pckbd: add controller response queue
[qemu/ar7.git] / target / riscv / cpu_helper.c
blob968cb8046f4967499cdc15e46826734eea8d1e9a
1 /*
2 * RISC-V CPU helpers for qemu.
4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5 * Copyright (c) 2017-2018 SiFive, Inc.
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2 or later, as published by the Free Software Foundation.
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
16 * You should have received a copy of the GNU General Public License along with
17 * this program. If not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "qemu/main-loop.h"
23 #include "cpu.h"
24 #include "exec/exec-all.h"
25 #include "tcg/tcg-op.h"
26 #include "trace.h"
27 #include "semihosting/common-semi.h"
29 int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch)
31 #ifdef CONFIG_USER_ONLY
32 return 0;
33 #else
34 return env->priv;
35 #endif
38 #ifndef CONFIG_USER_ONLY
39 static int riscv_cpu_local_irq_pending(CPURISCVState *env)
41 target_ulong irqs;
43 target_ulong mstatus_mie = get_field(env->mstatus, MSTATUS_MIE);
44 target_ulong mstatus_sie = get_field(env->mstatus, MSTATUS_SIE);
45 target_ulong hs_mstatus_sie = get_field(env->mstatus_hs, MSTATUS_SIE);
47 target_ulong pending = env->mip & env->mie &
48 ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
49 target_ulong vspending = (env->mip & env->mie &
50 (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP));
52 target_ulong mie = env->priv < PRV_M ||
53 (env->priv == PRV_M && mstatus_mie);
54 target_ulong sie = env->priv < PRV_S ||
55 (env->priv == PRV_S && mstatus_sie);
56 target_ulong hs_sie = env->priv < PRV_S ||
57 (env->priv == PRV_S && hs_mstatus_sie);
59 if (riscv_cpu_virt_enabled(env)) {
60 target_ulong pending_hs_irq = pending & -hs_sie;
62 if (pending_hs_irq) {
63 riscv_cpu_set_force_hs_excep(env, FORCE_HS_EXCEP);
64 return ctz64(pending_hs_irq);
67 pending = vspending;
70 irqs = (pending & ~env->mideleg & -mie) | (pending & env->mideleg & -sie);
72 if (irqs) {
73 return ctz64(irqs); /* since non-zero */
74 } else {
75 return RISCV_EXCP_NONE; /* indicates no pending interrupt */
78 #endif
80 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
82 #if !defined(CONFIG_USER_ONLY)
83 if (interrupt_request & CPU_INTERRUPT_HARD) {
84 RISCVCPU *cpu = RISCV_CPU(cs);
85 CPURISCVState *env = &cpu->env;
86 int interruptno = riscv_cpu_local_irq_pending(env);
87 if (interruptno >= 0) {
88 cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
89 riscv_cpu_do_interrupt(cs);
90 return true;
93 #endif
94 return false;
97 #if !defined(CONFIG_USER_ONLY)
99 /* Return true is floating point support is currently enabled */
100 bool riscv_cpu_fp_enabled(CPURISCVState *env)
102 if (env->mstatus & MSTATUS_FS) {
103 if (riscv_cpu_virt_enabled(env) && !(env->mstatus_hs & MSTATUS_FS)) {
104 return false;
106 return true;
109 return false;
112 void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env)
114 uint64_t mstatus_mask = MSTATUS_MXR | MSTATUS_SUM | MSTATUS_FS |
115 MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE |
116 MSTATUS64_UXL;
117 bool current_virt = riscv_cpu_virt_enabled(env);
119 g_assert(riscv_has_ext(env, RVH));
121 if (current_virt) {
122 /* Current V=1 and we are about to change to V=0 */
123 env->vsstatus = env->mstatus & mstatus_mask;
124 env->mstatus &= ~mstatus_mask;
125 env->mstatus |= env->mstatus_hs;
127 env->vstvec = env->stvec;
128 env->stvec = env->stvec_hs;
130 env->vsscratch = env->sscratch;
131 env->sscratch = env->sscratch_hs;
133 env->vsepc = env->sepc;
134 env->sepc = env->sepc_hs;
136 env->vscause = env->scause;
137 env->scause = env->scause_hs;
139 env->vstval = env->stval;
140 env->stval = env->stval_hs;
142 env->vsatp = env->satp;
143 env->satp = env->satp_hs;
144 } else {
145 /* Current V=0 and we are about to change to V=1 */
146 env->mstatus_hs = env->mstatus & mstatus_mask;
147 env->mstatus &= ~mstatus_mask;
148 env->mstatus |= env->vsstatus;
150 env->stvec_hs = env->stvec;
151 env->stvec = env->vstvec;
153 env->sscratch_hs = env->sscratch;
154 env->sscratch = env->vsscratch;
156 env->sepc_hs = env->sepc;
157 env->sepc = env->vsepc;
159 env->scause_hs = env->scause;
160 env->scause = env->vscause;
162 env->stval_hs = env->stval;
163 env->stval = env->vstval;
165 env->satp_hs = env->satp;
166 env->satp = env->vsatp;
170 bool riscv_cpu_virt_enabled(CPURISCVState *env)
