4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
29 #include <sys/types.h>
33 #include "monitor/monitor.h"
34 #include "sysemu/sysemu.h"
35 #include "qemu/bitops.h"
36 #include "qemu/bitmap.h"
37 #include "sysemu/arch_init.h"
38 #include "audio/audio.h"
39 #include "hw/i386/pc.h"
40 #include "hw/pci/pci.h"
41 #include "hw/audio/audio.h"
42 #include "sysemu/kvm.h"
43 #include "migration/migration.h"
44 #include "hw/i386/smbios.h"
45 #include "exec/address-spaces.h"
46 #include "hw/audio/pcspk.h"
47 #include "migration/page_cache.h"
48 #include "qemu/config-file.h"
49 #include "qemu/error-report.h"
50 #include "qmp-commands.h"
52 #include "exec/cpu-all.h"
53 #include "exec/ram_addr.h"
54 #include "hw/acpi/acpi.h"
55 #include "qemu/host-utils.h"
56 #include "qemu/rcu_queue.h"
58 #ifdef DEBUG_ARCH_INIT
59 #define DPRINTF(fmt, ...) \
60 do { fprintf(stdout, "arch_init: " fmt, ## __VA_ARGS__); } while (0)
62 #define DPRINTF(fmt, ...) \
67 int graphic_width
= 1024;
68 int graphic_height
= 768;
69 int graphic_depth
= 8;
71 int graphic_width
= 800;
72 int graphic_height
= 600;
73 int graphic_depth
= 32;
77 #if defined(TARGET_ALPHA)
78 #define QEMU_ARCH QEMU_ARCH_ALPHA
79 #elif defined(TARGET_ARM)
80 #define QEMU_ARCH QEMU_ARCH_ARM
81 #elif defined(TARGET_CRIS)
82 #define QEMU_ARCH QEMU_ARCH_CRIS
83 #elif defined(TARGET_I386)
84 #define QEMU_ARCH QEMU_ARCH_I386
85 #elif defined(TARGET_M68K)
86 #define QEMU_ARCH QEMU_ARCH_M68K
87 #elif defined(TARGET_LM32)
88 #define QEMU_ARCH QEMU_ARCH_LM32
89 #elif defined(TARGET_MICROBLAZE)
90 #define QEMU_ARCH QEMU_ARCH_MICROBLAZE
91 #elif defined(TARGET_MIPS)
92 #define QEMU_ARCH QEMU_ARCH_MIPS
93 #elif defined(TARGET_MOXIE)
94 #define QEMU_ARCH QEMU_ARCH_MOXIE
95 #elif defined(TARGET_OPENRISC)
96 #define QEMU_ARCH QEMU_ARCH_OPENRISC
97 #elif defined(TARGET_PPC)
98 #define QEMU_ARCH QEMU_ARCH_PPC
99 #elif defined(TARGET_S390X)
100 #define QEMU_ARCH QEMU_ARCH_S390X
101 #elif defined(TARGET_SH4)
102 #define QEMU_ARCH QEMU_ARCH_SH4
103 #elif defined(TARGET_SPARC)
104 #define QEMU_ARCH QEMU_ARCH_SPARC
105 #elif defined(TARGET_XTENSA)
106 #define QEMU_ARCH QEMU_ARCH_XTENSA
107 #elif defined(TARGET_UNICORE32)
108 #define QEMU_ARCH QEMU_ARCH_UNICORE32
109 #elif defined(TARGET_TRICORE)
110 #define QEMU_ARCH QEMU_ARCH_TRICORE
113 const uint32_t arch_type
= QEMU_ARCH
;
114 static bool mig_throttle_on
;
115 static int dirty_rate_high_cnt
;
116 static void check_guest_throttling(void);
118 static uint64_t bitmap_sync_count
;
120 /***********************************************************/
121 /* ram save/restore */
123 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
124 #define RAM_SAVE_FLAG_COMPRESS 0x02
125 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
126 #define RAM_SAVE_FLAG_PAGE 0x08
127 #define RAM_SAVE_FLAG_EOS 0x10
128 #define RAM_SAVE_FLAG_CONTINUE 0x20
129 #define RAM_SAVE_FLAG_XBZRLE 0x40
130 /* 0x80 is reserved in migration.h start with 0x100 next */
131 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
133 static struct defconfig_file
{
134 const char *filename
;
135 /* Indicates it is an user config file (disabled by -no-user-config) */
137 } default_config_files
[] = {
138 { CONFIG_QEMU_CONFDIR
"/qemu.conf", true },
139 { NULL
}, /* end of list */
142 static const uint8_t ZERO_TARGET_PAGE
[TARGET_PAGE_SIZE
];
144 int qemu_read_default_config_files(bool userconfig
)
147 struct defconfig_file
*f
;
149 for (f
= default_config_files
; f
->filename
; f
++) {
150 if (!userconfig
&& f
->userconfig
) {
153 ret
= qemu_read_config_file(f
->filename
);
154 if (ret
< 0 && ret
!= -ENOENT
) {
162 static inline bool is_zero_range(uint8_t *p
, uint64_t size
)
164 return buffer_find_nonzero_offset(p
, size
) == size
;
167 /* struct contains XBZRLE cache and a static page
168 used by the compression */
170 /* buffer used for XBZRLE encoding */
171 uint8_t *encoded_buf
;
172 /* buffer for storing page content */
173 uint8_t *current_buf
;
174 /* Cache for XBZRLE, Protected by lock. */
179 /* buffer used for XBZRLE decoding */
180 static uint8_t *xbzrle_decoded_buf
;
182 static void XBZRLE_cache_lock(void)
184 if (migrate_use_xbzrle())
185 qemu_mutex_lock(&XBZRLE
.lock
);
188 static void XBZRLE_cache_unlock(void)
190 if (migrate_use_xbzrle())
191 qemu_mutex_unlock(&XBZRLE
.lock
);
195 * called from qmp_migrate_set_cache_size in main thread, possibly while
196 * a migration is in progress.
197 * A running migration maybe using the cache and might finish during this
198 * call, hence changes to the cache are protected by XBZRLE.lock().
