tests: Fixes test-io-channel-file by mask only owner file state mask bits
[qemu/ar7.git] / migration / rdma.c
blob1dc563ec3f1b14228d9da4509ff645b78a1169e8
1 /*
2 * RDMA protocol and interfaces
4 * Copyright IBM, Corp. 2010-2013
5 * Copyright Red Hat, Inc. 2015-2016
7 * Authors:
8 * Michael R. Hines <mrhines@us.ibm.com>
9 * Jiuxing Liu <jl@us.ibm.com>
10 * Daniel P. Berrange <berrange@redhat.com>
12 * This work is licensed under the terms of the GNU GPL, version 2 or
13 * later. See the COPYING file in the top-level directory.
17 #include "qemu/osdep.h"
18 #include "qapi/error.h"
19 #include "qemu/cutils.h"
20 #include "rdma.h"
21 #include "migration.h"
22 #include "qemu-file.h"
23 #include "ram.h"
24 #include "qemu-file-channel.h"
25 #include "qemu/error-report.h"
26 #include "qemu/main-loop.h"
27 #include "qemu/module.h"
28 #include "qemu/rcu.h"
29 #include "qemu/sockets.h"
30 #include "qemu/bitmap.h"
31 #include "qemu/coroutine.h"
32 #include "exec/memory.h"
33 #include <sys/socket.h>
34 #include <netdb.h>
35 #include <arpa/inet.h>
36 #include <rdma/rdma_cma.h>
37 #include "trace.h"
38 #include "qom/object.h"
41 * Print and error on both the Monitor and the Log file.
43 #define ERROR(errp, fmt, ...) \
44 do { \
45 fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \
46 if (errp && (*(errp) == NULL)) { \
47 error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
48 } \
49 } while (0)
51 #define RDMA_RESOLVE_TIMEOUT_MS 10000
53 /* Do not merge data if larger than this. */
54 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
55 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
57 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
60 * This is only for non-live state being migrated.
61 * Instead of RDMA_WRITE messages, we use RDMA_SEND
62 * messages for that state, which requires a different
63 * delivery design than main memory.
65 #define RDMA_SEND_INCREMENT 32768
68 * Maximum size infiniband SEND message
70 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
71 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
73 #define RDMA_CONTROL_VERSION_CURRENT 1
75 * Capabilities for negotiation.
77 #define RDMA_CAPABILITY_PIN_ALL 0x01
80 * Add the other flags above to this list of known capabilities
81 * as they are introduced.
83 static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL;
85 #define CHECK_ERROR_STATE() \
86 do { \
87 if (rdma->error_state) { \
88 if (!rdma->error_reported) { \
89 error_report("RDMA is in an error state waiting migration" \
90 " to abort!"); \
91 rdma->error_reported = 1; \
92 } \
93 return rdma->error_state; \
94 } \
95 } while (0)
98 * A work request ID is 64-bits and we split up these bits
99 * into 3 parts:
101 * bits 0-15 : type of control message, 2^16
102 * bits 16-29: ram block index, 2^14
103 * bits 30-63: ram block chunk number, 2^34
105 * The last two bit ranges are only used for RDMA writes,
106 * in order to track their completion and potentially
107 * also track unregistration status of the message.
109 #define RDMA_WRID_TYPE_SHIFT 0UL
110 #define RDMA_WRID_BLOCK_SHIFT 16UL
111 #define RDMA_WRID_CHUNK_SHIFT 30UL
113 #define RDMA_WRID_TYPE_MASK \
114 ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
116 #define RDMA_WRID_BLOCK_MASK \
117 (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
119 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
122 * RDMA migration protocol:
123 * 1. RDMA Writes (data messages, i.e. RAM)
124 * 2. IB Send/Recv (control channel messages)
126 enum {
127 RDMA_WRID_NONE = 0,
128 RDMA_WRID_RDMA_WRITE = 1,
129 RDMA_WRID_SEND_CONTROL = 2000,
130 RDMA_WRID_RECV_CONTROL = 4000,
133 static const char *wrid_desc[] = {
134 [RDMA_WRID_NONE] = "NONE",
135 [RDMA_WRID_RDMA_WRITE] = "WRITE RDMA",
136 [RDMA_WRID_SEND_CONTROL] = "CONTROL SEND",
137 [RDMA_WRID_RECV_CONTROL] = "CONTROL RECV",
141 * Work request IDs for IB SEND messages only (not RDMA writes).
142 * This is used by the migration protocol to transmit
143 * control messages (such as device state and registration commands)
145 * We could use more WRs, but we have enough for now.
147 enum {
148 RDMA_WRID_READY = 0,
149 RDMA_WRID_DATA,
150 RDMA_WRID_CONTROL,
151 RDMA_WRID_MAX,
155 * SEND/RECV IB Control Messages.
157 enum {
158 RDMA_CONTROL_NONE = 0,
159 RDMA_CONTROL_ERROR,
160 RDMA_CONTROL_READY, /* ready to receive */
161 RDMA_CONTROL_QEMU_FILE, /* QEMUFile-transmitted bytes */
162 RDMA_CONTROL_RAM_BLOCKS_REQUEST, /* RAMBlock synchronization */
163 RDMA_CONTROL_RAM_BLOCKS_RESULT, /* RAMBlock synchronization */
164 RDMA_CONTROL_COMPRESS, /* page contains repeat values */
165 RDMA_CONTROL_REGISTER_REQUEST, /* dynamic page registration */
166 RDMA_CONTROL_REGISTER_RESULT, /* key to use after registration */
167 RDMA_CONTROL_REGISTER_FINISHED, /* current iteration finished */
168 RDMA_CONTROL_UNREGISTER_REQUEST, /* dynamic UN-registration */
169 RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */
174 * Memory and MR structures used to represent an IB Send/Recv work request.
175 * This is *not* used for RDMA writes, only IB Send/Recv.
177 typedef struct {
178 uint8_t control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */
179 struct ibv_mr *control_mr; /* registration metadata */
180 size_t control_len; /* length of the message */
181 uint8_t *control_curr; /* start of unconsumed bytes */
182 } RDMAWorkRequestData;
185 * Negotiate RDMA capabilities during connection-setup time.
187 typedef struct {
188 uint32_t version;
189 uint32_t flags;
190 } RDMACapabilities;
192 static void caps_to_network(RDMACapabilities *cap)
194 cap->version = htonl(cap->version);
195 cap->flags = htonl(cap->flags);
198 static void network_to_caps(RDMACapabilities *cap)
200 cap->version = ntohl(cap->version);
201 cap->flags = ntohl(cap->flags);
205 * Representation of a RAMBlock from an RDMA perspective.
206 * This is not transmitted, only local.
207 * This and subsequent structures cannot be linked lists
208 * because we're using a single IB message to transmit
209 * the information. It's small anyway, so a list is overkill.
211 typedef struct RDMALocalBlock {
212 char *block_name;
213 uint8_t *local_host_addr; /* local virtual address */
214 uint64_t remote_host_addr; /* remote virtual address */
215 uint64_t offset;
216 uint64_t length;
217 struct ibv_mr **pmr; /* MRs for chunk-level registration */
218 struct ibv_mr *mr; /* MR for non-chunk-level registration */
219 uint32_t *remote_keys; /* rkeys for chunk-level registration */
220 uint32_t remote_rkey; /* rkeys for non-chunk-level registration */
221 int index; /* which block are we */
222 unsigned int src_index; /* (Only used on dest) */
223 bool is_ram_block;
224 int nb_chunks;
225 unsigned long *transit_bitmap;
226 unsigned long *unregister_bitmap;
227 } RDMALocalBlock;
230 * Also represents a RAMblock, but only on the dest.
231 * This gets transmitted by the dest during connection-time
232 * to the source VM and then is used to populate the
233 * corresponding RDMALocalBlock with
234 * the information needed to perform the actual RDMA.
236 typedef struct QEMU_PACKED RDMADestBlock {
237 uint64_t remote_host_addr;
238 uint64_t offset;
239 uint64_t length;
240 uint32_t remote_rkey;
241 uint32_t padding;
242 } RDMADestBlock;
244 static const char *control_desc(unsigned int rdma_control)
246 static const char *strs[] = {
247 [RDMA_CONTROL_NONE] = "NONE",
248 [RDMA_CONTROL_ERROR] = "ERROR",
249 [RDMA_CONTROL_READY] = "READY",
250 [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE",
251 [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST",
252 [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT",
253 [RDMA_CONTROL_COMPRESS] = "COMPRESS",
254 [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST",
255 [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT",
256 [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED",
257 [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST",
258 [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED",
261 if (rdma_control > RDMA_CONTROL_UNREGISTER_FINISHED) {
262 return "??BAD CONTROL VALUE??";
265 return strs[rdma_control];
268 static uint64_t htonll(uint64_t v)
270 union { uint32_t lv[2]; uint64_t llv; } u;
271 u.lv[0] = htonl(v >> 32);
272 u.lv[1] = htonl(v & 0xFFFFFFFFULL);
273 return u.llv;
276 static uint64_t ntohll(uint64_t v) {
277 union { uint32_t lv[2]; uint64_t llv; } u;
278 u.llv = v;
279 return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]);
282 static void dest_block_to_network(RDMADestBlock *db)
284 db->remote_host_addr = htonll(db->remote_host_addr);
285 db->offset = htonll(db->offset);
286 db->length = htonll(db->length);
287 db->remote_rkey = htonl(db->remote_rkey);
290 static void network_to_dest_block(RDMADestBlock *db)
292 db->remote_host_addr = ntohll(db->remote_host_addr);
293 db->offset = ntohll(db->offset);
294 db->length = ntohll(db->length);
295 db->remote_rkey = ntohl(db->remote_rkey);
299 * Virtual address of the above structures used for transmitting
300 * the RAMBlock descriptions at connection-time.
301 * This structure is *not* transmitted.
303 typedef struct RDMALocalBlocks {
304 int nb_blocks;
305 bool init; /* main memory init complete */
306 RDMALocalBlock *block;
307 } RDMALocalBlocks;
310 * Main data structure for RDMA state.
311 * While there is only one copy of this structure being allocated right now,
312 * this is the place where one would start if you wanted to consider
313 * having more than one RDMA connection open at the same time.
315 typedef struct RDMAContext {
316 char *host;
317 int port;
319 RDMAWorkRequestData wr_data[RDMA_WRID_MAX];
322 * This is used by *_exchange_send() to figure out whether or not
323 * the initial "READY" message has already been received or not.
324 * This is because other functions may potentially poll() and detect
325 * the READY message before send() does, in which case we need to
326 * know if it completed.
328 int control_ready_expected;
330 /* number of outstanding writes */
331 int nb_sent;
333 /* store info about current buffer so that we can
334 merge it with future sends */
335 uint64_t current_addr;
336 uint64_t current_length;
337 /* index of ram block the current buffer belongs to */
338 int current_index;
339 /* index of the chunk in the current ram block */
340 int current_chunk;
342 bool pin_all;
345 * infiniband-specific variables for opening the device
346 * and maintaining connection state and so forth.
348 * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
349 * cm_id->verbs, cm_id->channel, and cm_id->qp.
351 struct rdma_cm_id *cm_id; /* connection manager ID */
352 struct rdma_cm_id *listen_id;
353 bool connected;
355 struct ibv_context *verbs;
356 struct rdma_event_channel *channel;
357 struct ibv_qp *qp; /* queue pair */
358 struct ibv_comp_channel *comp_channel; /* completion channel */
359 struct ibv_pd *pd; /* protection domain */
360 struct ibv_cq *cq; /* completion queue */
363 * If a previous write failed (perhaps because of a failed
364 * memory registration, then do not attempt any future work
365 * and remember the error state.
367 int error_state;
368 int error_reported;
369 int received_error;
372 * Description of ram blocks used throughout the code.
374 RDMALocalBlocks local_ram_blocks;
375 RDMADestBlock *dest_blocks;
377 /* Index of the next RAMBlock received during block registration */
378 unsigned int next_src_index;
381 * Migration on *destination* started.
382 * Then use coroutine yield function.
383 * Source runs in a thread, so we don't care.
385 int migration_started_on_destination;
387 int total_registrations;
388 int total_writes;
390 int unregister_current, unregister_next;
391 uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX];
393 GHashTable *blockmap;
395 /* the RDMAContext for return path */
396 struct RDMAContext *return_path;
397 bool is_return_path;
398 } RDMAContext;
400 #define TYPE_QIO_CHANNEL_RDMA "qio-channel-rdma"
401 typedef struct QIOChannelRDMA QIOChannelRDMA;
402 DECLARE_INSTANCE_CHECKER(QIOChannelRDMA, QIO_CHANNEL_RDMA,
403 TYPE_QIO_CHANNEL_RDMA)
407 struct QIOChannelRDMA {
408 QIOChannel parent;
409 RDMAContext *rdmain;
410 RDMAContext *rdmaout;
411 QEMUFile *file;
412 bool blocking; /* XXX we don't actually honour this yet */
416 * Main structure for IB Send/Recv control messages.
417 * This gets prepended at the beginning of every Send/Recv.
419 typedef struct QEMU_PACKED {
420 uint32_t len; /* Total length of data portion */
421 uint32_t type; /* which control command to perform */
422 uint32_t repeat; /* number of commands in data portion of same type */
423 uint32_t padding;
424 } RDMAControlHeader;
426 static void control_to_network(RDMAControlHeader *control)
428 control->type = htonl(control->type);
429 control->len = htonl(control->len);
430 control->repeat = htonl(control->repeat);
433 static void network_to_control(RDMAControlHeader *control)
435 control->type = ntohl(control->type);
436 control->len = ntohl(control->len);
437 control->repeat = ntohl(control->repeat);
441 * Register a single Chunk.
442 * Information sent by the source VM to inform the dest
443 * to register an single chunk of memory before we can perform
444 * the actual RDMA operation.
446 typedef struct QEMU_PACKED {
447 union QEMU_PACKED {
448 uint64_t current_addr; /* offset into the ram_addr_t space */
449 uint64_t chunk; /* chunk to lookup if unregistering */
450 } key;
451 uint32_t current_index; /* which ramblock the chunk belongs to */
452 uint32_t padding;
453 uint64_t chunks; /* how many sequential chunks to register */
454 } RDMARegister;
456 static void register_to_network(RDMAContext *rdma, RDMARegister *reg)
458 RDMALocalBlock *local_block;
459 local_block = &rdma->local_ram_blocks.block[reg->current_index];
461 if (local_block->is_ram_block) {
463 * current_addr as passed in is an address in the local ram_addr_t
464 * space, we need to translate this for the destination
466 reg->key.current_addr -= local_block->offset;
467 reg->key.current_addr += rdma->dest_blocks[reg->current_index].offset;
469 reg->key.current_addr = htonll(reg->key.current_addr);
470 reg->current_index = htonl(reg->current_index);
471 reg->chunks = htonll(reg->chunks);
474 static void network_to_register(RDMARegister *reg)
476 reg->key.current_addr = ntohll(reg->key.current_addr);
477 reg->current_index = ntohl(reg->current_index);
478 reg->chunks = ntohll(reg->chunks);
481 typedef struct QEMU_PACKED {
482 uint32_t value; /* if zero, we will madvise() */
483 uint32_t block_idx; /* which ram block index */
484 uint64_t offset; /* Address in remote ram_addr_t space */
485 uint64_t length; /* length of the chunk */
486 } RDMACompress;
488 static void compress_to_network(RDMAContext *rdma, RDMACompress *comp)
490 comp->value = htonl(comp->value);
492 * comp->offset as passed in is an address in the local ram_addr_t
493 * space, we need to translate this for the destination
495 comp->offset -= rdma->local_ram_blocks.block[comp->block_idx].offset;
496 comp->offset += rdma->dest_blocks[comp->block_idx].offset;
497 comp->block_idx = htonl(comp->block_idx);
498 comp->offset = htonll(comp->offset);
499 comp->length = htonll(comp->length);
502 static void network_to_compress(RDMACompress *comp)
504 comp->value = ntohl(comp->value);
505 comp->block_idx = ntohl(comp->block_idx);
506 comp->offset = ntohll(comp->offset);
507 comp->length = ntohll(comp->length);
511 * The result of the dest's memory registration produces an "rkey"
512 * which the source VM must reference in order to perform
513 * the RDMA operation.
