i386: split smm helper (sysemu)
[qemu/ar7.git] / target / i386 / tcg / excp_helper.c
blob1e71e44510ec5282809563bc72ecaac65d837b85
1 /*
2 * x86 exception helpers
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "qemu/log.h"
24 #include "sysemu/runstate.h"
25 #include "exec/helper-proto.h"
26 #include "helper-tcg.h"
28 void helper_raise_interrupt(CPUX86State *env, int intno, int next_eip_addend)
30 raise_interrupt(env, intno, 1, 0, next_eip_addend);
33 void helper_raise_exception(CPUX86State *env, int exception_index)
35 raise_exception(env, exception_index);
39 * Check nested exceptions and change to double or triple fault if
40 * needed. It should only be called, if this is not an interrupt.
41 * Returns the new exception number.
43 static int check_exception(CPUX86State *env, int intno, int *error_code,
44 uintptr_t retaddr)
46 int first_contributory = env->old_exception == 0 ||
47 (env->old_exception >= 10 &&
48 env->old_exception <= 13);
49 int second_contributory = intno == 0 ||
50 (intno >= 10 && intno <= 13);
52 qemu_log_mask(CPU_LOG_INT, "check_exception old: 0x%x new 0x%x\n",
53 env->old_exception, intno);
55 #if !defined(CONFIG_USER_ONLY)
56 if (env->old_exception == EXCP08_DBLE) {
57 if (env->hflags & HF_GUEST_MASK) {
58 cpu_vmexit(env, SVM_EXIT_SHUTDOWN, 0, retaddr); /* does not return */
61 qemu_log_mask(CPU_LOG_RESET, "Triple fault\n");
63 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
64 return EXCP_HLT;
66 #endif
68 if ((first_contributory && second_contributory)
69 || (env->old_exception == EXCP0E_PAGE &&
70 (second_contributory || (intno == EXCP0E_PAGE)))) {
71 intno = EXCP08_DBLE;
72 *error_code = 0;
75 if (second_contributory || (intno == EXCP0E_PAGE) ||
76 (intno == EXCP08_DBLE)) {
77 env->old_exception = intno;
80 return intno;
84 * Signal an interruption. It is executed in the main CPU loop.
85 * is_int is TRUE if coming from the int instruction. next_eip is the
86 * env->eip value AFTER the interrupt instruction. It is only relevant if
87 * is_int is TRUE.
89 static void QEMU_NORETURN raise_interrupt2(CPUX86State *env, int intno,
90 int is_int, int error_code,
91 int next_eip_addend,
92 uintptr_t retaddr)
94 CPUState *cs = env_cpu(env);
96 if (!is_int) {
97 cpu_svm_check_intercept_param(env, SVM_EXIT_EXCP_BASE + intno,
98 error_code, retaddr);
99 intno = check_exception(env, intno, &error_code, retaddr);
100 } else {
101 cpu_svm_check_intercept_param(env, SVM_EXIT_SWINT, 0, retaddr);
104 cs->exception_index = intno;
105 env->error_code = error_code;
106 env->exception_is_int = is_int;
107 env->exception_next_eip = env->eip + next_eip_addend;
108 cpu_loop_exit_restore(cs, retaddr);
111 /* shortcuts to generate exceptions */
113 void QEMU_NORETURN raise_interrupt(CPUX86State *env, int intno, int is_int,
114 int error_code, int next_eip_addend)
