megasas: mark mfi_frame_desc as 'static'
[qemu/ar7.git] / exec.c
blobdd4833d316b0a5e75d27548d959b89ced892c289
1 /*
2 * virtual page mapping and translated block handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "tcg.h"
30 #include "hw/hw.h"
31 #include "hw/qdev.h"
32 #include "osdep.h"
33 #include "kvm.h"
34 #include "hw/xen.h"
35 #include "qemu-timer.h"
36 #include "memory.h"
37 #include "exec-memory.h"
38 #if defined(CONFIG_USER_ONLY)
39 #include <qemu.h>
40 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
41 #include <sys/param.h>
42 #if __FreeBSD_version >= 700104
43 #define HAVE_KINFO_GETVMMAP
44 #define sigqueue sigqueue_freebsd /* avoid redefinition */
45 #include <sys/time.h>
46 #include <sys/proc.h>
47 #include <machine/profile.h>
48 #define _KERNEL
49 #include <sys/user.h>
50 #undef _KERNEL
51 #undef sigqueue
52 #include <libutil.h>
53 #endif
54 #endif
55 #else /* !CONFIG_USER_ONLY */
56 #include "xen-mapcache.h"
57 #include "trace.h"
58 #endif
60 #include "cputlb.h"
62 #define WANT_EXEC_OBSOLETE
63 #include "exec-obsolete.h"
65 //#define DEBUG_TB_INVALIDATE
66 //#define DEBUG_FLUSH
67 //#define DEBUG_UNASSIGNED
69 /* make various TB consistency checks */
70 //#define DEBUG_TB_CHECK
72 //#define DEBUG_IOPORT
73 //#define DEBUG_SUBPAGE
75 #if !defined(CONFIG_USER_ONLY)
76 /* TB consistency checks only implemented for usermode emulation. */
77 #undef DEBUG_TB_CHECK
78 #endif
80 #define SMC_BITMAP_USE_THRESHOLD 10
82 static TranslationBlock *tbs;
83 static int code_gen_max_blocks;
84 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
85 static int nb_tbs;
86 /* any access to the tbs or the page table must use this lock */
87 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
89 #if defined(__arm__) || defined(__sparc_v9__)
90 /* The prologue must be reachable with a direct jump. ARM and Sparc64
91 have limited branch ranges (possibly also PPC) so place it in a
92 section close to code segment. */
93 #define code_gen_section \
94 __attribute__((__section__(".gen_code"))) \
95 __attribute__((aligned (32)))
96 #elif defined(_WIN32) && !defined(_WIN64)
97 #define code_gen_section \
98 __attribute__((aligned (16)))
99 #else
100 #define code_gen_section \
101 __attribute__((aligned (32)))
102 #endif
104 uint8_t code_gen_prologue[1024] code_gen_section;
105 static uint8_t *code_gen_buffer;
106 static unsigned long code_gen_buffer_size;
107 /* threshold to flush the translated code buffer */
108 static unsigned long code_gen_buffer_max_size;
109 static uint8_t *code_gen_ptr;
111 #if !defined(CONFIG_USER_ONLY)
112 int phys_ram_fd;
113 static int in_migration;
115 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
117 static MemoryRegion *system_memory;
118 static MemoryRegion *system_io;
120 MemoryRegion io_mem_ram, io_mem_rom, io_mem_unassigned, io_mem_notdirty;
121 static MemoryRegion io_mem_subpage_ram;
123 #endif
125 CPUArchState *first_cpu;
126 /* current CPU in the current thread. It is only valid inside
127 cpu_exec() */
128 DEFINE_TLS(CPUArchState *,cpu_single_env);
129 /* 0 = Do not count executed instructions.
130 1 = Precise instruction counting.
131 2 = Adaptive rate instruction counting. */
132 int use_icount = 0;
134 typedef struct PageDesc {
135 /* list of TBs intersecting this ram page */
136 TranslationBlock *first_tb;
137 /* in order to optimize self modifying code, we count the number
138 of lookups we do to a given page to use a bitmap */
139 unsigned int code_write_count;
140 uint8_t *code_bitmap;
141 #if defined(CONFIG_USER_ONLY)
142 unsigned long flags;
143 #endif
144 } PageDesc;
146 /* In system mode we want L1_MAP to be based on ram offsets,
147 while in user mode we want it to be based on virtual addresses. */
148 #if !defined(CONFIG_USER_ONLY)
149 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
150 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
151 #else
152 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
153 #endif
154 #else
155 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
156 #endif
158 /* Size of the L2 (and L3, etc) page tables. */
159 #define L2_BITS 10
160 #define L2_SIZE (1 << L2_BITS)
162 #define P_L2_LEVELS \
163 (((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / L2_BITS) + 1)
165 /* The bits remaining after N lower levels of page tables. */
166 #define V_L1_BITS_REM \
167 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
169 #if V_L1_BITS_REM < 4
170 #define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
171 #else
172 #define V_L1_BITS V_L1_BITS_REM
173 #endif
175 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
177 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
179 uintptr_t qemu_real_host_page_size;
180 uintptr_t qemu_host_page_size;
181 uintptr_t qemu_host_page_mask;
183 /* This is a multi-level map on the virtual address space.
184 The bottom level has pointers to PageDesc. */
185 static void *l1_map[V_L1_SIZE];
187 #if !defined(CONFIG_USER_ONLY)
188 typedef struct PhysPageEntry PhysPageEntry;
190 static MemoryRegionSection *phys_sections;
191 static unsigned phys_sections_nb, phys_sections_nb_alloc;
192 static uint16_t phys_section_unassigned;
193 static uint16_t phys_section_notdirty;
194 static uint16_t phys_section_rom;
195 static uint16_t phys_section_watch;
197 struct PhysPageEntry {
198 uint16_t is_leaf : 1;
199 /* index into phys_sections (is_leaf) or phys_map_nodes (!is_leaf) */
200 uint16_t ptr : 15;
203 /* Simple allocator for PhysPageEntry nodes */
204 static PhysPageEntry (*phys_map_nodes)[L2_SIZE];
205 static unsigned phys_map_nodes_nb, phys_map_nodes_nb_alloc;
207 #define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
209 /* This is a multi-level map on the physical address space.
210 The bottom level has pointers to MemoryRegionSections. */
211 static PhysPageEntry phys_map = { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 };
213 static void io_mem_init(void);
214 static void memory_map_init(void);
216 static MemoryRegion io_mem_watch;
217 #endif
219 /* statistics */
220 static int tb_flush_count;
221 static int tb_phys_invalidate_count;
223 #ifdef _WIN32
224 static void map_exec(void *addr, long size)
226 DWORD old_protect;
227 VirtualProtect(addr, size,
228 PAGE_EXECUTE_READWRITE, &old_protect);
231 #else
232 static void map_exec(void *addr, long size)
234 unsigned long start, end, page_size;
236 page_size = getpagesize();
237 start = (unsigned long)addr;
238 start &= ~(page_size - 1);
240 end = (unsigned long)addr + size;
241 end += page_size - 1;
242 end &= ~(page_size - 1);
244 mprotect((void *)start, end - start,
245 PROT_READ | PROT_WRITE | PROT_EXEC);
247 #endif
249 static void page_init(void)
251 /* NOTE: we can always suppose that qemu_host_page_size >=
252 TARGET_PAGE_SIZE */
253 #ifdef _WIN32
255 SYSTEM_INFO system_info;
257 GetSystemInfo(&system_info);
258 qemu_real_host_page_size = system_info.dwPageSize;
260 #else
261 qemu_real_host_page_size = getpagesize();
262 #endif
263 if (qemu_host_page_size == 0)
264 qemu_host_page_size = qemu_real_host_page_size;
265 if (qemu_host_page_size < TARGET_PAGE_SIZE)
266 qemu_host_page_size = TARGET_PAGE_SIZE;
267 qemu_host_page_mask = ~(qemu_host_page_size - 1);
269 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
271 #ifdef HAVE_KINFO_GETVMMAP
272 struct kinfo_vmentry *freep;
273 int i, cnt;
275 freep = kinfo_getvmmap(getpid(), &cnt);
276 if (freep) {
277 mmap_lock();
278 for (i = 0; i < cnt; i++) {
279 unsigned long startaddr, endaddr;
281 startaddr = freep[i].kve_start;
282 endaddr = freep[i].kve_end;
283 if (h2g_valid(startaddr)) {
284 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
286 if (h2g_valid(endaddr)) {
287 endaddr = h2g(endaddr);
288 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
289 } else {
290 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
291 endaddr = ~0ul;
292 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
293 #endif
297 free(freep);
298 mmap_unlock();
300 #else
301 FILE *f;
303 last_brk = (unsigned long)sbrk(0);
305 f = fopen("/compat/linux/proc/self/maps", "r");
306 if (f) {
307 mmap_lock();
309 do {
310 unsigned long startaddr, endaddr;
311 int n;
313 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
315 if (n == 2 && h2g_valid(startaddr)) {
316 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
318 if (h2g_valid(endaddr)) {
319 endaddr = h2g(endaddr);
320 } else {
321 endaddr = ~0ul;
323 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
325 } while (!feof(f));
327 fclose(f);
328 mmap_unlock();
330 #endif
332 #endif
335 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
337 PageDesc *pd;
338 void **lp;
339 int i;
341 #if defined(CONFIG_USER_ONLY)
342 /* We can't use g_malloc because it may recurse into a locked mutex. */
343 # define ALLOC(P, SIZE) \
344 do { \
345 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
346 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
347 } while (0)
348 #else
349 # define ALLOC(P, SIZE) \
350 do { P = g_malloc0(SIZE); } while (0)
351 #endif
353 /* Level 1. Always allocated. */
354 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
356 /* Level 2..N-1. */
357 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
358 void **p = *lp;
360 if (p == NULL) {
361 if (!alloc) {
362 return NULL;
364 ALLOC(p, sizeof(void *) * L2_SIZE);
365 *lp = p;
368 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
371 pd = *lp;
372 if (pd == NULL) {
373 if (!alloc) {
374 return NULL;
376 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
377 *lp = pd;
380 #undef ALLOC
382 return pd + (index & (L2_SIZE - 1));
385 static inline PageDesc *page_find(tb_page_addr_t index)
387 return page_find_alloc(index, 0);
390 #if !defined(CONFIG_USER_ONLY)
392 static void phys_map_node_reserve(unsigned nodes)
394 if (phys_map_nodes_nb + nodes > phys_map_nodes_nb_alloc) {
395 typedef PhysPageEntry Node[L2_SIZE];
396 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc * 2, 16);
397 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc,
398 phys_map_nodes_nb + nodes);
399 phys_map_nodes = g_renew(Node, phys_map_nodes,
400 phys_map_nodes_nb_alloc);
404 static uint16_t phys_map_node_alloc(void)
406 unsigned i;
407 uint16_t ret;
409 ret = phys_map_nodes_nb++;
410 assert(ret != PHYS_MAP_NODE_NIL);
411 assert(ret != phys_map_nodes_nb_alloc);
412 for (i = 0; i < L2_SIZE; ++i) {
413 phys_map_nodes[ret][i].is_leaf = 0;
414 phys_map_nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
416 return ret;
419 static void phys_map_nodes_reset(void)
421 phys_map_nodes_nb = 0;
425 static void phys_page_set_level(PhysPageEntry *lp, target_phys_addr_t *index,
426 target_phys_addr_t *nb, uint16_t leaf,
427 int level)
429 PhysPageEntry *p;
430 int i;
431 target_phys_addr_t step = (target_phys_addr_t)1 << (level * L2_BITS);
433 if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) {
434 lp->ptr = phys_map_node_alloc();
435 p = phys_map_nodes[lp->ptr];
436 if (level == 0) {
437 for (i = 0; i < L2_SIZE; i++) {
438 p[i].is_leaf = 1;
439 p[i].ptr = phys_section_unassigned;
442 } else {
443 p = phys_map_nodes[lp->ptr];
445 lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)];
447 while (*nb && lp < &p[L2_SIZE]) {
448 if ((*index & (step - 1)) == 0 && *nb >= step) {
449 lp->is_leaf = true;
450 lp->ptr = leaf;
451 *index += step;
452 *nb -= step;
453 } else {
454 phys_page_set_level(lp, index, nb, leaf, level - 1);
456 ++lp;
460 static void phys_page_set(target_phys_addr_t index, target_phys_addr_t nb,
461 uint16_t leaf)
463 /* Wildly overreserve - it doesn't matter much. */
464 phys_map_node_reserve(3 * P_L2_LEVELS);
466 phys_page_set_level(&phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
469 MemoryRegionSection *phys_page_find(target_phys_addr_t index)
471 PhysPageEntry lp = phys_map;
472 PhysPageEntry *p;
473 int i;
474 uint16_t s_index = phys_section_unassigned;
476 for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) {
477 if (lp.ptr == PHYS_MAP_NODE_NIL) {
478 goto not_found;
480 p = phys_map_nodes[lp.ptr];
481 lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
484 s_index = lp.ptr;
485 not_found:
486 return &phys_sections[s_index];
489 bool memory_region_is_unassigned(MemoryRegion *mr)
491 return mr != &io_mem_ram && mr != &io_mem_rom
492 && mr != &io_mem_notdirty && !mr->rom_device
493 && mr != &io_mem_watch;
496 #define mmap_lock() do { } while(0)
497 #define mmap_unlock() do { } while(0)
498 #endif
500 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
502 #if defined(CONFIG_USER_ONLY)
503 /* Currently it is not recommended to allocate big chunks of data in
504 user mode. It will change when a dedicated libc will be used */
505 #define USE_STATIC_CODE_GEN_BUFFER
506 #endif
508 #ifdef USE_STATIC_CODE_GEN_BUFFER
509 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
510 __attribute__((aligned (CODE_GEN_ALIGN)));
511 #endif
513 static void code_gen_alloc(unsigned long tb_size)
515 #ifdef USE_STATIC_CODE_GEN_BUFFER
516 code_gen_buffer = static_code_gen_buffer;
517 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
518 map_exec(code_gen_buffer, code_gen_buffer_size);
519 #else
520 code_gen_buffer_size = tb_size;
521 if (code_gen_buffer_size == 0) {
522 #if defined(CONFIG_USER_ONLY)
523 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
524 #else
525 /* XXX: needs adjustments */
526 code_gen_buffer_size = (unsigned long)(ram_size / 4);
527 #endif
529 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
530 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
531 /* The code gen buffer location may have constraints depending on
532 the host cpu and OS */
533 #if defined(__linux__)
535 int flags;
536 void *start = NULL;
538 flags = MAP_PRIVATE | MAP_ANONYMOUS;
539 #if defined(__x86_64__)
540 flags |= MAP_32BIT;
541 /* Cannot map more than that */
542 if (code_gen_buffer_size > (800 * 1024 * 1024))
543 code_gen_buffer_size = (800 * 1024 * 1024);
544 #elif defined(__sparc_v9__)
545 // Map the buffer below 2G, so we can use direct calls and branches
546 flags |= MAP_FIXED;
547 start = (void *) 0x60000000UL;
548 if (code_gen_buffer_size > (512 * 1024 * 1024))
549 code_gen_buffer_size = (512 * 1024 * 1024);
550 #elif defined(__arm__)
551 /* Keep the buffer no bigger than 16MB to branch between blocks */
