H4
, float32_minnum
)
3820 RVVCALL(OPFVV2
, vfmin_vv_d
, OP_UUU_D
, H8
, H8
, H8
, float64_minnum
)
3821 GEN_VEXT_VV_ENV(vfmin_vv_h
, 2, 2, clearh
)
3822 GEN_VEXT_VV_ENV(vfmin_vv_w
, 4, 4, clearl
)
3823 GEN_VEXT_VV_ENV(vfmin_vv_d
, 8, 8, clearq
)
3824 RVVCALL(OPFVF2
, vfmin_vf_h
, OP_UUU_H
, H2
, H2
, float16_minnum
)
3825 RVVCALL(OPFVF2
, vfmin_vf_w
, OP_UUU_W
, H4
, H4
, float32_minnum
)
3826 RVVCALL(OPFVF2
, vfmin_vf_d
, OP_UUU_D
, H8
, H8
, float64_minnum
)
3827 GEN_VEXT_VF(vfmin_vf_h
, 2, 2, clearh
)
3828 GEN_VEXT_VF(vfmin_vf_w
, 4, 4, clearl
)
3829 GEN_VEXT_VF(vfmin_vf_d
, 8, 8, clearq
)
3831 RVVCALL(OPFVV2
, vfmax_vv_h
, OP_UUU_H
, H2
, H2
, H2
, float16_maxnum
)
3832 RVVCALL(OPFVV2
, vfmax_vv_w
, OP_UUU_W
, H4
, H4
, H4
, float32_maxnum
)
3833 RVVCALL(OPFVV2
, vfmax_vv_d
, OP_UUU_D
, H8
, H8
, H8
, float64_maxnum
)
3834 GEN_VEXT_VV_ENV(vfmax_vv_h
, 2, 2, clearh
)
3835 GEN_VEXT_VV_ENV(vfmax_vv_w
, 4, 4, clearl
)
3836 GEN_VEXT_VV_ENV(vfmax_vv_d
, 8, 8, clearq
)
3837 RVVCALL(OPFVF2
, vfmax_vf_h
, OP_UUU_H
, H2
, H2
, float16_maxnum
)
3838 RVVCALL(OPFVF2
, vfmax_vf_w
, OP_UUU_W
, H4
, H4
, float32_maxnum
)
3839 RVVCALL(OPFVF2
, vfmax_vf_d
, OP_UUU_D
, H8
, H8
, float64_maxnum
)
3840 GEN_VEXT_VF(vfmax_vf_h
, 2, 2, clearh
)
3841 GEN_VEXT_VF(vfmax_vf_w
, 4, 4, clearl
)
3842 GEN_VEXT_VF(vfmax_vf_d
, 8, 8, clearq
)
3844 /* Vector Floating-Point Sign-Injection Instructions */
3845 static uint16_t fsgnj16(uint16_t a
, uint16_t b
, float_status
*s
)
3847 return deposit64(b
, 0, 15, a
);
3850 static uint32_t fsgnj32(uint32_t a
, uint32_t b
, float_status
*s
)
3852 return deposit64(b
, 0, 31, a
);
3855 static uint64_t fsgnj64(uint64_t a
, uint64_t b
, float_status
*s
)
3857 return deposit64(b
, 0, 63, a
);
3860 RVVCALL(OPFVV2
, vfsgnj_vv_h
, OP_UUU_H
, H2
, H2
, H2
, fsgnj16
)
3861 RVVCALL(OPFVV2
, vfsgnj_vv_w
, OP_UUU_W
, H4
, H4
, H4
, fsgnj32
)
3862 RVVCALL(OPFVV2
, vfsgnj_vv_d
, OP_UUU_D
, H8
, H8
, H8
, fsgnj64
)
3863 GEN_VEXT_VV_ENV(vfsgnj_vv_h
, 2, 2, clearh
)
3864 GEN_VEXT_VV_ENV(vfsgnj_vv_w
, 4, 4, clearl
)
3865 GEN_VEXT_VV_ENV(vfsgnj_vv_d
, 8, 8, clearq
)
3866 RVVCALL(OPFVF2
, vfsgnj_vf_h
, OP_UUU_H
, H2
, H2
, fsgnj16
)
3867 RVVCALL(OPFVF2
, vfsgnj_vf_w
, OP_UUU_W
, H4
, H4
, fsgnj32
)
3868 RVVCALL(OPFVF2
, vfsgnj_vf_d
, OP_UUU_D
, H8
, H8
, fsgnj64
)
3869 GEN_VEXT_VF(vfsgnj_vf_h
, 2, 2, clearh
)
3870 GEN_VEXT_VF(vfsgnj_vf_w
, 4, 4, clearl
)
3871 GEN_VEXT_VF(vfsgnj_vf_d
, 8, 8, clearq
)
3873 static uint16_t fsgnjn16(uint16_t a
, uint16_t b
, float_status
*s
)
3875 return deposit64(~b
, 0, 15, a
);
3878 static uint32_t fsgnjn32(uint32_t a
, uint32_t b
, float_status
*s
)
3880 return deposit64(~b
, 0, 31, a
);
3883 static uint64_t fsgnjn64(uint64_t a
, uint64_t b
, float_status
*s
)
3885 return deposit64(~b
, 0, 63, a
);
3888 RVVCALL(OPFVV2
, vfsgnjn_vv_h
, OP_UUU_H
, H2
, H2
, H2
, fsgnjn16
)
3889 RVVCALL(OPFVV2
, vfsgnjn_vv_w
, OP_UUU_W
, H4
, H4
, H4
, fsgnjn32
)
3890 RVVCALL(OPFVV2
, vfsgnjn_vv_d
, OP_UUU_D
, H8
, H8
, H8
, fsgnjn64
)
3891 GEN_VEXT_VV_ENV(vfsgnjn_vv_h
, 2, 2, clearh
)
3892 GEN_VEXT_VV_ENV(vfsgnjn_vv_w
, 4, 4, clearl
)
3893 GEN_VEXT_VV_ENV(vfsgnjn_vv_d
, 8, 8, clearq
)
3894 RVVCALL(OPFVF2
, vfsgnjn_vf_h
, OP_UUU_H
, H2
, H2
, fsgnjn16
)
3895 RVVCALL(OPFVF2
, vfsgnjn_vf_w
, OP_UUU_W
, H4
, H4
, fsgnjn32
)
3896 RVVCALL(OPFVF2
, vfsgnjn_vf_d
, OP_UUU_D
, H8
, H8
, fsgnjn64
)
3897 GEN_VEXT_VF(vfsgnjn_vf_h
, 2, 2, clearh
)
3898 GEN_VEXT_VF(vfsgnjn_vf_w
, 4, 4, clearl
)
3899 GEN_VEXT_VF(vfsgnjn_vf_d
, 8, 8, clearq
)
3901 static uint16_t fsgnjx16(uint16_t a
, uint16_t b
, float_status
*s
)
3903 return deposit64(b
^ a
, 0, 15, a
);
3906 static uint32_t fsgnjx32(uint32_t a
, uint32_t b
, float_status
*s
)
3908 return deposit64(b
^ a
, 0, 31, a
);
3911 static uint64_t fsgnjx64(uint64_t a
, uint64_t b
, float_status
*s
)
3913 return deposit64(b
^ a
, 0, 63, a
);
3916 RVVCALL(OPFVV2
, vfsgnjx_vv_h
, OP_UUU_H
, H2
, H2
, H2
, fsgnjx16
)
3917 RVVCALL(OPFVV2
, vfsgnjx_vv_w
, OP_UUU_W
, H4
, H4
, H4
, fsgnjx32
)
3918 RVVCALL(OPFVV2
, vfsgnjx_vv_d
, OP_UUU_D
, H8
, H8
, H8
, fsgnjx64
)
3919 GEN_VEXT_VV_ENV(vfsgnjx_vv_h
, 2, 2, clearh
)
3920 GEN_VEXT_VV_ENV(vfsgnjx_vv_w
, 4, 4, clearl
)
3921 GEN_VEXT_VV_ENV(vfsgnjx_vv_d
, 8, 8, clearq
)
3922 RVVCALL(OPFVF2
, vfsgnjx_vf_h
, OP_UUU_H
, H2
, H2
, fsgnjx16
)
3923 RVVCALL(OPFVF2
, vfsgnjx_vf_w
, OP_UUU_W
, H4
, H4
, fsgnjx32
)
3924 RVVCALL(OPFVF2
, vfsgnjx_vf_d
, OP_UUU_D
, H8
, H8
, fsgnjx64
)
3925 GEN_VEXT_VF(vfsgnjx_vf_h
, 2, 2, clearh
)
3926 GEN_VEXT_VF(vfsgnjx_vf_w
, 4, 4, clearl
)
3927 GEN_VEXT_VF(vfsgnjx_vf_d
, 8, 8, clearq
)
3929 /* Vector Floating-Point Compare Instructions */
3930 #define GEN_VEXT_CMP_VV_ENV(NAME, ETYPE, H, DO_OP) \
3931 void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2, \
