CHECKPATCH: Add --debug adv_dcs
[qemu/ar7.git] / hw / mips_malta.c
blobad23f26e597f9ff886d72c173ee5b0caefbb2871
1 /*
2 * QEMU Malta board support
4 * Copyright (c) 2006 Aurelien Jarno
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "hw.h"
26 #include "pc.h"
27 #include "fdc.h"
28 #include "net.h"
29 #include "boards.h"
30 #include "smbus.h"
31 #include "block.h"
32 #include "flash.h"
33 #include "mips.h"
34 #include "mips_cpudevs.h"
35 #include "pci.h"
36 #include "vmware_vga.h"
37 #include "qemu-char.h"
38 #include "sysemu.h"
39 #include "arch_init.h"
40 #include "boards.h"
41 #include "qemu-log.h"
42 #include "mips-bios.h"
43 #include "ide.h"
44 #include "loader.h"
45 #include "elf.h"
46 #include "mc146818rtc.h"
47 #include "i8254.h"
48 #include "blockdev.h"
49 #include "exec-memory.h"
50 #include "sysbus.h" /* SysBusDevice */
51 #include "vga-pci.h"
53 //#define DEBUG_BOARD_INIT
55 #define ENVP_ADDR 0x80002000l
56 #define ENVP_NB_ENTRIES 16
57 #define ENVP_ENTRY_SIZE 256
59 /* Hardware addresses */
60 #define FLASH_ADDRESS 0x1e000000ULL
61 #define FPGA_ADDRESS 0x1f000000ULL
62 #define RESET_ADDRESS 0x1fc00000ULL
64 #define FLASH_SIZE 0x400000
66 #define MAX_IDE_BUS 2
68 typedef struct {
69 MemoryRegion iomem;
70 MemoryRegion iomem_lo; /* 0 - 0x900 */
71 MemoryRegion iomem_hi; /* 0xa00 - 0x100000 */
72 uint32_t leds;
73 uint32_t brk;
74 uint32_t gpout;
75 uint32_t i2cin;
76 uint32_t i2coe;
77 uint32_t i2cout;
78 uint32_t i2csel;
79 CharDriverState *display;
80 char display_text[9];
81 SerialState *uart;
82 } MaltaFPGAState;
84 typedef struct {
85 SysBusDevice busdev;
86 qemu_irq *i8259;
87 } MaltaState;
89 static ISADevice *pit;
91 static struct _loaderparams {
92 int ram_size;
93 const char *kernel_filename;
94 const char *kernel_cmdline;
95 const char *initrd_filename;
96 } loaderparams;
98 /* Malta FPGA */
99 static void malta_fpga_update_display(void *opaque)
101 char leds_text[9];
102 int i;
103 MaltaFPGAState *s = opaque;
105 for (i = 7 ; i >= 0 ; i--) {
106 if (s->leds & (1 << i))
107 leds_text[i] = '#';
108 else
109 leds_text[i] = ' ';
111 leds_text[8] = '\0';
113 qemu_chr_fe_printf(s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n", leds_text);
114 qemu_chr_fe_printf(s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|", s->display_text);
118 * EEPROM 24C01 / 24C02 emulation.
120 * Emulation for serial EEPROMs:
121 * 24C01 - 1024 bit (128 x 8)
122 * 24C02 - 2048 bit (256 x 8)
124 * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
127 //~ #define DEBUG
129 #if defined(DEBUG)
130 # define logout(fmt, ...) fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
131 #else
132 # define logout(fmt, ...) ((void)0)
133 #endif
135 struct _eeprom24c0x_t {
136 uint8_t tick;
137 uint8_t address;
138 uint8_t command;
139 uint8_t ack;
140 uint8_t scl;
141 uint8_t sda;
142 uint8_t data;
143 //~ uint16_t size;
144 uint8_t contents[256];
147 typedef struct _eeprom24c0x_t eeprom24c0x_t;
149 static eeprom24c0x_t eeprom = {
150 .contents = {
151 /* 00000000: */ 0x80,0x08,0x04,0x0D,0x0A,0x01,0x40,0x00,
152 /* 00000008: */ 0x01,0x75,0x54,0x00,0x82,0x08,0x00,0x01,
153 /* 00000010: */ 0x8F,0x04,0x02,0x01,0x01,0x00,0x0E,0x00,
154 /* 00000018: */ 0x00,0x00,0x00,0x14,0x0F,0x14,0x2D,0x40,
155 /* 00000020: */ 0x15,0x08,0x15,0x08,0x00,0x00,0x00,0x00,
156 /* 00000028: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
157 /* 00000030: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
158 /* 00000038: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x12,0xD0,
159 /* 00000040: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
160 /* 00000048: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
161 /* 00000050: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
162 /* 00000058: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
163 /* 00000060: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
