CODING_STYLE.rst: Be less strict about 80 character limit
[qemu/ar7.git] / hw / mips / malta.c
blob5c11eecec11a2d70b3c846c4f8cdc3b613c44146
1 /*
2 * QEMU Malta board support
4 * Copyright (c) 2006 Aurelien Jarno
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "qemu-common.h"
28 #include "qemu/datadir.h"
29 #include "cpu.h"
30 #include "hw/clock.h"
31 #include "hw/southbridge/piix.h"
32 #include "hw/isa/superio.h"
33 #include "hw/char/serial.h"
34 #include "net/net.h"
35 #include "hw/boards.h"
36 #include "hw/i2c/smbus_eeprom.h"
37 #include "hw/block/flash.h"
38 #include "hw/mips/mips.h"
39 #include "hw/mips/cpudevs.h"
40 #include "hw/pci/pci.h"
41 #include "sysemu/sysemu.h"
42 #include "sysemu/arch_init.h"
43 #include "qemu/log.h"
44 #include "hw/mips/bios.h"
45 #include "hw/ide.h"
46 #include "hw/irq.h"
47 #include "hw/loader.h"
48 #include "elf.h"
49 #include "exec/address-spaces.h"
50 #include "qom/object.h"
51 #include "hw/sysbus.h" /* SysBusDevice */
52 #include "qemu/host-utils.h"
53 #include "sysemu/qtest.h"
54 #include "sysemu/reset.h"
55 #include "sysemu/runstate.h"
56 #include "qapi/error.h"
57 #include "qemu/error-report.h"
58 #include "hw/misc/empty_slot.h"
59 #include "sysemu/kvm.h"
60 #include "hw/semihosting/semihost.h"
61 #include "hw/mips/cps.h"
62 #include "hw/qdev-clock.h"
64 #define ENVP_ADDR 0x80002000l
65 #define ENVP_NB_ENTRIES 16
66 #define ENVP_ENTRY_SIZE 256
68 /* Hardware addresses */
69 #define FLASH_ADDRESS 0x1e000000ULL
70 #define FPGA_ADDRESS 0x1f000000ULL
71 #define RESET_ADDRESS 0x1fc00000ULL
73 #define FLASH_SIZE 0x400000
75 #define MAX_IDE_BUS 2
77 typedef struct {
78 MemoryRegion iomem;
79 MemoryRegion iomem_lo; /* 0 - 0x900 */
80 MemoryRegion iomem_hi; /* 0xa00 - 0x100000 */
81 uint32_t leds;
82 uint32_t brk;
83 uint32_t gpout;
84 uint32_t i2cin;
85 uint32_t i2coe;
86 uint32_t i2cout;
87 uint32_t i2csel;
88 CharBackend display;
89 char display_text[9];
90 SerialMM *uart;
91 bool display_inited;
92 } MaltaFPGAState;
94 #define TYPE_MIPS_MALTA "mips-malta"
95 OBJECT_DECLARE_SIMPLE_TYPE(MaltaState, MIPS_MALTA)
97 struct MaltaState {
98 SysBusDevice parent_obj;
100 Clock *cpuclk;
101 MIPSCPSState cps;
102 qemu_irq i8259[ISA_NUM_IRQS];
105 static struct _loaderparams {
106 int ram_size, ram_low_size;
107 const char *kernel_filename;
108 const char *kernel_cmdline;
109 const char *initrd_filename;
110 } loaderparams;
112 /* Malta FPGA */
113 static void malta_fpga_update_display(void *opaque)
115 char leds_text[9];
116 int i;
117 MaltaFPGAState *s = opaque;
119 for (i = 7 ; i >= 0 ; i--) {
120 if (s->leds & (1 << i)) {
121 leds_text[i] = '#';
122 } else {
123 leds_text[i] = ' ';
126 leds_text[8] = '\0';
128 qemu_chr_fe_printf(&s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n",
129 leds_text);
130 qemu_chr_fe_printf(&s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|",
131 s->display_text);
135 * EEPROM 24C01 / 24C02 emulation.
137 * Emulation for serial EEPROMs:
138 * 24C01 - 1024 bit (128 x 8)
139 * 24C02 - 2048 bit (256 x 8)
141 * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
144 #if defined(DEBUG)
145 # define logout(fmt, ...) \
146 fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
147 #else
148 # define logout(fmt, ...) ((void)0)
149 #endif
151 struct _eeprom24c0x_t {
152 uint8_t tick;
153 uint8_t address;
154 uint8_t command;
155 uint8_t ack;
156 uint8_t scl;
157 uint8_t sda;
158 uint8_t data;
159 /* uint16_t size; */
160 uint8_t contents[256];
163 typedef struct _eeprom24c0x_t eeprom24c0x_t;
165 static eeprom24c0x_t spd_eeprom = {
166 .contents = {
167 /* 00000000: */
168 0x80, 0x08, 0xFF, 0x0D, 0x0A, 0xFF, 0x40, 0x00,
169 /* 00000008: */
170 0x01, 0x75, 0x54, 0x00, 0x82, 0x08, 0x00, 0x01,
171 /* 00000010: */
172 0x8F, 0x04, 0x02, 0x01, 0x01, 0x00, 0x00, 0x00,
173 /* 00000018: */
174 0x00, 0x00, 0x00, 0x14, 0x0F, 0x14, 0x2D, 0xFF,
175 /* 00000020: */
176 0x15, 0x08, 0x15, 0x08, 0x00, 0x00, 0x00, 0x00,
177 /* 00000028: */
178 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
179 /* 00000030: */
180 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
181 /* 00000038: */
182 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x12, 0xD0,
183 /* 00000040: */
184 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
185 /* 00000048: */
186 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
187 /* 00000050: */
188 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
189 /* 00000058: */
190 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
191 /* 00000060: */
192 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
193 /* 00000068: */
194 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
195 /* 00000070: */
196 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
197 /* 00000078: */
198 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x64, 0xF4,
202 static void generate_eeprom_spd(uint8_t *eeprom, ram_addr_t ram_size)
204 enum { SDR = 0x4, DDR2 = 0x8 } type;
205 uint8_t *spd = spd_eeprom.contents;
206 uint8_t nbanks = 0;
207 uint16_t density = 0;
208 int i;
210 /* work in terms of MB */
211 ram_size /= MiB;
213 while ((ram_size >= 4) && (nbanks <= 2)) {