3932 CPURISCVState *env, uint32_t desc) \
3934 uint32_t mlen = vext_mlen(desc); \
3935 uint32_t vm = vext_vm(desc); \
3936 uint32_t vl = env->vl; \
3937 uint32_t vlmax = vext_maxsz(desc) / sizeof(ETYPE); \
3940 for (i = 0; i < vl; i++) { \
3941 ETYPE s1 = *((ETYPE *)vs1 + H(i)); \
3942 ETYPE s2 = *((ETYPE *)vs2 + H(i)); \
3943 if (!vm && !vext_elem_mask(v0, mlen, i)) { \
3946 vext_set_elem_mask(vd, mlen, i, \
3947 DO_OP(s2, s1, &env->fp_status)); \
3949 for (; i < vlmax; i++) { \
3950 vext_set_elem_mask(vd, mlen, i, 0); \
3954 GEN_VEXT_CMP_VV_ENV(vmfeq_vv_h
, uint16_t, H2
, float16_eq_quiet
)
3955 GEN_VEXT_CMP_VV_ENV(vmfeq_vv_w
, uint32_t, H4
, float32_eq_quiet
)
3956 GEN_VEXT_CMP_VV_ENV(vmfeq_vv_d
, uint64_t, H8
, float64_eq_quiet
)
3958 #define GEN_VEXT_CMP_VF(NAME, ETYPE, H, DO_OP) \
3959 void HELPER(NAME)(void *vd, void *v0, uint64_t s1, void *vs2, \
3960 CPURISCVState *env, uint32_t desc) \
3962 uint32_t mlen = vext_mlen(desc); \
3963 uint32_t vm = vext_vm(desc); \
3964 uint32_t vl = env->vl; \
3965 uint32_t vlmax = vext_maxsz(desc) / sizeof(ETYPE); \
3968 for (i = 0; i < vl; i++) { \
3969 ETYPE s2 = *((ETYPE *)vs2 + H(i)); \
3970 if (!vm && !vext_elem_mask(v0, mlen, i)) { \
3973 vext_set_elem_mask(vd, mlen, i, \
3974 DO_OP(s2, (ETYPE)s1, &env->fp_status)); \
3976 for (; i < vlmax; i++) { \
3977 vext_set_elem_mask(vd, mlen, i, 0); \
3981 GEN_VEXT_CMP_VF(vmfeq_vf_h
, uint16_t, H2
, float16_eq_quiet
)
3982 GEN_VEXT_CMP_VF(vmfeq_vf_w
, uint32_t, H4
, float32_eq_quiet
)
3983 GEN_VEXT_CMP_VF(vmfeq_vf_d
, uint64_t, H8
, float64_eq_quiet
)
3985 static bool vmfne16(uint16_t a
, uint16_t b
, float_status
*s
)
3987 FloatRelation compare
= float16_compare_quiet(a
, b
, s
);
3988 return compare
!= float_relation_equal
;
3991 static bool vmfne32(uint32_t a
, uint32_t b
, float_status
*s
)
3993 FloatRelation compare
= float32_compare_quiet(a
, b
, s
);
3994 return compare
!= float_relation_equal
;
3997 static bool vmfne64(uint64_t a
, uint64_t b
, float_status
*s
)
3999 FloatRelation compare
= float64_compare_quiet(a
, b
, s
);
4000 return compare
!= float_relation_equal
;
4003 GEN_VEXT_CMP_VV_ENV(vmfne_vv_h
, uint16_t, H2
, vmfne16
)
4004 GEN_VEXT_CMP_VV_ENV(vmfne_vv_w
, uint32_t, H4
, vmfne32
)
4005 GEN_VEXT_CMP_VV_ENV(vmfne_vv_d
, uint64_t, H8
, vmfne64
)
4006 GEN_VEXT_CMP_VF(vmfne_vf_h
, uint16_t, H2
, vmfne16
)
4007 GEN_VEXT_CMP_VF(vmfne_vf_w
, uint32_t, H4
, vmfne32
)
4008 GEN_VEXT_CMP_VF(vmfne_vf_d
, uint64_t, H8
, vmfne64
)
4010 GEN_VEXT_CMP_VV_ENV(vmflt_vv_h
, uint16_t, H2
, float16_lt
)
4011 GEN_VEXT_CMP_VV_ENV(vmflt_vv_w
, uint32_t, H4
, float32_lt
)
4012 GEN_VEXT_CMP_VV_ENV(vmflt_vv_d
, uint64_t, H8
, float64_lt
)
4013 GEN_VEXT_CMP_VF(vmflt_vf_h
, uint16_t, H2
, float16_lt
)
4014 GEN_VEXT_CMP_VF(vmflt_vf_w
, uint32_t, H4
, float32_lt
)
4015 GEN_VEXT_CMP_VF(vmflt_vf_d
, uint64_t, H8
, float64_lt
)
4017 GEN_VEXT_CMP_VV_ENV(vmfle_vv_h
, uint16_t, H2
, float16_le
)
4018 GEN_VEXT_CMP_VV_ENV(vmfle_vv_w
, uint32_t, H4
, float32_le
)
4019 GEN_VEXT_CMP_VV_ENV(vmfle_vv_d
, uint64_t, H8
, float64_le
)
4020 GEN_VEXT_CMP_VF(vmfle_vf_h
, uint16_t, H2
, float16_le
)
4021 GEN_VEXT_CMP_VF(vmfle_vf_w
, uint32_t, H4
, float32_le
)
4022 GEN_VEXT_CMP_VF(vmfle_vf_d
, uint64_t, H8
, float64_le
)
4024 static bool vmfgt16(uint16_t a
, uint16_t b
, float_status
*s
)
4026 FloatRelation compare
= float16_compare(a
, b
, s
);
4027 return compare
== float_relation_greater
;
4030 static bool vmfgt32(uint32_t a
, uint32_t b
, float_status
*s
)
4032 FloatRelation compare
= float32_compare(a
, b
, s
);
4033 return compare
== float_relation_greater
;
4036 static bool vmfgt64(uint64_t a
, uint64_t b
, float_status
*s
)
4038 FloatRelation compare
= float64_compare(a
, b
, s
);
4039 return compare
== float_relation_greater
;
4042 GEN_VEXT_CMP_VF(vmfgt_vf_h
, uint16_t, H2
, vmfgt16
)
4043 GEN_VEXT_CMP_VF(vmfgt_vf_w
, uint32_t, H4
, vmfgt32
)
4044 GEN_VEXT_CMP_VF(vmfgt_vf_d
, uint64_t, H8
, vmfgt64
)
4046 static bool vmfge16(uint16_t a
, uint16_t b
, float_status
*s
)
4048 FloatRelation compare
= float16_compare(a
, b
, s
);
4049 return compare
== float_relation_greater
||
4050 compare
== float_relation_equal
;
4053 static bool vmfge32(uint32_t a
, uint32_t b
, float_status
*s
)
4055 FloatRelation compare
= float32_compare(a
, b
, s
);
4056 return compare
== float_relation_greater
||
4057 compare
== float_relation_equal
;
4060 static bool vmfge64(uint64_t a
, uint64_t b
, float_status
*s
)
4062 FloatRelation compare
= float64_compare(a
, b
, s
);
4063 return compare
== float_relation_greater
||
4064 compare
== float_relation_equal
;
4067 GEN_VEXT_CMP_VF(vmfge_vf_h
, uint16_t, H2
, vmfge16
)
4068 GEN_VEXT_CMP_VF(vmfge_vf_w
, uint32_t, H4
, vmfge32
)