200 int64_t xbzrle_cache_resize(int64_t new_size
)
202 PageCache
*new_cache
;
205 if (new_size
< TARGET_PAGE_SIZE
) {
211 if (XBZRLE
.cache
!= NULL
) {
212 if (pow2floor(new_size
) == migrate_xbzrle_cache_size()) {
215 new_cache
= cache_init(new_size
/ TARGET_PAGE_SIZE
,
218 error_report("Error creating cache");
223 cache_fini(XBZRLE
.cache
);
224 XBZRLE
.cache
= new_cache
;
228 ret
= pow2floor(new_size
);
230 XBZRLE_cache_unlock();
234 /* accounting for migration statistics */
235 typedef struct AccountingInfo
{
237 uint64_t skipped_pages
;
240 uint64_t xbzrle_bytes
;
241 uint64_t xbzrle_pages
;
242 uint64_t xbzrle_cache_miss
;
243 double xbzrle_cache_miss_rate
;
244 uint64_t xbzrle_overflows
;
247 static AccountingInfo acct_info
;
249 static void acct_clear(void)
251 memset(&acct_info
, 0, sizeof(acct_info
));
254 uint64_t dup_mig_bytes_transferred(void)
256 return acct_info
.dup_pages
* TARGET_PAGE_SIZE
;
259 uint64_t dup_mig_pages_transferred(void)
261 return acct_info
.dup_pages
;
264 uint64_t skipped_mig_bytes_transferred(void)
266 return acct_info
.skipped_pages
* TARGET_PAGE_SIZE
;
269 uint64_t skipped_mig_pages_transferred(void)
271 return acct_info
.skipped_pages
;
274 uint64_t norm_mig_bytes_transferred(void)
276 return acct_info
.norm_pages
* TARGET_PAGE_SIZE
;
279 uint64_t norm_mig_pages_transferred(void)
281 return acct_info
.norm_pages
;
284 uint64_t xbzrle_mig_bytes_transferred(void)
286 return acct_info
.xbzrle_bytes
;
289 uint64_t xbzrle_mig_pages_transferred(void)
291 return acct_info
.xbzrle_pages
;
294 uint64_t xbzrle_mig_pages_cache_miss(void)
296 return acct_info
.xbzrle_cache_miss
;
299 double xbzrle_mig_cache_miss_rate(void)
301 return acct_info
.xbzrle_cache_miss_rate
;
304 uint64_t xbzrle_mig_pages_overflow(void)
306 return acct_info
.xbzrle_overflows
;
309 /* This is the last block that we have visited serching for dirty pages
311 static RAMBlock
*last_seen_block
;
312 /* This is the last block from where we have sent data */
313 static RAMBlock
*last_sent_block
;
314 static ram_addr_t last_offset
;
315 static unsigned long *migration_bitmap
;
316 static uint64_t migration_dirty_pages
;
317 static uint32_t last_version
;
318 static bool ram_bulk_stage
;
320 struct CompressParam
{
329 typedef struct CompressParam CompressParam
;
331 struct DecompressParam
{
339 typedef struct DecompressParam DecompressParam
;
341 static CompressParam
*comp_param
;
342 static QemuThread
*compress_threads
;
343 /* comp_done_cond is used to wake up the migration thread when
344 * one of the compression threads has finished the compression.
345 * comp_done_lock is used to co-work with comp_done_cond.
347 static QemuMutex
*comp_done_lock
;
348 static QemuCond
*comp_done_cond
;
349 /* The empty QEMUFileOps will be used by file in CompressParam */
350 static const QEMUFileOps empty_ops
= { };
352 static bool compression_switch
;
353 static bool quit_comp_thread
;
354 static bool quit_decomp_thread
;
355 static DecompressParam
*decomp_param
;
356 static QemuThread
*decompress_threads
;
357 static uint8_t *compressed_data_buf
;
359 static int do_compress_ram_page(CompressParam
*param
);
361 static void *do_data_compress(void *opaque
)
363 CompressParam
*param
= opaque
;
365 while (!quit_comp_thread
) {
366 qemu_mutex_lock(¶m
->mutex
);
367 /* Re-check the quit_comp_thread in case of
368 * terminate_compression_threads is called just before
369 * qemu_mutex_lock(¶m->mutex) and after
370 * while(!quit_comp_thread), re-check it here can make
371 * sure the compression thread terminate as expected.
373 while (!param
->start
&& !quit_comp_thread
) {
374 qemu_cond_wait(¶m
->cond
, ¶m
->mutex
);
376 if (!quit_comp_thread
) {
377 do_compress_ram_page(param
);
379 param
->start
= false;
380 qemu_mutex_unlock(¶m
->mutex
);
382 qemu_mutex_lock(comp_done_lock
);
384 qemu_cond_signal(comp_done_cond
);
385 qemu_mutex_unlock(comp_done_lock
);
391 static inline void terminate_compression_threads(void)
393 int idx
, thread_count
;
395 thread_count
= migrate_compress_threads();
396 quit_comp_thread
= true;
397 for (idx
= 0; idx
< thread_count
; idx
++) {
398 qemu_mutex_lock(&comp_param
[idx
].mutex
);
399 qemu_cond_signal(&comp_param
[idx
].cond
);
400 qemu_mutex_unlock(&comp_param
[idx
].mutex
);
404 void migrate_compress_threads_join(void)
408 if (!migrate_use_compression()) {
411 terminate_compression_threads();
412 thread_count
= migrate_compress_threads();
413 for (i
= 0; i
< thread_count
; i
++) {
414 qemu_thread_join(compress_threads
+ i
);
415 qemu_fclose(comp_param
[i
].file
);
416 qemu_mutex_destroy(&comp_param
[i
].mutex
);
417 qemu_cond_destroy(&comp_param
[i
].cond
);
419 qemu_mutex_destroy(comp_done_lock
);
420 qemu_cond_destroy(comp_done_cond
);
421 g_free(compress_threads
);
423 g_free(comp_done_cond
);
424 g_free(comp_done_lock
);
425 compress_threads
= NULL
;
427 comp_done_cond
= NULL
;
428 comp_done_lock
= NULL
;
431 void migrate_compress_threads_create(void)
435 if (!migrate_use_compression()) {
438 quit_comp_thread
= false;
439 compression_switch
= true;
440 thread_count
= migrate_compress_threads();
441 compress_threads
= g_new0(QemuThread
, thread_count
);
442 comp_param
= g_new0(CompressParam
, thread_count
);
443 comp_done_cond
= g_new0(QemuCond
, 1);
444 comp_done_lock
= g_new0(QemuMutex
, 1);
445 qemu_cond_init(comp_done_cond
);
446 qemu_mutex_init(comp_done_lock
);
447 for (i
= 0; i
< thread_count
; i
++) {
448 /* com_param[i].file is just used as a dummy buffer to save data, set
451 comp_param
[i
].file
= qemu_fopen_ops(NULL
, &empty_ops
);
452 comp_param
[i
].done
= true;
453 qemu_mutex_init(&comp_param
[i
].mutex
);
454 qemu_cond_init(&comp_param
[i
].cond
);
455 qemu_thread_create(compress_threads
+ i
, "compress",
456 do_data_compress
, comp_param
+ i
,
457 QEMU_THREAD_JOINABLE
);
462 * save_page_header: Write page header to wire
464 * If this is the 1st block, it also writes the block identification
466 * Returns: Number of bytes written
468 * @f: QEMUFile where to send the data
469 * @block: block that contains the page we want to send
470 * @offset: offset inside the block for the page
471 * in the lower bits, it contains flags
473 static size_t save_page_header(QEMUFile
*f
, RAMBlock
*block
, ram_addr_t offset
)
477 qemu_put_be64(f
, offset
);
480 if (!(offset
& RAM_SAVE_FLAG_CONTINUE
)) {
481 qemu_put_byte(f
, strlen(block
->idstr
));
482 qemu_put_buffer(f
, (uint8_t *)block
->idstr
,
483 strlen(block
->idstr
));
484 size
+= 1 + strlen(block
->idstr
);
489 /* Update the xbzrle cache to reflect a page that's been sent as all 0.