552 if (code_gen_buffer_size > 16 * 1024 * 1024)
553 code_gen_buffer_size = 16 * 1024 * 1024;
554 #elif defined(__s390x__)
555 /* Map the buffer so that we can use direct calls and branches. */
556 /* We have a +- 4GB range on the branches; leave some slop. */
557 if (code_gen_buffer_size > (3ul * 1024 * 1024 * 1024)) {
558 code_gen_buffer_size = 3ul * 1024 * 1024 * 1024;
560 start = (void *)0x90000000UL;
561 #endif
562 code_gen_buffer = mmap(start, code_gen_buffer_size,
563 PROT_WRITE | PROT_READ | PROT_EXEC,
564 flags, -1, 0);
565 if (code_gen_buffer == MAP_FAILED) {
566 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
567 exit(1);
570 #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
571 || defined(__DragonFly__) || defined(__OpenBSD__) \
572 || defined(__NetBSD__)
574 int flags;
575 void *addr = NULL;
576 flags = MAP_PRIVATE | MAP_ANONYMOUS;
577 #if defined(__x86_64__)
578 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
579 * 0x40000000 is free */
580 flags |= MAP_FIXED;
581 addr = (void *)0x40000000;
582 /* Cannot map more than that */
583 if (code_gen_buffer_size > (800 * 1024 * 1024))
584 code_gen_buffer_size = (800 * 1024 * 1024);
585 #elif defined(__sparc_v9__)
586 // Map the buffer below 2G, so we can use direct calls and branches
587 flags |= MAP_FIXED;
588 addr = (void *) 0x60000000UL;
589 if (code_gen_buffer_size > (512 * 1024 * 1024)) {
590 code_gen_buffer_size = (512 * 1024 * 1024);
592 #endif
593 code_gen_buffer = mmap(addr, code_gen_buffer_size,
594 PROT_WRITE | PROT_READ | PROT_EXEC,
595 flags, -1, 0);
596 if (code_gen_buffer == MAP_FAILED) {
597 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
598 exit(1);
601 #else
602 code_gen_buffer = g_malloc(code_gen_buffer_size);
603 map_exec(code_gen_buffer, code_gen_buffer_size);
604 #endif
605 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
606 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
607 code_gen_buffer_max_size = code_gen_buffer_size -
608 (TCG_MAX_OP_SIZE * OPC_BUF_SIZE);
609 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
610 tbs = g_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
613 /* Must be called before using the QEMU cpus. 'tb_size' is the size
614 (in bytes) allocated to the translation buffer. Zero means default
615 size. */
616 void tcg_exec_init(unsigned long tb_size)
618 cpu_gen_init();
619 code_gen_alloc(tb_size);
620 code_gen_ptr = code_gen_buffer;
621 tcg_register_jit(code_gen_buffer, code_gen_buffer_size);
622 page_init();
623 #if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
624 /* There's no guest base to take into account, so go ahead and
625 initialize the prologue now. */
626 tcg_prologue_init(&tcg_ctx);
627 #endif
630 bool tcg_enabled(void)
632 return code_gen_buffer != NULL;
635 void cpu_exec_init_all(void)
637 #if !defined(CONFIG_USER_ONLY)
638 memory_map_init();
639 io_mem_init();
640 #endif
643 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
645 static int cpu_common_post_load(void *opaque, int version_id)
647 CPUArchState *env = opaque;
649 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
650 version_id is increased. */
651 env->interrupt_request &= ~0x01;
652 tlb_flush(env, 1);
654 return 0;
657 static const VMStateDescription vmstate_cpu_common = {
658 .name = "cpu_common",
659 .version_id = 1,
660 .minimum_version_id = 1,
661 .minimum_version_id_old = 1,
662 .post_load = cpu_common_post_load,
663 .fields = (VMStateField []) {
664 VMSTATE_UINT32(halted, CPUArchState),
665 VMSTATE_UINT32(interrupt_request, CPUArchState),
666 VMSTATE_END_OF_LIST()
669 #endif
671 CPUArchState *qemu_get_cpu(int cpu)
673 CPUArchState *env = first_cpu;
675 while (env) {
676 if (env->cpu_index == cpu)
677 break;
678 env = env->next_cpu;
681 return env;
684 void cpu_exec_init(CPUArchState *env)
686 CPUArchState **penv;
687 int cpu_index;
689 #if defined(CONFIG_USER_ONLY)
690 cpu_list_lock();
691 #endif
692 env->next_cpu = NULL;
693 penv = &first_cpu;
694 cpu_index = 0;
695 while (*penv != NULL) {
696 penv = &(*penv)->next_cpu;
697 cpu_index++;
699 env->cpu_index = cpu_index;
700 env->numa_node = 0;
701 QTAILQ_INIT(&env->breakpoints);
702 QTAILQ_INIT(&env->watchpoints);
703 #ifndef CONFIG_USER_ONLY
704 env->thread_id = qemu_get_thread_id();
705 #endif
706 *penv = env;
707 #if defined(CONFIG_USER_ONLY)
708 cpu_list_unlock();
709 #endif
710 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
711 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, env);
712 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
713 cpu_save, cpu_load, env);
714 #endif
717 /* Allocate a new translation block. Flush the translation buffer if
718 too many translation blocks or too much generated code. */
719 static TranslationBlock *tb_alloc(target_ulong pc)
721 TranslationBlock *tb;
723 if (nb_tbs >= code_gen_max_blocks ||
724 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
725 return NULL;
726 tb = &tbs[nb_tbs++];
727 tb->pc = pc;
728 tb->cflags = 0;
729 return tb;
732 void tb_free(TranslationBlock *tb)
734 /* In practice this is mostly used for single use temporary TB
735 Ignore the hard cases and just back up if this TB happens to
736 be the last one generated. */
737 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
738 code_gen_ptr = tb->tc_ptr;
739 nb_tbs--;
743 static inline void invalidate_page_bitmap(PageDesc *p)
745 if (p->code_bitmap) {
746 g_free(p->code_bitmap);
747 p->code_bitmap = NULL;
749 p->code_write_count = 0;
752 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
754 static void page_flush_tb_1 (int level, void **lp)
756 int i;
758 if (*lp == NULL) {
759 return;
761 if (level == 0) {
762 PageDesc *pd = *lp;
763 for (i = 0; i < L2_SIZE; ++i) {
764 pd[i].first_tb = NULL;
765 invalidate_page_bitmap(pd + i);
767 } else {
768 void **pp = *lp;
769 for (i = 0; i < L2_SIZE; ++i) {
770 page_flush_tb_1 (level - 1, pp + i);
775 static void page_flush_tb(void)
777 int i;
778 for (i = 0; i < V_L1_SIZE; i++) {
779 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
783 /* flush all the translation blocks */
784 /* XXX: tb_flush is currently not thread safe */
785 void tb_flush(CPUArchState *env1)
787 CPUArchState *env;
788 #if defined(DEBUG_FLUSH)
789 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
790 (unsigned long)(code_gen_ptr - code_gen_buffer),
791 nb_tbs, nb_tbs > 0 ?
792 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
793 #endif
794 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
795 cpu_abort(env1, "Internal error: code buffer overflow\n");
797 nb_tbs = 0;
799 for(env = first_cpu; env != NULL; env = env->next_cpu) {
800 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
803 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
804 page_flush_tb();
806 code_gen_ptr = code_gen_buffer;
807 /* XXX: flush processor icache at this point if cache flush is
808 expensive */
809 tb_flush_count++;
812 #ifdef DEBUG_TB_CHECK
814 static void tb_invalidate_check(target_ulong address)
816 TranslationBlock *tb;
817 int i;
818 address &= TARGET_PAGE_MASK;
819 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
820 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
821 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
822 address >= tb->pc + tb->size)) {
823 printf("ERROR invalidate: address=" TARGET_FMT_lx
824 " PC=%08lx size=%04x\n",
825 address, (long)tb->pc, tb->size);
831 /* verify that all the pages have correct rights for code */
832 static void tb_page_check(void)
834 TranslationBlock *tb;
835 int i, flags1, flags2;
837 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
838 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
839 flags1 = page_get_flags(tb->pc);
840 flags2 = page_get_flags(tb->pc + tb->size - 1);
841 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
842 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
843 (long)tb->pc, tb->size, flags1, flags2);
849 #endif
851 /* invalidate one TB */
852 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
853 int next_offset)
855 TranslationBlock *tb1;
856 for(;;) {
857 tb1 = *ptb;
858 if (tb1 == tb) {
859 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
860 break;
862 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
866 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
868 TranslationBlock *tb1;
869 unsigned int n1;
871 for(;;) {
872 tb1 = *ptb;
873 n1 = (uintptr_t)tb1 & 3;
874 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
875 if (tb1 == tb) {
876 *ptb = tb1->page_next[n1];
877 break;
879 ptb = &tb1->page_next[n1];
883 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
885 TranslationBlock *tb1, **ptb;
886 unsigned int n1;
888 ptb = &tb->jmp_next[n];
889 tb1 = *ptb;
890 if (tb1) {
891 /* find tb(n) in circular list */
892 for(;;) {
893 tb1 = *ptb;
894 n1 = (uintptr_t)tb1 & 3;
895 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
896 if (n1 == n && tb1 == tb)
897 break;
898 if (n1 == 2) {
899 ptb = &tb1->jmp_first;
900 } else {
901 ptb = &tb1->jmp_next[n1];
904 /* now we can suppress tb(n) from the list */
905 *ptb = tb->jmp_next[n];
907 tb->jmp_next[n] = NULL;
911 /* reset the jump entry 'n' of a TB so that it is not chained to
912 another TB */
913 static inline void tb_reset_jump(TranslationBlock *tb, int n)
915 tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n]));
918 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
920 CPUArchState *env;
921 PageDesc *p;
922 unsigned int h, n1;
923 tb_page_addr_t phys_pc;
924 TranslationBlock *tb1, *tb2;
926 /* remove the TB from the hash list */
927 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
928 h = tb_phys_hash_func(phys_pc);
929 tb_remove(&tb_phys_hash[h], tb,
930 offsetof(TranslationBlock, phys_hash_next));
932 /* remove the TB from the page list */
933 if (tb->page_addr[0] != page_addr) {
934 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
935 tb_page_remove(&p->first_tb, tb);
936 invalidate_page_bitmap(p);
938 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
939 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
940 tb_page_remove(&p->first_tb, tb);
941 invalidate_page_bitmap(p);
944 tb_invalidated_flag = 1;
946 /* remove the TB from the hash list */
947 h = tb_jmp_cache_hash_func(tb->pc);
948 for(env = first_cpu; env != NULL; env = env->next_cpu) {
949 if (env->tb_jmp_cache[h] == tb)
950 env->tb_jmp_cache[h] = NULL;
953 /* suppress this TB from the two jump lists */
954 tb_jmp_remove(tb, 0);
955 tb_jmp_remove(tb, 1);
957 /* suppress any remaining jumps to this TB */
958 tb1 = tb->jmp_first;
959 for(;;) {
960 n1 = (uintptr_t)tb1 & 3;
961 if (n1 == 2)
962 break;
963 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
964 tb2 = tb1->jmp_next[n1];
965 tb_reset_jump(tb1, n1);
966 tb1->jmp_next[n1] = NULL;
967 tb1 = tb2;
969 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */
971 tb_phys_invalidate_count++;
974 static inline void set_bits(uint8_t *tab, int start, int len)
976 int end, mask, end1;
978 end = start + len;
979 tab += start >> 3;
980 mask = 0xff << (start & 7);
981 if ((start & ~7) == (end & ~7)) {
982 if (start < end) {
983 mask &= ~(0xff << (end & 7));
984 *tab |= mask;
986 } else {
987 *tab++ |= mask;
988 start = (start + 8) & ~7;
989 end1 = end & ~7;
990 while (start < end1) {
991 *tab++ = 0xff;
992 start += 8;
994 if (start < end) {
995 mask = ~(0xff << (end & 7));
996 *tab |= mask;
1001 static void build_page_bitmap(PageDesc *p)
1003 int n, tb_start, tb_end;
1004 TranslationBlock *tb;
1006 p->code_bitmap = g_malloc0(TARGET_PAGE_SIZE / 8);
1008 tb = p->first_tb;
1009 while (tb != NULL) {
1010 n = (uintptr_t)tb & 3;
1011 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1012 /* NOTE: this is subtle as a TB may span two physical pages */
1013 if (n == 0) {
1014 /* NOTE: tb_end may be after the end of the page, but
1015 it is not a problem */
1016 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1017 tb_end = tb_start + tb->size;
1018 if (tb_end > TARGET_PAGE_SIZE)
1019 tb_end = TARGET_PAGE_SIZE;
1020 } else {
1021 tb_start = 0;
1022 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1024 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
1025 tb = tb->page_next[n];
1029 TranslationBlock *tb_gen_code(CPUArchState *env,
1030 target_ulong pc, target_ulong cs_base,
1031 int flags, int cflags)
1033 TranslationBlock *tb;
1034 uint8_t *tc_ptr;
1035 tb_page_addr_t phys_pc, phys_page2;
1036 target_ulong virt_page2;
1037 int code_gen_size;
1039 phys_pc = get_page_addr_code(env, pc);
1040 tb = tb_alloc(pc);
1041 if (!tb) {
1042 /* flush must be done */
1043 tb_flush(env);
1044 /* cannot fail at this point */
1045 tb = tb_alloc(pc);
1046 /* Don't forget to invalidate previous TB info. */
1047 tb_invalidated_flag = 1;
1049 tc_ptr = code_gen_ptr;
1050 tb->tc_ptr = tc_ptr;
1051 tb->cs_base = cs_base;
1052 tb->flags = flags;
1053 tb->cflags = cflags;
1054 cpu_gen_code(env, tb, &code_gen_size);
1055 code_gen_ptr = (void *)(((uintptr_t)code_gen_ptr + code_gen_size +
1056 CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
1058 /* check next page if needed */
1059 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1060 phys_page2 = -1;
1061 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1062 phys_page2 = get_page_addr_code(env, virt_page2);
1064 tb_link_page(tb, phys_pc, phys_page2);
1065 return tb;
1069 * Invalidate all TBs which intersect with the target physical address range
1070 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1071 * 'is_cpu_write_access' should be true if called from a real cpu write
1072 * access: the virtual CPU will exit the current TB if code is modified inside
1073 * this TB.
1075 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end,
1076 int is_cpu_write_access)
1078 while (start < end) {
1079 tb_invalidate_phys_page_range(start, end, is_cpu_write_access);
1080 start &= TARGET_PAGE_MASK;
1081 start += TARGET_PAGE_SIZE;
1086 * Invalidate all TBs which intersect with the target physical address range
1087 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1088 * 'is_cpu_write_access' should be true if called from a real cpu write
1089 * access: the virtual CPU will exit the current TB if code is modified inside
1090 * this TB.
