tap: Drop tap_can_send
[qemu/ar7.git] / arch_init.c
blobd29447497b22210517c8a9b2e56e0727ae6c2ff6
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include <stdint.h>
25 #include <stdarg.h>
26 #include <stdlib.h>
27 #include <zlib.h>
28 #ifndef _WIN32
29 #include <sys/types.h>
30 #include <sys/mman.h>
31 #endif
32 #include "config.h"
33 #include "monitor/monitor.h"
34 #include "sysemu/sysemu.h"
35 #include "qemu/bitops.h"
36 #include "qemu/bitmap.h"
37 #include "sysemu/arch_init.h"
38 #include "audio/audio.h"
39 #include "hw/i386/pc.h"
40 #include "hw/pci/pci.h"
41 #include "hw/audio/audio.h"
42 #include "sysemu/kvm.h"
43 #include "migration/migration.h"
44 #include "hw/i386/smbios.h"
45 #include "exec/address-spaces.h"
46 #include "hw/audio/pcspk.h"
47 #include "migration/page_cache.h"
48 #include "qemu/config-file.h"
49 #include "qemu/error-report.h"
50 #include "qmp-commands.h"
51 #include "trace.h"
52 #include "exec/cpu-all.h"
53 #include "exec/ram_addr.h"
54 #include "hw/acpi/acpi.h"
55 #include "qemu/host-utils.h"
56 #include "qemu/rcu_queue.h"
58 #ifdef DEBUG_ARCH_INIT
59 #define DPRINTF(fmt, ...) \
60 do { fprintf(stdout, "arch_init: " fmt, ## __VA_ARGS__); } while (0)
61 #else
62 #define DPRINTF(fmt, ...) \
63 do { } while (0)
64 #endif
66 #ifdef TARGET_SPARC
67 int graphic_width = 1024;
68 int graphic_height = 768;
69 int graphic_depth = 8;
70 #else
71 int graphic_width = 800;
72 int graphic_height = 600;
73 int graphic_depth = 32;
74 #endif
77 #if defined(TARGET_ALPHA)
78 #define QEMU_ARCH QEMU_ARCH_ALPHA
79 #elif defined(TARGET_ARM)
80 #define QEMU_ARCH QEMU_ARCH_ARM
81 #elif defined(TARGET_CRIS)
82 #define QEMU_ARCH QEMU_ARCH_CRIS
83 #elif defined(TARGET_I386)
84 #define QEMU_ARCH QEMU_ARCH_I386
85 #elif defined(TARGET_M68K)
86 #define QEMU_ARCH QEMU_ARCH_M68K
87 #elif defined(TARGET_LM32)
88 #define QEMU_ARCH QEMU_ARCH_LM32
89 #elif defined(TARGET_MICROBLAZE)
90 #define QEMU_ARCH QEMU_ARCH_MICROBLAZE
91 #elif defined(TARGET_MIPS)
92 #define QEMU_ARCH QEMU_ARCH_MIPS
93 #elif defined(TARGET_MOXIE)
94 #define QEMU_ARCH QEMU_ARCH_MOXIE
95 #elif defined(TARGET_OPENRISC)
96 #define QEMU_ARCH QEMU_ARCH_OPENRISC
97 #elif defined(TARGET_PPC)
98 #define QEMU_ARCH QEMU_ARCH_PPC
99 #elif defined(TARGET_S390X)
100 #define QEMU_ARCH QEMU_ARCH_S390X
101 #elif defined(TARGET_SH4)
102 #define QEMU_ARCH QEMU_ARCH_SH4
103 #elif defined(TARGET_SPARC)
104 #define QEMU_ARCH QEMU_ARCH_SPARC
105 #elif defined(TARGET_XTENSA)
106 #define QEMU_ARCH QEMU_ARCH_XTENSA
107 #elif defined(TARGET_UNICORE32)
108 #define QEMU_ARCH QEMU_ARCH_UNICORE32
109 #elif defined(TARGET_TRICORE)
110 #define QEMU_ARCH QEMU_ARCH_TRICORE
111 #endif
113 const uint32_t arch_type = QEMU_ARCH;
114 static bool mig_throttle_on;
115 static int dirty_rate_high_cnt;
116 static void check_guest_throttling(void);
118 static uint64_t bitmap_sync_count;
120 /***********************************************************/
121 /* ram save/restore */
123 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
124 #define RAM_SAVE_FLAG_COMPRESS 0x02
125 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
126 #define RAM_SAVE_FLAG_PAGE 0x08
127 #define RAM_SAVE_FLAG_EOS 0x10
128 #define RAM_SAVE_FLAG_CONTINUE 0x20
129 #define RAM_SAVE_FLAG_XBZRLE 0x40
130 /* 0x80 is reserved in migration.h start with 0x100 next */
131 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
133 static struct defconfig_file {
134 const char *filename;
135 /* Indicates it is an user config file (disabled by -no-user-config) */
136 bool userconfig;
137 } default_config_files[] = {
138 { CONFIG_QEMU_CONFDIR "/qemu.conf", true },
139 { NULL }, /* end of list */
142 static const uint8_t ZERO_TARGET_PAGE[TARGET_PAGE_SIZE];
144 int qemu_read_default_config_files(bool userconfig)
146 int ret;
147 struct defconfig_file *f;
149 for (f = default_config_files; f->filename; f++) {
150 if (!userconfig && f->userconfig) {
151 continue;
153 ret = qemu_read_config_file(f->filename);
154 if (ret < 0 && ret != -ENOENT) {
155 return ret;
159 return 0;
162 static inline bool is_zero_range(uint8_t *p, uint64_t size)
164 return buffer_find_nonzero_offset(p, size) == size;
167 /* struct contains XBZRLE cache and a static page
168 used by the compression */
169 static struct {
170 /* buffer used for XBZRLE encoding */
171 uint8_t *encoded_buf;
172 /* buffer for storing page content */
173 uint8_t *current_buf;
174 /* Cache for XBZRLE, Protected by lock. */
175 PageCache *cache;
176 QemuMutex lock;
177 } XBZRLE;
179 /* buffer used for XBZRLE decoding */
180 static uint8_t *xbzrle_decoded_buf;
182 static void XBZRLE_cache_lock(void)
184 if (migrate_use_xbzrle())
185 qemu_mutex_lock(&XBZRLE.lock);
188 static void XBZRLE_cache_unlock(void)
190 if (migrate_use_xbzrle())
191 qemu_mutex_unlock(&XBZRLE.lock);
195 * called from qmp_migrate_set_cache_size in main thread, possibly while
196 * a migration is in progress.
197 * A running migration maybe using the cache and might finish during this
198 * call, hence changes to the cache are protected by XBZRLE.lock().