490 * The important thing is that a stale (not-yet-0'd) page be replaced
492 * As a bonus, if the page wasn't in the cache it gets added so that
493 * when a small write is made into the 0'd page it gets XBZRLE sent
495 static void xbzrle_cache_zero_page(ram_addr_t current_addr
)
497 if (ram_bulk_stage
|| !migrate_use_xbzrle()) {
501 /* We don't care if this fails to allocate a new cache page
502 * as long as it updated an old one */
503 cache_insert(XBZRLE
.cache
, current_addr
, ZERO_TARGET_PAGE
,
507 #define ENCODING_FLAG_XBZRLE 0x1
510 * save_xbzrle_page: compress and send current page
512 * Returns: 1 means that we wrote the page
513 * 0 means that page is identical to the one already sent
514 * -1 means that xbzrle would be longer than normal
516 * @f: QEMUFile where to send the data
519 * @block: block that contains the page we want to send
520 * @offset: offset inside the block for the page
521 * @last_stage: if we are at the completion stage
522 * @bytes_transferred: increase it with the number of transferred bytes
524 static int save_xbzrle_page(QEMUFile
*f
, uint8_t **current_data
,
525 ram_addr_t current_addr
, RAMBlock
*block
,
526 ram_addr_t offset
, bool last_stage
,
527 uint64_t *bytes_transferred
)
529 int encoded_len
= 0, bytes_xbzrle
;
530 uint8_t *prev_cached_page
;
532 if (!cache_is_cached(XBZRLE
.cache
, current_addr
, bitmap_sync_count
)) {
533 acct_info
.xbzrle_cache_miss
++;
535 if (cache_insert(XBZRLE
.cache
, current_addr
, *current_data
,
536 bitmap_sync_count
) == -1) {
539 /* update *current_data when the page has been
540 inserted into cache */
541 *current_data
= get_cached_data(XBZRLE
.cache
, current_addr
);
547 prev_cached_page
= get_cached_data(XBZRLE
.cache
, current_addr
);
549 /* save current buffer into memory */
550 memcpy(XBZRLE
.current_buf
, *current_data
, TARGET_PAGE_SIZE
);
552 /* XBZRLE encoding (if there is no overflow) */
553 encoded_len
= xbzrle_encode_buffer(prev_cached_page
, XBZRLE
.current_buf
,
554 TARGET_PAGE_SIZE
, XBZRLE
.encoded_buf
,
556 if (encoded_len
== 0) {
557 DPRINTF("Skipping unmodified page\n");
559 } else if (encoded_len
== -1) {
560 DPRINTF("Overflow\n");
561 acct_info
.xbzrle_overflows
++;
562 /* update data in the cache */
564 memcpy(prev_cached_page
, *current_data
, TARGET_PAGE_SIZE
);
565 *current_data
= prev_cached_page
;
570 /* we need to update the data in the cache, in order to get the same data */
572 memcpy(prev_cached_page
, XBZRLE
.current_buf
, TARGET_PAGE_SIZE
);
575 /* Send XBZRLE based compressed page */
576 bytes_xbzrle
= save_page_header(f
, block
, offset
| RAM_SAVE_FLAG_XBZRLE
);
577 qemu_put_byte(f
, ENCODING_FLAG_XBZRLE
);
578 qemu_put_be16(f
, encoded_len
);
579 qemu_put_buffer(f
, XBZRLE
.encoded_buf
, encoded_len
);
580 bytes_xbzrle
+= encoded_len
+ 1 + 2;
581 acct_info
.xbzrle_pages
++;
582 acct_info
.xbzrle_bytes
+= bytes_xbzrle
;
583 *bytes_transferred
+= bytes_xbzrle
;
589 ram_addr_t
migration_bitmap_find_and_reset_dirty(MemoryRegion
*mr
,
592 unsigned long base
= mr
->ram_addr
>> TARGET_PAGE_BITS
;
593 unsigned long nr
= base
+ (start
>> TARGET_PAGE_BITS
);
594 uint64_t mr_size
= TARGET_PAGE_ALIGN(memory_region_size(mr
));
595 unsigned long size
= base
+ (mr_size
>> TARGET_PAGE_BITS
);
599 if (ram_bulk_stage
&& nr
> base
) {
602 next
= find_next_bit(migration_bitmap
, size
, nr
);
606 clear_bit(next
, migration_bitmap
);
607 migration_dirty_pages
--;
609 return (next
- base
) << TARGET_PAGE_BITS
;
612 static void migration_bitmap_sync_range(ram_addr_t start
, ram_addr_t length
)
614 migration_dirty_pages
+=
615 cpu_physical_memory_sync_dirty_bitmap(migration_bitmap
, start
, length
);
619 /* Fix me: there are too many global variables used in migration process. */
620 static int64_t start_time
;
621 static int64_t bytes_xfer_prev
;
622 static int64_t num_dirty_pages_period
;
623 static uint64_t xbzrle_cache_miss_prev
;
624 static uint64_t iterations_prev
;
626 static void migration_bitmap_sync_init(void)
630 num_dirty_pages_period
= 0;
631 xbzrle_cache_miss_prev
= 0;
635 /* Called with iothread lock held, to protect ram_list.dirty_memory[] */
636 static void migration_bitmap_sync(void)
639 uint64_t num_dirty_pages_init
= migration_dirty_pages
;
640 MigrationState
*s
= migrate_get_current();
642 int64_t bytes_xfer_now
;
646 if (!bytes_xfer_prev
) {
647 bytes_xfer_prev
= ram_bytes_transferred();
651 start_time
= qemu_clock_get_ms(QEMU_CLOCK_REALTIME
);
654 trace_migration_bitmap_sync_start();
655 address_space_sync_dirty_bitmap(&address_space_memory
);
658 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
659 migration_bitmap_sync_range(block
->mr
->ram_addr
, block
->used_length
);
663 trace_migration_bitmap_sync_end(migration_dirty_pages
664 - num_dirty_pages_init
);
665 num_dirty_pages_period
+= migration_dirty_pages
- num_dirty_pages_init
;
666 end_time
= qemu_clock_get_ms(QEMU_CLOCK_REALTIME
);
668 /* more than 1 second = 1000 millisecons */
669 if (end_time
> start_time
+ 1000) {
670 if (migrate_auto_converge()) {
671 /* The following detection logic can be refined later. For now:
672 Check to see if the dirtied bytes is 50% more than the approx.
673 amount of bytes that just got transferred since the last time we
674 were in this routine. If that happens >N times (for now N==4)
675 we turn on the throttle down logic */
676 bytes_xfer_now
= ram_bytes_transferred();
677 if (s
->dirty_pages_rate
&&
678 (num_dirty_pages_period
* TARGET_PAGE_SIZE
>
679 (bytes_xfer_now
- bytes_xfer_prev
)/2) &&
680 (dirty_rate_high_cnt
++ > 4)) {
681 trace_migration_throttle();
682 mig_throttle_on
= true;
683 dirty_rate_high_cnt
= 0;
685 bytes_xfer_prev
= bytes_xfer_now
;
687 mig_throttle_on
= false;
689 if (migrate_use_xbzrle()) {
690 if (iterations_prev
!= acct_info
.iterations
) {
691 acct_info
.xbzrle_cache_miss_rate
=
692 (double)(acct_info
.xbzrle_cache_miss
-
693 xbzrle_cache_miss_prev
) /
694 (acct_info
.iterations
- iterations_prev
);
696 iterations_prev
= acct_info
.iterations
;
697 xbzrle_cache_miss_prev
= acct_info
.xbzrle_cache_miss
;
699 s
->dirty_pages_rate
= num_dirty_pages_period
* 1000
700 / (end_time
- start_time
);
701 s
->dirty_bytes_rate
= s
->dirty_pages_rate
* TARGET_PAGE_SIZE
;
702 start_time
= end_time
;
703 num_dirty_pages_period
= 0;
705 s
->dirty_sync_count
= bitmap_sync_count
;
709 * save_zero_page: Send the zero page to the stream
711 * Returns: Number of pages written.
713 * @f: QEMUFile where to send the data
714 * @block: block that contains the page we want to send
715 * @offset: offset inside the block for the page
716 * @p: pointer to the page
717 * @bytes_transferred: increase it with the number of transferred bytes
719 static int save_zero_page(QEMUFile
*f
, RAMBlock
*block
, ram_addr_t offset
,
720 uint8_t *p
, uint64_t *bytes_transferred
)
724 if (is_zero_range(p
, TARGET_PAGE_SIZE
)) {
725 acct_info
.dup_pages
++;
726 *bytes_transferred
+= save_page_header(f
, block
,
727 offset
| RAM_SAVE_FLAG_COMPRESS
);
729 *bytes_transferred
+= 1;
737 * ram_save_page: Send the given page to the stream
739 * Returns: Number of pages written.
741 * @f: QEMUFile where to send the data
742 * @block: block that contains the page we want to send
743 * @offset: offset inside the block for the page
744 * @last_stage: if we are at the completion stage
745 * @bytes_transferred: increase it with the number of transferred bytes
747 static int ram_save_page(QEMUFile
*f
, RAMBlock
* block
, ram_addr_t offset
,
748 bool last_stage
, uint64_t *bytes_transferred
)
752 ram_addr_t current_addr
;
753 MemoryRegion
*mr
= block
->mr
;
756 bool send_async
= true;
758 p
= memory_region_get_ram_ptr(mr
) + offset
;
760 /* In doubt sent page as normal */
762 ret
= ram_control_save_page(f
, block
->offset
,
763 offset
, TARGET_PAGE_SIZE
, &bytes_xmit
);
765 *bytes_transferred
+= bytes_xmit
;
771 current_addr
= block
->offset
+ offset
;
773 if (block
== last_sent_block
) {
774 offset
|= RAM_SAVE_FLAG_CONTINUE
;
776 if (ret
!= RAM_SAVE_CONTROL_NOT_SUPP
) {
777 if (ret
!= RAM_SAVE_CONTROL_DELAYED
) {
778 if (bytes_xmit
> 0) {
779 acct_info
.norm_pages
++;
780 } else if (bytes_xmit
== 0) {
781 acct_info
.dup_pages
++;
785 pages
= save_zero_page(f
, block
, offset
, p
, bytes_transferred
);
787 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
788 * page would be stale
790 xbzrle_cache_zero_page(current_addr
);
791 } else if (!ram_bulk_stage
&& migrate_use_xbzrle()) {
792 pages
= save_xbzrle_page(f
, &p
, current_addr
, block
,
793 offset
, last_stage
, bytes_transferred
);
795 /* Can't send this cached data async, since the cache page
796 * might get updated before it gets to the wire
803 /* XBZRLE overflow or normal page */
805 *bytes_transferred
+= save_page_header(f
, block
,
806 offset
| RAM_SAVE_FLAG_PAGE
);
808 qemu_put_buffer_async(f
, p
, TARGET_PAGE_SIZE
);
810 qemu_put_buffer(f
, p
, TARGET_PAGE_SIZE
);
812 *bytes_transferred
+= TARGET_PAGE_SIZE
;
814 acct_info
.norm_pages
++;
817 XBZRLE_cache_unlock();
822 static int do_compress_ram_page(CompressParam
*param
)
824 int bytes_sent
, blen
;
826 RAMBlock
*block
= param
->block
;
827 ram_addr_t offset
= param
->offset
;
829 p
= memory_region_get_ram_ptr(block
->mr
) + (offset
& TARGET_PAGE_MASK
);
831 bytes_sent
= save_page_header(param
->file
, block
, offset
|
832 RAM_SAVE_FLAG_COMPRESS_PAGE
);
833 blen
= qemu_put_compression_data(param
->file
, p
, TARGET_PAGE_SIZE
,
834 migrate_compress_level());
840 static inline void start_compression(CompressParam
*param
)
843 qemu_mutex_lock(¶m
->mutex
);
845 qemu_cond_signal(¶m
->cond
);
846 qemu_mutex_unlock(¶m
->mutex
);
849 static inline void start_decompression(DecompressParam
*param
)
851 qemu_mutex_lock(¶m
->mutex
);
853 qemu_cond_signal(¶m
->cond
);
854 qemu_mutex_unlock(¶m
->mutex
);
857 static uint64_t bytes_transferred
;
859 static void flush_compressed_data(QEMUFile
*f
)
861 int idx
, len
, thread_count
;
863 if (!migrate_use_compression()) {
866 thread_count
= migrate_compress_threads();
867 for (idx
= 0; idx
< thread_count
; idx
++) {
868 if (!comp_param
[idx
].done
) {
869 qemu_mutex_lock(comp_done_lock
);
870 while (!comp_param
[idx
].done
&& !quit_comp_thread
) {
871 qemu_cond_wait(comp_done_cond
, comp_done_lock
);
873 qemu_mutex_unlock(comp_done_lock
);
875 if (!quit_comp_thread
) {
876 len
= qemu_put_qemu_file(f
, comp_param
[idx
].file
);
877 bytes_transferred
+= len
;
882 static inline void set_compress_params(CompressParam
*param
, RAMBlock
*block
,
885 param
->block
= block
;
886 param
->offset
= offset
;
889 static int compress_page_with_multi_thread(QEMUFile
*f
, RAMBlock
*block
,
891 uint64_t *bytes_transferred
)
893 int idx
, thread_count
, bytes_xmit
= -1, pages
= -1;
895 thread_count
= migrate_compress_threads();
896 qemu_mutex_lock(comp_done_lock
);
898 for (idx
= 0; idx
< thread_count
; idx
++) {
899 if (comp_param
[idx
].done
) {
900 bytes_xmit
= qemu_put_qemu_file(f
, comp_param
[idx
].file
);
901 set_compress_params(&comp_param
[idx
], block
, offset
);
902 start_compression(&comp_param
[idx
]);
904 acct_info
.norm_pages
++;
905 *bytes_transferred
+= bytes_xmit
;
912 qemu_cond_wait(comp_done_cond
, comp_done_lock
);
915 qemu_mutex_unlock(comp_done_lock
);
921 * ram_save_compressed_page: compress the given page and send it to the stream
923 * Returns: Number of pages written.
