4 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu/atomic.h"
25 #include "qemu/option.h"
26 #include "qemu/config-file.h"
27 #include "sysemu/sysemu.h"
28 #include "sysemu/accel.h"
30 #include "hw/pci/msi.h"
31 #include "hw/s390x/adapter.h"
32 #include "exec/gdbstub.h"
33 #include "sysemu/kvm.h"
34 #include "qemu/bswap.h"
35 #include "exec/memory.h"
36 #include "exec/ram_addr.h"
37 #include "exec/address-spaces.h"
38 #include "qemu/event_notifier.h"
41 #include "hw/boards.h"
43 /* This check must be after config-host.h is included */
45 #include <sys/eventfd.h>
48 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
49 #define PAGE_SIZE TARGET_PAGE_SIZE
54 #define DPRINTF(fmt, ...) \
55 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
57 #define DPRINTF(fmt, ...) \
61 #define KVM_MSI_HASHTAB_SIZE 256
63 typedef struct KVMSlot
66 ram_addr_t memory_size
;
72 typedef struct kvm_dirty_log KVMDirtyLog
;
76 AccelState parent_obj
;
83 struct kvm_coalesced_mmio_ring
*coalesced_mmio_ring
;
84 bool coalesced_flush_in_progress
;
85 int broken_set_mem_region
;
88 int robust_singlestep
;
90 #ifdef KVM_CAP_SET_GUEST_DEBUG
91 struct kvm_sw_breakpoint_head kvm_sw_breakpoints
;
97 /* The man page (and posix) say ioctl numbers are signed int, but
98 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
99 * unsigned, and treating them as signed here can break things */
100 unsigned irq_set_ioctl
;
101 unsigned int sigmask_len
;
102 #ifdef KVM_CAP_IRQ_ROUTING
103 struct kvm_irq_routing
*irq_routes
;
104 int nr_allocated_irq_routes
;
105 uint32_t *used_gsi_bitmap
;
106 unsigned int gsi_count
;
107 QTAILQ_HEAD(msi_hashtab
, KVMMSIRoute
) msi_hashtab
[KVM_MSI_HASHTAB_SIZE
];
112 #define TYPE_KVM_ACCEL ACCEL_CLASS_NAME("kvm")
114 #define KVM_STATE(obj) \
115 OBJECT_CHECK(KVMState, (obj), TYPE_KVM_ACCEL)
118 bool kvm_kernel_irqchip
;
119 bool kvm_async_interrupts_allowed
;
120 bool kvm_halt_in_kernel_allowed
;
121 bool kvm_eventfds_allowed
;
122 bool kvm_irqfds_allowed
;
123 bool kvm_resamplefds_allowed
;
124 bool kvm_msi_via_irqfd_allowed
;
125 bool kvm_gsi_routing_allowed
;
126 bool kvm_gsi_direct_mapping
;
128 bool kvm_readonly_mem_allowed
;
129 bool kvm_vm_attributes_allowed
;
131 static const KVMCapabilityInfo kvm_required_capabilites
[] = {
132 KVM_CAP_INFO(USER_MEMORY
),
133 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS
),
137 static KVMSlot
*kvm_get_free_slot(KVMState
*s
)
141 for (i
= 0; i
< s
->nr_slots
; i
++) {
142 if (s
->slots
[i
].memory_size
== 0) {
150 bool kvm_has_free_slot(MachineState
*ms
)
152 return kvm_get_free_slot(KVM_STATE(ms
->accelerator
));
155 static KVMSlot
*kvm_alloc_slot(KVMState
*s
)
157 KVMSlot
*slot
= kvm_get_free_slot(s
);
163 fprintf(stderr
, "%s: no free slot available\n", __func__
);
167 static KVMSlot
*kvm_lookup_matching_slot(KVMState
*s
,
173 for (i
= 0; i
< s
->nr_slots
; i
++) {
174 KVMSlot
*mem
= &s
->slots
[i
];
176 if (start_addr
== mem
->start_addr
&&
177 end_addr
== mem
->start_addr
+ mem
->memory_size
) {
186 * Find overlapping slot with lowest start address
188 static KVMSlot
*kvm_lookup_overlapping_slot(KVMState
*s
,
192 KVMSlot
*found
= NULL
;
195 for (i
= 0; i
< s
->nr_slots
; i
++) {
196 KVMSlot
*mem
= &s
->slots
[i
];
198 if (mem
->memory_size
== 0 ||
199 (found
&& found
->start_addr
< mem
->start_addr
)) {
203 if (end_addr
> mem
->start_addr
&&
204 start_addr
< mem
->start_addr
+ mem
->memory_size
) {
212 int kvm_physical_memory_addr_from_host(KVMState
*s
, void *ram
,
217 for (i
= 0; i
< s
->nr_slots
; i
++) {
218 KVMSlot
*mem
= &s
->slots
[i
];
220 if (ram
>= mem
->ram
&& ram
< mem
->ram
+ mem
->memory_size
) {
221 *phys_addr
= mem
->start_addr
+ (ram
- mem
->ram
);
229 static int kvm_set_user_memory_region(KVMState
*s
, KVMSlot
*slot
)
231 struct kvm_userspace_memory_region mem
;
233 mem
.slot
= slot
->slot
;
234 mem
.guest_phys_addr
= slot
->start_addr
;
235 mem
.userspace_addr
= (unsigned long)slot
->ram
;
236 mem
.flags
= slot
->flags
;
237 if (s
->migration_log
) {
238 mem
.flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
241 if (slot
->memory_size
&& mem
.flags
& KVM_MEM_READONLY
) {
242 /* Set the slot size to 0 before setting the slot to the desired
243 * value. This is needed based on KVM commit 75d61fbc. */
245 kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
247 mem
.memory_size
= slot
->memory_size
;
248 return kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
251 int kvm_init_vcpu(CPUState
*cpu
)
253 KVMState
*s
= kvm_state
;
257 DPRINTF("kvm_init_vcpu\n");
259 ret
= kvm_vm_ioctl(s
, KVM_CREATE_VCPU
, (void *)kvm_arch_vcpu_id(cpu
));
261 DPRINTF("kvm_create_vcpu failed\n");
267 cpu
->kvm_vcpu_dirty
= true;
269 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
272 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
276 cpu
->kvm_run
= mmap(NULL
, mmap_size
, PROT_READ
| PROT_WRITE
, MAP_SHARED
,
278 if (cpu
->kvm_run
== MAP_FAILED
) {
280 DPRINTF("mmap'ing vcpu state failed\n");
284 if (s
->coalesced_mmio
&& !s
->coalesced_mmio_ring
) {
285 s
->coalesced_mmio_ring
=
286 (void *)cpu
->kvm_run
+ s
->coalesced_mmio
* PAGE_SIZE
;
289 ret
= kvm_arch_init_vcpu(cpu
);
295 * dirty pages logging control
298 static int kvm_mem_flags(KVMState
*s
, bool log_dirty
, bool readonly
)
301 flags
= log_dirty
? KVM_MEM_LOG_DIRTY_PAGES
: 0;
302 if (readonly
&& kvm_readonly_mem_allowed
) {
303 flags
|= KVM_MEM_READONLY
;
308 static int kvm_slot_dirty_pages_log_change(KVMSlot
*mem
, bool log_dirty
)
310 KVMState
*s
= kvm_state
;
311 int flags
, mask
= KVM_MEM_LOG_DIRTY_PAGES
;
314 old_flags
= mem
->flags
;
316 flags
= (mem
->flags
& ~mask
) | kvm_mem_flags(s
, log_dirty
, false);
319 /* If nothing changed effectively, no need to issue ioctl */
320 if (s
->migration_log
) {
321 flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
324 if (flags
== old_flags
) {
328 return kvm_set_user_memory_region(s
, mem
);
331 static int kvm_dirty_pages_log_change(hwaddr phys_addr
,
332 ram_addr_t size
, bool log_dirty
)
334 KVMState
*s
= kvm_state
;
335 KVMSlot
*mem
= kvm_lookup_matching_slot(s
, phys_addr
, phys_addr
+ size
);
338 fprintf(stderr
, "BUG: %s: invalid parameters " TARGET_FMT_plx
"-"
339 TARGET_FMT_plx
"\n", __func__
, phys_addr
,
340 (hwaddr
)(phys_addr
+ size
- 1));
343 return kvm_slot_dirty_pages_log_change(mem
, log_dirty
);
346 static void kvm_log_start(MemoryListener
*listener
,
347 MemoryRegionSection
*section
)
351 r
= kvm_dirty_pages_log_change(section
->offset_within_address_space
,
352 int128_get64(section
->size
), true);
358 static void kvm_log_stop(MemoryListener
*listener
,
359 MemoryRegionSection
*section
)
363 r
= kvm_dirty_pages_log_change(section
->offset_within_address_space
,
364 int128_get64(section
->size
), false);
370 static int kvm_set_migration_log(bool enable
)
372 KVMState
*s
= kvm_state
;
376 s
->migration_log
= enable
;
378 for (i
= 0; i
< s
->nr_slots
; i
++) {
381 if (!mem
->memory_size
) {
384 if (!!(mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) == enable
) {
387 err
= kvm_set_user_memory_region(s
, mem
);
395 /* get kvm's dirty pages bitmap and update qemu's */
396 static int kvm_get_dirty_pages_log_range(MemoryRegionSection
*section
,
397 unsigned long *bitmap
)
399 ram_addr_t start
= section
->offset_within_region
+ section
->mr
->ram_addr
;
400 ram_addr_t pages
= int128_get64(section
->size
) / getpagesize();
402 cpu_physical_memory_set_dirty_lebitmap(bitmap
, start
, pages
);
406 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
409 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
410 * This function updates qemu's dirty bitmap using
411 * memory_region_set_dirty(). This means all bits are set
414 * @start_add: start of logged region.