200 int64_t xbzrle_cache_resize(int64_t new_size)
202 PageCache *new_cache;
203 int64_t ret;
205 if (new_size < TARGET_PAGE_SIZE) {
206 return -1;
209 XBZRLE_cache_lock();
211 if (XBZRLE.cache != NULL) {
212 if (pow2floor(new_size) == migrate_xbzrle_cache_size()) {
213 goto out_new_size;
215 new_cache = cache_init(new_size / TARGET_PAGE_SIZE,
216 TARGET_PAGE_SIZE);
217 if (!new_cache) {
218 error_report("Error creating cache");
219 ret = -1;
220 goto out;
223 cache_fini(XBZRLE.cache);
224 XBZRLE.cache = new_cache;
227 out_new_size:
228 ret = pow2floor(new_size);
229 out:
230 XBZRLE_cache_unlock();
231 return ret;
234 /* accounting for migration statistics */
235 typedef struct AccountingInfo {
236 uint64_t dup_pages;
237 uint64_t skipped_pages;
238 uint64_t norm_pages;
239 uint64_t iterations;
240 uint64_t xbzrle_bytes;
241 uint64_t xbzrle_pages;
242 uint64_t xbzrle_cache_miss;
243 double xbzrle_cache_miss_rate;
244 uint64_t xbzrle_overflows;
245 } AccountingInfo;
247 static AccountingInfo acct_info;
249 static void acct_clear(void)
251 memset(&acct_info, 0, sizeof(acct_info));
254 uint64_t dup_mig_bytes_transferred(void)
256 return acct_info.dup_pages * TARGET_PAGE_SIZE;
259 uint64_t dup_mig_pages_transferred(void)
261 return acct_info.dup_pages;
264 uint64_t skipped_mig_bytes_transferred(void)
266 return acct_info.skipped_pages * TARGET_PAGE_SIZE;
269 uint64_t skipped_mig_pages_transferred(void)
271 return acct_info.skipped_pages;
274 uint64_t norm_mig_bytes_transferred(void)
276 return acct_info.norm_pages * TARGET_PAGE_SIZE;
279 uint64_t norm_mig_pages_transferred(void)
281 return acct_info.norm_pages;
284 uint64_t xbzrle_mig_bytes_transferred(void)
286 return acct_info.xbzrle_bytes;
289 uint64_t xbzrle_mig_pages_transferred(void)
291 return acct_info.xbzrle_pages;
294 uint64_t xbzrle_mig_pages_cache_miss(void)
296 return acct_info.xbzrle_cache_miss;
299 double xbzrle_mig_cache_miss_rate(void)
301 return acct_info.xbzrle_cache_miss_rate;
304 uint64_t xbzrle_mig_pages_overflow(void)
306 return acct_info.xbzrle_overflows;
309 /* This is the last block that we have visited serching for dirty pages
311 static RAMBlock *last_seen_block;
312 /* This is the last block from where we have sent data */
313 static RAMBlock *last_sent_block;
314 static ram_addr_t last_offset;
315 static unsigned long *migration_bitmap;
316 static uint64_t migration_dirty_pages;
317 static uint32_t last_version;
318 static bool ram_bulk_stage;
320 struct CompressParam {
321 bool start;
322 bool done;
323 QEMUFile *file;
324 QemuMutex mutex;
325 QemuCond cond;
326 RAMBlock *block;
327 ram_addr_t offset;
329 typedef struct CompressParam CompressParam;
331 struct DecompressParam {
332 bool start;
333 QemuMutex mutex;
334 QemuCond cond;
335 void *des;
336 uint8 *compbuf;
337 int len;
339 typedef struct DecompressParam DecompressParam;
341 static CompressParam *comp_param;
342 static QemuThread *compress_threads;
343 /* comp_done_cond is used to wake up the migration thread when
344 * one of the compression threads has finished the compression.
345 * comp_done_lock is used to co-work with comp_done_cond.
347 static QemuMutex *comp_done_lock;
348 static QemuCond *comp_done_cond;
349 /* The empty QEMUFileOps will be used by file in CompressParam */
350 static const QEMUFileOps empty_ops = { };
352 static bool compression_switch;
353 static bool quit_comp_thread;
354 static bool quit_decomp_thread;
355 static DecompressParam *decomp_param;
356 static QemuThread *decompress_threads;
357 static uint8_t *compressed_data_buf;
359 static int do_compress_ram_page(CompressParam *param);
361 static void *do_data_compress(void *opaque)
363 CompressParam *param = opaque;
365 while (!quit_comp_thread) {
366 qemu_mutex_lock(&param->mutex);
367 /* Re-check the quit_comp_thread in case of
368 * terminate_compression_threads is called just before
369 * qemu_mutex_lock(&param->mutex) and after
370 * while(!quit_comp_thread), re-check it here can make
371 * sure the compression thread terminate as expected.
373 while (!param->start && !quit_comp_thread) {
374 qemu_cond_wait(&param->cond, &param->mutex);
376 if (!quit_comp_thread) {
377 do_compress_ram_page(param);
379 param->start = false;
380 qemu_mutex_unlock(&param->mutex);
382 qemu_mutex_lock(comp_done_lock);
383 param->done = true;
384 qemu_cond_signal(comp_done_cond);
385 qemu_mutex_unlock(comp_done_lock);
388 return NULL;
391 static inline void terminate_compression_threads(void)
393 int idx, thread_count;
395 thread_count = migrate_compress_threads();
396 quit_comp_thread = true;
397 for (idx = 0; idx < thread_count; idx++) {
398 qemu_mutex_lock(&comp_param[idx].mutex);
399 qemu_cond_signal(&comp_param[idx].cond);
400 qemu_mutex_unlock(&comp_param[idx].mutex);
404 void migrate_compress_threads_join(void)
406 int i, thread_count;
408 if (!migrate_use_compression()) {
409 return;
411 terminate_compression_threads();
412 thread_count = migrate_compress_threads();
413 for (i = 0; i < thread_count; i++) {
414 qemu_thread_join(compress_threads + i);
415 qemu_fclose(comp_param[i].file);
416 qemu_mutex_destroy(&comp_param[i].mutex);
417 qemu_cond_destroy(&comp_param[i].cond);
419 qemu_mutex_destroy(comp_done_lock);
420 qemu_cond_destroy(comp_done_cond);
421 g_free(compress_threads);
422 g_free(comp_param);
423 g_free(comp_done_cond);
424 g_free(comp_done_lock);
425 compress_threads = NULL;
426 comp_param = NULL;
427 comp_done_cond = NULL;
428 comp_done_lock = NULL;
431 void migrate_compress_threads_create(void)
433 int i, thread_count;
435 if (!migrate_use_compression()) {
436 return;
438 quit_comp_thread = false;
439 compression_switch = true;
440 thread_count = migrate_compress_threads();
441 compress_threads = g_new0(QemuThread, thread_count);
442 comp_param = g_new0(CompressParam, thread_count);
443 comp_done_cond = g_new0(QemuCond, 1);
444 comp_done_lock = g_new0(QemuMutex, 1);
445 qemu_cond_init(comp_done_cond);
446 qemu_mutex_init(comp_done_lock);
447 for (i = 0; i < thread_count; i++) {
448 /* com_param[i].file is just used as a dummy buffer to save data, set
449 * it's ops to empty.
