tests/qtest/bios-tables-test: Check for virtio-iommu device before using it
[qemu/ar7.git] / accel / tcg / cputlb.c
blobc643d661909ec38f1c2d682f441b5ed080e7776d
1 /*
2 * Common CPU TLB handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu/main-loop.h"
22 #include "hw/core/tcg-cpu-ops.h"
23 #include "exec/exec-all.h"
24 #include "exec/memory.h"
25 #include "exec/cpu_ldst.h"
26 #include "exec/cputlb.h"
27 #include "exec/memory-internal.h"
28 #include "exec/ram_addr.h"
29 #include "tcg/tcg.h"
30 #include "qemu/error-report.h"
31 #include "exec/log.h"
32 #include "exec/helper-proto-common.h"
33 #include "qemu/atomic.h"
34 #include "qemu/atomic128.h"
35 #include "exec/translate-all.h"
36 #include "trace.h"
37 #include "tb-hash.h"
38 #include "internal.h"
39 #ifdef CONFIG_PLUGIN
40 #include "qemu/plugin-memory.h"
41 #endif
42 #include "tcg/tcg-ldst.h"
43 #include "tcg/oversized-guest.h"
45 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */
46 /* #define DEBUG_TLB */
47 /* #define DEBUG_TLB_LOG */
49 #ifdef DEBUG_TLB
50 # define DEBUG_TLB_GATE 1
51 # ifdef DEBUG_TLB_LOG
52 # define DEBUG_TLB_LOG_GATE 1
53 # else
54 # define DEBUG_TLB_LOG_GATE 0
55 # endif
56 #else
57 # define DEBUG_TLB_GATE 0
58 # define DEBUG_TLB_LOG_GATE 0
59 #endif
61 #define tlb_debug(fmt, ...) do { \
62 if (DEBUG_TLB_LOG_GATE) { \
63 qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \
64 ## __VA_ARGS__); \
65 } else if (DEBUG_TLB_GATE) { \
66 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
67 } \
68 } while (0)
70 #define assert_cpu_is_self(cpu) do { \
71 if (DEBUG_TLB_GATE) { \
72 g_assert(!(cpu)->created || qemu_cpu_is_self(cpu)); \
73 } \
74 } while (0)
76 /* run_on_cpu_data.target_ptr should always be big enough for a
77 * vaddr even on 32 bit builds
79 QEMU_BUILD_BUG_ON(sizeof(vaddr) > sizeof(run_on_cpu_data));
81 /* We currently can't handle more than 16 bits in the MMUIDX bitmask.
83 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16);
84 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1)
86 static inline size_t tlb_n_entries(CPUTLBDescFast *fast)
88 return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1;
91 static inline size_t sizeof_tlb(CPUTLBDescFast *fast)
93 return fast->mask + (1 << CPU_TLB_ENTRY_BITS);
96 static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns,
97 size_t max_entries)
99 desc->window_begin_ns = ns;
100 desc->window_max_entries = max_entries;
103 static void tb_jmp_cache_clear_page(CPUState *cpu, vaddr page_addr)
105 CPUJumpCache *jc = cpu->tb_jmp_cache;
106 int i, i0;
108 if (unlikely(!jc)) {
109 return;
112 i0 = tb_jmp_cache_hash_page(page_addr);
113 for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
114 qatomic_set(&jc->array[i0 + i].tb, NULL);
119 * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary
120 * @desc: The CPUTLBDesc portion of the TLB
121 * @fast: The CPUTLBDescFast portion of the same TLB
123 * Called with tlb_lock_held.
125 * We have two main constraints when resizing a TLB: (1) we only resize it
126 * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing
127 * the array or unnecessarily flushing it), which means we do not control how
128 * frequently the resizing can occur; (2) we don't have access to the guest's
129 * future scheduling decisions, and therefore have to decide the magnitude of
130 * the resize based on past observations.
132 * In general, a memory-hungry process can benefit greatly from an appropriately
133 * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that
134 * we just have to make the TLB as large as possible; while an oversized TLB
135 * results in minimal TLB miss rates, it also takes longer to be flushed
136 * (flushes can be _very_ frequent), and the reduced locality can also hurt
137 * performance.
139 * To achieve near-optimal performance for all kinds of workloads, we:
141 * 1. Aggressively increase the size of the TLB when the use rate of the
142 * TLB being flushed is high, since it is likely that in the near future this
143 * memory-hungry process will execute again, and its memory hungriness will
144 * probably be similar.
146 * 2. Slowly reduce the size of the TLB as the use rate declines over a
147 * reasonably large time window. The rationale is that if in such a time window
148 * we have not observed a high TLB use rate, it is likely that we won't observe
149 * it in the near future. In that case, once a time window expires we downsize
150 * the TLB to match the maximum use rate observed in the window.
152 * 3. Try to keep the maximum use rate in a time window in the 30-70% range,
153 * since in that range performance is likely near-optimal. Recall that the TLB
154 * is direct mapped, so we want the use rate to be low (or at least not too
155 * high), since otherwise we are likely to have a significant amount of
156 * conflict misses.
158 static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast,
159 int64_t now)
161 size_t old_size = tlb_n_entries(fast);
162 size_t rate;
163 size_t new_size = old_size;
164 int64_t window_len_ms = 100;
165 int64_t window_len_ns = window_len_ms * 1000 * 1000;
166 bool window_expired = now > desc->window_begin_ns + window_len_ns;
168 if (desc->n_used_entries > desc->window_max_entries) {
169 desc->window_max_entries = desc->n_used_entries;
171 rate = desc->window_max_entries * 100 / old_size;
173 if (rate > 70) {
174 new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS);
175 } else if (rate < 30 && window_expired) {
176 size_t ceil = pow2ceil(desc->window_max_entries);
177 size_t expected_rate = desc->window_max_entries * 100 / ceil;
180 * Avoid undersizing when the max number of entries seen is just below
181 * a pow2. For instance, if max_entries == 1025, the expected use rate
182 * would be 1025/2048==50%. However, if max_entries == 1023, we'd get
183 * 1023/1024==99.9% use rate, so we'd likely end up doubling the size
184 * later. Thus, make sure that the expected use rate remains below 70%.
185 * (and since we double the size, that means the lowest rate we'd
186 * expect to get is 35%, which is still in the 30-70% range where
187 * we consider that the size is appropriate.)
189 if (expected_rate > 70) {
190 ceil *= 2;
192 new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS);
195 if (new_size == old_size) {
196 if (window_expired) {
197 tlb_window_reset(desc, now, desc->n_used_entries);
199 return;
202 g_free(fast->table);
203 g_free(desc->fulltlb);
205 tlb_window_reset(desc, now, 0);
206 /* desc->n_used_entries is cleared by the caller */
207 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
208 fast->table = g_try_new(CPUTLBEntry, new_size);
209 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size);
212 * If the allocations fail, try smaller sizes. We just freed some
213 * memory, so going back to half of new_size has a good chance of working.