116 raise_interrupt2(env, intno, is_int, error_code, next_eip_addend, 0);
119 void raise_exception_err(CPUX86State *env, int exception_index,
120 int error_code)
122 raise_interrupt2(env, exception_index, 0, error_code, 0, 0);
125 void raise_exception_err_ra(CPUX86State *env, int exception_index,
126 int error_code, uintptr_t retaddr)
128 raise_interrupt2(env, exception_index, 0, error_code, 0, retaddr);
131 void raise_exception(CPUX86State *env, int exception_index)
133 raise_interrupt2(env, exception_index, 0, 0, 0, 0);
136 void raise_exception_ra(CPUX86State *env, int exception_index, uintptr_t retaddr)
138 raise_interrupt2(env, exception_index, 0, 0, 0, retaddr);
141 #if !defined(CONFIG_USER_ONLY)
142 static hwaddr get_hphys(CPUState *cs, hwaddr gphys, MMUAccessType access_type,
143 int *prot)
145 X86CPU *cpu = X86_CPU(cs);
146 CPUX86State *env = &cpu->env;
147 uint64_t rsvd_mask = PG_ADDRESS_MASK & ~MAKE_64BIT_MASK(0, cpu->phys_bits);
148 uint64_t ptep, pte;
149 uint64_t exit_info_1 = 0;
150 target_ulong pde_addr, pte_addr;
151 uint32_t page_offset;
152 int page_size;
154 if (likely(!(env->hflags2 & HF2_NPT_MASK))) {
155 return gphys;
158 if (!(env->nested_pg_mode & SVM_NPT_NXE)) {
159 rsvd_mask |= PG_NX_MASK;
162 if (env->nested_pg_mode & SVM_NPT_PAE) {
163 uint64_t pde, pdpe;
164 target_ulong pdpe_addr;
166 #ifdef TARGET_X86_64
167 if (env->nested_pg_mode & SVM_NPT_LMA) {
168 uint64_t pml5e;
169 uint64_t pml4e_addr, pml4e;
171 pml5e = env->nested_cr3;
172 ptep = PG_NX_MASK | PG_USER_MASK | PG_RW_MASK;
174 pml4e_addr = (pml5e & PG_ADDRESS_MASK) +
175 (((gphys >> 39) & 0x1ff) << 3);
176 pml4e = x86_ldq_phys(cs, pml4e_addr);
177 if (!(pml4e & PG_PRESENT_MASK)) {
178 goto do_fault;
180 if (pml4e & (rsvd_mask | PG_PSE_MASK)) {
181 goto do_fault_rsvd;
183 if (!(pml4e & PG_ACCESSED_MASK)) {
184 pml4e |= PG_ACCESSED_MASK;
185 x86_stl_phys_notdirty(cs, pml4e_addr, pml4e);
187 ptep &= pml4e ^ PG_NX_MASK;
188 pdpe_addr = (pml4e & PG_ADDRESS_MASK) +
189 (((gphys >> 30) & 0x1ff) << 3);
190 pdpe = x86_ldq_phys(cs, pdpe_addr);
191 if (!(pdpe & PG_PRESENT_MASK)) {
192 goto do_fault;
194 if (pdpe & rsvd_mask) {
195 goto do_fault_rsvd;
197 ptep &= pdpe ^ PG_NX_MASK;
198 if (!(pdpe & PG_ACCESSED_MASK)) {
199 pdpe |= PG_ACCESSED_MASK;
200 x86_stl_phys_notdirty(cs, pdpe_addr, pdpe);
202 if (pdpe & PG_PSE_MASK) {
203 /* 1 GB page */
204 page_size = 1024 * 1024 * 1024;
205 pte_addr = pdpe_addr;
206 pte = pdpe;
207 goto do_check_protect;
209 } else
210 #endif
212 pdpe_addr = (env->nested_cr3 & ~0x1f) + ((gphys >> 27) & 0x18);
213 pdpe = x86_ldq_phys(cs, pdpe_addr);
214 if (!(pdpe & PG_PRESENT_MASK)) {
215 goto do_fault;
217 rsvd_mask |= PG_HI_USER_MASK;
218 if (pdpe & (rsvd_mask | PG_NX_MASK)) {
219 goto do_fault_rsvd;
221 ptep = PG_NX_MASK | PG_USER_MASK | PG_RW_MASK;
224 pde_addr = (pdpe & PG_ADDRESS_MASK) + (((gphys >> 21) & 0x1ff) << 3);