451 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops);
452 comp_param[i].done = true;
453 qemu_mutex_init(&comp_param[i].mutex);
454 qemu_cond_init(&comp_param[i].cond);
455 qemu_thread_create(compress_threads + i, "compress",
456 do_data_compress, comp_param + i,
457 QEMU_THREAD_JOINABLE);
462 * save_page_header: Write page header to wire
464 * If this is the 1st block, it also writes the block identification
466 * Returns: Number of bytes written
468 * @f: QEMUFile where to send the data
469 * @block: block that contains the page we want to send
470 * @offset: offset inside the block for the page
471 * in the lower bits, it contains flags
473 static size_t save_page_header(QEMUFile *f, RAMBlock *block, ram_addr_t offset)
475 size_t size;
477 qemu_put_be64(f, offset);
478 size = 8;
480 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
481 qemu_put_byte(f, strlen(block->idstr));
482 qemu_put_buffer(f, (uint8_t *)block->idstr,
483 strlen(block->idstr));
484 size += 1 + strlen(block->idstr);
486 return size;
489 /* Update the xbzrle cache to reflect a page that's been sent as all 0.
490 * The important thing is that a stale (not-yet-0'd) page be replaced
491 * by the new data.
492 * As a bonus, if the page wasn't in the cache it gets added so that
493 * when a small write is made into the 0'd page it gets XBZRLE sent
495 static void xbzrle_cache_zero_page(ram_addr_t current_addr)
497 if (ram_bulk_stage || !migrate_use_xbzrle()) {
498 return;
501 /* We don't care if this fails to allocate a new cache page
502 * as long as it updated an old one */
503 cache_insert(XBZRLE.cache, current_addr, ZERO_TARGET_PAGE,
504 bitmap_sync_count);
507 #define ENCODING_FLAG_XBZRLE 0x1
510 * save_xbzrle_page: compress and send current page
512 * Returns: 1 means that we wrote the page
513 * 0 means that page is identical to the one already sent
514 * -1 means that xbzrle would be longer than normal
516 * @f: QEMUFile where to send the data
517 * @current_data:
518 * @current_addr:
519 * @block: block that contains the page we want to send
520 * @offset: offset inside the block for the page
521 * @last_stage: if we are at the completion stage
522 * @bytes_transferred: increase it with the number of transferred bytes
524 static int save_xbzrle_page(QEMUFile *f, uint8_t **current_data,
525 ram_addr_t current_addr, RAMBlock *block,
526 ram_addr_t offset, bool last_stage,
527 uint64_t *bytes_transferred)
529 int encoded_len = 0, bytes_xbzrle;
530 uint8_t *prev_cached_page;
532 if (!cache_is_cached(XBZRLE.cache, current_addr, bitmap_sync_count)) {
533 acct_info.xbzrle_cache_miss++;
534 if (!last_stage) {
535 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
536 bitmap_sync_count) == -1) {
537 return -1;
538 } else {
539 /* update *current_data when the page has been
540 inserted into cache */
541 *current_data = get_cached_data(XBZRLE.cache, current_addr);
544 return -1;
547 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
549 /* save current buffer into memory */
550 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
552 /* XBZRLE encoding (if there is no overflow) */
553 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
554 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
555 TARGET_PAGE_SIZE);
556 if (encoded_len == 0) {
557 DPRINTF("Skipping unmodified page\n");
558 return 0;
559 } else if (encoded_len == -1) {
560 DPRINTF("Overflow\n");
561 acct_info.xbzrle_overflows++;
562 /* update data in the cache */
563 if (!last_stage) {
564 memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE);
565 *current_data = prev_cached_page;
567 return -1;
570 /* we need to update the data in the cache, in order to get the same data */
571 if (!last_stage) {
572 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
575 /* Send XBZRLE based compressed page */
576 bytes_xbzrle = save_page_header(f, block, offset | RAM_SAVE_FLAG_XBZRLE);
577 qemu_put_byte(f, ENCODING_FLAG_XBZRLE);
578 qemu_put_be16(f, encoded_len);
579 qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len);
580 bytes_xbzrle += encoded_len + 1 + 2;
581 acct_info.xbzrle_pages++;
582 acct_info.xbzrle_bytes += bytes_xbzrle;
583 *bytes_transferred += bytes_xbzrle;
585 return 1;
588 static inline
589 ram_addr_t migration_bitmap_find_and_reset_dirty(MemoryRegion *mr,
590 ram_addr_t start)
592 unsigned long base = mr->ram_addr >> TARGET_PAGE_BITS;
593 unsigned long nr = base + (start >> TARGET_PAGE_BITS);
594 uint64_t mr_size = TARGET_PAGE_ALIGN(memory_region_size(mr));
595 unsigned long size = base + (mr_size >> TARGET_PAGE_BITS);
597 unsigned long next;
599 if (ram_bulk_stage && nr > base) {
600 next = nr + 1;
601 } else {
602 next = find_next_bit(migration_bitmap, size, nr);
605 if (next < size) {
606 clear_bit(next, migration_bitmap);
607 migration_dirty_pages--;
609 return (next - base) << TARGET_PAGE_BITS;
612 static void migration_bitmap_sync_range(ram_addr_t start, ram_addr_t length)
614 migration_dirty_pages +=
615 cpu_physical_memory_sync_dirty_bitmap(migration_bitmap, start, length);
619 /* Fix me: there are too many global variables used in migration process. */
620 static int64_t start_time;
621 static int64_t bytes_xfer_prev;
622 static int64_t num_dirty_pages_period;
623 static uint64_t xbzrle_cache_miss_prev;
624 static uint64_t iterations_prev;
626 static void migration_bitmap_sync_init(void)
628 start_time = 0;
629 bytes_xfer_prev = 0;
630 num_dirty_pages_period = 0;
631 xbzrle_cache_miss_prev = 0;
632 iterations_prev = 0;
635 /* Called with iothread lock held, to protect ram_list.dirty_memory[] */
636 static void migration_bitmap_sync(void)
638 RAMBlock *block;
639 uint64_t num_dirty_pages_init = migration_dirty_pages;
640 MigrationState *s = migrate_get_current();
641 int64_t end_time;
642 int64_t bytes_xfer_now;
644 bitmap_sync_count++;
646 if (!bytes_xfer_prev) {
647 bytes_xfer_prev = ram_bytes_transferred();
650 if (!start_time) {
651 start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
654 trace_migration_bitmap_sync_start();
655 address_space_sync_dirty_bitmap(&address_space_memory);
657 rcu_read_lock();
658 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
659 migration_bitmap_sync_range(block->mr->ram_addr, block->used_length);
661 rcu_read_unlock();
663 trace_migration_bitmap_sync_end(migration_dirty_pages
664 - num_dirty_pages_init);
665 num_dirty_pages_period += migration_dirty_pages - num_dirty_pages_init;
666 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
668 /* more than 1 second = 1000 millisecons */
669 if (end_time > start_time + 1000) {
670 if (migrate_auto_converge()) {
671 /* The following detection logic can be refined later. For now:
672 Check to see if the dirtied bytes is 50% more than the approx.
673 amount of bytes that just got transferred since the last time we
674 were in this routine. If that happens >N times (for now N==4)
675 we turn on the throttle down logic */
676 bytes_xfer_now = ram_bytes_transferred();
677 if (s->dirty_pages_rate &&
678 (num_dirty_pages_period * TARGET_PAGE_SIZE >
679 (bytes_xfer_now - bytes_xfer_prev)/2) &&
680 (dirty_rate_high_cnt++ > 4)) {
681 trace_migration_throttle();
682 mig_throttle_on = true;
683 dirty_rate_high_cnt = 0;
685 bytes_xfer_prev = bytes_xfer_now;
686 } else {
687 mig_throttle_on = false;
689 if (migrate_use_xbzrle()) {
690 if (iterations_prev != acct_info.iterations) {
691 acct_info.xbzrle_cache_miss_rate =
692 (double)(acct_info.xbzrle_cache_miss -
693 xbzrle_cache_miss_prev) /
694 (acct_info.iterations - iterations_prev);
696 iterations_prev = acct_info.iterations;
697 xbzrle_cache_miss_prev = acct_info.xbzrle_cache_miss;
699 s->dirty_pages_rate = num_dirty_pages_period * 1000
700 / (end_time - start_time);
701 s->dirty_bytes_rate = s->dirty_pages_rate * TARGET_PAGE_SIZE;
702 start_time = end_time;
703 num_dirty_pages_period = 0;
705 s->dirty_sync_count = bitmap_sync_count;
709 * save_zero_page: Send the zero page to the stream
711 * Returns: Number of pages written.
713 * @f: QEMUFile where to send the data
714 * @block: block that contains the page we want to send
715 * @offset: offset inside the block for the page
716 * @p: pointer to the page
717 * @bytes_transferred: increase it with the number of transferred bytes
719 static int save_zero_page(QEMUFile *f, RAMBlock *block, ram_addr_t offset,
720 uint8_t *p, uint64_t *bytes_transferred)
722 int pages = -1;
724 if (is_zero_range(p, TARGET_PAGE_SIZE)) {
725 acct_info.dup_pages++;
726 *bytes_transferred += save_page_header(f, block,
727 offset | RAM_SAVE_FLAG_COMPRESS);
728 qemu_put_byte(f, 0);
729 *bytes_transferred += 1;
730 pages = 1;
733 return pages;
737 * ram_save_page: Send the given page to the stream
739 * Returns: Number of pages written.
741 * @f: QEMUFile where to send the data
742 * @block: block that contains the page we want to send
743 * @offset: offset inside the block for the page
744 * @last_stage: if we are at the completion stage
745 * @bytes_transferred: increase it with the number of transferred bytes
747 static int ram_save_page(QEMUFile *f, RAMBlock* block, ram_addr_t offset,
748 bool last_stage, uint64_t *bytes_transferred)
750 int pages = -1;
751 uint64_t bytes_xmit;
752 ram_addr_t current_addr;
753 MemoryRegion *mr = block->mr;
754 uint8_t *p;
755 int ret;
756 bool send_async = true;
758 p = memory_region_get_ram_ptr(mr) + offset;
760 /* In doubt sent page as normal */
761 bytes_xmit = 0;
762 ret = ram_control_save_page(f, block->offset,
763 offset, TARGET_PAGE_SIZE, &bytes_xmit);
764 if (bytes_xmit) {
765 *bytes_transferred += bytes_xmit;
766 pages = 1;
769 XBZRLE_cache_lock();
771 current_addr = block->offset + offset;
773 if (block == last_sent_block) {
774 offset |= RAM_SAVE_FLAG_CONTINUE;
776 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
777 if (ret != RAM_SAVE_CONTROL_DELAYED) {
778 if (bytes_xmit > 0) {
779 acct_info.norm_pages++;
780 } else if (bytes_xmit == 0) {
781 acct_info.dup_pages++;
784 } else {
785 pages = save_zero_page(f, block, offset, p, bytes_transferred);
786 if (pages > 0) {
787 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
788 * page would be stale
790 xbzrle_cache_zero_page(current_addr);
791 } else if (!ram_bulk_stage && migrate_use_xbzrle()) {
792 pages = save_xbzrle_page(f, &p, current_addr, block,
793 offset, last_stage, bytes_transferred);
794 if (!last_stage) {
795 /* Can't send this cached data async, since the cache page
796 * might get updated before it gets to the wire
798 send_async = false;
803 /* XBZRLE overflow or normal page */
804 if (pages == -1) {
805 *bytes_transferred += save_page_header(f, block,
806 offset | RAM_SAVE_FLAG_PAGE);
807 if (send_async) {
808 qemu_put_buffer_async(f, p, TARGET_PAGE_SIZE);
809 } else {
810 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
812 *bytes_transferred += TARGET_PAGE_SIZE;
813 pages = 1;
814 acct_info.norm_pages++;
817 XBZRLE_cache_unlock();
819 return pages;
822 static int do_compress_ram_page(CompressParam *param)
824 int bytes_sent, blen;
825 uint8_t *p;
826 RAMBlock *block = param->block;
827 ram_addr_t offset = param->offset;
829 p = memory_region_get_ram_ptr(block->mr) + (offset & TARGET_PAGE_MASK);
831 bytes_sent = save_page_header(param->file, block, offset |
832 RAM_SAVE_FLAG_COMPRESS_PAGE);
833 blen = qemu_put_compression_data(param->file, p, TARGET_PAGE_SIZE,
834 migrate_compress_level());
835 bytes_sent += blen;
837 return bytes_sent;
840 static inline void start_compression(CompressParam *param)
842 param->done = false;
843 qemu_mutex_lock(&param->mutex);
844 param->start = true;
845 qemu_cond_signal(&param->cond);
846 qemu_mutex_unlock(&param->mutex);
849 static inline void start_decompression(DecompressParam *param)
851 qemu_mutex_lock(&param->mutex);
852 param->start = true;
853 qemu_cond_signal(&param->cond);
854 qemu_mutex_unlock(&param->mutex);
857 static uint64_t bytes_transferred;
859 static void flush_compressed_data(QEMUFile *f)
861 int idx, len, thread_count;
863 if (!migrate_use_compression()) {
864 return;
866 thread_count = migrate_compress_threads();
867 for (idx = 0; idx < thread_count; idx++) {
868 if (!comp_param[idx].done) {
869 qemu_mutex_lock(comp_done_lock);
870 while (!comp_param[idx].done && !quit_comp_thread) {
871 qemu_cond_wait(comp_done_cond, comp_done_lock);
873 qemu_mutex_unlock(comp_done_lock);
875 if (!quit_comp_thread) {
876 len = qemu_put_qemu_file(f, comp_param[idx].file);
877 bytes_transferred += len;
882 static inline void set_compress_params(CompressParam *param, RAMBlock *block,
883 ram_addr_t offset)
885 param->block = block;
886 param->offset = offset;
889 static int compress_page_with_multi_thread(QEMUFile *f, RAMBlock *block,
890 ram_addr_t offset,
891 uint64_t *bytes_transferred)
893 int idx, thread_count, bytes_xmit = -1, pages = -1;
895 thread_count = migrate_compress_threads();
896 qemu_mutex_lock(comp_done_lock);
897 while (true) {
898 for (idx = 0; idx < thread_count; idx++) {
899 if (comp_param[idx].done) {
900 bytes_xmit = qemu_put_qemu_file(f, comp_param[idx].file);
901 set_compress_params(&comp_param[idx], block, offset);
902 start_compression(&comp_param[idx]);
903 pages = 1;
904 acct_info.norm_pages++;
905 *bytes_transferred += bytes_xmit;
906 break;
909 if (pages > 0) {
910 break;
911 } else {
912 qemu_cond_wait(comp_done_cond, comp_done_lock);
915 qemu_mutex_unlock(comp_done_lock);
917 return pages;
921 * ram_save_compressed_page: compress the given page and send it to the stream
923 * Returns: Number of pages written.