214 * Increased memory pressure elsewhere in the system might cause the
215 * allocations to fail though, so we progressively reduce the allocation
216 * size, aborting if we cannot even allocate the smallest TLB we support.
218 while (fast->table == NULL || desc->fulltlb == NULL) {
219 if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) {
220 error_report("%s: %s", __func__, strerror(errno));
221 abort();
223 new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS);
224 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
226 g_free(fast->table);
227 g_free(desc->fulltlb);
228 fast->table = g_try_new(CPUTLBEntry, new_size);
229 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size);
233 static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast)
235 desc->n_used_entries = 0;
236 desc->large_page_addr = -1;
237 desc->large_page_mask = -1;
238 desc->vindex = 0;
239 memset(fast->table, -1, sizeof_tlb(fast));
240 memset(desc->vtable, -1, sizeof(desc->vtable));
243 static void tlb_flush_one_mmuidx_locked(CPUArchState *env, int mmu_idx,
244 int64_t now)
246 CPUTLBDesc *desc = &env_tlb(env)->d[mmu_idx];
247 CPUTLBDescFast *fast = &env_tlb(env)->f[mmu_idx];
249 tlb_mmu_resize_locked(desc, fast, now);
250 tlb_mmu_flush_locked(desc, fast);
253 static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now)
255 size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS;
257 tlb_window_reset(desc, now, 0);
258 desc->n_used_entries = 0;
259 fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS;
260 fast->table = g_new(CPUTLBEntry, n_entries);
261 desc->fulltlb = g_new(CPUTLBEntryFull, n_entries);
262 tlb_mmu_flush_locked(desc, fast);
265 static inline void tlb_n_used_entries_inc(CPUArchState *env, uintptr_t mmu_idx)
267 env_tlb(env)->d[mmu_idx].n_used_entries++;
270 static inline void tlb_n_used_entries_dec(CPUArchState *env, uintptr_t mmu_idx)
272 env_tlb(env)->d[mmu_idx].n_used_entries--;
275 void tlb_init(CPUState *cpu)
277 CPUArchState *env = cpu->env_ptr;
278 int64_t now = get_clock_realtime();
279 int i;
281 qemu_spin_init(&env_tlb(env)->c.lock);
283 /* All tlbs are initialized flushed. */
284 env_tlb(env)->c.dirty = 0;
286 for (i = 0; i < NB_MMU_MODES; i++) {
287 tlb_mmu_init(&env_tlb(env)->d[i], &env_tlb(env)->f[i], now);
291 void tlb_destroy(CPUState *cpu)
293 CPUArchState *env = cpu->env_ptr;
294 int i;
296 qemu_spin_destroy(&env_tlb(env)->c.lock);
297 for (i = 0; i < NB_MMU_MODES; i++) {
298 CPUTLBDesc *desc = &env_tlb(env)->d[i];
299 CPUTLBDescFast *fast = &env_tlb(env)->f[i];
301 g_free(fast->table);
302 g_free(desc->fulltlb);
306 /* flush_all_helper: run fn across all cpus
308 * If the wait flag is set then the src cpu's helper will be queued as
309 * "safe" work and the loop exited creating a synchronisation point
310 * where all queued work will be finished before execution starts
311 * again.
313 static void flush_all_helper(CPUState *src, run_on_cpu_func fn,
314 run_on_cpu_data d)
316 CPUState *cpu;
318 CPU_FOREACH(cpu) {
319 if (cpu != src) {
320 async_run_on_cpu(cpu, fn, d);
325 void tlb_flush_counts(size_t *pfull, size_t *ppart, size_t *pelide)
327 CPUState *cpu;
328 size_t full = 0, part = 0, elide = 0;
330 CPU_FOREACH(cpu) {
331 CPUArchState *env = cpu->env_ptr;
333 full += qatomic_read(&env_tlb(env)->c.full_flush_count);
334 part += qatomic_read(&env_tlb(env)->c.part_flush_count);
335 elide += qatomic_read(&env_tlb(env)->c.elide_flush_count);
337 *pfull = full;
338 *ppart = part;
339 *pelide = elide;
342 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data)
344 CPUArchState *env = cpu->env_ptr;
345 uint16_t asked = data.host_int;
346 uint16_t all_dirty, work, to_clean;
347 int64_t now = get_clock_realtime();
349 assert_cpu_is_self(cpu);
351 tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked);
353 qemu_spin_lock(&env_tlb(env)->c.lock);
355 all_dirty = env_tlb(env)->c.dirty;
356 to_clean = asked & all_dirty;
357 all_dirty &= ~to_clean;
358 env_tlb(env)->c.dirty = all_dirty;
360 for (work = to_clean; work != 0; work &= work - 1) {
361 int mmu_idx = ctz32(work);
362 tlb_flush_one_mmuidx_locked(env, mmu_idx, now);
365 qemu_spin_unlock(&env_tlb(env)->c.lock);
367 tcg_flush_jmp_cache(cpu);
369 if (to_clean == ALL_MMUIDX_BITS) {
370 qatomic_set(&env_tlb(env)->c.full_flush_count,
371 env_tlb(env)->c.full_flush_count + 1);
372 } else {
373 qatomic_set(&env_tlb(env)->c.part_flush_count,
374 env_tlb(env)->c.part_flush_count + ctpop16(to_clean));
375 if (to_clean != asked) {
376 qatomic_set(&env_tlb(env)->c.elide_flush_count,
377 env_tlb(env)->c.elide_flush_count +
378 ctpop16(asked & ~to_clean));
383 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
385 tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap);
387 if (cpu->created && !qemu_cpu_is_self(cpu)) {
388 async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work,
389 RUN_ON_CPU_HOST_INT(idxmap));
390 } else {
391 tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap));
395 void tlb_flush(CPUState *cpu)
397 tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS);
400 void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap)
402 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
404 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
406 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
407 fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap));
410 void tlb_flush_all_cpus(CPUState *src_cpu)
412 tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS);
415 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap)
417 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
419 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
421 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
422 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
425 void tlb_flush_all_cpus_synced(CPUState *src_cpu)
427 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS);
430 static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry,
431 vaddr page, vaddr mask)
433 page &= mask;
434 mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK;
436 return (page == (tlb_entry->addr_read & mask) ||
437 page == (tlb_addr_write(tlb_entry) & mask) ||
438 page == (tlb_entry->addr_code & mask));
441 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry, vaddr page)
443 return tlb_hit_page_mask_anyprot(tlb_entry, page, -1);
447 * tlb_entry_is_empty - return true if the entry is not in use
448 * @te: pointer to CPUTLBEntry
450 static inline bool tlb_entry_is_empty(const CPUTLBEntry *te)