415 * @end_addr: end of logged region.
417 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection
*section
)
419 KVMState
*s
= kvm_state
;
420 unsigned long size
, allocated_size
= 0;
424 hwaddr start_addr
= section
->offset_within_address_space
;
425 hwaddr end_addr
= start_addr
+ int128_get64(section
->size
);
427 d
.dirty_bitmap
= NULL
;
428 while (start_addr
< end_addr
) {
429 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, end_addr
);
434 /* XXX bad kernel interface alert
435 * For dirty bitmap, kernel allocates array of size aligned to
436 * bits-per-long. But for case when the kernel is 64bits and
437 * the userspace is 32bits, userspace can't align to the same
438 * bits-per-long, since sizeof(long) is different between kernel
439 * and user space. This way, userspace will provide buffer which
440 * may be 4 bytes less than the kernel will use, resulting in
441 * userspace memory corruption (which is not detectable by valgrind
442 * too, in most cases).
443 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
444 * a hope that sizeof(long) wont become >8 any time soon.
446 size
= ALIGN(((mem
->memory_size
) >> TARGET_PAGE_BITS
),
447 /*HOST_LONG_BITS*/ 64) / 8;
448 if (!d
.dirty_bitmap
) {
449 d
.dirty_bitmap
= g_malloc(size
);
450 } else if (size
> allocated_size
) {
451 d
.dirty_bitmap
= g_realloc(d
.dirty_bitmap
, size
);
453 allocated_size
= size
;
454 memset(d
.dirty_bitmap
, 0, allocated_size
);
458 if (kvm_vm_ioctl(s
, KVM_GET_DIRTY_LOG
, &d
) == -1) {
459 DPRINTF("ioctl failed %d\n", errno
);
464 kvm_get_dirty_pages_log_range(section
, d
.dirty_bitmap
);
465 start_addr
= mem
->start_addr
+ mem
->memory_size
;
467 g_free(d
.dirty_bitmap
);
472 static void kvm_coalesce_mmio_region(MemoryListener
*listener
,
473 MemoryRegionSection
*secion
,
474 hwaddr start
, hwaddr size
)
476 KVMState
*s
= kvm_state
;
478 if (s
->coalesced_mmio
) {
479 struct kvm_coalesced_mmio_zone zone
;
485 (void)kvm_vm_ioctl(s
, KVM_REGISTER_COALESCED_MMIO
, &zone
);
489 static void kvm_uncoalesce_mmio_region(MemoryListener
*listener
,
490 MemoryRegionSection
*secion
,
491 hwaddr start
, hwaddr size
)
493 KVMState
*s
= kvm_state
;
495 if (s
->coalesced_mmio
) {
496 struct kvm_coalesced_mmio_zone zone
;
502 (void)kvm_vm_ioctl(s
, KVM_UNREGISTER_COALESCED_MMIO
, &zone
);
506 int kvm_check_extension(KVMState
*s
, unsigned int extension
)
510 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
518 int kvm_vm_check_extension(KVMState
*s
, unsigned int extension
)
522 ret
= kvm_vm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
524 /* VM wide version not implemented, use global one instead */
525 ret
= kvm_check_extension(s
, extension
);
531 static uint32_t adjust_ioeventfd_endianness(uint32_t val
, uint32_t size
)
533 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
534 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
535 * endianness, but the memory core hands them in target endianness.
536 * For example, PPC is always treated as big-endian even if running
537 * on KVM and on PPC64LE. Correct here.
551 static int kvm_set_ioeventfd_mmio(int fd
, hwaddr addr
, uint32_t val
,
552 bool assign
, uint32_t size
, bool datamatch
)
555 struct kvm_ioeventfd iofd
= {
556 .datamatch
= datamatch
? adjust_ioeventfd_endianness(val
, size
) : 0,
563 if (!kvm_enabled()) {
568 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DATAMATCH
;
571 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
574 ret
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &iofd
);
583 static int kvm_set_ioeventfd_pio(int fd
, uint16_t addr
, uint16_t val
,
584 bool assign
, uint32_t size
, bool datamatch
)
586 struct kvm_ioeventfd kick
= {
587 .datamatch
= datamatch
? adjust_ioeventfd_endianness(val
, size
) : 0,
589 .flags
= KVM_IOEVENTFD_FLAG_PIO
,
594 if (!kvm_enabled()) {
598 kick
.flags
|= KVM_IOEVENTFD_FLAG_DATAMATCH
;
601 kick
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
603 r
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &kick
);
611 static int kvm_check_many_ioeventfds(void)
613 /* Userspace can use ioeventfd for io notification. This requires a host
614 * that supports eventfd(2) and an I/O thread; since eventfd does not
615 * support SIGIO it cannot interrupt the vcpu.
617 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
618 * can avoid creating too many ioeventfds.