4069 GEN_VEXT_CMP_VF(vmfge_vf_d
, uint64_t, H8
, vmfge64
)
4071 GEN_VEXT_CMP_VV_ENV(vmford_vv_h
, uint16_t, H2
, !float16_unordered_quiet
)
4072 GEN_VEXT_CMP_VV_ENV(vmford_vv_w
, uint32_t, H4
, !float32_unordered_quiet
)
4073 GEN_VEXT_CMP_VV_ENV(vmford_vv_d
, uint64_t, H8
, !float64_unordered_quiet
)
4074 GEN_VEXT_CMP_VF(vmford_vf_h
, uint16_t, H2
, !float16_unordered_quiet
)
4075 GEN_VEXT_CMP_VF(vmford_vf_w
, uint32_t, H4
, !float32_unordered_quiet
)
4076 GEN_VEXT_CMP_VF(vmford_vf_d
, uint64_t, H8
, !float64_unordered_quiet
)
4078 /* Vector Floating-Point Classify Instruction */
4079 #define OPIVV1(NAME, TD, T2, TX2, HD, HS2, OP) \
4080 static void do_##NAME(void *vd, void *vs2, int i) \
4082 TX2 s2 = *((T2 *)vs2 + HS2(i)); \
4083 *((TD *)vd + HD(i)) = OP(s2); \
4086 #define GEN_VEXT_V(NAME, ESZ, DSZ, CLEAR_FN) \
4087 void HELPER(NAME)(void *vd, void *v0, void *vs2, \
4088 CPURISCVState *env, uint32_t desc) \
4090 uint32_t vlmax = vext_maxsz(desc) / ESZ; \
4091 uint32_t mlen = vext_mlen(desc); \
4092 uint32_t vm = vext_vm(desc); \
4093 uint32_t vl = env->vl; \
4096 for (i = 0; i < vl; i++) { \
4097 if (!vm && !vext_elem_mask(v0, mlen, i)) { \
4100 do_##NAME(vd, vs2, i); \
4102 CLEAR_FN(vd, vl, vl * DSZ, vlmax * DSZ); \
4105 target_ulong
fclass_h(uint64_t frs1
)
4108 bool sign
= float16_is_neg(f
);
4110 if (float16_is_infinity(f
)) {
4111 return sign
? 1 << 0 : 1 << 7;
4112 } else if (float16_is_zero(f
)) {
4113 return sign
? 1 << 3 : 1 << 4;
4114 } else if (float16_is_zero_or_denormal(f
)) {
4115 return sign
? 1 << 2 : 1 << 5;
4116 } else if (float16_is_any_nan(f
)) {
4117 float_status s
= { }; /* for snan_bit_is_one */
4118 return float16_is_quiet_nan(f
, &s
) ? 1 << 9 : 1 << 8;
4120 return sign
? 1 << 1 : 1 << 6;
4124 target_ulong
fclass_s(uint64_t frs1
)
4127 bool sign
= float32_is_neg(f
);
4129 if (float32_is_infinity(f
)) {
4130 return sign
? 1 << 0 : 1 << 7;
4131 } else if (float32_is_zero(f
)) {
4132 return sign
? 1 << 3 : 1 << 4;
4133 } else if (float32_is_zero_or_denormal(f
)) {
4134 return sign
? 1 << 2 : 1 << 5;
4135 } else if (float32_is_any_nan(f
)) {
4136 float_status s
= { }; /* for snan_bit_is_one */
4137 return float32_is_quiet_nan(f
, &s
) ? 1 << 9 : 1 << 8;
4139 return sign
? 1 << 1 : 1 << 6;
4143 target_ulong
fclass_d(uint64_t frs1
)
4146 bool sign
= float64_is_neg(f
);
4148 if (float64_is_infinity(f
)) {
4149 return sign
? 1 << 0 : 1 << 7;
4150 } else if (float64_is_zero(f
)) {
4151 return sign
? 1 << 3 : 1 << 4;
4152 } else if (float64_is_zero_or_denormal(f
)) {
4153 return sign
? 1 << 2 : 1 << 5;
4154 } else if (float64_is_any_nan(f
)) {
4155 float_status s
= { }; /* for snan_bit_is_one */
4156 return float64_is_quiet_nan(f
, &s
) ? 1 << 9 : 1 << 8;
4158 return sign
? 1 << 1 : 1 << 6;
4162 RVVCALL(OPIVV1
, vfclass_v_h
, OP_UU_H
, H2
, H2
, fclass_h
)
4163 RVVCALL(OPIVV1
, vfclass_v_w
, OP_UU_W
, H4
, H4
, fclass_s
)
4164 RVVCALL(OPIVV1
, vfclass_v_d
, OP_UU_D
, H8
, H8
, fclass_d
)
4165 GEN_VEXT_V(vfclass_v_h
, 2, 2, clearh
)
4166 GEN_VEXT_V(vfclass_v_w
, 4, 4, clearl
)
4167 GEN_VEXT_V(vfclass_v_d
, 8, 8, clearq
)
4169 /* Vector Floating-Point Merge Instruction */
4170 #define GEN_VFMERGE_VF(NAME, ETYPE, H, CLEAR_FN) \
4171 void HELPER(NAME)(void *vd, void *v0, uint64_t s1, void *vs2, \
4172 CPURISCVState *env, uint32_t desc) \
4174 uint32_t mlen = vext_mlen(desc); \
4175 uint32_t vm = vext_vm(desc); \
4176 uint32_t vl = env->vl; \
4177 uint32_t esz = sizeof(ETYPE); \
4178 uint32_t vlmax = vext_maxsz(desc) / esz; \
4181 for (i = 0; i < vl; i++) { \
4182 ETYPE s2 = *((ETYPE *)vs2 + H(i)); \
4183 *((ETYPE *)vd + H(i)) \
4184 = (!vm && !vext_elem_mask(v0, mlen, i) ? s2 : s1); \
4186 CLEAR_FN(vd, vl, vl * esz, vlmax * esz); \
4189 GEN_VFMERGE_VF(vfmerge_vfm_h
, int16_t, H2
, clearh
)
4190 GEN_VFMERGE_VF(vfmerge_vfm_w
, int32_t, H4
, clearl
)
4191 GEN_VFMERGE_VF(vfmerge_vfm_d
, int64_t, H8
, clearq
)
4193 /* Single-Width Floating-Point/Integer Type-Convert Instructions */
4194 /* vfcvt.xu.f.v vd, vs2, vm # Convert float to unsigned integer. */
4195 RVVCALL(OPFVV1
, vfcvt_xu_f_v_h
, OP_UU_H
, H2
, H2
, float16_to_uint16
)
4196 RVVCALL(OPFVV1
, vfcvt_xu_f_v_w
, OP_UU_W
, H4
, H4
, float32_to_uint32
)
4197 RVVCALL(OPFVV1
, vfcvt_xu_f_v_d
, OP_UU_D
, H8
, H8
, float64_to_uint64
)
4198 GEN_VEXT_V_ENV(vfcvt_xu_f_v_h
, 2, 2, clearh
)
4199 GEN_VEXT_V_ENV(vfcvt_xu_f_v_w
, 4, 4, clearl
)
4200 GEN_VEXT_V_ENV(vfcvt_xu_f_v_d
, 8, 8, clearq
)
4202 /* vfcvt.x.f.v vd, vs2, vm # Convert float to signed integer. */
4203 RVVCALL(OPFVV1
, vfcvt_x_f_v_h
, OP_UU_H
, H2
, H2
, float16_to_int16
)
4204 RVVCALL(OPFVV1
, vfcvt_x_f_v_w
, OP_UU_W
, H4
, H4
, float32_to_int32
)
4205 RVVCALL(OPFVV1
, vfcvt_x_f_v_d
, OP_UU_D
, H8
, H8
, float64_to_int64
)