452 return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1;
455 /* Called with tlb_c.lock held */
456 static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry,
457 vaddr page,
458 vaddr mask)
460 if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) {
461 memset(tlb_entry, -1, sizeof(*tlb_entry));
462 return true;
464 return false;
467 static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry, vaddr page)
469 return tlb_flush_entry_mask_locked(tlb_entry, page, -1);
472 /* Called with tlb_c.lock held */
473 static void tlb_flush_vtlb_page_mask_locked(CPUArchState *env, int mmu_idx,
474 vaddr page,
475 vaddr mask)
477 CPUTLBDesc *d = &env_tlb(env)->d[mmu_idx];
478 int k;
480 assert_cpu_is_self(env_cpu(env));
481 for (k = 0; k < CPU_VTLB_SIZE; k++) {
482 if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) {
483 tlb_n_used_entries_dec(env, mmu_idx);
488 static inline void tlb_flush_vtlb_page_locked(CPUArchState *env, int mmu_idx,
489 vaddr page)
491 tlb_flush_vtlb_page_mask_locked(env, mmu_idx, page, -1);
494 static void tlb_flush_page_locked(CPUArchState *env, int midx, vaddr page)
496 vaddr lp_addr = env_tlb(env)->d[midx].large_page_addr;
497 vaddr lp_mask = env_tlb(env)->d[midx].large_page_mask;
499 /* Check if we need to flush due to large pages. */
500 if ((page & lp_mask) == lp_addr) {
501 tlb_debug("forcing full flush midx %d (%016"
502 VADDR_PRIx "/%016" VADDR_PRIx ")\n",
503 midx, lp_addr, lp_mask);
504 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
505 } else {
506 if (tlb_flush_entry_locked(tlb_entry(env, midx, page), page)) {
507 tlb_n_used_entries_dec(env, midx);
509 tlb_flush_vtlb_page_locked(env, midx, page);
514 * tlb_flush_page_by_mmuidx_async_0:
515 * @cpu: cpu on which to flush
516 * @addr: page of virtual address to flush
517 * @idxmap: set of mmu_idx to flush
519 * Helper for tlb_flush_page_by_mmuidx and friends, flush one page
520 * at @addr from the tlbs indicated by @idxmap from @cpu.
522 static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu,
523 vaddr addr,
524 uint16_t idxmap)
526 CPUArchState *env = cpu->env_ptr;
527 int mmu_idx;
529 assert_cpu_is_self(cpu);
531 tlb_debug("page addr: %016" VADDR_PRIx " mmu_map:0x%x\n", addr, idxmap);
533 qemu_spin_lock(&env_tlb(env)->c.lock);
534 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
535 if ((idxmap >> mmu_idx) & 1) {
536 tlb_flush_page_locked(env, mmu_idx, addr);
539 qemu_spin_unlock(&env_tlb(env)->c.lock);
542 * Discard jump cache entries for any tb which might potentially
543 * overlap the flushed page, which includes the previous.
545 tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
546 tb_jmp_cache_clear_page(cpu, addr);
550 * tlb_flush_page_by_mmuidx_async_1:
551 * @cpu: cpu on which to flush
552 * @data: encoded addr + idxmap
554 * Helper for tlb_flush_page_by_mmuidx and friends, called through
555 * async_run_on_cpu. The idxmap parameter is encoded in the page
556 * offset of the target_ptr field. This limits the set of mmu_idx
557 * that can be passed via this method.
559 static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu,
560 run_on_cpu_data data)
562 vaddr addr_and_idxmap = data.target_ptr;
563 vaddr addr = addr_and_idxmap & TARGET_PAGE_MASK;
564 uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK;
566 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
569 typedef struct {
570 vaddr addr;
571 uint16_t idxmap;
572 } TLBFlushPageByMMUIdxData;
575 * tlb_flush_page_by_mmuidx_async_2:
576 * @cpu: cpu on which to flush
577 * @data: allocated addr + idxmap
579 * Helper for tlb_flush_page_by_mmuidx and friends, called through
580 * async_run_on_cpu. The addr+idxmap parameters are stored in a
581 * TLBFlushPageByMMUIdxData structure that has been allocated
582 * specifically for this helper. Free the structure when done.
584 static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu,
585 run_on_cpu_data data)
587 TLBFlushPageByMMUIdxData *d = data.host_ptr;
589 tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap);
590 g_free(d);
593 void tlb_flush_page_by_mmuidx(CPUState *cpu, vaddr addr, uint16_t idxmap)
595 tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%" PRIx16 "\n", addr, idxmap);
597 /* This should already be page aligned */
598 addr &= TARGET_PAGE_MASK;
600 if (qemu_cpu_is_self(cpu)) {
601 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
602 } else if (idxmap < TARGET_PAGE_SIZE) {
604 * Most targets have only a few mmu_idx. In the case where
605 * we can stuff idxmap into the low TARGET_PAGE_BITS, avoid
606 * allocating memory for this operation.
608 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_1,
609 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
610 } else {
611 TLBFlushPageByMMUIdxData *d = g_new(TLBFlushPageByMMUIdxData, 1);
613 /* Otherwise allocate a structure, freed by the worker. */
614 d->addr = addr;
615 d->idxmap = idxmap;
616 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_2,
617 RUN_ON_CPU_HOST_PTR(d));
621 void tlb_flush_page(CPUState *cpu, vaddr addr)
623 tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS);
626 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, vaddr addr,
627 uint16_t idxmap)
629 tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%"PRIx16"\n", addr, idxmap);
631 /* This should already be page aligned */
632 addr &= TARGET_PAGE_MASK;
635 * Allocate memory to hold addr+idxmap only when needed.
636 * See tlb_flush_page_by_mmuidx for details.
638 if (idxmap < TARGET_PAGE_SIZE) {
639 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
640 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
641 } else {
642 CPUState *dst_cpu;
644 /* Allocate a separate data block for each destination cpu. */
645 CPU_FOREACH(dst_cpu) {
646 if (dst_cpu != src_cpu) {
647 TLBFlushPageByMMUIdxData *d
648 = g_new(TLBFlushPageByMMUIdxData, 1);
650 d->addr = addr;
651 d->idxmap = idxmap;
652 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
653 RUN_ON_CPU_HOST_PTR(d));
658 tlb_flush_page_by_mmuidx_async_0(src_cpu, addr, idxmap);
661 void tlb_flush_page_all_cpus(CPUState *src, vaddr addr)
663 tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS);
666 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
667 vaddr addr,
668 uint16_t idxmap)
670 tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%"PRIx16"\n", addr, idxmap);
672 /* This should already be page aligned */
673 addr &= TARGET_PAGE_MASK;
676 * Allocate memory to hold addr+idxmap only when needed.