925 * @f: QEMUFile where to send the data
926 * @block: block that contains the page we want to send
927 * @offset: offset inside the block for the page
928 * @last_stage: if we are at the completion stage
929 * @bytes_transferred: increase it with the number of transferred bytes
931 static int ram_save_compressed_page(QEMUFile
*f
, RAMBlock
*block
,
932 ram_addr_t offset
, bool last_stage
,
933 uint64_t *bytes_transferred
)
937 MemoryRegion
*mr
= block
->mr
;
941 p
= memory_region_get_ram_ptr(mr
) + offset
;
944 ret
= ram_control_save_page(f
, block
->offset
,
945 offset
, TARGET_PAGE_SIZE
, &bytes_xmit
);
947 *bytes_transferred
+= bytes_xmit
;
950 if (block
== last_sent_block
) {
951 offset
|= RAM_SAVE_FLAG_CONTINUE
;
953 if (ret
!= RAM_SAVE_CONTROL_NOT_SUPP
) {
954 if (ret
!= RAM_SAVE_CONTROL_DELAYED
) {
955 if (bytes_xmit
> 0) {
956 acct_info
.norm_pages
++;
957 } else if (bytes_xmit
== 0) {
958 acct_info
.dup_pages
++;
962 /* When starting the process of a new block, the first page of
963 * the block should be sent out before other pages in the same
964 * block, and all the pages in last block should have been sent
965 * out, keeping this order is important, because the 'cont' flag
966 * is used to avoid resending the block name.
968 if (block
!= last_sent_block
) {
969 flush_compressed_data(f
);
970 pages
= save_zero_page(f
, block
, offset
, p
, bytes_transferred
);
972 set_compress_params(&comp_param
[0], block
, offset
);
973 /* Use the qemu thread to compress the data to make sure the
974 * first page is sent out before other pages
976 bytes_xmit
= do_compress_ram_page(&comp_param
[0]);
977 acct_info
.norm_pages
++;
978 qemu_put_qemu_file(f
, comp_param
[0].file
);
979 *bytes_transferred
+= bytes_xmit
;
983 pages
= save_zero_page(f
, block
, offset
, p
, bytes_transferred
);
985 pages
= compress_page_with_multi_thread(f
, block
, offset
,
995 * ram_find_and_save_block: Finds a dirty page and sends it to f
997 * Called within an RCU critical section.
999 * Returns: The number of pages written
1000 * 0 means no dirty pages
1002 * @f: QEMUFile where to send the data
1003 * @last_stage: if we are at the completion stage
1004 * @bytes_transferred: increase it with the number of transferred bytes
1007 static int ram_find_and_save_block(QEMUFile
*f
, bool last_stage
,
1008 uint64_t *bytes_transferred
)
1010 RAMBlock
*block
= last_seen_block
;
1011 ram_addr_t offset
= last_offset
;
1012 bool complete_round
= false;
1017 block
= QLIST_FIRST_RCU(&ram_list
.blocks
);
1021 offset
= migration_bitmap_find_and_reset_dirty(mr
, offset
);
1022 if (complete_round
&& block
== last_seen_block
&&
1023 offset
>= last_offset
) {
1026 if (offset
>= block
->used_length
) {
1028 block
= QLIST_NEXT_RCU(block
, next
);
1030 block
= QLIST_FIRST_RCU(&ram_list
.blocks
);
1031 complete_round
= true;
1032 ram_bulk_stage
= false;
1033 if (migrate_use_xbzrle()) {
1034 /* If xbzrle is on, stop using the data compression at this
1035 * point. In theory, xbzrle can do better than compression.
1037 flush_compressed_data(f
);
1038 compression_switch
= false;
1042 if (compression_switch
&& migrate_use_compression()) {
1043 pages
= ram_save_compressed_page(f
, block
, offset
, last_stage
,
1046 pages
= ram_save_page(f
, block
, offset
, last_stage
,
1050 /* if page is unmodified, continue to the next */
1052 last_sent_block
= block
;
1058 last_seen_block
= block
;
1059 last_offset
= offset
;
1064 void acct_update_position(QEMUFile
*f
, size_t size
, bool zero
)
1066 uint64_t pages
= size
/ TARGET_PAGE_SIZE
;
1068 acct_info
.dup_pages
+= pages
;
1070 acct_info
.norm_pages
+= pages
;
1071 bytes_transferred
+= size
;
1072 qemu_update_position(f
, size
);
1076 static ram_addr_t
ram_save_remaining(void)
1078 return migration_dirty_pages
;
1081 uint64_t ram_bytes_remaining(void)
1083 return ram_save_remaining() * TARGET_PAGE_SIZE
;
1086 uint64_t ram_bytes_transferred(void)
1088 return bytes_transferred
;
1091 uint64_t ram_bytes_total(void)
1097 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
)
1098 total
+= block
->used_length
;
1103 void free_xbzrle_decoded_buf(void)
1105 g_free(xbzrle_decoded_buf
);
1106 xbzrle_decoded_buf
= NULL
;
1109 static void migration_end(void)
1111 if (migration_bitmap
) {
1112 memory_global_dirty_log_stop();
1113 g_free(migration_bitmap
);
1114 migration_bitmap
= NULL
;
1117 XBZRLE_cache_lock();
1119 cache_fini(XBZRLE
.cache
);
1120 g_free(XBZRLE
.encoded_buf
);
1121 g_free(XBZRLE
.current_buf
);
1122 XBZRLE
.cache
= NULL
;
1123 XBZRLE
.encoded_buf
= NULL
;
1124 XBZRLE
.current_buf
= NULL
;
1126 XBZRLE_cache_unlock();
1129 static void ram_migration_cancel(void *opaque
)
1134 static void reset_ram_globals(void)
1136 last_seen_block
= NULL
;
1137 last_sent_block
= NULL
;
1139 last_version
= ram_list
.version
;
1140 ram_bulk_stage
= true;
1143 #define MAX_WAIT 50 /* ms, half buffered_file limit */
1146 /* Each of ram_save_setup, ram_save_iterate and ram_save_complete has
1147 * long-running RCU critical section. When rcu-reclaims in the code
1148 * start to become numerous it will be necessary to reduce the
1149 * granularity of these critical sections.