4206 GEN_VEXT_V_ENV(vfcvt_x_f_v_h
, 2, 2, clearh
)
4207 GEN_VEXT_V_ENV(vfcvt_x_f_v_w
, 4, 4, clearl
)
4208 GEN_VEXT_V_ENV(vfcvt_x_f_v_d
, 8, 8, clearq
)
4210 /* vfcvt.f.xu.v vd, vs2, vm # Convert unsigned integer to float. */
4211 RVVCALL(OPFVV1
, vfcvt_f_xu_v_h
, OP_UU_H
, H2
, H2
, uint16_to_float16
)
4212 RVVCALL(OPFVV1
, vfcvt_f_xu_v_w
, OP_UU_W
, H4
, H4
, uint32_to_float32
)
4213 RVVCALL(OPFVV1
, vfcvt_f_xu_v_d
, OP_UU_D
, H8
, H8
, uint64_to_float64
)
4214 GEN_VEXT_V_ENV(vfcvt_f_xu_v_h
, 2, 2, clearh
)
4215 GEN_VEXT_V_ENV(vfcvt_f_xu_v_w
, 4, 4, clearl
)
4216 GEN_VEXT_V_ENV(vfcvt_f_xu_v_d
, 8, 8, clearq
)
4218 /* vfcvt.f.x.v vd, vs2, vm # Convert integer to float. */
4219 RVVCALL(OPFVV1
, vfcvt_f_x_v_h
, OP_UU_H
, H2
, H2
, int16_to_float16
)
4220 RVVCALL(OPFVV1
, vfcvt_f_x_v_w
, OP_UU_W
, H4
, H4
, int32_to_float32
)
4221 RVVCALL(OPFVV1
, vfcvt_f_x_v_d
, OP_UU_D
, H8
, H8
, int64_to_float64
)
4222 GEN_VEXT_V_ENV(vfcvt_f_x_v_h
, 2, 2, clearh
)
4223 GEN_VEXT_V_ENV(vfcvt_f_x_v_w
, 4, 4, clearl
)
4224 GEN_VEXT_V_ENV(vfcvt_f_x_v_d
, 8, 8, clearq
)
4226 /* Widening Floating-Point/Integer Type-Convert Instructions */
4228 #define WOP_UU_H uint32_t, uint16_t, uint16_t
4229 #define WOP_UU_W uint64_t, uint32_t, uint32_t
4230 /* vfwcvt.xu.f.v vd, vs2, vm # Convert float to double-width unsigned integer.*/
4231 RVVCALL(OPFVV1
, vfwcvt_xu_f_v_h
, WOP_UU_H
, H4
, H2
, float16_to_uint32
)
4232 RVVCALL(OPFVV1
, vfwcvt_xu_f_v_w
, WOP_UU_W
, H8
, H4
, float32_to_uint64
)
4233 GEN_VEXT_V_ENV(vfwcvt_xu_f_v_h
, 2, 4, clearl
)
4234 GEN_VEXT_V_ENV(vfwcvt_xu_f_v_w
, 4, 8, clearq
)
4236 /* vfwcvt.x.f.v vd, vs2, vm # Convert float to double-width signed integer. */
4237 RVVCALL(OPFVV1
, vfwcvt_x_f_v_h
, WOP_UU_H
, H4
, H2
, float16_to_int32
)
4238 RVVCALL(OPFVV1
, vfwcvt_x_f_v_w
, WOP_UU_W
, H8
, H4
, float32_to_int64
)
4239 GEN_VEXT_V_ENV(vfwcvt_x_f_v_h
, 2, 4, clearl
)
4240 GEN_VEXT_V_ENV(vfwcvt_x_f_v_w
, 4, 8, clearq
)
4242 /* vfwcvt.f.xu.v vd, vs2, vm # Convert unsigned integer to double-width float */
4243 RVVCALL(OPFVV1
, vfwcvt_f_xu_v_h
, WOP_UU_H
, H4
, H2
, uint16_to_float32
)
4244 RVVCALL(OPFVV1
, vfwcvt_f_xu_v_w
, WOP_UU_W
, H8
, H4
, uint32_to_float64
)
4245 GEN_VEXT_V_ENV(vfwcvt_f_xu_v_h
, 2, 4, clearl
)
4246 GEN_VEXT_V_ENV(vfwcvt_f_xu_v_w
, 4, 8, clearq
)
4248 /* vfwcvt.f.x.v vd, vs2, vm # Convert integer to double-width float. */
4249 RVVCALL(OPFVV1
, vfwcvt_f_x_v_h
, WOP_UU_H
, H4
, H2
, int16_to_float32
)
4250 RVVCALL(OPFVV1
, vfwcvt_f_x_v_w
, WOP_UU_W
, H8
, H4
, int32_to_float64
)
4251 GEN_VEXT_V_ENV(vfwcvt_f_x_v_h
, 2, 4, clearl
)
4252 GEN_VEXT_V_ENV(vfwcvt_f_x_v_w
, 4, 8, clearq
)
4255 * vfwcvt.f.f.v vd, vs2, vm #
4256 * Convert single-width float to double-width float.
4258 static uint32_t vfwcvtffv16(uint16_t a
, float_status
*s
)
4260 return float16_to_float32(a
, true, s
);
4263 RVVCALL(OPFVV1
, vfwcvt_f_f_v_h
, WOP_UU_H
, H4
, H2
, vfwcvtffv16
)
4264 RVVCALL(OPFVV1
, vfwcvt_f_f_v_w
, WOP_UU_W
, H8
, H4
, float32_to_float64
)
4265 GEN_VEXT_V_ENV(vfwcvt_f_f_v_h
, 2, 4, clearl
)
4266 GEN_VEXT_V_ENV(vfwcvt_f_f_v_w
, 4, 8, clearq
)
4268 /* Narrowing Floating-Point/Integer Type-Convert Instructions */
4270 #define NOP_UU_H uint16_t, uint32_t, uint32_t
4271 #define NOP_UU_W uint32_t, uint64_t, uint64_t
4272 /* vfncvt.xu.f.v vd, vs2, vm # Convert float to unsigned integer. */
4273 RVVCALL(OPFVV1
, vfncvt_xu_f_v_h
, NOP_UU_H
, H2
, H4
, float32_to_uint16
)
4274 RVVCALL(OPFVV1
, vfncvt_xu_f_v_w
, NOP_UU_W
, H4
, H8
, float64_to_uint32
)
4275 GEN_VEXT_V_ENV(vfncvt_xu_f_v_h
, 2, 2, clearh
)
4276 GEN_VEXT_V_ENV(vfncvt_xu_f_v_w
, 4, 4, clearl
)
4278 /* vfncvt.x.f.v vd, vs2, vm # Convert double-width float to signed integer. */
4279 RVVCALL(OPFVV1
, vfncvt_x_f_v_h
, NOP_UU_H
, H2
, H4
, float32_to_int16
)
4280 RVVCALL(OPFVV1
, vfncvt_x_f_v_w
, NOP_UU_W
, H4
, H8
, float64_to_int32
)
4281 GEN_VEXT_V_ENV(vfncvt_x_f_v_h
, 2, 2, clearh
)
4282 GEN_VEXT_V_ENV(vfncvt_x_f_v_w
, 4, 4, clearl
)
4284 /* vfncvt.f.xu.v vd, vs2, vm # Convert double-width unsigned integer to float */
4285 RVVCALL(OPFVV1
, vfncvt_f_xu_v_h
, NOP_UU_H
, H2
, H4
, uint32_to_float16
)
4286 RVVCALL(OPFVV1
, vfncvt_f_xu_v_w
, NOP_UU_W
, H4
, H8
, uint64_to_float32
)
4287 GEN_VEXT_V_ENV(vfncvt_f_xu_v_h
, 2, 2, clearh
)
4288 GEN_VEXT_V_ENV(vfncvt_f_xu_v_w
, 4, 4, clearl
)
4290 /* vfncvt.f.x.v vd, vs2, vm # Convert double-width integer to float. */
4291 RVVCALL(OPFVV1
, vfncvt_f_x_v_h
, NOP_UU_H
, H2
, H4
, int32_to_float16
)
4292 RVVCALL(OPFVV1
, vfncvt_f_x_v_w
, NOP_UU_W
, H4
, H8
, int64_to_float32
)
4293 GEN_VEXT_V_ENV(vfncvt_f_x_v_h
, 2, 2, clearh
)
4294 GEN_VEXT_V_ENV(vfncvt_f_x_v_w
, 4, 4, clearl
)
4296 /* vfncvt.f.f.v vd, vs2, vm # Convert double float to single-width float. */