164 /* 00000068: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
165 /* 00000070: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
166 /* 00000078: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x64,0xF4,
170 static uint8_t eeprom24c0x_read(void)
172 logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
173 eeprom.tick, eeprom.scl, eeprom.sda, eeprom.data);
174 return eeprom.sda;
177 static void eeprom24c0x_write(int scl, int sda)
179 if (eeprom.scl && scl && (eeprom.sda != sda)) {
180 logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
181 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda, sda ? "stop" : "start");
182 if (!sda) {
183 eeprom.tick = 1;
184 eeprom.command = 0;
186 } else if (eeprom.tick == 0 && !eeprom.ack) {
187 /* Waiting for start. */
188 logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
189 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
190 } else if (!eeprom.scl && scl) {
191 logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
192 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
193 if (eeprom.ack) {
194 logout("\ti2c ack bit = 0\n");
195 sda = 0;
196 eeprom.ack = 0;
197 } else if (eeprom.sda == sda) {
198 uint8_t bit = (sda != 0);
199 logout("\ti2c bit = %d\n", bit);
200 if (eeprom.tick < 9) {
201 eeprom.command <<= 1;
202 eeprom.command += bit;
203 eeprom.tick++;
204 if (eeprom.tick == 9) {
205 logout("\tcommand 0x%04x, %s\n", eeprom.command, bit ? "read" : "write");
206 eeprom.ack = 1;
208 } else if (eeprom.tick < 17) {
209 if (eeprom.command & 1) {
210 sda = ((eeprom.data & 0x80) != 0);
212 eeprom.address <<= 1;
213 eeprom.address += bit;
214 eeprom.tick++;
215 eeprom.data <<= 1;
216 if (eeprom.tick == 17) {
217 eeprom.data = eeprom.contents[eeprom.address];
218 logout("\taddress 0x%04x, data 0x%02x\n", eeprom.address, eeprom.data);
219 eeprom.ack = 1;
220 eeprom.tick = 0;
222 } else if (eeprom.tick >= 17) {
223 sda = 0;
225 } else {
226 logout("\tsda changed with raising scl\n");
228 } else {
229 logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
231 eeprom.scl = scl;
232 eeprom.sda = sda;
235 static uint64_t malta_fpga_read(void *opaque, target_phys_addr_t addr,
236 unsigned size)
238 MaltaFPGAState *s = opaque;
239 uint32_t val = 0;
240 uint32_t saddr;
242 saddr = (addr & 0xfffff);
244 switch (saddr) {
246 /* SWITCH Register */
247 case 0x00200:
248 val = 0x00000000; /* All switches closed */
249 break;
251 /* STATUS Register */
252 case 0x00208:
253 #ifdef TARGET_WORDS_BIGENDIAN
254 val = 0x00000012;
255 #else
256 val = 0x00000010;
257 #endif
258 break;
260 /* JMPRS Register */
261 case 0x00210:
262 val = 0x00;
263 break;
265 /* LEDBAR Register */
266 case 0x00408:
267 val = s->leds;
268 break;
270 /* BRKRES Register */
271 case 0x00508:
272 val = s->brk;
273 break;
275 /* UART Registers are handled directly by the serial device */
277 /* GPOUT Register */
278 case 0x00a00:
279 val = s->gpout;
280 break;
282 /* XXX: implement a real I2C controller */
284 /* GPINP Register */
285 case 0x00a08:
286 /* IN = OUT until a real I2C control is implemented */
287 if (s->i2csel)
288 val = s->i2cout;
289 else
290 val = 0x00;
291 break;
293 /* I2CINP Register */
294 case 0x00b00:
295 val = ((s->i2cin & ~1) | eeprom24c0x_read());
296 break;
298 /* I2COE Register */
299 case 0x00b08:
300 val = s->i2coe;
301 break;
303 /* I2COUT Register */
304 case 0x00b10:
305 val = s->i2cout;
306 break;
308 /* I2CSEL Register */
309 case 0x00b18:
310 val = s->i2csel;
311 break;
313 default:
314 #if 0
315 printf ("malta_fpga_read: Bad register offset 0x" TARGET_FMT_lx "\n",
316 addr);
317 #endif
318 break;
320 return val;
323 static void malta_fpga_write(void *opaque, target_phys_addr_t addr,
324 uint64_t val, unsigned size)
326 MaltaFPGAState *s = opaque;
327 uint32_t saddr;
329 saddr = (addr & 0xfffff);