225 pde = x86_ldq_phys(cs, pde_addr);
226 if (!(pde & PG_PRESENT_MASK)) {
227 goto do_fault;
229 if (pde & rsvd_mask) {
230 goto do_fault_rsvd;
232 ptep &= pde ^ PG_NX_MASK;
233 if (pde & PG_PSE_MASK) {
234 /* 2 MB page */
235 page_size = 2048 * 1024;
236 pte_addr = pde_addr;
237 pte = pde;
238 goto do_check_protect;
240 /* 4 KB page */
241 if (!(pde & PG_ACCESSED_MASK)) {
242 pde |= PG_ACCESSED_MASK;
243 x86_stl_phys_notdirty(cs, pde_addr, pde);
245 pte_addr = (pde & PG_ADDRESS_MASK) + (((gphys >> 12) & 0x1ff) << 3);
246 pte = x86_ldq_phys(cs, pte_addr);
247 if (!(pte & PG_PRESENT_MASK)) {
248 goto do_fault;
250 if (pte & rsvd_mask) {
251 goto do_fault_rsvd;
253 /* combine pde and pte nx, user and rw protections */
254 ptep &= pte ^ PG_NX_MASK;
255 page_size = 4096;
256 } else {
257 uint32_t pde;
259 /* page directory entry */
260 pde_addr = (env->nested_cr3 & ~0xfff) + ((gphys >> 20) & 0xffc);
261 pde = x86_ldl_phys(cs, pde_addr);
262 if (!(pde & PG_PRESENT_MASK)) {
263 goto do_fault;
265 ptep = pde | PG_NX_MASK;
267 /* if host cr4 PSE bit is set, then we use a 4MB page */
268 if ((pde & PG_PSE_MASK) && (env->nested_pg_mode & SVM_NPT_PSE)) {
269 page_size = 4096 * 1024;
270 pte_addr = pde_addr;
272 /* Bits 20-13 provide bits 39-32 of the address, bit 21 is reserved.
273 * Leave bits 20-13 in place for setting accessed/dirty bits below.
275 pte = pde | ((pde & 0x1fe000LL) << (32 - 13));
276 rsvd_mask = 0x200000;
277 goto do_check_protect_pse36;
280 if (!(pde & PG_ACCESSED_MASK)) {
281 pde |= PG_ACCESSED_MASK;
282 x86_stl_phys_notdirty(cs, pde_addr, pde);
285 /* page directory entry */
286 pte_addr = (pde & ~0xfff) + ((gphys >> 10) & 0xffc);
287 pte = x86_ldl_phys(cs, pte_addr);
288 if (!(pte & PG_PRESENT_MASK)) {
289 goto do_fault;
291 /* combine pde and pte user and rw protections */
292 ptep &= pte | PG_NX_MASK;
293 page_size = 4096;
294 rsvd_mask = 0;
297 do_check_protect:
298 rsvd_mask |= (page_size - 1) & PG_ADDRESS_MASK & ~PG_PSE_PAT_MASK;
299 do_check_protect_pse36:
300 if (pte & rsvd_mask) {
301 goto do_fault_rsvd;
303 ptep ^= PG_NX_MASK;
305 if (!(ptep & PG_USER_MASK)) {
306 goto do_fault_protect;
308 if (ptep & PG_NX_MASK) {
309 if (access_type == MMU_INST_FETCH) {
310 goto do_fault_protect;
312 *prot &= ~PAGE_EXEC;
314 if (!(ptep & PG_RW_MASK)) {
315 if (access_type == MMU_DATA_STORE) {
316 goto do_fault_protect;
318 *prot &= ~PAGE_WRITE;
321 pte &= PG_ADDRESS_MASK & ~(page_size - 1);
322 page_offset = gphys & (page_size - 1);
323 return pte + page_offset;
325 do_fault_rsvd:
326 exit_info_1 |= SVM_NPTEXIT_RSVD;
327 do_fault_protect:
328 exit_info_1 |= SVM_NPTEXIT_P;
329 do_fault:
330 x86_stq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, control.exit_info_2),
331 gphys);
332 exit_info_1 |= SVM_NPTEXIT_US;
333 if (access_type == MMU_DATA_STORE) {
334 exit_info_1 |= SVM_NPTEXIT_RW;