4297 static uint16_t vfncvtffv16(uint32_t a
, float_status
*s
)
4299 return float32_to_float16(a
, true, s
);
4302 RVVCALL(OPFVV1
, vfncvt_f_f_v_h
, NOP_UU_H
, H2
, H4
, vfncvtffv16
)
4303 RVVCALL(OPFVV1
, vfncvt_f_f_v_w
, NOP_UU_W
, H4
, H8
, float64_to_float32
)
4304 GEN_VEXT_V_ENV(vfncvt_f_f_v_h
, 2, 2, clearh
)
4305 GEN_VEXT_V_ENV(vfncvt_f_f_v_w
, 4, 4, clearl
)
4308 *** Vector Reduction Operations
4310 /* Vector Single-Width Integer Reduction Instructions */
4311 #define GEN_VEXT_RED(NAME, TD, TS2, HD, HS2, OP, CLEAR_FN)\
4312 void HELPER(NAME)(void *vd, void *v0, void *vs1, \
4313 void *vs2, CPURISCVState *env, uint32_t desc) \
4315 uint32_t mlen = vext_mlen(desc); \
4316 uint32_t vm = vext_vm(desc); \
4317 uint32_t vl = env->vl; \
4319 uint32_t tot = env_archcpu(env)->cfg.vlen / 8; \
4320 TD s1 = *((TD *)vs1 + HD(0)); \
4322 for (i = 0; i < vl; i++) { \
4323 TS2 s2 = *((TS2 *)vs2 + HS2(i)); \
4324 if (!vm && !vext_elem_mask(v0, mlen, i)) { \
4327 s1 = OP(s1, (TD)s2); \
4329 *((TD *)vd + HD(0)) = s1; \
4330 CLEAR_FN(vd, 1, sizeof(TD), tot); \
4333 /* vd[0] = sum(vs1[0], vs2[*]) */
4334 GEN_VEXT_RED(vredsum_vs_b
, int8_t, int8_t, H1
, H1
, DO_ADD
, clearb
)
4335 GEN_VEXT_RED(vredsum_vs_h
, int16_t, int16_t, H2
, H2
, DO_ADD
, clearh
)
4336 GEN_VEXT_RED(vredsum_vs_w
, int32_t, int32_t, H4
, H4
, DO_ADD
, clearl
)
4337 GEN_VEXT_RED(vredsum_vs_d
, int64_t, int64_t, H8
, H8
, DO_ADD
, clearq
)
4339 /* vd[0] = maxu(vs1[0], vs2[*]) */
4340 GEN_VEXT_RED(vredmaxu_vs_b
, uint8_t, uint8_t, H1
, H1
, DO_MAX
, clearb
)
4341 GEN_VEXT_RED(vredmaxu_vs_h
, uint16_t, uint16_t, H2
, H2
, DO_MAX
, clearh
)
4342 GEN_VEXT_RED(vredmaxu_vs_w
, uint32_t, uint32_t, H4
, H4
, DO_MAX
, clearl
)
4343 GEN_VEXT_RED(vredmaxu_vs_d
, uint64_t, uint64_t, H8
, H8
, DO_MAX
, clearq
)
4345 /* vd[0] = max(vs1[0], vs2[*]) */
4346 GEN_VEXT_RED(vredmax_vs_b
, int8_t, int8_t, H1
, H1
, DO_MAX
, clearb
)
4347 GEN_VEXT_RED(vredmax_vs_h
, int16_t, int16_t, H2
, H2
, DO_MAX
, clearh
)
4348 GEN_VEXT_RED(vredmax_vs_w
, int32_t, int32_t, H4
, H4
, DO_MAX
, clearl
)
4349 GEN_VEXT_RED(vredmax_vs_d
, int64_t, int64_t, H8
, H8
, DO_MAX
, clearq
)
4351 /* vd[0] = minu(vs1[0], vs2[*]) */
4352 GEN_VEXT_RED(vredminu_vs_b
, uint8_t, uint8_t, H1
, H1
, DO_MIN
, clearb
)
4353 GEN_VEXT_RED(vredminu_vs_h
, uint16_t, uint16_t, H2
, H2
, DO_MIN
, clearh
)
4354 GEN_VEXT_RED(vredminu_vs_w
, uint32_t, uint32_t, H4
, H4
, DO_MIN
, clearl
)
4355 GEN_VEXT_RED(vredminu_vs_d
, uint64_t, uint64_t, H8
, H8
, DO_MIN
, clearq
)
4357 /* vd[0] = min(vs1[0], vs2[*]) */
4358 GEN_VEXT_RED(vredmin_vs_b
, int8_t, int8_t, H1
, H1
, DO_MIN
, clearb
)
4359 GEN_VEXT_RED(vredmin_vs_h
, int16_t, int16_t, H2
, H2
, DO_MIN
, clearh
)
4360 GEN_VEXT_RED(vredmin_vs_w
, int32_t, int32_t, H4
, H4
, DO_MIN
, clearl
)
4361 GEN_VEXT_RED(vredmin_vs_d
, int64_t, int64_t, H8
, H8
, DO_MIN
, clearq
)
4363 /* vd[0] = and(vs1[0], vs2[*]) */
4364 GEN_VEXT_RED(vredand_vs_b
, int8_t, int8_t, H1
, H1
, DO_AND
, clearb
)
4365 GEN_VEXT_RED(vredand_vs_h
, int16_t, int16_t, H2
, H2
, DO_AND
, clearh
)
4366 GEN_VEXT_RED(vredand_vs_w
, int32_t, int32_t, H4
, H4
, DO_AND
, clearl
)
4367 GEN_VEXT_RED(vredand_vs_d
, int64_t, int64_t, H8
, H8
, DO_AND
, clearq
)
4369 /* vd[0] = or(vs1[0], vs2[*]) */
4370 GEN_VEXT_RED(vredor_vs_b
, int8_t, int8_t, H1
, H1
, DO_OR
, clearb
)
4371 GEN_VEXT_RED(vredor_vs_h
, int16_t, int16_t, H2
, H2
, DO_OR
, clearh
)
4372 GEN_VEXT_RED(vredor_vs_w
, int32_t, int32_t, H4
, H4
, DO_OR
, clearl
)
4373 GEN_VEXT_RED(vredor_vs_d
, int64_t, int64_t, H8
, H8
, DO_OR
, clearq
)
4375 /* vd[0] = xor(vs1[0], vs2[*]) */
4376 GEN_VEXT_RED(vredxor_vs_b
, int8_t, int8_t, H1
, H1
, DO_XOR
, clearb
)
4377 GEN_VEXT_RED(vredxor_vs_h
, int16_t, int16_t, H2
, H2
, DO_XOR
, clearh
)
4378 GEN_VEXT_RED(vredxor_vs_w
, int32_t, int32_t, H4
, H4
, DO_XOR
, clearl
)
4379 GEN_VEXT_RED(vredxor_vs_d
, int64_t, int64_t, H8
, H8
, DO_XOR
, clearq
)
4381 /* Vector Widening Integer Reduction Instructions */
4382 /* signed sum reduction into double-width accumulator */
4383 GEN_VEXT_RED(vwredsum_vs_b
, int16_t, int8_t, H2
, H1
, DO_ADD
, clearh
)
4384 GEN_VEXT_RED(vwredsum_vs_h
, int32_t, int16_t, H4
, H2
, DO_ADD
, clearl
)
4385 GEN_VEXT_RED(vwredsum_vs_w
, int64_t, int32_t, H8
, H4
, DO_ADD
, clearq
)
4387 /* Unsigned sum reduction into double-width accumulator */
4388 GEN_VEXT_RED(vwredsumu_vs_b
, uint16_t, uint8_t, H2
, H1
, DO_ADD
, clearh
)
4389 GEN_VEXT_RED(vwredsumu_vs_h
, uint32_t, uint16_t, H4
, H2
, DO_ADD
, clearl
)
4390 GEN_VEXT_RED(vwredsumu_vs_w
, uint64_t, uint32_t, H8
, H4
, DO_ADD
, clearq
)
4392 /* Vector Single-Width Floating-Point Reduction Instructions */
4393 #define GEN_VEXT_FRED(NAME, TD, TS2, HD, HS2, OP, CLEAR_FN)\