1152 static int ram_save_setup(QEMUFile
*f
, void *opaque
)
1155 int64_t ram_bitmap_pages
; /* Size of bitmap in pages, including gaps */
1157 mig_throttle_on
= false;
1158 dirty_rate_high_cnt
= 0;
1159 bitmap_sync_count
= 0;
1160 migration_bitmap_sync_init();
1162 if (migrate_use_xbzrle()) {
1163 XBZRLE_cache_lock();
1164 XBZRLE
.cache
= cache_init(migrate_xbzrle_cache_size() /
1167 if (!XBZRLE
.cache
) {
1168 XBZRLE_cache_unlock();
1169 error_report("Error creating cache");
1172 XBZRLE_cache_unlock();
1174 /* We prefer not to abort if there is no memory */
1175 XBZRLE
.encoded_buf
= g_try_malloc0(TARGET_PAGE_SIZE
);
1176 if (!XBZRLE
.encoded_buf
) {
1177 error_report("Error allocating encoded_buf");
1181 XBZRLE
.current_buf
= g_try_malloc(TARGET_PAGE_SIZE
);
1182 if (!XBZRLE
.current_buf
) {
1183 error_report("Error allocating current_buf");
1184 g_free(XBZRLE
.encoded_buf
);
1185 XBZRLE
.encoded_buf
= NULL
;
1192 /* iothread lock needed for ram_list.dirty_memory[] */
1193 qemu_mutex_lock_iothread();
1194 qemu_mutex_lock_ramlist();
1196 bytes_transferred
= 0;
1197 reset_ram_globals();
1199 ram_bitmap_pages
= last_ram_offset() >> TARGET_PAGE_BITS
;
1200 migration_bitmap
= bitmap_new(ram_bitmap_pages
);
1201 bitmap_set(migration_bitmap
, 0, ram_bitmap_pages
);
1204 * Count the total number of pages used by ram blocks not including any
1205 * gaps due to alignment or unplugs.
1207 migration_dirty_pages
= ram_bytes_total() >> TARGET_PAGE_BITS
;
1209 memory_global_dirty_log_start();
1210 migration_bitmap_sync();
1211 qemu_mutex_unlock_ramlist();
1212 qemu_mutex_unlock_iothread();
1214 qemu_put_be64(f
, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE
);
1216 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1217 qemu_put_byte(f
, strlen(block
->idstr
));
1218 qemu_put_buffer(f
, (uint8_t *)block
->idstr
, strlen(block
->idstr
));
1219 qemu_put_be64(f
, block
->used_length
);
1224 ram_control_before_iterate(f
, RAM_CONTROL_SETUP
);
1225 ram_control_after_iterate(f
, RAM_CONTROL_SETUP
);
1227 qemu_put_be64(f
, RAM_SAVE_FLAG_EOS
);
1232 static int ram_save_iterate(QEMUFile
*f
, void *opaque
)
1240 if (ram_list
.version
!= last_version
) {
1241 reset_ram_globals();
1244 /* Read version before ram_list.blocks */
1247 ram_control_before_iterate(f
, RAM_CONTROL_ROUND
);
1249 t0
= qemu_clock_get_ns(QEMU_CLOCK_REALTIME
);
1251 while ((ret
= qemu_file_rate_limit(f
)) == 0) {
1254 pages
= ram_find_and_save_block(f
, false, &bytes_transferred
);
1255 /* no more pages to sent */
1259 pages_sent
+= pages
;
1260 acct_info
.iterations
++;
1261 check_guest_throttling();
1262 /* we want to check in the 1st loop, just in case it was the 1st time
1263 and we had to sync the dirty bitmap.
1264 qemu_get_clock_ns() is a bit expensive, so we only check each some
1267 if ((i
& 63) == 0) {
1268 uint64_t t1
= (qemu_clock_get_ns(QEMU_CLOCK_REALTIME
) - t0
) / 1000000;
1269 if (t1
> MAX_WAIT
) {
1270 DPRINTF("big wait: %" PRIu64
" milliseconds, %d iterations\n",
1277 flush_compressed_data(f
);
1281 * Must occur before EOS (or any QEMUFile operation)
1282 * because of RDMA protocol.
1284 ram_control_after_iterate(f
, RAM_CONTROL_ROUND
);
1286 qemu_put_be64(f
, RAM_SAVE_FLAG_EOS
);
1287 bytes_transferred
+= 8;
1289 ret
= qemu_file_get_error(f
);
1297 /* Called with iothread lock */
1298 static int ram_save_complete(QEMUFile
*f
, void *opaque
)
1302 migration_bitmap_sync();
1304 ram_control_before_iterate(f
, RAM_CONTROL_FINISH
);
1306 /* try transferring iterative blocks of memory */
1308 /* flush all remaining blocks regardless of rate limiting */
1312 pages
= ram_find_and_save_block(f
, true, &bytes_transferred
);
1313 /* no more blocks to sent */
1319 flush_compressed_data(f
);
1320 ram_control_after_iterate(f
, RAM_CONTROL_FINISH
);
1324 qemu_put_be64(f
, RAM_SAVE_FLAG_EOS
);
1329 static uint64_t ram_save_pending(QEMUFile
*f
, void *opaque
, uint64_t max_size
)
1331 uint64_t remaining_size
;
1333 remaining_size
= ram_save_remaining() * TARGET_PAGE_SIZE
;
1335 if (remaining_size
< max_size
) {
1336 qemu_mutex_lock_iothread();
1338 migration_bitmap_sync();
1340 qemu_mutex_unlock_iothread();
1341 remaining_size
= ram_save_remaining() * TARGET_PAGE_SIZE
;
1343 return remaining_size
;
1346 static int load_xbzrle(QEMUFile
*f
, ram_addr_t addr
, void *host
)
1348 unsigned int xh_len
;
1351 if (!xbzrle_decoded_buf
) {
1352 xbzrle_decoded_buf
= g_malloc(TARGET_PAGE_SIZE
);
1355 /* extract RLE header */
1356 xh_flags
= qemu_get_byte(f
);
1357 xh_len
= qemu_get_be16(f
);
1359 if (xh_flags
!= ENCODING_FLAG_XBZRLE
) {
1360 error_report("Failed to load XBZRLE page - wrong compression!");
1364 if (xh_len
> TARGET_PAGE_SIZE
) {
1365 error_report("Failed to load XBZRLE page - len overflow!");
1368 /* load data and decode */
1369 qemu_get_buffer(f
, xbzrle_decoded_buf
, xh_len
);
1372 if (xbzrle_decode_buffer(xbzrle_decoded_buf
, xh_len
, host
,
1373 TARGET_PAGE_SIZE
) == -1) {
1374 error_report("Failed to load XBZRLE page - decode error!");
1381 /* Must be called from within a rcu critical section.
1382 * Returns a pointer from within the RCU-protected ram_list.