214 int sz_log2 = MIN(31 - clz32(ram_size), 14);
215 nbanks++;
216 density |= 1 << (sz_log2 - 2);
217 ram_size -= 1 << sz_log2;
220 /* split to 2 banks if possible */
221 if ((nbanks == 1) && (density > 1)) {
222 nbanks++;
223 density >>= 1;
226 if (density & 0xff00) {
227 density = (density & 0xe0) | ((density >> 8) & 0x1f);
228 type = DDR2;
229 } else if (!(density & 0x1f)) {
230 type = DDR2;
231 } else {
232 type = SDR;
235 if (ram_size) {
236 warn_report("SPD cannot represent final " RAM_ADDR_FMT "MB"
237 " of SDRAM", ram_size);
240 /* fill in SPD memory information */
241 spd[2] = type;
242 spd[5] = nbanks;
243 spd[31] = density;
245 /* checksum */
246 spd[63] = 0;
247 for (i = 0; i < 63; i++) {
248 spd[63] += spd[i];
251 /* copy for SMBUS */
252 memcpy(eeprom, spd, sizeof(spd_eeprom.contents));
255 static void generate_eeprom_serial(uint8_t *eeprom)
257 int i, pos = 0;
258 uint8_t mac[6] = { 0x00 };
259 uint8_t sn[5] = { 0x01, 0x23, 0x45, 0x67, 0x89 };
261 /* version */
262 eeprom[pos++] = 0x01;
264 /* count */
265 eeprom[pos++] = 0x02;
267 /* MAC address */
268 eeprom[pos++] = 0x01; /* MAC */
269 eeprom[pos++] = 0x06; /* length */
270 memcpy(&eeprom[pos], mac, sizeof(mac));
271 pos += sizeof(mac);
273 /* serial number */
274 eeprom[pos++] = 0x02; /* serial */
275 eeprom[pos++] = 0x05; /* length */
276 memcpy(&eeprom[pos], sn, sizeof(sn));
277 pos += sizeof(sn);
279 /* checksum */
280 eeprom[pos] = 0;
281 for (i = 0; i < pos; i++) {
282 eeprom[pos] += eeprom[i];
286 static uint8_t eeprom24c0x_read(eeprom24c0x_t *eeprom)
288 logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
289 eeprom->tick, eeprom->scl, eeprom->sda, eeprom->data);
290 return eeprom->sda;
293 static void eeprom24c0x_write(eeprom24c0x_t *eeprom, int scl, int sda)
295 if (eeprom->scl && scl && (eeprom->sda != sda)) {
296 logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
297 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda,
298 sda ? "stop" : "start");
299 if (!sda) {
300 eeprom->tick = 1;
301 eeprom->command = 0;
303 } else if (eeprom->tick == 0 && !eeprom->ack) {
304 /* Waiting for start. */
305 logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
306 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
307 } else if (!eeprom->scl && scl) {
308 logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
309 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
310 if (eeprom->ack) {
311 logout("\ti2c ack bit = 0\n");
312 sda = 0;
313 eeprom->ack = 0;
314 } else if (eeprom->sda == sda) {
315 uint8_t bit = (sda != 0);
316 logout("\ti2c bit = %d\n", bit);
317 if (eeprom->tick < 9) {
318 eeprom->command <<= 1;
319 eeprom->command += bit;
320 eeprom->tick++;
321 if (eeprom->tick == 9) {
322 logout("\tcommand 0x%04x, %s\n", eeprom->command,
323 bit ? "read" : "write");
324 eeprom->ack = 1;
326 } else if (eeprom->tick < 17) {
327 if (eeprom->command & 1) {
328 sda = ((eeprom->data & 0x80) != 0);
330 eeprom->address <<= 1;
331 eeprom->address += bit;
332 eeprom->tick++;
333 eeprom->data <<= 1;
334 if (eeprom->tick == 17) {
335 eeprom->data = eeprom->contents[eeprom->address];
336 logout("\taddress 0x%04x, data 0x%02x\n",
337 eeprom->address, eeprom->data);
338 eeprom->ack = 1;
339 eeprom->tick = 0;
341 } else if (eeprom->tick >= 17) {
342 sda = 0;
344 } else {
345 logout("\tsda changed with raising scl\n");
347 } else {
348 logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom->tick, eeprom->scl,
349 scl, eeprom->sda, sda);
351 eeprom->scl = scl;
352 eeprom->sda = sda;
355 static uint64_t malta_fpga_read(void *opaque, hwaddr addr,
356 unsigned size)
358 MaltaFPGAState *s = opaque;
359 uint32_t val = 0;
360 uint32_t saddr;
362 saddr = (addr & 0xfffff);
364 switch (saddr) {
366 /* SWITCH Register */
367 case 0x00200:
368 val = 0x00000000;
369 break;
371 /* STATUS Register */
372 case 0x00208:
373 #ifdef TARGET_WORDS_BIGENDIAN
374 val = 0x00000012;
375 #else
376 val = 0x00000010;
377 #endif
378 break;
380 /* JMPRS Register */
381 case 0x00210:
382 val = 0x00;
383 break;
385 /* LEDBAR Register */
386 case 0x00408:
387 val = s->leds;
388 break;
390 /* BRKRES Register */
391 case 0x00508:
392 val = s->brk;
393 break;
395 /* UART Registers are handled directly by the serial device */
397 /* GPOUT Register */
398 case 0x00a00:
399 val = s->gpout;
400 break;
402 /* XXX: implement a real I2C controller */
404 /* GPINP Register */
405 case 0x00a08:
406 /* IN = OUT until a real I2C control is implemented */
407 if (s->i2csel) {
408 val = s->i2cout;
409 } else {
410 val = 0x00;
412 break;
414 /* I2CINP Register */
415 case 0x00b00:
416 val = ((s->i2cin & ~1) | eeprom24c0x_read(&spd_eeprom));
417 break;
419 /* I2COE Register */
420 case 0x00b08:
421 val = s->i2coe;
422 break;
424 /* I2COUT Register */
425 case 0x00b10:
426 val = s->i2cout;
427 break;
429 /* I2CSEL Register */
430 case 0x00b18:
431 val = s->i2csel;
432 break;
434 default:
435 qemu_log_mask(LOG_GUEST_ERROR,
436 "malta_fpga_read: Bad register addr 0x%"HWADDR_PRIX"\n",
437 addr);
438 break;
440 return val;
443 static void malta_fpga_write(void *opaque, hwaddr addr,
444 uint64_t val, unsigned size)