335 } else if (access_type == MMU_INST_FETCH) {
336 exit_info_1 |= SVM_NPTEXIT_ID;
338 if (prot) {
339 exit_info_1 |= SVM_NPTEXIT_GPA;
340 } else { /* page table access */
341 exit_info_1 |= SVM_NPTEXIT_GPT;
343 cpu_vmexit(env, SVM_EXIT_NPF, exit_info_1, env->retaddr);
346 /* return value:
347 * -1 = cannot handle fault
348 * 0 = nothing more to do
349 * 1 = generate PF fault
351 static int handle_mmu_fault(CPUState *cs, vaddr addr, int size,
352 int is_write1, int mmu_idx)
354 X86CPU *cpu = X86_CPU(cs);
355 CPUX86State *env = &cpu->env;
356 uint64_t ptep, pte;
357 int32_t a20_mask;
358 target_ulong pde_addr, pte_addr;
359 int error_code = 0;
360 int is_dirty, prot, page_size, is_write, is_user;
361 hwaddr paddr;
362 uint64_t rsvd_mask = PG_ADDRESS_MASK & ~MAKE_64BIT_MASK(0, cpu->phys_bits);
363 uint32_t page_offset;
364 target_ulong vaddr;
365 uint32_t pkr;
367 is_user = mmu_idx == MMU_USER_IDX;
368 #if defined(DEBUG_MMU)
369 printf("MMU fault: addr=%" VADDR_PRIx " w=%d u=%d eip=" TARGET_FMT_lx "\n",
370 addr, is_write1, is_user, env->eip);
371 #endif
372 is_write = is_write1 & 1;
374 a20_mask = x86_get_a20_mask(env);
375 if (!(env->cr[0] & CR0_PG_MASK)) {
376 pte = addr;
377 #ifdef TARGET_X86_64
378 if (!(env->hflags & HF_LMA_MASK)) {
379 /* Without long mode we can only address 32bits in real mode */
380 pte = (uint32_t)pte;
382 #endif
383 prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
384 page_size = 4096;
385 goto do_mapping;
388 if (!(env->efer & MSR_EFER_NXE)) {
389 rsvd_mask |= PG_NX_MASK;
392 if (env->cr[4] & CR4_PAE_MASK) {
393 uint64_t pde, pdpe;
394 target_ulong pdpe_addr;
396 #ifdef TARGET_X86_64
397 if (env->hflags & HF_LMA_MASK) {
398 bool la57 = env->cr[4] & CR4_LA57_MASK;
399 uint64_t pml5e_addr, pml5e;
400 uint64_t pml4e_addr, pml4e;
401 int32_t sext;
403 /* test virtual address sign extension */
404 sext = la57 ? (int64_t)addr >> 56 : (int64_t)addr >> 47;
405 if (sext != 0 && sext != -1) {
406 env->error_code = 0;
407 cs->exception_index = EXCP0D_GPF;
408 return 1;
411 if (la57) {
412 pml5e_addr = ((env->cr[3] & ~0xfff) +
413 (((addr >> 48) & 0x1ff) << 3)) & a20_mask;
414 pml5e_addr = get_hphys(cs, pml5e_addr, MMU_DATA_STORE, NULL);
415 pml5e = x86_ldq_phys(cs, pml5e_addr);
416 if (!(pml5e & PG_PRESENT_MASK)) {
417 goto do_fault;
419 if (pml5e & (rsvd_mask | PG_PSE_MASK)) {
420 goto do_fault_rsvd;
422 if (!(pml5e & PG_ACCESSED_MASK)) {
423 pml5e |= PG_ACCESSED_MASK;
424 x86_stl_phys_notdirty(cs, pml5e_addr, pml5e);
426 ptep = pml5e ^ PG_NX_MASK;
427 } else {
428 pml5e = env->cr[3];
429 ptep = PG_NX_MASK | PG_USER_MASK | PG_RW_MASK;
432 pml4e_addr = ((pml5e & PG_ADDRESS_MASK) +
433 (((addr >> 39) & 0x1ff) << 3)) & a20_mask;
434 pml4e_addr = get_hphys(cs, pml4e_addr, MMU_DATA_STORE, false);
435 pml4e = x86_ldq_phys(cs, pml4e_addr);
436 if (!(pml4e & PG_PRESENT_MASK)) {
437 goto do_fault;