515 typedef struct QEMU_PACKED {
516 uint32_t rkey;
517 uint32_t padding;
518 uint64_t host_addr;
519 } RDMARegisterResult;
521 static void result_to_network(RDMARegisterResult *result)
523 result->rkey = htonl(result->rkey);
524 result->host_addr = htonll(result->host_addr);
527 static void network_to_result(RDMARegisterResult *result)
529 result->rkey = ntohl(result->rkey);
530 result->host_addr = ntohll(result->host_addr);
533 const char *print_wrid(int wrid);
534 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
535 uint8_t *data, RDMAControlHeader *resp,
536 int *resp_idx,
537 int (*callback)(RDMAContext *rdma));
539 static inline uint64_t ram_chunk_index(const uint8_t *start,
540 const uint8_t *host)
542 return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT;
545 static inline uint8_t *ram_chunk_start(const RDMALocalBlock *rdma_ram_block,
546 uint64_t i)
548 return (uint8_t *)(uintptr_t)(rdma_ram_block->local_host_addr +
549 (i << RDMA_REG_CHUNK_SHIFT));
552 static inline uint8_t *ram_chunk_end(const RDMALocalBlock *rdma_ram_block,
553 uint64_t i)
555 uint8_t *result = ram_chunk_start(rdma_ram_block, i) +
556 (1UL << RDMA_REG_CHUNK_SHIFT);
558 if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) {
559 result = rdma_ram_block->local_host_addr + rdma_ram_block->length;
562 return result;
565 static int rdma_add_block(RDMAContext *rdma, const char *block_name,
566 void *host_addr,
567 ram_addr_t block_offset, uint64_t length)
569 RDMALocalBlocks *local = &rdma->local_ram_blocks;
570 RDMALocalBlock *block;
571 RDMALocalBlock *old = local->block;
573 local->block = g_new0(RDMALocalBlock, local->nb_blocks + 1);
575 if (local->nb_blocks) {
576 int x;
578 if (rdma->blockmap) {
579 for (x = 0; x < local->nb_blocks; x++) {
580 g_hash_table_remove(rdma->blockmap,
581 (void *)(uintptr_t)old[x].offset);
582 g_hash_table_insert(rdma->blockmap,
583 (void *)(uintptr_t)old[x].offset,
584 &local->block[x]);
587 memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks);
588 g_free(old);
591 block = &local->block[local->nb_blocks];
593 block->block_name = g_strdup(block_name);
594 block->local_host_addr = host_addr;
595 block->offset = block_offset;
596 block->length = length;
597 block->index = local->nb_blocks;
598 block->src_index = ~0U; /* Filled in by the receipt of the block list */
599 block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL;
600 block->transit_bitmap = bitmap_new(block->nb_chunks);
601 bitmap_clear(block->transit_bitmap, 0, block->nb_chunks);
602 block->unregister_bitmap = bitmap_new(block->nb_chunks);
603 bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks);
604 block->remote_keys = g_new0(uint32_t, block->nb_chunks);
606 block->is_ram_block = local->init ? false : true;
608 if (rdma->blockmap) {
609 g_hash_table_insert(rdma->blockmap, (void *)(uintptr_t)block_offset, block);
612 trace_rdma_add_block(block_name, local->nb_blocks,
613 (uintptr_t) block->local_host_addr,
614 block->offset, block->length,
615 (uintptr_t) (block->local_host_addr + block->length),
616 BITS_TO_LONGS(block->nb_chunks) *
617 sizeof(unsigned long) * 8,
618 block->nb_chunks);
620 local->nb_blocks++;
622 return 0;
626 * Memory regions need to be registered with the device and queue pairs setup
627 * in advanced before the migration starts. This tells us where the RAM blocks
628 * are so that we can register them individually.
630 static int qemu_rdma_init_one_block(RAMBlock *rb, void *opaque)
632 const char *block_name = qemu_ram_get_idstr(rb);
633 void *host_addr = qemu_ram_get_host_addr(rb);
634 ram_addr_t block_offset = qemu_ram_get_offset(rb);
635 ram_addr_t length = qemu_ram_get_used_length(rb);
636 return rdma_add_block(opaque, block_name, host_addr, block_offset, length);
640 * Identify the RAMBlocks and their quantity. They will be references to
641 * identify chunk boundaries inside each RAMBlock and also be referenced
642 * during dynamic page registration.
644 static int qemu_rdma_init_ram_blocks(RDMAContext *rdma)
646 RDMALocalBlocks *local = &rdma->local_ram_blocks;
647 int ret;
649 assert(rdma->blockmap == NULL);
650 memset(local, 0, sizeof *local);
651 ret = foreach_not_ignored_block(qemu_rdma_init_one_block, rdma);
652 if (ret) {
653 return ret;
655 trace_qemu_rdma_init_ram_blocks(local->nb_blocks);
656 rdma->dest_blocks = g_new0(RDMADestBlock,
657 rdma->local_ram_blocks.nb_blocks);
658 local->init = true;
659 return 0;
663 * Note: If used outside of cleanup, the caller must ensure that the destination
664 * block structures are also updated
666 static int rdma_delete_block(RDMAContext *rdma, RDMALocalBlock *block)
668 RDMALocalBlocks *local = &rdma->local_ram_blocks;
669 RDMALocalBlock *old = local->block;
670 int x;
672 if (rdma->blockmap) {
673 g_hash_table_remove(rdma->blockmap, (void *)(uintptr_t)block->offset);
675 if (block->pmr) {
676 int j;
678 for (j = 0; j < block->nb_chunks; j++) {
679 if (!block->pmr[j]) {
680 continue;
682 ibv_dereg_mr(block->pmr[j]);
683 rdma->total_registrations--;
685 g_free(block->pmr);
686 block->pmr = NULL;
689 if (block->mr) {
690 ibv_dereg_mr(block->mr);
691 rdma->total_registrations--;
692 block->mr = NULL;
695 g_free(block->transit_bitmap);
696 block->transit_bitmap = NULL;
698 g_free(block->unregister_bitmap);
699 block->unregister_bitmap = NULL;
701 g_free(block->remote_keys);
702 block->remote_keys = NULL;
704 g_free(block->block_name);
705 block->block_name = NULL;
707 if (rdma->blockmap) {
708 for (x = 0; x < local->nb_blocks; x++) {
709 g_hash_table_remove(rdma->blockmap,
710 (void *)(uintptr_t)old[x].offset);
714 if (local->nb_blocks > 1) {
716 local->block = g_new0(RDMALocalBlock, local->nb_blocks - 1);
718 if (block->index) {
719 memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index);
722 if (block->index < (local->nb_blocks - 1)) {
723 memcpy(local->block + block->index, old + (block->index + 1),
724 sizeof(RDMALocalBlock) *
725 (local->nb_blocks - (block->index + 1)));
726 for (x = block->index; x < local->nb_blocks - 1; x++) {
727 local->block[x].index--;
730 } else {
731 assert(block == local->block);
732 local->block = NULL;
735 trace_rdma_delete_block(block, (uintptr_t)block->local_host_addr,
736 block->offset, block->length,
737 (uintptr_t)(block->local_host_addr + block->length),
738 BITS_TO_LONGS(block->nb_chunks) *
739 sizeof(unsigned long) * 8, block->nb_chunks);
741 g_free(old);
743 local->nb_blocks--;
745 if (local->nb_blocks && rdma->blockmap) {
746 for (x = 0; x < local->nb_blocks; x++) {
747 g_hash_table_insert(rdma->blockmap,
748 (void *)(uintptr_t)local->block[x].offset,
749 &local->block[x]);
753 return 0;
757 * Put in the log file which RDMA device was opened and the details
758 * associated with that device.
760 static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs)
762 struct ibv_port_attr port;
764 if (ibv_query_port(verbs, 1, &port)) {
765 error_report("Failed to query port information");
766 return;
769 printf("%s RDMA Device opened: kernel name %s "
770 "uverbs device name %s, "
771 "infiniband_verbs class device path %s, "
772 "infiniband class device path %s, "
773 "transport: (%d) %s\n",
774 who,
775 verbs->device->name,
776 verbs->device->dev_name,
777 verbs->device->dev_path,
778 verbs->device->ibdev_path,
779 port.link_layer,
780 (port.link_layer == IBV_LINK_LAYER_INFINIBAND) ? "Infiniband" :
781 ((port.link_layer == IBV_LINK_LAYER_ETHERNET)
782 ? "Ethernet" : "Unknown"));
786 * Put in the log file the RDMA gid addressing information,
787 * useful for folks who have trouble understanding the
788 * RDMA device hierarchy in the kernel.
790 static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id)
792 char sgid[33];
793 char dgid[33];
794 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid);
795 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid);
796 trace_qemu_rdma_dump_gid(who, sgid, dgid);
800 * As of now, IPv6 over RoCE / iWARP is not supported by linux.
801 * We will try the next addrinfo struct, and fail if there are
802 * no other valid addresses to bind against.
804 * If user is listening on '[::]', then we will not have a opened a device
805 * yet and have no way of verifying if the device is RoCE or not.
807 * In this case, the source VM will throw an error for ALL types of
808 * connections (both IPv4 and IPv6) if the destination machine does not have
809 * a regular infiniband network available for use.
811 * The only way to guarantee that an error is thrown for broken kernels is
812 * for the management software to choose a *specific* interface at bind time
813 * and validate what time of hardware it is.
815 * Unfortunately, this puts the user in a fix:
817 * If the source VM connects with an IPv4 address without knowing that the
818 * destination has bound to '[::]' the migration will unconditionally fail
819 * unless the management software is explicitly listening on the IPv4
820 * address while using a RoCE-based device.
822 * If the source VM connects with an IPv6 address, then we're OK because we can
823 * throw an error on the source (and similarly on the destination).
825 * But in mixed environments, this will be broken for a while until it is fixed
826 * inside linux.
828 * We do provide a *tiny* bit of help in this function: We can list all of the
829 * devices in the system and check to see if all the devices are RoCE or
830 * Infiniband.
832 * If we detect that we have a *pure* RoCE environment, then we can safely
833 * thrown an error even if the management software has specified '[::]' as the
834 * bind address.
836 * However, if there is are multiple hetergeneous devices, then we cannot make
837 * this assumption and the user just has to be sure they know what they are
838 * doing.
840 * Patches are being reviewed on linux-rdma.
842 static int qemu_rdma_broken_ipv6_kernel(struct ibv_context *verbs, Error **errp)
844 /* This bug only exists in linux, to our knowledge. */
845 #ifdef CONFIG_LINUX
846 struct ibv_port_attr port_attr;
849 * Verbs are only NULL if management has bound to '[::]'.
851 * Let's iterate through all the devices and see if there any pure IB
852 * devices (non-ethernet).
854 * If not, then we can safely proceed with the migration.
855 * Otherwise, there are no guarantees until the bug is fixed in linux.
857 if (!verbs) {
858 int num_devices, x;
859 struct ibv_device ** dev_list = ibv_get_device_list(&num_devices);
860 bool roce_found = false;
861 bool ib_found = false;
863 for (x = 0; x < num_devices; x++) {
864 verbs = ibv_open_device(dev_list[x]);
865 if (!verbs) {
866 if (errno == EPERM) {
867 continue;
868 } else {
869 return -EINVAL;
873 if (ibv_query_port(verbs, 1, &port_attr)) {
874 ibv_close_device(verbs);
875 ERROR(errp, "Could not query initial IB port");
876 return -EINVAL;
879 if (port_attr.link_layer == IBV_LINK_LAYER_INFINIBAND) {
880 ib_found = true;
881 } else if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
882 roce_found = true;
885 ibv_close_device(verbs);
889 if (roce_found) {
890 if (ib_found) {
891 fprintf(stderr, "WARN: migrations may fail:"
892 " IPv6 over RoCE / iWARP in linux"
893 " is broken. But since you appear to have a"
894 " mixed RoCE / IB environment, be sure to only"
895 " migrate over the IB fabric until the kernel "
896 " fixes the bug.\n");
897 } else {
898 ERROR(errp, "You only have RoCE / iWARP devices in your systems"
899 " and your management software has specified '[::]'"
900 ", but IPv6 over RoCE / iWARP is not supported in Linux.");
901 return -ENONET;
905 return 0;
909 * If we have a verbs context, that means that some other than '[::]' was
910 * used by the management software for binding. In which case we can
911 * actually warn the user about a potentially broken kernel.
914 /* IB ports start with 1, not 0 */
915 if (ibv_query_port(verbs, 1, &port_attr)) {
916 ERROR(errp, "Could not query initial IB port");
917 return -EINVAL;
920 if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
921 ERROR(errp, "Linux kernel's RoCE / iWARP does not support IPv6 "
922 "(but patches on linux-rdma in progress)");
923 return -ENONET;
926 #endif
928 return 0;
932 * Figure out which RDMA device corresponds to the requested IP hostname
933 * Also create the initial connection manager identifiers for opening
934 * the connection.