446 MaltaFPGAState *s = opaque;
447 uint32_t saddr;
449 saddr = (addr & 0xfffff);
451 switch (saddr) {
453 /* SWITCH Register */
454 case 0x00200:
455 break;
457 /* JMPRS Register */
458 case 0x00210:
459 break;
461 /* LEDBAR Register */
462 case 0x00408:
463 s->leds = val & 0xff;
464 malta_fpga_update_display(s);
465 break;
467 /* ASCIIWORD Register */
468 case 0x00410:
469 snprintf(s->display_text, 9, "%08X", (uint32_t)val);
470 malta_fpga_update_display(s);
471 break;
473 /* ASCIIPOS0 to ASCIIPOS7 Registers */
474 case 0x00418:
475 case 0x00420:
476 case 0x00428:
477 case 0x00430:
478 case 0x00438:
479 case 0x00440:
480 case 0x00448:
481 case 0x00450:
482 s->display_text[(saddr - 0x00418) >> 3] = (char) val;
483 malta_fpga_update_display(s);
484 break;
486 /* SOFTRES Register */
487 case 0x00500:
488 if (val == 0x42) {
489 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
491 break;
493 /* BRKRES Register */
494 case 0x00508:
495 s->brk = val & 0xff;
496 break;
498 /* UART Registers are handled directly by the serial device */
500 /* GPOUT Register */
501 case 0x00a00:
502 s->gpout = val & 0xff;
503 break;
505 /* I2COE Register */
506 case 0x00b08:
507 s->i2coe = val & 0x03;
508 break;
510 /* I2COUT Register */
511 case 0x00b10:
512 eeprom24c0x_write(&spd_eeprom, val & 0x02, val & 0x01);
513 s->i2cout = val;
514 break;
516 /* I2CSEL Register */
517 case 0x00b18:
518 s->i2csel = val & 0x01;
519 break;
521 default:
522 qemu_log_mask(LOG_GUEST_ERROR,
523 "malta_fpga_write: Bad register addr 0x%"HWADDR_PRIX"\n",
524 addr);
525 break;
529 static const MemoryRegionOps malta_fpga_ops = {
530 .read = malta_fpga_read,
531 .write = malta_fpga_write,
532 .endianness = DEVICE_NATIVE_ENDIAN,
535 static void malta_fpga_reset(void *opaque)
537 MaltaFPGAState *s = opaque;
539 s->leds = 0x00;
540 s->brk = 0x0a;
541 s->gpout = 0x00;
542 s->i2cin = 0x3;
543 s->i2coe = 0x0;
544 s->i2cout = 0x3;
545 s->i2csel = 0x1;
547 s->display_text[8] = '\0';
548 snprintf(s->display_text, 9, " ");
551 static void malta_fgpa_display_event(void *opaque, QEMUChrEvent event)
553 MaltaFPGAState *s = opaque;
555 if (event == CHR_EVENT_OPENED && !s->display_inited) {
556 qemu_chr_fe_printf(&s->display, "\e[HMalta LEDBAR\r\n");
557 qemu_chr_fe_printf(&s->display, "+--------+\r\n");
558 qemu_chr_fe_printf(&s->display, "+ +\r\n");
559 qemu_chr_fe_printf(&s->display, "+--------+\r\n");
560 qemu_chr_fe_printf(&s->display, "\n");
561 qemu_chr_fe_printf(&s->display, "Malta ASCII\r\n");
562 qemu_chr_fe_printf(&s->display, "+--------+\r\n");
563 qemu_chr_fe_printf(&s->display, "+ +\r\n");
564 qemu_chr_fe_printf(&s->display, "+--------+\r\n");
565 s->display_inited = true;
569 static MaltaFPGAState *malta_fpga_init(MemoryRegion *address_space,
570 hwaddr base, qemu_irq uart_irq, Chardev *uart_chr)
572 MaltaFPGAState *s;
573 Chardev *chr;
575 s = g_new0(MaltaFPGAState, 1);
577 memory_region_init_io(&s->iomem, NULL, &malta_fpga_ops, s,
578 "malta-fpga", 0x100000);
579 memory_region_init_alias(&s->iomem_lo, NULL, "malta-fpga",
580 &s->iomem, 0, 0x900);
581 memory_region_init_alias(&s->iomem_hi, NULL, "malta-fpga",
582 &s->iomem, 0xa00, 0x100000 - 0xa00);
584 memory_region_add_subregion(address_space, base, &s->iomem_lo);
585 memory_region_add_subregion(address_space, base + 0xa00, &s->iomem_hi);
587 chr = qemu_chr_new("fpga", "vc:320x200", NULL);
588 qemu_chr_fe_init(&s->display, chr, NULL);
589 qemu_chr_fe_set_handlers(&s->display, NULL, NULL,
590 malta_fgpa_display_event, NULL, s, NULL, true);
592 s->uart = serial_mm_init(address_space, base + 0x900, 3, uart_irq,
593 230400, uart_chr, DEVICE_NATIVE_ENDIAN);
595 malta_fpga_reset(s);
596 qemu_register_reset(malta_fpga_reset, s);
598 return s;
601 /* Network support */
602 static void network_init(PCIBus *pci_bus)
604 int i;
606 for (i = 0; i < nb_nics; i++) {
607 NICInfo *nd = &nd_table[i];
608 const char *default_devaddr = NULL;
610 if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0))
611 /* The malta board has a PCNet card using PCI SLOT 11 */
612 default_devaddr = "0b";
614 pci_nic_init_nofail(nd, pci_bus, "pcnet", default_devaddr);
618 static void write_bootloader_nanomips(uint8_t *base, int64_t run_addr,
619 int64_t kernel_entry)
621 uint16_t *p;
623 /* Small bootloader */
624 p = (uint16_t *)base;
626 #define NM_HI1(VAL) (((VAL) >> 16) & 0x1f)
627 #define NM_HI2(VAL) \
628 (((VAL) & 0xf000) | (((VAL) >> 19) & 0xffc) | (((VAL) >> 31) & 0x1))
629 #define NM_LO(VAL) ((VAL) & 0xfff)
631 stw_p(p++, 0x2800); stw_p(p++, 0x001c);
632 /* bc to_here */
633 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
634 /* nop */
635 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
636 /* nop */
637 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
638 /* nop */
639 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
640 /* nop */
641 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
642 /* nop */
643 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
644 /* nop */
645 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
646 /* nop */
648 /* to_here: */
649 if (semihosting_get_argc()) {
650 /* Preserve a0 content as arguments have been passed */