1092 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1093 int is_cpu_write_access)
1095 TranslationBlock *tb, *tb_next, *saved_tb;
1096 CPUArchState *env = cpu_single_env;
1097 tb_page_addr_t tb_start, tb_end;
1098 PageDesc *p;
1099 int n;
1100 #ifdef TARGET_HAS_PRECISE_SMC
1101 int current_tb_not_found = is_cpu_write_access;
1102 TranslationBlock *current_tb = NULL;
1103 int current_tb_modified = 0;
1104 target_ulong current_pc = 0;
1105 target_ulong current_cs_base = 0;
1106 int current_flags = 0;
1107 #endif /* TARGET_HAS_PRECISE_SMC */
1109 p = page_find(start >> TARGET_PAGE_BITS);
1110 if (!p)
1111 return;
1112 if (!p->code_bitmap &&
1113 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1114 is_cpu_write_access) {
1115 /* build code bitmap */
1116 build_page_bitmap(p);
1119 /* we remove all the TBs in the range [start, end[ */
1120 /* XXX: see if in some cases it could be faster to invalidate all the code */
1121 tb = p->first_tb;
1122 while (tb != NULL) {
1123 n = (uintptr_t)tb & 3;
1124 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1125 tb_next = tb->page_next[n];
1126 /* NOTE: this is subtle as a TB may span two physical pages */
1127 if (n == 0) {
1128 /* NOTE: tb_end may be after the end of the page, but
1129 it is not a problem */
1130 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1131 tb_end = tb_start + tb->size;
1132 } else {
1133 tb_start = tb->page_addr[1];
1134 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1136 if (!(tb_end <= start || tb_start >= end)) {
1137 #ifdef TARGET_HAS_PRECISE_SMC
1138 if (current_tb_not_found) {
1139 current_tb_not_found = 0;
1140 current_tb = NULL;
1141 if (env->mem_io_pc) {
1142 /* now we have a real cpu fault */
1143 current_tb = tb_find_pc(env->mem_io_pc);
1146 if (current_tb == tb &&
1147 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1148 /* If we are modifying the current TB, we must stop
1149 its execution. We could be more precise by checking
1150 that the modification is after the current PC, but it
1151 would require a specialized function to partially
1152 restore the CPU state */
1154 current_tb_modified = 1;
1155 cpu_restore_state(current_tb, env, env->mem_io_pc);
1156 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1157 &current_flags);
1159 #endif /* TARGET_HAS_PRECISE_SMC */
1160 /* we need to do that to handle the case where a signal
1161 occurs while doing tb_phys_invalidate() */
1162 saved_tb = NULL;
1163 if (env) {
1164 saved_tb = env->current_tb;
1165 env->current_tb = NULL;
1167 tb_phys_invalidate(tb, -1);
1168 if (env) {
1169 env->current_tb = saved_tb;
1170 if (env->interrupt_request && env->current_tb)
1171 cpu_interrupt(env, env->interrupt_request);
1174 tb = tb_next;
1176 #if !defined(CONFIG_USER_ONLY)
1177 /* if no code remaining, no need to continue to use slow writes */
1178 if (!p->first_tb) {
1179 invalidate_page_bitmap(p);
1180 if (is_cpu_write_access) {
1181 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
1184 #endif
1185 #ifdef TARGET_HAS_PRECISE_SMC
1186 if (current_tb_modified) {
1187 /* we generate a block containing just the instruction
1188 modifying the memory. It will ensure that it cannot modify
1189 itself */
1190 env->current_tb = NULL;
1191 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1192 cpu_resume_from_signal(env, NULL);
1194 #endif
1197 /* len must be <= 8 and start must be a multiple of len */
1198 static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1200 PageDesc *p;
1201 int offset, b;
1202 #if 0
1203 if (1) {
1204 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1205 cpu_single_env->mem_io_vaddr, len,
1206 cpu_single_env->eip,
1207 cpu_single_env->eip +
1208 (intptr_t)cpu_single_env->segs[R_CS].base);
1210 #endif
1211 p = page_find(start >> TARGET_PAGE_BITS);
1212 if (!p)
1213 return;
1214 if (p->code_bitmap) {
1215 offset = start & ~TARGET_PAGE_MASK;
1216 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1217 if (b & ((1 << len) - 1))
1218 goto do_invalidate;
1219 } else {
1220 do_invalidate:
1221 tb_invalidate_phys_page_range(start, start + len, 1);
1225 #if !defined(CONFIG_SOFTMMU)
1226 static void tb_invalidate_phys_page(tb_page_addr_t addr,
1227 uintptr_t pc, void *puc)
1229 TranslationBlock *tb;
1230 PageDesc *p;
1231 int n;
1232 #ifdef TARGET_HAS_PRECISE_SMC
1233 TranslationBlock *current_tb = NULL;
1234 CPUArchState *env = cpu_single_env;
1235 int current_tb_modified = 0;
1236 target_ulong current_pc = 0;
1237 target_ulong current_cs_base = 0;
1238 int current_flags = 0;
1239 #endif
1241 addr &= TARGET_PAGE_MASK;
1242 p = page_find(addr >> TARGET_PAGE_BITS);
1243 if (!p)
1244 return;
1245 tb = p->first_tb;
1246 #ifdef TARGET_HAS_PRECISE_SMC
1247 if (tb && pc != 0) {
1248 current_tb = tb_find_pc(pc);
1250 #endif
1251 while (tb != NULL) {
1252 n = (uintptr_t)tb & 3;
1253 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1254 #ifdef TARGET_HAS_PRECISE_SMC
1255 if (current_tb == tb &&
1256 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1257 /* If we are modifying the current TB, we must stop
1258 its execution. We could be more precise by checking
1259 that the modification is after the current PC, but it
1260 would require a specialized function to partially
1261 restore the CPU state */
1263 current_tb_modified = 1;
1264 cpu_restore_state(current_tb, env, pc);
1265 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1266 &current_flags);
1268 #endif /* TARGET_HAS_PRECISE_SMC */
1269 tb_phys_invalidate(tb, addr);
1270 tb = tb->page_next[n];
1272 p->first_tb = NULL;
1273 #ifdef TARGET_HAS_PRECISE_SMC
1274 if (current_tb_modified) {
1275 /* we generate a block containing just the instruction
1276 modifying the memory. It will ensure that it cannot modify
1277 itself */
1278 env->current_tb = NULL;
1279 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1280 cpu_resume_from_signal(env, puc);
1282 #endif
1284 #endif
1286 /* add the tb in the target page and protect it if necessary */
1287 static inline void tb_alloc_page(TranslationBlock *tb,
1288 unsigned int n, tb_page_addr_t page_addr)
1290 PageDesc *p;
1291 #ifndef CONFIG_USER_ONLY
1292 bool page_already_protected;
1293 #endif
1295 tb->page_addr[n] = page_addr;
1296 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1297 tb->page_next[n] = p->first_tb;
1298 #ifndef CONFIG_USER_ONLY
1299 page_already_protected = p->first_tb != NULL;
1300 #endif
1301 p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
1302 invalidate_page_bitmap(p);
1304 #if defined(TARGET_HAS_SMC) || 1
1306 #if defined(CONFIG_USER_ONLY)
1307 if (p->flags & PAGE_WRITE) {
1308 target_ulong addr;
1309 PageDesc *p2;
1310 int prot;
1312 /* force the host page as non writable (writes will have a
1313 page fault + mprotect overhead) */
1314 page_addr &= qemu_host_page_mask;
1315 prot = 0;
1316 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1317 addr += TARGET_PAGE_SIZE) {
1319 p2 = page_find (addr >> TARGET_PAGE_BITS);
1320 if (!p2)
1321 continue;
1322 prot |= p2->flags;
1323 p2->flags &= ~PAGE_WRITE;
1325 mprotect(g2h(page_addr), qemu_host_page_size,
1326 (prot & PAGE_BITS) & ~PAGE_WRITE);
1327 #ifdef DEBUG_TB_INVALIDATE
1328 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1329 page_addr);
1330 #endif
1332 #else
1333 /* if some code is already present, then the pages are already
1334 protected. So we handle the case where only the first TB is
1335 allocated in a physical page */
1336 if (!page_already_protected) {
1337 tlb_protect_code(page_addr);
1339 #endif
1341 #endif /* TARGET_HAS_SMC */
1344 /* add a new TB and link it to the physical page tables. phys_page2 is
1345 (-1) to indicate that only one page contains the TB. */
1346 void tb_link_page(TranslationBlock *tb,
1347 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
1349 unsigned int h;
1350 TranslationBlock **ptb;
1352 /* Grab the mmap lock to stop another thread invalidating this TB
1353 before we are done. */
1354 mmap_lock();
1355 /* add in the physical hash table */
1356 h = tb_phys_hash_func(phys_pc);
1357 ptb = &tb_phys_hash[h];
1358 tb->phys_hash_next = *ptb;
1359 *ptb = tb;
1361 /* add in the page list */
1362 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1363 if (phys_page2 != -1)
1364 tb_alloc_page(tb, 1, phys_page2);
1365 else
1366 tb->page_addr[1] = -1;
1368 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2);
1369 tb->jmp_next[0] = NULL;
1370 tb->jmp_next[1] = NULL;
1372 /* init original jump addresses */
1373 if (tb->tb_next_offset[0] != 0xffff)
1374 tb_reset_jump(tb, 0);
1375 if (tb->tb_next_offset[1] != 0xffff)
1376 tb_reset_jump(tb, 1);
1378 #ifdef DEBUG_TB_CHECK
1379 tb_page_check();
1380 #endif
1381 mmap_unlock();
1384 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1385 tb[1].tc_ptr. Return NULL if not found */
1386 TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
1388 int m_min, m_max, m;
1389 uintptr_t v;
1390 TranslationBlock *tb;
1392 if (nb_tbs <= 0)
1393 return NULL;
1394 if (tc_ptr < (uintptr_t)code_gen_buffer ||
1395 tc_ptr >= (uintptr_t)code_gen_ptr) {
1396 return NULL;
1398 /* binary search (cf Knuth) */
1399 m_min = 0;
1400 m_max = nb_tbs - 1;
1401 while (m_min <= m_max) {
1402 m = (m_min + m_max) >> 1;
1403 tb = &tbs[m];
1404 v = (uintptr_t)tb->tc_ptr;
1405 if (v == tc_ptr)
1406 return tb;
1407 else if (tc_ptr < v) {
1408 m_max = m - 1;
1409 } else {
1410 m_min = m + 1;
1413 return &tbs[m_max];
1416 static void tb_reset_jump_recursive(TranslationBlock *tb);
1418 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1420 TranslationBlock *tb1, *tb_next, **ptb;
1421 unsigned int n1;
1423 tb1 = tb->jmp_next[n];
1424 if (tb1 != NULL) {
1425 /* find head of list */
1426 for(;;) {
1427 n1 = (uintptr_t)tb1 & 3;
1428 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
1429 if (n1 == 2)
1430 break;
1431 tb1 = tb1->jmp_next[n1];
1433 /* we are now sure now that tb jumps to tb1 */
1434 tb_next = tb1;
1436 /* remove tb from the jmp_first list */
1437 ptb = &tb_next->jmp_first;
1438 for(;;) {
1439 tb1 = *ptb;
1440 n1 = (uintptr_t)tb1 & 3;
1441 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
1442 if (n1 == n && tb1 == tb)
1443 break;
1444 ptb = &tb1->jmp_next[n1];
1446 *ptb = tb->jmp_next[n];
1447 tb->jmp_next[n] = NULL;
1449 /* suppress the jump to next tb in generated code */
1450 tb_reset_jump(tb, n);
1452 /* suppress jumps in the tb on which we could have jumped */
1453 tb_reset_jump_recursive(tb_next);
1457 static void tb_reset_jump_recursive(TranslationBlock *tb)
1459 tb_reset_jump_recursive2(tb, 0);
1460 tb_reset_jump_recursive2(tb, 1);
1463 #if defined(TARGET_HAS_ICE)
1464 #if defined(CONFIG_USER_ONLY)
1465 static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
1467 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1469 #else
1470 void tb_invalidate_phys_addr(target_phys_addr_t addr)
1472 ram_addr_t ram_addr;
1473 MemoryRegionSection *section;
1475 section = phys_page_find(addr >> TARGET_PAGE_BITS);
1476 if (!(memory_region_is_ram(section->mr)
1477 || (section->mr->rom_device && section->mr->readable))) {
1478 return;
1480 ram_addr = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
1481 + memory_region_section_addr(section, addr);
1482 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1485 static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
1487 tb_invalidate_phys_addr(cpu_get_phys_page_debug(env, pc) |
1488 (pc & ~TARGET_PAGE_MASK));
1490 #endif
1491 #endif /* TARGET_HAS_ICE */
1493 #if defined(CONFIG_USER_ONLY)
1494 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
1499 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
1500 int flags, CPUWatchpoint **watchpoint)
1502 return -ENOSYS;
1504 #else
1505 /* Add a watchpoint. */
1506 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
1507 int flags, CPUWatchpoint **watchpoint)
1509 target_ulong len_mask = ~(len - 1);
1510 CPUWatchpoint *wp;
1512 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1513 if ((len & (len - 1)) || (addr & ~len_mask) ||
1514 len == 0 || len > TARGET_PAGE_SIZE) {
1515 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1516 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1517 return -EINVAL;
1519 wp = g_malloc(sizeof(*wp));
1521 wp->vaddr = addr;
1522 wp->len_mask = len_mask;
1523 wp->flags = flags;
1525 /* keep all GDB-injected watchpoints in front */
1526 if (flags & BP_GDB)
1527 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1528 else
1529 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1531 tlb_flush_page(env, addr);
1533 if (watchpoint)
1534 *watchpoint = wp;
1535 return 0;
1538 /* Remove a specific watchpoint. */
1539 int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
1540 int flags)
1542 target_ulong len_mask = ~(len - 1);
1543 CPUWatchpoint *wp;
1545 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1546 if (addr == wp->vaddr && len_mask == wp->len_mask
1547 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1548 cpu_watchpoint_remove_by_ref(env, wp);
1549 return 0;
1552 return -ENOENT;
1555 /* Remove a specific watchpoint by reference. */
1556 void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
1558 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1560 tlb_flush_page(env, watchpoint->vaddr);
1562 g_free(watchpoint);
1565 /* Remove all matching watchpoints. */
1566 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
1568 CPUWatchpoint *wp, *next;
1570 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1571 if (wp->flags & mask)
1572 cpu_watchpoint_remove_by_ref(env, wp);
1575 #endif
1577 /* Add a breakpoint. */
1578 int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
1579 CPUBreakpoint **breakpoint)
1581 #if defined(TARGET_HAS_ICE)
1582 CPUBreakpoint *bp;
1584 bp = g_malloc(sizeof(*bp));
1586 bp->pc = pc;
1587 bp->flags = flags;
1589 /* keep all GDB-injected breakpoints in front */
1590 if (flags & BP_GDB)
1591 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1592 else
1593 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1595 breakpoint_invalidate(env, pc);
1597 if (breakpoint)
1598 *breakpoint = bp;
1599 return 0;
1600 #else
1601 return -ENOSYS;
1602 #endif
1605 /* Remove a specific breakpoint. */
1606 int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
1608 #if defined(TARGET_HAS_ICE)
1609 CPUBreakpoint *bp;
1611 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1612 if (bp->pc == pc && bp->flags == flags) {
1613 cpu_breakpoint_remove_by_ref(env, bp);
1614 return 0;
1617 return -ENOENT;
1618 #else
1619 return -ENOSYS;
1620 #endif
1623 /* Remove a specific breakpoint by reference. */
1624 void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
1626 #if defined(TARGET_HAS_ICE)
1627 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1629 breakpoint_invalidate(env, breakpoint->pc);
1631 g_free(breakpoint);
1632 #endif
1635 /* Remove all matching breakpoints. */
1636 void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
1638 #if defined(TARGET_HAS_ICE)
1639 CPUBreakpoint *bp, *next;
1641 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1642 if (bp->flags & mask)
1643 cpu_breakpoint_remove_by_ref(env, bp);
1645 #endif
1648 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1649 CPU loop after each instruction */
1650 void cpu_single_step(CPUArchState *env, int enabled)
1652 #if defined(TARGET_HAS_ICE)
1653 if (env->singlestep_enabled != enabled) {
1654 env->singlestep_enabled = enabled;
1655 if (kvm_enabled())
1656 kvm_update_guest_debug(env, 0);
1657 else {
1658 /* must flush all the translated code to avoid inconsistencies */
1659 /* XXX: only flush what is necessary */
1660 tb_flush(env);
1663 #endif
1666 static void cpu_unlink_tb(CPUArchState *env)
1668 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1669 problem and hope the cpu will stop of its own accord. For userspace
1670 emulation this often isn't actually as bad as it sounds. Often
1671 signals are used primarily to interrupt blocking syscalls. */
1672 TranslationBlock *tb;
1673 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1675 spin_lock(&interrupt_lock);
1676 tb = env->current_tb;
1677 /* if the cpu is currently executing code, we must unlink it and
1678 all the potentially executing TB */
1679 if (tb) {
1680 env->current_tb = NULL;
1681 tb_reset_jump_recursive(tb);
1683 spin_unlock(&interrupt_lock);
1686 #ifndef CONFIG_USER_ONLY
1687 /* mask must never be zero, except for A20 change call */
1688 static void tcg_handle_interrupt(CPUArchState *env, int mask)
1690 int old_mask;
1692 old_mask = env->interrupt_request;
1693 env->interrupt_request |= mask;
1696 * If called from iothread context, wake the target cpu in
1697 * case its halted.