620 #if defined(CONFIG_EVENTFD)
623 for (i
= 0; i
< ARRAY_SIZE(ioeventfds
); i
++) {
624 ioeventfds
[i
] = eventfd(0, EFD_CLOEXEC
);
625 if (ioeventfds
[i
] < 0) {
628 ret
= kvm_set_ioeventfd_pio(ioeventfds
[i
], 0, i
, true, 2, true);
630 close(ioeventfds
[i
]);
635 /* Decide whether many devices are supported or not */
636 ret
= i
== ARRAY_SIZE(ioeventfds
);
639 kvm_set_ioeventfd_pio(ioeventfds
[i
], 0, i
, false, 2, true);
640 close(ioeventfds
[i
]);
648 static const KVMCapabilityInfo
*
649 kvm_check_extension_list(KVMState
*s
, const KVMCapabilityInfo
*list
)
652 if (!kvm_check_extension(s
, list
->value
)) {
660 static void kvm_set_phys_mem(MemoryRegionSection
*section
, bool add
)
662 KVMState
*s
= kvm_state
;
665 MemoryRegion
*mr
= section
->mr
;
666 bool log_dirty
= memory_region_is_logging(mr
);
667 bool writeable
= !mr
->readonly
&& !mr
->rom_device
;
668 bool readonly_flag
= mr
->readonly
|| memory_region_is_romd(mr
);
669 hwaddr start_addr
= section
->offset_within_address_space
;
670 ram_addr_t size
= int128_get64(section
->size
);
674 /* kvm works in page size chunks, but the function may be called
675 with sub-page size and unaligned start address. Pad the start
676 address to next and truncate size to previous page boundary. */
677 delta
= (TARGET_PAGE_SIZE
- (start_addr
& ~TARGET_PAGE_MASK
));
678 delta
&= ~TARGET_PAGE_MASK
;
684 size
&= TARGET_PAGE_MASK
;
685 if (!size
|| (start_addr
& ~TARGET_PAGE_MASK
)) {
689 if (!memory_region_is_ram(mr
)) {
690 if (writeable
|| !kvm_readonly_mem_allowed
) {
692 } else if (!mr
->romd_mode
) {
693 /* If the memory device is not in romd_mode, then we actually want
694 * to remove the kvm memory slot so all accesses will trap. */
699 ram
= memory_region_get_ram_ptr(mr
) + section
->offset_within_region
+ delta
;
702 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, start_addr
+ size
);
707 if (add
&& start_addr
>= mem
->start_addr
&&
708 (start_addr
+ size
<= mem
->start_addr
+ mem
->memory_size
) &&
709 (ram
- start_addr
== mem
->ram
- mem
->start_addr
)) {
710 /* The new slot fits into the existing one and comes with
711 * identical parameters - update flags and done. */
712 kvm_slot_dirty_pages_log_change(mem
, log_dirty
);
718 if ((mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) || s
->migration_log
) {
719 kvm_physical_sync_dirty_bitmap(section
);
722 /* unregister the overlapping slot */
723 mem
->memory_size
= 0;
724 err
= kvm_set_user_memory_region(s
, mem
);
726 fprintf(stderr
, "%s: error unregistering overlapping slot: %s\n",
727 __func__
, strerror(-err
));
731 /* Workaround for older KVM versions: we can't join slots, even not by
732 * unregistering the previous ones and then registering the larger
733 * slot. We have to maintain the existing fragmentation. Sigh.
735 * This workaround assumes that the new slot starts at the same
736 * address as the first existing one. If not or if some overlapping
737 * slot comes around later, we will fail (not seen in practice so far)
738 * - and actually require a recent KVM version. */
739 if (s
->broken_set_mem_region
&&
740 old
.start_addr
== start_addr
&& old
.memory_size
< size
&& add
) {
741 mem
= kvm_alloc_slot(s
);
742 mem
->memory_size
= old
.memory_size
;
743 mem
->start_addr
= old
.start_addr
;
745 mem
->flags
= kvm_mem_flags(s
, log_dirty
, readonly_flag
);
747 err
= kvm_set_user_memory_region(s
, mem
);
749 fprintf(stderr
, "%s: error updating slot: %s\n", __func__
,
754 start_addr
+= old
.memory_size
;
755 ram
+= old
.memory_size
;
756 size
-= old
.memory_size
;
760 /* register prefix slot */
761 if (old
.start_addr
< start_addr
) {
762 mem
= kvm_alloc_slot(s
);
763 mem
->memory_size
= start_addr
- old
.start_addr
;
764 mem
->start_addr
= old
.start_addr
;
766 mem
->flags
= kvm_mem_flags(s
, log_dirty
, readonly_flag
);
768 err
= kvm_set_user_memory_region(s
, mem
);
770 fprintf(stderr
, "%s: error registering prefix slot: %s\n",
771 __func__
, strerror(-err
));
773 fprintf(stderr
, "%s: This is probably because your kernel's " \
774 "PAGE_SIZE is too big. Please try to use 4k " \
775 "PAGE_SIZE!\n", __func__
);
781 /* register suffix slot */
782 if (old
.start_addr
+ old
.memory_size
> start_addr
+ size
) {
783 ram_addr_t size_delta
;
785 mem
= kvm_alloc_slot(s
);
786 mem
->start_addr
= start_addr
+ size
;
787 size_delta
= mem
->start_addr
- old
.start_addr
;
788 mem
->memory_size
= old
.memory_size
- size_delta
;
789 mem
->ram
= old
.ram
+ size_delta
;
790 mem
->flags
= kvm_mem_flags(s
, log_dirty
, readonly_flag
);
792 err
= kvm_set_user_memory_region(s
, mem
);
794 fprintf(stderr
, "%s: error registering suffix slot: %s\n",
795 __func__
, strerror(-err
));
801 /* in case the KVM bug workaround already "consumed" the new slot */
808 mem
= kvm_alloc_slot(s
);
809 mem
->memory_size
= size
;
810 mem
->start_addr
= start_addr
;
812 mem
->flags
= kvm_mem_flags(s
, log_dirty
, readonly_flag
);
814 err
= kvm_set_user_memory_region(s
, mem
);
816 fprintf(stderr
, "%s: error registering slot: %s\n", __func__
,
822 static void kvm_region_add(MemoryListener
*listener
,
823 MemoryRegionSection
*section
)
825 memory_region_ref(section
->mr
);
826 kvm_set_phys_mem(section
, true);
829 static void kvm_region_del(MemoryListener
*listener
,
830 MemoryRegionSection
*section
)
832 kvm_set_phys_mem(section
, false);
833 memory_region_unref(section
->mr
);
836 static void kvm_log_sync(MemoryListener
*listener
,
837 MemoryRegionSection
*section
)
841 r
= kvm_physical_sync_dirty_bitmap(section
);
847 static void kvm_log_global_start(struct MemoryListener
*listener
)
851 r
= kvm_set_migration_log(1);
855 static void kvm_log_global_stop(struct MemoryListener
*listener
)
859 r
= kvm_set_migration_log(0);
863 static void kvm_mem_ioeventfd_add(MemoryListener
*listener
,
864 MemoryRegionSection
*section
,
865 bool match_data
, uint64_t data
,
868 int fd
= event_notifier_get_fd(e
);
871 r
= kvm_set_ioeventfd_mmio(fd
, section
->offset_within_address_space
,
872 data
, true, int128_get64(section
->size
),
875 fprintf(stderr
, "%s: error adding ioeventfd: %s\n",
876 __func__
, strerror(-r
));
881 static void kvm_mem_ioeventfd_del(MemoryListener
*listener
,