331 switch (saddr) {
333 /* SWITCH Register */
334 case 0x00200:
335 break;
337 /* JMPRS Register */
338 case 0x00210:
339 break;
341 /* LEDBAR Register */
342 case 0x00408:
343 s->leds = val & 0xff;
344 malta_fpga_update_display(s);
345 break;
347 /* ASCIIWORD Register */
348 case 0x00410:
349 snprintf(s->display_text, 9, "%08X", (uint32_t)val);
350 malta_fpga_update_display(s);
351 break;
353 /* ASCIIPOS0 to ASCIIPOS7 Registers */
354 case 0x00418:
355 case 0x00420:
356 case 0x00428:
357 case 0x00430:
358 case 0x00438:
359 case 0x00440:
360 case 0x00448:
361 case 0x00450:
362 s->display_text[(saddr - 0x00418) >> 3] = (char) val;
363 malta_fpga_update_display(s);
364 break;
366 /* SOFTRES Register */
367 case 0x00500:
368 if (val == 0x42)
369 qemu_system_reset_request ();
370 break;
372 /* BRKRES Register */
373 case 0x00508:
374 s->brk = val & 0xff;
375 break;
377 /* UART Registers are handled directly by the serial device */
379 /* GPOUT Register */
380 case 0x00a00:
381 s->gpout = val & 0xff;
382 break;
384 /* I2COE Register */
385 case 0x00b08:
386 s->i2coe = val & 0x03;
387 break;
389 /* I2COUT Register */
390 case 0x00b10:
391 eeprom24c0x_write(val & 0x02, val & 0x01);
392 s->i2cout = val;
393 break;
395 /* I2CSEL Register */
396 case 0x00b18:
397 s->i2csel = val & 0x01;
398 break;
400 default:
401 #if 0
402 printf ("malta_fpga_write: Bad register offset 0x" TARGET_FMT_lx "\n",
403 addr);
404 #endif
405 break;
409 static const MemoryRegionOps malta_fpga_ops = {
410 .read = malta_fpga_read,
411 .write = malta_fpga_write,
412 .endianness = DEVICE_NATIVE_ENDIAN,
415 static void malta_fpga_reset(void *opaque)
417 MaltaFPGAState *s = opaque;
419 s->leds = 0x00;
420 s->brk = 0x0a;
421 s->gpout = 0x00;
422 s->i2cin = 0x3;
423 s->i2coe = 0x0;
424 s->i2cout = 0x3;
425 s->i2csel = 0x1;
427 s->display_text[8] = '\0';
428 snprintf(s->display_text, 9, " ");
431 static void malta_fpga_led_init(CharDriverState *chr)
433 qemu_chr_fe_printf(chr, "\e[HMalta LEDBAR\r\n");
434 qemu_chr_fe_printf(chr, "+--------+\r\n");
435 qemu_chr_fe_printf(chr, "+ +\r\n");
436 qemu_chr_fe_printf(chr, "+--------+\r\n");
437 qemu_chr_fe_printf(chr, "\n");
438 qemu_chr_fe_printf(chr, "Malta ASCII\r\n");
439 qemu_chr_fe_printf(chr, "+--------+\r\n");
440 qemu_chr_fe_printf(chr, "+ +\r\n");
441 qemu_chr_fe_printf(chr, "+--------+\r\n");
444 static MaltaFPGAState *malta_fpga_init(MemoryRegion *address_space,
445 target_phys_addr_t base, qemu_irq uart_irq, CharDriverState *uart_chr)
447 MaltaFPGAState *s;
449 s = (MaltaFPGAState *)g_malloc0(sizeof(MaltaFPGAState));
451 memory_region_init_io(&s->iomem, &malta_fpga_ops, s,
452 "malta-fpga", 0x100000);
453 memory_region_init_alias(&s->iomem_lo, "malta-fpga",
454 &s->iomem, 0, 0x900);
455 memory_region_init_alias(&s->iomem_hi, "malta-fpga",
456 &s->iomem, 0xa00, 0x10000-0xa00);
458 memory_region_add_subregion(address_space, base, &s->iomem_lo);
459 memory_region_add_subregion(address_space, base + 0xa00, &s->iomem_hi);
461 s->display = qemu_chr_new("fpga", "vc:320x200", malta_fpga_led_init);
463 s->uart = serial_mm_init(address_space, base + 0x900, 3, uart_irq,
464 230400, uart_chr, DEVICE_NATIVE_ENDIAN);
466 malta_fpga_reset(s);
467 qemu_register_reset(malta_fpga_reset, s);
469 return s;
472 /* Network support */
473 static void network_init(void)
475 int i;
477 for(i = 0; i < nb_nics; i++) {
478 NICInfo *nd = &nd_table[i];
479 const char *default_devaddr = NULL;
481 if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0))
482 /* The malta board has a PCNet card using PCI SLOT 11 */
483 default_devaddr = "0b";
485 pci_nic_init_nofail(nd, "pcnet", default_devaddr);
489 /* ROM and pseudo bootloader
491 The following code implements a very very simple bootloader. It first
492 loads the registers a0 to a3 to the values expected by the OS, and
493 then jump at the kernel address.