936 static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp)
938 int ret;
939 struct rdma_addrinfo *res;
940 char port_str[16];
941 struct rdma_cm_event *cm_event;
942 char ip[40] = "unknown";
943 struct rdma_addrinfo *e;
945 if (rdma->host == NULL || !strcmp(rdma->host, "")) {
946 ERROR(errp, "RDMA hostname has not been set");
947 return -EINVAL;
950 /* create CM channel */
951 rdma->channel = rdma_create_event_channel();
952 if (!rdma->channel) {
953 ERROR(errp, "could not create CM channel");
954 return -EINVAL;
957 /* create CM id */
958 ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP);
959 if (ret) {
960 ERROR(errp, "could not create channel id");
961 goto err_resolve_create_id;
964 snprintf(port_str, 16, "%d", rdma->port);
965 port_str[15] = '\0';
967 ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
968 if (ret < 0) {
969 ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
970 goto err_resolve_get_addr;
973 for (e = res; e != NULL; e = e->ai_next) {
974 inet_ntop(e->ai_family,
975 &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
976 trace_qemu_rdma_resolve_host_trying(rdma->host, ip);
978 ret = rdma_resolve_addr(rdma->cm_id, NULL, e->ai_dst_addr,
979 RDMA_RESOLVE_TIMEOUT_MS);
980 if (!ret) {
981 if (e->ai_family == AF_INET6) {
982 ret = qemu_rdma_broken_ipv6_kernel(rdma->cm_id->verbs, errp);
983 if (ret) {
984 continue;
987 goto route;
991 ERROR(errp, "could not resolve address %s", rdma->host);
992 goto err_resolve_get_addr;
994 route:
995 qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id);
997 ret = rdma_get_cm_event(rdma->channel, &cm_event);
998 if (ret) {
999 ERROR(errp, "could not perform event_addr_resolved");
1000 goto err_resolve_get_addr;
1003 if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) {
1004 ERROR(errp, "result not equal to event_addr_resolved %s",
1005 rdma_event_str(cm_event->event));
1006 perror("rdma_resolve_addr");
1007 rdma_ack_cm_event(cm_event);
1008 ret = -EINVAL;
1009 goto err_resolve_get_addr;
1011 rdma_ack_cm_event(cm_event);
1013 /* resolve route */
1014 ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS);
1015 if (ret) {
1016 ERROR(errp, "could not resolve rdma route");
1017 goto err_resolve_get_addr;
1020 ret = rdma_get_cm_event(rdma->channel, &cm_event);
1021 if (ret) {
1022 ERROR(errp, "could not perform event_route_resolved");
1023 goto err_resolve_get_addr;
1025 if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) {
1026 ERROR(errp, "result not equal to event_route_resolved: %s",
1027 rdma_event_str(cm_event->event));
1028 rdma_ack_cm_event(cm_event);
1029 ret = -EINVAL;
1030 goto err_resolve_get_addr;
1032 rdma_ack_cm_event(cm_event);
1033 rdma->verbs = rdma->cm_id->verbs;
1034 qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs);
1035 qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id);
1036 return 0;
1038 err_resolve_get_addr:
1039 rdma_destroy_id(rdma->cm_id);
1040 rdma->cm_id = NULL;
1041 err_resolve_create_id:
1042 rdma_destroy_event_channel(rdma->channel);
1043 rdma->channel = NULL;
1044 return ret;
1048 * Create protection domain and completion queues
1050 static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma)
1052 /* allocate pd */
1053 rdma->pd = ibv_alloc_pd(rdma->verbs);
1054 if (!rdma->pd) {
1055 error_report("failed to allocate protection domain");
1056 return -1;
1059 /* create completion channel */
1060 rdma->comp_channel = ibv_create_comp_channel(rdma->verbs);
1061 if (!rdma->comp_channel) {
1062 error_report("failed to allocate completion channel");
1063 goto err_alloc_pd_cq;
1067 * Completion queue can be filled by both read and write work requests,
1068 * so must reflect the sum of both possible queue sizes.
1070 rdma->cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
1071 NULL, rdma->comp_channel, 0);
1072 if (!rdma->cq) {
1073 error_report("failed to allocate completion queue");
1074 goto err_alloc_pd_cq;
1077 return 0;
1079 err_alloc_pd_cq:
1080 if (rdma->pd) {
1081 ibv_dealloc_pd(rdma->pd);
1083 if (rdma->comp_channel) {
1084 ibv_destroy_comp_channel(rdma->comp_channel);
1086 rdma->pd = NULL;
1087 rdma->comp_channel = NULL;
1088 return -1;
1093 * Create queue pairs.
1095 static int qemu_rdma_alloc_qp(RDMAContext *rdma)
1097 struct ibv_qp_init_attr attr = { 0 };
1098 int ret;
1100 attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX;
1101 attr.cap.max_recv_wr = 3;
1102 attr.cap.max_send_sge = 1;
1103 attr.cap.max_recv_sge = 1;
1104 attr.send_cq = rdma->cq;
1105 attr.recv_cq = rdma->cq;
1106 attr.qp_type = IBV_QPT_RC;
1108 ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr);
1109 if (ret) {
1110 return -1;
1113 rdma->qp = rdma->cm_id->qp;
1114 return 0;
1117 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma)
1119 int i;
1120 RDMALocalBlocks *local = &rdma->local_ram_blocks;
1122 for (i = 0; i < local->nb_blocks; i++) {
1123 local->block[i].mr =
1124 ibv_reg_mr(rdma->pd,
1125 local->block[i].local_host_addr,
1126 local->block[i].length,
1127 IBV_ACCESS_LOCAL_WRITE |
1128 IBV_ACCESS_REMOTE_WRITE
1130 if (!local->block[i].mr) {
1131 perror("Failed to register local dest ram block!\n");
1132 break;
1134 rdma->total_registrations++;
1137 if (i >= local->nb_blocks) {
1138 return 0;
1141 for (i--; i >= 0; i--) {
1142 ibv_dereg_mr(local->block[i].mr);
1143 rdma->total_registrations--;
1146 return -1;
1151 * Find the ram block that corresponds to the page requested to be
1152 * transmitted by QEMU.
1154 * Once the block is found, also identify which 'chunk' within that
1155 * block that the page belongs to.
1157 * This search cannot fail or the migration will fail.
1159 static int qemu_rdma_search_ram_block(RDMAContext *rdma,
1160 uintptr_t block_offset,
1161 uint64_t offset,
1162 uint64_t length,
1163 uint64_t *block_index,
1164 uint64_t *chunk_index)
1166 uint64_t current_addr = block_offset + offset;
1167 RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
1168 (void *) block_offset);
1169 assert(block);
1170 assert(current_addr >= block->offset);
1171 assert((current_addr + length) <= (block->offset + block->length));
1173 *block_index = block->index;
1174 *chunk_index = ram_chunk_index(block->local_host_addr,
1175 block->local_host_addr + (current_addr - block->offset));
1177 return 0;
1181 * Register a chunk with IB. If the chunk was already registered
1182 * previously, then skip.
1184 * Also return the keys associated with the registration needed
1185 * to perform the actual RDMA operation.
1187 static int qemu_rdma_register_and_get_keys(RDMAContext *rdma,
1188 RDMALocalBlock *block, uintptr_t host_addr,
1189 uint32_t *lkey, uint32_t *rkey, int chunk,
1190 uint8_t *chunk_start, uint8_t *chunk_end)
1192 if (block->mr) {
1193 if (lkey) {
1194 *lkey = block->mr->lkey;
1196 if (rkey) {
1197 *rkey = block->mr->rkey;
1199 return 0;
1202 /* allocate memory to store chunk MRs */
1203 if (!block->pmr) {
1204 block->pmr = g_new0(struct ibv_mr *, block->nb_chunks);
1208 * If 'rkey', then we're the destination, so grant access to the source.
1210 * If 'lkey', then we're the source VM, so grant access only to ourselves.
1212 if (!block->pmr[chunk]) {
1213 uint64_t len = chunk_end - chunk_start;
1215 trace_qemu_rdma_register_and_get_keys(len, chunk_start);
1217 block->pmr[chunk] = ibv_reg_mr(rdma->pd,
1218 chunk_start, len,
1219 (rkey ? (IBV_ACCESS_LOCAL_WRITE |
1220 IBV_ACCESS_REMOTE_WRITE) : 0));
1222 if (!block->pmr[chunk]) {
1223 perror("Failed to register chunk!");
1224 fprintf(stderr, "Chunk details: block: %d chunk index %d"
1225 " start %" PRIuPTR " end %" PRIuPTR
1226 " host %" PRIuPTR
1227 " local %" PRIuPTR " registrations: %d\n",
1228 block->index, chunk, (uintptr_t)chunk_start,
1229 (uintptr_t)chunk_end, host_addr,
1230 (uintptr_t)block->local_host_addr,
1231 rdma->total_registrations);
1232 return -1;
1234 rdma->total_registrations++;
1237 if (lkey) {
1238 *lkey = block->pmr[chunk]->lkey;
1240 if (rkey) {
1241 *rkey = block->pmr[chunk]->rkey;
1243 return 0;
1247 * Register (at connection time) the memory used for control
1248 * channel messages.
1250 static int qemu_rdma_reg_control(RDMAContext *rdma, int idx)
1252 rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd,
1253 rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER,
1254 IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
1255 if (rdma->wr_data[idx].control_mr) {
1256 rdma->total_registrations++;
1257 return 0;
1259 error_report("qemu_rdma_reg_control failed");
1260 return -1;
1263 const char *print_wrid(int wrid)
1265 if (wrid >= RDMA_WRID_RECV_CONTROL) {
1266 return wrid_desc[RDMA_WRID_RECV_CONTROL];
1268 return wrid_desc[wrid];
1272 * RDMA requires memory registration (mlock/pinning), but this is not good for
1273 * overcommitment.
1275 * In preparation for the future where LRU information or workload-specific
1276 * writable writable working set memory access behavior is available to QEMU
1277 * it would be nice to have in place the ability to UN-register/UN-pin
1278 * particular memory regions from the RDMA hardware when it is determine that
1279 * those regions of memory will likely not be accessed again in the near future.
1281 * While we do not yet have such information right now, the following
1282 * compile-time option allows us to perform a non-optimized version of this
1283 * behavior.
1285 * By uncommenting this option, you will cause *all* RDMA transfers to be
1286 * unregistered immediately after the transfer completes on both sides of the
1287 * connection. This has no effect in 'rdma-pin-all' mode, only regular mode.
1289 * This will have a terrible impact on migration performance, so until future
1290 * workload information or LRU information is available, do not attempt to use
1291 * this feature except for basic testing.
1293 //#define RDMA_UNREGISTRATION_EXAMPLE
1296 * Perform a non-optimized memory unregistration after every transfer
1297 * for demonstration purposes, only if pin-all is not requested.
1299 * Potential optimizations:
1300 * 1. Start a new thread to run this function continuously
1301 - for bit clearing
1302 - and for receipt of unregister messages
1303 * 2. Use an LRU.
1304 * 3. Use workload hints.
1306 static int qemu_rdma_unregister_waiting(RDMAContext *rdma)
1308 while (rdma->unregistrations[rdma->unregister_current]) {
1309 int ret;
1310 uint64_t wr_id = rdma->unregistrations[rdma->unregister_current];
1311 uint64_t chunk =
1312 (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1313 uint64_t index =
1314 (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1315 RDMALocalBlock *block =
1316 &(rdma->local_ram_blocks.block[index]);
1317 RDMARegister reg = { .current_index = index };
1318 RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED,
1320 RDMAControlHeader head = { .len = sizeof(RDMARegister),
1321 .type = RDMA_CONTROL_UNREGISTER_REQUEST,
1322 .repeat = 1,
1325 trace_qemu_rdma_unregister_waiting_proc(chunk,
1326 rdma->unregister_current);
1328 rdma->unregistrations[rdma->unregister_current] = 0;
1329 rdma->unregister_current++;
1331 if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) {
1332 rdma->unregister_current = 0;
1337 * Unregistration is speculative (because migration is single-threaded
1338 * and we cannot break the protocol's inifinband message ordering).
1339 * Thus, if the memory is currently being used for transmission,
1340 * then abort the attempt to unregister and try again
1341 * later the next time a completion is received for this memory.
1343 clear_bit(chunk, block->unregister_bitmap);
1345 if (test_bit(chunk, block->transit_bitmap)) {
1346 trace_qemu_rdma_unregister_waiting_inflight(chunk);
1347 continue;
1350 trace_qemu_rdma_unregister_waiting_send(chunk);
1352 ret = ibv_dereg_mr(block->pmr[chunk]);
1353 block->pmr[chunk] = NULL;
1354 block->remote_keys[chunk] = 0;
1356 if (ret != 0) {
1357 perror("unregistration chunk failed");
1358 return -ret;
1360 rdma->total_registrations--;
1362 reg.key.chunk = chunk;
1363 register_to_network(rdma, &reg);
1364 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1365 &resp, NULL, NULL);
1366 if (ret < 0) {
1367 return ret;
1370 trace_qemu_rdma_unregister_waiting_complete(chunk);
1373 return 0;
1376 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index,
1377 uint64_t chunk)
1379 uint64_t result = wr_id & RDMA_WRID_TYPE_MASK;
1381 result |= (index << RDMA_WRID_BLOCK_SHIFT);
1382 result |= (chunk << RDMA_WRID_CHUNK_SHIFT);
1384 return result;
1388 * Set bit for unregistration in the next iteration.
1389 * We cannot transmit right here, but will unpin later.
1391 static void qemu_rdma_signal_unregister(RDMAContext *rdma, uint64_t index,
1392 uint64_t chunk, uint64_t wr_id)
1394 if (rdma->unregistrations[rdma->unregister_next] != 0) {
1395 error_report("rdma migration: queue is full");
1396 } else {
1397 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1399 if (!test_and_set_bit(chunk, block->unregister_bitmap)) {
1400 trace_qemu_rdma_signal_unregister_append(chunk,
1401 rdma->unregister_next);
1403 rdma->unregistrations[rdma->unregister_next++] =
1404 qemu_rdma_make_wrid(wr_id, index, chunk);
1406 if (rdma->unregister_next == RDMA_SIGNALED_SEND_MAX) {
1407 rdma->unregister_next = 0;
1409 } else {
1410 trace_qemu_rdma_signal_unregister_already(chunk);
1416 * Consult the connection manager to see a work request
1417 * (of any kind) has completed.
1418 * Return the work request ID that completed.
1420 static uint64_t qemu_rdma_poll(RDMAContext *rdma, uint64_t *wr_id_out,
1421 uint32_t *byte_len)
1423 int ret;
1424 struct ibv_wc wc;
1425 uint64_t wr_id;
1427 ret = ibv_poll_cq(rdma->cq, 1, &wc);
1429 if (!ret) {
1430 *wr_id_out = RDMA_WRID_NONE;
1431 return 0;
1434 if (ret < 0) {
1435 error_report("ibv_poll_cq return %d", ret);
1436 return ret;
1439 wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK;
1441 if (wc.status != IBV_WC_SUCCESS) {
1442 fprintf(stderr, "ibv_poll_cq wc.status=%d %s!\n",
1443 wc.status, ibv_wc_status_str(wc.status));
1444 fprintf(stderr, "ibv_poll_cq wrid=%s!\n", wrid_desc[wr_id]);
1446 return -1;
1449 if (rdma->control_ready_expected &&
1450 (wr_id >= RDMA_WRID_RECV_CONTROL)) {
1451 trace_qemu_rdma_poll_recv(wrid_desc[RDMA_WRID_RECV_CONTROL],
1452 wr_id - RDMA_WRID_RECV_CONTROL, wr_id, rdma->nb_sent);
1453 rdma->control_ready_expected = 0;
1456 if (wr_id == RDMA_WRID_RDMA_WRITE) {
1457 uint64_t chunk =
1458 (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1459 uint64_t index =
1460 (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1461 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1463 trace_qemu_rdma_poll_write(print_wrid(wr_id), wr_id, rdma->nb_sent,
1464 index, chunk, block->local_host_addr,
1465 (void *)(uintptr_t)block->remote_host_addr);
1467 clear_bit(chunk, block->transit_bitmap);
1469 if (rdma->nb_sent > 0) {
1470 rdma->nb_sent--;
1473 if (!rdma->pin_all) {
1475 * FYI: If one wanted to signal a specific chunk to be unregistered
1476 * using LRU or workload-specific information, this is the function
1477 * you would call to do so. That chunk would then get asynchronously
1478 * unregistered later.
1480 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1481 qemu_rdma_signal_unregister(rdma, index, chunk, wc.wr_id);
1482 #endif
1484 } else {
1485 trace_qemu_rdma_poll_other(print_wrid(wr_id), wr_id, rdma->nb_sent);
1488 *wr_id_out = wc.wr_id;
1489 if (byte_len) {
1490 *byte_len = wc.byte_len;
1493 return 0;
1496 /* Wait for activity on the completion channel.
1497 * Returns 0 on success, none-0 on error.
1499 static int qemu_rdma_wait_comp_channel(RDMAContext *rdma)
1501 struct rdma_cm_event *cm_event;
1502 int ret = -1;
1505 * Coroutine doesn't start until migration_fd_process_incoming()
1506 * so don't yield unless we know we're running inside of a coroutine.