4394 void HELPER(NAME)(void *vd, void *v0, void *vs1, \
4395 void *vs2, CPURISCVState *env, \
4398 uint32_t mlen = vext_mlen(desc); \
4399 uint32_t vm = vext_vm(desc); \
4400 uint32_t vl = env->vl; \
4402 uint32_t tot = env_archcpu(env)->cfg.vlen / 8; \
4403 TD s1 = *((TD *)vs1 + HD(0)); \
4405 for (i = 0; i < vl; i++) { \
4406 TS2 s2 = *((TS2 *)vs2 + HS2(i)); \
4407 if (!vm && !vext_elem_mask(v0, mlen, i)) { \
4410 s1 = OP(s1, (TD)s2, &env->fp_status); \
4412 *((TD *)vd + HD(0)) = s1; \
4413 CLEAR_FN(vd, 1, sizeof(TD), tot); \
4417 GEN_VEXT_FRED(vfredsum_vs_h
, uint16_t, uint16_t, H2
, H2
, float16_add
, clearh
)
4418 GEN_VEXT_FRED(vfredsum_vs_w
, uint32_t, uint32_t, H4
, H4
, float32_add
, clearl
)
4419 GEN_VEXT_FRED(vfredsum_vs_d
, uint64_t, uint64_t, H8
, H8
, float64_add
, clearq
)
4422 GEN_VEXT_FRED(vfredmax_vs_h
, uint16_t, uint16_t, H2
, H2
, float16_maxnum
, clearh
)
4423 GEN_VEXT_FRED(vfredmax_vs_w
, uint32_t, uint32_t, H4
, H4
, float32_maxnum
, clearl
)
4424 GEN_VEXT_FRED(vfredmax_vs_d
, uint64_t, uint64_t, H8
, H8
, float64_maxnum
, clearq
)
4427 GEN_VEXT_FRED(vfredmin_vs_h
, uint16_t, uint16_t, H2
, H2
, float16_minnum
, clearh
)
4428 GEN_VEXT_FRED(vfredmin_vs_w
, uint32_t, uint32_t, H4
, H4
, float32_minnum
, clearl
)
4429 GEN_VEXT_FRED(vfredmin_vs_d
, uint64_t, uint64_t, H8
, H8
, float64_minnum
, clearq
)
4431 /* Vector Widening Floating-Point Reduction Instructions */
4432 /* Unordered reduce 2*SEW = 2*SEW + sum(promote(SEW)) */
4433 void HELPER(vfwredsum_vs_h
)(void *vd
, void *v0
, void *vs1
,
4434 void *vs2
, CPURISCVState
*env
, uint32_t desc
)
4436 uint32_t mlen
= vext_mlen(desc
);
4437 uint32_t vm
= vext_vm(desc
);
4438 uint32_t vl
= env
->vl
;
4440 uint32_t tot
= env_archcpu(env
)->cfg
.vlen
/ 8;
4441 uint32_t s1
= *((uint32_t *)vs1
+ H4(0));
4443 for (i
= 0; i
< vl
; i
++) {
4444 uint16_t s2
= *((uint16_t *)vs2
+ H2(i
));
4445 if (!vm
&& !vext_elem_mask(v0
, mlen
, i
)) {
4448 s1
= float32_add(s1
, float16_to_float32(s2
, true, &env
->fp_status
),
4451 *((uint32_t *)vd
+ H4(0)) = s1
;
4452 clearl(vd
, 1, sizeof(uint32_t), tot
);
4455 void HELPER(vfwredsum_vs_w
)(void *vd
, void *v0
, void *vs1
,
4456 void *vs2
, CPURISCVState
*env
, uint32_t desc
)
4458 uint32_t mlen
= vext_mlen(desc
);
4459 uint32_t vm
= vext_vm(desc
);
4460 uint32_t vl
= env
->vl
;
4462 uint32_t tot
= env_archcpu(env
)->cfg
.vlen
/ 8;
4463 uint64_t s1
= *((uint64_t *)vs1
);
4465 for (i
= 0; i
< vl
; i
++) {
4466 uint32_t s2
= *((uint32_t *)vs2
+ H4(i
));
4467 if (!vm
&& !vext_elem_mask(v0
, mlen
, i
)) {
4470 s1
= float64_add(s1
, float32_to_float64(s2
, &env
->fp_status
),
4473 *((uint64_t *)vd
) = s1
;
4474 clearq(vd
, 1, sizeof(uint64_t), tot
);
4478 *** Vector Mask Operations
4480 /* Vector Mask-Register Logical Instructions */
4481 #define GEN_VEXT_MASK_VV(NAME, OP) \
4482 void HELPER(NAME)(void *vd, void *v0, void *vs1, \
4483 void *vs2, CPURISCVState *env, \
4486 uint32_t mlen = vext_mlen(desc); \
4487 uint32_t vlmax = env_archcpu(env)->cfg.vlen / mlen; \
4488 uint32_t vl = env->vl; \
4492 for (i = 0; i < vl; i++) { \
4493 a = vext_elem_mask(vs1, mlen, i); \
4494 b = vext_elem_mask(vs2, mlen, i); \
4495 vext_set_elem_mask(vd, mlen, i, OP(b, a)); \
4497 for (; i < vlmax; i++) { \
4498 vext_set_elem_mask(vd, mlen, i, 0); \
4502 #define DO_NAND(N, M) (!(N & M))
4503 #define DO_ANDNOT(N, M) (N & !M)
4504 #define DO_NOR(N, M) (!(N | M))
4505 #define DO_ORNOT(N, M) (N | !M)
4506 #define DO_XNOR(N, M) (!(N ^ M))
4508 GEN_VEXT_MASK_VV(vmand_mm
, DO_AND
)
4509 GEN_VEXT_MASK_VV(vmnand_mm
, DO_NAND
)
4510 GEN_VEXT_MASK_VV(vmandnot_mm
, DO_ANDNOT
)
4511 GEN_VEXT_MASK_VV(vmxor_mm
, DO_XOR
)
4512 GEN_VEXT_MASK_VV(vmor_mm
, DO_OR
)
4513 GEN_VEXT_MASK_VV(vmnor_mm
, DO_NOR
)
4514 GEN_VEXT_MASK_VV(vmornot_mm
, DO_ORNOT
)
4515 GEN_VEXT_MASK_VV(vmxnor_mm
, DO_XNOR
)
4517 /* Vector mask population count vmpopc */
4518 target_ulong
HELPER(vmpopc_m
)(void *v0
, void *vs2
, CPURISCVState
*env
,
4521 target_ulong cnt
= 0;
4522 uint32_t mlen
= vext_mlen(desc
);
4523 uint32_t vm
= vext_vm(desc
);
4524 uint32_t vl
= env
->vl
;
4527 for (i
= 0; i
< vl
; i
++) {
4528 if (vm
|| vext_elem_mask(v0
, mlen
, i
)) {
4529 if (vext_elem_mask(vs2
, mlen
, i
)) {
4537 /* vmfirst find-first-set mask bit*/
4538 target_ulong
HELPER(vmfirst_m
)(void *v0
, void *vs2
, CPURISCVState
*env
,
4541 uint32_t mlen
= vext_mlen(desc
);
4542 uint32_t vm
= vext_vm(desc
);
4543 uint32_t vl
= env
->vl
;
4546 for (i
= 0; i
< vl
; i
++) {
4547 if (vm
|| vext_elem_mask(v0
, mlen
, i
)) {
4548 if (vext_elem_mask(vs2
, mlen
, i
)) {
4556 enum set_mask_type
{
4562 static void vmsetm(void *vd
, void *v0
, void *vs2
, CPURISCVState
*env
,
4563 uint32_t desc
, enum set_mask_type type
)
4565 uint32_t mlen
= vext_mlen(desc