495 The bootloader should pass the locations of the kernel arguments and
496 environment variables tables. Those tables contain the 32-bit address
497 of NULL terminated strings. The environment variables table should be
498 terminated by a NULL address.
500 For a simpler implementation, the number of kernel arguments is fixed
501 to two (the name of the kernel and the command line), and the two
502 tables are actually the same one.
504 The registers a0 to a3 should contain the following values:
505 a0 - number of kernel arguments
506 a1 - 32-bit address of the kernel arguments table
507 a2 - 32-bit address of the environment variables table
508 a3 - RAM size in bytes
511 static void write_bootloader (CPUMIPSState *env, uint8_t *base,
512 int64_t kernel_entry)
514 uint32_t *p;
516 /* Small bootloader */
517 p = (uint32_t *)base;
518 stl_raw(p++, 0x0bf00160); /* j 0x1fc00580 */
519 stl_raw(p++, 0x00000000); /* nop */
521 /* YAMON service vector */
522 stl_raw(base + 0x500, 0xbfc00580); /* start: */
523 stl_raw(base + 0x504, 0xbfc0083c); /* print_count: */
524 stl_raw(base + 0x520, 0xbfc00580); /* start: */
525 stl_raw(base + 0x52c, 0xbfc00800); /* flush_cache: */
526 stl_raw(base + 0x534, 0xbfc00808); /* print: */
527 stl_raw(base + 0x538, 0xbfc00800); /* reg_cpu_isr: */
528 stl_raw(base + 0x53c, 0xbfc00800); /* unred_cpu_isr: */
529 stl_raw(base + 0x540, 0xbfc00800); /* reg_ic_isr: */
530 stl_raw(base + 0x544, 0xbfc00800); /* unred_ic_isr: */
531 stl_raw(base + 0x548, 0xbfc00800); /* reg_esr: */
532 stl_raw(base + 0x54c, 0xbfc00800); /* unreg_esr: */
533 stl_raw(base + 0x550, 0xbfc00800); /* getchar: */
534 stl_raw(base + 0x554, 0xbfc00800); /* syscon_read: */
537 /* Second part of the bootloader */
538 p = (uint32_t *) (base + 0x580);
539 stl_raw(p++, 0x24040002); /* addiu a0, zero, 2 */
540 stl_raw(p++, 0x3c1d0000 | (((ENVP_ADDR - 64) >> 16) & 0xffff)); /* lui sp, high(ENVP_ADDR) */
541 stl_raw(p++, 0x37bd0000 | ((ENVP_ADDR - 64) & 0xffff)); /* ori sp, sp, low(ENVP_ADDR) */
542 stl_raw(p++, 0x3c050000 | ((ENVP_ADDR >> 16) & 0xffff)); /* lui a1, high(ENVP_ADDR) */
543 stl_raw(p++, 0x34a50000 | (ENVP_ADDR & 0xffff)); /* ori a1, a1, low(ENVP_ADDR) */
544 stl_raw(p++, 0x3c060000 | (((ENVP_ADDR + 8) >> 16) & 0xffff)); /* lui a2, high(ENVP_ADDR + 8) */
545 stl_raw(p++, 0x34c60000 | ((ENVP_ADDR + 8) & 0xffff)); /* ori a2, a2, low(ENVP_ADDR + 8) */
546 stl_raw(p++, 0x3c070000 | (loaderparams.ram_size >> 16)); /* lui a3, high(ram_size) */
547 stl_raw(p++, 0x34e70000 | (loaderparams.ram_size & 0xffff)); /* ori a3, a3, low(ram_size) */
549 /* Load BAR registers as done by YAMON */
550 stl_raw(p++, 0x3c09b400); /* lui t1, 0xb400 */
552 #ifdef TARGET_WORDS_BIGENDIAN
553 stl_raw(p++, 0x3c08df00); /* lui t0, 0xdf00 */
554 #else
555 stl_raw(p++, 0x340800df); /* ori t0, r0, 0x00df */
556 #endif
557 stl_raw(p++, 0xad280068); /* sw t0, 0x0068(t1) */
559 stl_raw(p++, 0x3c09bbe0); /* lui t1, 0xbbe0 */
561 #ifdef TARGET_WORDS_BIGENDIAN
562 stl_raw(p++, 0x3c08c000); /* lui t0, 0xc000 */
563 #else
564 stl_raw(p++, 0x340800c0); /* ori t0, r0, 0x00c0 */
565 #endif
566 stl_raw(p++, 0xad280048); /* sw t0, 0x0048(t1) */
567 #ifdef TARGET_WORDS_BIGENDIAN
568 stl_raw(p++, 0x3c084000); /* lui t0, 0x4000 */