651 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
652 /* nop */
653 } else {
654 stw_p(p++, 0x0080); stw_p(p++, 0x0002);
655 /* li a0,2 */
658 stw_p(p++, 0xe3a0 | NM_HI1(ENVP_ADDR - 64));
660 stw_p(p++, NM_HI2(ENVP_ADDR - 64));
661 /* lui sp,%hi(ENVP_ADDR - 64) */
663 stw_p(p++, 0x83bd); stw_p(p++, NM_LO(ENVP_ADDR - 64));
664 /* ori sp,sp,%lo(ENVP_ADDR - 64) */
666 stw_p(p++, 0xe0a0 | NM_HI1(ENVP_ADDR));
668 stw_p(p++, NM_HI2(ENVP_ADDR));
669 /* lui a1,%hi(ENVP_ADDR) */
671 stw_p(p++, 0x80a5); stw_p(p++, NM_LO(ENVP_ADDR));
672 /* ori a1,a1,%lo(ENVP_ADDR) */
674 stw_p(p++, 0xe0c0 | NM_HI1(ENVP_ADDR + 8));
676 stw_p(p++, NM_HI2(ENVP_ADDR + 8));
677 /* lui a2,%hi(ENVP_ADDR + 8) */
679 stw_p(p++, 0x80c6); stw_p(p++, NM_LO(ENVP_ADDR + 8));
680 /* ori a2,a2,%lo(ENVP_ADDR + 8) */
682 stw_p(p++, 0xe0e0 | NM_HI1(loaderparams.ram_low_size));
684 stw_p(p++, NM_HI2(loaderparams.ram_low_size));
685 /* lui a3,%hi(loaderparams.ram_low_size) */
687 stw_p(p++, 0x80e7); stw_p(p++, NM_LO(loaderparams.ram_low_size));
688 /* ori a3,a3,%lo(loaderparams.ram_low_size) */
691 * Load BAR registers as done by YAMON:
693 * - set up PCI0 I/O BARs from 0x18000000 to 0x181fffff
694 * - set up PCI0 MEM0 at 0x10000000, size 0x8000000
695 * - set up PCI0 MEM1 at 0x18200000, size 0xbe00000
698 stw_p(p++, 0xe040); stw_p(p++, 0x0681);
699 /* lui t1, %hi(0xb4000000) */
701 #ifdef TARGET_WORDS_BIGENDIAN
703 stw_p(p++, 0xe020); stw_p(p++, 0x0be1);
704 /* lui t0, %hi(0xdf000000) */
706 /* 0x68 corresponds to GT_ISD (from hw/mips/gt64xxx_pci.c) */
707 stw_p(p++, 0x8422); stw_p(p++, 0x9068);
708 /* sw t0, 0x68(t1) */
710 stw_p(p++, 0xe040); stw_p(p++, 0x077d);
711 /* lui t1, %hi(0xbbe00000) */
713 stw_p(p++, 0xe020); stw_p(p++, 0x0801);
714 /* lui t0, %hi(0xc0000000) */
716 /* 0x48 corresponds to GT_PCI0IOLD */
717 stw_p(p++, 0x8422); stw_p(p++, 0x9048);
718 /* sw t0, 0x48(t1) */
720 stw_p(p++, 0xe020); stw_p(p++, 0x0800);
721 /* lui t0, %hi(0x40000000) */
723 /* 0x50 corresponds to GT_PCI0IOHD */
724 stw_p(p++, 0x8422); stw_p(p++, 0x9050);
725 /* sw t0, 0x50(t1) */
727 stw_p(p++, 0xe020); stw_p(p++, 0x0001);
728 /* lui t0, %hi(0x80000000) */
730 /* 0x58 corresponds to GT_PCI0M0LD */
731 stw_p(p++, 0x8422); stw_p(p++, 0x9058);
732 /* sw t0, 0x58(t1) */
734 stw_p(p++, 0xe020); stw_p(p++, 0x07e0);
735 /* lui t0, %hi(0x3f000000) */
737 /* 0x60 corresponds to GT_PCI0M0HD */
738 stw_p(p++, 0x8422); stw_p(p++, 0x9060);
739 /* sw t0, 0x60(t1) */
741 stw_p(p++, 0xe020); stw_p(p++, 0x0821);
742 /* lui t0, %hi(0xc1000000) */
744 /* 0x80 corresponds to GT_PCI0M1LD */
745 stw_p(p++, 0x8422); stw_p(p++, 0x9080);
746 /* sw t0, 0x80(t1) */
748 stw_p(p++, 0xe020); stw_p(p++, 0x0bc0);
749 /* lui t0, %hi(0x5e000000) */
751 #else
753 stw_p(p++, 0x0020); stw_p(p++, 0x00df);
754 /* addiu[32] t0, $0, 0xdf */
756 /* 0x68 corresponds to GT_ISD */
757 stw_p(p++, 0x8422); stw_p(p++, 0x9068);
758 /* sw t0, 0x68(t1) */
760 /* Use kseg2 remapped address 0x1be00000 */
761 stw_p(p++, 0xe040); stw_p(p++, 0x077d);
762 /* lui t1, %hi(0xbbe00000) */
764 stw_p(p++, 0x0020); stw_p(p++, 0x00c0);
765 /* addiu[32] t0, $0, 0xc0 */
767 /* 0x48 corresponds to GT_PCI0IOLD */
768 stw_p(p++, 0x8422); stw_p(p++, 0x9048);
769 /* sw t0, 0x48(t1) */
771 stw_p(p++, 0x0020); stw_p(p++, 0x0040);
772 /* addiu[32] t0, $0, 0x40 */
774 /* 0x50 corresponds to GT_PCI0IOHD */
775 stw_p(p++, 0x8422); stw_p(p++, 0x9050);
776 /* sw t0, 0x50(t1) */
778 stw_p(p++, 0x0020); stw_p(p++, 0x0080);
779 /* addiu[32] t0, $0, 0x80 */
781 /* 0x58 corresponds to GT_PCI0M0LD */
782 stw_p(p++, 0x8422); stw_p(p++, 0x9058);
783 /* sw t0, 0x58(t1) */
785 stw_p(p++, 0x0020); stw_p(p++, 0x003f);
786 /* addiu[32] t0, $0, 0x3f */
788 /* 0x60 corresponds to GT_PCI0M0HD */
789 stw_p(p++, 0x8422); stw_p(p++, 0x9060);
790 /* sw t0, 0x60(t1) */
792 stw_p(p++, 0x0020); stw_p(p++, 0x00c1);
793 /* addiu[32] t0, $0, 0xc1 */
795 /* 0x80 corresponds to GT_PCI0M1LD */
796 stw_p(p++, 0x8422); stw_p(p++, 0x9080);
797 /* sw t0, 0x80(t1) */
799 stw_p(p++, 0x0020); stw_p(p++, 0x005e);
800 /* addiu[32] t0, $0, 0x5e */
802 #endif
804 /* 0x88 corresponds to GT_PCI0M1HD */
805 stw_p(p++, 0x8422); stw_p(p++, 0x9088);
806 /* sw t0, 0x88(t1) */
808 stw_p(p++, 0xe320 | NM_HI1(kernel_entry));
810 stw_p(p++, NM_HI2(kernel_entry));
811 /* lui t9,%hi(kernel_entry) */
813 stw_p(p++, 0x8339); stw_p(p++, NM_LO(kernel_entry));
814 /* ori t9,t9,%lo(kernel_entry) */
816 stw_p(p++, 0x4bf9); stw_p(p++, 0x0000);
817 /* jalrc t8 */
821 * ROM and pseudo bootloader
823 * The following code implements a very very simple bootloader. It first
824 * loads the registers a0 to a3 to the values expected by the OS, and
825 * then jump at the kernel address.
827 * The bootloader should pass the locations of the kernel arguments and
828 * environment variables tables. Those tables contain the 32-bit address
829 * of NULL terminated strings. The environment variables table should be
830 * terminated by a NULL address.
832 * For a simpler implementation, the number of kernel arguments is fixed
833 * to two (the name of the kernel and the command line), and the two
834 * tables are actually the same one.