925 * @f: QEMUFile where to send the data
926 * @block: block that contains the page we want to send
927 * @offset: offset inside the block for the page
928 * @last_stage: if we are at the completion stage
929 * @bytes_transferred: increase it with the number of transferred bytes
931 static int ram_save_compressed_page(QEMUFile *f, RAMBlock *block,
932 ram_addr_t offset, bool last_stage,
933 uint64_t *bytes_transferred)
935 int pages = -1;
936 uint64_t bytes_xmit;
937 MemoryRegion *mr = block->mr;
938 uint8_t *p;
939 int ret;
941 p = memory_region_get_ram_ptr(mr) + offset;
943 bytes_xmit = 0;
944 ret = ram_control_save_page(f, block->offset,
945 offset, TARGET_PAGE_SIZE, &bytes_xmit);
946 if (bytes_xmit) {
947 *bytes_transferred += bytes_xmit;
948 pages = 1;
950 if (block == last_sent_block) {
951 offset |= RAM_SAVE_FLAG_CONTINUE;
953 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
954 if (ret != RAM_SAVE_CONTROL_DELAYED) {
955 if (bytes_xmit > 0) {
956 acct_info.norm_pages++;
957 } else if (bytes_xmit == 0) {
958 acct_info.dup_pages++;
961 } else {
962 /* When starting the process of a new block, the first page of
963 * the block should be sent out before other pages in the same
964 * block, and all the pages in last block should have been sent
965 * out, keeping this order is important, because the 'cont' flag
966 * is used to avoid resending the block name.
968 if (block != last_sent_block) {
969 flush_compressed_data(f);
970 pages = save_zero_page(f, block, offset, p, bytes_transferred);
971 if (pages == -1) {
972 set_compress_params(&comp_param[0], block, offset);
973 /* Use the qemu thread to compress the data to make sure the
974 * first page is sent out before other pages
976 bytes_xmit = do_compress_ram_page(&comp_param[0]);
977 acct_info.norm_pages++;
978 qemu_put_qemu_file(f, comp_param[0].file);
979 *bytes_transferred += bytes_xmit;
980 pages = 1;
982 } else {
983 pages = save_zero_page(f, block, offset, p, bytes_transferred);
984 if (pages == -1) {
985 pages = compress_page_with_multi_thread(f, block, offset,
986 bytes_transferred);
991 return pages;
995 * ram_find_and_save_block: Finds a dirty page and sends it to f
997 * Called within an RCU critical section.
999 * Returns: The number of pages written
1000 * 0 means no dirty pages
1002 * @f: QEMUFile where to send the data
1003 * @last_stage: if we are at the completion stage
1004 * @bytes_transferred: increase it with the number of transferred bytes
1007 static int ram_find_and_save_block(QEMUFile *f, bool last_stage,
1008 uint64_t *bytes_transferred)
1010 RAMBlock *block = last_seen_block;
1011 ram_addr_t offset = last_offset;
1012 bool complete_round = false;
1013 int pages = 0;
1014 MemoryRegion *mr;
1016 if (!block)
1017 block = QLIST_FIRST_RCU(&ram_list.blocks);
1019 while (true) {
1020 mr = block->mr;
1021 offset = migration_bitmap_find_and_reset_dirty(mr, offset);
1022 if (complete_round && block == last_seen_block &&
1023 offset >= last_offset) {
1024 break;
1026 if (offset >= block->used_length) {
1027 offset = 0;
1028 block = QLIST_NEXT_RCU(block, next);
1029 if (!block) {
1030 block = QLIST_FIRST_RCU(&ram_list.blocks);
1031 complete_round = true;
1032 ram_bulk_stage = false;
1033 if (migrate_use_xbzrle()) {
1034 /* If xbzrle is on, stop using the data compression at this
1035 * point. In theory, xbzrle can do better than compression.
1037 flush_compressed_data(f);
1038 compression_switch = false;
1041 } else {
1042 if (compression_switch && migrate_use_compression()) {
1043 pages = ram_save_compressed_page(f, block, offset, last_stage,
1044 bytes_transferred);
1045 } else {
1046 pages = ram_save_page(f, block, offset, last_stage,
1047 bytes_transferred);
1050 /* if page is unmodified, continue to the next */
1051 if (pages > 0) {
1052 last_sent_block = block;
1053 break;
1058 last_seen_block = block;
1059 last_offset = offset;
1061 return pages;
1064 void acct_update_position(QEMUFile *f, size_t size, bool zero)
1066 uint64_t pages = size / TARGET_PAGE_SIZE;
1067 if (zero) {
1068 acct_info.dup_pages += pages;
1069 } else {
1070 acct_info.norm_pages += pages;
1071 bytes_transferred += size;
1072 qemu_update_position(f, size);
1076 static ram_addr_t ram_save_remaining(void)
1078 return migration_dirty_pages;
1081 uint64_t ram_bytes_remaining(void)
1083 return ram_save_remaining() * TARGET_PAGE_SIZE;
1086 uint64_t ram_bytes_transferred(void)
1088 return bytes_transferred;
1091 uint64_t ram_bytes_total(void)
1093 RAMBlock *block;
1094 uint64_t total = 0;
1096 rcu_read_lock();
1097 QLIST_FOREACH_RCU(block, &ram_list.blocks, next)
1098 total += block->used_length;
1099 rcu_read_unlock();
1100 return total;
1103 void free_xbzrle_decoded_buf(void)
1105 g_free(xbzrle_decoded_buf);
1106 xbzrle_decoded_buf = NULL;
1109 static void migration_end(void)
1111 if (migration_bitmap) {
1112 memory_global_dirty_log_stop();
1113 g_free(migration_bitmap);
1114 migration_bitmap = NULL;
1117 XBZRLE_cache_lock();
1118 if (XBZRLE.cache) {
1119 cache_fini(XBZRLE.cache);
1120 g_free(XBZRLE.encoded_buf);
1121 g_free(XBZRLE.current_buf);
1122 XBZRLE.cache = NULL;
1123 XBZRLE.encoded_buf = NULL;
1124 XBZRLE.current_buf = NULL;
1126 XBZRLE_cache_unlock();
1129 static void ram_migration_cancel(void *opaque)
1131 migration_end();
1134 static void reset_ram_globals(void)
1136 last_seen_block = NULL;
1137 last_sent_block = NULL;
1138 last_offset = 0;
1139 last_version = ram_list.version;
1140 ram_bulk_stage = true;
1143 #define MAX_WAIT 50 /* ms, half buffered_file limit */
1146 /* Each of ram_save_setup, ram_save_iterate and ram_save_complete has
1147 * long-running RCU critical section. When rcu-reclaims in the code
1148 * start to become numerous it will be necessary to reduce the
1149 * granularity of these critical sections.