882 MemoryRegionSection
*section
,
883 bool match_data
, uint64_t data
,
886 int fd
= event_notifier_get_fd(e
);
889 r
= kvm_set_ioeventfd_mmio(fd
, section
->offset_within_address_space
,
890 data
, false, int128_get64(section
->size
),
897 static void kvm_io_ioeventfd_add(MemoryListener
*listener
,
898 MemoryRegionSection
*section
,
899 bool match_data
, uint64_t data
,
902 int fd
= event_notifier_get_fd(e
);
905 r
= kvm_set_ioeventfd_pio(fd
, section
->offset_within_address_space
,
906 data
, true, int128_get64(section
->size
),
909 fprintf(stderr
, "%s: error adding ioeventfd: %s\n",
910 __func__
, strerror(-r
));
915 static void kvm_io_ioeventfd_del(MemoryListener
*listener
,
916 MemoryRegionSection
*section
,
917 bool match_data
, uint64_t data
,
921 int fd
= event_notifier_get_fd(e
);
924 r
= kvm_set_ioeventfd_pio(fd
, section
->offset_within_address_space
,
925 data
, false, int128_get64(section
->size
),
932 static MemoryListener kvm_memory_listener
= {
933 .region_add
= kvm_region_add
,
934 .region_del
= kvm_region_del
,
935 .log_start
= kvm_log_start
,
936 .log_stop
= kvm_log_stop
,
937 .log_sync
= kvm_log_sync
,
938 .log_global_start
= kvm_log_global_start
,
939 .log_global_stop
= kvm_log_global_stop
,
940 .eventfd_add
= kvm_mem_ioeventfd_add
,
941 .eventfd_del
= kvm_mem_ioeventfd_del
,
942 .coalesced_mmio_add
= kvm_coalesce_mmio_region
,
943 .coalesced_mmio_del
= kvm_uncoalesce_mmio_region
,
947 static MemoryListener kvm_io_listener
= {
948 .eventfd_add
= kvm_io_ioeventfd_add
,
949 .eventfd_del
= kvm_io_ioeventfd_del
,
953 static void kvm_handle_interrupt(CPUState
*cpu
, int mask
)
955 cpu
->interrupt_request
|= mask
;
957 if (!qemu_cpu_is_self(cpu
)) {
962 int kvm_set_irq(KVMState
*s
, int irq
, int level
)
964 struct kvm_irq_level event
;
967 assert(kvm_async_interrupts_enabled());
971 ret
= kvm_vm_ioctl(s
, s
->irq_set_ioctl
, &event
);
973 perror("kvm_set_irq");
977 return (s
->irq_set_ioctl
== KVM_IRQ_LINE
) ? 1 : event
.status
;
980 #ifdef KVM_CAP_IRQ_ROUTING
981 typedef struct KVMMSIRoute
{
982 struct kvm_irq_routing_entry kroute
;
983 QTAILQ_ENTRY(KVMMSIRoute
) entry
;
986 static void set_gsi(KVMState
*s
, unsigned int gsi
)
988 s
->used_gsi_bitmap
[gsi
/ 32] |= 1U << (gsi
% 32);
991 static void clear_gsi(KVMState
*s
, unsigned int gsi
)
993 s
->used_gsi_bitmap
[gsi
/ 32] &= ~(1U << (gsi
% 32));
996 void kvm_init_irq_routing(KVMState
*s
)
1000 gsi_count
= kvm_check_extension(s
, KVM_CAP_IRQ_ROUTING
) - 1;
1001 if (gsi_count
> 0) {
1002 unsigned int gsi_bits
, i
;
1004 /* Round up so we can search ints using ffs */
1005 gsi_bits
= ALIGN(gsi_count
, 32);
1006 s
->used_gsi_bitmap
= g_malloc0(gsi_bits
/ 8);
1007 s
->gsi_count
= gsi_count
;
1009 /* Mark any over-allocated bits as already in use */
1010 for (i
= gsi_count
; i
< gsi_bits
; i
++) {
1015 s
->irq_routes
= g_malloc0(sizeof(*s
->irq_routes
));
1016 s
->nr_allocated_irq_routes
= 0;
1018 if (!s
->direct_msi
) {
1019 for (i
= 0; i
< KVM_MSI_HASHTAB_SIZE
; i
++) {
1020 QTAILQ_INIT(&s
->msi_hashtab
[i
]);
1024 kvm_arch_init_irq_routing(s
);
1027 void kvm_irqchip_commit_routes(KVMState
*s
)
1031 s
->irq_routes
->flags
= 0;
1032 ret
= kvm_vm_ioctl(s
, KVM_SET_GSI_ROUTING
, s
->irq_routes
);
1036 static void kvm_add_routing_entry(KVMState
*s
,
1037 struct kvm_irq_routing_entry
*entry
)
1039 struct kvm_irq_routing_entry
*new;
1042 if (s
->irq_routes
->nr
== s
->nr_allocated_irq_routes
) {
1043 n
= s
->nr_allocated_irq_routes
* 2;
1047 size
= sizeof(struct kvm_irq_routing
);
1048 size
+= n
* sizeof(*new);
1049 s
->irq_routes
= g_realloc(s
->irq_routes
, size
);
1050 s
->nr_allocated_irq_routes
= n
;
1052 n
= s
->irq_routes
->nr
++;
1053 new = &s
->irq_routes
->entries
[n
];
1057 set_gsi(s
, entry
->gsi
);
1060 static int kvm_update_routing_entry(KVMState
*s
,
1061 struct kvm_irq_routing_entry
*new_entry
)
1063 struct kvm_irq_routing_entry
*entry
;
1066 for (n
= 0; n
< s
->irq_routes
->nr
; n
++) {
1067 entry
= &s
->irq_routes
->entries
[n
];
1068 if (entry
->gsi
!= new_entry
->gsi
) {
1072 if(!memcmp(entry
, new_entry
, sizeof *entry
)) {
1076 *entry
= *new_entry
;
1078 kvm_irqchip_commit_routes(s
);
1086 void kvm_irqchip_add_irq_route(KVMState
*s
, int irq
, int irqchip
, int pin
)
1088 struct kvm_irq_routing_entry e
= {};
1090 assert(pin
< s
->gsi_count
);
1093 e
.type
= KVM_IRQ_ROUTING_IRQCHIP
;
1095 e
.u
.irqchip
.irqchip
= irqchip
;
1096 e
.u
.irqchip
.pin
= pin
;
1097 kvm_add_routing_entry(s
, &e
);
1100 void kvm_irqchip_release_virq(KVMState
*s
, int virq
)
1102 struct kvm_irq_routing_entry
*e
;
1105 if (kvm_gsi_direct_mapping()) {
1109 for (i
= 0; i
< s
->irq_routes
->nr
; i
++) {
1110 e
= &s
->irq_routes
->entries
[i
];
1111 if (e
->gsi
== virq
) {
1112 s
->irq_routes
->nr
--;
1113 *e
= s
->irq_routes
->entries
[s
->irq_routes
->nr
];
1119 static unsigned int kvm_hash_msi(uint32_t data
)
1121 /* This is optimized for IA32 MSI layout. However, no other arch shall
1122 * repeat the mistake of not providing a direct MSI injection API. */
1126 static void kvm_flush_dynamic_msi_routes(KVMState
*s
)
1128 KVMMSIRoute
*route
, *next
;
1131 for (hash
= 0; hash
< KVM_MSI_HASHTAB_SIZE
; hash
++) {
1132 QTAILQ_FOREACH_SAFE(route
, &s
->msi_hashtab
[hash
], entry
, next
) {
1133 kvm_irqchip_release_virq(s
, route
->kroute
.gsi
);
1134 QTAILQ_REMOVE(&s
->msi_hashtab
[hash
], route
, entry
);
1140 static int kvm_irqchip_get_virq(KVMState
*s
)
1142 uint32_t *word
= s
->used_gsi_bitmap
;
1143 int max_words
= ALIGN(s
->gsi_count
, 32) / 32;
1148 /* Return the lowest unused GSI in the bitmap */
1149 for (i
= 0; i
< max_words
; i
++) {
1150 zeroes
= ctz32(~word
[i
]);
1155 return zeroes
+ i
* 32;
1157 if (!s
->direct_msi
&& retry
) {
1159 kvm_flush_dynamic_msi_routes(s
);
1166 static KVMMSIRoute
*kvm_lookup_msi_route(KVMState
*s
, MSIMessage msg
)
1168 unsigned int hash
= kvm_hash_msi(msg
.data
);
1171 QTAILQ_FOREACH(route
, &s
->msi_hashtab
[hash
], entry
) {
1172 if (route
->kroute
.u
.msi
.address_lo
== (uint32_t)msg
.address
&&
1173 route
->kroute
.u
.msi
.address_hi
== (msg
.address
>> 32) &&
1174 route
->kroute
.u
.msi
.data
== le32_to_cpu(msg
.data
)) {
1181 int kvm_irqchip_send_msi(KVMState
*s