172 if (!riscv_has_ext(env, RVH)) {
173 return false;
176 return get_field(env->virt, VIRT_ONOFF);
179 void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable)
181 if (!riscv_has_ext(env, RVH)) {
182 return;
185 /* Flush the TLB on all virt mode changes. */
186 if (get_field(env->virt, VIRT_ONOFF) != enable) {
187 tlb_flush(env_cpu(env));
190 env->virt = set_field(env->virt, VIRT_ONOFF, enable);
193 bool riscv_cpu_force_hs_excep_enabled(CPURISCVState *env)
195 if (!riscv_has_ext(env, RVH)) {
196 return false;
199 return get_field(env->virt, FORCE_HS_EXCEP);
202 void riscv_cpu_set_force_hs_excep(CPURISCVState *env, bool enable)
204 if (!riscv_has_ext(env, RVH)) {
205 return;
208 env->virt = set_field(env->virt, FORCE_HS_EXCEP, enable);
211 bool riscv_cpu_two_stage_lookup(int mmu_idx)
213 return mmu_idx & TB_FLAGS_PRIV_HYP_ACCESS_MASK;
216 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint32_t interrupts)
218 CPURISCVState *env = &cpu->env;
219 if (env->miclaim & interrupts) {
220 return -1;
221 } else {
222 env->miclaim |= interrupts;
223 return 0;
227 uint32_t riscv_cpu_update_mip(RISCVCPU *cpu, uint32_t mask, uint32_t value)
229 CPURISCVState *env = &cpu->env;
230 CPUState *cs = CPU(cpu);
231 uint32_t old = env->mip;
232 bool locked = false;
234 if (!qemu_mutex_iothread_locked()) {
235 locked = true;
236 qemu_mutex_lock_iothread();
239 env->mip = (env->mip & ~mask) | (value & mask);
241 if (env->mip) {
242 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
243 } else {
244 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
247 if (locked) {
248 qemu_mutex_unlock_iothread();
251 return old;
254 void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(uint32_t),
255 uint32_t arg)
257 env->rdtime_fn = fn;
258 env->rdtime_fn_arg = arg;
261 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
263 if (newpriv > PRV_M) {
264 g_assert_not_reached();
266 if (newpriv == PRV_H) {
267 newpriv = PRV_U;
269 /* tlb_flush is unnecessary as mode is contained in mmu_idx */
270 env->priv = newpriv;
273 * Clear the load reservation - otherwise a reservation placed in one
274 * context/process can be used by another, resulting in an SC succeeding
275 * incorrectly. Version 2.2 of the ISA specification explicitly requires
276 * this behaviour, while later revisions say that the kernel "should" use
277 * an SC instruction to force the yielding of a load reservation on a
278 * preemptive context switch. As a result, do both.
280 env->load_res = -1;
284 * get_physical_address_pmp - check PMP permission for this physical address
286 * Match the PMP region and check permission for this physical address and it's
287 * TLB page. Returns 0 if the permission checking was successful
289 * @env: CPURISCVState
290 * @prot: The returned protection attributes
291 * @tlb_size: TLB page size containing addr. It could be modified after PMP
292 * permission checking. NULL if not set TLB page for addr.
293 * @addr: The physical address to be checked permission
294 * @access_type: The type of MMU access
295 * @mode: Indicates current privilege level.
297 static int get_physical_address_pmp(CPURISCVState *env, int *prot,
298 target_ulong *tlb_size, hwaddr addr,
299 int size, MMUAccessType access_type,
300 int mode)
302 pmp_priv_t pmp_priv;
303 target_ulong tlb_size_pmp = 0;
305 if (!riscv_feature(env, RISCV_FEATURE_PMP)) {
306 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
307 return TRANSLATE_SUCCESS;
310 if (!pmp_hart_has_privs(env, addr, size, 1 << access_type, &pmp_priv,
311 mode)) {
312 *prot = 0;
313 return TRANSLATE_PMP_FAIL;
316 *prot = pmp_priv_to_page_prot(pmp_priv);
317 if (tlb_size != NULL) {
318 if (pmp_is_range_in_tlb(env, addr & ~(*tlb_size - 1), &tlb_size_pmp)) {
319 *tlb_size = tlb_size_pmp;
323 return TRANSLATE_SUCCESS;
326 /* get_physical_address - get the physical address for this virtual address
328 * Do a page table walk to obtain the physical address corresponding to a
329 * virtual address. Returns 0 if the translation was successful
331 * Adapted from Spike's mmu_t::translate and mmu_t::walk
333 * @env: CPURISCVState
334 * @physical: This will be set to the calculated physical address
335 * @prot: The returned protection attributes
336 * @addr: The virtual address to be translated
337 * @fault_pte_addr: If not NULL, this will be set to fault pte address
338 * when a error occurs on pte address translation.