1699 if (!qemu_cpu_is_self(env)) {
1700 qemu_cpu_kick(env);
1701 return;
1704 if (use_icount) {
1705 env->icount_decr.u16.high = 0xffff;
1706 if (!can_do_io(env)
1707 && (mask & ~old_mask) != 0) {
1708 cpu_abort(env, "Raised interrupt while not in I/O function");
1710 } else {
1711 cpu_unlink_tb(env);
1715 CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;
1717 #else /* CONFIG_USER_ONLY */
1719 void cpu_interrupt(CPUArchState *env, int mask)
1721 env->interrupt_request |= mask;
1722 cpu_unlink_tb(env);
1724 #endif /* CONFIG_USER_ONLY */
1726 void cpu_reset_interrupt(CPUArchState *env, int mask)
1728 env->interrupt_request &= ~mask;
1731 void cpu_exit(CPUArchState *env)
1733 env->exit_request = 1;
1734 cpu_unlink_tb(env);
1737 void cpu_abort(CPUArchState *env, const char *fmt, ...)
1739 va_list ap;
1740 va_list ap2;
1742 va_start(ap, fmt);
1743 va_copy(ap2, ap);
1744 fprintf(stderr, "qemu: fatal: ");
1745 vfprintf(stderr, fmt, ap);
1746 fprintf(stderr, "\n");
1747 #ifdef TARGET_I386
1748 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1749 #else
1750 cpu_dump_state(env, stderr, fprintf, 0);
1751 #endif
1752 if (qemu_log_enabled()) {
1753 qemu_log("qemu: fatal: ");
1754 qemu_log_vprintf(fmt, ap2);
1755 qemu_log("\n");
1756 #ifdef TARGET_I386
1757 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1758 #else
1759 log_cpu_state(env, 0);
1760 #endif
1761 qemu_log_flush();
1762 qemu_log_close();
1764 va_end(ap2);
1765 va_end(ap);
1766 #if defined(CONFIG_USER_ONLY)
1768 struct sigaction act;
1769 sigfillset(&act.sa_mask);
1770 act.sa_handler = SIG_DFL;
1771 sigaction(SIGABRT, &act, NULL);
1773 #endif
1774 abort();
1777 CPUArchState *cpu_copy(CPUArchState *env)
1779 CPUArchState *new_env = cpu_init(env->cpu_model_str);
1780 CPUArchState *next_cpu = new_env->next_cpu;
1781 int cpu_index = new_env->cpu_index;
1782 #if defined(TARGET_HAS_ICE)
1783 CPUBreakpoint *bp;
1784 CPUWatchpoint *wp;
1785 #endif
1787 memcpy(new_env, env, sizeof(CPUArchState));
1789 /* Preserve chaining and index. */
1790 new_env->next_cpu = next_cpu;
1791 new_env->cpu_index = cpu_index;
1793 /* Clone all break/watchpoints.
1794 Note: Once we support ptrace with hw-debug register access, make sure
1795 BP_CPU break/watchpoints are handled correctly on clone. */
1796 QTAILQ_INIT(&env->breakpoints);
1797 QTAILQ_INIT(&env->watchpoints);
1798 #if defined(TARGET_HAS_ICE)
1799 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1800 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1802 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1803 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1804 wp->flags, NULL);
1806 #endif
1808 return new_env;
1811 #if !defined(CONFIG_USER_ONLY)
1812 void tb_flush_jmp_cache(CPUArchState *env, target_ulong addr)
1814 unsigned int i;
1816 /* Discard jump cache entries for any tb which might potentially
1817 overlap the flushed page. */
1818 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1819 memset (&env->tb_jmp_cache[i], 0,
1820 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1822 i = tb_jmp_cache_hash_page(addr);
1823 memset (&env->tb_jmp_cache[i], 0,
1824 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1827 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t end,
1828 uintptr_t length)
1830 uintptr_t start1;
1832 /* we modify the TLB cache so that the dirty bit will be set again
1833 when accessing the range */
1834 start1 = (uintptr_t)qemu_safe_ram_ptr(start);
1835 /* Check that we don't span multiple blocks - this breaks the
1836 address comparisons below. */
1837 if ((uintptr_t)qemu_safe_ram_ptr(end - 1) - start1
1838 != (end - 1) - start) {
1839 abort();
1841 cpu_tlb_reset_dirty_all(start1, length);
1845 /* Note: start and end must be within the same ram block. */
1846 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1847 int dirty_flags)
1849 uintptr_t length;
1851 start &= TARGET_PAGE_MASK;
1852 end = TARGET_PAGE_ALIGN(end);
1854 length = end - start;
1855 if (length == 0)
1856 return;
1857 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
1859 if (tcg_enabled()) {
1860 tlb_reset_dirty_range_all(start, end, length);
1864 int cpu_physical_memory_set_dirty_tracking(int enable)
1866 int ret = 0;
1867 in_migration = enable;
1868 return ret;
1871 target_phys_addr_t memory_region_section_get_iotlb(CPUArchState *env,
1872 MemoryRegionSection *section,
1873 target_ulong vaddr,
1874 target_phys_addr_t paddr,
1875 int prot,
1876 target_ulong *address)
1878 target_phys_addr_t iotlb;
1879 CPUWatchpoint *wp;
1881 if (memory_region_is_ram(section->mr)) {
1882 /* Normal RAM. */
1883 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
1884 + memory_region_section_addr(section, paddr);
1885 if (!section->readonly) {
1886 iotlb |= phys_section_notdirty;
1887 } else {
1888 iotlb |= phys_section_rom;
1890 } else {
1891 /* IO handlers are currently passed a physical address.
1892 It would be nice to pass an offset from the base address
1893 of that region. This would avoid having to special case RAM,
1894 and avoid full address decoding in every device.
1895 We can't use the high bits of pd for this because
1896 IO_MEM_ROMD uses these as a ram address. */
1897 iotlb = section - phys_sections;
1898 iotlb += memory_region_section_addr(section, paddr);
1901 /* Make accesses to pages with watchpoints go via the
1902 watchpoint trap routines. */
1903 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1904 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
1905 /* Avoid trapping reads of pages with a write breakpoint. */
1906 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1907 iotlb = phys_section_watch + paddr;
1908 *address |= TLB_MMIO;
1909 break;
1914 return iotlb;
1917 #else
1919 * Walks guest process memory "regions" one by one
1920 * and calls callback function 'fn' for each region.
1923 struct walk_memory_regions_data
1925 walk_memory_regions_fn fn;
1926 void *priv;
1927 uintptr_t start;
1928 int prot;
1931 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1932 abi_ulong end, int new_prot)
1934 if (data->start != -1ul) {
1935 int rc = data->fn(data->priv, data->start, end, data->prot);
1936 if (rc != 0) {
1937 return rc;
1941 data->start = (new_prot ? end : -1ul);
1942 data->prot = new_prot;
1944 return 0;
1947 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1948 abi_ulong base, int level, void **lp)
1950 abi_ulong pa;
1951 int i, rc;
1953 if (*lp == NULL) {
1954 return walk_memory_regions_end(data, base, 0);
1957 if (level == 0) {
1958 PageDesc *pd = *lp;
1959 for (i = 0; i < L2_SIZE; ++i) {
1960 int prot = pd[i].flags;
1962 pa = base | (i << TARGET_PAGE_BITS);
1963 if (prot != data->prot) {
1964 rc = walk_memory_regions_end(data, pa, prot);
1965 if (rc != 0) {
1966 return rc;
1970 } else {
1971 void **pp = *lp;
1972 for (i = 0; i < L2_SIZE; ++i) {
1973 pa = base | ((abi_ulong)i <<
1974 (TARGET_PAGE_BITS + L2_BITS * level));
1975 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
1976 if (rc != 0) {
1977 return rc;
1982 return 0;
1985 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
1987 struct walk_memory_regions_data data;
1988 uintptr_t i;
1990 data.fn = fn;
1991 data.priv = priv;
1992 data.start = -1ul;
1993 data.prot = 0;
1995 for (i = 0; i < V_L1_SIZE; i++) {
1996 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
1997 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
1998 if (rc != 0) {
1999 return rc;
2003 return walk_memory_regions_end(&data, 0, 0);
2006 static int dump_region(void *priv, abi_ulong start,
2007 abi_ulong end, unsigned long prot)
2009 FILE *f = (FILE *)priv;
2011 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2012 " "TARGET_ABI_FMT_lx" %c%c%c\n",
2013 start, end, end - start,
2014 ((prot & PAGE_READ) ? 'r' : '-'),
2015 ((prot & PAGE_WRITE) ? 'w' : '-'),
2016 ((prot & PAGE_EXEC) ? 'x' : '-'));
2018 return (0);
2021 /* dump memory mappings */
2022 void page_dump(FILE *f)
2024 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2025 "start", "end", "size", "prot");
2026 walk_memory_regions(f, dump_region);
2029 int page_get_flags(target_ulong address)
2031 PageDesc *p;
2033 p = page_find(address >> TARGET_PAGE_BITS);
2034 if (!p)
2035 return 0;
2036 return p->flags;
2039 /* Modify the flags of a page and invalidate the code if necessary.
2040 The flag PAGE_WRITE_ORG is positioned automatically depending
2041 on PAGE_WRITE. The mmap_lock should already be held. */
2042 void page_set_flags(target_ulong start, target_ulong end, int flags)
2044 target_ulong addr, len;
2046 /* This function should never be called with addresses outside the
2047 guest address space. If this assert fires, it probably indicates
2048 a missing call to h2g_valid. */
2049 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2050 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2051 #endif
2052 assert(start < end);
2054 start = start & TARGET_PAGE_MASK;
2055 end = TARGET_PAGE_ALIGN(end);
2057 if (flags & PAGE_WRITE) {
2058 flags |= PAGE_WRITE_ORG;
2061 for (addr = start, len = end - start;
2062 len != 0;
2063 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2064 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2066 /* If the write protection bit is set, then we invalidate
2067 the code inside. */
2068 if (!(p->flags & PAGE_WRITE) &&
2069 (flags & PAGE_WRITE) &&
2070 p->first_tb) {
2071 tb_invalidate_phys_page(addr, 0, NULL);
2073 p->flags = flags;
2077 int page_check_range(target_ulong start, target_ulong len, int flags)
2079 PageDesc *p;
2080 target_ulong end;
2081 target_ulong addr;
2083 /* This function should never be called with addresses outside the
2084 guest address space. If this assert fires, it probably indicates
2085 a missing call to h2g_valid. */
2086 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2087 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2088 #endif
2090 if (len == 0) {
2091 return 0;
2093 if (start + len - 1 < start) {
2094 /* We've wrapped around. */
2095 return -1;
2098 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2099 start = start & TARGET_PAGE_MASK;
2101 for (addr = start, len = end - start;
2102 len != 0;
2103 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2104 p = page_find(addr >> TARGET_PAGE_BITS);
2105 if( !p )
2106 return -1;
2107 if( !(p->flags & PAGE_VALID) )
2108 return -1;
2110 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2111 return -1;
2112 if (flags & PAGE_WRITE) {
2113 if (!(p->flags & PAGE_WRITE_ORG))
2114 return -1;
2115 /* unprotect the page if it was put read-only because it
2116 contains translated code */
2117 if (!(p->flags & PAGE_WRITE)) {
2118 if (!page_unprotect(addr, 0, NULL))
2119 return -1;
2121 return 0;
2124 return 0;
2127 /* called from signal handler: invalidate the code and unprotect the
2128 page. Return TRUE if the fault was successfully handled. */
2129 int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
2131 unsigned int prot;
2132 PageDesc *p;
2133 target_ulong host_start, host_end, addr;
2135 /* Technically this isn't safe inside a signal handler. However we
2136 know this only ever happens in a synchronous SEGV handler, so in
2137 practice it seems to be ok. */
2138 mmap_lock();
2140 p = page_find(address >> TARGET_PAGE_BITS);
2141 if (!p) {
2142 mmap_unlock();
2143 return 0;
2146 /* if the page was really writable, then we change its
2147 protection back to writable */
2148 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2149 host_start = address & qemu_host_page_mask;
2150 host_end = host_start + qemu_host_page_size;
2152 prot = 0;
2153 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2154 p = page_find(addr >> TARGET_PAGE_BITS);
2155 p->flags |= PAGE_WRITE;
2156 prot |= p->flags;
2158 /* and since the content will be modified, we must invalidate
2159 the corresponding translated code. */
2160 tb_invalidate_phys_page(addr, pc, puc);
2161 #ifdef DEBUG_TB_CHECK
2162 tb_invalidate_check(addr);
2163 #endif
2165 mprotect((void *)g2h(host_start), qemu_host_page_size,
2166 prot & PAGE_BITS);
2168 mmap_unlock();
2169 return 1;
2171 mmap_unlock();
2172 return 0;
2174 #endif /* defined(CONFIG_USER_ONLY) */
2176 #if !defined(CONFIG_USER_ONLY)
2178 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2179 typedef struct subpage_t {
2180 MemoryRegion iomem;
2181 target_phys_addr_t base;
2182 uint16_t sub_section[TARGET_PAGE_SIZE];
2183 } subpage_t;
2185 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2186 uint16_t section);
2187 static subpage_t *subpage_init(target_phys_addr_t base);
2188 static void destroy_page_desc(uint16_t section_index)
2190 MemoryRegionSection *section = &phys_sections[section_index];
2191 MemoryRegion *mr = section->mr;
2193 if (mr->subpage) {
2194 subpage_t *subpage = container_of(mr, subpage_t, iomem);
2195 memory_region_destroy(&subpage->iomem);
2196 g_free(subpage);
2200 static void destroy_l2_mapping(PhysPageEntry *lp, unsigned level)
2202 unsigned i;
2203 PhysPageEntry *p;
2205 if (lp->ptr == PHYS_MAP_NODE_NIL) {
2206 return;
2209 p = phys_map_nodes[lp->ptr];
2210 for (i = 0; i < L2_SIZE; ++i) {
2211 if (!p[i].is_leaf) {
2212 destroy_l2_mapping(&p[i], level - 1);
2213 } else {
2214 destroy_page_desc(p[i].ptr);
2217 lp->is_leaf = 0;
2218 lp->ptr = PHYS_MAP_NODE_NIL;
2221 static void destroy_all_mappings(void)
2223 destroy_l2_mapping(&phys_map, P_L2_LEVELS - 1);
2224 phys_map_nodes_reset();
2227 static uint16_t phys_section_add(MemoryRegionSection *section)
2229 if (phys_sections_nb == phys_sections_nb_alloc) {
2230 phys_sections_nb_alloc = MAX(phys_sections_nb_alloc * 2, 16);
2231 phys_sections = g_renew(MemoryRegionSection, phys_sections,
2232 phys_sections_nb_alloc);
2234 phys_sections[phys_sections_nb] = *section;
2235 return phys_sections_nb++;
2238 static void phys_sections_clear(void)
2240 phys_sections_nb = 0;
2243 /* register physical memory.