, MSIMessage msg
)
1186 if (s
->direct_msi
) {
1187 msi
.address_lo
= (uint32_t)msg
.address
;
1188 msi
.address_hi
= msg
.address
>> 32;
1189 msi
.data
= le32_to_cpu(msg
.data
);
1191 memset(msi
.pad
, 0, sizeof(msi
.pad
));
1193 return kvm_vm_ioctl(s
, KVM_SIGNAL_MSI
, &msi
);
1196 route
= kvm_lookup_msi_route(s
, msg
);
1200 virq
= kvm_irqchip_get_virq(s
);
1205 route
= g_malloc0(sizeof(KVMMSIRoute
));
1206 route
->kroute
.gsi
= virq
;
1207 route
->kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1208 route
->kroute
.flags
= 0;
1209 route
->kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1210 route
->kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1211 route
->kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1213 kvm_add_routing_entry(s
, &route
->kroute
);
1214 kvm_irqchip_commit_routes(s
);
1216 QTAILQ_INSERT_TAIL(&s
->msi_hashtab
[kvm_hash_msi(msg
.data
)], route
,
1220 assert(route
->kroute
.type
== KVM_IRQ_ROUTING_MSI
);
1222 return kvm_set_irq(s
, route
->kroute
.gsi
, 1);
1225 int kvm_irqchip_add_msi_route(KVMState
*s
, MSIMessage msg
)
1227 struct kvm_irq_routing_entry kroute
= {};
1230 if (kvm_gsi_direct_mapping()) {
1231 return msg
.data
& 0xffff;
1234 if (!kvm_gsi_routing_enabled()) {
1238 virq
= kvm_irqchip_get_virq(s
);
1244 kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1246 kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1247 kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1248 kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1249 if (kvm_arch_fixup_msi_route(&kroute
, msg
.address
, msg
.data
)) {
1250 kvm_irqchip_release_virq(s
, virq
);
1254 kvm_add_routing_entry(s
, &kroute
);
1255 kvm_irqchip_commit_routes(s
);
1260 int kvm_irqchip_update_msi_route(KVMState
*s
, int virq
, MSIMessage msg
)
1262 struct kvm_irq_routing_entry kroute
= {};
1264 if (kvm_gsi_direct_mapping()) {
1268 if (!kvm_irqchip_in_kernel()) {
1273 kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1275 kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1276 kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1277 kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1278 if (kvm_arch_fixup_msi_route(&kroute
, msg
.address
, msg
.data
)) {
1282 return kvm_update_routing_entry(s
, &kroute
);
1285 static int kvm_irqchip_assign_irqfd(KVMState
*s
, int fd
, int rfd
, int virq
,
1288 struct kvm_irqfd irqfd
= {
1291 .flags
= assign
? 0 : KVM_IRQFD_FLAG_DEASSIGN
,
1295 irqfd
.flags
|= KVM_IRQFD_FLAG_RESAMPLE
;
1296 irqfd
.resamplefd
= rfd
;
1299 if (!kvm_irqfds_enabled()) {
1303 return kvm_vm_ioctl(s
, KVM_IRQFD
, &irqfd
);
1306 int kvm_irqchip_add_adapter_route(KVMState
*s
, AdapterInfo
*adapter
)
1308 struct kvm_irq_routing_entry kroute
= {};
1311 if (!kvm_gsi_routing_enabled()) {
1315 virq
= kvm_irqchip_get_virq(s
);
1321 kroute
.type
= KVM_IRQ_ROUTING_S390_ADAPTER
;
1323 kroute
.u
.adapter
.summary_addr
= adapter
->summary_addr
;
1324 kroute
.u
.adapter
.ind_addr
= adapter
->ind_addr
;
1325 kroute
.u
.adapter
.summary_offset
= adapter
->summary_offset
;
1326 kroute
.u
.adapter
.ind_offset
= adapter
->ind_offset
;
1327 kroute
.u
.adapter
.adapter_id
= adapter
->adapter_id
;
1329 kvm_add_routing_entry(s
, &kroute
);
1330 kvm_irqchip_commit_routes(s
);
1335 #else /* !KVM_CAP_IRQ_ROUTING */
1337 void kvm_init_irq_routing(KVMState
*s
)
1341 void kvm_irqchip_release_virq(KVMState
*s
, int virq
)
1345 int kvm_irqchip_send_msi(KVMState
*s
, MSIMessage msg
)
1350 int kvm_irqchip_add_msi_route(KVMState
*s
, MSIMessage msg
)
1355 int kvm_irqchip_add_adapter_route(KVMState
*s
, AdapterInfo
*adapter
)
1360 static int kvm_irqchip_assign_irqfd(KVMState
*s
, int fd
, int virq
, bool assign
)
1365 int kvm_irqchip_update_msi_route(KVMState
*s
, int virq
, MSIMessage msg
)
1369 #endif /* !KVM_CAP_IRQ_ROUTING */
1371 int kvm_irqchip_add_irqfd_notifier(KVMState
*s
, EventNotifier
*n
,
1372 EventNotifier
*rn
, int virq
)
1374 return kvm_irqchip_assign_irqfd(s
, event_notifier_get_fd(n
),
1375 rn
? event_notifier_get_fd(rn
) : -1, virq
, true);
1378 int kvm_irqchip_remove_irqfd_notifier(KVMState
*s
, EventNotifier
*n
, int virq
)
1380 return kvm_irqchip_assign_irqfd(s
, event_notifier_get_fd(n
), -1, virq
,
1384 static int kvm_irqchip_create(MachineState
*machine
, KVMState
*s
)
1388 if (!machine_kernel_irqchip_allowed(machine
) ||
1389 (!kvm_check_extension(s
, KVM_CAP_IRQCHIP
) &&
1390 (kvm_vm_enable_cap(s
, KVM_CAP_S390_IRQCHIP
, 0) < 0))) {
1394 /* First probe and see if there's a arch-specific hook to create the
1395 * in-kernel irqchip for us */
1396 ret
= kvm_arch_irqchip_create(s
);
1399 } else if (ret
== 0) {
1400 ret
= kvm_vm_ioctl(s
, KVM_CREATE_IRQCHIP
);
1402 fprintf(stderr
, "Create kernel irqchip failed\n");
1407 kvm_kernel_irqchip
= true;
1408 /* If we have an in-kernel IRQ chip then we must have asynchronous
1409 * interrupt delivery (though the reverse is not necessarily true)
1411 kvm_async_interrupts_allowed
= true;
1412 kvm_halt_in_kernel_allowed
= true;
1414 kvm_init_irq_routing(s
);
1419 /* Find number of supported CPUs using the recommended
1420 * procedure from the kernel API documentation to cope with
1421 * older kernels that may be missing capabilities.
1423 static int kvm_recommended_vcpus(KVMState
*s
)
1425 int ret
= kvm_check_extension(s
, KVM_CAP_NR_VCPUS
);
1426 return (ret
) ? ret
: 4;
1429 static int kvm_max_vcpus(KVMState
*s
)
1431 int ret
= kvm_check_extension(s
, KVM_CAP_MAX_VCPUS
);
1432 return (ret
) ? ret
: kvm_recommended_vcpus(s
);
1435 static int kvm_init(MachineState
*ms
)
1437 MachineClass
*mc
= MACHINE_GET_CLASS(ms
);
1438 static const char upgrade_note
[] =
1439 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1440 "(see http://sourceforge.net/projects/kvm).\n";
1445 { "SMP", smp_cpus
},
1446 { "hotpluggable", max_cpus
},
1449 int soft_vcpus_limit
, hard_vcpus_limit
;
1451 const KVMCapabilityInfo
*missing_cap
;
1454 const char *kvm_type
;
1456 s
= KVM_STATE(ms
->accelerator
);
1459 * On systems where the kernel can support different base page
1460 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1461 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1462 * page size for the system though.