836 * The registers a0 to a3 should contain the following values:
837 * a0 - number of kernel arguments
838 * a1 - 32-bit address of the kernel arguments table
839 * a2 - 32-bit address of the environment variables table
840 * a3 - RAM size in bytes
842 static void write_bootloader(uint8_t *base, int64_t run_addr,
843 int64_t kernel_entry)
845 uint32_t *p;
847 /* Small bootloader */
848 p = (uint32_t *)base;
850 stl_p(p++, 0x08000000 | /* j 0x1fc00580 */
851 ((run_addr + 0x580) & 0x0fffffff) >> 2);
852 stl_p(p++, 0x00000000); /* nop */
854 /* YAMON service vector */
855 stl_p(base + 0x500, run_addr + 0x0580); /* start: */
856 stl_p(base + 0x504, run_addr + 0x083c); /* print_count: */
857 stl_p(base + 0x520, run_addr + 0x0580); /* start: */
858 stl_p(base + 0x52c, run_addr + 0x0800); /* flush_cache: */
859 stl_p(base + 0x534, run_addr + 0x0808); /* print: */
860 stl_p(base + 0x538, run_addr + 0x0800); /* reg_cpu_isr: */
861 stl_p(base + 0x53c, run_addr + 0x0800); /* unred_cpu_isr: */
862 stl_p(base + 0x540, run_addr + 0x0800); /* reg_ic_isr: */
863 stl_p(base + 0x544, run_addr + 0x0800); /* unred_ic_isr: */
864 stl_p(base + 0x548, run_addr + 0x0800); /* reg_esr: */
865 stl_p(base + 0x54c, run_addr + 0x0800); /* unreg_esr: */
866 stl_p(base + 0x550, run_addr + 0x0800); /* getchar: */
867 stl_p(base + 0x554, run_addr + 0x0800); /* syscon_read: */
870 /* Second part of the bootloader */
871 p = (uint32_t *) (base + 0x580);
873 if (semihosting_get_argc()) {
874 /* Preserve a0 content as arguments have been passed */
875 stl_p(p++, 0x00000000); /* nop */
876 } else {
877 stl_p(p++, 0x24040002); /* addiu a0, zero, 2 */
880 /* lui sp, high(ENVP_ADDR) */
881 stl_p(p++, 0x3c1d0000 | (((ENVP_ADDR - 64) >> 16) & 0xffff));
882 /* ori sp, sp, low(ENVP_ADDR) */
883 stl_p(p++, 0x37bd0000 | ((ENVP_ADDR - 64) & 0xffff));
884 /* lui a1, high(ENVP_ADDR) */
885 stl_p(p++, 0x3c050000 | ((ENVP_ADDR >> 16) & 0xffff));
886 /* ori a1, a1, low(ENVP_ADDR) */
887 stl_p(p++, 0x34a50000 | (ENVP_ADDR & 0xffff));
888 /* lui a2, high(ENVP_ADDR + 8) */
889 stl_p(p++, 0x3c060000 | (((ENVP_ADDR + 8) >> 16) & 0xffff));
890 /* ori a2, a2, low(ENVP_ADDR + 8) */
891 stl_p(p++, 0x34c60000 | ((ENVP_ADDR + 8) & 0xffff));
892 /* lui a3, high(ram_low_size) */
893 stl_p(p++, 0x3c070000 | (loaderparams.ram_low_size >> 16));
894 /* ori a3, a3, low(ram_low_size) */
895 stl_p(p++, 0x34e70000 | (loaderparams.ram_low_size & 0xffff));
897 /* Load BAR registers as done by YAMON */
898 stl_p(p++, 0x3c09b400); /* lui t1, 0xb400 */
900 #ifdef TARGET_WORDS_BIGENDIAN
901 stl_p(p++, 0x3c08df00); /* lui t0, 0xdf00 */
902 #else
903 stl_p(p++, 0x340800df); /* ori t0, r0, 0x00df */
904 #endif
905 stl_p(p++, 0xad280068); /* sw t0, 0x0068(t1) */
907 stl_p(p++, 0x3c09bbe0); /* lui t1, 0xbbe0 */
909 #ifdef TARGET_WORDS_BIGENDIAN
910 stl_p(p++, 0x3c08c000); /* lui t0, 0xc000 */
911 #else
912 stl_p(p++, 0x340800c0); /* ori t0, r0, 0x00c0 */
913 #endif
914 stl_p(p++, 0xad280048); /* sw t0, 0x0048(t1) */
915 #ifdef TARGET_WORDS_BIGENDIAN
916 stl_p(p++, 0x3c084000); /* lui t0, 0x4000 */
917 #else
918 stl_p(p++, 0x34080040); /* ori t0, r0, 0x0040 */
919 #endif
920 stl_p(p++, 0xad280050); /* sw t0, 0x0050(t1) */
922 #ifdef TARGET_WORDS_BIGENDIAN
923 stl_p(p++, 0x3c088000); /* lui t0, 0x8000 */
924 #else
925 stl_p(p++, 0x34080080); /* ori t0, r0, 0x0080 */
926 #endif
927 stl_p(p++, 0xad280058); /* sw t0, 0x0058(t1) */
928 #ifdef TARGET_WORDS_BIGENDIAN
929 stl_p(p++, 0x3c083f00); /* lui t0, 0x3f00 */
930 #else
931 stl_p(p++, 0x3408003f); /* ori t0, r0, 0x003f */
932 #endif
933 stl_p(p++, 0xad280060); /* sw t0, 0x0060(t1) */
935 #ifdef TARGET_WORDS_BIGENDIAN
936 stl_p(p++, 0x3c08c100); /* lui t0, 0xc100 */
937 #else
938 stl_p(p++, 0x340800c1); /* ori t0, r0, 0x00c1 */
939 #endif
940 stl_p(p++, 0xad280080); /* sw t0, 0x0080(t1) */
941 #ifdef TARGET_WORDS_BIGENDIAN
942 stl_p(p++, 0x3c085e00); /* lui t0, 0x5e00 */
943 #else
944 stl_p(p++, 0x3408005e); /* ori t0, r0, 0x005e */
945 #endif
946 stl_p(p++, 0xad280088); /* sw t0, 0x0088(t1) */
948 /* Jump to kernel code */
949 stl_p(p++, 0x3c1f0000 |
950 ((kernel_entry >> 16) & 0xffff)); /* lui ra, high(kernel_entry) */
951 stl_p(p++, 0x37ff0000 |
952 (kernel_entry & 0xffff)); /* ori ra, ra, low(kernel_entry) */
953 stl_p(p++, 0x03e00009); /* jalr ra */
954 stl_p(p++, 0x00000000); /* nop */
956 /* YAMON subroutines */
957 p = (uint32_t *) (base + 0x800);
958 stl_p(p++, 0x03e00009); /* jalr ra */
959 stl_p(p++, 0x24020000); /* li v0,0 */
960 /* 808 YAMON print */
961 stl_p(p++, 0x03e06821); /* move t5,ra */
962 stl_p(p++, 0x00805821); /* move t3,a0 */
963 stl_p(p++, 0x00a05021); /* move t2,a1 */
964 stl_p(p++, 0x91440000); /* lbu a0,0(t2) */
965 stl_p(p++, 0x254a0001); /* addiu t2,t2,1 */
966 stl_p(p++, 0x10800005); /* beqz a0,834 */
967 stl_p(p++, 0x00000000); /* nop */
968 stl_p(p++, 0x0ff0021c); /* jal 870 */
969 stl_p(p++, 0x00000000); /* nop */
970 stl_p(p++, 0x1000fff9); /* b 814 */
971 stl_p(p++, 0x00000000); /* nop */
972 stl_p(p++, 0x01a00009); /* jalr t5 */
973 stl_p(p++, 0x01602021); /* move a0,t3 */
974 /* 0x83c YAMON print_count */
975 stl_p(p++, 0x03e06821); /* move t5,ra */
976 stl_p(p++, 0x00805821); /* move t3,a0 */
977 stl_p(p++, 0x00a05021); /* move t2,a1 */