1152 static int ram_save_setup(QEMUFile *f, void *opaque)
1154 RAMBlock *block;
1155 int64_t ram_bitmap_pages; /* Size of bitmap in pages, including gaps */
1157 mig_throttle_on = false;
1158 dirty_rate_high_cnt = 0;
1159 bitmap_sync_count = 0;
1160 migration_bitmap_sync_init();
1162 if (migrate_use_xbzrle()) {
1163 XBZRLE_cache_lock();
1164 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() /
1165 TARGET_PAGE_SIZE,
1166 TARGET_PAGE_SIZE);
1167 if (!XBZRLE.cache) {
1168 XBZRLE_cache_unlock();
1169 error_report("Error creating cache");
1170 return -1;
1172 XBZRLE_cache_unlock();
1174 /* We prefer not to abort if there is no memory */
1175 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
1176 if (!XBZRLE.encoded_buf) {
1177 error_report("Error allocating encoded_buf");
1178 return -1;
1181 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
1182 if (!XBZRLE.current_buf) {
1183 error_report("Error allocating current_buf");
1184 g_free(XBZRLE.encoded_buf);
1185 XBZRLE.encoded_buf = NULL;
1186 return -1;
1189 acct_clear();
1192 /* iothread lock needed for ram_list.dirty_memory[] */
1193 qemu_mutex_lock_iothread();
1194 qemu_mutex_lock_ramlist();
1195 rcu_read_lock();
1196 bytes_transferred = 0;
1197 reset_ram_globals();
1199 ram_bitmap_pages = last_ram_offset() >> TARGET_PAGE_BITS;
1200 migration_bitmap = bitmap_new(ram_bitmap_pages);
1201 bitmap_set(migration_bitmap, 0, ram_bitmap_pages);
1204 * Count the total number of pages used by ram blocks not including any
1205 * gaps due to alignment or unplugs.
1207 migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS;
1209 memory_global_dirty_log_start();
1210 migration_bitmap_sync();
1211 qemu_mutex_unlock_ramlist();
1212 qemu_mutex_unlock_iothread();
1214 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
1216 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1217 qemu_put_byte(f, strlen(block->idstr));
1218 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
1219 qemu_put_be64(f, block->used_length);
1222 rcu_read_unlock();
1224 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
1225 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
1227 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
1229 return 0;
1232 static int ram_save_iterate(QEMUFile *f, void *opaque)
1234 int ret;
1235 int i;
1236 int64_t t0;
1237 int pages_sent = 0;
1239 rcu_read_lock();
1240 if (ram_list.version != last_version) {
1241 reset_ram_globals();
1244 /* Read version before ram_list.blocks */
1245 smp_rmb();
1247 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
1249 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1250 i = 0;
1251 while ((ret = qemu_file_rate_limit(f)) == 0) {
1252 int pages;
1254 pages = ram_find_and_save_block(f, false, &bytes_transferred);
1255 /* no more pages to sent */
1256 if (pages == 0) {
1257 break;
1259 pages_sent += pages;
1260 acct_info.iterations++;
1261 check_guest_throttling();
1262 /* we want to check in the 1st loop, just in case it was the 1st time
1263 and we had to sync the dirty bitmap.
1264 qemu_get_clock_ns() is a bit expensive, so we only check each some
1265 iterations
1267 if ((i & 63) == 0) {
1268 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
1269 if (t1 > MAX_WAIT) {
1270 DPRINTF("big wait: %" PRIu64 " milliseconds, %d iterations\n",
1271 t1, i);
1272 break;
1275 i++;
1277 flush_compressed_data(f);
1278 rcu_read_unlock();
1281 * Must occur before EOS (or any QEMUFile operation)
1282 * because of RDMA protocol.
1284 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
1286 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
1287 bytes_transferred += 8;
1289 ret = qemu_file_get_error(f);
1290 if (ret < 0) {
1291 return ret;
1294 return pages_sent;
1297 /* Called with iothread lock */
1298 static int ram_save_complete(QEMUFile *f, void *opaque)
1300 rcu_read_lock();
1302 migration_bitmap_sync();
1304 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
1306 /* try transferring iterative blocks of memory */
1308 /* flush all remaining blocks regardless of rate limiting */
1309 while (true) {
1310 int pages;
1312 pages = ram_find_and_save_block(f, true, &bytes_transferred);
1313 /* no more blocks to sent */
1314 if (pages == 0) {
1315 break;
1319 flush_compressed_data(f);
1320 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
1321 migration_end();
1323 rcu_read_unlock();
1324 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
1326 return 0;
1329 static uint64_t ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size)
1331 uint64_t remaining_size;
1333 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
1335 if (remaining_size < max_size) {
1336 qemu_mutex_lock_iothread();
1337 rcu_read_lock();
1338 migration_bitmap_sync();
1339 rcu_read_unlock();
1340 qemu_mutex_unlock_iothread();
1341 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
1343 return remaining_size;
1346 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
1348 unsigned int xh_len;
1349 int xh_flags;
1351 if (!xbzrle_decoded_buf) {
1352 xbzrle_decoded_buf = g_malloc(TARGET_PAGE_SIZE);
1355 /* extract RLE header */
1356 xh_flags = qemu_get_byte(f);
1357 xh_len = qemu_get_be16(f);
1359 if (xh_flags != ENCODING_FLAG_XBZRLE) {
1360 error_report("Failed to load XBZRLE page - wrong compression!");
1361 return -1;
1364 if (xh_len > TARGET_PAGE_SIZE) {
1365 error_report("Failed to load XBZRLE page - len overflow!");
1366 return -1;
1368 /* load data and decode */
1369 qemu_get_buffer(f, xbzrle_decoded_buf, xh_len);
1371 /* decode RLE */
1372 if (xbzrle_decode_buffer(xbzrle_decoded_buf, xh_len, host,
1373 TARGET_PAGE_SIZE) == -1) {
1374 error_report("Failed to load XBZRLE page - decode error!");
1375 return -1;
1378 return 0;
1381 /* Must be called from within a rcu critical section.
1382 * Returns a pointer from within the RCU-protected ram_list.
1384 static inline void *host_from_stream_offset(QEMUFile *f,
1385 ram_addr_t offset,
1386 int flags)
1388 static RAMBlock *block = NULL;
1389 char id[256];
1390 uint8_t len;
1392 if (flags & RAM_SAVE_FLAG_CONTINUE) {
1393 if (!block || block->max_length <= offset) {
1394 error_report("Ack, bad migration stream!");
1395 return NULL;
1398 return memory_region_get_ram_ptr(block->mr) + offset;
1401 len = qemu_get_byte(f);
1402 qemu_get_buffer(f, (uint8_t *)id, len);
1403 id[len] = 0;
1405 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1406 if (!strncmp(id, block->idstr, sizeof(id)) &&
1407 block->max_length > offset) {
1408 return memory_region_get_ram_ptr(block->mr) + offset;
1412 error_report("Can't find block %s!", id);
1413 return NULL;
1417 * If a page (or a whole RDMA chunk) has been
1418 * determined to be zero, then zap it.