1508 if (rdma->migration_started_on_destination &&
1509 migration_incoming_get_current()->state == MIGRATION_STATUS_ACTIVE) {
1510 yield_until_fd_readable(rdma->comp_channel->fd);
1511 } else {
1512 /* This is the source side, we're in a separate thread
1513 * or destination prior to migration_fd_process_incoming()
1514 * after postcopy, the destination also in a seprate thread.
1515 * we can't yield; so we have to poll the fd.
1516 * But we need to be able to handle 'cancel' or an error
1517 * without hanging forever.
1519 while (!rdma->error_state && !rdma->received_error) {
1520 GPollFD pfds[2];
1521 pfds[0].fd = rdma->comp_channel->fd;
1522 pfds[0].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
1523 pfds[0].revents = 0;
1525 pfds[1].fd = rdma->channel->fd;
1526 pfds[1].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
1527 pfds[1].revents = 0;
1529 /* 0.1s timeout, should be fine for a 'cancel' */
1530 switch (qemu_poll_ns(pfds, 2, 100 * 1000 * 1000)) {
1531 case 2:
1532 case 1: /* fd active */
1533 if (pfds[0].revents) {
1534 return 0;
1537 if (pfds[1].revents) {
1538 ret = rdma_get_cm_event(rdma->channel, &cm_event);
1539 if (!ret) {
1540 rdma_ack_cm_event(cm_event);
1543 error_report("receive cm event while wait comp channel,"
1544 "cm event is %d", cm_event->event);
1545 if (cm_event->event == RDMA_CM_EVENT_DISCONNECTED ||
1546 cm_event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) {
1547 return -EPIPE;
1550 break;
1552 case 0: /* Timeout, go around again */
1553 break;
1555 default: /* Error of some type -
1556 * I don't trust errno from qemu_poll_ns
1558 error_report("%s: poll failed", __func__);
1559 return -EPIPE;
1562 if (migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) {
1563 /* Bail out and let the cancellation happen */
1564 return -EPIPE;
1569 if (rdma->received_error) {
1570 return -EPIPE;
1572 return rdma->error_state;
1576 * Block until the next work request has completed.
1578 * First poll to see if a work request has already completed,
1579 * otherwise block.
1581 * If we encounter completed work requests for IDs other than
1582 * the one we're interested in, then that's generally an error.
1584 * The only exception is actual RDMA Write completions. These
1585 * completions only need to be recorded, but do not actually
1586 * need further processing.
1588 static int qemu_rdma_block_for_wrid(RDMAContext *rdma, int wrid_requested,
1589 uint32_t *byte_len)
1591 int num_cq_events = 0, ret = 0;
1592 struct ibv_cq *cq;
1593 void *cq_ctx;
1594 uint64_t wr_id = RDMA_WRID_NONE, wr_id_in;
1596 if (ibv_req_notify_cq(rdma->cq, 0)) {
1597 return -1;
1599 /* poll cq first */
1600 while (wr_id != wrid_requested) {
1601 ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
1602 if (ret < 0) {
1603 return ret;
1606 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1608 if (wr_id == RDMA_WRID_NONE) {
1609 break;
1611 if (wr_id != wrid_requested) {
1612 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1613 wrid_requested, print_wrid(wr_id), wr_id);
1617 if (wr_id == wrid_requested) {
1618 return 0;
1621 while (1) {
1622 ret = qemu_rdma_wait_comp_channel(rdma);
1623 if (ret) {
1624 goto err_block_for_wrid;
1627 ret = ibv_get_cq_event(rdma->comp_channel, &cq, &cq_ctx);
1628 if (ret) {
1629 perror("ibv_get_cq_event");
1630 goto err_block_for_wrid;
1633 num_cq_events++;
1635 ret = -ibv_req_notify_cq(cq, 0);
1636 if (ret) {
1637 goto err_block_for_wrid;
1640 while (wr_id != wrid_requested) {
1641 ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
1642 if (ret < 0) {
1643 goto err_block_for_wrid;
1646 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1648 if (wr_id == RDMA_WRID_NONE) {
1649 break;
1651 if (wr_id != wrid_requested) {
1652 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1653 wrid_requested, print_wrid(wr_id), wr_id);
1657 if (wr_id == wrid_requested) {
1658 goto success_block_for_wrid;
1662 success_block_for_wrid:
1663 if (num_cq_events) {
1664 ibv_ack_cq_events(cq, num_cq_events);
1666 return 0;
1668 err_block_for_wrid:
1669 if (num_cq_events) {
1670 ibv_ack_cq_events(cq, num_cq_events);
1673 rdma->error_state = ret;
1674 return ret;
1678 * Post a SEND message work request for the control channel
1679 * containing some data and block until the post completes.
1681 static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf,
1682 RDMAControlHeader *head)
1684 int ret = 0;
1685 RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_CONTROL];
1686 struct ibv_send_wr *bad_wr;
1687 struct ibv_sge sge = {
1688 .addr = (uintptr_t)(wr->control),
1689 .length = head->len + sizeof(RDMAControlHeader),
1690 .lkey = wr->control_mr->lkey,
1692 struct ibv_send_wr send_wr = {
1693 .wr_id = RDMA_WRID_SEND_CONTROL,
1694 .opcode = IBV_WR_SEND,
1695 .send_flags = IBV_SEND_SIGNALED,
1696 .sg_list = &sge,
1697 .num_sge = 1,
1700 trace_qemu_rdma_post_send_control(control_desc(head->type));
1703 * We don't actually need to do a memcpy() in here if we used
1704 * the "sge" properly, but since we're only sending control messages
1705 * (not RAM in a performance-critical path), then its OK for now.
1707 * The copy makes the RDMAControlHeader simpler to manipulate
1708 * for the time being.
1710 assert(head->len <= RDMA_CONTROL_MAX_BUFFER - sizeof(*head));
1711 memcpy(wr->control, head, sizeof(RDMAControlHeader));
1712 control_to_network((void *) wr->control);
1714 if (buf) {
1715 memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len);
1719 ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
1721 if (ret > 0) {
1722 error_report("Failed to use post IB SEND for control");
1723 return -ret;
1726 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL, NULL);
1727 if (ret < 0) {
1728 error_report("rdma migration: send polling control error");
1731 return ret;
1735 * Post a RECV work request in anticipation of some future receipt
1736 * of data on the control channel.
1738 static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx)
1740 struct ibv_recv_wr *bad_wr;
1741 struct ibv_sge sge = {
1742 .addr = (uintptr_t)(rdma->wr_data[idx].control),
1743 .length = RDMA_CONTROL_MAX_BUFFER,
1744 .lkey = rdma->wr_data[idx].control_mr->lkey,
1747 struct ibv_recv_wr recv_wr = {
1748 .wr_id = RDMA_WRID_RECV_CONTROL + idx,
1749 .sg_list = &sge,
1750 .num_sge = 1,
1754 if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) {
1755 return -1;
1758 return 0;
1762 * Block and wait for a RECV control channel message to arrive.
1764 static int qemu_rdma_exchange_get_response(RDMAContext *rdma,
1765 RDMAControlHeader *head, int expecting, int idx)
1767 uint32_t byte_len;
1768 int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx,
1769 &byte_len);
1771 if (ret < 0) {
1772 error_report("rdma migration: recv polling control error!");
1773 return ret;
1776 network_to_control((void *) rdma->wr_data[idx].control);
1777 memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader));
1779 trace_qemu_rdma_exchange_get_response_start(control_desc(expecting));
1781 if (expecting == RDMA_CONTROL_NONE) {
1782 trace_qemu_rdma_exchange_get_response_none(control_desc(head->type),
1783 head->type);
1784 } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) {
1785 error_report("Was expecting a %s (%d) control message"
1786 ", but got: %s (%d), length: %d",
1787 control_desc(expecting), expecting,
1788 control_desc(head->type), head->type, head->len);
1789 if (head->type == RDMA_CONTROL_ERROR) {
1790 rdma->received_error = true;
1792 return -EIO;
1794 if (head->len > RDMA_CONTROL_MAX_BUFFER - sizeof(*head)) {
1795 error_report("too long length: %d", head->len);
1796 return -EINVAL;
1798 if (sizeof(*head) + head->len != byte_len) {
1799 error_report("Malformed length: %d byte_len %d", head->len, byte_len);
1800 return -EINVAL;
1803 return 0;
1807 * When a RECV work request has completed, the work request's
1808 * buffer is pointed at the header.
1810 * This will advance the pointer to the data portion
1811 * of the control message of the work request's buffer that
1812 * was populated after the work request finished.
1814 static void qemu_rdma_move_header(RDMAContext *rdma, int idx,
1815 RDMAControlHeader *head)
1817 rdma->wr_data[idx].control_len = head->len;
1818 rdma->wr_data[idx].control_curr =
1819 rdma->wr_data[idx].control + sizeof(RDMAControlHeader);
1823 * This is an 'atomic' high-level operation to deliver a single, unified
1824 * control-channel message.
1826 * Additionally, if the user is expecting some kind of reply to this message,
1827 * they can request a 'resp' response message be filled in by posting an
1828 * additional work request on behalf of the user and waiting for an additional
1829 * completion.
1831 * The extra (optional) response is used during registration to us from having
1832 * to perform an *additional* exchange of message just to provide a response by
1833 * instead piggy-backing on the acknowledgement.
1835 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
1836 uint8_t *data, RDMAControlHeader *resp,
1837 int *resp_idx,
1838 int (*callback)(RDMAContext *rdma))
1840 int ret = 0;
1843 * Wait until the dest is ready before attempting to deliver the message
1844 * by waiting for a READY message.
1846 if (rdma->control_ready_expected) {
1847 RDMAControlHeader resp;
1848 ret = qemu_rdma_exchange_get_response(rdma,
1849 &resp, RDMA_CONTROL_READY, RDMA_WRID_READY);
1850 if (ret < 0) {
1851 return ret;
1856 * If the user is expecting a response, post a WR in anticipation of it.
1858 if (resp) {
1859 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA);
1860 if (ret) {
1861 error_report("rdma migration: error posting"
1862 " extra control recv for anticipated result!");
1863 return ret;
1868 * Post a WR to replace the one we just consumed for the READY message.
1870 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1871 if (ret) {
1872 error_report("rdma migration: error posting first control recv!");
1873 return ret;
1877 * Deliver the control message that was requested.
1879 ret = qemu_rdma_post_send_control(rdma, data, head);
1881 if (ret < 0) {
1882 error_report("Failed to send control buffer!");
1883 return ret;
1887 * If we're expecting a response, block and wait for it.
1889 if (resp) {
1890 if (callback) {
1891 trace_qemu_rdma_exchange_send_issue_callback();
1892 ret = callback(rdma);
1893 if (ret < 0) {
1894 return ret;
1898 trace_qemu_rdma_exchange_send_waiting(control_desc(resp->type));
1899 ret = qemu_rdma_exchange_get_response(rdma, resp,
1900 resp->type, RDMA_WRID_DATA);
1902 if (ret < 0) {
1903 return ret;
1906 qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp);
1907 if (resp_idx) {
1908 *resp_idx = RDMA_WRID_DATA;
1910 trace_qemu_rdma_exchange_send_received(control_desc(resp->type));
1913 rdma->control_ready_expected = 1;
1915 return 0;
1919 * This is an 'atomic' high-level operation to receive a single, unified
1920 * control-channel message.
1922 static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head,
1923 int expecting)
1925 RDMAControlHeader ready = {
1926 .len = 0,
1927 .type = RDMA_CONTROL_READY,
1928 .repeat = 1,
1930 int ret;
1933 * Inform the source that we're ready to receive a message.
1935 ret = qemu_rdma_post_send_control(rdma, NULL, &ready);
1937 if (ret < 0) {
1938 error_report("Failed to send control buffer!");
1939 return ret;
1943 * Block and wait for the message.
1945 ret = qemu_rdma_exchange_get_response(rdma, head,
1946 expecting, RDMA_WRID_READY);
1948 if (ret < 0) {
1949 return ret;
1952 qemu_rdma_move_header(rdma, RDMA_WRID_READY, head);
1955 * Post a new RECV work request to replace the one we just consumed.
1957 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1958 if (ret) {
1959 error_report("rdma migration: error posting second control recv!");
1960 return ret;
1963 return 0;
1967 * Write an actual chunk of memory using RDMA.
1969 * If we're using dynamic registration on the dest-side, we have to
1970 * send a registration command first.
1972 static int qemu_rdma_write_one(QEMUFile *f, RDMAContext *rdma,
1973 int current_index, uint64_t current_addr,
1974 uint64_t length)
1976 struct ibv_sge sge;
1977 struct ibv_send_wr send_wr = { 0 };
1978 struct ibv_send_wr *bad_wr;
1979 int reg_result_idx, ret, count = 0;
1980 uint64_t chunk, chunks;
1981 uint8_t *chunk_start, *chunk_end;
1982 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]);
1983 RDMARegister reg;
1984 RDMARegisterResult *reg_result;
1985 RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT };
1986 RDMAControlHeader head = { .len = sizeof(RDMARegister),
1987 .type = RDMA_CONTROL_REGISTER_REQUEST,
1988 .repeat = 1,
1991 retry:
1992 sge.addr = (uintptr_t)(block->local_host_addr +
1993 (current_addr - block->offset));
1994 sge.length = length;
1996 chunk = ram_chunk_index(block->local_host_addr,
1997 (uint8_t *)(uintptr_t)sge.addr);
1998 chunk_start = ram_chunk_start(block, chunk);
2000 if (block->is_ram_block) {
2001 chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT);
2003 if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
2004 chunks--;
2006 } else {
2007 chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT);
2009 if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
2010 chunks--;
2014 trace_qemu_rdma_write_one_top(chunks + 1,
2015 (chunks + 1) *
2016 (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024);
2018 chunk_end = ram_chunk_end(block, chunk + chunks);
2020 if (!rdma->pin_all) {
2021 #ifdef RDMA_UNREGISTRATION_EXAMPLE
2022 qemu_rdma_unregister_waiting(rdma);
2023 #endif
2026 while (test_bit(chunk, block->transit_bitmap)) {
2027 (void)count;
2028 trace_qemu_rdma_write_one_block(count++, current_index, chunk,
2029 sge.addr, length, rdma->nb_sent, block->nb_chunks);
2031 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2033 if (ret < 0) {
2034 error_report("Failed to Wait for previous write to complete "
2035 "block %d chunk %" PRIu64
2036 " current %" PRIu64 " len %" PRIu64 " %d",
2037 current_index, chunk, sge.addr, length, rdma->nb_sent);
2038 return ret;
2042 if (!rdma->pin_all || !block->is_ram_block) {
2043 if (!block->remote_keys[chunk]) {
2045 * This chunk has not yet been registered, so first check to see
2046 * if the entire chunk is zero. If so, tell the other size to
2047 * memset() + madvise() the entire chunk without RDMA.
2050 if (buffer_is_zero((void *)(uintptr_t)sge.addr, length)) {
2051 RDMACompress comp = {
2052 .offset = current_addr,
2053 .value = 0,
2054 .block_idx = current_index,
2055 .length = length,
2058 head.len = sizeof(comp);
2059 head.type = RDMA_CONTROL_COMPRESS;
2061 trace_qemu_rdma_write_one_zero(chunk, sge.length,
2062 current_index, current_addr);
2064 compress_to_network(rdma, &comp);
2065 ret = qemu_rdma_exchange_send(rdma, &head,
2066 (uint8_t *) &comp, NULL, NULL, NULL);
2068 if (ret < 0) {
2069 return -EIO;
2072 acct_update_position(f, sge.length, true);
2074 return 1;
2078 * Otherwise, tell other side to register.