569 #else
570 stl_raw(p++, 0x34080040); /* ori t0, r0, 0x0040 */
571 #endif
572 stl_raw(p++, 0xad280050); /* sw t0, 0x0050(t1) */
574 #ifdef TARGET_WORDS_BIGENDIAN
575 stl_raw(p++, 0x3c088000); /* lui t0, 0x8000 */
576 #else
577 stl_raw(p++, 0x34080080); /* ori t0, r0, 0x0080 */
578 #endif
579 stl_raw(p++, 0xad280058); /* sw t0, 0x0058(t1) */
580 #ifdef TARGET_WORDS_BIGENDIAN
581 stl_raw(p++, 0x3c083f00); /* lui t0, 0x3f00 */
582 #else
583 stl_raw(p++, 0x3408003f); /* ori t0, r0, 0x003f */
584 #endif
585 stl_raw(p++, 0xad280060); /* sw t0, 0x0060(t1) */
587 #ifdef TARGET_WORDS_BIGENDIAN
588 stl_raw(p++, 0x3c08c100); /* lui t0, 0xc100 */
589 #else
590 stl_raw(p++, 0x340800c1); /* ori t0, r0, 0x00c1 */
591 #endif
592 stl_raw(p++, 0xad280080); /* sw t0, 0x0080(t1) */
593 #ifdef TARGET_WORDS_BIGENDIAN
594 stl_raw(p++, 0x3c085e00); /* lui t0, 0x5e00 */
595 #else
596 stl_raw(p++, 0x3408005e); /* ori t0, r0, 0x005e */
597 #endif
598 stl_raw(p++, 0xad280088); /* sw t0, 0x0088(t1) */
600 /* Jump to kernel code */
601 stl_raw(p++, 0x3c1f0000 | ((kernel_entry >> 16) & 0xffff)); /* lui ra, high(kernel_entry) */
602 stl_raw(p++, 0x37ff0000 | (kernel_entry & 0xffff)); /* ori ra, ra, low(kernel_entry) */
603 stl_raw(p++, 0x03e00008); /* jr ra */
604 stl_raw(p++, 0x00000000); /* nop */
606 /* YAMON subroutines */
607 p = (uint32_t *) (base + 0x800);
608 stl_raw(p++, 0x03e00008); /* jr ra */
609 stl_raw(p++, 0x24020000); /* li v0,0 */
610 /* 808 YAMON print */
611 stl_raw(p++, 0x03e06821); /* move t5,ra */
612 stl_raw(p++, 0x00805821); /* move t3,a0 */
613 stl_raw(p++, 0x00a05021); /* move t2,a1 */
614 stl_raw(p++, 0x91440000); /* lbu a0,0(t2) */
615 stl_raw(p++, 0x254a0001); /* addiu t2,t2,1 */
616 stl_raw(p++, 0x10800005); /* beqz a0,834 */
617 stl_raw(p++, 0x00000000); /* nop */
618 stl_raw(p++, 0x0ff0021c); /* jal 870 */
619 stl_raw(p++, 0x00000000); /* nop */
620 stl_raw(p++, 0x08000205); /* j 814 */
621 stl_raw(p++, 0x00000000); /* nop */
622 stl_raw(p++, 0x01a00008); /* jr t5 */
623 stl_raw(p++, 0x01602021); /* move a0,t3 */
624 /* 0x83c YAMON print_count */
625 stl_raw(p++, 0x03e06821); /* move t5,ra */
626 stl_raw(p++, 0x00805821); /* move t3,a0 */
627 stl_raw(p++, 0x00a05021); /* move t2,a1 */
628 stl_raw(p++, 0x00c06021); /* move t4,a2 */
629 stl_raw(p++, 0x91440000); /* lbu a0,0(t2) */
630 stl_raw(p++, 0x0ff0021c); /* jal 870 */
631 stl_raw(p++, 0x00000000); /* nop */
632 stl_raw(p++, 0x254a0001); /* addiu t2,t2,1 */
633 stl_raw(p++, 0x258cffff); /* addiu t4,t4,-1 */
634 stl_raw(p++, 0x1580fffa); /* bnez t4,84c */
635 stl_raw(p++, 0x00000000); /* nop */
636 stl_raw(p++, 0x01a00008); /* jr t5 */
637 stl_raw(p++, 0x01602021); /* move a0,t3 */
638 /* 0x870 */
639 stl_raw(p++, 0x3c08b800); /* lui t0,0xb400 */
640 stl_raw(p++, 0x350803f8); /* ori t0,t0,0x3f8 */
641 stl_raw(p++, 0x91090005); /* lbu t1,5(t0) */
642 stl_raw(p++, 0x00000000); /* nop */
643 stl_raw(p++, 0x31290040); /* andi t1,t1,0x40 */
644 stl_raw(p++, 0x1120fffc); /* beqz t1,878 <outch+0x8> */
645 stl_raw(p++, 0x00000000); /* nop */
646 stl_raw(p++, 0x03e00008); /* jr ra */
647 stl_raw(p++, 0xa1040000); /* sb a0,0(t0) */
651 static void GCC_FMT_ATTR(3, 4) prom_set(uint32_t* prom_buf, int index,
652 const char *string, ...)