2244 For RAM, 'size' must be a multiple of the target page size.
2245 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2246 io memory page. The address used when calling the IO function is
2247 the offset from the start of the region, plus region_offset. Both
2248 start_addr and region_offset are rounded down to a page boundary
2249 before calculating this offset. This should not be a problem unless
2250 the low bits of start_addr and region_offset differ. */
2251 static void register_subpage(MemoryRegionSection *section)
2253 subpage_t *subpage;
2254 target_phys_addr_t base = section->offset_within_address_space
2255 & TARGET_PAGE_MASK;
2256 MemoryRegionSection *existing = phys_page_find(base >> TARGET_PAGE_BITS);
2257 MemoryRegionSection subsection = {
2258 .offset_within_address_space = base,
2259 .size = TARGET_PAGE_SIZE,
2261 target_phys_addr_t start, end;
2263 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
2265 if (!(existing->mr->subpage)) {
2266 subpage = subpage_init(base);
2267 subsection.mr = &subpage->iomem;
2268 phys_page_set(base >> TARGET_PAGE_BITS, 1,
2269 phys_section_add(&subsection));
2270 } else {
2271 subpage = container_of(existing->mr, subpage_t, iomem);
2273 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
2274 end = start + section->size;
2275 subpage_register(subpage, start, end, phys_section_add(section));
2279 static void register_multipage(MemoryRegionSection *section)
2281 target_phys_addr_t start_addr = section->offset_within_address_space;
2282 ram_addr_t size = section->size;
2283 target_phys_addr_t addr;
2284 uint16_t section_index = phys_section_add(section);
2286 assert(size);
2288 addr = start_addr;
2289 phys_page_set(addr >> TARGET_PAGE_BITS, size >> TARGET_PAGE_BITS,
2290 section_index);
2293 void cpu_register_physical_memory_log(MemoryRegionSection *section,
2294 bool readonly)
2296 MemoryRegionSection now = *section, remain = *section;
2298 if ((now.offset_within_address_space & ~TARGET_PAGE_MASK)
2299 || (now.size < TARGET_PAGE_SIZE)) {
2300 now.size = MIN(TARGET_PAGE_ALIGN(now.offset_within_address_space)
2301 - now.offset_within_address_space,
2302 now.size);
2303 register_subpage(&now);
2304 remain.size -= now.size;
2305 remain.offset_within_address_space += now.size;
2306 remain.offset_within_region += now.size;
2308 now = remain;
2309 now.size &= TARGET_PAGE_MASK;
2310 if (now.size) {
2311 register_multipage(&now);
2312 remain.size -= now.size;
2313 remain.offset_within_address_space += now.size;
2314 remain.offset_within_region += now.size;
2316 now = remain;
2317 if (now.size) {
2318 register_subpage(&now);
2323 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2325 if (kvm_enabled())
2326 kvm_coalesce_mmio_region(addr, size);
2329 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2331 if (kvm_enabled())
2332 kvm_uncoalesce_mmio_region(addr, size);
2335 void qemu_flush_coalesced_mmio_buffer(void)
2337 if (kvm_enabled())
2338 kvm_flush_coalesced_mmio_buffer();
2341 #if defined(__linux__) && !defined(TARGET_S390X)
2343 #include <sys/vfs.h>
2345 #define HUGETLBFS_MAGIC 0x958458f6
2347 static long gethugepagesize(const char *path)
2349 struct statfs fs;
2350 int ret;
2352 do {
2353 ret = statfs(path, &fs);
2354 } while (ret != 0 && errno == EINTR);
2356 if (ret != 0) {
2357 perror(path);
2358 return 0;
2361 if (fs.f_type != HUGETLBFS_MAGIC)
2362 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
2364 return fs.f_bsize;
2367 static void *file_ram_alloc(RAMBlock *block,
2368 ram_addr_t memory,
2369 const char *path)
2371 char *filename;
2372 void *area;
2373 int fd;
2374 #ifdef MAP_POPULATE
2375 int flags;
2376 #endif
2377 unsigned long hpagesize;
2379 hpagesize = gethugepagesize(path);
2380 if (!hpagesize) {
2381 return NULL;
2384 if (memory < hpagesize) {
2385 return NULL;
2388 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2389 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2390 return NULL;
2393 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
2394 return NULL;
2397 fd = mkstemp(filename);
2398 if (fd < 0) {
2399 perror("unable to create backing store for hugepages");
2400 free(filename);
2401 return NULL;
2403 unlink(filename);
2404 free(filename);
2406 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2409 * ftruncate is not supported by hugetlbfs in older
2410 * hosts, so don't bother bailing out on errors.
2411 * If anything goes wrong with it under other filesystems,
2412 * mmap will fail.
2414 if (ftruncate(fd, memory))
2415 perror("ftruncate");
2417 #ifdef MAP_POPULATE
2418 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2419 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2420 * to sidestep this quirk.
2422 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2423 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2424 #else
2425 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2426 #endif
2427 if (area == MAP_FAILED) {
2428 perror("file_ram_alloc: can't mmap RAM pages");
2429 close(fd);
2430 return (NULL);
2432 block->fd = fd;
2433 return area;
2435 #endif
2437 static ram_addr_t find_ram_offset(ram_addr_t size)
2439 RAMBlock *block, *next_block;
2440 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
2442 if (QLIST_EMPTY(&ram_list.blocks))
2443 return 0;
2445 QLIST_FOREACH(block, &ram_list.blocks, next) {
2446 ram_addr_t end, next = RAM_ADDR_MAX;
2448 end = block->offset + block->length;
2450 QLIST_FOREACH(next_block, &ram_list.blocks, next) {
2451 if (next_block->offset >= end) {
2452 next = MIN(next, next_block->offset);
2455 if (next - end >= size && next - end < mingap) {
2456 offset = end;
2457 mingap = next - end;
2461 if (offset == RAM_ADDR_MAX) {
2462 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
2463 (uint64_t)size);
2464 abort();
2467 return offset;
2470 static ram_addr_t last_ram_offset(void)
2472 RAMBlock *block;
2473 ram_addr_t last = 0;
2475 QLIST_FOREACH(block, &ram_list.blocks, next)
2476 last = MAX(last, block->offset + block->length);
2478 return last;
2481 void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
2483 RAMBlock *new_block, *block;
2485 new_block = NULL;
2486 QLIST_FOREACH(block, &ram_list.blocks, next) {
2487 if (block->offset == addr) {
2488 new_block = block;
2489 break;
2492 assert(new_block);
2493 assert(!new_block->idstr[0]);
2495 if (dev) {
2496 char *id = qdev_get_dev_path(dev);
2497 if (id) {
2498 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2499 g_free(id);
2502 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2504 QLIST_FOREACH(block, &ram_list.blocks, next) {
2505 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
2506 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2507 new_block->idstr);
2508 abort();
2513 ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2514 MemoryRegion *mr)
2516 RAMBlock *new_block;
2518 size = TARGET_PAGE_ALIGN(size);
2519 new_block = g_malloc0(sizeof(*new_block));
2521 new_block->mr = mr;
2522 new_block->offset = find_ram_offset(size);
2523 if (host) {
2524 new_block->host = host;
2525 new_block->flags |= RAM_PREALLOC_MASK;
2526 } else {
2527 if (mem_path) {
2528 #if defined (__linux__) && !defined(TARGET_S390X)
2529 new_block->host = file_ram_alloc(new_block, size, mem_path);
2530 if (!new_block->host) {
2531 new_block->host = qemu_vmalloc(size);
2532 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
2534 #else
2535 fprintf(stderr, "-mem-path option unsupported\n");
2536 exit(1);
2537 #endif
2538 } else {
2539 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2540 /* S390 KVM requires the topmost vma of the RAM to be smaller than
2541 an system defined value, which is at least 256GB. Larger systems
2542 have larger values. We put the guest between the end of data
2543 segment (system break) and this value. We use 32GB as a base to
2544 have enough room for the system break to grow. */
2545 new_block->host = mmap((void*)0x800000000, size,
2546 PROT_EXEC|PROT_READ|PROT_WRITE,
2547 MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
2548 if (new_block->host == MAP_FAILED) {
2549 fprintf(stderr, "Allocating RAM failed\n");
2550 abort();
2552 #else
2553 if (xen_enabled()) {
2554 xen_ram_alloc(new_block->offset, size, mr);
2555 } else {
2556 new_block->host = qemu_vmalloc(size);
2558 #endif
2559 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
2562 new_block->length = size;
2564 QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
2566 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
2567 last_ram_offset() >> TARGET_PAGE_BITS);
2568 cpu_physical_memory_set_dirty_range(new_block->offset, size, 0xff);
2570 if (kvm_enabled())
2571 kvm_setup_guest_memory(new_block->host, size);
2573 return new_block->offset;
2576 ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
2578 return qemu_ram_alloc_from_ptr(size, NULL, mr);
2581 void qemu_ram_free_from_ptr(ram_addr_t addr)
2583 RAMBlock *block;
2585 QLIST_FOREACH(block, &ram_list.blocks, next) {
2586 if (addr == block->offset) {
2587 QLIST_REMOVE(block, next);
2588 g_free(block);
2589 return;
2594 void qemu_ram_free(ram_addr_t addr)
2596 RAMBlock *block;
2598 QLIST_FOREACH(block, &ram_list.blocks, next) {
2599 if (addr == block->offset) {
2600 QLIST_REMOVE(block, next);
2601 if (block->flags & RAM_PREALLOC_MASK) {
2603 } else if (mem_path) {
2604 #if defined (__linux__) && !defined(TARGET_S390X)
2605 if (block->fd) {
2606 munmap(block->host, block->length);
2607 close(block->fd);
2608 } else {
2609 qemu_vfree(block->host);
2611 #else
2612 abort();
2613 #endif
2614 } else {
2615 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2616 munmap(block->host, block->length);
2617 #else
2618 if (xen_enabled()) {
2619 xen_invalidate_map_cache_entry(block->host);
2620 } else {
2621 qemu_vfree(block->host);
2623 #endif
2625 g_free(block);
2626 return;
2632 #ifndef _WIN32
2633 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2635 RAMBlock *block;
2636 ram_addr_t offset;
2637 int flags;
2638 void *area, *vaddr;
2640 QLIST_FOREACH(block, &ram_list.blocks, next) {
2641 offset = addr - block->offset;
2642 if (offset < block->length) {
2643 vaddr = block->host + offset;
2644 if (block->flags & RAM_PREALLOC_MASK) {
2646 } else {
2647 flags = MAP_FIXED;
2648 munmap(vaddr, length);
2649 if (mem_path) {
2650 #if defined(__linux__) && !defined(TARGET_S390X)
2651 if (block->fd) {
2652 #ifdef MAP_POPULATE
2653 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
2654 MAP_PRIVATE;
2655 #else
2656 flags |= MAP_PRIVATE;
2657 #endif
2658 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2659 flags, block->fd, offset);
2660 } else {
2661 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2662 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2663 flags, -1, 0);
2665 #else
2666 abort();
2667 #endif
2668 } else {
2669 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2670 flags |= MAP_SHARED | MAP_ANONYMOUS;
2671 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
2672 flags, -1, 0);
2673 #else
2674 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2675 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2676 flags, -1, 0);
2677 #endif
2679 if (area != vaddr) {
2680 fprintf(stderr, "Could not remap addr: "
2681 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
2682 length, addr);
2683 exit(1);
2685 qemu_madvise(vaddr, length, QEMU_MADV_MERGEABLE);
2687 return;
2691 #endif /* !_WIN32 */
2693 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2694 With the exception of the softmmu code in this file, this should
2695 only be used for local memory (e.g. video ram) that the device owns,
2696 and knows it isn't going to access beyond the end of the block.
2698 It should not be used for general purpose DMA.
2699 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2701 void *qemu_get_ram_ptr(ram_addr_t addr)
2703 RAMBlock *block;
2705 QLIST_FOREACH(block, &ram_list.blocks, next) {
2706 if (addr - block->offset < block->length) {
2707 /* Move this entry to to start of the list. */
2708 if (block != QLIST_FIRST(&ram_list.blocks)) {
2709 QLIST_REMOVE(block, next);
2710 QLIST_INSERT_HEAD(&ram_list.blocks, block, next);
2712 if (xen_enabled()) {
2713 /* We need to check if the requested address is in the RAM
2714 * because we don't want to map the entire memory in QEMU.