2080 reg.current_index = current_index;
2081 if (block->is_ram_block) {
2082 reg.key.current_addr = current_addr;
2083 } else {
2084 reg.key.chunk = chunk;
2086 reg.chunks = chunks;
2088 trace_qemu_rdma_write_one_sendreg(chunk, sge.length, current_index,
2089 current_addr);
2091 register_to_network(rdma, &reg);
2092 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
2093 &resp, &reg_result_idx, NULL);
2094 if (ret < 0) {
2095 return ret;
2098 /* try to overlap this single registration with the one we sent. */
2099 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2100 &sge.lkey, NULL, chunk,
2101 chunk_start, chunk_end)) {
2102 error_report("cannot get lkey");
2103 return -EINVAL;
2106 reg_result = (RDMARegisterResult *)
2107 rdma->wr_data[reg_result_idx].control_curr;
2109 network_to_result(reg_result);
2111 trace_qemu_rdma_write_one_recvregres(block->remote_keys[chunk],
2112 reg_result->rkey, chunk);
2114 block->remote_keys[chunk] = reg_result->rkey;
2115 block->remote_host_addr = reg_result->host_addr;
2116 } else {
2117 /* already registered before */
2118 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2119 &sge.lkey, NULL, chunk,
2120 chunk_start, chunk_end)) {
2121 error_report("cannot get lkey!");
2122 return -EINVAL;
2126 send_wr.wr.rdma.rkey = block->remote_keys[chunk];
2127 } else {
2128 send_wr.wr.rdma.rkey = block->remote_rkey;
2130 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2131 &sge.lkey, NULL, chunk,
2132 chunk_start, chunk_end)) {
2133 error_report("cannot get lkey!");
2134 return -EINVAL;
2139 * Encode the ram block index and chunk within this wrid.
2140 * We will use this information at the time of completion
2141 * to figure out which bitmap to check against and then which
2142 * chunk in the bitmap to look for.
2144 send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE,
2145 current_index, chunk);
2147 send_wr.opcode = IBV_WR_RDMA_WRITE;
2148 send_wr.send_flags = IBV_SEND_SIGNALED;
2149 send_wr.sg_list = &sge;
2150 send_wr.num_sge = 1;
2151 send_wr.wr.rdma.remote_addr = block->remote_host_addr +
2152 (current_addr - block->offset);
2154 trace_qemu_rdma_write_one_post(chunk, sge.addr, send_wr.wr.rdma.remote_addr,
2155 sge.length);
2158 * ibv_post_send() does not return negative error numbers,
2159 * per the specification they are positive - no idea why.
2161 ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
2163 if (ret == ENOMEM) {
2164 trace_qemu_rdma_write_one_queue_full();
2165 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2166 if (ret < 0) {
2167 error_report("rdma migration: failed to make "
2168 "room in full send queue! %d", ret);
2169 return ret;
2172 goto retry;
2174 } else if (ret > 0) {
2175 perror("rdma migration: post rdma write failed");
2176 return -ret;
2179 set_bit(chunk, block->transit_bitmap);
2180 acct_update_position(f, sge.length, false);
2181 rdma->total_writes++;
2183 return 0;
2187 * Push out any unwritten RDMA operations.
2189 * We support sending out multiple chunks at the same time.
2190 * Not all of them need to get signaled in the completion queue.
2192 static int qemu_rdma_write_flush(QEMUFile *f, RDMAContext *rdma)
2194 int ret;
2196 if (!rdma->current_length) {
2197 return 0;
2200 ret = qemu_rdma_write_one(f, rdma,
2201 rdma->current_index, rdma->current_addr, rdma->current_length);
2203 if (ret < 0) {
2204 return ret;
2207 if (ret == 0) {
2208 rdma->nb_sent++;
2209 trace_qemu_rdma_write_flush(rdma->nb_sent);
2212 rdma->current_length = 0;
2213 rdma->current_addr = 0;
2215 return 0;
2218 static inline int qemu_rdma_buffer_mergable(RDMAContext *rdma,
2219 uint64_t offset, uint64_t len)
2221 RDMALocalBlock *block;
2222 uint8_t *host_addr;
2223 uint8_t *chunk_end;
2225 if (rdma->current_index < 0) {
2226 return 0;
2229 if (rdma->current_chunk < 0) {
2230 return 0;
2233 block = &(rdma->local_ram_blocks.block[rdma->current_index]);
2234 host_addr = block->local_host_addr + (offset - block->offset);
2235 chunk_end = ram_chunk_end(block, rdma->current_chunk);
2237 if (rdma->current_length == 0) {
2238 return 0;
2242 * Only merge into chunk sequentially.
2244 if (offset != (rdma->current_addr + rdma->current_length)) {
2245 return 0;
2248 if (offset < block->offset) {
2249 return 0;
2252 if ((offset + len) > (block->offset + block->length)) {
2253 return 0;
2256 if ((host_addr + len) > chunk_end) {
2257 return 0;
2260 return 1;
2264 * We're not actually writing here, but doing three things:
2266 * 1. Identify the chunk the buffer belongs to.
2267 * 2. If the chunk is full or the buffer doesn't belong to the current
2268 * chunk, then start a new chunk and flush() the old chunk.
2269 * 3. To keep the hardware busy, we also group chunks into batches
2270 * and only require that a batch gets acknowledged in the completion
2271 * qeueue instead of each individual chunk.
2273 static int qemu_rdma_write(QEMUFile *f, RDMAContext *rdma,
2274 uint64_t block_offset, uint64_t offset,
2275 uint64_t len)
2277 uint64_t current_addr = block_offset + offset;
2278 uint64_t index = rdma->current_index;
2279 uint64_t chunk = rdma->current_chunk;
2280 int ret;
2282 /* If we cannot merge it, we flush the current buffer first. */
2283 if (!qemu_rdma_buffer_mergable(rdma, current_addr, len)) {
2284 ret = qemu_rdma_write_flush(f, rdma);
2285 if (ret) {
2286 return ret;
2288 rdma->current_length = 0;
2289 rdma->current_addr = current_addr;
2291 ret = qemu_rdma_search_ram_block(rdma, block_offset,
2292 offset, len, &index, &chunk);
2293 if (ret) {
2294 error_report("ram block search failed");
2295 return ret;
2297 rdma->current_index = index;
2298 rdma->current_chunk = chunk;
2301 /* merge it */
2302 rdma->current_length += len;
2304 /* flush it if buffer is too large */
2305 if (rdma->current_length >= RDMA_MERGE_MAX) {
2306 return qemu_rdma_write_flush(f, rdma);
2309 return 0;
2312 static void qemu_rdma_cleanup(RDMAContext *rdma)
2314 int idx;
2316 if (rdma->cm_id && rdma->connected) {
2317 if ((rdma->error_state ||
2318 migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) &&
2319 !rdma->received_error) {
2320 RDMAControlHeader head = { .len = 0,
2321 .type = RDMA_CONTROL_ERROR,
2322 .repeat = 1,
2324 error_report("Early error. Sending error.");
2325 qemu_rdma_post_send_control(rdma, NULL, &head);
2328 rdma_disconnect(rdma->cm_id);
2329 trace_qemu_rdma_cleanup_disconnect();
2330 rdma->connected = false;
2333 if (rdma->channel) {
2334 qemu_set_fd_handler(rdma->channel->fd, NULL, NULL, NULL);
2336 g_free(rdma->dest_blocks);
2337 rdma->dest_blocks = NULL;
2339 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2340 if (rdma->wr_data[idx].control_mr) {
2341 rdma->total_registrations--;
2342 ibv_dereg_mr(rdma->wr_data[idx].control_mr);
2344 rdma->wr_data[idx].control_mr = NULL;
2347 if (rdma->local_ram_blocks.block) {
2348 while (rdma->local_ram_blocks.nb_blocks) {
2349 rdma_delete_block(rdma, &rdma->local_ram_blocks.block[0]);
2353 if (rdma->qp) {
2354 rdma_destroy_qp(rdma->cm_id);
2355 rdma->qp = NULL;
2357 if (rdma->cq) {
2358 ibv_destroy_cq(rdma->cq);
2359 rdma->cq = NULL;
2361 if (rdma->comp_channel) {
2362 ibv_destroy_comp_channel(rdma->comp_channel);
2363 rdma->comp_channel = NULL;
2365 if (rdma->pd) {
2366 ibv_dealloc_pd(rdma->pd);
2367 rdma->pd = NULL;
2369 if (rdma->cm_id) {
2370 rdma_destroy_id(rdma->cm_id);
2371 rdma->cm_id = NULL;
2374 /* the destination side, listen_id and channel is shared */
2375 if (rdma->listen_id) {
2376 if (!rdma->is_return_path) {
2377 rdma_destroy_id(rdma->listen_id);
2379 rdma->listen_id = NULL;
2381 if (rdma->channel) {
2382 if (!rdma->is_return_path) {
2383 rdma_destroy_event_channel(rdma->channel);
2385 rdma->channel = NULL;
2389 if (rdma->channel) {
2390 rdma_destroy_event_channel(rdma->channel);
2391 rdma->channel = NULL;
2393 g_free(rdma->host);
2394 rdma->host = NULL;
2398 static int qemu_rdma_source_init(RDMAContext *rdma, bool pin_all, Error **errp)
2400 int ret, idx;
2401 Error *local_err = NULL, **temp = &local_err;
2404 * Will be validated against destination's actual capabilities
2405 * after the connect() completes.
2407 rdma->pin_all = pin_all;
2409 ret = qemu_rdma_resolve_host(rdma, temp);
2410 if (ret) {
2411 goto err_rdma_source_init;
2414 ret = qemu_rdma_alloc_pd_cq(rdma);
2415 if (ret) {
2416 ERROR(temp, "rdma migration: error allocating pd and cq! Your mlock()"
2417 " limits may be too low. Please check $ ulimit -a # and "
2418 "search for 'ulimit -l' in the output");
2419 goto err_rdma_source_init;
2422 ret = qemu_rdma_alloc_qp(rdma);
2423 if (ret) {
2424 ERROR(temp, "rdma migration: error allocating qp!");
2425 goto err_rdma_source_init;
2428 ret = qemu_rdma_init_ram_blocks(rdma);
2429 if (ret) {
2430 ERROR(temp, "rdma migration: error initializing ram blocks!");
2431 goto err_rdma_source_init;
2434 /* Build the hash that maps from offset to RAMBlock */
2435 rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal);
2436 for (idx = 0; idx < rdma->local_ram_blocks.nb_blocks; idx++) {
2437 g_hash_table_insert(rdma->blockmap,
2438 (void *)(uintptr_t)rdma->local_ram_blocks.block[idx].offset,
2439 &rdma->local_ram_blocks.block[idx]);
2442 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2443 ret = qemu_rdma_reg_control(rdma, idx);
2444 if (ret) {
2445 ERROR(temp, "rdma migration: error registering %d control!",
2446 idx);
2447 goto err_rdma_source_init;
2451 return 0;
2453 err_rdma_source_init:
2454 error_propagate(errp, local_err);
2455 qemu_rdma_cleanup(rdma);
2456 return -1;
2459 static int qemu_rdma_connect(RDMAContext *rdma, Error **errp)
2461 RDMACapabilities cap = {
2462 .version = RDMA_CONTROL_VERSION_CURRENT,
2463 .flags = 0,
2465 struct rdma_conn_param conn_param = { .initiator_depth = 2,
2466 .retry_count = 5,
2467 .private_data = &cap,
2468 .private_data_len = sizeof(cap),
2470 struct rdma_cm_event *cm_event;
2471 int ret;
2474 * Only negotiate the capability with destination if the user
2475 * on the source first requested the capability.
2477 if (rdma->pin_all) {
2478 trace_qemu_rdma_connect_pin_all_requested();
2479 cap.flags |= RDMA_CAPABILITY_PIN_ALL;
2482 caps_to_network(&cap);
2484 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2485 if (ret) {
2486 ERROR(errp, "posting second control recv");
2487 goto err_rdma_source_connect;
2490 ret = rdma_connect(rdma->cm_id, &conn_param);
2491 if (ret) {
2492 perror("rdma_connect");
2493 ERROR(errp, "connecting to destination!");
2494 goto err_rdma_source_connect;
2497 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2498 if (ret) {
2499 perror("rdma_get_cm_event after rdma_connect");
2500 ERROR(errp, "connecting to destination!");
2501 rdma_ack_cm_event(cm_event);
2502 goto err_rdma_source_connect;
2505 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2506 perror("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect");
2507 ERROR(errp, "connecting to destination!");
2508 rdma_ack_cm_event(cm_event);
2509 goto err_rdma_source_connect;
2511 rdma->connected = true;
2513 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2514 network_to_caps(&cap);
2517 * Verify that the *requested* capabilities are supported by the destination
2518 * and disable them otherwise.
2520 if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) {
2521 ERROR(errp, "Server cannot support pinning all memory. "
2522 "Will register memory dynamically.");
2523 rdma->pin_all = false;
2526 trace_qemu_rdma_connect_pin_all_outcome(rdma->pin_all);
2528 rdma_ack_cm_event(cm_event);
2530 rdma->control_ready_expected = 1;
2531 rdma->nb_sent = 0;
2532 return 0;
2534 err_rdma_source_connect:
2535 qemu_rdma_cleanup(rdma);
2536 return -1;
2539 static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp)
2541 int ret, idx;
2542 struct rdma_cm_id *listen_id;
2543 char ip[40] = "unknown";
2544 struct rdma_addrinfo *res, *e;
2545 char port_str[16];
2547 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2548 rdma->wr_data[idx].control_len = 0;
2549 rdma->wr_data[idx].control_curr = NULL;
2552 if (!rdma->host || !rdma->host[0]) {
2553 ERROR(errp, "RDMA host is not set!");
2554 rdma->error_state = -EINVAL;
2555 return -1;
2557 /* create CM channel */
2558 rdma->channel = rdma_create_event_channel();
2559 if (!rdma->channel) {
2560 ERROR(errp, "could not create rdma event channel");
2561 rdma->error_state = -EINVAL;
2562 return -1;
2565 /* create CM id */
2566 ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP);
2567 if (ret) {
2568 ERROR(errp, "could not create cm_id!");
2569 goto err_dest_init_create_listen_id;
2572 snprintf(port_str, 16, "%d", rdma->port);
2573 port_str[15] = '\0';
2575 ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
2576 if (ret < 0) {
2577 ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
2578 goto err_dest_init_bind_addr;
2581 for (e = res; e != NULL; e = e->ai_next) {
2582 inet_ntop(e->ai_family,
2583 &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
2584 trace_qemu_rdma_dest_init_trying(rdma->host, ip);
2585 ret = rdma_bind_addr(listen_id, e->ai_dst_addr);
2586 if (ret) {
2587 continue;
2589 if (e->ai_family == AF_INET6) {
2590 ret = qemu_rdma_broken_ipv6_kernel(listen_id->verbs, errp);
2591 if (ret) {
2592 continue;
2595 break;
2598 if (!e) {
2599 ERROR(errp, "Error: could not rdma_bind_addr!");
2600 goto err_dest_init_bind_addr;
2603 rdma->listen_id = listen_id;
2604 qemu_rdma_dump_gid("dest_init", listen_id);
2605 return 0;
2607 err_dest_init_bind_addr:
2608 rdma_destroy_id(listen_id);
2609 err_dest_init_create_listen_id:
2610 rdma_destroy_event_channel(rdma->channel);
2611 rdma->channel = NULL;
2612 rdma->error_state = ret;
2613 return ret;
2617 static void qemu_rdma_return_path_dest_init(RDMAContext *rdma_return_path,
2618 RDMAContext *rdma)
2620 int idx;
2622 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2623 rdma_return_path->wr_data[idx].control_len = 0;
2624 rdma_return_path->wr_data[idx].control_curr = NULL;
2627 /*the CM channel and CM id is shared*/
2628 rdma_return_path->channel = rdma->channel;
2629 rdma_return_path->listen_id = rdma->listen_id;
2631 rdma->return_path = rdma_return_path;
2632 rdma_return_path->return_path = rdma;
2633 rdma_return_path->is_return_path = true;
2636 static void *qemu_rdma_data_init(const char *host_port, Error **errp)
2638 RDMAContext *rdma = NULL;
2639 InetSocketAddress *addr;
2641 if (host_port) {
2642 rdma = g_new0(RDMAContext, 1);
2643 rdma->current_index = -1;
2644 rdma->current_chunk = -1;
2646 addr = g_new(InetSocketAddress, 1);
2647 if (!inet_parse(addr, host_port, NULL)) {
2648 rdma->port = atoi(addr->port);
2649 rdma->host = g_strdup(addr->host);
2650 } else {
2651 ERROR(errp, "bad RDMA migration address '%s'", host_port);
2652 g_free(rdma);
2653 rdma = NULL;
2656 qapi_free_InetSocketAddress(addr);
2659 return rdma;
2663 * QEMUFile interface to the control channel.