339 * This will already be shifted to match htval.
340 * @access_type: The type of MMU access
341 * @mmu_idx: Indicates current privilege level
342 * @first_stage: Are we in first stage translation?
343 * Second stage is used for hypervisor guest translation
344 * @two_stage: Are we going to perform two stage translation
345 * @is_debug: Is this access from a debugger or the monitor?
347 static int get_physical_address(CPURISCVState *env, hwaddr *physical,
348 int *prot, target_ulong addr,
349 target_ulong *fault_pte_addr,
350 int access_type, int mmu_idx,
351 bool first_stage, bool two_stage,
352 bool is_debug)
354 /* NOTE: the env->pc value visible here will not be
355 * correct, but the value visible to the exception handler
356 * (riscv_cpu_do_interrupt) is correct */
357 MemTxResult res;
358 MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
359 int mode = mmu_idx & TB_FLAGS_PRIV_MMU_MASK;
360 bool use_background = false;
363 * Check if we should use the background registers for the two
364 * stage translation. We don't need to check if we actually need
365 * two stage translation as that happened before this function
366 * was called. Background registers will be used if the guest has
367 * forced a two stage translation to be on (in HS or M mode).
369 if (!riscv_cpu_virt_enabled(env) && two_stage) {
370 use_background = true;
373 /* MPRV does not affect the virtual-machine load/store
374 instructions, HLV, HLVX, and HSV. */
375 if (riscv_cpu_two_stage_lookup(mmu_idx)) {
376 mode = get_field(env->hstatus, HSTATUS_SPVP);
377 } else if (mode == PRV_M && access_type != MMU_INST_FETCH) {
378 if (get_field(env->mstatus, MSTATUS_MPRV)) {
379 mode = get_field(env->mstatus, MSTATUS_MPP);
383 if (first_stage == false) {
384 /* We are in stage 2 translation, this is similar to stage 1. */
385 /* Stage 2 is always taken as U-mode */
386 mode = PRV_U;
389 if (mode == PRV_M || !riscv_feature(env, RISCV_FEATURE_MMU)) {
390 *physical = addr;
391 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
392 return TRANSLATE_SUCCESS;
395 *prot = 0;
397 hwaddr base;
398 int levels, ptidxbits, ptesize, vm, sum, mxr, widened;
400 if (first_stage == true) {
401 mxr = get_field(env->mstatus, MSTATUS_MXR);
402 } else {
403 mxr = get_field(env->vsstatus, MSTATUS_MXR);
406 if (first_stage == true) {
407 if (use_background) {
408 if (riscv_cpu_is_32bit(env)) {
409 base = (hwaddr)get_field(env->vsatp, SATP32_PPN) << PGSHIFT;
410 vm = get_field(env->vsatp, SATP32_MODE);
411 } else {
412 base = (hwaddr)get_field(env->vsatp, SATP64_PPN) << PGSHIFT;
413 vm = get_field(env->vsatp, SATP64_MODE);
415 } else {
416 if (riscv_cpu_is_32bit(env)) {
417 base = (hwaddr)get_field(env->satp, SATP32_PPN) << PGSHIFT;
418 vm = get_field(env->satp, SATP32_MODE);
419 } else {
420 base = (hwaddr)get_field(env->satp, SATP64_PPN) << PGSHIFT;
421 vm = get_field(env->satp, SATP64_MODE);
424 widened = 0;
425 } else {
426 if (riscv_cpu_is_32bit(env)) {
427 base = (hwaddr)get_field(env->hgatp, SATP32_PPN) << PGSHIFT;
428 vm = get_field(env->hgatp, SATP32_MODE);
429 } else {
430 base = (hwaddr)get_field(env->hgatp, SATP64_PPN) << PGSHIFT;
431 vm = get_field(env->hgatp, SATP64_MODE);
433 widened = 2;
435 /* status.SUM will be ignored if execute on background */
436 sum = get_field(env->mstatus, MSTATUS_SUM) || use_background || is_debug;
437 switch (vm) {
438 case VM_1_10_SV32:
439 levels = 2; ptidxbits = 10; ptesize = 4; break;
440 case VM_1_10_SV39:
441 levels = 3; ptidxbits = 9; ptesize = 8; break;
442 case VM_1_10_SV48:
443 levels = 4; ptidxbits = 9; ptesize = 8; break;
444 case VM_1_10_SV57:
445 levels = 5; ptidxbits = 9; ptesize = 8; break;
446 case VM_1_10_MBARE:
447 *physical = addr;