1420 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
1422 if (ch != 0 || !is_zero_range(host, size)) {
1423 memset(host, ch, size);
1427 static void *do_data_decompress(void *opaque)
1429 DecompressParam *param = opaque;
1430 unsigned long pagesize;
1432 while (!quit_decomp_thread) {
1433 qemu_mutex_lock(&param->mutex);
1434 while (!param->start && !quit_decomp_thread) {
1435 qemu_cond_wait(&param->cond, &param->mutex);
1436 pagesize = TARGET_PAGE_SIZE;
1437 if (!quit_decomp_thread) {
1438 /* uncompress() will return failed in some case, especially
1439 * when the page is dirted when doing the compression, it's
1440 * not a problem because the dirty page will be retransferred
1441 * and uncompress() won't break the data in other pages.
1443 uncompress((Bytef *)param->des, &pagesize,
1444 (const Bytef *)param->compbuf, param->len);
1446 param->start = false;
1448 qemu_mutex_unlock(&param->mutex);
1451 return NULL;
1454 void migrate_decompress_threads_create(void)
1456 int i, thread_count;
1458 thread_count = migrate_decompress_threads();
1459 decompress_threads = g_new0(QemuThread, thread_count);
1460 decomp_param = g_new0(DecompressParam, thread_count);
1461 compressed_data_buf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
1462 quit_decomp_thread = false;
1463 for (i = 0; i < thread_count; i++) {
1464 qemu_mutex_init(&decomp_param[i].mutex);
1465 qemu_cond_init(&decomp_param[i].cond);
1466 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
1467 qemu_thread_create(decompress_threads + i, "decompress",
1468 do_data_decompress, decomp_param + i,
1469 QEMU_THREAD_JOINABLE);
1473 void migrate_decompress_threads_join(void)
1475 int i, thread_count;
1477 quit_decomp_thread = true;
1478 thread_count = migrate_decompress_threads();
1479 for (i = 0; i < thread_count; i++) {
1480 qemu_mutex_lock(&decomp_param[i].mutex);
1481 qemu_cond_signal(&decomp_param[i].cond);
1482 qemu_mutex_unlock(&decomp_param[i].mutex);
1484 for (i = 0; i < thread_count; i++) {
1485 qemu_thread_join(decompress_threads + i);
1486 qemu_mutex_destroy(&decomp_param[i].mutex);
1487 qemu_cond_destroy(&decomp_param[i].cond);
1488 g_free(decomp_param[i].compbuf);
1490 g_free(decompress_threads);
1491 g_free(decomp_param);
1492 g_free(compressed_data_buf);
1493 decompress_threads = NULL;
1494 decomp_param = NULL;
1495 compressed_data_buf = NULL;
1498 static void decompress_data_with_multi_threads(uint8_t *compbuf,
1499 void *host, int len)
1501 int idx, thread_count;
1503 thread_count = migrate_decompress_threads();
1504 while (true) {
1505 for (idx = 0; idx < thread_count; idx++) {
1506 if (!decomp_param[idx].start) {
1507 memcpy(decomp_param[idx].compbuf, compbuf, len);
1508 decomp_param[idx].des = host;
1509 decomp_param[idx].len = len;
1510 start_decompression(&decomp_param[idx]);
1511 break;
1514 if (idx < thread_count) {
1515 break;
1520 static int ram_load(QEMUFile *f, void *opaque, int version_id)
1522 int flags = 0, ret = 0;
1523 static uint64_t seq_iter;
1524 int len = 0;
1526 seq_iter++;
1528 if (version_id != 4) {
1529 ret = -EINVAL;
1532 /* This RCU critical section can be very long running.
1533 * When RCU reclaims in the code start to become numerous,
1534 * it will be necessary to reduce the granularity of this
1535 * critical section.
1537 rcu_read_lock();
1538 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
1539 ram_addr_t addr, total_ram_bytes;
1540 void *host;
1541 uint8_t ch;
1543 addr = qemu_get_be64(f);
1544 flags = addr & ~TARGET_PAGE_MASK;
1545 addr &= TARGET_PAGE_MASK;
1547 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
1548 case RAM_SAVE_FLAG_MEM_SIZE:
1549 /* Synchronize RAM block list */
1550 total_ram_bytes = addr;
1551 while (!ret && total_ram_bytes) {
1552 RAMBlock *block;
1553 uint8_t len;
1554 char id[256];
1555 ram_addr_t length;
1557 len = qemu_get_byte(f);
1558 qemu_get_buffer(f, (uint8_t *)id, len);
1559 id[len] = 0;
1560 length = qemu_get_be64(f);
1562 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1563 if (!strncmp(id, block->idstr, sizeof(id))) {
1564 if (length != block->used_length) {
1565 Error *local_err = NULL;
1567 ret = qemu_ram_resize(block->offset, length, &local_err);
1568 if (local_err) {
1569 error_report_err(local_err);
1572 break;
1576 if (!block) {
1577 error_report("Unknown ramblock \"%s\", cannot "
1578 "accept migration", id);
1579 ret = -EINVAL;
1582 total_ram_bytes -= length;
1584 break;
1585 case RAM_SAVE_FLAG_COMPRESS:
1586 host = host_from_stream_offset(f, addr, flags);
1587 if (!host) {
1588 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
1589 ret = -EINVAL;
1590 break;
1592 ch = qemu_get_byte(f);
1593 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
1594 break;
1595 case RAM_SAVE_FLAG_PAGE:
1596 host = host_from_stream_offset(f, addr, flags);
1597 if (!host) {
1598 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
1599 ret = -EINVAL;
1600 break;
1602 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
1603 break;
1604 case RAM_SAVE_FLAG_COMPRESS_PAGE:
1605 host = host_from_stream_offset(f, addr, flags);
1606 if (!host) {
1607 error_report("Invalid RAM offset " RAM_ADDR_FMT, addr);
1608 ret = -EINVAL;
1609 break;
1612 len = qemu_get_be32(f);
1613 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
1614 error_report("Invalid compressed data length: %d", len);
1615 ret = -EINVAL;
1616 break;
1618 qemu_get_buffer(f, compressed_data_buf, len);
1619 decompress_data_with_multi_threads(compressed_data_buf, host, len);
1620 break;
1621 case RAM_SAVE_FLAG_XBZRLE:
1622 host = host_from_stream_offset(f, addr, flags);
1623 if (!host) {
1624 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
1625 ret = -EINVAL;
1626 break;
1628 if (load_xbzrle(f, addr, host) < 0) {
1629 error_report("Failed to decompress XBZRLE page at "
1630 RAM_ADDR_FMT, addr);
1631 ret = -EINVAL;
1632 break;
1634 break;
1635 case RAM_SAVE_FLAG_EOS:
1636 /* normal exit */
1637 break;
1638 default:
1639 if (flags & RAM_SAVE_FLAG_HOOK) {