439 if (pml4e & (rsvd_mask | PG_PSE_MASK)) {
440 goto do_fault_rsvd;
442 if (!(pml4e & PG_ACCESSED_MASK)) {
443 pml4e |= PG_ACCESSED_MASK;
444 x86_stl_phys_notdirty(cs, pml4e_addr, pml4e);
446 ptep &= pml4e ^ PG_NX_MASK;
447 pdpe_addr = ((pml4e & PG_ADDRESS_MASK) + (((addr >> 30) & 0x1ff) << 3)) &
448 a20_mask;
449 pdpe_addr = get_hphys(cs, pdpe_addr, MMU_DATA_STORE, NULL);
450 pdpe = x86_ldq_phys(cs, pdpe_addr);
451 if (!(pdpe & PG_PRESENT_MASK)) {
452 goto do_fault;
454 if (pdpe & rsvd_mask) {
455 goto do_fault_rsvd;
457 ptep &= pdpe ^ PG_NX_MASK;
458 if (!(pdpe & PG_ACCESSED_MASK)) {
459 pdpe |= PG_ACCESSED_MASK;
460 x86_stl_phys_notdirty(cs, pdpe_addr, pdpe);
462 if (pdpe & PG_PSE_MASK) {
463 /* 1 GB page */
464 page_size = 1024 * 1024 * 1024;
465 pte_addr = pdpe_addr;
466 pte = pdpe;
467 goto do_check_protect;
469 } else
470 #endif
472 /* XXX: load them when cr3 is loaded ? */
473 pdpe_addr = ((env->cr[3] & ~0x1f) + ((addr >> 27) & 0x18)) &
474 a20_mask;
475 pdpe_addr = get_hphys(cs, pdpe_addr, MMU_DATA_STORE, false);
476 pdpe = x86_ldq_phys(cs, pdpe_addr);
477 if (!(pdpe & PG_PRESENT_MASK)) {
478 goto do_fault;
480 rsvd_mask |= PG_HI_USER_MASK;
481 if (pdpe & (rsvd_mask | PG_NX_MASK)) {
482 goto do_fault_rsvd;
484 ptep = PG_NX_MASK | PG_USER_MASK | PG_RW_MASK;
487 pde_addr = ((pdpe & PG_ADDRESS_MASK) + (((addr >> 21) & 0x1ff) << 3)) &
488 a20_mask;
489 pde_addr = get_hphys(cs, pde_addr, MMU_DATA_STORE, NULL);
490 pde = x86_ldq_phys(cs, pde_addr);
491 if (!(pde & PG_PRESENT_MASK)) {
492 goto do_fault;
494 if (pde & rsvd_mask) {
495 goto do_fault_rsvd;
497 ptep &= pde ^ PG_NX_MASK;
498 if (pde & PG_PSE_MASK) {
499 /* 2 MB page */
500 page_size = 2048 * 1024;
501 pte_addr = pde_addr;
502 pte = pde;
503 goto do_check_protect;
505 /* 4 KB page */
506 if (!(pde & PG_ACCESSED_MASK)) {
507 pde |= PG_ACCESSED_MASK;
508 x86_stl_phys_notdirty(cs, pde_addr, pde);
510 pte_addr = ((pde & PG_ADDRESS_MASK) + (((addr >> 12) & 0x1ff) << 3)) &
511 a20_mask;
512 pte_addr = get_hphys(cs, pte_addr, MMU_DATA_STORE, NULL);
513 pte = x86_ldq_phys(cs, pte_addr);
514 if (!(pte & PG_PRESENT_MASK)) {
515 goto do_fault;
517 if (pte & rsvd_mask) {
518 goto do_fault_rsvd;
520 /* combine pde and pte nx, user and rw protections */
521 ptep &= pte ^ PG_NX_MASK;
522 page_size = 4096;
523 } else {
524 uint32_t pde;
526 /* page directory entry */
527 pde_addr = ((env->cr[3] & ~0xfff) + ((addr >> 20) & 0xffc)) &
528 a20_mask;
529 pde_addr = get_hphys(cs, pde_addr, MMU_DATA_STORE, NULL);
530 pde = x86_ldl_phys(cs, pde_addr);
531 if (!(pde & PG_PRESENT_MASK)) {
532 goto do_fault;
534 ptep = pde | PG_NX_MASK;
536 /* if PSE bit is set, then we use a 4MB page */
537 if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) {
538 page_size = 4096 * 1024;
539 pte_addr = pde_addr;
541 /* Bits 20-13 provide bits 39-32 of the address, bit 21 is reserved.