2715 * In that case just map until the end of the page.
2717 if (block->offset == 0) {
2718 return xen_map_cache(addr, 0, 0);
2719 } else if (block->host == NULL) {
2720 block->host =
2721 xen_map_cache(block->offset, block->length, 1);
2724 return block->host + (addr - block->offset);
2728 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2729 abort();
2731 return NULL;
2734 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2735 * Same as qemu_get_ram_ptr but avoid reordering ramblocks.
2737 void *qemu_safe_ram_ptr(ram_addr_t addr)
2739 RAMBlock *block;
2741 QLIST_FOREACH(block, &ram_list.blocks, next) {
2742 if (addr - block->offset < block->length) {
2743 if (xen_enabled()) {
2744 /* We need to check if the requested address is in the RAM
2745 * because we don't want to map the entire memory in QEMU.
2746 * In that case just map until the end of the page.
2748 if (block->offset == 0) {
2749 return xen_map_cache(addr, 0, 0);
2750 } else if (block->host == NULL) {
2751 block->host =
2752 xen_map_cache(block->offset, block->length, 1);
2755 return block->host + (addr - block->offset);
2759 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2760 abort();
2762 return NULL;
2765 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
2766 * but takes a size argument */
2767 void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
2769 if (*size == 0) {
2770 return NULL;
2772 if (xen_enabled()) {
2773 return xen_map_cache(addr, *size, 1);
2774 } else {
2775 RAMBlock *block;
2777 QLIST_FOREACH(block, &ram_list.blocks, next) {
2778 if (addr - block->offset < block->length) {
2779 if (addr - block->offset + *size > block->length)
2780 *size = block->length - addr + block->offset;
2781 return block->host + (addr - block->offset);
2785 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2786 abort();
2790 void qemu_put_ram_ptr(void *addr)
2792 trace_qemu_put_ram_ptr(addr);
2795 int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
2797 RAMBlock *block;
2798 uint8_t *host = ptr;
2800 if (xen_enabled()) {
2801 *ram_addr = xen_ram_addr_from_mapcache(ptr);
2802 return 0;
2805 QLIST_FOREACH(block, &ram_list.blocks, next) {
2806 /* This case append when the block is not mapped. */
2807 if (block->host == NULL) {
2808 continue;
2810 if (host - block->host < block->length) {
2811 *ram_addr = block->offset + (host - block->host);
2812 return 0;
2816 return -1;
2819 /* Some of the softmmu routines need to translate from a host pointer
2820 (typically a TLB entry) back to a ram offset. */
2821 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
2823 ram_addr_t ram_addr;
2825 if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
2826 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2827 abort();
2829 return ram_addr;
2832 static uint64_t unassigned_mem_read(void *opaque, target_phys_addr_t addr,
2833 unsigned size)
2835 #ifdef DEBUG_UNASSIGNED
2836 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2837 #endif
2838 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2839 cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, size);
2840 #endif
2841 return 0;
2844 static void unassigned_mem_write(void *opaque, target_phys_addr_t addr,
2845 uint64_t val, unsigned size)
2847 #ifdef DEBUG_UNASSIGNED
2848 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
2849 #endif
2850 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2851 cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, size);
2852 #endif
2855 static const MemoryRegionOps unassigned_mem_ops = {
2856 .read = unassigned_mem_read,
2857 .write = unassigned_mem_write,
2858 .endianness = DEVICE_NATIVE_ENDIAN,
2861 static uint64_t error_mem_read(void *opaque, target_phys_addr_t addr,
2862 unsigned size)
2864 abort();
2867 static void error_mem_write(void *opaque, target_phys_addr_t addr,
2868 uint64_t value, unsigned size)
2870 abort();
2873 static const MemoryRegionOps error_mem_ops = {
2874 .read = error_mem_read,
2875 .write = error_mem_write,
2876 .endianness = DEVICE_NATIVE_ENDIAN,
2879 static const MemoryRegionOps rom_mem_ops = {
2880 .read = error_mem_read,
2881 .write = unassigned_mem_write,
2882 .endianness = DEVICE_NATIVE_ENDIAN,
2885 static void notdirty_mem_write(void *opaque, target_phys_addr_t ram_addr,
2886 uint64_t val, unsigned size)
2888 int dirty_flags;
2889 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
2890 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2891 #if !defined(CONFIG_USER_ONLY)
2892 tb_invalidate_phys_page_fast(ram_addr, size);
2893 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
2894 #endif
2896 switch (size) {
2897 case 1:
2898 stb_p(qemu_get_ram_ptr(ram_addr), val);
2899 break;
2900 case 2:
2901 stw_p(qemu_get_ram_ptr(ram_addr), val);
2902 break;
2903 case 4:
2904 stl_p(qemu_get_ram_ptr(ram_addr), val);
2905 break;
2906 default:
2907 abort();
2909 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2910 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
2911 /* we remove the notdirty callback only if the code has been
2912 flushed */
2913 if (dirty_flags == 0xff)
2914 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2917 static const MemoryRegionOps notdirty_mem_ops = {
2918 .read = error_mem_read,
2919 .write = notdirty_mem_write,
2920 .endianness = DEVICE_NATIVE_ENDIAN,
2923 /* Generate a debug exception if a watchpoint has been hit. */
2924 static void check_watchpoint(int offset, int len_mask, int flags)
2926 CPUArchState *env = cpu_single_env;
2927 target_ulong pc, cs_base;
2928 TranslationBlock *tb;
2929 target_ulong vaddr;
2930 CPUWatchpoint *wp;
2931 int cpu_flags;
2933 if (env->watchpoint_hit) {
2934 /* We re-entered the check after replacing the TB. Now raise
2935 * the debug interrupt so that is will trigger after the
2936 * current instruction. */
2937 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2938 return;
2940 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2941 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
2942 if ((vaddr == (wp->vaddr & len_mask) ||
2943 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
2944 wp->flags |= BP_WATCHPOINT_HIT;
2945 if (!env->watchpoint_hit) {
2946 env->watchpoint_hit = wp;
2947 tb = tb_find_pc(env->mem_io_pc);
2948 if (!tb) {
2949 cpu_abort(env, "check_watchpoint: could not find TB for "
2950 "pc=%p", (void *)env->mem_io_pc);
2952 cpu_restore_state(tb, env, env->mem_io_pc);
2953 tb_phys_invalidate(tb, -1);
2954 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2955 env->exception_index = EXCP_DEBUG;
2956 cpu_loop_exit(env);
2957 } else {
2958 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2959 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
2960 cpu_resume_from_signal(env, NULL);
2963 } else {
2964 wp->flags &= ~BP_WATCHPOINT_HIT;
2969 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2970 so these check for a hit then pass through to the normal out-of-line
2971 phys routines. */
2972 static uint64_t watch_mem_read(void *opaque, target_phys_addr_t addr,
2973 unsigned size)
2975 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
2976 switch (size) {
2977 case 1: return ldub_phys(addr);
2978 case 2: return lduw_phys(addr);
2979 case 4: return ldl_phys(addr);
2980 default: abort();
2984 static void watch_mem_write(void *opaque, target_phys_addr_t addr,
2985 uint64_t val, unsigned size)
2987 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
2988 switch (size) {
2989 case 1:
2990 stb_phys(addr, val);
2991 break;
2992 case 2:
2993 stw_phys(addr, val);
2994 break;
2995 case 4:
2996 stl_phys(addr, val);
2997 break;
2998 default: abort();
3002 static const MemoryRegionOps watch_mem_ops = {
3003 .read = watch_mem_read,
3004 .write = watch_mem_write,
3005 .endianness = DEVICE_NATIVE_ENDIAN,
3008 static uint64_t subpage_read(void *opaque, target_phys_addr_t addr,
3009 unsigned len)
3011 subpage_t *mmio = opaque;
3012 unsigned int idx = SUBPAGE_IDX(addr);
3013 MemoryRegionSection *section;
3014 #if defined(DEBUG_SUBPAGE)
3015 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3016 mmio, len, addr, idx);
3017 #endif
3019 section = &phys_sections[mmio->sub_section[idx]];
3020 addr += mmio->base;
3021 addr -= section->offset_within_address_space;
3022 addr += section->offset_within_region;
3023 return io_mem_read(section->mr, addr, len);
3026 static void subpage_write(void *opaque, target_phys_addr_t addr,
3027 uint64_t value, unsigned len)
3029 subpage_t *mmio = opaque;
3030 unsigned int idx = SUBPAGE_IDX(addr);
3031 MemoryRegionSection *section;
3032 #if defined(DEBUG_SUBPAGE)
3033 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
3034 " idx %d value %"PRIx64"\n",
3035 __func__, mmio, len, addr, idx, value);
3036 #endif
3038 section = &phys_sections[mmio->sub_section[idx]];
3039 addr += mmio->base;
3040 addr -= section->offset_within_address_space;
3041 addr += section->offset_within_region;
3042 io_mem_write(section->mr, addr, value, len);
3045 static const MemoryRegionOps subpage_ops = {
3046 .read = subpage_read,
3047 .write = subpage_write,
3048 .endianness = DEVICE_NATIVE_ENDIAN,
3051 static uint64_t subpage_ram_read(void *opaque, target_phys_addr_t addr,
3052 unsigned size)
3054 ram_addr_t raddr = addr;
3055 void *ptr = qemu_get_ram_ptr(raddr);
3056 switch (size) {
3057 case 1: return ldub_p(ptr);
3058 case 2: return lduw_p(ptr);
3059 case 4: return ldl_p(ptr);
3060 default: abort();
3064 static void subpage_ram_write(void *opaque, target_phys_addr_t addr,
3065 uint64_t value, unsigned size)
3067 ram_addr_t raddr = addr;
3068 void *ptr = qemu_get_ram_ptr(raddr);
3069 switch (size) {
3070 case 1: return stb_p(ptr, value);
3071 case 2: return stw_p(ptr, value);
3072 case 4: return stl_p(ptr, value);
3073 default: abort();
3077 static const MemoryRegionOps subpage_ram_ops = {
3078 .read = subpage_ram_read,
3079 .write = subpage_ram_write,
3080 .endianness = DEVICE_NATIVE_ENDIAN,
3083 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3084 uint16_t section)
3086 int idx, eidx;
3088 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3089 return -1;
3090 idx = SUBPAGE_IDX(start);
3091 eidx = SUBPAGE_IDX(end);
3092 #if defined(DEBUG_SUBPAGE)
3093 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
3094 mmio, start, end, idx, eidx, memory);
3095 #endif
3096 if (memory_region_is_ram(phys_sections[section].mr)) {
3097 MemoryRegionSection new_section = phys_sections[section];
3098 new_section.mr = &io_mem_subpage_ram;
3099 section = phys_section_add(&new_section);
3101 for (; idx <= eidx; idx++) {
3102 mmio->sub_section[idx] = section;
3105 return 0;
3108 static subpage_t *subpage_init(target_phys_addr_t base)
3110 subpage_t *mmio;
3112 mmio = g_malloc0(sizeof(subpage_t));
3114 mmio->base = base;
3115 memory_region_init_io(&mmio->iomem, &subpage_ops, mmio,
3116 "subpage", TARGET_PAGE_SIZE);
3117 mmio->iomem.subpage = true;
3118 #if defined(DEBUG_SUBPAGE)
3119 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3120 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
3121 #endif
3122 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, phys_section_unassigned);
3124 return mmio;
3127 static uint16_t dummy_section(MemoryRegion *mr)
3129 MemoryRegionSection section = {
3130 .mr = mr,
3131 .offset_within_address_space = 0,
3132 .offset_within_region = 0,
3133 .size = UINT64_MAX,
3136 return phys_section_add(&section);
3139 MemoryRegion *iotlb_to_region(target_phys_addr_t index)
3141 return phys_sections[index & ~TARGET_PAGE_MASK].mr;
3144 static void io_mem_init(void)
3146 memory_region_init_io(&io_mem_ram, &error_mem_ops, NULL, "ram", UINT64_MAX);
3147 memory_region_init_io(&io_mem_rom, &rom_mem_ops, NULL, "rom", UINT64_MAX);
3148 memory_region_init_io(&io_mem_unassigned, &unassigned_mem_ops, NULL,
3149 "unassigned", UINT64_MAX);
3150 memory_region_init_io(&io_mem_notdirty, &notdirty_mem_ops, NULL,
3151 "notdirty", UINT64_MAX);
3152 memory_region_init_io(&io_mem_subpage_ram, &subpage_ram_ops, NULL,
3153 "subpage-ram", UINT64_MAX);
3154 memory_region_init_io(&io_mem_watch, &watch_mem_ops, NULL,
3155 "watch", UINT64_MAX);
3158 static void core_begin(MemoryListener *listener)
3160 destroy_all_mappings();
3161 phys_sections_clear();
3162 phys_map.ptr = PHYS_MAP_NODE_NIL;
3163 phys_section_unassigned = dummy_section(&io_mem_unassigned);
3164 phys_section_notdirty = dummy_section(&io_mem_notdirty);
3165 phys_section_rom = dummy_section(&io_mem_rom);
3166 phys_section_watch = dummy_section(&io_mem_watch);
3169 static void core_commit(MemoryListener *listener)
3171 CPUArchState *env;
3173 /* since each CPU stores ram addresses in its TLB cache, we must
3174 reset the modified entries */
3175 /* XXX: slow ! */
3176 for(env = first_cpu; env != NULL; env = env->next_cpu) {
3177 tlb_flush(env, 1);
3181 static void core_region_add(MemoryListener *listener,
3182 MemoryRegionSection *section)
3184 cpu_register_physical_memory_log(section, section->readonly);
3187 static void core_region_del(MemoryListener *listener,
3188 MemoryRegionSection *section)
3192 static void core_region_nop(MemoryListener *listener,
3193 MemoryRegionSection *section)
3195 cpu_register_physical_memory_log(section, section->readonly);
3198 static void core_log_start(MemoryListener *listener,
3199 MemoryRegionSection *section)
3203 static void core_log_stop(MemoryListener *listener,
3204 MemoryRegionSection *section)
3208 static void core_log_sync(MemoryListener *listener,
3209 MemoryRegionSection *section)
3213 static void core_log_global_start(MemoryListener *listener)