1384 static inline void *host_from_stream_offset(QEMUFile
*f
,
1388 static RAMBlock
*block
= NULL
;
1392 if (flags
& RAM_SAVE_FLAG_CONTINUE
) {
1393 if (!block
|| block
->max_length
<= offset
) {
1394 error_report("Ack, bad migration stream!");
1398 return memory_region_get_ram_ptr(block
->mr
) + offset
;
1401 len
= qemu_get_byte(f
);
1402 qemu_get_buffer(f
, (uint8_t *)id
, len
);
1405 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1406 if (!strncmp(id
, block
->idstr
, sizeof(id
)) &&
1407 block
->max_length
> offset
) {
1408 return memory_region_get_ram_ptr(block
->mr
) + offset
;
1412 error_report("Can't find block %s!", id
);
1417 * If a page (or a whole RDMA chunk) has been
1418 * determined to be zero, then zap it.
1420 void ram_handle_compressed(void *host
, uint8_t ch
, uint64_t size
)
1422 if (ch
!= 0 || !is_zero_range(host
, size
)) {
1423 memset(host
, ch
, size
);
1427 static void *do_data_decompress(void *opaque
)
1429 DecompressParam
*param
= opaque
;
1430 unsigned long pagesize
;
1432 while (!quit_decomp_thread
) {
1433 qemu_mutex_lock(¶m
->mutex
);
1434 while (!param
->start
&& !quit_decomp_thread
) {
1435 qemu_cond_wait(¶m
->cond
, ¶m
->mutex
);
1436 pagesize
= TARGET_PAGE_SIZE
;
1437 if (!quit_decomp_thread
) {
1438 /* uncompress() will return failed in some case, especially
1439 * when the page is dirted when doing the compression, it's
1440 * not a problem because the dirty page will be retransferred
1441 * and uncompress() won't break the data in other pages.
1443 uncompress((Bytef
*)param
->des
, &pagesize
,
1444 (const Bytef
*)param
->compbuf
, param
->len
);
1446 param
->start
= false;
1448 qemu_mutex_unlock(¶m
->mutex
);
1454 void migrate_decompress_threads_create(void)
1456 int i
, thread_count
;
1458 thread_count
= migrate_decompress_threads();
1459 decompress_threads
= g_new0(QemuThread
, thread_count
);
1460 decomp_param
= g_new0(DecompressParam
, thread_count
);
1461 compressed_data_buf
= g_malloc0(compressBound(TARGET_PAGE_SIZE
));
1462 quit_decomp_thread
= false;
1463 for (i
= 0; i
< thread_count
; i
++) {
1464 qemu_mutex_init(&decomp_param
[i
].mutex
);
1465 qemu_cond_init(&decomp_param
[i
].cond
);
1466 decomp_param
[i
].compbuf
= g_malloc0(compressBound(TARGET_PAGE_SIZE
));
1467 qemu_thread_create(decompress_threads
+ i
, "decompress",
1468 do_data_decompress
, decomp_param
+ i
,
1469 QEMU_THREAD_JOINABLE
);
1473 void migrate_decompress_threads_join(void)
1475 int i
, thread_count
;
1477 quit_decomp_thread
= true;
1478 thread_count
= migrate_decompress_threads();
1479 for (i
= 0; i
< thread_count
; i
++) {
1480 qemu_mutex_lock(&decomp_param
[i
].mutex
);
1481 qemu_cond_signal(&decomp_param
[i
].cond
);
1482 qemu_mutex_unlock(&decomp_param
[i
].mutex
);
1484 for (i
= 0; i
< thread_count
; i
++) {
1485 qemu_thread_join(decompress_threads
+ i
);
1486 qemu_mutex_destroy(&decomp_param
[i
].mutex
);
1487 qemu_cond_destroy(&decomp_param
[i
].cond
);
1488 g_free(decomp_param
[i
].compbuf
);
1490 g_free(decompress_threads
);
1491 g_free(decomp_param
);
1492 g_free(compressed_data_buf
);
1493 decompress_threads
= NULL
;
1494 decomp_param
= NULL
;
1495 compressed_data_buf
= NULL
;
1498 static void decompress_data_with_multi_threads(uint8_t *compbuf
,
1499 void *host
, int len
)
1501 int idx
, thread_count
;
1503 thread_count
= migrate_decompress_threads();
1505 for (idx
= 0; idx
< thread_count
; idx
++) {
1506 if (!decomp_param
[idx
].start
) {
1507 memcpy(decomp_param
[idx
].compbuf
, compbuf
, len
);
1508 decomp_param
[idx
].des
= host
;
1509 decomp_param
[idx
].len
= len
;
1510 start_decompression(&decomp_param
[idx
]);
1514 if (idx
< thread_count
) {
1520 static int ram_load(QEMUFile
*f
, void *opaque
, int version_id
)
1522 int flags
= 0, ret
= 0;
1523 static uint64_t seq_iter
;
1528 if (version_id
!= 4) {
1532 /* This RCU critical section can be very long running.
1533 * When RCU reclaims in the code start to become numerous,
1534 * it will be necessary to reduce the granularity of this
1538 while (!ret
&& !(flags
& RAM_SAVE_FLAG_EOS
)) {
1539 ram_addr_t addr
, total_ram_bytes
;
1543 addr
= qemu_get_be64(f
);
1544 flags
= addr
& ~TARGET_PAGE_MASK
;
1545 addr
&= TARGET_PAGE_MASK
;
1547 switch (flags
& ~RAM_SAVE_FLAG_CONTINUE
) {
1548 case RAM_SAVE_FLAG_MEM_SIZE
:
1549 /* Synchronize RAM block list */
1550 total_ram_bytes
= addr
;
1551 while (!ret
&& total_ram_bytes
) {
1557 len
= qemu_get_byte(f
);
1558 qemu_get_buffer(f
, (uint8_t *)id
, len
);
1560 length
= qemu_get_be64(f
);
1562 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1563 if (!strncmp(id
, block
->idstr
, sizeof(id
))) {
1564 if (length
!= block
->used_length
) {
1565 Error
*local_err
= NULL
;
1567 ret
= qemu_ram_resize(block
->offset
, length
, &local_err
);
1569 error_report_err(local_err
);
1577 error_report("Unknown ramblock \"%s\", cannot "
1578 "accept migration", id
);
1582 total_ram_bytes
-= length
;
1585 case RAM_SAVE_FLAG_COMPRESS
:
1586 host
= host_from_stream_offset(f
, addr
, flags
);
1588 error_report("Illegal RAM offset " RAM_ADDR_FMT
, addr
);
1592 ch
= qemu_get_byte(f
);
1593 ram_handle_compressed(host
, ch
, TARGET_PAGE_SIZE
);
1595 case RAM_SAVE_FLAG_PAGE
:
1596 host
= host_from_stream_offset(f
, addr
, flags
);
1598 error_report("Illegal RAM offset " RAM_ADDR_FMT
, addr
);
1602 qemu_get_buffer(f
, host
, TARGET_PAGE_SIZE
);
1604 case RAM_SAVE_FLAG_COMPRESS_PAGE
:
1605 host
= host_from_stream_offset(f