);
4566 uint32_t vlmax
= env_archcpu(env
)->cfg
.vlen
/ mlen
;
4567 uint32_t vm
= vext_vm(desc
);
4568 uint32_t vl
= env
->vl
;
4570 bool first_mask_bit
= false;
4572 for (i
= 0; i
< vl
; i
++) {
4573 if (!vm
&& !vext_elem_mask(v0
, mlen
, i
)) {
4576 /* write a zero to all following active elements */
4577 if (first_mask_bit
) {
4578 vext_set_elem_mask(vd
, mlen
, i
, 0);
4581 if (vext_elem_mask(vs2
, mlen
, i
)) {
4582 first_mask_bit
= true;
4583 if (type
== BEFORE_FIRST
) {
4584 vext_set_elem_mask(vd
, mlen
, i
, 0);
4586 vext_set_elem_mask(vd
, mlen
, i
, 1);
4589 if (type
== ONLY_FIRST
) {
4590 vext_set_elem_mask(vd
, mlen
, i
, 0);
4592 vext_set_elem_mask(vd
, mlen
, i
, 1);
4596 for (; i
< vlmax
; i
++) {
4597 vext_set_elem_mask(vd
, mlen
, i
, 0);
4601 void HELPER(vmsbf_m
)(void *vd
, void *v0
, void *vs2
, CPURISCVState
*env
,
4604 vmsetm(vd
, v0
, vs2
, env
, desc
, BEFORE_FIRST
);
4607 void HELPER(vmsif_m
)(void *vd
, void *v0
, void *vs2
, CPURISCVState
*env
,
4610 vmsetm(vd
, v0
, vs2
, env
, desc
, INCLUDE_FIRST
);
4613 void HELPER(vmsof_m
)(void *vd
, void *v0
, void *vs2
, CPURISCVState
*env
,
4616 vmsetm(vd
, v0
, vs2
, env
, desc
, ONLY_FIRST
);
4619 /* Vector Iota Instruction */
4620 #define GEN_VEXT_VIOTA_M(NAME, ETYPE, H, CLEAR_FN) \
4621 void HELPER(NAME)(void *vd, void *v0, void *vs2, CPURISCVState *env, \
4624 uint32_t mlen = vext_mlen(desc); \
4625 uint32_t vlmax = env_archcpu(env)->cfg.vlen / mlen; \
4626 uint32_t vm = vext_vm(desc); \
4627 uint32_t vl = env->vl; \
4631 for (i = 0; i < vl; i++) { \
4632 if (!vm && !vext_elem_mask(v0, mlen, i)) { \
4635 *((ETYPE *)vd + H(i)) = sum; \
4636 if (vext_elem_mask(vs2, mlen, i)) { \
4640 CLEAR_FN(vd, vl, vl * sizeof(ETYPE), vlmax * sizeof(ETYPE)); \
4643 GEN_VEXT_VIOTA_M(viota_m_b
, uint8_t, H1
, clearb
)
4644 GEN_VEXT_VIOTA_M(viota_m_h
, uint16_t, H2
, clearh
)
4645 GEN_VEXT_VIOTA_M(viota_m_w
, uint32_t, H4
, clearl
)
4646 GEN_VEXT_VIOTA_M(viota_m_d
, uint64_t, H8
, clearq
)
4648 /* Vector Element Index Instruction */
4649 #define GEN_VEXT_VID_V(NAME, ETYPE, H, CLEAR_FN) \
4650 void HELPER(NAME)(void *vd, void *v0, CPURISCVState *env, uint32_t desc) \
4652 uint32_t mlen = vext_mlen(desc); \
4653 uint32_t vlmax = env_archcpu(env)->cfg.vlen / mlen; \
4654 uint32_t vm = vext_vm(desc); \
4655 uint32_t vl = env->vl; \
4658 for (i = 0; i < vl; i++) { \
4659 if (!vm && !vext_elem_mask(v0, mlen, i)) { \
4662 *((ETYPE *)vd + H(i)) = i; \
4664 CLEAR_FN(vd, vl, vl * sizeof(ETYPE), vlmax * sizeof(ETYPE)); \
4667 GEN_VEXT_VID_V(vid_v_b
, uint8_t, H1
, clearb
)
4668 GEN_VEXT_VID_V(vid_v_h
, uint16_t, H2
, clearh
)
4669 GEN_VEXT_VID_V(vid_v_w
, uint32_t, H4
, clearl
)
4670 GEN_VEXT_VID_V(vid_v_d
, uint64_t, H8
, clearq
)
4673 *** Vector Permutation Instructions
4676 /* Vector Slide Instructions */
4677 #define GEN_VEXT_VSLIDEUP_VX(NAME, ETYPE, H, CLEAR_FN) \
4678 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2, \
4679 CPURISCVState *env, uint32_t desc) \
4681 uint32_t mlen = vext_mlen(desc); \
4682 uint32_t vlmax = env_archcpu(env)->cfg.vlen / mlen; \
4683 uint32_t vm = vext_vm(desc); \
4684 uint32_t vl = env->vl; \
4685 target_ulong offset = s1, i; \
4687 for (i = offset; i < vl; i++) { \
4688 if (!vm && !vext_elem_mask(v0, mlen, i)) { \
4691 *((ETYPE *)vd + H(i)) = *((ETYPE *)vs2 + H(i - offset)); \
4693 CLEAR_FN(vd, vl, vl * sizeof(ETYPE), vlmax * sizeof(ETYPE)); \
4696 /* vslideup.vx vd, vs2, rs1, vm # vd[i+rs1] = vs2[i] */
4697 GEN_VEXT_VSLIDEUP_VX(vslideup_vx_b
, uint8_t, H1
, clearb
)
4698 GEN_VEXT_VSLIDEUP_VX(vslideup_vx_h
, uint16_t, H2
, clearh
)
4699 GEN_VEXT_VSLIDEUP_VX(vslideup_vx_w
, uint32_t, H4
, clearl
)
4700 GEN_VEXT_VSLIDEUP_VX(vslideup_vx_d
, uint64_t, H8
, clearq
)
4702 #define GEN_VEXT_VSLIDEDOWN_VX(NAME, ETYPE, H, CLEAR_FN) \
4703 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2, \
4704 CPURISCVState *env, uint32_t desc) \
4706 uint32_t mlen = vext_mlen(desc); \
4707 uint32_t vlmax = env_archcpu(env)->cfg.vlen / mlen; \
4708 uint32_t vm = vext_vm(desc); \
4709 uint32_t vl = env->vl; \
4710 target_ulong offset = s1, i; \
4712 for (i = 0; i < vl; ++i) { \
4713 target_ulong j = i + offset; \
4714 if (!vm && !vext_elem_mask(v0, mlen, i)) { \
4717 *((ETYPE *)vd + H(i)) = j >= vlmax ? 0 : *((ETYPE *)vs2 + H(j)); \
4719 CLEAR_FN(vd, vl, vl * sizeof(ETYPE), vlmax * sizeof(ETYPE)); \
4722 /* vslidedown.vx vd, vs2, rs1, vm # vd[i] = vs2[i+rs1] */
4723 GEN_VEXT_VSLIDEDOWN_VX(vslidedown_vx_b
, uint8_t, H1
, clearb
)
4724 GEN_VEXT_VSLIDEDOWN_VX(vslidedown_vx_h
, uint16_t, H2
, clearh
)
4725 GEN_VEXT_VSLIDEDOWN_VX(vslidedown_vx_w
, uint32_t, H4
, clearl
)
4726 GEN_VEXT_VSLIDEDOWN_VX(vslidedown_vx_d
, uint64_t, H8
, clearq
)
4728 #define GEN_VEXT_VSLIDE1UP_VX(NAME, ETYPE, H, CLEAR_FN) \