3215 cpu_physical_memory_set_dirty_tracking(1);
3218 static void core_log_global_stop(MemoryListener *listener)
3220 cpu_physical_memory_set_dirty_tracking(0);
3223 static void core_eventfd_add(MemoryListener *listener,
3224 MemoryRegionSection *section,
3225 bool match_data, uint64_t data, int fd)
3229 static void core_eventfd_del(MemoryListener *listener,
3230 MemoryRegionSection *section,
3231 bool match_data, uint64_t data, int fd)
3235 static void io_begin(MemoryListener *listener)
3239 static void io_commit(MemoryListener *listener)
3243 static void io_region_add(MemoryListener *listener,
3244 MemoryRegionSection *section)
3246 MemoryRegionIORange *mrio = g_new(MemoryRegionIORange, 1);
3248 mrio->mr = section->mr;
3249 mrio->offset = section->offset_within_region;
3250 iorange_init(&mrio->iorange, &memory_region_iorange_ops,
3251 section->offset_within_address_space, section->size);
3252 ioport_register(&mrio->iorange);
3255 static void io_region_del(MemoryListener *listener,
3256 MemoryRegionSection *section)
3258 isa_unassign_ioport(section->offset_within_address_space, section->size);
3261 static void io_region_nop(MemoryListener *listener,
3262 MemoryRegionSection *section)
3266 static void io_log_start(MemoryListener *listener,
3267 MemoryRegionSection *section)
3271 static void io_log_stop(MemoryListener *listener,
3272 MemoryRegionSection *section)
3276 static void io_log_sync(MemoryListener *listener,
3277 MemoryRegionSection *section)
3281 static void io_log_global_start(MemoryListener *listener)
3285 static void io_log_global_stop(MemoryListener *listener)
3289 static void io_eventfd_add(MemoryListener *listener,
3290 MemoryRegionSection *section,
3291 bool match_data, uint64_t data, int fd)
3295 static void io_eventfd_del(MemoryListener *listener,
3296 MemoryRegionSection *section,
3297 bool match_data, uint64_t data, int fd)
3301 static MemoryListener core_memory_listener = {
3302 .begin = core_begin,
3303 .commit = core_commit,
3304 .region_add = core_region_add,
3305 .region_del = core_region_del,
3306 .region_nop = core_region_nop,
3307 .log_start = core_log_start,
3308 .log_stop = core_log_stop,
3309 .log_sync = core_log_sync,
3310 .log_global_start = core_log_global_start,
3311 .log_global_stop = core_log_global_stop,
3312 .eventfd_add = core_eventfd_add,
3313 .eventfd_del = core_eventfd_del,
3314 .priority = 0,
3317 static MemoryListener io_memory_listener = {
3318 .begin = io_begin,
3319 .commit = io_commit,
3320 .region_add = io_region_add,
3321 .region_del = io_region_del,
3322 .region_nop = io_region_nop,
3323 .log_start = io_log_start,
3324 .log_stop = io_log_stop,
3325 .log_sync = io_log_sync,
3326 .log_global_start = io_log_global_start,
3327 .log_global_stop = io_log_global_stop,
3328 .eventfd_add = io_eventfd_add,
3329 .eventfd_del = io_eventfd_del,
3330 .priority = 0,
3333 static void memory_map_init(void)
3335 system_memory = g_malloc(sizeof(*system_memory));
3336 memory_region_init(system_memory, "system", INT64_MAX);
3337 set_system_memory_map(system_memory);
3339 system_io = g_malloc(sizeof(*system_io));
3340 memory_region_init(system_io, "io", 65536);
3341 set_system_io_map(system_io);
3343 memory_listener_register(&core_memory_listener, system_memory);
3344 memory_listener_register(&io_memory_listener, system_io);
3347 MemoryRegion *get_system_memory(void)
3349 return system_memory;
3352 MemoryRegion *get_system_io(void)
3354 return system_io;
3357 #endif /* !defined(CONFIG_USER_ONLY) */
3359 /* physical memory access (slow version, mainly for debug) */
3360 #if defined(CONFIG_USER_ONLY)
3361 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
3362 uint8_t *buf, int len, int is_write)
3364 int l, flags;
3365 target_ulong page;
3366 void * p;
3368 while (len > 0) {
3369 page = addr & TARGET_PAGE_MASK;
3370 l = (page + TARGET_PAGE_SIZE) - addr;
3371 if (l > len)
3372 l = len;
3373 flags = page_get_flags(page);
3374 if (!(flags & PAGE_VALID))
3375 return -1;
3376 if (is_write) {
3377 if (!(flags & PAGE_WRITE))
3378 return -1;
3379 /* XXX: this code should not depend on lock_user */
3380 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3381 return -1;
3382 memcpy(p, buf, l);
3383 unlock_user(p, addr, l);
3384 } else {
3385 if (!(flags & PAGE_READ))
3386 return -1;
3387 /* XXX: this code should not depend on lock_user */
3388 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3389 return -1;
3390 memcpy(buf, p, l);
3391 unlock_user(p, addr, 0);
3393 len -= l;
3394 buf += l;
3395 addr += l;
3397 return 0;
3400 #else
3401 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3402 int len, int is_write)
3404 int l;
3405 uint8_t *ptr;
3406 uint32_t val;
3407 target_phys_addr_t page;
3408 MemoryRegionSection *section;
3410 while (len > 0) {
3411 page = addr & TARGET_PAGE_MASK;
3412 l = (page + TARGET_PAGE_SIZE) - addr;
3413 if (l > len)
3414 l = len;
3415 section = phys_page_find(page >> TARGET_PAGE_BITS);
3417 if (is_write) {
3418 if (!memory_region_is_ram(section->mr)) {
3419 target_phys_addr_t addr1;
3420 addr1 = memory_region_section_addr(section, addr);
3421 /* XXX: could force cpu_single_env to NULL to avoid
3422 potential bugs */
3423 if (l >= 4 && ((addr1 & 3) == 0)) {
3424 /* 32 bit write access */
3425 val = ldl_p(buf);
3426 io_mem_write(section->mr, addr1, val, 4);
3427 l = 4;
3428 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3429 /* 16 bit write access */
3430 val = lduw_p(buf);
3431 io_mem_write(section->mr, addr1, val, 2);
3432 l = 2;
3433 } else {
3434 /* 8 bit write access */
3435 val = ldub_p(buf);
3436 io_mem_write(section->mr, addr1, val, 1);
3437 l = 1;
3439 } else if (!section->readonly) {
3440 ram_addr_t addr1;
3441 addr1 = memory_region_get_ram_addr(section->mr)
3442 + memory_region_section_addr(section, addr);
3443 /* RAM case */
3444 ptr = qemu_get_ram_ptr(addr1);
3445 memcpy(ptr, buf, l);
3446 if (!cpu_physical_memory_is_dirty(addr1)) {
3447 /* invalidate code */
3448 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3449 /* set dirty bit */
3450 cpu_physical_memory_set_dirty_flags(
3451 addr1, (0xff & ~CODE_DIRTY_FLAG));
3453 qemu_put_ram_ptr(ptr);
3455 } else {
3456 if (!(memory_region_is_ram(section->mr) ||
3457 memory_region_is_romd(section->mr))) {
3458 target_phys_addr_t addr1;
3459 /* I/O case */
3460 addr1 = memory_region_section_addr(section, addr);
3461 if (l >= 4 && ((addr1 & 3) == 0)) {
3462 /* 32 bit read access */
3463 val = io_mem_read(section->mr, addr1, 4);
3464 stl_p(buf, val);
3465 l = 4;
3466 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3467 /* 16 bit read access */
3468 val = io_mem_read(section->mr, addr1, 2);
3469 stw_p(buf, val);
3470 l = 2;
3471 } else {
3472 /* 8 bit read access */
3473 val = io_mem_read(section->mr, addr1, 1);
3474 stb_p(buf, val);
3475 l = 1;
3477 } else {
3478 /* RAM case */
3479 ptr = qemu_get_ram_ptr(section->mr->ram_addr
3480 + memory_region_section_addr(section,
3481 addr));
3482 memcpy(buf, ptr, l);
3483 qemu_put_ram_ptr(ptr);
3486 len -= l;
3487 buf += l;
3488 addr += l;
3492 /* used for ROM loading : can write in RAM and ROM */
3493 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3494 const uint8_t *buf, int len)
3496 int l;
3497 uint8_t *ptr;
3498 target_phys_addr_t page;
3499 MemoryRegionSection *section;
3501 while (len > 0) {
3502 page = addr & TARGET_PAGE_MASK;
3503 l = (page + TARGET_PAGE_SIZE) - addr;
3504 if (l > len)
3505 l = len;
3506 section = phys_page_find(page >> TARGET_PAGE_BITS);
3508 if (!(memory_region_is_ram(section->mr) ||
3509 memory_region_is_romd(section->mr))) {
3510 /* do nothing */
3511 } else {
3512 unsigned long addr1;
3513 addr1 = memory_region_get_ram_addr(section->mr)
3514 + memory_region_section_addr(section, addr);
3515 /* ROM/RAM case */
3516 ptr = qemu_get_ram_ptr(addr1);
3517 memcpy(ptr, buf, l);
3518 qemu_put_ram_ptr(ptr);
3520 len -= l;
3521 buf += l;
3522 addr += l;
3526 typedef struct {
3527 void *buffer;
3528 target_phys_addr_t addr;
3529 target_phys_addr_t len;
3530 } BounceBuffer;
3532 static BounceBuffer bounce;
3534 typedef struct MapClient {
3535 void *opaque;
3536 void (*callback)(void *opaque);
3537 QLIST_ENTRY(MapClient) link;
3538 } MapClient;
3540 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3541 = QLIST_HEAD_INITIALIZER(map_client_list);
3543 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3545 MapClient *client = g_malloc(sizeof(*client));
3547 client->opaque = opaque;
3548 client->callback = callback;
3549 QLIST_INSERT_HEAD(&map_client_list, client, link);
3550 return client;
3553 void cpu_unregister_map_client(void *_client)
3555 MapClient *client = (MapClient *)_client;
3557 QLIST_REMOVE(client, link);
3558 g_free(client);
3561 static void cpu_notify_map_clients(void)
3563 MapClient *client;
3565 while (!QLIST_EMPTY(&map_client_list)) {
3566 client = QLIST_FIRST(&map_client_list);
3567 client->callback(client->opaque);
3568 cpu_unregister_map_client(client);
3572 /* Map a physical memory region into a host virtual address.
3573 * May map a subset of the requested range, given by and returned in *plen.
3574 * May return NULL if resources needed to perform the mapping are exhausted.
3575 * Use only for reads OR writes - not for read-modify-write operations.
3576 * Use cpu_register_map_client() to know when retrying the map operation is
3577 * likely to succeed.
3579 void *cpu_physical_memory_map(target_phys_addr_t addr,
3580 target_phys_addr_t *plen,
3581 int is_write)
3583 target_phys_addr_t len = *plen;
3584 target_phys_addr_t todo = 0;
3585 int l;
3586 target_phys_addr_t page;
3587 MemoryRegionSection *section;
3588 ram_addr_t raddr = RAM_ADDR_MAX;
3589 ram_addr_t rlen;
3590 void *ret;
3592 while (len > 0) {
3593 page = addr & TARGET_PAGE_MASK;
3594 l = (page + TARGET_PAGE_SIZE) - addr;
3595 if (l > len)
3596 l = len;
3597 section = phys_page_find(page >> TARGET_PAGE_BITS);
3599 if (!(memory_region_is_ram(section->mr) && !section->readonly)) {
3600 if (todo || bounce.buffer) {
3601 break;
3603 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3604 bounce.addr = addr;
3605 bounce.len = l;
3606 if (!is_write) {
3607 cpu_physical_memory_read(addr, bounce.buffer, l);
3610 *plen = l;
3611 return bounce.buffer;
3613 if (!todo) {
3614 raddr = memory_region_get_ram_addr(section->mr)
3615 + memory_region_section_addr(section, addr);
3618 len -= l;
3619 addr += l;
3620 todo += l;
3622 rlen = todo;
3623 ret = qemu_ram_ptr_length(raddr, &rlen);
3624 *plen = rlen;
3625 return ret;
3628 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3629 * Will also mark the memory as dirty if is_write == 1. access_len gives
3630 * the amount of memory that was actually read or written by the caller.
3632 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3633 int is_write, target_phys_addr_t access_len)
3635 if (buffer != bounce.buffer) {
3636 if (is_write) {
3637 ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
3638 while (access_len) {
3639 unsigned l;
3640 l = TARGET_PAGE_SIZE;
3641 if (l > access_len)
3642 l = access_len;
3643 if (!cpu_physical_memory_is_dirty(addr1)) {
3644 /* invalidate code */
3645 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3646 /* set dirty bit */
3647 cpu_physical_memory_set_dirty_flags(
3648 addr1, (0xff & ~CODE_DIRTY_FLAG));
3650 addr1 += l;
3651 access_len -= l;
3654 if (xen_enabled()) {
3655 xen_invalidate_map_cache_entry(buffer);
3657 return;
3659 if (is_write) {
3660 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3662 qemu_vfree(bounce.buffer);
3663 bounce.buffer = NULL;
3664 cpu_notify_map_clients();
3667 /* warning: addr must be aligned */
3668 static inline uint32_t ldl_phys_internal(target_phys_addr_t addr,
3669 enum device_endian endian)
3671 uint8_t *ptr;
3672 uint32_t val;
3673 MemoryRegionSection *section;
3675 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3677 if (!(memory_region_is_ram(section->mr) ||
3678 memory_region_is_romd(section->mr))) {
3679 /* I/O case */
3680 addr = memory_region_section_addr(section, addr);
3681 val = io_mem_read(section->mr, addr, 4);
3682 #if defined(TARGET_WORDS_BIGENDIAN)
3683 if (endian == DEVICE_LITTLE_ENDIAN) {
3684 val = bswap32(val);
3686 #else
3687 if (endian == DEVICE_BIG_ENDIAN) {
3688 val = bswap32(val);
3690 #endif
3691 } else {
3692 /* RAM case */
3693 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
3694 & TARGET_PAGE_MASK)
3695 + memory_region_section_addr(section, addr));
3696 switch (endian) {
3697 case DEVICE_LITTLE_ENDIAN:
3698 val = ldl_le_p(ptr);
3699 break;
3700 case DEVICE_BIG_ENDIAN:
3701 val = ldl_be_p(ptr);
3702 break;
3703 default:
3704 val = ldl_p(ptr);
3705 break;
3708 return val;
3711 uint32_t ldl_phys(target_phys_addr_t addr)
3713 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
3716 uint32_t ldl_le_phys(target_phys_addr_t addr)
3718 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
3721 uint32_t ldl_be_phys(target_phys_addr_t addr)
3723 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
3726 /* warning: addr must be aligned */
3727 static inline uint64_t ldq_phys_internal(target_phys_addr_t addr,
3728 enum device_endian endian)
3730 uint8_t *ptr;
3731 uint64_t val;
3732 MemoryRegionSection *section;
3734 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3736 if (!(memory_region_is_ram(section->mr) ||
3737 memory_region_is_romd(section->mr))) {
3738 /* I/O case */
3739 addr = memory_region_section_addr(section, addr);
3741 /* XXX This is broken when device endian != cpu endian.