1464 assert(TARGET_PAGE_SIZE
<= getpagesize());
1469 #ifdef KVM_CAP_SET_GUEST_DEBUG
1470 QTAILQ_INIT(&s
->kvm_sw_breakpoints
);
1473 s
->fd
= qemu_open("/dev/kvm", O_RDWR
);
1475 fprintf(stderr
, "Could not access KVM kernel module: %m\n");
1480 ret
= kvm_ioctl(s
, KVM_GET_API_VERSION
, 0);
1481 if (ret
< KVM_API_VERSION
) {
1485 fprintf(stderr
, "kvm version too old\n");
1489 if (ret
> KVM_API_VERSION
) {
1491 fprintf(stderr
, "kvm version not supported\n");
1495 s
->nr_slots
= kvm_check_extension(s
, KVM_CAP_NR_MEMSLOTS
);
1497 /* If unspecified, use the default value */
1502 s
->slots
= g_malloc0(s
->nr_slots
* sizeof(KVMSlot
));
1504 for (i
= 0; i
< s
->nr_slots
; i
++) {
1505 s
->slots
[i
].slot
= i
;
1508 /* check the vcpu limits */
1509 soft_vcpus_limit
= kvm_recommended_vcpus(s
);
1510 hard_vcpus_limit
= kvm_max_vcpus(s
);
1513 if (nc
->num
> soft_vcpus_limit
) {
1515 "Warning: Number of %s cpus requested (%d) exceeds "
1516 "the recommended cpus supported by KVM (%d)\n",
1517 nc
->name
, nc
->num
, soft_vcpus_limit
);
1519 if (nc
->num
> hard_vcpus_limit
) {
1520 fprintf(stderr
, "Number of %s cpus requested (%d) exceeds "
1521 "the maximum cpus supported by KVM (%d)\n",
1522 nc
->name
, nc
->num
, hard_vcpus_limit
);
1529 kvm_type
= qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
1531 type
= mc
->kvm_type(kvm_type
);
1532 } else if (kvm_type
) {
1534 fprintf(stderr
, "Invalid argument kvm-type=%s\n", kvm_type
);
1539 ret
= kvm_ioctl(s
, KVM_CREATE_VM
, type
);
1540 } while (ret
== -EINTR
);
1543 fprintf(stderr
, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret
,
1547 if (ret
== -EINVAL
) {
1549 "Host kernel setup problem detected. Please verify:\n");
1550 fprintf(stderr
, "- for kernels supporting the switch_amode or"
1551 " user_mode parameters, whether\n");
1553 " user space is running in primary address space\n");
1555 "- for kernels supporting the vm.allocate_pgste sysctl, "
1556 "whether it is enabled\n");
1563 missing_cap
= kvm_check_extension_list(s
, kvm_required_capabilites
);
1566 kvm_check_extension_list(s
, kvm_arch_required_capabilities
);
1570 fprintf(stderr
, "kvm does not support %s\n%s",
1571 missing_cap
->name
, upgrade_note
);
1575 s
->coalesced_mmio
= kvm_check_extension(s
, KVM_CAP_COALESCED_MMIO
);
1577 s
->broken_set_mem_region
= 1;
1578 ret
= kvm_check_extension(s
, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
);
1580 s
->broken_set_mem_region
= 0;
1583 #ifdef KVM_CAP_VCPU_EVENTS
1584 s
->vcpu_events
= kvm_check_extension(s
, KVM_CAP_VCPU_EVENTS
);
1587 s
->robust_singlestep
=
1588 kvm_check_extension(s
, KVM_CAP_X86_ROBUST_SINGLESTEP
);
1590 #ifdef KVM_CAP_DEBUGREGS
1591 s
->debugregs
= kvm_check_extension(s
, KVM_CAP_DEBUGREGS
);
1594 #ifdef KVM_CAP_XSAVE
1595 s
->xsave
= kvm_check_extension(s
, KVM_CAP_XSAVE
);
1599 s
->xcrs
= kvm_check_extension(s
, KVM_CAP_XCRS
);
1602 #ifdef KVM_CAP_PIT_STATE2
1603 s
->pit_state2
= kvm_check_extension(s
, KVM_CAP_PIT_STATE2
);
1606 #ifdef KVM_CAP_IRQ_ROUTING
1607 s
->direct_msi
= (kvm_check_extension(s
, KVM_CAP_SIGNAL_MSI
) > 0);
1610 s
->intx_set_mask
= kvm_check_extension(s
, KVM_CAP_PCI_2_3
);
1612 s
->irq_set_ioctl
= KVM_IRQ_LINE
;
1613 if (kvm_check_extension(s
, KVM_CAP_IRQ_INJECT_STATUS
)) {
1614 s
->irq_set_ioctl
= KVM_IRQ_LINE_STATUS
;
1617 #ifdef KVM_CAP_READONLY_MEM
1618 kvm_readonly_mem_allowed
=
1619 (kvm_check_extension(s
, KVM_CAP_READONLY_MEM
) > 0);
1622 kvm_eventfds_allowed
=
1623 (kvm_check_extension(s
, KVM_CAP_IOEVENTFD
) > 0);
1625 kvm_irqfds_allowed
=
1626 (kvm_check_extension(s
, KVM_CAP_IRQFD
) > 0);
1628 kvm_resamplefds_allowed
=
1629 (kvm_check_extension(s
, KVM_CAP_IRQFD_RESAMPLE
) > 0);
1631 kvm_vm_attributes_allowed
=
1632 (kvm_check_extension(s
, KVM_CAP_VM_ATTRIBUTES
) > 0);
1634 ret
= kvm_arch_init(ms
, s
);
1639 ret
= kvm_irqchip_create(ms
, s
);
1645 memory_listener_register(&kvm_memory_listener
, &address_space_memory
);
1646 memory_listener_register(&kvm_io_listener
, &address_space_io
);
1648 s
->many_ioeventfds
= kvm_check_many_ioeventfds();
1650 cpu_interrupt_handler
= kvm_handle_interrupt
;
1667 void kvm_set_sigmask_len(KVMState
*s
, unsigned int sigmask_len
)
1669 s
->sigmask_len
= sigmask_len
;
1672 static void kvm_handle_io(uint16_t port
, MemTxAttrs attrs
, void *data
, int direction
,
1673 int size
, uint32_t count
)
1676 uint8_t *ptr
= data
;
1678 for (i
= 0; i
< count
; i
++) {
1679 address_space_rw(&address_space_io
, port
, attrs
,
1681 direction
== KVM_EXIT_IO_OUT
);
1686 static int kvm_handle_internal_error(CPUState
*cpu
, struct kvm_run
*run
)
1688 fprintf(stderr
, "KVM internal error. Suberror: %d\n",
1689 run
->internal
.suberror
);
1691 if (kvm_check_extension(kvm_state
, KVM_CAP_INTERNAL_ERROR_DATA
)) {
1694 for (i
= 0; i
< run
->internal
.ndata
; ++i
) {
1695 fprintf(stderr
, "extra data[%d]: %"PRIx64
"\n",
1696 i
, (uint64_t)run
->internal
.data
[i
]);
1699 if (run
->internal
.suberror
== KVM_INTERNAL_ERROR_EMULATION
) {
1700 fprintf(stderr
, "emulation failure\n");
1701 if (!kvm_arch_stop_on_emulation_error(cpu
)) {
1702 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_CODE
);
1703 return EXCP_INTERRUPT
;
1706 /* FIXME: Should trigger a qmp message to let management know
1707 * something went wrong.