4729 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2, \
4730 CPURISCVState *env, uint32_t desc) \
4732 uint32_t mlen = vext_mlen(desc); \
4733 uint32_t vlmax = env_archcpu(env)->cfg.vlen / mlen; \
4734 uint32_t vm = vext_vm(desc); \
4735 uint32_t vl = env->vl; \
4738 for (i = 0; i < vl; i++) { \
4739 if (!vm && !vext_elem_mask(v0, mlen, i)) { \
4743 *((ETYPE *)vd + H(i)) = s1; \
4745 *((ETYPE *)vd + H(i)) = *((ETYPE *)vs2 + H(i - 1)); \
4748 CLEAR_FN(vd, vl, vl * sizeof(ETYPE), vlmax * sizeof(ETYPE)); \
4751 /* vslide1up.vx vd, vs2, rs1, vm # vd[0]=x[rs1], vd[i+1] = vs2[i] */
4752 GEN_VEXT_VSLIDE1UP_VX(vslide1up_vx_b
, uint8_t, H1
, clearb
)
4753 GEN_VEXT_VSLIDE1UP_VX(vslide1up_vx_h
, uint16_t, H2
, clearh
)
4754 GEN_VEXT_VSLIDE1UP_VX(vslide1up_vx_w
, uint32_t, H4
, clearl
)
4755 GEN_VEXT_VSLIDE1UP_VX(vslide1up_vx_d
, uint64_t, H8
, clearq
)
4757 #define GEN_VEXT_VSLIDE1DOWN_VX(NAME, ETYPE, H, CLEAR_FN) \
4758 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2, \
4759 CPURISCVState *env, uint32_t desc) \
4761 uint32_t mlen = vext_mlen(desc); \
4762 uint32_t vlmax = env_archcpu(env)->cfg.vlen / mlen; \
4763 uint32_t vm = vext_vm(desc); \
4764 uint32_t vl = env->vl; \
4767 for (i = 0; i < vl; i++) { \
4768 if (!vm && !vext_elem_mask(v0, mlen, i)) { \
4771 if (i == vl - 1) { \
4772 *((ETYPE *)vd + H(i)) = s1; \
4774 *((ETYPE *)vd + H(i)) = *((ETYPE *)vs2 + H(i + 1)); \
4777 CLEAR_FN(vd, vl, vl * sizeof(ETYPE), vlmax * sizeof(ETYPE)); \
4780 /* vslide1down.vx vd, vs2, rs1, vm # vd[i] = vs2[i+1], vd[vl-1]=x[rs1] */
4781 GEN_VEXT_VSLIDE1DOWN_VX(vslide1down_vx_b
, uint8_t, H1
, clearb
)
4782 GEN_VEXT_VSLIDE1DOWN_VX(vslide1down_vx_h
, uint16_t, H2
, clearh
)
4783 GEN_VEXT_VSLIDE1DOWN_VX(vslide1down_vx_w
, uint32_t, H4
, clearl
)
4784 GEN_VEXT_VSLIDE1DOWN_VX(vslide1down_vx_d
, uint64_t, H8
, clearq
)
4786 /* Vector Register Gather Instruction */
4787 #define GEN_VEXT_VRGATHER_VV(NAME, ETYPE, H, CLEAR_FN) \
4788 void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2, \
4789 CPURISCVState *env, uint32_t desc) \
4791 uint32_t mlen = vext_mlen(desc); \
4792 uint32_t vlmax = env_archcpu(env)->cfg.vlen / mlen; \
4793 uint32_t vm = vext_vm(desc); \
4794 uint32_t vl = env->vl; \
4798 for (i = 0; i < vl; i++) { \
4799 if (!vm && !vext_elem_mask(v0, mlen, i)) { \
4802 index = *((ETYPE *)vs1 + H(i)); \
4803 if (index >= vlmax) { \
4804 *((ETYPE *)vd + H(i)) = 0; \
4806 *((ETYPE *)vd + H(i)) = *((ETYPE *)vs2 + H(index)); \
4809 CLEAR_FN(vd, vl, vl * sizeof(ETYPE), vlmax * sizeof(ETYPE)); \
4812 /* vd[i] = (vs1[i] >= VLMAX) ? 0 : vs2[vs1[i]]; */
4813 GEN_VEXT_VRGATHER_VV(vrgather_vv_b
, uint8_t, H1
, clearb
)
4814 GEN_VEXT_VRGATHER_VV(vrgather_vv_h
, uint16_t, H2
, clearh
)
4815 GEN_VEXT_VRGATHER_VV(vrgather_vv_w
, uint32_t, H4
, clearl
)
4816 GEN_VEXT_VRGATHER_VV(vrgather_vv_d
, uint64_t, H8
, clearq
)
4818 #define GEN_VEXT_VRGATHER_VX(NAME, ETYPE, H, CLEAR_FN) \
4819 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2, \
4820 CPURISCVState *env, uint32_t desc) \
4822 uint32_t mlen = vext_mlen(desc); \
4823 uint32_t vlmax = env_archcpu(env)->cfg.vlen / mlen; \
4824 uint32_t vm = vext_vm(desc); \
4825 uint32_t vl = env->vl; \
4826 uint64_t index = s1; \
4829 for (i = 0; i < vl; i++) { \
4830 if (!vm && !vext_elem_mask(v0, mlen, i)) { \
4833 if (index >= vlmax) { \
4834 *((ETYPE *)vd + H(i)) = 0; \
4836 *((ETYPE *)vd + H(i)) = *((ETYPE *)vs2 + H(index)); \
4839 CLEAR_FN(vd, vl, vl * sizeof(ETYPE), vlmax * sizeof(ETYPE)); \
4842 /* vd[i] = (x[rs1] >= VLMAX) ? 0 : vs2[rs1] */
4843 GEN_VEXT_VRGATHER_VX(vrgather_vx_b
, uint8_t, H1
, clearb
)
4844 GEN_VEXT_VRGATHER_VX(vrgather_vx_h
, uint16_t, H2
, clearh
)
4845 GEN_VEXT_VRGATHER_VX(vrgather_vx_w
, uint32_t, H4
, clearl
)
4846 GEN_VEXT_VRGATHER_VX(vrgather_vx_d
, uint64_t, H8
, clearq
)
4848 /* Vector Compress Instruction */
4849 #define GEN_VEXT_VCOMPRESS_VM(NAME, ETYPE, H, CLEAR_FN) \
4850 void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2, \
4851 CPURISCVState *env, uint32_t desc) \
4853 uint32_t mlen = vext_mlen(desc); \
4854 uint32_t vlmax = env_archcpu(env)->cfg.vlen / mlen; \
4855 uint32_t vl = env->vl; \
4856 uint32_t num = 0, i; \
4858 for (i = 0; i < vl; i++) { \
4859 if (!vext_elem_mask(vs1, mlen, i)) { \
4862 *((ETYPE *)vd + H(num)) = *((ETYPE *)vs2 + H(i)); \
4865 CLEAR_FN(vd, num, num * sizeof(ETYPE), vlmax * sizeof(ETYPE)); \
4868 /* Compress into vd elements of vs2 where vs1 is enabled */
4869 GEN_VEXT_VCOMPRESS_VM(vcompress_vm_b
, uint8_t, H1
, clearb
)
4870 GEN_VEXT_VCOMPRESS_VM(vcompress_vm_h
, uint16_t, H2
, clearh
)
4871 GEN_VEXT_VCOMPRESS_VM(vcompress_vm_w
, uint32_t, H4
, clearl
)
4872 GEN_VEXT_VCOMPRESS_VM(vcompress_vm_d
, uint64_t, H8
, clearq
)