542 * Leave bits 20-13 in place for setting accessed/dirty bits below.
544 pte = pde | ((pde & 0x1fe000LL) << (32 - 13));
545 rsvd_mask = 0x200000;
546 goto do_check_protect_pse36;
549 if (!(pde & PG_ACCESSED_MASK)) {
550 pde |= PG_ACCESSED_MASK;
551 x86_stl_phys_notdirty(cs, pde_addr, pde);
554 /* page directory entry */
555 pte_addr = ((pde & ~0xfff) + ((addr >> 10) & 0xffc)) &
556 a20_mask;
557 pte_addr = get_hphys(cs, pte_addr, MMU_DATA_STORE, NULL);
558 pte = x86_ldl_phys(cs, pte_addr);
559 if (!(pte & PG_PRESENT_MASK)) {
560 goto do_fault;
562 /* combine pde and pte user and rw protections */
563 ptep &= pte | PG_NX_MASK;
564 page_size = 4096;
565 rsvd_mask = 0;
568 do_check_protect:
569 rsvd_mask |= (page_size - 1) & PG_ADDRESS_MASK & ~PG_PSE_PAT_MASK;
570 do_check_protect_pse36:
571 if (pte & rsvd_mask) {
572 goto do_fault_rsvd;
574 ptep ^= PG_NX_MASK;
576 /* can the page can be put in the TLB? prot will tell us */
577 if (is_user && !(ptep & PG_USER_MASK)) {
578 goto do_fault_protect;
581 prot = 0;
582 if (mmu_idx != MMU_KSMAP_IDX || !(ptep & PG_USER_MASK)) {
583 prot |= PAGE_READ;
584 if ((ptep & PG_RW_MASK) || (!is_user && !(env->cr[0] & CR0_WP_MASK))) {
585 prot |= PAGE_WRITE;
588 if (!(ptep & PG_NX_MASK) &&
589 (mmu_idx == MMU_USER_IDX ||
590 !((env->cr[4] & CR4_SMEP_MASK) && (ptep & PG_USER_MASK)))) {
591 prot |= PAGE_EXEC;
594 if (!(env->hflags & HF_LMA_MASK)) {
595 pkr = 0;
596 } else if (ptep & PG_USER_MASK) {
597 pkr = env->cr[4] & CR4_PKE_MASK ? env->pkru : 0;
598 } else {
599 pkr = env->cr[4] & CR4_PKS_MASK ? env->pkrs : 0;
601 if (pkr) {
602 uint32_t pk = (pte & PG_PKRU_MASK) >> PG_PKRU_BIT;
603 uint32_t pkr_ad = (pkr >> pk * 2) & 1;
604 uint32_t pkr_wd = (pkr >> pk * 2) & 2;
605 uint32_t pkr_prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
607 if (pkr_ad) {
608 pkr_prot &= ~(PAGE_READ | PAGE_WRITE);
609 } else if (pkr_wd && (is_user || env->cr[0] & CR0_WP_MASK)) {
610 pkr_prot &= ~PAGE_WRITE;
613 prot &= pkr_prot;
614 if ((pkr_prot & (1 << is_write1)) == 0) {
615 assert(is_write1 != 2);
616 error_code |= PG_ERROR_PK_MASK;
617 goto do_fault_protect;
621 if ((prot & (1 << is_write1)) == 0) {
622 goto do_fault_protect;
625 /* yes, it can! */
626 is_dirty = is_write && !(pte & PG_DIRTY_MASK);
627 if (!(pte & PG_ACCESSED_MASK) || is_dirty) {
628 pte |= PG_ACCESSED_MASK;
629 if (is_dirty) {