448 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
449 return TRANSLATE_SUCCESS;
450 default:
451 g_assert_not_reached();
454 CPUState *cs = env_cpu(env);
455 int va_bits = PGSHIFT + levels * ptidxbits + widened;
456 target_ulong mask, masked_msbs;
458 if (TARGET_LONG_BITS > (va_bits - 1)) {
459 mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
460 } else {
461 mask = 0;
463 masked_msbs = (addr >> (va_bits - 1)) & mask;
465 if (masked_msbs != 0 && masked_msbs != mask) {
466 return TRANSLATE_FAIL;
469 int ptshift = (levels - 1) * ptidxbits;
470 int i;
472 #if !TCG_OVERSIZED_GUEST
473 restart:
474 #endif
475 for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
476 target_ulong idx;
477 if (i == 0) {
478 idx = (addr >> (PGSHIFT + ptshift)) &
479 ((1 << (ptidxbits + widened)) - 1);
480 } else {
481 idx = (addr >> (PGSHIFT + ptshift)) &
482 ((1 << ptidxbits) - 1);
485 /* check that physical address of PTE is legal */
486 hwaddr pte_addr;
488 if (two_stage && first_stage) {
489 int vbase_prot;
490 hwaddr vbase;
492 /* Do the second stage translation on the base PTE address. */
493 int vbase_ret = get_physical_address(env, &vbase, &vbase_prot,
494 base, NULL, MMU_DATA_LOAD,
495 mmu_idx, false, true,
496 is_debug);
498 if (vbase_ret != TRANSLATE_SUCCESS) {
499 if (fault_pte_addr) {
500 *fault_pte_addr = (base + idx * ptesize) >> 2;
502 return TRANSLATE_G_STAGE_FAIL;
505 pte_addr = vbase + idx * ptesize;
506 } else {
507 pte_addr = base + idx * ptesize;
510 int pmp_prot;
511 int pmp_ret = get_physical_address_pmp(env, &pmp_prot, NULL, pte_addr,
512 sizeof(target_ulong),
513 MMU_DATA_LOAD, PRV_S);
514 if (pmp_ret != TRANSLATE_SUCCESS) {
515 return TRANSLATE_PMP_FAIL;
518 target_ulong pte;
519 if (riscv_cpu_is_32bit(env)) {
520 pte = address_space_ldl(cs->as, pte_addr, attrs, &res);
521 } else {
522 pte = address_space_ldq(cs->as, pte_addr, attrs, &res);
525 if (res != MEMTX_OK) {
526 return TRANSLATE_FAIL;
529 hwaddr ppn = pte >> PTE_PPN_SHIFT;
531 if (!(pte & PTE_V)) {
532 /* Invalid PTE */
533 return TRANSLATE_FAIL;
534 } else if (!(pte & (PTE_R | PTE_W | PTE_X))) {
535 /* Inner PTE, continue walking */
536 base = ppn << PGSHIFT;
537 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) {
538 /* Reserved leaf PTE flags: PTE_W */
539 return TRANSLATE_FAIL;
540 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) {
541 /* Reserved leaf PTE flags: PTE_W + PTE_X */
542 return TRANSLATE_FAIL;
543 } else if ((pte & PTE_U) && ((mode != PRV_U) &&
544 (!sum || access_type == MMU_INST_FETCH))) {
545 /* User PTE flags when not U mode and mstatus.SUM is not set,
546 or the access type is an instruction fetch */
547 return TRANSLATE_FAIL;
548 } else if (!(pte & PTE_U) && (mode != PRV_S)) {
549 /* Supervisor PTE flags when not S mode */
550 return TRANSLATE_FAIL;
551 } else if (ppn & ((1ULL << ptshift) - 1)) {
552 /* Misaligned PPN */
553 return TRANSLATE_FAIL;
554 } else if (access_type == MMU_DATA_LOAD && !((pte & PTE_R) ||
555 ((pte & PTE_X) && mxr))) {
556 /* Read access check failed */
557 return TRANSLATE_FAIL;
558 } else if (access_type == MMU_DATA_STORE && !(pte & PTE_W)) {
559 /* Write access check failed */
560 return TRANSLATE_FAIL;
561 } else if (access_type == MMU_INST_FETCH && !(pte & PTE_X)) {
562 /* Fetch access check failed */
563 return TRANSLATE_FAIL;
564 } else {
565 /* if necessary, set accessed and dirty bits. */
566 target_ulong updated_pte = pte | PTE_A |
567 (access_type == MMU_DATA_STORE ? PTE_D : 0);
569 /* Page table updates need to be atomic with MTTCG enabled */
570 if (updated_pte != pte) {
572 * - if accessed or dirty bits need updating, and the PTE is
573 * in RAM, then we do so atomically with a compare and swap.