677 * See tlb_flush_page_by_mmuidx for details.
679 if (idxmap < TARGET_PAGE_SIZE) {
680 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
681 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
682 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1,
683 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
684 } else {
685 CPUState *dst_cpu;
686 TLBFlushPageByMMUIdxData *d;
688 /* Allocate a separate data block for each destination cpu. */
689 CPU_FOREACH(dst_cpu) {
690 if (dst_cpu != src_cpu) {
691 d = g_new(TLBFlushPageByMMUIdxData, 1);
692 d->addr = addr;
693 d->idxmap = idxmap;
694 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
695 RUN_ON_CPU_HOST_PTR(d));
699 d = g_new(TLBFlushPageByMMUIdxData, 1);
700 d->addr = addr;
701 d->idxmap = idxmap;
702 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2,
703 RUN_ON_CPU_HOST_PTR(d));
707 void tlb_flush_page_all_cpus_synced(CPUState *src, vaddr addr)
709 tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS);
712 static void tlb_flush_range_locked(CPUArchState *env, int midx,
713 vaddr addr, vaddr len,
714 unsigned bits)
716 CPUTLBDesc *d = &env_tlb(env)->d[midx];
717 CPUTLBDescFast *f = &env_tlb(env)->f[midx];
718 vaddr mask = MAKE_64BIT_MASK(0, bits);
721 * If @bits is smaller than the tlb size, there may be multiple entries
722 * within the TLB; otherwise all addresses that match under @mask hit
723 * the same TLB entry.
724 * TODO: Perhaps allow bits to be a few bits less than the size.
725 * For now, just flush the entire TLB.
727 * If @len is larger than the tlb size, then it will take longer to
728 * test all of the entries in the TLB than it will to flush it all.
730 if (mask < f->mask || len > f->mask) {
731 tlb_debug("forcing full flush midx %d ("
732 "%016" VADDR_PRIx "/%016" VADDR_PRIx "+%016" VADDR_PRIx ")\n",
733 midx, addr, mask, len);
734 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
735 return;
739 * Check if we need to flush due to large pages.
740 * Because large_page_mask contains all 1's from the msb,
741 * we only need to test the end of the range.
743 if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) {
744 tlb_debug("forcing full flush midx %d ("
745 "%016" VADDR_PRIx "/%016" VADDR_PRIx ")\n",
746 midx, d->large_page_addr, d->large_page_mask);
747 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
748 return;
751 for (vaddr i = 0; i < len; i += TARGET_PAGE_SIZE) {
752 vaddr page = addr + i;
753 CPUTLBEntry *entry = tlb_entry(env, midx, page);
755 if (tlb_flush_entry_mask_locked(entry, page, mask)) {
756 tlb_n_used_entries_dec(env, midx);
758 tlb_flush_vtlb_page_mask_locked(env, midx, page, mask);
762 typedef struct {
763 vaddr addr;
764 vaddr len;
765 uint16_t idxmap;
766 uint16_t bits;
767 } TLBFlushRangeData;
769 static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu,
770 TLBFlushRangeData d)
772 CPUArchState *env = cpu->env_ptr;
773 int mmu_idx;
775 assert_cpu_is_self(cpu);
777 tlb_debug("range: %016" VADDR_PRIx "/%u+%016" VADDR_PRIx " mmu_map:0x%x\n",
778 d.addr, d.bits, d.len, d.idxmap);
780 qemu_spin_lock(&env_tlb(env)->c.lock);
781 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
782 if ((d.idxmap >> mmu_idx) & 1) {
783 tlb_flush_range_locked(env, mmu_idx, d.addr, d.len, d.bits);
786 qemu_spin_unlock(&env_tlb(env)->c.lock);
789 * If the length is larger than the jump cache size, then it will take
790 * longer to clear each entry individually than it will to clear it all.
792 if (d.len >= (TARGET_PAGE_SIZE * TB_JMP_CACHE_SIZE)) {
793 tcg_flush_jmp_cache(cpu);
794 return;
798 * Discard jump cache entries for any tb which might potentially
799 * overlap the flushed pages, which includes the previous.
801 d.addr -= TARGET_PAGE_SIZE;
802 for (vaddr i = 0, n = d.len / TARGET_PAGE_SIZE + 1; i < n; i++) {
803 tb_jmp_cache_clear_page(cpu, d.addr);
804 d.addr += TARGET_PAGE_SIZE;
808 static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu,
809 run_on_cpu_data data)
811 TLBFlushRangeData *d = data.host_ptr;
812 tlb_flush_range_by_mmuidx_async_0(cpu, *d);
813 g_free(d);
816 void tlb_flush_range_by_mmuidx(CPUState *cpu, vaddr addr,
817 vaddr len, uint16_t idxmap,
818 unsigned bits)
820 TLBFlushRangeData d;
823 * If all bits are significant, and len is small,
824 * this devolves to tlb_flush_page.
826 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
827 tlb_flush_page_by_mmuidx(cpu, addr, idxmap);
828 return;
830 /* If no page bits are significant, this devolves to tlb_flush. */
831 if (bits < TARGET_PAGE_BITS) {
832 tlb_flush_by_mmuidx(cpu, idxmap);
833 return;
836 /* This should already be page aligned */
837 d.addr = addr & TARGET_PAGE_MASK;
838 d.len = len;
839 d.idxmap = idxmap;
840 d.bits = bits;
842 if (qemu_cpu_is_self(cpu)) {
843 tlb_flush_range_by_mmuidx_async_0(cpu, d);
844 } else {
845 /* Otherwise allocate a structure, freed by the worker. */
846 TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
847 async_run_on_cpu(cpu, tlb_flush_range_by_mmuidx_async_1,
848 RUN_ON_CPU_HOST_PTR(p));
852 void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, vaddr addr,
853 uint16_t idxmap, unsigned bits)
855 tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits);
858 void tlb_flush_range_by_mmuidx_all_cpus(CPUState *src_cpu,
859 vaddr addr, vaddr len,
860 uint16_t idxmap, unsigned bits)
862 TLBFlushRangeData d;
863 CPUState *dst_cpu;
866 * If all bits are significant, and len is small,
867 * this devolves to tlb_flush_page.