2664 * SEND messages for control only.
2665 * VM's ram is handled with regular RDMA messages.
2667 static ssize_t qio_channel_rdma_writev(QIOChannel *ioc,
2668 const struct iovec *iov,
2669 size_t niov,
2670 int *fds,
2671 size_t nfds,
2672 Error **errp)
2674 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2675 QEMUFile *f = rioc->file;
2676 RDMAContext *rdma;
2677 int ret;
2678 ssize_t done = 0;
2679 size_t i;
2680 size_t len = 0;
2682 RCU_READ_LOCK_GUARD();
2683 rdma = atomic_rcu_read(&rioc->rdmaout);
2685 if (!rdma) {
2686 return -EIO;
2689 CHECK_ERROR_STATE();
2692 * Push out any writes that
2693 * we're queued up for VM's ram.
2695 ret = qemu_rdma_write_flush(f, rdma);
2696 if (ret < 0) {
2697 rdma->error_state = ret;
2698 return ret;
2701 for (i = 0; i < niov; i++) {
2702 size_t remaining = iov[i].iov_len;
2703 uint8_t * data = (void *)iov[i].iov_base;
2704 while (remaining) {
2705 RDMAControlHeader head;
2707 len = MIN(remaining, RDMA_SEND_INCREMENT);
2708 remaining -= len;
2710 head.len = len;
2711 head.type = RDMA_CONTROL_QEMU_FILE;
2713 ret = qemu_rdma_exchange_send(rdma, &head, data, NULL, NULL, NULL);
2715 if (ret < 0) {
2716 rdma->error_state = ret;
2717 return ret;
2720 data += len;
2721 done += len;
2725 return done;
2728 static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf,
2729 size_t size, int idx)
2731 size_t len = 0;
2733 if (rdma->wr_data[idx].control_len) {
2734 trace_qemu_rdma_fill(rdma->wr_data[idx].control_len, size);
2736 len = MIN(size, rdma->wr_data[idx].control_len);
2737 memcpy(buf, rdma->wr_data[idx].control_curr, len);
2738 rdma->wr_data[idx].control_curr += len;
2739 rdma->wr_data[idx].control_len -= len;
2742 return len;
2746 * QEMUFile interface to the control channel.
2747 * RDMA links don't use bytestreams, so we have to
2748 * return bytes to QEMUFile opportunistically.
2750 static ssize_t qio_channel_rdma_readv(QIOChannel *ioc,
2751 const struct iovec *iov,
2752 size_t niov,
2753 int **fds,
2754 size_t *nfds,
2755 Error **errp)
2757 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2758 RDMAContext *rdma;
2759 RDMAControlHeader head;
2760 int ret = 0;
2761 ssize_t i;
2762 size_t done = 0;
2764 RCU_READ_LOCK_GUARD();
2765 rdma = atomic_rcu_read(&rioc->rdmain);
2767 if (!rdma) {
2768 return -EIO;
2771 CHECK_ERROR_STATE();
2773 for (i = 0; i < niov; i++) {
2774 size_t want = iov[i].iov_len;
2775 uint8_t *data = (void *)iov[i].iov_base;
2778 * First, we hold on to the last SEND message we
2779 * were given and dish out the bytes until we run
2780 * out of bytes.
2782 ret = qemu_rdma_fill(rdma, data, want, 0);
2783 done += ret;
2784 want -= ret;
2785 /* Got what we needed, so go to next iovec */
2786 if (want == 0) {
2787 continue;
2790 /* If we got any data so far, then don't wait
2791 * for more, just return what we have */
2792 if (done > 0) {
2793 break;
2797 /* We've got nothing at all, so lets wait for
2798 * more to arrive
2800 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE);
2802 if (ret < 0) {
2803 rdma->error_state = ret;
2804 return ret;
2808 * SEND was received with new bytes, now try again.
2810 ret = qemu_rdma_fill(rdma, data, want, 0);
2811 done += ret;
2812 want -= ret;
2814 /* Still didn't get enough, so lets just return */
2815 if (want) {
2816 if (done == 0) {
2817 return QIO_CHANNEL_ERR_BLOCK;
2818 } else {
2819 break;
2823 return done;
2827 * Block until all the outstanding chunks have been delivered by the hardware.
2829 static int qemu_rdma_drain_cq(QEMUFile *f, RDMAContext *rdma)
2831 int ret;
2833 if (qemu_rdma_write_flush(f, rdma) < 0) {
2834 return -EIO;
2837 while (rdma->nb_sent) {
2838 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2839 if (ret < 0) {
2840 error_report("rdma migration: complete polling error!");
2841 return -EIO;
2845 qemu_rdma_unregister_waiting(rdma);
2847 return 0;
2851 static int qio_channel_rdma_set_blocking(QIOChannel *ioc,
2852 bool blocking,
2853 Error **errp)
2855 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2856 /* XXX we should make readv/writev actually honour this :-) */
2857 rioc->blocking = blocking;
2858 return 0;
2862 typedef struct QIOChannelRDMASource QIOChannelRDMASource;
2863 struct QIOChannelRDMASource {
2864 GSource parent;
2865 QIOChannelRDMA *rioc;
2866 GIOCondition condition;
2869 static gboolean
2870 qio_channel_rdma_source_prepare(GSource *source,
2871 gint *timeout)
2873 QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
2874 RDMAContext *rdma;
2875 GIOCondition cond = 0;
2876 *timeout = -1;
2878 RCU_READ_LOCK_GUARD();
2879 if (rsource->condition == G_IO_IN) {
2880 rdma = atomic_rcu_read(&rsource->rioc->rdmain);
2881 } else {
2882 rdma = atomic_rcu_read(&rsource->rioc->rdmaout);
2885 if (!rdma) {
2886 error_report("RDMAContext is NULL when prepare Gsource");
2887 return FALSE;
2890 if (rdma->wr_data[0].control_len) {
2891 cond |= G_IO_IN;
2893 cond |= G_IO_OUT;
2895 return cond & rsource->condition;
2898 static gboolean
2899 qio_channel_rdma_source_check(GSource *source)
2901 QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
2902 RDMAContext *rdma;
2903 GIOCondition cond = 0;
2905 RCU_READ_LOCK_GUARD();
2906 if (rsource->condition == G_IO_IN) {
2907 rdma = atomic_rcu_read(&rsource->rioc->rdmain);
2908 } else {
2909 rdma = atomic_rcu_read(&rsource->rioc->rdmaout);
2912 if (!rdma) {
2913 error_report("RDMAContext is NULL when check Gsource");
2914 return FALSE;
2917 if (rdma->wr_data[0].control_len) {
2918 cond |= G_IO_IN;
2920 cond |= G_IO_OUT;
2922 return cond & rsource->condition;
2925 static gboolean
2926 qio_channel_rdma_source_dispatch(GSource *source,
2927 GSourceFunc callback,
2928 gpointer user_data)
2930 QIOChannelFunc func = (QIOChannelFunc)callback;
2931 QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
2932 RDMAContext *rdma;
2933 GIOCondition cond = 0;
2935 RCU_READ_LOCK_GUARD();
2936 if (rsource->condition == G_IO_IN) {
2937 rdma = atomic_rcu_read(&rsource->rioc->rdmain);
2938 } else {
2939 rdma = atomic_rcu_read(&rsource->rioc->rdmaout);
2942 if (!rdma) {
2943 error_report("RDMAContext is NULL when dispatch Gsource");
2944 return FALSE;
2947 if (rdma->wr_data[0].control_len) {
2948 cond |= G_IO_IN;
2950 cond |= G_IO_OUT;
2952 return (*func)(QIO_CHANNEL(rsource->rioc),
2953 (cond & rsource->condition),
2954 user_data);
2957 static void
2958 qio_channel_rdma_source_finalize(GSource *source)
2960 QIOChannelRDMASource *ssource = (QIOChannelRDMASource *)source;
2962 object_unref(OBJECT(ssource->rioc));
2965 GSourceFuncs qio_channel_rdma_source_funcs = {
2966 qio_channel_rdma_source_prepare,
2967 qio_channel_rdma_source_check,
2968 qio_channel_rdma_source_dispatch,
2969 qio_channel_rdma_source_finalize
2972 static GSource *qio_channel_rdma_create_watch(QIOChannel *ioc,
2973 GIOCondition condition)
2975 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2976 QIOChannelRDMASource *ssource;
2977 GSource *source;
2979 source = g_source_new(&qio_channel_rdma_source_funcs,
2980 sizeof(QIOChannelRDMASource));
2981 ssource = (QIOChannelRDMASource *)source;
2983 ssource->rioc = rioc;
2984 object_ref(OBJECT(rioc));
2986 ssource->condition = condition;
2988 return source;
2991 static void qio_channel_rdma_set_aio_fd_handler(QIOChannel *ioc,
2992 AioContext *ctx,
2993 IOHandler *io_read,
2994 IOHandler *io_write,
2995 void *opaque)
2997 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2998 if (io_read) {
2999 aio_set_fd_handler(ctx, rioc->rdmain->comp_channel->fd,
3000 false, io_read, io_write, NULL, opaque);
3001 } else {
3002 aio_set_fd_handler(ctx, rioc->rdmaout->comp_channel->fd,
3003 false, io_read, io_write, NULL, opaque);
3007 struct rdma_close_rcu {
3008 struct rcu_head rcu;
3009 RDMAContext *rdmain;
3010 RDMAContext *rdmaout;
3013 /* callback from qio_channel_rdma_close via call_rcu */
3014 static void qio_channel_rdma_close_rcu(struct rdma_close_rcu *rcu)
3016 if (rcu->rdmain) {
3017 qemu_rdma_cleanup(rcu->rdmain);
3020 if (rcu->rdmaout) {
3021 qemu_rdma_cleanup(rcu->rdmaout);
3024 g_free(rcu->rdmain);
3025 g_free(rcu->rdmaout);
3026 g_free(rcu);
3029 static int qio_channel_rdma_close(QIOChannel *ioc,
3030 Error **errp)
3032 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3033 RDMAContext *rdmain, *rdmaout;
3034 struct rdma_close_rcu *rcu = g_new(struct rdma_close_rcu, 1);
3036 trace_qemu_rdma_close();
3038 rdmain = rioc->rdmain;
3039 if (rdmain) {
3040 atomic_rcu_set(&rioc->rdmain, NULL);
3043 rdmaout = rioc->rdmaout;
3044 if (rdmaout) {
3045 atomic_rcu_set(&rioc->rdmaout, NULL);
3048 rcu->rdmain = rdmain;
3049 rcu->rdmaout = rdmaout;
3050 call_rcu(rcu, qio_channel_rdma_close_rcu, rcu);
3052 return 0;
3055 static int
3056 qio_channel_rdma_shutdown(QIOChannel *ioc,
3057 QIOChannelShutdown how,
3058 Error **errp)
3060 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3061 RDMAContext *rdmain, *rdmaout;
3063 RCU_READ_LOCK_GUARD();
3065 rdmain = atomic_rcu_read(&rioc->rdmain);
3066 rdmaout = atomic_rcu_read(&rioc->rdmain);
3068 switch (how) {
3069 case QIO_CHANNEL_SHUTDOWN_READ:
3070 if (rdmain) {
3071 rdmain->error_state = -1;
3073 break;
3074 case QIO_CHANNEL_SHUTDOWN_WRITE:
3075 if (rdmaout) {
3076 rdmaout->error_state = -1;
3078 break;
3079 case QIO_CHANNEL_SHUTDOWN_BOTH:
3080 default:
3081 if (rdmain) {
3082 rdmain->error_state = -1;
3084 if (rdmaout) {
3085 rdmaout->error_state = -1;
3087 break;
3090 return 0;
3094 * Parameters:
3095 * @offset == 0 :
3096 * This means that 'block_offset' is a full virtual address that does not
3097 * belong to a RAMBlock of the virtual machine and instead
3098 * represents a private malloc'd memory area that the caller wishes to
3099 * transfer.
3101 * @offset != 0 :
3102 * Offset is an offset to be added to block_offset and used
3103 * to also lookup the corresponding RAMBlock.
3105 * @size > 0 :
3106 * Initiate an transfer this size.
3108 * @size == 0 :
3109 * A 'hint' or 'advice' that means that we wish to speculatively
3110 * and asynchronously unregister this memory. In this case, there is no
3111 * guarantee that the unregister will actually happen, for example,
3112 * if the memory is being actively transmitted. Additionally, the memory
3113 * may be re-registered at any future time if a write within the same
3114 * chunk was requested again, even if you attempted to unregister it
3115 * here.
3117 * @size < 0 : TODO, not yet supported
3118 * Unregister the memory NOW. This means that the caller does not
3119 * expect there to be any future RDMA transfers and we just want to clean
3120 * things up. This is used in case the upper layer owns the memory and
3121 * cannot wait for qemu_fclose() to occur.
3123 * @bytes_sent : User-specificed pointer to indicate how many bytes were
3124 * sent. Usually, this will not be more than a few bytes of
3125 * the protocol because most transfers are sent asynchronously.
3127 static size_t qemu_rdma_save_page(QEMUFile *f, void *opaque,
3128 ram_addr_t block_offset, ram_addr_t offset,
3129 size_t size, uint64_t *bytes_sent)
3131 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3132 RDMAContext *rdma;
3133 int ret;
3135 RCU_READ_LOCK_GUARD();
3136 rdma = atomic_rcu_read(&rioc->rdmaout);
3138 if (!rdma) {
3139 return -EIO;
3142 CHECK_ERROR_STATE();
3144 if (migration_in_postcopy()) {
3145 return RAM_SAVE_CONTROL_NOT_SUPP;
3148 qemu_fflush(f);
3150 if (size > 0) {
3152 * Add this page to the current 'chunk'. If the chunk
3153 * is full, or the page doen't belong to the current chunk,
3154 * an actual RDMA write will occur and a new chunk will be formed.