574 * - if the PTE is in IO space or ROM, then it can't be updated
575 * and we return TRANSLATE_FAIL.
576 * - if the PTE changed by the time we went to update it, then
577 * it is no longer valid and we must re-walk the page table.
579 MemoryRegion *mr;
580 hwaddr l = sizeof(target_ulong), addr1;
581 mr = address_space_translate(cs->as, pte_addr,
582 &addr1, &l, false, MEMTXATTRS_UNSPECIFIED);
583 if (memory_region_is_ram(mr)) {
584 target_ulong *pte_pa =
585 qemu_map_ram_ptr(mr->ram_block, addr1);
586 #if TCG_OVERSIZED_GUEST
587 /* MTTCG is not enabled on oversized TCG guests so
588 * page table updates do not need to be atomic */
589 *pte_pa = pte = updated_pte;
590 #else
591 target_ulong old_pte =
592 qatomic_cmpxchg(pte_pa, pte, updated_pte);
593 if (old_pte != pte) {
594 goto restart;
595 } else {
596 pte = updated_pte;
598 #endif
599 } else {
600 /* misconfigured PTE in ROM (AD bits are not preset) or
601 * PTE is in IO space and can't be updated atomically */
602 return TRANSLATE_FAIL;
606 /* for superpage mappings, make a fake leaf PTE for the TLB's
607 benefit. */
608 target_ulong vpn = addr >> PGSHIFT;
609 *physical = ((ppn | (vpn & ((1L << ptshift) - 1))) << PGSHIFT) |
610 (addr & ~TARGET_PAGE_MASK);
612 /* set permissions on the TLB entry */
613 if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) {
614 *prot |= PAGE_READ;
616 if ((pte & PTE_X)) {
617 *prot |= PAGE_EXEC;
619 /* add write permission on stores or if the page is already dirty,
620 so that we TLB miss on later writes to update the dirty bit */
621 if ((pte & PTE_W) &&
622 (access_type == MMU_DATA_STORE || (pte & PTE_D))) {
623 *prot |= PAGE_WRITE;
625 return TRANSLATE_SUCCESS;
628 return TRANSLATE_FAIL;
631 static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
632 MMUAccessType access_type, bool pmp_violation,
633 bool first_stage, bool two_stage)
635 CPUState *cs = env_cpu(env);
636 int page_fault_exceptions, vm;
637 uint64_t stap_mode;
639 if (riscv_cpu_is_32bit(env)) {
640 stap_mode = SATP32_MODE;
641 } else {
642 stap_mode = SATP64_MODE;
645 if (first_stage) {
646 vm = get_field(env->satp, stap_mode);
647 } else {
648 vm = get_field(env->hgatp, stap_mode);
651 page_fault_exceptions = vm != VM_1_10_MBARE && !pmp_violation;
653 switch (access_type) {
654 case MMU_INST_FETCH:
655 if (riscv_cpu_virt_enabled(env) && !first_stage) {
656 cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT;
657 } else {
658 cs->exception_index = page_fault_exceptions ?
659 RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT;
661 break;
662 case MMU_DATA_LOAD:
663 if (two_stage && !first_stage) {
664 cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT;
665 } else {
666 cs->exception_index = page_fault_exceptions ?
667 RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT;
669 break;
670 case MMU_DATA_STORE:
671 if (two_stage && !first_stage) {
672 cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT;
673 } else {
674 cs->exception_index = page_fault_exceptions ?