869 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
870 tlb_flush_page_by_mmuidx_all_cpus(src_cpu, addr, idxmap);
871 return;
873 /* If no page bits are significant, this devolves to tlb_flush. */
874 if (bits < TARGET_PAGE_BITS) {
875 tlb_flush_by_mmuidx_all_cpus(src_cpu, idxmap);
876 return;
879 /* This should already be page aligned */
880 d.addr = addr & TARGET_PAGE_MASK;
881 d.len = len;
882 d.idxmap = idxmap;
883 d.bits = bits;
885 /* Allocate a separate data block for each destination cpu. */
886 CPU_FOREACH(dst_cpu) {
887 if (dst_cpu != src_cpu) {
888 TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
889 async_run_on_cpu(dst_cpu,
890 tlb_flush_range_by_mmuidx_async_1,
891 RUN_ON_CPU_HOST_PTR(p));
895 tlb_flush_range_by_mmuidx_async_0(src_cpu, d);
898 void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *src_cpu,
899 vaddr addr, uint16_t idxmap,
900 unsigned bits)
902 tlb_flush_range_by_mmuidx_all_cpus(src_cpu, addr, TARGET_PAGE_SIZE,
903 idxmap, bits);
906 void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
907 vaddr addr,
908 vaddr len,
909 uint16_t idxmap,
910 unsigned bits)
912 TLBFlushRangeData d, *p;
913 CPUState *dst_cpu;
916 * If all bits are significant, and len is small,
917 * this devolves to tlb_flush_page.
919 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
920 tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap);
921 return;
923 /* If no page bits are significant, this devolves to tlb_flush. */
924 if (bits < TARGET_PAGE_BITS) {
925 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap);
926 return;
929 /* This should already be page aligned */
930 d.addr = addr & TARGET_PAGE_MASK;
931 d.len = len;
932 d.idxmap = idxmap;
933 d.bits = bits;
935 /* Allocate a separate data block for each destination cpu. */
936 CPU_FOREACH(dst_cpu) {
937 if (dst_cpu != src_cpu) {
938 p = g_memdup(&d, sizeof(d));
939 async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1,
940 RUN_ON_CPU_HOST_PTR(p));
944 p = g_memdup(&d, sizeof(d));
945 async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1,
946 RUN_ON_CPU_HOST_PTR(p));
949 void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
950 vaddr addr,
951 uint16_t idxmap,
952 unsigned bits)
954 tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE,
955 idxmap, bits);
958 /* update the TLBs so that writes to code in the virtual page 'addr'
959 can be detected */
960 void tlb_protect_code(ram_addr_t ram_addr)
962 cpu_physical_memory_test_and_clear_dirty(ram_addr & TARGET_PAGE_MASK,
963 TARGET_PAGE_SIZE,
964 DIRTY_MEMORY_CODE);
967 /* update the TLB so that writes in physical page 'phys_addr' are no longer
968 tested for self modifying code */
969 void tlb_unprotect_code(ram_addr_t ram_addr)
971 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
976 * Dirty write flag handling
978 * When the TCG code writes to a location it looks up the address in
979 * the TLB and uses that data to compute the final address. If any of
980 * the lower bits of the address are set then the slow path is forced.
981 * There are a number of reasons to do this but for normal RAM the
982 * most usual is detecting writes to code regions which may invalidate
983 * generated code.
985 * Other vCPUs might be reading their TLBs during guest execution, so we update
986 * te->addr_write with qatomic_set. We don't need to worry about this for
987 * oversized guests as MTTCG is disabled for them.
989 * Called with tlb_c.lock held.
991 static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry,
992 uintptr_t start, uintptr_t length)
994 uintptr_t addr = tlb_entry->addr_write;
996 if ((addr & (TLB_INVALID_MASK | TLB_MMIO |
997 TLB_DISCARD_WRITE | TLB_NOTDIRTY)) == 0) {
998 addr &= TARGET_PAGE_MASK;
999 addr += tlb_entry->addend;
1000 if ((addr - start) < length) {
1001 #if TARGET_LONG_BITS == 32
1002 uint32_t *ptr_write = (uint32_t *)&tlb_entry->addr_write;
1003 ptr_write += HOST_BIG_ENDIAN;
1004 qatomic_set(ptr_write, *ptr_write | TLB_NOTDIRTY);
1005 #elif TCG_OVERSIZED_GUEST
1006 tlb_entry->addr_write |= TLB_NOTDIRTY;
1007 #else
1008 qatomic_set(&tlb_entry->addr_write,
1009 tlb_entry->addr_write | TLB_NOTDIRTY);
1010 #endif
1016 * Called with tlb_c.lock held.
1017 * Called only from the vCPU context, i.e. the TLB's owner thread.
1019 static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s)
1021 *d = *s;
1024 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of
1025 * the target vCPU).
1026 * We must take tlb_c.lock to avoid racing with another vCPU update. The only
1027 * thing actually updated is the target TLB entry ->addr_write flags.
1029 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length)
1031 CPUArchState *env;
1033 int mmu_idx;
1035 env = cpu->env_ptr;
1036 qemu_spin_lock(&env_tlb(env)->c.lock);
1037 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1038 unsigned int i;
1039 unsigned int n = tlb_n_entries(&env_tlb(env)->f[mmu_idx]);
1041 for (i = 0; i < n; i++) {
1042 tlb_reset_dirty_range_locked(&env_tlb(env)->f[mmu_idx].table[i],
1043 start1, length);
1046 for (i = 0; i < CPU_VTLB_SIZE; i++) {
1047 tlb_reset_dirty_range_locked(&env_tlb(env)->d[mmu_idx].vtable[i],
1048 start1, length);
1051 qemu_spin_unlock(&env_tlb(env)->c.lock);
1054 /* Called with tlb_c.lock held */
1055 static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry,
1056 vaddr addr)
1058 if (tlb_entry->addr_write == (addr | TLB_NOTDIRTY)) {
1059 tlb_entry->addr_write = addr;
1063 /* update the TLB corresponding to virtual page vaddr
1064 so that it is no longer dirty */
1065 void tlb_set_dirty(CPUState *cpu, vaddr addr)
1067 CPUArchState *env = cpu->env_ptr;
1068 int mmu_idx;
1070 assert_cpu_is_self(cpu);
1072 addr &= TARGET_PAGE_MASK;
1073 qemu_spin_lock(&env_tlb(env)->c.lock);
1074 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1075 tlb_set_dirty1_locked(tlb_entry(env, mmu_idx, addr), addr);
1078 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1079 int k;
1080 for (k = 0; k < CPU_VTLB_SIZE; k++) {
1081 tlb_set_dirty1_locked(&env_tlb(env)->d[mmu_idx].vtable[k], addr);
1084 qemu_spin_unlock(&env_tlb(env)->c.lock);
1087 /* Our TLB does not support large pages, so remember the area covered by
1088 large pages and trigger a full TLB flush if these are invalidated. */
1089 static void tlb_add_large_page(CPUArchState *env, int mmu_idx,
1090 vaddr addr, uint64_t size)
1092 vaddr lp_addr = env_tlb(env)->d[mmu_idx].large_page_addr;
1093 vaddr lp_mask = ~(size - 1);
1095 if (lp_addr == (vaddr)-1) {
1096 /* No previous large page. */
1097 lp_addr = addr;
1098 } else {
1099 /* Extend the existing region to include the new page.