654 va_list ap;
655 int32_t table_addr;
657 if (index >= ENVP_NB_ENTRIES)
658 return;
660 if (string == NULL) {
661 prom_buf[index] = 0;
662 return;
665 table_addr = sizeof(int32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
666 prom_buf[index] = tswap32(ENVP_ADDR + table_addr);
668 va_start(ap, string);
669 vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap);
670 va_end(ap);
673 /* Kernel */
674 static int64_t load_kernel (void)
676 int64_t kernel_entry, kernel_high;
677 long initrd_size;
678 ram_addr_t initrd_offset;
679 int big_endian;
680 uint32_t *prom_buf;
681 long prom_size;
682 int prom_index = 0;
684 #ifdef TARGET_WORDS_BIGENDIAN
685 big_endian = 1;
686 #else
687 big_endian = 0;
688 #endif
690 if (load_elf(loaderparams.kernel_filename, cpu_mips_kseg0_to_phys, NULL,
691 (uint64_t *)&kernel_entry, NULL, (uint64_t *)&kernel_high,
692 big_endian, ELF_MACHINE, 1) < 0) {
693 fprintf(stderr, "qemu: could not load kernel '%s'\n",
694 loaderparams.kernel_filename);
695 exit(1);
698 /* load initrd */
699 initrd_size = 0;
700 initrd_offset = 0;
701 if (loaderparams.initrd_filename) {
702 initrd_size = get_image_size (loaderparams.initrd_filename);
703 if (initrd_size > 0) {
704 initrd_offset = (kernel_high + ~TARGET_PAGE_MASK) & TARGET_PAGE_MASK;
705 if (initrd_offset + initrd_size > ram_size) {
706 fprintf(stderr,
707 "qemu: memory too small for initial ram disk '%s'\n",
708 loaderparams.initrd_filename);
709 exit(1);
711 initrd_size = load_image_targphys(loaderparams.initrd_filename,
712 initrd_offset,
713 ram_size - initrd_offset);
715 if (initrd_size == (target_ulong) -1) {
716 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
717 loaderparams.initrd_filename);
718 exit(1);
722 /* Setup prom parameters. */
723 prom_size = ENVP_NB_ENTRIES * (sizeof(int32_t) + ENVP_ENTRY_SIZE);
724 prom_buf = g_malloc(prom_size);
726 prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_filename);
727 if (initrd_size > 0) {
728 prom_set(prom_buf, prom_index++, "rd_start=0x%" PRIx64 " rd_size=%li %s",
729 cpu_mips_phys_to_kseg0(NULL, initrd_offset), initrd_size,
730 loaderparams.kernel_cmdline);
731 } else {
732 prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_cmdline);
735 prom_set(prom_buf, prom_index++, "memsize");
736 prom_set(prom_buf, prom_index++, "%i", loaderparams.ram_size);
737 prom_set(prom_buf, prom_index++, "modetty0");
738 prom_set(prom_buf, prom_index++, "38400n8r");
739 prom_set(prom_buf, prom_index++, NULL);
741 rom_add_blob_fixed("prom", prom_buf, prom_size,
742 cpu_mips_kseg0_to_phys(NULL, ENVP_ADDR));
744 return kernel_entry;
747 static void malta_mips_config(CPUMIPSState *env)
749 env->mvp->CP0_MVPConf0 |= ((smp_cpus - 1) << CP0MVPC0_PVPE) |
750 ((smp_cpus * env->nr_threads - 1) << CP0MVPC0_PTC);
753 static void main_cpu_reset(void *opaque)
755 MIPSCPU *cpu = opaque;
756 CPUMIPSState *env = &cpu->env;
758 cpu_reset(CPU(cpu));
760 /* The bootloader does not need to be rewritten as it is located in a
761 read only location. The kernel location and the arguments table
762 location does not change. */
763 if (loaderparams.kernel_filename) {
764 env->CP0_Status &= ~((1 << CP0St_BEV) | (1 << CP0St_ERL));
767 malta_mips_config(env);
770 static void cpu_request_exit(void *opaque, int irq, int level)
772 CPUMIPSState *env = cpu_single_env;
774 if (env && level) {
775 cpu_exit(env);
779 static
780 void mips_malta_init (ram_addr_t ram_size,
781 const char *boot_device,
782 const char *kernel_filename, const char *kernel_cmdline,
783 const char *initrd_filename, const char *cpu_model)
785 char *filename;
786 pflash_t *fl;