3156 ret = qemu_rdma_write(f, rdma, block_offset, offset, size);
3157 if (ret < 0) {
3158 error_report("rdma migration: write error! %d", ret);
3159 goto err;
3163 * We always return 1 bytes because the RDMA
3164 * protocol is completely asynchronous. We do not yet know
3165 * whether an identified chunk is zero or not because we're
3166 * waiting for other pages to potentially be merged with
3167 * the current chunk. So, we have to call qemu_update_position()
3168 * later on when the actual write occurs.
3170 if (bytes_sent) {
3171 *bytes_sent = 1;
3173 } else {
3174 uint64_t index, chunk;
3176 /* TODO: Change QEMUFileOps prototype to be signed: size_t => long
3177 if (size < 0) {
3178 ret = qemu_rdma_drain_cq(f, rdma);
3179 if (ret < 0) {
3180 fprintf(stderr, "rdma: failed to synchronously drain"
3181 " completion queue before unregistration.\n");
3182 goto err;
3187 ret = qemu_rdma_search_ram_block(rdma, block_offset,
3188 offset, size, &index, &chunk);
3190 if (ret) {
3191 error_report("ram block search failed");
3192 goto err;
3195 qemu_rdma_signal_unregister(rdma, index, chunk, 0);
3198 * TODO: Synchronous, guaranteed unregistration (should not occur during
3199 * fast-path). Otherwise, unregisters will process on the next call to
3200 * qemu_rdma_drain_cq()
3201 if (size < 0) {
3202 qemu_rdma_unregister_waiting(rdma);
3208 * Drain the Completion Queue if possible, but do not block,
3209 * just poll.
3211 * If nothing to poll, the end of the iteration will do this
3212 * again to make sure we don't overflow the request queue.
3214 while (1) {
3215 uint64_t wr_id, wr_id_in;
3216 int ret = qemu_rdma_poll(rdma, &wr_id_in, NULL);
3217 if (ret < 0) {
3218 error_report("rdma migration: polling error! %d", ret);
3219 goto err;
3222 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
3224 if (wr_id == RDMA_WRID_NONE) {
3225 break;
3229 return RAM_SAVE_CONTROL_DELAYED;
3230 err:
3231 rdma->error_state = ret;
3232 return ret;
3235 static void rdma_accept_incoming_migration(void *opaque);
3237 static void rdma_cm_poll_handler(void *opaque)
3239 RDMAContext *rdma = opaque;
3240 int ret;
3241 struct rdma_cm_event *cm_event;
3242 MigrationIncomingState *mis = migration_incoming_get_current();
3244 ret = rdma_get_cm_event(rdma->channel, &cm_event);
3245 if (ret) {
3246 error_report("get_cm_event failed %d", errno);
3247 return;
3249 rdma_ack_cm_event(cm_event);
3251 if (cm_event->event == RDMA_CM_EVENT_DISCONNECTED ||
3252 cm_event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) {
3253 if (!rdma->error_state &&
3254 migration_incoming_get_current()->state !=
3255 MIGRATION_STATUS_COMPLETED) {
3256 error_report("receive cm event, cm event is %d", cm_event->event);
3257 rdma->error_state = -EPIPE;
3258 if (rdma->return_path) {
3259 rdma->return_path->error_state = -EPIPE;
3263 if (mis->migration_incoming_co) {
3264 qemu_coroutine_enter(mis->migration_incoming_co);
3266 return;
3270 static int qemu_rdma_accept(RDMAContext *rdma)
3272 RDMACapabilities cap;
3273 struct rdma_conn_param conn_param = {
3274 .responder_resources = 2,
3275 .private_data = &cap,
3276 .private_data_len = sizeof(cap),
3278 struct rdma_cm_event *cm_event;
3279 struct ibv_context *verbs;
3280 int ret = -EINVAL;
3281 int idx;
3283 ret = rdma_get_cm_event(rdma->channel, &cm_event);
3284 if (ret) {
3285 goto err_rdma_dest_wait;
3288 if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
3289 rdma_ack_cm_event(cm_event);
3290 goto err_rdma_dest_wait;
3293 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
3295 network_to_caps(&cap);
3297 if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) {
3298 error_report("Unknown source RDMA version: %d, bailing...",
3299 cap.version);
3300 rdma_ack_cm_event(cm_event);
3301 goto err_rdma_dest_wait;
3305 * Respond with only the capabilities this version of QEMU knows about.
3307 cap.flags &= known_capabilities;
3310 * Enable the ones that we do know about.
3311 * Add other checks here as new ones are introduced.
3313 if (cap.flags & RDMA_CAPABILITY_PIN_ALL) {
3314 rdma->pin_all = true;
3317 rdma->cm_id = cm_event->id;
3318 verbs = cm_event->id->verbs;
3320 rdma_ack_cm_event(cm_event);
3322 trace_qemu_rdma_accept_pin_state(rdma->pin_all);
3324 caps_to_network(&cap);
3326 trace_qemu_rdma_accept_pin_verbsc(verbs);
3328 if (!rdma->verbs) {
3329 rdma->verbs = verbs;
3330 } else if (rdma->verbs != verbs) {
3331 error_report("ibv context not matching %p, %p!", rdma->verbs,
3332 verbs);
3333 goto err_rdma_dest_wait;
3336 qemu_rdma_dump_id("dest_init", verbs);
3338 ret = qemu_rdma_alloc_pd_cq(rdma);
3339 if (ret) {
3340 error_report("rdma migration: error allocating pd and cq!");
3341 goto err_rdma_dest_wait;
3344 ret = qemu_rdma_alloc_qp(rdma);
3345 if (ret) {
3346 error_report("rdma migration: error allocating qp!");
3347 goto err_rdma_dest_wait;
3350 ret = qemu_rdma_init_ram_blocks(rdma);
3351 if (ret) {
3352 error_report("rdma migration: error initializing ram blocks!");
3353 goto err_rdma_dest_wait;
3356 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
3357 ret = qemu_rdma_reg_control(rdma, idx);
3358 if (ret) {
3359 error_report("rdma: error registering %d control", idx);
3360 goto err_rdma_dest_wait;
3364 /* Accept the second connection request for return path */
3365 if (migrate_postcopy() && !rdma->is_return_path) {
3366 qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
3367 NULL,
3368 (void *)(intptr_t)rdma->return_path);
3369 } else {
3370 qemu_set_fd_handler(rdma->channel->fd, rdma_cm_poll_handler,
3371 NULL, rdma);
3374 ret = rdma_accept(rdma->cm_id, &conn_param);
3375 if (ret) {
3376 error_report("rdma_accept returns %d", ret);
3377 goto err_rdma_dest_wait;
3380 ret = rdma_get_cm_event(rdma->channel, &cm_event);
3381 if (ret) {
3382 error_report("rdma_accept get_cm_event failed %d", ret);
3383 goto err_rdma_dest_wait;
3386 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
3387 error_report("rdma_accept not event established");
3388 rdma_ack_cm_event(cm_event);
3389 goto err_rdma_dest_wait;
3392 rdma_ack_cm_event(cm_event);
3393 rdma->connected = true;
3395 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
3396 if (ret) {
3397 error_report("rdma migration: error posting second control recv");
3398 goto err_rdma_dest_wait;
3401 qemu_rdma_dump_gid("dest_connect", rdma->cm_id);
3403 return 0;
3405 err_rdma_dest_wait:
3406 rdma->error_state = ret;
3407 qemu_rdma_cleanup(rdma);
3408 return ret;
3411 static int dest_ram_sort_func(const void *a, const void *b)
3413 unsigned int a_index = ((const RDMALocalBlock *)a)->src_index;
3414 unsigned int b_index = ((const RDMALocalBlock *)b)->src_index;
3416 return (a_index < b_index) ? -1 : (a_index != b_index);
3420 * During each iteration of the migration, we listen for instructions
3421 * by the source VM to perform dynamic page registrations before they
3422 * can perform RDMA operations.
3424 * We respond with the 'rkey'.
3426 * Keep doing this until the source tells us to stop.
3428 static int qemu_rdma_registration_handle(QEMUFile *f, void *opaque)
3430 RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult),
3431 .type = RDMA_CONTROL_REGISTER_RESULT,
3432 .repeat = 0,
3434 RDMAControlHeader unreg_resp = { .len = 0,
3435 .type = RDMA_CONTROL_UNREGISTER_FINISHED,
3436 .repeat = 0,
3438 RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT,
3439 .repeat = 1 };
3440 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3441 RDMAContext *rdma;
3442 RDMALocalBlocks *local;
3443 RDMAControlHeader head;
3444 RDMARegister *reg, *registers;
3445 RDMACompress *comp;
3446 RDMARegisterResult *reg_result;
3447 static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE];
3448 RDMALocalBlock *block;
3449 void *host_addr;
3450 int ret = 0;
3451 int idx = 0;
3452 int count = 0;
3453 int i = 0;
3455 RCU_READ_LOCK_GUARD();
3456 rdma = atomic_rcu_read(&rioc->rdmain);
3458 if (!rdma) {
3459 return -EIO;
3462 CHECK_ERROR_STATE();
3464 local = &rdma->local_ram_blocks;
3465 do {
3466 trace_qemu_rdma_registration_handle_wait();
3468 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE);
3470 if (ret < 0) {
3471 break;
3474 if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) {
3475 error_report("rdma: Too many requests in this message (%d)."
3476 "Bailing.", head.repeat);
3477 ret = -EIO;
3478 break;
3481 switch (head.type) {
3482 case RDMA_CONTROL_COMPRESS:
3483 comp = (RDMACompress *) rdma->wr_data[idx].control_curr;
3484 network_to_compress(comp);
3486 trace_qemu_rdma_registration_handle_compress(comp->length,
3487 comp->block_idx,
3488 comp->offset);
3489 if (comp->block_idx >= rdma->local_ram_blocks.nb_blocks) {
3490 error_report("rdma: 'compress' bad block index %u (vs %d)",
3491 (unsigned int)comp->block_idx,
3492 rdma->local_ram_blocks.nb_blocks);
3493 ret = -EIO;
3494 goto out;
3496 block = &(rdma->local_ram_blocks.block[comp->block_idx]);
3498 host_addr = block->local_host_addr +
3499 (comp->offset - block->offset);
3501 ram_handle_compressed(host_addr, comp->value, comp->length);
3502 break;
3504 case RDMA_CONTROL_REGISTER_FINISHED:
3505 trace_qemu_rdma_registration_handle_finished();
3506 goto out;
3508 case RDMA_CONTROL_RAM_BLOCKS_REQUEST:
3509 trace_qemu_rdma_registration_handle_ram_blocks();
3511 /* Sort our local RAM Block list so it's the same as the source,
3512 * we can do this since we've filled in a src_index in the list
3513 * as we received the RAMBlock list earlier.
3515 qsort(rdma->local_ram_blocks.block,
3516 rdma->local_ram_blocks.nb_blocks,
3517 sizeof(RDMALocalBlock), dest_ram_sort_func);
3518 for (i = 0; i < local->nb_blocks; i++) {
3519 local->block[i].index = i;
3522 if (rdma->pin_all) {
3523 ret = qemu_rdma_reg_whole_ram_blocks(rdma);
3524 if (ret) {
3525 error_report("rdma migration: error dest "
3526 "registering ram blocks");
3527 goto out;
3532 * Dest uses this to prepare to transmit the RAMBlock descriptions
3533 * to the source VM after connection setup.
3534 * Both sides use the "remote" structure to communicate and update
3535 * their "local" descriptions with what was sent.
3537 for (i = 0; i < local->nb_blocks; i++) {
3538 rdma->dest_blocks[i].remote_host_addr =
3539 (uintptr_t)(local->block[i].local_host_addr);
3541 if (rdma->pin_all) {
3542 rdma->dest_blocks[i].remote_rkey = local->block[i].mr->rkey;
3545 rdma->dest_blocks[i].offset = local->block[i].offset;
3546 rdma->dest_blocks[i].length = local->block[i].length;
3548 dest_block_to_network(&rdma->dest_blocks[i]);
3549 trace_qemu_rdma_registration_handle_ram_blocks_loop(
3550 local->block[i].block_name,
3551 local->block[i].offset,
3552 local->block[i].length,
3553 local->block[i].local_host_addr,
3554 local->block[i].src_index);
3557 blocks.len = rdma->local_ram_blocks.nb_blocks
3558 * sizeof(RDMADestBlock);
3561 ret = qemu_rdma_post_send_control(rdma,
3562 (uint8_t *) rdma->dest_blocks, &blocks);
3564 if (ret < 0) {
3565 error_report("rdma migration: error sending remote info");
3566 goto out;
3569 break;
3570 case RDMA_CONTROL_REGISTER_REQUEST:
3571 trace_qemu_rdma_registration_handle_register(head.repeat);
3573 reg_resp.repeat = head.repeat;
3574 registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3576 for (count = 0; count < head.repeat; count++) {
3577 uint64_t chunk;
3578 uint8_t *chunk_start, *chunk_end;
3580 reg = &registers[count];
3581 network_to_register(reg);
3583 reg_result = &results[count];
3585 trace_qemu_rdma_registration_handle_register_loop(count,
3586 reg->current_index, reg->key.current_addr, reg->chunks);
3588 if (reg->current_index >= rdma->local_ram_blocks.nb_blocks) {
3589 error_report("rdma: 'register' bad block index %u (vs %d)",
3590 (unsigned int)reg->current_index,
3591 rdma->local_ram_blocks.nb_blocks);
3592 ret = -ENOENT;
3593 goto out;
3595 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3596 if (block->is_ram_block) {
3597 if (block->offset > reg->key.current_addr) {
3598 error_report("rdma: bad register address for block %s"
3599 " offset: %" PRIx64 " current_addr: %" PRIx64,
3600 block->block_name, block->offset,
3601 reg->key.current_addr);
3602 ret = -ERANGE;
3603 goto out;
3605 host_addr = (block->local_host_addr +
3606 (reg->key.current_addr - block->offset));
3607 chunk = ram_chunk_index(block->local_host_addr,
3608 (uint8_t *) host_addr);
3609 } else {
3610 chunk = reg->key.chunk;
3611 host_addr = block->local_host_addr +
3612 (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT));
3613 /* Check for particularly bad chunk value */
3614 if (host_addr < (void *)block->local_host_addr) {
3615 error_report("rdma: bad chunk for block %s"
3616 " chunk: %" PRIx64,
3617 block->block_name, reg->key.chunk);
3618 ret = -ERANGE;
3619 goto out;
3622 chunk_start = ram_chunk_start(block, chunk);
3623 chunk_end = ram_chunk_end(block, chunk + reg->chunks);
3624 /* avoid "-Waddress-of-packed-member" warning */
3625 uint32_t tmp_rkey = 0;
3626 if (qemu_rdma_register_and_get_keys(rdma, block,
3627 (uintptr_t)host_addr, NULL, &tmp_rkey,
3628 chunk, chunk_start, chunk_end)) {
3629 error_report("cannot get rkey");
3630 ret = -EINVAL;
3631 goto out;
3633 reg_result->rkey = tmp_rkey;
3635 reg_result->host_addr = (uintptr_t)block->local_host_addr;
3637 trace_qemu_rdma_registration_handle_register_rkey(
3638 reg_result->rkey);
3640 result_to_network(reg_result);
3643 ret = qemu_rdma_post_send_control(rdma,
3644 (uint8_t *) results, &reg_resp);
3646 if (ret < 0) {
3647 error_report("Failed to send control buffer");
3648 goto out;
3650 break;
3651 case RDMA_CONTROL_UNREGISTER_REQUEST:
3652 trace_qemu_rdma_registration_handle_unregister(head.repeat);
3653 unreg_resp.repeat = head.repeat;
3654 registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3656 for (count = 0; count < head.repeat; count++) {
3657 reg = &registers[count];
3658 network_to_register(reg);
3660 trace_qemu_rdma_registration_handle_unregister_loop(count,
3661 reg->current_index, reg->key.chunk);
3663 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3665 ret = ibv_dereg_mr(block->pmr[reg->key.chunk]);
3666 block->pmr[reg->key.chunk] = NULL;
3668 if (ret != 0) {
3669 perror("rdma unregistration chunk failed");
3670 ret = -ret;
3671 goto out;
3674 rdma->total_registrations--;
3676 trace_qemu_rdma_registration_handle_unregister_success(
3677 reg->key.chunk);
3680 ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp);
3682 if (ret < 0) {
3683 error_report("Failed to send control buffer");
3684 goto out;
3686 break;
3687 case RDMA_CONTROL_REGISTER_RESULT:
3688 error_report("Invalid RESULT message at dest.");
3689 ret = -EIO;
3690 goto out;
3691 default:
3692 error_report("Unknown control message %s", control_desc(head.type));
3693 ret = -EIO;
3694 goto out;
3696 } while (1);
3697 out:
3698 if (ret < 0) {
3699 rdma->error_state = ret;
3701 return ret;
3704 /* Destination:
3705 * Called via a ram_control_load_hook during the initial RAM load section which
3706 * lists the RAMBlocks by name. This lets us know the order of the RAMBlocks
3707 * on the source.