3742 Fix and add "endian" variable check */
3743 #ifdef TARGET_WORDS_BIGENDIAN
3744 val = io_mem_read(section->mr, addr, 4) << 32;
3745 val |= io_mem_read(section->mr, addr + 4, 4);
3746 #else
3747 val = io_mem_read(section->mr, addr, 4);
3748 val |= io_mem_read(section->mr, addr + 4, 4) << 32;
3749 #endif
3750 } else {
3751 /* RAM case */
3752 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
3753 & TARGET_PAGE_MASK)
3754 + memory_region_section_addr(section, addr));
3755 switch (endian) {
3756 case DEVICE_LITTLE_ENDIAN:
3757 val = ldq_le_p(ptr);
3758 break;
3759 case DEVICE_BIG_ENDIAN:
3760 val = ldq_be_p(ptr);
3761 break;
3762 default:
3763 val = ldq_p(ptr);
3764 break;
3767 return val;
3770 uint64_t ldq_phys(target_phys_addr_t addr)
3772 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
3775 uint64_t ldq_le_phys(target_phys_addr_t addr)
3777 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
3780 uint64_t ldq_be_phys(target_phys_addr_t addr)
3782 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
3785 /* XXX: optimize */
3786 uint32_t ldub_phys(target_phys_addr_t addr)
3788 uint8_t val;
3789 cpu_physical_memory_read(addr, &val, 1);
3790 return val;
3793 /* warning: addr must be aligned */
3794 static inline uint32_t lduw_phys_internal(target_phys_addr_t addr,
3795 enum device_endian endian)
3797 uint8_t *ptr;
3798 uint64_t val;
3799 MemoryRegionSection *section;
3801 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3803 if (!(memory_region_is_ram(section->mr) ||
3804 memory_region_is_romd(section->mr))) {
3805 /* I/O case */
3806 addr = memory_region_section_addr(section, addr);
3807 val = io_mem_read(section->mr, addr, 2);
3808 #if defined(TARGET_WORDS_BIGENDIAN)
3809 if (endian == DEVICE_LITTLE_ENDIAN) {
3810 val = bswap16(val);
3812 #else
3813 if (endian == DEVICE_BIG_ENDIAN) {
3814 val = bswap16(val);
3816 #endif
3817 } else {
3818 /* RAM case */
3819 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
3820 & TARGET_PAGE_MASK)
3821 + memory_region_section_addr(section, addr));
3822 switch (endian) {
3823 case DEVICE_LITTLE_ENDIAN:
3824 val = lduw_le_p(ptr);
3825 break;
3826 case DEVICE_BIG_ENDIAN:
3827 val = lduw_be_p(ptr);
3828 break;
3829 default:
3830 val = lduw_p(ptr);
3831 break;
3834 return val;
3837 uint32_t lduw_phys(target_phys_addr_t addr)
3839 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
3842 uint32_t lduw_le_phys(target_phys_addr_t addr)
3844 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
3847 uint32_t lduw_be_phys(target_phys_addr_t addr)
3849 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
3852 /* warning: addr must be aligned. The ram page is not masked as dirty
3853 and the code inside is not invalidated. It is useful if the dirty
3854 bits are used to track modified PTEs */
3855 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3857 uint8_t *ptr;
3858 MemoryRegionSection *section;
3860 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3862 if (!memory_region_is_ram(section->mr) || section->readonly) {
3863 addr = memory_region_section_addr(section, addr);
3864 if (memory_region_is_ram(section->mr)) {
3865 section = &phys_sections[phys_section_rom];
3867 io_mem_write(section->mr, addr, val, 4);
3868 } else {
3869 unsigned long addr1 = (memory_region_get_ram_addr(section->mr)
3870 & TARGET_PAGE_MASK)
3871 + memory_region_section_addr(section, addr);
3872 ptr = qemu_get_ram_ptr(addr1);
3873 stl_p(ptr, val);
3875 if (unlikely(in_migration)) {
3876 if (!cpu_physical_memory_is_dirty(addr1)) {
3877 /* invalidate code */
3878 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3879 /* set dirty bit */
3880 cpu_physical_memory_set_dirty_flags(
3881 addr1, (0xff & ~CODE_DIRTY_FLAG));
3887 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3889 uint8_t *ptr;
3890 MemoryRegionSection *section;
3892 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3894 if (!memory_region_is_ram(section->mr) || section->readonly) {
3895 addr = memory_region_section_addr(section, addr);
3896 if (memory_region_is_ram(section->mr)) {
3897 section = &phys_sections[phys_section_rom];
3899 #ifdef TARGET_WORDS_BIGENDIAN
3900 io_mem_write(section->mr, addr, val >> 32, 4);
3901 io_mem_write(section->mr, addr + 4, (uint32_t)val, 4);
3902 #else
3903 io_mem_write(section->mr, addr, (uint32_t)val, 4);
3904 io_mem_write(section->mr, addr + 4, val >> 32, 4);
3905 #endif
3906 } else {
3907 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
3908 & TARGET_PAGE_MASK)
3909 + memory_region_section_addr(section, addr));
3910 stq_p(ptr, val);
3914 /* warning: addr must be aligned */
3915 static inline void stl_phys_internal(target_phys_addr_t addr, uint32_t val,
3916 enum device_endian endian)
3918 uint8_t *ptr;
3919 MemoryRegionSection *section;
3921 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3923 if (!memory_region_is_ram(section->mr) || section->readonly) {
3924 addr = memory_region_section_addr(section, addr);
3925 if (memory_region_is_ram(section->mr)) {
3926 section = &phys_sections[phys_section_rom];
3928 #if defined(TARGET_WORDS_BIGENDIAN)
3929 if (endian == DEVICE_LITTLE_ENDIAN) {
3930 val = bswap32(val);
3932 #else
3933 if (endian == DEVICE_BIG_ENDIAN) {
3934 val = bswap32(val);
3936 #endif
3937 io_mem_write(section->mr, addr, val, 4);
3938 } else {
3939 unsigned long addr1;
3940 addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
3941 + memory_region_section_addr(section, addr);
3942 /* RAM case */
3943 ptr = qemu_get_ram_ptr(addr1);
3944 switch (endian) {
3945 case DEVICE_LITTLE_ENDIAN:
3946 stl_le_p(ptr, val);
3947 break;
3948 case DEVICE_BIG_ENDIAN:
3949 stl_be_p(ptr, val);
3950 break;
3951 default:
3952 stl_p(ptr, val);
3953 break;
3955 if (!cpu_physical_memory_is_dirty(addr1)) {
3956 /* invalidate code */
3957 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3958 /* set dirty bit */
3959 cpu_physical_memory_set_dirty_flags(addr1,
3960 (0xff & ~CODE_DIRTY_FLAG));
3965 void stl_phys(target_phys_addr_t addr, uint32_t val)
3967 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
3970 void stl_le_phys(target_phys_addr_t addr, uint32_t val)
3972 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
3975 void stl_be_phys(target_phys_addr_t addr, uint32_t val)
3977 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
3980 /* XXX: optimize */
3981 void stb_phys(target_phys_addr_t addr, uint32_t val)
3983 uint8_t v = val;
3984 cpu_physical_memory_write(addr, &v, 1);
3987 /* warning: addr must be aligned */
3988 static inline void stw_phys_internal(target_phys_addr_t addr, uint32_t val,
3989 enum device_endian endian)
3991 uint8_t *ptr;
3992 MemoryRegionSection *section;
3994 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3996 if (!memory_region_is_ram(section->mr) || section->readonly) {
3997 addr = memory_region_section_addr(section, addr);
3998 if (memory_region_is_ram(section->mr)) {
3999 section = &phys_sections[phys_section_rom];
4001 #if defined(TARGET_WORDS_BIGENDIAN)
4002 if (endian == DEVICE_LITTLE_ENDIAN) {
4003 val = bswap16(val);
4005 #else
4006 if (endian == DEVICE_BIG_ENDIAN) {
4007 val = bswap16(val);
4009 #endif
4010 io_mem_write(section->mr, addr, val, 2);
4011 } else {
4012 unsigned long addr1;
4013 addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
4014 + memory_region_section_addr(section, addr);
4015 /* RAM case */
4016 ptr = qemu_get_ram_ptr(addr1);
4017 switch (endian) {
4018 case DEVICE_LITTLE_ENDIAN:
4019 stw_le_p(ptr, val);
4020 break;
4021 case DEVICE_BIG_ENDIAN:
4022 stw_be_p(ptr, val);
4023 break;
4024 default:
4025 stw_p(ptr, val);
4026 break;
4028 if (!cpu_physical_memory_is_dirty(addr1)) {
4029 /* invalidate code */
4030 tb_invalidate_phys_page_range(addr1, addr1 + 2, 0);
4031 /* set dirty bit */
4032 cpu_physical_memory_set_dirty_flags(addr1,
4033 (0xff & ~CODE_DIRTY_FLAG));
4038 void stw_phys(target_phys_addr_t addr, uint32_t val)
4040 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
4043 void stw_le_phys(target_phys_addr_t addr, uint32_t val)
4045 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
4048 void stw_be_phys(target_phys_addr_t addr, uint32_t val)
4050 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
4053 /* XXX: optimize */
4054 void stq_phys(target_phys_addr_t addr, uint64_t val)
4056 val = tswap64(val);
4057 cpu_physical_memory_write(addr, &val, 8);
4060 void stq_le_phys(target_phys_addr_t addr, uint64_t val)
4062 val = cpu_to_le64(val);
4063 cpu_physical_memory_write(addr, &val, 8);
4066 void stq_be_phys(target_phys_addr_t addr, uint64_t val)
4068 val = cpu_to_be64(val);
4069 cpu_physical_memory_write(addr, &val, 8);
4072 /* virtual memory access for debug (includes writing to ROM) */
4073 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
4074 uint8_t *buf, int len, int is_write)
4076 int l;
4077 target_phys_addr_t phys_addr;
4078 target_ulong page;
4080 while (len > 0) {
4081 page = addr & TARGET_PAGE_MASK;
4082 phys_addr = cpu_get_phys_page_debug(env, page);
4083 /* if no physical page mapped, return an error */
4084 if (phys_addr == -1)
4085 return -1;
4086 l = (page + TARGET_PAGE_SIZE) - addr;
4087 if (l > len)
4088 l = len;
4089 phys_addr += (addr & ~TARGET_PAGE_MASK);
4090 if (is_write)
4091 cpu_physical_memory_write_rom(phys_addr, buf, l);
4092 else
4093 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
4094 len -= l;
4095 buf += l;
4096 addr += l;
4098 return 0;
4100 #endif
4102 /* in deterministic execution mode, instructions doing device I/Os
4103 must be at the end of the TB */
4104 void cpu_io_recompile(CPUArchState *env, uintptr_t retaddr)
4106 TranslationBlock *tb;
4107 uint32_t n, cflags;
4108 target_ulong pc, cs_base;
4109 uint64_t flags;
4111 tb = tb_find_pc(retaddr);
4112 if (!tb) {
4113 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
4114 (void *)retaddr);
4116 n = env->icount_decr.u16.low + tb->icount;
4117 cpu_restore_state(tb, env, retaddr);
4118 /* Calculate how many instructions had been executed before the fault
4119 occurred. */
4120 n = n - env->icount_decr.u16.low;
4121 /* Generate a new TB ending on the I/O insn. */
4122 n++;
4123 /* On MIPS and SH, delay slot instructions can only be restarted if
4124 they were already the first instruction in the TB. If this is not
4125 the first instruction in a TB then re-execute the preceding
4126 branch. */
4127 #if defined(TARGET_MIPS)
4128 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
4129 env->active_tc.PC -= 4;
4130 env->icount_decr.u16.low++;
4131 env->hflags &= ~MIPS_HFLAG_BMASK;
4133 #elif defined(TARGET_SH4)
4134 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
4135 && n > 1) {
4136 env->pc -= 2;
4137 env->icount_decr.u16.low++;
4138 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
4140 #endif
4141 /* This should never happen. */
4142 if (n > CF_COUNT_MASK)
4143 cpu_abort(env, "TB too big during recompile");
4145 cflags = n | CF_LAST_IO;
4146 pc = tb->pc;
4147 cs_base = tb->cs_base;
4148 flags = tb->flags;
4149 tb_phys_invalidate(tb, -1);
4150 /* FIXME: In theory this could raise an exception. In practice
4151 we have already translated the block once so it's probably ok. */
4152 tb_gen_code(env, pc, cs_base, flags, cflags);
4153 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
4154 the first in the TB) then we end up generating a whole new TB and
4155 repeating the fault, which is horribly inefficient.
4156 Better would be to execute just this insn uncached, or generate a
4157 second new TB. */
4158 cpu_resume_from_signal(env, NULL);
4161 #if !defined(CONFIG_USER_ONLY)
4163 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
4165 int i, target_code_size, max_target_code_size;
4166 int direct_jmp_count, direct_jmp2_count, cross_page;
4167 TranslationBlock *tb;
4169 target_code_size = 0;
4170 max_target_code_size = 0;
4171 cross_page = 0;
4172 direct_jmp_count = 0;
4173 direct_jmp2_count = 0;
4174 for(i = 0; i < nb_tbs; i++) {
4175 tb = &tbs[i];
4176 target_code_size += tb->size;
4177 if (tb->size > max_target_code_size)
4178 max_target_code_size = tb->size;
4179 if (tb->page_addr[1] != -1)
4180 cross_page++;
4181 if (tb->tb_next_offset[0] != 0xffff) {
4182 direct_jmp_count++;
4183 if (tb->tb_next_offset[1] != 0xffff) {
4184 direct_jmp2_count++;
4188 /* XXX: avoid using doubles ? */
4189 cpu_fprintf(f, "Translation buffer state:\n");
4190 cpu_fprintf(f, "gen code size %td/%ld\n",
4191 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
4192 cpu_fprintf(f, "TB count %d/%d\n",
4193 nb_tbs, code_gen_max_blocks);
4194 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
4195 nb_tbs ? target_code_size / nb_tbs : 0,
4196 max_target_code_size);
4197 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
4198 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4199 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
4200 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4201 cross_page,
4202 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4203 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
4204 direct_jmp_count,
4205 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4206 direct_jmp2_count,
4207 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
4208 cpu_fprintf(f, "\nStatistics:\n");
4209 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4210 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4211 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
4212 tcg_dump_info(f, cpu_fprintf);
4216 * A helper function for the _utterly broken_ virtio device model to find out if
4217 * it's running on a big endian machine. Don't do this at home kids!
4219 bool virtio_is_big_endian(void);
4220 bool virtio_is_big_endian(void)
4222 #if defined(TARGET_WORDS_BIGENDIAN)
4223 return true;
4224 #else
4225 return false;
4226 #endif
4229 #endif
4231 #ifndef CONFIG_USER_ONLY
4232 bool cpu_physical_memory_is_io(target_phys_addr_t phys_addr)
4234 MemoryRegionSection *section;
4236 section = phys_page_find(phys_addr >> TARGET_PAGE_BITS);
4238 return !(memory_region_is_ram(section->mr) ||
4239 memory_region_is_romd(section->mr));
4241 #endif