1100 This is a compromise between unnecessary flushes and
1101 the cost of maintaining a full variable size TLB. */
1102 lp_mask &= env_tlb(env)->d[mmu_idx].large_page_mask;
1103 while (((lp_addr ^ addr) & lp_mask) != 0) {
1104 lp_mask <<= 1;
1107 env_tlb(env)->d[mmu_idx].large_page_addr = lp_addr & lp_mask;
1108 env_tlb(env)->d[mmu_idx].large_page_mask = lp_mask;
1111 static inline void tlb_set_compare(CPUTLBEntryFull *full, CPUTLBEntry *ent,
1112 vaddr address, int flags,
1113 MMUAccessType access_type, bool enable)
1115 if (enable) {
1116 address |= flags & TLB_FLAGS_MASK;
1117 flags &= TLB_SLOW_FLAGS_MASK;
1118 if (flags) {
1119 address |= TLB_FORCE_SLOW;
1121 } else {
1122 address = -1;
1123 flags = 0;
1125 ent->addr_idx[access_type] = address;
1126 full->slow_flags[access_type] = flags;
1130 * Add a new TLB entry. At most one entry for a given virtual address
1131 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
1132 * supplied size is only used by tlb_flush_page.
1134 * Called from TCG-generated code, which is under an RCU read-side
1135 * critical section.
1137 void tlb_set_page_full(CPUState *cpu, int mmu_idx,
1138 vaddr addr, CPUTLBEntryFull *full)
1140 CPUArchState *env = cpu->env_ptr;
1141 CPUTLB *tlb = env_tlb(env);
1142 CPUTLBDesc *desc = &tlb->d[mmu_idx];
1143 MemoryRegionSection *section;
1144 unsigned int index, read_flags, write_flags;
1145 uintptr_t addend;
1146 CPUTLBEntry *te, tn;
1147 hwaddr iotlb, xlat, sz, paddr_page;
1148 vaddr addr_page;
1149 int asidx, wp_flags, prot;
1150 bool is_ram, is_romd;
1152 assert_cpu_is_self(cpu);
1154 if (full->lg_page_size <= TARGET_PAGE_BITS) {
1155 sz = TARGET_PAGE_SIZE;
1156 } else {
1157 sz = (hwaddr)1 << full->lg_page_size;
1158 tlb_add_large_page(env, mmu_idx, addr, sz);
1160 addr_page = addr & TARGET_PAGE_MASK;
1161 paddr_page = full->phys_addr & TARGET_PAGE_MASK;
1163 prot = full->prot;
1164 asidx = cpu_asidx_from_attrs(cpu, full->attrs);
1165 section = address_space_translate_for_iotlb(cpu, asidx, paddr_page,
1166 &xlat, &sz, full->attrs, &prot);
1167 assert(sz >= TARGET_PAGE_SIZE);
1169 tlb_debug("vaddr=%016" VADDR_PRIx " paddr=0x" HWADDR_FMT_plx
1170 " prot=%x idx=%d\n",
1171 addr, full->phys_addr, prot, mmu_idx);
1173 read_flags = 0;
1174 if (full->lg_page_size < TARGET_PAGE_BITS) {
1175 /* Repeat the MMU check and TLB fill on every access. */
1176 read_flags |= TLB_INVALID_MASK;
1178 if (full->attrs.byte_swap) {
1179 read_flags |= TLB_BSWAP;
1182 is_ram = memory_region_is_ram(section->mr);
1183 is_romd = memory_region_is_romd(section->mr);
1185 if (is_ram || is_romd) {
1186 /* RAM and ROMD both have associated host memory. */
1187 addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
1188 } else {
1189 /* I/O does not; force the host address to NULL. */
1190 addend = 0;
1193 write_flags = read_flags;
1194 if (is_ram) {
1195 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1197 * Computing is_clean is expensive; avoid all that unless
1198 * the page is actually writable.
1200 if (prot & PAGE_WRITE) {
1201 if (section->readonly) {
1202 write_flags |= TLB_DISCARD_WRITE;
1203 } else if (cpu_physical_memory_is_clean(iotlb)) {
1204 write_flags |= TLB_NOTDIRTY;
1207 } else {
1208 /* I/O or ROMD */
1209 iotlb = memory_region_section_get_iotlb(cpu, section) + xlat;
1211 * Writes to romd devices must go through MMIO to enable write.
1212 * Reads to romd devices go through the ram_ptr found above,
1213 * but of course reads to I/O must go through MMIO.
1215 write_flags |= TLB_MMIO;
1216 if (!is_romd) {
1217 read_flags = write_flags;
1221 wp_flags = cpu_watchpoint_address_matches(cpu, addr_page,
1222 TARGET_PAGE_SIZE);
1224 index = tlb_index(env, mmu_idx, addr_page);
1225 te = tlb_entry(env, mmu_idx, addr_page);
1228 * Hold the TLB lock for the rest of the function. We could acquire/release
1229 * the lock several times in the function, but it is faster to amortize the
1230 * acquisition cost by acquiring it just once. Note that this leads to
1231 * a longer critical section, but this is not a concern since the TLB lock
1232 * is unlikely to be contended.
1234 qemu_spin_lock(&tlb->c.lock);
1236 /* Note that the tlb is no longer clean. */
1237 tlb->c.dirty |= 1 << mmu_idx;
1239 /* Make sure there's no cached translation for the new page. */
1240 tlb_flush_vtlb_page_locked(env, mmu_idx, addr_page);
1243 * Only evict the old entry to the victim tlb if it's for a
1244 * different page; otherwise just overwrite the stale data.
1246 if (!tlb_hit_page_anyprot(te, addr_page) && !tlb_entry_is_empty(te)) {
1247 unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE;
1248 CPUTLBEntry *tv = &desc->vtable[vidx];
1250 /* Evict the old entry into the victim tlb. */
1251 copy_tlb_helper_locked(tv, te);
1252 desc->vfulltlb[vidx] = desc->fulltlb[index];
1253 tlb_n_used_entries_dec(env, mmu_idx);
1256 /* refill the tlb */
1258 * At this point iotlb contains a physical section number in the lower
1259 * TARGET_PAGE_BITS, and either
1260 * + the ram_addr_t of the page base of the target RAM (RAM)
1261 * + the offset within section->mr of the page base (I/O, ROMD)
1262 * We subtract addr_page (which is page aligned and thus won't
1263 * disturb the low bits) to give an offset which can be added to the
1264 * (non-page-aligned) vaddr of the eventual memory access to get
1265 * the MemoryRegion offset for the access. Note that the vaddr we
1266 * subtract here is that of the page base, and not the same as the
1267 * vaddr we add back in io_readx()/io_writex()/get_page_addr_code().