675 RISCV_EXCP_STORE_PAGE_FAULT : RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
677 break;
678 default:
679 g_assert_not_reached();
681 env->badaddr = address;
682 env->two_stage_lookup = two_stage;
685 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
687 RISCVCPU *cpu = RISCV_CPU(cs);
688 CPURISCVState *env = &cpu->env;
689 hwaddr phys_addr;
690 int prot;
691 int mmu_idx = cpu_mmu_index(&cpu->env, false);
693 if (get_physical_address(env, &phys_addr, &prot, addr, NULL, 0, mmu_idx,
694 true, riscv_cpu_virt_enabled(env), true)) {
695 return -1;
698 if (riscv_cpu_virt_enabled(env)) {
699 if (get_physical_address(env, &phys_addr, &prot, phys_addr, NULL,
700 0, mmu_idx, false, true, true)) {
701 return -1;
705 return phys_addr & TARGET_PAGE_MASK;
708 void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
709 vaddr addr, unsigned size,
710 MMUAccessType access_type,
711 int mmu_idx, MemTxAttrs attrs,
712 MemTxResult response, uintptr_t retaddr)
714 RISCVCPU *cpu = RISCV_CPU(cs);
715 CPURISCVState *env = &cpu->env;
717 if (access_type == MMU_DATA_STORE) {
718 cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
719 } else if (access_type == MMU_DATA_LOAD) {
720 cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
721 } else {
722 cs->exception_index = RISCV_EXCP_INST_ACCESS_FAULT;
725 env->badaddr = addr;
726 env->two_stage_lookup = riscv_cpu_virt_enabled(env) ||
727 riscv_cpu_two_stage_lookup(mmu_idx);
728 riscv_raise_exception(&cpu->env, cs->exception_index, retaddr);
731 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
732 MMUAccessType access_type, int mmu_idx,
733 uintptr_t retaddr)
735 RISCVCPU *cpu = RISCV_CPU(cs);
736 CPURISCVState *env = &cpu->env;
737 switch (access_type) {
738 case MMU_INST_FETCH:
739 cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
740 break;
741 case MMU_DATA_LOAD:
742 cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
743 break;
744 case MMU_DATA_STORE:
745 cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
746 break;
747 default:
748 g_assert_not_reached();
750 env->badaddr = addr;
751 env->two_stage_lookup = riscv_cpu_virt_enabled(env) ||
752 riscv_cpu_two_stage_lookup(mmu_idx);
753 riscv_raise_exception(env, cs->exception_index, retaddr);
755 #endif /* !CONFIG_USER_ONLY */
757 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
758 MMUAccessType access_type, int mmu_idx,
759 bool probe, uintptr_t retaddr)
761 RISCVCPU *cpu = RISCV_CPU(cs);
762 CPURISCVState *env = &cpu->env;
763 #ifndef CONFIG_USER_ONLY
764 vaddr im_address;
765 hwaddr pa = 0;
766 int prot, prot2, prot_pmp;
767 bool pmp_violation = false;
768 bool first_stage_error = true;
769 bool two_stage_lookup = false;
770 int ret = TRANSLATE_FAIL;
771 int mode = mmu_idx;
772 /* default TLB page size */
773 target_ulong tlb_size = TARGET_PAGE_SIZE;
775 env->guest_phys_fault_addr = 0;
777 qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
778 __func__, address, access_type, mmu_idx);
780 /* MPRV does not affect the virtual-machine load/store
781 instructions, HLV, HLVX, and HSV. */
782 if (riscv_cpu_two_stage_lookup(mmu_idx)) {
783 mode = get_field(env->hstatus, HSTATUS_SPVP);
784 } else if (mode == PRV_M && access_type != MMU_INST_FETCH &&
785 get_field(env->mstatus, MSTATUS_MPRV)) {
786 mode = get_field(env->mstatus, MSTATUS_MPP);
787 if (riscv_has_ext(env, RVH) && get_field(env->mstatus, MSTATUS_MPV)) {
788 two_stage_lookup = true;
792 if (riscv_cpu_virt_enabled(env) ||
793 ((riscv_cpu_two_stage_lookup(mmu_idx) || two_stage_lookup) &&
794 access_type != MMU_INST_FETCH)) {
795 /* Two stage lookup */
796 ret = get_physical_address(env, &pa, &prot, address,
797 &env->guest_phys_fault_addr, access_type,
798 mmu_idx, true, true, false);
801 * A G-stage exception may be triggered during two state lookup.
802 * And the env->guest_phys_fault_addr has already been set in
803 * get_physical_address().