, addr
, flags
);
1607 error_report("Invalid RAM offset " RAM_ADDR_FMT
, addr
);
1612 len
= qemu_get_be32(f
);
1613 if (len
< 0 || len
> compressBound(TARGET_PAGE_SIZE
)) {
1614 error_report("Invalid compressed data length: %d", len
);
1618 qemu_get_buffer(f
, compressed_data_buf
, len
);
1619 decompress_data_with_multi_threads(compressed_data_buf
, host
, len
);
1621 case RAM_SAVE_FLAG_XBZRLE
:
1622 host
= host_from_stream_offset(f
, addr
, flags
);
1624 error_report("Illegal RAM offset " RAM_ADDR_FMT
, addr
);
1628 if (load_xbzrle(f
, addr
, host
) < 0) {
1629 error_report("Failed to decompress XBZRLE page at "
1630 RAM_ADDR_FMT
, addr
);
1635 case RAM_SAVE_FLAG_EOS
:
1639 if (flags
& RAM_SAVE_FLAG_HOOK
) {
1640 ram_control_load_hook(f
, flags
);
1642 error_report("Unknown combination of migration flags: %#x",
1648 ret
= qemu_file_get_error(f
);
1653 DPRINTF("Completed load of VM with exit code %d seq iteration "
1654 "%" PRIu64
"\n", ret
, seq_iter
);
1658 static SaveVMHandlers savevm_ram_handlers
= {
1659 .save_live_setup
= ram_save_setup
,
1660 .save_live_iterate
= ram_save_iterate
,
1661 .save_live_complete
= ram_save_complete
,
1662 .save_live_pending
= ram_save_pending
,
1663 .load_state
= ram_load
,
1664 .cancel
= ram_migration_cancel
,
1667 void ram_mig_init(void)
1669 qemu_mutex_init(&XBZRLE
.lock
);
1670 register_savevm_live(NULL
, "ram", 0, 4, &savevm_ram_handlers
, NULL
);
1679 int (*init_isa
) (ISABus
*bus
);
1680 int (*init_pci
) (PCIBus
*bus
);
1684 static struct soundhw soundhw
[9];
1685 static int soundhw_count
;
1687 void isa_register_soundhw(const char *name
, const char *descr
,
1688 int (*init_isa
)(ISABus
*bus
))
1690 assert(soundhw_count
< ARRAY_SIZE(soundhw
) - 1);
1691 soundhw
[soundhw_count
].name
= name
;
1692 soundhw
[soundhw_count
].descr
= descr
;
1693 soundhw
[soundhw_count
].isa
= 1;
1694 soundhw
[soundhw_count
].init
.init_isa
= init_isa
;
1698 void pci_register_soundhw(const char *name
, const char *descr
,
1699 int (*init_pci
)(PCIBus
*bus
))
1701 assert(soundhw_count
< ARRAY_SIZE(soundhw
) - 1);
1702 soundhw
[soundhw_count
].name
= name
;
1703 soundhw
[soundhw_count
].descr
= descr
;
1704 soundhw
[soundhw_count
].isa
= 0;
1705 soundhw
[soundhw_count
].init
.init_pci
= init_pci
;
1709 void select_soundhw(const char *optarg
)
1713 if (is_help_option(optarg
)) {
1716 if (soundhw_count
) {
1717 printf("Valid sound card names (comma separated):\n");
1718 for (c
= soundhw
; c
->name
; ++c
) {
1719 printf ("%-11s %s\n", c
->name
, c
->descr
);
1721 printf("\n-soundhw all will enable all of the above\n");
1723 printf("Machine has no user-selectable audio hardware "
1724 "(it may or may not have always-present audio hardware).\n");
1726 exit(!is_help_option(optarg
));
1734 if (!strcmp(optarg
, "all")) {
1735 for (c
= soundhw
; c
->name
; ++c
) {
1744 l
= !e
? strlen(p
) : (size_t) (e
- p
);
1746 for (c
= soundhw
; c
->name
; ++c
) {
1747 if (!strncmp(c
->name
, p
, l
) && !c
->name
[l
]) {
1755 error_report("Unknown sound card name (too big to show)");
1758 error_report("Unknown sound card name `%.*s'",
1763 p
+= l
+ (e
!= NULL
);
1767 goto show_valid_cards
;
1772 void audio_init(void)
1775 ISABus
*isa_bus
= (ISABus
*) object_resolve_path_type("", TYPE_ISA_BUS
, NULL
);
1776 PCIBus
*pci_bus
= (PCIBus
*) object_resolve_path_type("", TYPE_PCI_BUS
, NULL
);
1778 for (c
= soundhw
; c
->name
; ++c
) {
1782 error_report("ISA bus not available for %s", c
->name
);
1785 c
->init
.init_isa(isa_bus
);
1788 error_report("PCI bus not available for %s", c
->name
);
1791 c
->init
.init_pci(pci_bus
);
1797 int qemu_uuid_parse(const char *str
, uint8_t *uuid
)
1801 if (strlen(str
) != 36) {
1805 ret
= sscanf(str
, UUID_FMT
, &uuid
[0], &uuid
[1], &uuid
[2], &uuid
[3],
1806 &uuid
[4], &uuid
[5], &uuid
[6], &uuid
[7], &uuid
[8], &uuid
[9],
1807 &uuid
[10], &uuid
[11], &uuid
[12], &uuid
[13], &uuid
[14],
1816 void do_acpitable_option(const QemuOpts
*opts
)
1821 acpi_table_add(opts
, &err
);
1823 error_report("Wrong acpi table provided: %s",
1824 error_get_pretty(err
));
1831 void do_smbios_option(QemuOpts
*opts
)
1834 smbios_entry_add(opts
);
1838 void cpudef_init(void)
1840 #if defined(cpudef_setup)
1841 cpudef_setup(); /* parse cpu definitions in target config file */
1845 int kvm_available(void)
1854 int xen_available(void)
1864 TargetInfo
*qmp_query_target(Error
**errp
)
1866 TargetInfo
*info
= g_malloc0(sizeof(*info
));
1868 info
->arch
= g_strdup(TARGET_NAME
);
1873 /* Stub function that's gets run on the vcpu when its brought out of the
1874 VM to run inside qemu via async_run_on_cpu()*/
1875 static void mig_sleep_cpu(void *opq
)
1877 qemu_mutex_unlock_iothread();
1879 qemu_mutex_lock_iothread();
1882 /* To reduce the dirty rate explicitly disallow the VCPUs from spending
1883 much time in the VM. The migration thread will try to catchup.
1884 Workload will experience a performance drop.
1886 static void mig_throttle_guest_down(void)
1890 qemu_mutex_lock_iothread();
1892 async_run_on_cpu(cpu
, mig_sleep_cpu
, NULL
);
1894 qemu_mutex_unlock_iothread();
1897 static void check_guest_throttling(void)
1902 if (!mig_throttle_on
) {
1907 t0
= qemu_clock_get_ns(QEMU_CLOCK_REALTIME
);
1911 t1
= qemu_clock_get_ns(QEMU_CLOCK_REALTIME
);
1913 /* If it has been more than 40 ms since the last time the guest
1914 * was throttled then do it again.
1916 if (40 < (t1
-t0
)/1000000) {
1917 mig_throttle_guest_down();