1269 desc->fulltlb[index] = *full;
1270 full = &desc->fulltlb[index];
1271 full->xlat_section = iotlb - addr_page;
1272 full->phys_addr = paddr_page;
1274 /* Now calculate the new entry */
1275 tn.addend = addend - addr_page;
1277 tlb_set_compare(full, &tn, addr_page, read_flags,
1278 MMU_INST_FETCH, prot & PAGE_EXEC);
1280 if (wp_flags & BP_MEM_READ) {
1281 read_flags |= TLB_WATCHPOINT;
1283 tlb_set_compare(full, &tn, addr_page, read_flags,
1284 MMU_DATA_LOAD, prot & PAGE_READ);
1286 if (prot & PAGE_WRITE_INV) {
1287 write_flags |= TLB_INVALID_MASK;
1289 if (wp_flags & BP_MEM_WRITE) {
1290 write_flags |= TLB_WATCHPOINT;
1292 tlb_set_compare(full, &tn, addr_page, write_flags,
1293 MMU_DATA_STORE, prot & PAGE_WRITE);
1295 copy_tlb_helper_locked(te, &tn);
1296 tlb_n_used_entries_inc(env, mmu_idx);
1297 qemu_spin_unlock(&tlb->c.lock);
1300 void tlb_set_page_with_attrs(CPUState *cpu, vaddr addr,
1301 hwaddr paddr, MemTxAttrs attrs, int prot,
1302 int mmu_idx, uint64_t size)
1304 CPUTLBEntryFull full = {
1305 .phys_addr = paddr,
1306 .attrs = attrs,
1307 .prot = prot,
1308 .lg_page_size = ctz64(size)
1311 assert(is_power_of_2(size));
1312 tlb_set_page_full(cpu, mmu_idx, addr, &full);
1315 void tlb_set_page(CPUState *cpu, vaddr addr,
1316 hwaddr paddr, int prot,
1317 int mmu_idx, uint64_t size)
1319 tlb_set_page_with_attrs(cpu, addr, paddr, MEMTXATTRS_UNSPECIFIED,
1320 prot, mmu_idx, size);
1324 * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the
1325 * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must
1326 * be discarded and looked up again (e.g. via tlb_entry()).
1328 static void tlb_fill(CPUState *cpu, vaddr addr, int size,
1329 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1331 bool ok;
1334 * This is not a probe, so only valid return is success; failure
1335 * should result in exception + longjmp to the cpu loop.
1337 ok = cpu->cc->tcg_ops->tlb_fill(cpu, addr, size,
1338 access_type, mmu_idx, false, retaddr);
1339 assert(ok);
1342 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr,
1343 MMUAccessType access_type,
1344 int mmu_idx, uintptr_t retaddr)
1346 cpu->cc->tcg_ops->do_unaligned_access(cpu, addr, access_type,
1347 mmu_idx, retaddr);
1350 static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr,
1351 vaddr addr, unsigned size,
1352 MMUAccessType access_type,
1353 int mmu_idx, MemTxAttrs attrs,
1354 MemTxResult response,
1355 uintptr_t retaddr)
1357 CPUClass *cc = CPU_GET_CLASS(cpu);
1359 if (!cpu->ignore_memory_transaction_failures &&
1360 cc->tcg_ops->do_transaction_failed) {
1361 cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size,
1362 access_type, mmu_idx, attrs,
1363 response, retaddr);
1368 * Save a potentially trashed CPUTLBEntryFull for later lookup by plugin.
1369 * This is read by tlb_plugin_lookup if the fulltlb entry doesn't match
1370 * because of the side effect of io_writex changing memory layout.
1372 static void save_iotlb_data(CPUState *cs, MemoryRegionSection *section,
1373 hwaddr mr_offset)
1375 #ifdef CONFIG_PLUGIN
1376 SavedIOTLB *saved = &cs->saved_iotlb;
1377 saved->section = section;
1378 saved->mr_offset = mr_offset;
1379 #endif
1382 static uint64_t io_readx(CPUArchState *env, CPUTLBEntryFull *full,
1383 int mmu_idx, vaddr addr, uintptr_t retaddr,
1384 MMUAccessType access_type, MemOp op)
1386 CPUState *cpu = env_cpu(env);
1387 hwaddr mr_offset;
1388 MemoryRegionSection *section;
1389 MemoryRegion *mr;
1390 uint64_t val;
1391 MemTxResult r;
1393 section = iotlb_to_section(cpu, full->xlat_section, full->attrs);
1394 mr = section->mr;
1395 mr_offset = (full->xlat_section & TARGET_PAGE_MASK) + addr;
1396 cpu->mem_io_pc = retaddr;
1397 if (!cpu->can_do_io) {
1398 cpu_io_recompile(cpu, retaddr);
1402 * The memory_region_dispatch may trigger a flush/resize
1403 * so for plugins we save the iotlb_data just in case.
1405 save_iotlb_data(cpu, section, mr_offset);
1408 QEMU_IOTHREAD_LOCK_GUARD();
1409 r = memory_region_dispatch_read(mr, mr_offset, &val, op, full->attrs);
1412 if (r != MEMTX_OK) {
1413 hwaddr physaddr = mr_offset +
1414 section->offset_within_address_space -
1415 section->offset_within_region;
1417 cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), access_type,
1418 mmu_idx, full->attrs, r, retaddr);
1420 return val;
1423 static void io_writex(CPUArchState *env, CPUTLBEntryFull *full,
1424 int mmu_idx, uint64_t val, vaddr addr,
1425 uintptr_t retaddr, MemOp op)
1427 CPUState *cpu = env_cpu(env);
1428 hwaddr mr_offset;
1429 MemoryRegionSection *section;
1430 MemoryRegion *mr;
1431 MemTxResult r;
1433 section = iotlb_to_section(cpu, full->xlat_section, full->attrs);
1434 mr = section->mr;
1435 mr_offset = (full->xlat_section & TARGET_PAGE_MASK) + addr;
1436 if (!cpu->can_do_io) {
1437 cpu_io_recompile(cpu, retaddr);
1439 cpu->mem_io_pc = retaddr;
1442 * The memory_region_dispatch may trigger a flush/resize
1443 * so for plugins we save the iotlb_data just in case.