805 if (ret == TRANSLATE_G_STAGE_FAIL) {
806 first_stage_error = false;
807 access_type = MMU_DATA_LOAD;
810 qemu_log_mask(CPU_LOG_MMU,
811 "%s 1st-stage address=%" VADDR_PRIx " ret %d physical "
812 TARGET_FMT_plx " prot %d\n",
813 __func__, address, ret, pa, prot);
815 if (ret == TRANSLATE_SUCCESS) {
816 /* Second stage lookup */
817 im_address = pa;
819 ret = get_physical_address(env, &pa, &prot2, im_address, NULL,
820 access_type, mmu_idx, false, true,
821 false);
823 qemu_log_mask(CPU_LOG_MMU,
824 "%s 2nd-stage address=%" VADDR_PRIx " ret %d physical "
825 TARGET_FMT_plx " prot %d\n",
826 __func__, im_address, ret, pa, prot2);
828 prot &= prot2;
830 if (ret == TRANSLATE_SUCCESS) {
831 ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
832 size, access_type, mode);
834 qemu_log_mask(CPU_LOG_MMU,
835 "%s PMP address=" TARGET_FMT_plx " ret %d prot"
836 " %d tlb_size " TARGET_FMT_lu "\n",
837 __func__, pa, ret, prot_pmp, tlb_size);
839 prot &= prot_pmp;
842 if (ret != TRANSLATE_SUCCESS) {
844 * Guest physical address translation failed, this is a HS
845 * level exception
847 first_stage_error = false;
848 env->guest_phys_fault_addr = (im_address |
849 (address &
850 (TARGET_PAGE_SIZE - 1))) >> 2;
853 } else {
854 /* Single stage lookup */
855 ret = get_physical_address(env, &pa, &prot, address, NULL,
856 access_type, mmu_idx, true, false, false);
858 qemu_log_mask(CPU_LOG_MMU,
859 "%s address=%" VADDR_PRIx " ret %d physical "
860 TARGET_FMT_plx " prot %d\n",
861 __func__, address, ret, pa, prot);
863 if (ret == TRANSLATE_SUCCESS) {
864 ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
865 size, access_type, mode);
867 qemu_log_mask(CPU_LOG_MMU,
868 "%s PMP address=" TARGET_FMT_plx " ret %d prot"
869 " %d tlb_size " TARGET_FMT_lu "\n",
870 __func__, pa, ret, prot_pmp, tlb_size);
872 prot &= prot_pmp;
876 if (ret == TRANSLATE_PMP_FAIL) {
877 pmp_violation = true;
880 if (ret == TRANSLATE_SUCCESS) {
881 tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1),
882 prot, mmu_idx, tlb_size);
883 return true;
884 } else if (probe) {
885 return false;
886 } else {
887 raise_mmu_exception(env, address, access_type, pmp_violation,
888 first_stage_error,
889 riscv_cpu_virt_enabled(env) ||
890 riscv_cpu_two_stage_lookup(mmu_idx));
891 riscv_raise_exception(env, cs->exception_index, retaddr);
894 return true;
896 #else
897 switch (access_type) {
898 case MMU_INST_FETCH:
899 cs->exception_index = RISCV_EXCP_INST_PAGE_FAULT;
900 break;
901 case MMU_DATA_LOAD:
902 cs->exception_index = RISCV_EXCP_LOAD_PAGE_FAULT;
903 break;
904 case MMU_DATA_STORE:
905 cs->exception_index = RISCV_EXCP_STORE_PAGE_FAULT;
906 break;
907 default:
908 g_assert_not_reached();
910 env->badaddr = address;
911 cpu_loop_exit_restore(cs, retaddr);
912 #endif
916 * Handle Traps
918 * Adapted from Spike's processor_t::take_trap.
921 void riscv_cpu_do_interrupt(CPUState *cs)
923 #if !defined(CONFIG_USER_ONLY)
925 RISCVCPU *cpu = RISCV_CPU(cs);
926 CPURISCVState *env = &cpu->env;
927 bool force_hs_execp = riscv_cpu_force_hs_excep_enabled(env);
928 uint64_t s;
930 /* cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
931 * so we mask off the MSB and separate into trap type and cause.
933 bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
934 target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
935 target_ulong deleg = async ? env->mideleg : env->medeleg;
936 bool write_tval = false;
937 target_ulong tval = 0;
938 target_ulong htval = 0;
939 target_ulong mtval2 = 0;
941 if (cause == RISCV_EXCP_SEMIHOST) {
942 if (env->priv >= PRV_S) {
943 env->gpr[xA0] = do_common_semihosting(cs);
944 env->pc += 4;
945 return;
947 cause = RISCV_EXCP_BREAKPOINT;
950 if (!async) {
951 /* set tval to badaddr for traps with address information */
952 switch (cause) {
953 case RISCV_EXCP_INST_GUEST_PAGE_FAULT:
954 case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT:
955 case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT:
956 force_hs_execp = true;
957 /* fallthrough */
958 case RISCV_EXCP_INST_ADDR_MIS:
959 case RISCV_EXCP_INST_ACCESS_FAULT:
960 case RISCV_EXCP_LOAD_ADDR_MIS:
961 case RISCV_EXCP_STORE_AMO_ADDR_MIS:
962 case RISCV_EXCP_LOAD_ACCESS_FAULT:
963 case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
964 case RISCV_EXCP_INST_PAGE_FAULT:
965 case RISCV_EXCP_LOAD_PAGE_FAULT:
966 case RISCV_EXCP_STORE_PAGE_FAULT:
967 write_tval = true;
968 tval = env->badaddr;
969 break;
970 default:
971 break;
973 /* ecall is dispatched as one cause so translate based on mode */
974 if (cause == RISCV_EXCP_U_ECALL) {
975 assert(env->priv <= 3);
977 if (env->priv == PRV_M) {
978 cause = RISCV_EXCP_M_ECALL;
979 } else if (env->priv == PRV_S && riscv_cpu_virt_enabled(env)) {
980 cause = RISCV_EXCP_VS_ECALL;
981 } else if (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) {
982 cause = RISCV_EXCP_S_ECALL;
983 } else if (env->priv == PRV_U) {
984 cause = RISCV_EXCP_U_ECALL;
989 trace_riscv_trap(env->mhartid, async, cause, env->pc, tval,
990 riscv_cpu_get_trap_name(cause, async));
992 qemu_log_mask(CPU_LOG_INT,
993 "%s: hart:"TARGET_FMT_ld", async:%d, cause:"TARGET_FMT_lx", "
994 "epc:0x"TARGET_FMT_lx", tval:0x"TARGET_FMT_lx", desc=%s\n",
995 __func__, env->mhartid, async, cause, env->pc, tval,
996 riscv_cpu_get_trap_name(cause, async));
998 if (env->priv <= PRV_S &&
999 cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) {
1000 /* handle the trap in S-mode */
1001 if (riscv_has_ext(env, RVH)) {
1002 target_ulong hdeleg = async ? env->hideleg : env->hedeleg;
1004 if (env->two_stage_lookup && write_tval) {
1006 * If we are writing a guest virtual address to stval, set
1007 * this to 1. If we are trapping to VS we will set this to 0
1008 * later.