630 pte |= PG_DIRTY_MASK;
632 x86_stl_phys_notdirty(cs, pte_addr, pte);
635 if (!(pte & PG_DIRTY_MASK)) {
636 /* only set write access if already dirty... otherwise wait
637 for dirty access */
638 assert(!is_write);
639 prot &= ~PAGE_WRITE;
642 do_mapping:
643 pte = pte & a20_mask;
645 /* align to page_size */
646 pte &= PG_ADDRESS_MASK & ~(page_size - 1);
647 page_offset = addr & (page_size - 1);
648 paddr = get_hphys(cs, pte + page_offset, is_write1, &prot);
650 /* Even if 4MB pages, we map only one 4KB page in the cache to
651 avoid filling it too fast */
652 vaddr = addr & TARGET_PAGE_MASK;
653 paddr &= TARGET_PAGE_MASK;
655 assert(prot & (1 << is_write1));
656 tlb_set_page_with_attrs(cs, vaddr, paddr, cpu_get_mem_attrs(env),
657 prot, mmu_idx, page_size);
658 return 0;
659 do_fault_rsvd:
660 error_code |= PG_ERROR_RSVD_MASK;
661 do_fault_protect:
662 error_code |= PG_ERROR_P_MASK;
663 do_fault:
664 error_code |= (is_write << PG_ERROR_W_BIT);
665 if (is_user)
666 error_code |= PG_ERROR_U_MASK;
667 if (is_write1 == 2 &&
668 (((env->efer & MSR_EFER_NXE) &&
669 (env->cr[4] & CR4_PAE_MASK)) ||
670 (env->cr[4] & CR4_SMEP_MASK)))
671 error_code |= PG_ERROR_I_D_MASK;
672 if (env->intercept_exceptions & (1 << EXCP0E_PAGE)) {
673 /* cr2 is not modified in case of exceptions */
674 x86_stq_phys(cs,
675 env->vm_vmcb + offsetof(struct vmcb, control.exit_info_2),
676 addr);
677 } else {
678 env->cr[2] = addr;
680 env->error_code = error_code;
681 cs->exception_index = EXCP0E_PAGE;
682 return 1;
684 #endif
686 bool x86_cpu_tlb_fill(CPUState *cs, vaddr addr, int size,
687 MMUAccessType access_type, int mmu_idx,
688 bool probe, uintptr_t retaddr)
690 X86CPU *cpu = X86_CPU(cs);
691 CPUX86State *env = &cpu->env;
693 #ifdef CONFIG_USER_ONLY
694 /* user mode only emulation */
695 env->cr[2] = addr;
696 env->error_code = (access_type == MMU_DATA_STORE) << PG_ERROR_W_BIT;
697 env->error_code |= PG_ERROR_U_MASK;
698 cs->exception_index = EXCP0E_PAGE;
699 env->exception_is_int = 0;
700 env->exception_next_eip = -1;
701 cpu_loop_exit_restore(cs, retaddr);
702 #else
703 env->retaddr = retaddr;
704 if (handle_mmu_fault(cs, addr, size, access_type, mmu_idx)) {
705 /* FIXME: On error in get_hphys we have already jumped out. */
706 g_assert(!probe);
707 raise_exception_err_ra(env, cs->exception_index,
708 env->error_code, retaddr);
710 return true;
711 #endif