1640 ram_control_load_hook(f, flags);
1641 } else {
1642 error_report("Unknown combination of migration flags: %#x",
1643 flags);
1644 ret = -EINVAL;
1647 if (!ret) {
1648 ret = qemu_file_get_error(f);
1652 rcu_read_unlock();
1653 DPRINTF("Completed load of VM with exit code %d seq iteration "
1654 "%" PRIu64 "\n", ret, seq_iter);
1655 return ret;
1658 static SaveVMHandlers savevm_ram_handlers = {
1659 .save_live_setup = ram_save_setup,
1660 .save_live_iterate = ram_save_iterate,
1661 .save_live_complete = ram_save_complete,
1662 .save_live_pending = ram_save_pending,
1663 .load_state = ram_load,
1664 .cancel = ram_migration_cancel,
1667 void ram_mig_init(void)
1669 qemu_mutex_init(&XBZRLE.lock);
1670 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, NULL);
1673 struct soundhw {
1674 const char *name;
1675 const char *descr;
1676 int enabled;
1677 int isa;
1678 union {
1679 int (*init_isa) (ISABus *bus);
1680 int (*init_pci) (PCIBus *bus);
1681 } init;
1684 static struct soundhw soundhw[9];
1685 static int soundhw_count;
1687 void isa_register_soundhw(const char *name, const char *descr,
1688 int (*init_isa)(ISABus *bus))
1690 assert(soundhw_count < ARRAY_SIZE(soundhw) - 1);
1691 soundhw[soundhw_count].name = name;
1692 soundhw[soundhw_count].descr = descr;
1693 soundhw[soundhw_count].isa = 1;
1694 soundhw[soundhw_count].init.init_isa = init_isa;
1695 soundhw_count++;
1698 void pci_register_soundhw(const char *name, const char *descr,
1699 int (*init_pci)(PCIBus *bus))
1701 assert(soundhw_count < ARRAY_SIZE(soundhw) - 1);
1702 soundhw[soundhw_count].name = name;
1703 soundhw[soundhw_count].descr = descr;
1704 soundhw[soundhw_count].isa = 0;
1705 soundhw[soundhw_count].init.init_pci = init_pci;
1706 soundhw_count++;
1709 void select_soundhw(const char *optarg)
1711 struct soundhw *c;
1713 if (is_help_option(optarg)) {
1714 show_valid_cards:
1716 if (soundhw_count) {
1717 printf("Valid sound card names (comma separated):\n");
1718 for (c = soundhw; c->name; ++c) {
1719 printf ("%-11s %s\n", c->name, c->descr);
1721 printf("\n-soundhw all will enable all of the above\n");
1722 } else {
1723 printf("Machine has no user-selectable audio hardware "
1724 "(it may or may not have always-present audio hardware).\n");
1726 exit(!is_help_option(optarg));
1728 else {
1729 size_t l;
1730 const char *p;
1731 char *e;
1732 int bad_card = 0;
1734 if (!strcmp(optarg, "all")) {
1735 for (c = soundhw; c->name; ++c) {
1736 c->enabled = 1;
1738 return;
1741 p = optarg;
1742 while (*p) {
1743 e = strchr(p, ',');
1744 l = !e ? strlen(p) : (size_t) (e - p);
1746 for (c = soundhw; c->name; ++c) {
1747 if (!strncmp(c->name, p, l) && !c->name[l]) {
1748 c->enabled = 1;
1749 break;
1753 if (!c->name) {
1754 if (l > 80) {
1755 error_report("Unknown sound card name (too big to show)");
1757 else {
1758 error_report("Unknown sound card name `%.*s'",
1759 (int) l, p);
1761 bad_card = 1;
1763 p += l + (e != NULL);
1766 if (bad_card) {
1767 goto show_valid_cards;
1772 void audio_init(void)
1774 struct soundhw *c;
1775 ISABus *isa_bus = (ISABus *) object_resolve_path_type("", TYPE_ISA_BUS, NULL);
1776 PCIBus *pci_bus = (PCIBus *) object_resolve_path_type("", TYPE_PCI_BUS, NULL);
1778 for (c = soundhw; c->name; ++c) {
1779 if (c->enabled) {
1780 if (c->isa) {
1781 if (!isa_bus) {
1782 error_report("ISA bus not available for %s", c->name);
1783 exit(1);
1785 c->init.init_isa(isa_bus);
1786 } else {
1787 if (!pci_bus) {
1788 error_report("PCI bus not available for %s", c->name);
1789 exit(1);
1791 c->init.init_pci(pci_bus);
1797 int qemu_uuid_parse(const char *str, uint8_t *uuid)
1799 int ret;
1801 if (strlen(str) != 36) {
1802 return -1;
1805 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
1806 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
1807 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14],
1808 &uuid[15]);
1810 if (ret != 16) {
1811 return -1;
1813 return 0;
1816 void do_acpitable_option(const QemuOpts *opts)
1818 #ifdef TARGET_I386
1819 Error *err = NULL;
1821 acpi_table_add(opts, &err);
1822 if (err) {
1823 error_report("Wrong acpi table provided: %s",
1824 error_get_pretty(err));
1825 error_free(err);
1826 exit(1);
1828 #endif
1831 void do_smbios_option(QemuOpts *opts)
1833 #ifdef TARGET_I386
1834 smbios_entry_add(opts);
1835 #endif
1838 void cpudef_init(void)
1840 #if defined(cpudef_setup)
1841 cpudef_setup(); /* parse cpu definitions in target config file */
1842 #endif
1845 int kvm_available(void)
1847 #ifdef CONFIG_KVM
1848 return 1;
1849 #else
1850 return 0;
1851 #endif
1854 int xen_available(void)
1856 #ifdef CONFIG_XEN
1857 return 1;
1858 #else
1859 return 0;
1860 #endif
1864 TargetInfo *qmp_query_target(Error **errp)
1866 TargetInfo *info = g_malloc0(sizeof(*info));
1868 info->arch = g_strdup(TARGET_NAME);
1870 return info;
1873 /* Stub function that's gets run on the vcpu when its brought out of the
1874 VM to run inside qemu via async_run_on_cpu()*/
1875 static void mig_sleep_cpu(void *opq)
1877 qemu_mutex_unlock_iothread();
1878 g_usleep(30*1000);
1879 qemu_mutex_lock_iothread();
1882 /* To reduce the dirty rate explicitly disallow the VCPUs from spending
1883 much time in the VM. The migration thread will try to catchup.
1884 Workload will experience a performance drop.
1886 static void mig_throttle_guest_down(void)
1888 CPUState *cpu;
1890 qemu_mutex_lock_iothread();
1891 CPU_FOREACH(cpu) {
1892 async_run_on_cpu(cpu, mig_sleep_cpu, NULL);
1894 qemu_mutex_unlock_iothread();
1897 static void check_guest_throttling(void)
1899 static int64_t t0;
1900 int64_t t1;
1902 if (!mig_throttle_on) {
1903 return;
1906 if (!t0) {
1907 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1908 return;
1911 t1 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1913 /* If it has been more than 40 ms since the last time the guest
1914 * was throttled then do it again.
1916 if (40 < (t1-t0)/1000000) {
1917 mig_throttle_guest_down();
1918 t0 = t1;