978 stl_p(p++, 0x00c06021); /* move t4,a2 */
979 stl_p(p++, 0x91440000); /* lbu a0,0(t2) */
980 stl_p(p++, 0x0ff0021c); /* jal 870 */
981 stl_p(p++, 0x00000000); /* nop */
982 stl_p(p++, 0x254a0001); /* addiu t2,t2,1 */
983 stl_p(p++, 0x258cffff); /* addiu t4,t4,-1 */
984 stl_p(p++, 0x1580fffa); /* bnez t4,84c */
985 stl_p(p++, 0x00000000); /* nop */
986 stl_p(p++, 0x01a00009); /* jalr t5 */
987 stl_p(p++, 0x01602021); /* move a0,t3 */
988 /* 0x870 */
989 stl_p(p++, 0x3c08b800); /* lui t0,0xb400 */
990 stl_p(p++, 0x350803f8); /* ori t0,t0,0x3f8 */
991 stl_p(p++, 0x91090005); /* lbu t1,5(t0) */
992 stl_p(p++, 0x00000000); /* nop */
993 stl_p(p++, 0x31290040); /* andi t1,t1,0x40 */
994 stl_p(p++, 0x1120fffc); /* beqz t1,878 <outch+0x8> */
995 stl_p(p++, 0x00000000); /* nop */
996 stl_p(p++, 0x03e00009); /* jalr ra */
997 stl_p(p++, 0xa1040000); /* sb a0,0(t0) */
1001 static void GCC_FMT_ATTR(3, 4) prom_set(uint32_t *prom_buf, int index,
1002 const char *string, ...)
1004 va_list ap;
1005 int32_t table_addr;
1007 if (index >= ENVP_NB_ENTRIES) {
1008 return;
1011 if (string == NULL) {
1012 prom_buf[index] = 0;
1013 return;
1016 table_addr = sizeof(int32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
1017 prom_buf[index] = tswap32(ENVP_ADDR + table_addr);
1019 va_start(ap, string);
1020 vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap);
1021 va_end(ap);
1024 /* Kernel */
1025 static int64_t load_kernel(void)
1027 int64_t kernel_entry, kernel_high, initrd_size;
1028 long kernel_size;
1029 ram_addr_t initrd_offset;
1030 int big_endian;
1031 uint32_t *prom_buf;
1032 long prom_size;
1033 int prom_index = 0;
1034 uint64_t (*xlate_to_kseg0) (void *opaque, uint64_t addr);
1036 #ifdef TARGET_WORDS_BIGENDIAN
1037 big_endian = 1;
1038 #else
1039 big_endian = 0;
1040 #endif
1042 kernel_size = load_elf(loaderparams.kernel_filename, NULL,
1043 cpu_mips_kseg0_to_phys, NULL,
1044 (uint64_t *)&kernel_entry, NULL,
1045 (uint64_t *)&kernel_high, NULL, big_endian, EM_MIPS,
1046 1, 0);
1047 if (kernel_size < 0) {
1048 error_report("could not load kernel '%s': %s",
1049 loaderparams.kernel_filename,
1050 load_elf_strerror(kernel_size));
1051 exit(1);
1054 /* Check where the kernel has been linked */
1055 if (kernel_entry & 0x80000000ll) {
1056 if (kvm_enabled()) {
1057 error_report("KVM guest kernels must be linked in useg. "
1058 "Did you forget to enable CONFIG_KVM_GUEST?");
1059 exit(1);
1062 xlate_to_kseg0 = cpu_mips_phys_to_kseg0;
1063 } else {
1064 /* if kernel entry is in useg it is probably a KVM T&E kernel */
1065 mips_um_ksegs_enable();
1067 xlate_to_kseg0 = cpu_mips_kvm_um_phys_to_kseg0;
1070 /* load initrd */
1071 initrd_size = 0;
1072 initrd_offset = 0;
1073 if (loaderparams.initrd_filename) {
1074 initrd_size = get_image_size(loaderparams.initrd_filename);
1075 if (initrd_size > 0) {
1077 * The kernel allocates the bootmap memory in the low memory after
1078 * the initrd. It takes at most 128kiB for 2GB RAM and 4kiB
1079 * pages.
1081 initrd_offset = ROUND_UP(loaderparams.ram_low_size
1082 - (initrd_size + 128 * KiB),
1083 INITRD_PAGE_SIZE);
1084 if (kernel_high >= initrd_offset) {
1085 error_report("memory too small for initial ram disk '%s'",
1086 loaderparams.initrd_filename);
1087 exit(1);
1089 initrd_size = load_image_targphys(loaderparams.initrd_filename,
1090 initrd_offset,
1091 loaderparams.ram_size - initrd_offset);
1093 if (initrd_size == (target_ulong) -1) {
1094 error_report("could not load initial ram disk '%s'",
1095 loaderparams.initrd_filename);
1096 exit(1);
1100 /* Setup prom parameters. */
1101 prom_size = ENVP_NB_ENTRIES * (sizeof(int32_t) + ENVP_ENTRY_SIZE);
1102 prom_buf = g_malloc(prom_size);
1104 prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_filename);
1105 if (initrd_size > 0) {
1106 prom_set(prom_buf, prom_index++,
1107 "rd_start=0x%" PRIx64 " rd_size=%" PRId64 " %s",
1108 xlate_to_kseg0(NULL, initrd_offset),
1109 initrd_size, loaderparams.kernel_cmdline);
1110 } else {
1111 prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_cmdline);
1114 prom_set(prom_buf, prom_index++, "memsize");
1115 prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_low_size);
1117 prom_set(prom_buf, prom_index++, "ememsize");
1118 prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_size);
1120 prom_set(prom_buf, prom_index++, "modetty0");
1121 prom_set(prom_buf, prom_index++, "38400n8r");
1122 prom_set(prom_buf, prom_index++, NULL);
1124 rom_add_blob_fixed("prom", prom_buf, prom_size,
1125 cpu_mips_kseg0_to_phys(NULL, ENVP_ADDR));
1127 g_free(prom_buf);
1128 return kernel_entry;
1131 static void malta_mips_config(MIPSCPU *cpu)
1133 MachineState *ms = MACHINE(qdev_get_machine());
1134 unsigned int smp_cpus = ms->smp.cpus;
1135 CPUMIPSState *env = &cpu->env;
1136 CPUState *cs = CPU(cpu);
1138 env->mvp->CP0_MVPConf0 |= ((smp_cpus - 1) << CP0MVPC0_PVPE) |
1139 ((smp_cpus * cs->nr_threads - 1) << CP0MVPC0_PTC);
1142 static void main_cpu_reset(void *opaque)
1144 MIPSCPU *cpu = opaque;
1145 CPUMIPSState *env = &cpu->env;
1147 cpu_reset(CPU(cpu));
1150 * The bootloader does not need to be rewritten as it is located in a
1151 * read only location. The kernel location and the arguments table
1152 * location does not change.