787 MemoryRegion *system_memory = get_system_memory();
788 MemoryRegion *ram = g_new(MemoryRegion, 1);
789 MemoryRegion *bios, *bios_alias = g_new(MemoryRegion, 1);
790 target_long bios_size = FLASH_SIZE;
791 int64_t kernel_entry;
792 PCIBus *pci_bus;
793 ISABus *isa_bus;
794 MIPSCPU *cpu;
795 CPUMIPSState *env;
796 qemu_irq *isa_irq;
797 qemu_irq *cpu_exit_irq;
798 int piix4_devfn;
799 i2c_bus *smbus;
800 int i;
801 DriveInfo *dinfo;
802 DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
803 DriveInfo *fd[MAX_FD];
804 int fl_idx = 0;
805 int fl_sectors = bios_size >> 16;
806 int be;
808 DeviceState *dev = qdev_create(NULL, "mips-malta");
809 MaltaState *s = DO_UPCAST(MaltaState, busdev.qdev, dev);
811 qdev_init_nofail(dev);
813 /* Make sure the first 3 serial ports are associated with a device. */
814 for(i = 0; i < 3; i++) {
815 if (!serial_hds[i]) {
816 char label[32];
817 snprintf(label, sizeof(label), "serial%d", i);
818 serial_hds[i] = qemu_chr_new(label, "null", NULL);
822 /* init CPUs */
823 if (cpu_model == NULL) {
824 #ifdef TARGET_MIPS64
825 cpu_model = "20Kc";
826 #else
827 cpu_model = "24Kf";
828 #endif
831 for (i = 0; i < smp_cpus; i++) {
832 cpu = cpu_mips_init(cpu_model);
833 if (cpu == NULL) {
834 fprintf(stderr, "Unable to find CPU definition\n");
835 exit(1);
837 env = &cpu->env;
839 /* Init internal devices */
840 cpu_mips_irq_init_cpu(env);
841 cpu_mips_clock_init(env);
842 qemu_register_reset(main_cpu_reset, cpu);
844 env = first_cpu;
846 /* allocate RAM */
847 if (ram_size > (256 << 20)) {
848 fprintf(stderr,
849 "qemu: Too much memory for this machine: %d MB, maximum 256 MB\n",
850 ((unsigned int)ram_size / (1 << 20)));
851 exit(1);
853 memory_region_init_ram(ram, "mips_malta.ram", ram_size);
854 vmstate_register_ram_global(ram);
855 memory_region_add_subregion(system_memory, 0, ram);
857 #ifdef TARGET_WORDS_BIGENDIAN
858 be = 1;
859 #else
860 be = 0;
861 #endif
862 /* FPGA */
863 malta_fpga_init(system_memory, FPGA_ADDRESS, env->irq[2], serial_hds[2]);
865 /* Load firmware in flash / BIOS. */
866 dinfo = drive_get(IF_PFLASH, 0, fl_idx);
867 #ifdef DEBUG_BOARD_INIT
868 if (dinfo) {
869 printf("Register parallel flash %d size " TARGET_FMT_lx " at "
870 "addr %08llx '%s' %x\n",
871 fl_idx, bios_size, FLASH_ADDRESS,
872 bdrv_get_device_name(dinfo->bdrv), fl_sectors);
874 #endif
875 fl = pflash_cfi01_register(FLASH_ADDRESS, NULL, "mips_malta.bios",
876 BIOS_SIZE, dinfo ? dinfo->bdrv : NULL,
877 65536, fl_sectors,
878 4, 0x0000, 0x0000, 0x0000, 0x0000, be);
879 bios = pflash_cfi01_get_memory(fl);
880 fl_idx++;
881 if (kernel_filename) {
882 /* Write a small bootloader to the flash location. */
883 loaderparams.ram_size = ram_size;
884 loaderparams.kernel_filename = kernel_filename;
885 loaderparams.kernel_cmdline = kernel_cmdline;
886 loaderparams.initrd_filename = initrd_filename;
887 kernel_entry = load_kernel();
888 write_bootloader(env, memory_region_get_ram_ptr(bios), kernel_entry);
889 } else {
890 /* Load firmware from flash. */
891 if (!dinfo) {
892 /* Load a BIOS image. */
893 if (bios_name == NULL) {
894 bios_name = BIOS_FILENAME;
896 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
897 if (filename) {
898 bios_size = load_image_targphys(filename, FLASH_ADDRESS,
899 BIOS_SIZE);
900 g_free(filename);
901 } else {
902 bios_size = -1;
904 if ((bios_size < 0 || bios_size > BIOS_SIZE) && !kernel_filename) {
905 fprintf(stderr,
906 "qemu: Could not load MIPS bios '%s', and no -kernel argument was specified\n",
907 bios_name);
908 exit(1);
911 /* In little endian mode the 32bit words in the bios are swapped,