1712 void kvm_flush_coalesced_mmio_buffer(void)
1714 KVMState
*s
= kvm_state
;
1716 if (s
->coalesced_flush_in_progress
) {
1720 s
->coalesced_flush_in_progress
= true;
1722 if (s
->coalesced_mmio_ring
) {
1723 struct kvm_coalesced_mmio_ring
*ring
= s
->coalesced_mmio_ring
;
1724 while (ring
->first
!= ring
->last
) {
1725 struct kvm_coalesced_mmio
*ent
;
1727 ent
= &ring
->coalesced_mmio
[ring
->first
];
1729 cpu_physical_memory_write(ent
->phys_addr
, ent
->data
, ent
->len
);
1731 ring
->first
= (ring
->first
+ 1) % KVM_COALESCED_MMIO_MAX
;
1735 s
->coalesced_flush_in_progress
= false;
1738 static void do_kvm_cpu_synchronize_state(void *arg
)
1740 CPUState
*cpu
= arg
;
1742 if (!cpu
->kvm_vcpu_dirty
) {
1743 kvm_arch_get_registers(cpu
);
1744 cpu
->kvm_vcpu_dirty
= true;
1748 void kvm_cpu_synchronize_state(CPUState
*cpu
)
1750 if (!cpu
->kvm_vcpu_dirty
) {
1751 run_on_cpu(cpu
, do_kvm_cpu_synchronize_state
, cpu
);
1755 static void do_kvm_cpu_synchronize_post_reset(void *arg
)
1757 CPUState
*cpu
= arg
;
1759 kvm_arch_put_registers(cpu
, KVM_PUT_RESET_STATE
);
1760 cpu
->kvm_vcpu_dirty
= false;
1763 void kvm_cpu_synchronize_post_reset(CPUState
*cpu
)
1765 run_on_cpu(cpu
, do_kvm_cpu_synchronize_post_reset
, cpu
);
1768 static void do_kvm_cpu_synchronize_post_init(void *arg
)
1770 CPUState
*cpu
= arg
;
1772 kvm_arch_put_registers(cpu
, KVM_PUT_FULL_STATE
);
1773 cpu
->kvm_vcpu_dirty
= false;
1776 void kvm_cpu_synchronize_post_init(CPUState
*cpu
)
1778 run_on_cpu(cpu
, do_kvm_cpu_synchronize_post_init
, cpu
);
1781 void kvm_cpu_clean_state(CPUState
*cpu
)
1783 cpu
->kvm_vcpu_dirty
= false;
1786 int kvm_cpu_exec(CPUState
*cpu
)
1788 struct kvm_run
*run
= cpu
->kvm_run
;
1791 DPRINTF("kvm_cpu_exec()\n");
1793 if (kvm_arch_process_async_events(cpu
)) {
1794 cpu
->exit_request
= 0;
1801 if (cpu
->kvm_vcpu_dirty
) {
1802 kvm_arch_put_registers(cpu
, KVM_PUT_RUNTIME_STATE
);
1803 cpu
->kvm_vcpu_dirty
= false;
1806 kvm_arch_pre_run(cpu
, run
);
1807 if (cpu
->exit_request
) {
1808 DPRINTF("interrupt exit requested\n");
1810 * KVM requires us to reenter the kernel after IO exits to complete
1811 * instruction emulation. This self-signal will ensure that we
1814 qemu_cpu_kick_self();
1816 qemu_mutex_unlock_iothread();
1818 run_ret
= kvm_vcpu_ioctl(cpu
, KVM_RUN
, 0);
1820 qemu_mutex_lock_iothread();
1821 attrs
= kvm_arch_post_run(cpu
, run
);
1824 if (run_ret
== -EINTR
|| run_ret
== -EAGAIN
) {
1825 DPRINTF("io window exit\n");
1826 ret
= EXCP_INTERRUPT
;
1829 fprintf(stderr
, "error: kvm run failed %s\n",
1830 strerror(-run_ret
));
1835 trace_kvm_run_exit(cpu
->cpu_index
, run
->exit_reason
);
1836 switch (run
->exit_reason
) {
1838 DPRINTF("handle_io\n");
1839 kvm_handle_io(run
->io
.port
, attrs
,
1840 (uint8_t *)run
+ run
->io
.data_offset
,
1847 DPRINTF("handle_mmio\n");
1848 address_space_rw(&address_space_memory
,
1849 run
->mmio
.phys_addr
, attrs
,
1852 run
->mmio
.is_write
);
1855 case KVM_EXIT_IRQ_WINDOW_OPEN
:
1856 DPRINTF("irq_window_open\n");
1857 ret
= EXCP_INTERRUPT
;
1859 case KVM_EXIT_SHUTDOWN
:
1860 DPRINTF("shutdown\n");
1861 qemu_system_reset_request();
1862 ret
= EXCP_INTERRUPT
;
1864 case KVM_EXIT_UNKNOWN
:
1865 fprintf(stderr
, "KVM: unknown exit, hardware reason %" PRIx64
"\n",
1866 (uint64_t)run
->hw
.hardware_exit_reason
);
1869 case KVM_EXIT_INTERNAL_ERROR
:
1870 ret
= kvm_handle_internal_error(cpu
, run
);
1872 case KVM_EXIT_SYSTEM_EVENT
:
1873 switch (run
->system_event
.type
) {
1874 case KVM_SYSTEM_EVENT_SHUTDOWN
:
1875 qemu_system_shutdown_request();
1876 ret
= EXCP_INTERRUPT
;
1878 case KVM_SYSTEM_EVENT_RESET
:
1879 qemu_system_reset_request();
1880 ret
= EXCP_INTERRUPT
;
1883 DPRINTF("kvm_arch_handle_exit\n");
1884 ret
= kvm_arch_handle_exit(cpu
, run
);
1889 DPRINTF("kvm_arch_handle_exit\n");
1890 ret
= kvm_arch_handle_exit(cpu
, run
);
1896 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_CODE
);
1897 vm_stop(RUN_STATE_INTERNAL_ERROR
);
1900 cpu
->exit_request
= 0;
1904 int kvm_ioctl(KVMState
*s
, int type
, ...)
1911 arg
= va_arg(ap
, void *);
1914 trace_kvm_ioctl(type
, arg
);
1915 ret
= ioctl(s
->fd
, type
, arg
);
1922 int kvm_vm_ioctl(KVMState
*s
, int type
, ...)
1929 arg
= va_arg(ap
, void *);
1932 trace_kvm_vm_ioctl(type
, arg
);
1933 ret
= ioctl(s
->vmfd
, type
, arg
);
1940 int kvm_vcpu_ioctl(CPUState
*cpu
, int type
, ...)
1947 arg
= va_arg(ap
, void *);
1950 trace_kvm_vcpu_ioctl(cpu
->cpu_index
, type
, arg
);
1951 ret
= ioctl(cpu
->kvm_fd
, type
, arg
);
1958 int kvm_device_ioctl(int fd
, int type
, ...)