1154 if (loaderparams.kernel_filename) {
1155 env->CP0_Status &= ~(1 << CP0St_ERL);
1158 malta_mips_config(cpu);
1160 if (kvm_enabled()) {
1161 /* Start running from the bootloader we wrote to end of RAM */
1162 env->active_tc.PC = 0x40000000 + loaderparams.ram_low_size;
1166 static void create_cpu_without_cps(MachineState *ms, MaltaState *s,
1167 qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1169 CPUMIPSState *env;
1170 MIPSCPU *cpu;
1171 int i;
1173 for (i = 0; i < ms->smp.cpus; i++) {
1174 cpu = mips_cpu_create_with_clock(ms->cpu_type, s->cpuclk);
1176 /* Init internal devices */
1177 cpu_mips_irq_init_cpu(cpu);
1178 cpu_mips_clock_init(cpu);
1179 qemu_register_reset(main_cpu_reset, cpu);
1182 cpu = MIPS_CPU(first_cpu);
1183 env = &cpu->env;
1184 *i8259_irq = env->irq[2];
1185 *cbus_irq = env->irq[4];
1188 static void create_cps(MachineState *ms, MaltaState *s,
1189 qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1191 object_initialize_child(OBJECT(s), "cps", &s->cps, TYPE_MIPS_CPS);
1192 object_property_set_str(OBJECT(&s->cps), "cpu-type", ms->cpu_type,
1193 &error_fatal);
1194 object_property_set_int(OBJECT(&s->cps), "num-vp", ms->smp.cpus,
1195 &error_fatal);
1196 qdev_connect_clock_in(DEVICE(&s->cps), "clk-in", s->cpuclk);
1197 sysbus_realize(SYS_BUS_DEVICE(&s->cps), &error_fatal);
1199 sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s->cps), 0, 0, 1);
1201 *i8259_irq = get_cps_irq(&s->cps, 3);
1202 *cbus_irq = NULL;
1205 static void mips_create_cpu(MachineState *ms, MaltaState *s,
1206 qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1208 if ((ms->smp.cpus > 1) && cpu_supports_cps_smp(ms->cpu_type)) {
1209 create_cps(ms, s, cbus_irq, i8259_irq);
1210 } else {
1211 create_cpu_without_cps(ms, s, cbus_irq, i8259_irq);
1215 static
1216 void mips_malta_init(MachineState *machine)
1218 ram_addr_t ram_size = machine->ram_size;
1219 ram_addr_t ram_low_size;
1220 const char *kernel_filename = machine->kernel_filename;
1221 const char *kernel_cmdline = machine->kernel_cmdline;
1222 const char *initrd_filename = machine->initrd_filename;
1223 char *filename;
1224 PFlashCFI01 *fl;
1225 MemoryRegion *system_memory = get_system_memory();
1226 MemoryRegion *ram_low_preio = g_new(MemoryRegion, 1);
1227 MemoryRegion *ram_low_postio;
1228 MemoryRegion *bios, *bios_copy = g_new(MemoryRegion, 1);
1229 const size_t smbus_eeprom_size = 8 * 256;
1230 uint8_t *smbus_eeprom_buf = g_malloc0(smbus_eeprom_size);
1231 int64_t kernel_entry, bootloader_run_addr;
1232 PCIBus *pci_bus;
1233 ISABus *isa_bus;
1234 qemu_irq cbus_irq, i8259_irq;
1235 I2CBus *smbus;
1236 DriveInfo *dinfo;
1237 int fl_idx = 0;
1238 int be;
1239 MaltaState *s;
1240 DeviceState *dev;
1242 s = MIPS_MALTA(qdev_new(TYPE_MIPS_MALTA));
1243 sysbus_realize_and_unref(SYS_BUS_DEVICE(s), &error_fatal);
1245 /* create CPU */
1246 mips_create_cpu(machine, s, &cbus_irq, &i8259_irq);
1248 /* allocate RAM */
1249 if (ram_size > 2 * GiB) {
1250 error_report("Too much memory for this machine: %" PRId64 "MB,"
1251 " maximum 2048MB", ram_size / MiB);
1252 exit(1);
1255 /* register RAM at high address where it is undisturbed by IO */
1256 memory_region_add_subregion(system_memory, 0x80000000, machine->ram);
1258 /* alias for pre IO hole access */
1259 memory_region_init_alias(ram_low_preio, NULL, "mips_malta_low_preio.ram",
1260 machine->ram, 0, MIN(ram_size, 256 * MiB));
1261 memory_region_add_subregion(system_memory, 0, ram_low_preio);
1263 /* alias for post IO hole access, if there is enough RAM */
1264 if (ram_size > 512 * MiB) {
1265 ram_low_postio = g_new(MemoryRegion, 1);
1266 memory_region_init_alias(ram_low_postio, NULL,
1267 "mips_malta_low_postio.ram",
1268 machine->ram, 512 * MiB,
1269 ram_size - 512 * MiB);
1270 memory_region_add_subregion(system_memory, 512 * MiB,
1271 ram_low_postio);
1274 #ifdef TARGET_WORDS_BIGENDIAN
1275 be = 1;
1276 #else
1277 be = 0;
1278 #endif
1280 /* FPGA */
1282 /* The CBUS UART is attached to the MIPS CPU INT2 pin, ie interrupt 4 */
1283 malta_fpga_init(system_memory, FPGA_ADDRESS, cbus_irq, serial_hd(2));
1285 /* Load firmware in flash / BIOS. */
1286 dinfo = drive_get(IF_PFLASH, 0, fl_idx);
1287 fl = pflash_cfi01_register(FLASH_ADDRESS, "mips_malta.bios",
1288 FLASH_SIZE,
1289 dinfo ? blk_by_legacy_dinfo(dinfo) : NULL,
1290 65536,
1291 4, 0x0000, 0x0000, 0x0000, 0x0000, be);
1292 bios = pflash_cfi01_get_memory(fl);
1293 fl_idx++;
1294 if (kernel_filename) {
1295 ram_low_size = MIN(ram_size, 256 * MiB);
1296 /* For KVM we reserve 1MB of RAM for running bootloader */
1297 if (kvm_enabled()) {
1298 ram_low_size -= 0x100000;
1299 bootloader_run_addr = 0x40000000 + ram_low_size;
1300 } else {
1301 bootloader_run_addr = 0xbfc00000;
1304 /* Write a small bootloader to the flash location. */
1305 loaderparams.ram_size = ram_size;