3708 * We've already built our local RAMBlock list, but not yet sent the list to
3709 * the source.
3711 static int
3712 rdma_block_notification_handle(QIOChannelRDMA *rioc, const char *name)
3714 RDMAContext *rdma;
3715 int curr;
3716 int found = -1;
3718 RCU_READ_LOCK_GUARD();
3719 rdma = atomic_rcu_read(&rioc->rdmain);
3721 if (!rdma) {
3722 return -EIO;
3725 /* Find the matching RAMBlock in our local list */
3726 for (curr = 0; curr < rdma->local_ram_blocks.nb_blocks; curr++) {
3727 if (!strcmp(rdma->local_ram_blocks.block[curr].block_name, name)) {
3728 found = curr;
3729 break;
3733 if (found == -1) {
3734 error_report("RAMBlock '%s' not found on destination", name);
3735 return -ENOENT;
3738 rdma->local_ram_blocks.block[curr].src_index = rdma->next_src_index;
3739 trace_rdma_block_notification_handle(name, rdma->next_src_index);
3740 rdma->next_src_index++;
3742 return 0;
3745 static int rdma_load_hook(QEMUFile *f, void *opaque, uint64_t flags, void *data)
3747 switch (flags) {
3748 case RAM_CONTROL_BLOCK_REG:
3749 return rdma_block_notification_handle(opaque, data);
3751 case RAM_CONTROL_HOOK:
3752 return qemu_rdma_registration_handle(f, opaque);
3754 default:
3755 /* Shouldn't be called with any other values */
3756 abort();
3760 static int qemu_rdma_registration_start(QEMUFile *f, void *opaque,
3761 uint64_t flags, void *data)
3763 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3764 RDMAContext *rdma;
3766 RCU_READ_LOCK_GUARD();
3767 rdma = atomic_rcu_read(&rioc->rdmaout);
3768 if (!rdma) {
3769 return -EIO;
3772 CHECK_ERROR_STATE();
3774 if (migration_in_postcopy()) {
3775 return 0;
3778 trace_qemu_rdma_registration_start(flags);
3779 qemu_put_be64(f, RAM_SAVE_FLAG_HOOK);
3780 qemu_fflush(f);
3782 return 0;
3786 * Inform dest that dynamic registrations are done for now.
3787 * First, flush writes, if any.
3789 static int qemu_rdma_registration_stop(QEMUFile *f, void *opaque,
3790 uint64_t flags, void *data)
3792 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3793 RDMAContext *rdma;
3794 RDMAControlHeader head = { .len = 0, .repeat = 1 };
3795 int ret = 0;
3797 RCU_READ_LOCK_GUARD();
3798 rdma = atomic_rcu_read(&rioc->rdmaout);
3799 if (!rdma) {
3800 return -EIO;
3803 CHECK_ERROR_STATE();
3805 if (migration_in_postcopy()) {
3806 return 0;
3809 qemu_fflush(f);
3810 ret = qemu_rdma_drain_cq(f, rdma);
3812 if (ret < 0) {
3813 goto err;
3816 if (flags == RAM_CONTROL_SETUP) {
3817 RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT };
3818 RDMALocalBlocks *local = &rdma->local_ram_blocks;
3819 int reg_result_idx, i, nb_dest_blocks;
3821 head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST;
3822 trace_qemu_rdma_registration_stop_ram();
3825 * Make sure that we parallelize the pinning on both sides.
3826 * For very large guests, doing this serially takes a really
3827 * long time, so we have to 'interleave' the pinning locally
3828 * with the control messages by performing the pinning on this
3829 * side before we receive the control response from the other
3830 * side that the pinning has completed.
3832 ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp,
3833 &reg_result_idx, rdma->pin_all ?
3834 qemu_rdma_reg_whole_ram_blocks : NULL);
3835 if (ret < 0) {
3836 fprintf(stderr, "receiving remote info!");
3837 return ret;
3840 nb_dest_blocks = resp.len / sizeof(RDMADestBlock);
3843 * The protocol uses two different sets of rkeys (mutually exclusive):
3844 * 1. One key to represent the virtual address of the entire ram block.
3845 * (dynamic chunk registration disabled - pin everything with one rkey.)
3846 * 2. One to represent individual chunks within a ram block.
3847 * (dynamic chunk registration enabled - pin individual chunks.)
3849 * Once the capability is successfully negotiated, the destination transmits
3850 * the keys to use (or sends them later) including the virtual addresses
3851 * and then propagates the remote ram block descriptions to his local copy.
3854 if (local->nb_blocks != nb_dest_blocks) {
3855 fprintf(stderr, "ram blocks mismatch (Number of blocks %d vs %d) "
3856 "Your QEMU command line parameters are probably "
3857 "not identical on both the source and destination.",
3858 local->nb_blocks, nb_dest_blocks);
3859 rdma->error_state = -EINVAL;
3860 return -EINVAL;
3863 qemu_rdma_move_header(rdma, reg_result_idx, &resp);
3864 memcpy(rdma->dest_blocks,
3865 rdma->wr_data[reg_result_idx].control_curr, resp.len);
3866 for (i = 0; i < nb_dest_blocks; i++) {
3867 network_to_dest_block(&rdma->dest_blocks[i]);
3869 /* We require that the blocks are in the same order */
3870 if (rdma->dest_blocks[i].length != local->block[i].length) {
3871 fprintf(stderr, "Block %s/%d has a different length %" PRIu64
3872 "vs %" PRIu64, local->block[i].block_name, i,
3873 local->block[i].length,
3874 rdma->dest_blocks[i].length);
3875 rdma->error_state = -EINVAL;
3876 return -EINVAL;
3878 local->block[i].remote_host_addr =
3879 rdma->dest_blocks[i].remote_host_addr;
3880 local->block[i].remote_rkey = rdma->dest_blocks[i].remote_rkey;
3884 trace_qemu_rdma_registration_stop(flags);
3886 head.type = RDMA_CONTROL_REGISTER_FINISHED;
3887 ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL);
3889 if (ret < 0) {
3890 goto err;
3893 return 0;
3894 err:
3895 rdma->error_state = ret;
3896 return ret;
3899 static const QEMUFileHooks rdma_read_hooks = {
3900 .hook_ram_load = rdma_load_hook,
3903 static const QEMUFileHooks rdma_write_hooks = {
3904 .before_ram_iterate = qemu_rdma_registration_start,
3905 .after_ram_iterate = qemu_rdma_registration_stop,
3906 .save_page = qemu_rdma_save_page,
3910 static void qio_channel_rdma_finalize(Object *obj)
3912 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(obj);
3913 if (rioc->rdmain) {
3914 qemu_rdma_cleanup(rioc->rdmain);
3915 g_free(rioc->rdmain);
3916 rioc->rdmain = NULL;
3918 if (rioc->rdmaout) {
3919 qemu_rdma_cleanup(rioc->rdmaout);
3920 g_free(rioc->rdmaout);
3921 rioc->rdmaout = NULL;
3925 static void qio_channel_rdma_class_init(ObjectClass *klass,
3926 void *class_data G_GNUC_UNUSED)
3928 QIOChannelClass *ioc_klass = QIO_CHANNEL_CLASS(klass);
3930 ioc_klass->io_writev = qio_channel_rdma_writev;
3931 ioc_klass->io_readv = qio_channel_rdma_readv;
3932 ioc_klass->io_set_blocking = qio_channel_rdma_set_blocking;
3933 ioc_klass->io_close = qio_channel_rdma_close;
3934 ioc_klass->io_create_watch = qio_channel_rdma_create_watch;
3935 ioc_klass->io_set_aio_fd_handler = qio_channel_rdma_set_aio_fd_handler;
3936 ioc_klass->io_shutdown = qio_channel_rdma_shutdown;
3939 static const TypeInfo qio_channel_rdma_info = {
3940 .parent = TYPE_QIO_CHANNEL,
3941 .name = TYPE_QIO_CHANNEL_RDMA,
3942 .instance_size = sizeof(QIOChannelRDMA),
3943 .instance_finalize = qio_channel_rdma_finalize,
3944 .class_init = qio_channel_rdma_class_init,
3947 static void qio_channel_rdma_register_types(void)
3949 type_register_static(&qio_channel_rdma_info);
3952 type_init(qio_channel_rdma_register_types);
3954 static QEMUFile *qemu_fopen_rdma(RDMAContext *rdma, const char *mode)
3956 QIOChannelRDMA *rioc;
3958 if (qemu_file_mode_is_not_valid(mode)) {
3959 return NULL;
3962 rioc = QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA));
3964 if (mode[0] == 'w') {
3965 rioc->file = qemu_fopen_channel_output(QIO_CHANNEL(rioc));
3966 rioc->rdmaout = rdma;
3967 rioc->rdmain = rdma->return_path;
3968 qemu_file_set_hooks(rioc->file, &rdma_write_hooks);
3969 } else {
3970 rioc->file = qemu_fopen_channel_input(QIO_CHANNEL(rioc));
3971 rioc->rdmain = rdma;
3972 rioc->rdmaout = rdma->return_path;
3973 qemu_file_set_hooks(rioc->file, &rdma_read_hooks);
3976 return rioc->file;
3979 static void rdma_accept_incoming_migration(void *opaque)
3981 RDMAContext *rdma = opaque;
3982 int ret;
3983 QEMUFile *f;
3984 Error *local_err = NULL;
3986 trace_qemu_rdma_accept_incoming_migration();
3987 ret = qemu_rdma_accept(rdma);
3989 if (ret) {
3990 fprintf(stderr, "RDMA ERROR: Migration initialization failed\n");
3991 return;
3994 trace_qemu_rdma_accept_incoming_migration_accepted();
3996 if (rdma->is_return_path) {
3997 return;
4000 f = qemu_fopen_rdma(rdma, "rb");
4001 if (f == NULL) {
4002 fprintf(stderr, "RDMA ERROR: could not qemu_fopen_rdma\n");
4003 qemu_rdma_cleanup(rdma);
4004 return;
4007 rdma->migration_started_on_destination = 1;
4008 migration_fd_process_incoming(f, &local_err);
4009 if (local_err) {
4010 error_reportf_err(local_err, "RDMA ERROR:");
4014 void rdma_start_incoming_migration(const char *host_port, Error **errp)
4016 int ret;
4017 RDMAContext *rdma, *rdma_return_path = NULL;
4018 Error *local_err = NULL;
4020 trace_rdma_start_incoming_migration();
4022 /* Avoid ram_block_discard_disable(), cannot change during migration. */
4023 if (ram_block_discard_is_required()) {
4024 error_setg(errp, "RDMA: cannot disable RAM discard");
4025 return;
4028 rdma = qemu_rdma_data_init(host_port, &local_err);
4029 if (rdma == NULL) {
4030 goto err;
4033 ret = qemu_rdma_dest_init(rdma, &local_err);
4035 if (ret) {
4036 goto err;
4039 trace_rdma_start_incoming_migration_after_dest_init();
4041 ret = rdma_listen(rdma->listen_id, 5);
4043 if (ret) {
4044 ERROR(errp, "listening on socket!");
4045 goto err;
4048 trace_rdma_start_incoming_migration_after_rdma_listen();
4050 /* initialize the RDMAContext for return path */
4051 if (migrate_postcopy()) {
4052 rdma_return_path = qemu_rdma_data_init(host_port, &local_err);
4054 if (rdma_return_path == NULL) {
4055 goto err;
4058 qemu_rdma_return_path_dest_init(rdma_return_path, rdma);
4061 qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
4062 NULL, (void *)(intptr_t)rdma);
4063 return;
4064 err:
4065 error_propagate(errp, local_err);
4066 if (rdma) {
4067 g_free(rdma->host);
4069 g_free(rdma);
4070 g_free(rdma_return_path);
4073 void rdma_start_outgoing_migration(void *opaque,
4074 const char *host_port, Error **errp)
4076 MigrationState *s = opaque;
4077 RDMAContext *rdma_return_path = NULL;
4078 RDMAContext *rdma;
4079 int ret = 0;
4081 /* Avoid ram_block_discard_disable(), cannot change during migration. */
4082 if (ram_block_discard_is_required()) {
4083 error_setg(errp, "RDMA: cannot disable RAM discard");
4084 return;
4087 rdma = qemu_rdma_data_init(host_port, errp);
4088 if (rdma == NULL) {
4089 goto err;
4092 ret = qemu_rdma_source_init(rdma,
4093 s->enabled_capabilities[MIGRATION_CAPABILITY_RDMA_PIN_ALL], errp);
4095 if (ret) {
4096 goto err;
4099 trace_rdma_start_outgoing_migration_after_rdma_source_init();
4100 ret = qemu_rdma_connect(rdma, errp);
4102 if (ret) {
4103 goto err;
4106 /* RDMA postcopy need a seprate queue pair for return path */
4107 if (migrate_postcopy()) {
4108 rdma_return_path = qemu_rdma_data_init(host_port, errp);
4110 if (rdma_return_path == NULL) {
4111 goto return_path_err;
4114 ret = qemu_rdma_source_init(rdma_return_path,
4115 s->enabled_capabilities[MIGRATION_CAPABILITY_RDMA_PIN_ALL], errp);
4117 if (ret) {
4118 goto return_path_err;
4121 ret = qemu_rdma_connect(rdma_return_path, errp);
4123 if (ret) {
4124 goto return_path_err;
4127 rdma->return_path = rdma_return_path;
4128 rdma_return_path->return_path = rdma;
4129 rdma_return_path->is_return_path = true;
4132 trace_rdma_start_outgoing_migration_after_rdma_connect();
4134 s->to_dst_file = qemu_fopen_rdma(rdma, "wb");
4135 migrate_fd_connect(s, NULL);
4136 return;
4137 return_path_err:
4138 qemu_rdma_cleanup(rdma);
4139 err:
4140 g_free(rdma);
4141 g_free(rdma_return_path);