1965 arg
= va_arg(ap
, void *);
1968 trace_kvm_device_ioctl(fd
, type
, arg
);
1969 ret
= ioctl(fd
, type
, arg
);
1976 int kvm_vm_check_attr(KVMState
*s
, uint32_t group
, uint64_t attr
)
1979 struct kvm_device_attr attribute
= {
1984 if (!kvm_vm_attributes_allowed
) {
1988 ret
= kvm_vm_ioctl(s
, KVM_HAS_DEVICE_ATTR
, &attribute
);
1989 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
1993 int kvm_has_sync_mmu(void)
1995 return kvm_check_extension(kvm_state
, KVM_CAP_SYNC_MMU
);
1998 int kvm_has_vcpu_events(void)
2000 return kvm_state
->vcpu_events
;
2003 int kvm_has_robust_singlestep(void)
2005 return kvm_state
->robust_singlestep
;
2008 int kvm_has_debugregs(void)
2010 return kvm_state
->debugregs
;
2013 int kvm_has_xsave(void)
2015 return kvm_state
->xsave
;
2018 int kvm_has_xcrs(void)
2020 return kvm_state
->xcrs
;
2023 int kvm_has_pit_state2(void)
2025 return kvm_state
->pit_state2
;
2028 int kvm_has_many_ioeventfds(void)
2030 if (!kvm_enabled()) {
2033 return kvm_state
->many_ioeventfds
;
2036 int kvm_has_gsi_routing(void)
2038 #ifdef KVM_CAP_IRQ_ROUTING
2039 return kvm_check_extension(kvm_state
, KVM_CAP_IRQ_ROUTING
);
2045 int kvm_has_intx_set_mask(void)
2047 return kvm_state
->intx_set_mask
;
2050 void kvm_setup_guest_memory(void *start
, size_t size
)
2052 if (!kvm_has_sync_mmu()) {
2053 int ret
= qemu_madvise(start
, size
, QEMU_MADV_DONTFORK
);
2056 perror("qemu_madvise");
2058 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
2064 #ifdef KVM_CAP_SET_GUEST_DEBUG
2065 struct kvm_sw_breakpoint
*kvm_find_sw_breakpoint(CPUState
*cpu
,
2068 struct kvm_sw_breakpoint
*bp
;
2070 QTAILQ_FOREACH(bp
, &cpu
->kvm_state
->kvm_sw_breakpoints
, entry
) {
2078 int kvm_sw_breakpoints_active(CPUState
*cpu
)
2080 return !QTAILQ_EMPTY(&cpu
->kvm_state
->kvm_sw_breakpoints
);
2083 struct kvm_set_guest_debug_data
{
2084 struct kvm_guest_debug dbg
;
2089 static void kvm_invoke_set_guest_debug(void *data
)
2091 struct kvm_set_guest_debug_data
*dbg_data
= data
;
2093 dbg_data
->err
= kvm_vcpu_ioctl(dbg_data
->cpu
, KVM_SET_GUEST_DEBUG
,
2097 int kvm_update_guest_debug(CPUState
*cpu
, unsigned long reinject_trap
)
2099 struct kvm_set_guest_debug_data data
;
2101 data
.dbg
.control
= reinject_trap
;
2103 if (cpu
->singlestep_enabled
) {
2104 data
.dbg
.control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_SINGLESTEP
;
2106 kvm_arch_update_guest_debug(cpu
, &data
.dbg
);
2109 run_on_cpu(cpu
, kvm_invoke_set_guest_debug
, &data
);
2113 int kvm_insert_breakpoint(CPUState
*cpu
, target_ulong addr
,
2114 target_ulong len
, int type
)
2116 struct kvm_sw_breakpoint
*bp
;
2119 if (type
== GDB_BREAKPOINT_SW
) {
2120 bp
= kvm_find_sw_breakpoint(cpu
, addr
);
2126 bp
= g_malloc(sizeof(struct kvm_sw_breakpoint
));
2129 err
= kvm_arch_insert_sw_breakpoint(cpu
, bp
);
2135 QTAILQ_INSERT_HEAD(&cpu
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
2137 err
= kvm_arch_insert_hw_breakpoint(addr
, len
, type
);
2144 err
= kvm_update_guest_debug(cpu
, 0);
2152 int kvm_remove_breakpoint(CPUState
*cpu
, target_ulong addr
,
2153 target_ulong len
, int type
)
2155 struct kvm_sw_breakpoint
*bp
;
2158 if (type
== GDB_BREAKPOINT_SW
) {
2159 bp
= kvm_find_sw_breakpoint(cpu
, addr
);
2164 if (bp
->use_count
> 1) {
2169 err
= kvm_arch_remove_sw_breakpoint(cpu
, bp
);
2174 QTAILQ_REMOVE(&cpu
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
2177 err
= kvm_arch_remove_hw_breakpoint(addr
, len
, type
);
2184 err
= kvm_update_guest_debug(cpu
, 0);
2192 void kvm_remove_all_breakpoints(CPUState
*cpu
)
2194 struct kvm_sw_breakpoint
*bp
, *next
;
2195 KVMState
*s
= cpu
->kvm_state
;
2198 QTAILQ_FOREACH_SAFE(bp
, &s
->kvm_sw_breakpoints
, entry
, next
) {
2199 if (kvm_arch_remove_sw_breakpoint(cpu
, bp
) != 0) {
2200 /* Try harder to find a CPU that currently sees the breakpoint. */
2201 CPU_FOREACH(tmpcpu
) {
2202 if (kvm_arch_remove_sw_breakpoint(tmpcpu
, bp
) == 0) {
2207 QTAILQ_REMOVE(&s
->kvm_sw_breakpoints
, bp
, entry
);
2210 kvm_arch_remove_all_hw_breakpoints();
2213 kvm_update_guest_debug(cpu
, 0);
2217 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2219 int kvm_update_guest_debug(CPUState
*cpu
, unsigned long reinject_trap
)
2224 int kvm_insert_breakpoint(CPUState
*cpu
, target_ulong addr
,
2225 target_ulong len
, int type
)
2230 int kvm_remove_breakpoint(CPUState
*cpu
, target_ulong addr
,
2231 target_ulong len
, int type
)
2236 void kvm_remove_all_breakpoints(CPUState
*cpu
)
2239 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2241 int kvm_set_signal_mask(CPUState
*cpu
, const sigset_t
*sigset
)
2243 KVMState
*s
= kvm_state
;
2244 struct kvm_signal_mask
*sigmask
;
2248 return kvm_vcpu_ioctl(cpu
, KVM_SET_SIGNAL_MASK
, NULL
);
2251 sigmask
= g_malloc(sizeof(*sigmask
) + sizeof(*sigset
));
2253 sigmask
->len
= s
->sigmask_len
;
2254 memcpy(sigmask
->sigset
, sigset
, sizeof(*sigset
));
2255 r
= kvm_vcpu_ioctl(cpu
, KVM_SET_SIGNAL_MASK
, sigmask
);
2260 int kvm_on_sigbus_vcpu(CPUState
*cpu
, int code
, void *addr
)
2262 return kvm_arch_on_sigbus_vcpu(cpu
, code
, addr
);
2265 int kvm_on_sigbus(int code
, void *addr
)
2267 return kvm_arch_on_sigbus(code
, addr
);
2270 int kvm_create_device(KVMState
*s
, uint64_t type
, bool test
)
2273 struct kvm_create_device create_dev
;
2275 create_dev
.type
= type
;
2277 create_dev
.flags
= test
? KVM_CREATE_DEVICE_TEST
: 0;
2279 if (!kvm_check_extension(s
, KVM_CAP_DEVICE_CTRL
)) {
2283 ret
= kvm_vm_ioctl(s
, KVM_CREATE_DEVICE
, &create_dev
);
2288 return test
? 0 : create_dev
.fd
;
2291 int kvm_set_one_reg(CPUState
*cs
, uint64_t id
, void *source
)
2293 struct kvm_one_reg reg
;
2297 reg
.addr
= (uintptr_t) source
;
2298 r
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
2300 trace_kvm_failed_reg_set(id
, strerror(r
));
2305 int kvm_get_one_reg(CPUState
*cs
, uint64_t id
, void *target
)
2307 struct kvm_one_reg reg
;
2311 reg
.addr
= (uintptr_t) target
;
2312 r
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
2314 trace_kvm_failed_reg_get(id
, strerror(r
));
2319 static void kvm_accel_class_init(ObjectClass
*oc
, void *data
)
2321 AccelClass
*ac
= ACCEL_CLASS(oc
);
2323 ac
->init_machine
= kvm_init
;
2324 ac
->allowed
= &kvm_allowed
;
2327 static const TypeInfo kvm_accel_type
= {
2328 .name
= TYPE_KVM_ACCEL
,
2329 .parent
= TYPE_ACCEL
,
2330 .class_init
= kvm_accel_class_init
,
2331 .instance_size
= sizeof(KVMState
),
2334 static void kvm_type_init(void)
2336 type_register_static(&kvm_accel_type
);
2339 type_init(kvm_type_init
);