1306 loaderparams.ram_low_size = ram_low_size;
1307 loaderparams.kernel_filename = kernel_filename;
1308 loaderparams.kernel_cmdline = kernel_cmdline;
1309 loaderparams.initrd_filename = initrd_filename;
1310 kernel_entry = load_kernel();
1312 if (!cpu_supports_isa(machine->cpu_type, ISA_NANOMIPS32)) {
1313 write_bootloader(memory_region_get_ram_ptr(bios),
1314 bootloader_run_addr, kernel_entry);
1315 } else {
1316 write_bootloader_nanomips(memory_region_get_ram_ptr(bios),
1317 bootloader_run_addr, kernel_entry);
1319 if (kvm_enabled()) {
1320 /* Write the bootloader code @ the end of RAM, 1MB reserved */
1321 write_bootloader(memory_region_get_ram_ptr(ram_low_preio) +
1322 ram_low_size,
1323 bootloader_run_addr, kernel_entry);
1325 } else {
1326 target_long bios_size = FLASH_SIZE;
1327 /* The flash region isn't executable from a KVM guest */
1328 if (kvm_enabled()) {
1329 error_report("KVM enabled but no -kernel argument was specified. "
1330 "Booting from flash is not supported with KVM.");
1331 exit(1);
1333 /* Load firmware from flash. */
1334 if (!dinfo) {
1335 /* Load a BIOS image. */
1336 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS,
1337 machine->firmware ?: BIOS_FILENAME);
1338 if (filename) {
1339 bios_size = load_image_targphys(filename, FLASH_ADDRESS,
1340 BIOS_SIZE);
1341 g_free(filename);
1342 } else {
1343 bios_size = -1;
1345 if ((bios_size < 0 || bios_size > BIOS_SIZE) &&
1346 machine->firmware && !qtest_enabled()) {
1347 error_report("Could not load MIPS bios '%s'", machine->firmware);
1348 exit(1);
1352 * In little endian mode the 32bit words in the bios are swapped,
1353 * a neat trick which allows bi-endian firmware.
1355 #ifndef TARGET_WORDS_BIGENDIAN
1357 uint32_t *end, *addr;
1358 const size_t swapsize = MIN(bios_size, 0x3e0000);
1359 addr = rom_ptr(FLASH_ADDRESS, swapsize);
1360 if (!addr) {
1361 addr = memory_region_get_ram_ptr(bios);
1363 end = (void *)addr + swapsize;
1364 while (addr < end) {
1365 bswap32s(addr);
1366 addr++;
1369 #endif
1373 * Map the BIOS at a 2nd physical location, as on the real board.
1374 * Copy it so that we can patch in the MIPS revision, which cannot be
1375 * handled by an overlapping region as the resulting ROM code subpage
1376 * regions are not executable.
1378 memory_region_init_ram(bios_copy, NULL, "bios.1fc", BIOS_SIZE,
1379 &error_fatal);
1380 if (!rom_copy(memory_region_get_ram_ptr(bios_copy),
1381 FLASH_ADDRESS, BIOS_SIZE)) {
1382 memcpy(memory_region_get_ram_ptr(bios_copy),
1383 memory_region_get_ram_ptr(bios), BIOS_SIZE);
1385 memory_region_set_readonly(bios_copy, true);
1386 memory_region_add_subregion(system_memory, RESET_ADDRESS, bios_copy);
1388 /* Board ID = 0x420 (Malta Board with CoreLV) */
1389 stl_p(memory_region_get_ram_ptr(bios_copy) + 0x10, 0x00000420);
1391 /* Northbridge */
1392 pci_bus = gt64120_register(s->i8259);
1394 * The whole address space decoded by the GT-64120A doesn't generate
1395 * exception when accessing invalid memory. Create an empty slot to
1396 * emulate this feature.
1398 empty_slot_init("GT64120", 0, 0x20000000);
1400 /* Southbridge */
1401 dev = piix4_create(pci_bus, &isa_bus, &smbus);
1403 /* Interrupt controller */
1404 qdev_connect_gpio_out_named(dev, "intr", 0, i8259_irq);
1405 for (int i = 0; i < ISA_NUM_IRQS; i++) {
1406 s->i8259[i] = qdev_get_gpio_in_named(dev, "isa", i);
1409 /* generate SPD EEPROM data */
1410 generate_eeprom_spd(&smbus_eeprom_buf[0 * 256], ram_size);
1411 generate_eeprom_serial(&smbus_eeprom_buf[6 * 256]);
1412 smbus_eeprom_init(smbus, 8, smbus_eeprom_buf, smbus_eeprom_size);
1413 g_free(smbus_eeprom_buf);
1415 /* Super I/O: SMS FDC37M817 */
1416 isa_create_simple(isa_bus, TYPE_FDC37M81X_SUPERIO);
1418 /* Network card */
1419 network_init(pci_bus);
1421 /* Optional PCI video card */
1422 pci_vga_init(pci_bus);
1425 static void mips_malta_instance_init(Object *obj)
1427 MaltaState *s = MIPS_MALTA(obj);
1429 s->cpuclk = qdev_init_clock_out(DEVICE(obj), "cpu-refclk");
1430 clock_set_hz(s->cpuclk, 320000000); /* 320 MHz */
1433 static const TypeInfo mips_malta_device = {
1434 .name = TYPE_MIPS_MALTA,
1435 .parent = TYPE_SYS_BUS_DEVICE,
1436 .instance_size = sizeof(MaltaState),
1437 .instance_init = mips_malta_instance_init,
1440 static void mips_malta_machine_init(MachineClass *mc)
1442 mc->desc = "MIPS Malta Core LV";
1443 mc->init = mips_malta_init;
1444 mc->block_default_type = IF_IDE;
1445 mc->max_cpus = 16;
1446 mc->is_default = true;
1447 #ifdef TARGET_MIPS64
1448 mc->default_cpu_type = MIPS_CPU_TYPE_NAME("20Kc");
1449 #else
1450 mc->default_cpu_type = MIPS_CPU_TYPE_NAME("24Kf");
1451 #endif
1452 mc->default_ram_id = "mips_malta.ram";
1455 DEFINE_MACHINE("malta", mips_malta_machine_init)
1457 static void mips_malta_register_types(void)
1459 type_register_static(&mips_malta_device);
1462 type_init(mips_malta_register_types)