1010 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, 1);
1011 } else {
1012 /* For other HS-mode traps, we set this to 0. */
1013 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, 0);
1016 if (riscv_cpu_virt_enabled(env) && ((hdeleg >> cause) & 1) &&
1017 !force_hs_execp) {
1018 /* Trap to VS mode */
1020 * See if we need to adjust cause. Yes if its VS mode interrupt
1021 * no if hypervisor has delegated one of hs mode's interrupt
1023 if (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT ||
1024 cause == IRQ_VS_EXT) {
1025 cause = cause - 1;
1027 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, 0);
1028 } else if (riscv_cpu_virt_enabled(env)) {
1029 /* Trap into HS mode, from virt */
1030 riscv_cpu_swap_hypervisor_regs(env);
1031 env->hstatus = set_field(env->hstatus, HSTATUS_SPVP,
1032 env->priv);
1033 env->hstatus = set_field(env->hstatus, HSTATUS_SPV,
1034 riscv_cpu_virt_enabled(env));
1036 htval = env->guest_phys_fault_addr;
1038 riscv_cpu_set_virt_enabled(env, 0);
1039 riscv_cpu_set_force_hs_excep(env, 0);
1040 } else {
1041 /* Trap into HS mode */
1042 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, false);
1043 htval = env->guest_phys_fault_addr;
1047 s = env->mstatus;
1048 s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
1049 s = set_field(s, MSTATUS_SPP, env->priv);
1050 s = set_field(s, MSTATUS_SIE, 0);
1051 env->mstatus = s;
1052 env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1));
1053 env->sepc = env->pc;
1054 env->stval = tval;
1055 env->htval = htval;
1056 env->pc = (env->stvec >> 2 << 2) +
1057 ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
1058 riscv_cpu_set_mode(env, PRV_S);
1059 } else {
1060 /* handle the trap in M-mode */
1061 if (riscv_has_ext(env, RVH)) {
1062 if (riscv_cpu_virt_enabled(env)) {
1063 riscv_cpu_swap_hypervisor_regs(env);
1065 env->mstatus = set_field(env->mstatus, MSTATUS_MPV,
1066 riscv_cpu_virt_enabled(env));
1067 if (riscv_cpu_virt_enabled(env) && tval) {
1068 env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1);
1071 mtval2 = env->guest_phys_fault_addr;
1073 /* Trapping to M mode, virt is disabled */
1074 riscv_cpu_set_virt_enabled(env, 0);
1075 riscv_cpu_set_force_hs_excep(env, 0);
1078 s = env->mstatus;
1079 s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
1080 s = set_field(s, MSTATUS_MPP, env->priv);
1081 s = set_field(s, MSTATUS_MIE, 0);
1082 env->mstatus = s;
1083 env->mcause = cause | ~(((target_ulong)-1) >> async);
1084 env->mepc = env->pc;
1085 env->mtval = tval;
1086 env->mtval2 = mtval2;
1087 env->pc = (env->mtvec >> 2 << 2) +
1088 ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
1089 riscv_cpu_set_mode(env, PRV_M);
1092 /* NOTE: it is not necessary to yield load reservations here. It is only
1093 * necessary for an SC from "another hart" to cause a load reservation
1094 * to be yielded. Refer to the memory consistency model section of the
1095 * RISC-V ISA Specification.
1098 env->two_stage_lookup = false;
1099 #endif
1100 cs->exception_index = RISCV_EXCP_NONE; /* mark handled to qemu */