912 a neat trick which allows bi-endian firmware. */
913 #ifndef TARGET_WORDS_BIGENDIAN
915 uint32_t *addr = memory_region_get_ram_ptr(bios);
916 uint32_t *end = addr + bios_size;
917 while (addr < end) {
918 bswap32s(addr);
919 addr++;
922 #endif
925 /* Map the BIOS at a 2nd physical location, as on the real board. */
926 memory_region_init_alias(bios_alias, "bios.1fc", bios, 0, BIOS_SIZE);
927 memory_region_add_subregion(system_memory, RESET_ADDRESS, bios_alias);
929 /* Board ID = 0x420 (Malta Board with CoreLV)
930 XXX: theoretically 0x1e000010 should map to flash and 0x1fc00010 should
931 map to the board ID. */
932 stl_p(memory_region_get_ram_ptr(bios) + 0x10, 0x00000420);
934 /* Init internal devices */
935 cpu_mips_irq_init_cpu(env);
936 cpu_mips_clock_init(env);
939 * We have a circular dependency problem: pci_bus depends on isa_irq,
940 * isa_irq is provided by i8259, i8259 depends on ISA, ISA depends
941 * on piix4, and piix4 depends on pci_bus. To stop the cycle we have
942 * qemu_irq_proxy() adds an extra bit of indirection, allowing us
943 * to resolve the isa_irq -> i8259 dependency after i8259 is initialized.
945 isa_irq = qemu_irq_proxy(&s->i8259, 16);
947 /* Northbridge */
948 pci_bus = gt64120_register(isa_irq);
950 /* Southbridge */
951 ide_drive_get(hd, MAX_IDE_BUS);
953 piix4_devfn = piix4_init(pci_bus, &isa_bus, 80);
955 /* Interrupt controller */
956 /* The 8259 is attached to the MIPS CPU INT0 pin, ie interrupt 2 */
957 s->i8259 = i8259_init(isa_bus, env->irq[2]);
959 isa_bus_irqs(isa_bus, s->i8259);
960 pci_piix4_ide_init(pci_bus, hd, piix4_devfn + 1);
961 pci_create_simple(pci_bus, piix4_devfn + 2, "piix4-usb-uhci");
962 smbus = piix4_pm_init(pci_bus, piix4_devfn + 3, 0x1100,
963 isa_get_irq(NULL, 9), NULL, 0, NULL);
964 /* TODO: Populate SPD eeprom data. */
965 smbus_eeprom_init(smbus, 8, NULL, 0);
966 pit = pit_init(isa_bus, 0x40, 0, NULL);
967 cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
968 DMA_init(0, cpu_exit_irq);
970 /* Super I/O */
971 isa_create_simple(isa_bus, "i8042");
973 rtc_init(isa_bus, 2000, NULL);
974 serial_isa_init(isa_bus, 0, serial_hds[0]);
975 serial_isa_init(isa_bus, 1, serial_hds[1]);
976 if (parallel_hds[0])
977 parallel_init(isa_bus, 0, parallel_hds[0]);
978 for(i = 0; i < MAX_FD; i++) {
979 fd[i] = drive_get(IF_FLOPPY, 0, i);
981 fdctrl_init_isa(isa_bus, fd);
983 /* Sound card */
984 audio_init(isa_bus, pci_bus);
986 /* Network card */
987 network_init();
989 /* Optional PCI video card */
990 if (cirrus_vga_enabled) {
991 pci_cirrus_vga_init(pci_bus);
992 } else if (vmsvga_enabled) {
993 pci_vmsvga_init(pci_bus);
994 } else if (std_vga_enabled) {
995 pci_vga_init(pci_bus);
999 static int mips_malta_sysbus_device_init(SysBusDevice *sysbusdev)
1001 return 0;
1004 static void mips_malta_class_init(ObjectClass *klass, void *data)
1006 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
1008 k->init = mips_malta_sysbus_device_init;
1011 static TypeInfo mips_malta_device = {
1012 .name = "mips-malta",
1013 .parent = TYPE_SYS_BUS_DEVICE,
1014 .instance_size = sizeof(MaltaState),
1015 .class_init = mips_malta_class_init,
1018 static QEMUMachine mips_malta_machine = {
1019 .name = "malta",
1020 .desc = "MIPS Malta Core LV",
1021 .init = mips_malta_init,
1022 .max_cpus = 16,
1023 .is_default = 1,
1026 static void mips_malta_register_types(void)
1028 type_register_static(&mips_malta_device);
1031 static void mips_malta_machine_init(void)
1033 qemu_register_machine(&mips_malta_machine);
1036 type_init(mips_malta_register_types)
1037 machine_init(mips_malta_machine_init);