1445 save_iotlb_data(cpu, section, mr_offset);
1448 QEMU_IOTHREAD_LOCK_GUARD();
1449 r = memory_region_dispatch_write(mr, mr_offset, val, op, full->attrs);
1452 if (r != MEMTX_OK) {
1453 hwaddr physaddr = mr_offset +
1454 section->offset_within_address_space -
1455 section->offset_within_region;
1457 cpu_transaction_failed(cpu, physaddr, addr, memop_size(op),
1458 MMU_DATA_STORE, mmu_idx, full->attrs, r,
1459 retaddr);
1463 /* Return true if ADDR is present in the victim tlb, and has been copied
1464 back to the main tlb. */
1465 static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index,
1466 MMUAccessType access_type, vaddr page)
1468 size_t vidx;
1470 assert_cpu_is_self(env_cpu(env));
1471 for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) {
1472 CPUTLBEntry *vtlb = &env_tlb(env)->d[mmu_idx].vtable[vidx];
1473 uint64_t cmp = tlb_read_idx(vtlb, access_type);
1475 if (cmp == page) {
1476 /* Found entry in victim tlb, swap tlb and iotlb. */
1477 CPUTLBEntry tmptlb, *tlb = &env_tlb(env)->f[mmu_idx].table[index];
1479 qemu_spin_lock(&env_tlb(env)->c.lock);
1480 copy_tlb_helper_locked(&tmptlb, tlb);
1481 copy_tlb_helper_locked(tlb, vtlb);
1482 copy_tlb_helper_locked(vtlb, &tmptlb);
1483 qemu_spin_unlock(&env_tlb(env)->c.lock);
1485 CPUTLBEntryFull *f1 = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1486 CPUTLBEntryFull *f2 = &env_tlb(env)->d[mmu_idx].vfulltlb[vidx];
1487 CPUTLBEntryFull tmpf;
1488 tmpf = *f1; *f1 = *f2; *f2 = tmpf;
1489 return true;
1492 return false;
1495 static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size,
1496 CPUTLBEntryFull *full, uintptr_t retaddr)
1498 ram_addr_t ram_addr = mem_vaddr + full->xlat_section;
1500 trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size);
1502 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
1503 tb_invalidate_phys_range_fast(ram_addr, size, retaddr);
1507 * Set both VGA and migration bits for simplicity and to remove
1508 * the notdirty callback faster.
1510 cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE);
1512 /* We remove the notdirty callback only if the code has been flushed. */
1513 if (!cpu_physical_memory_is_clean(ram_addr)) {
1514 trace_memory_notdirty_set_dirty(mem_vaddr);
1515 tlb_set_dirty(cpu, mem_vaddr);
1519 static int probe_access_internal(CPUArchState *env, vaddr addr,
1520 int fault_size, MMUAccessType access_type,
1521 int mmu_idx, bool nonfault,
1522 void **phost, CPUTLBEntryFull **pfull,
1523 uintptr_t retaddr, bool check_mem_cbs)
1525 uintptr_t index = tlb_index(env, mmu_idx, addr);
1526 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1527 uint64_t tlb_addr = tlb_read_idx(entry, access_type);
1528 vaddr page_addr = addr & TARGET_PAGE_MASK;
1529 int flags = TLB_FLAGS_MASK & ~TLB_FORCE_SLOW;
1530 bool force_mmio = check_mem_cbs && cpu_plugin_mem_cbs_enabled(env_cpu(env));
1531 CPUTLBEntryFull *full;
1533 if (!tlb_hit_page(tlb_addr, page_addr)) {
1534 if (!victim_tlb_hit(env, mmu_idx, index, access_type, page_addr)) {
1535 CPUState *cs = env_cpu(env);
1537 if (!cs->cc->tcg_ops->tlb_fill(cs, addr, fault_size, access_type,
1538 mmu_idx, nonfault, retaddr)) {
1539 /* Non-faulting page table read failed. */
1540 *phost = NULL;
1541 *pfull = NULL;
1542 return TLB_INVALID_MASK;
1545 /* TLB resize via tlb_fill may have moved the entry. */
1546 index = tlb_index(env, mmu_idx, addr);
1547 entry = tlb_entry(env, mmu_idx, addr);
1550 * With PAGE_WRITE_INV, we set TLB_INVALID_MASK immediately,
1551 * to force the next access through tlb_fill. We've just
1552 * called tlb_fill, so we know that this entry *is* valid.
1554 flags &= ~TLB_INVALID_MASK;
1556 tlb_addr = tlb_read_idx(entry, access_type);
1558 flags &= tlb_addr;
1560 *pfull = full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1561 flags |= full->slow_flags[access_type];
1563 /* Fold all "mmio-like" bits into TLB_MMIO. This is not RAM. */
1564 if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY))
1566 (access_type != MMU_INST_FETCH && force_mmio)) {
1567 *phost = NULL;
1568 return TLB_MMIO;
1571 /* Everything else is RAM. */
1572 *phost = (void *)((uintptr_t)addr + entry->addend);
1573 return flags;
1576 int probe_access_full(CPUArchState *env, vaddr addr, int size,
1577 MMUAccessType access_type, int mmu_idx,
1578 bool nonfault, void **phost, CPUTLBEntryFull **pfull,
1579 uintptr_t retaddr)
1581 int flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1582 nonfault, phost, pfull, retaddr, true);
1584 /* Handle clean RAM pages. */
1585 if (unlikely(flags & TLB_NOTDIRTY)) {
1586 notdirty_write(env_cpu(env), addr, 1, *pfull, retaddr);
1587 flags &= ~TLB_NOTDIRTY;
1590 return flags;
1593 int probe_access_full_mmu(CPUArchState *env, vaddr addr, int size,
1594 MMUAccessType access_type, int mmu_idx,
1595 void **phost, CPUTLBEntryFull **pfull)
1597 void *discard_phost;
1598 CPUTLBEntryFull *discard_tlb;
1600 /* privately handle users that don't need full results */
1601 phost = phost ? phost : &discard_phost;
1602 pfull = pfull ? pfull : &discard_tlb;
1604 int flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1605 true, phost, pfull, 0, false);
1607 /* Handle clean RAM pages. */
1608 if (unlikely(flags & TLB_NOTDIRTY)) {
1609 notdirty_write(env_cpu(env), addr, 1, *pfull, 0);
1610 flags &= ~TLB_NOTDIRTY;
1613 return flags;
1616 int probe_access_flags(CPUArchState *env, vaddr addr, int size,
1617 MMUAccessType access_type, int mmu_idx,
1618 bool nonfault, void **phost, uintptr_t retaddr)
1620 CPUTLBEntryFull *full;
1621 int flags;
1623 g_assert(-(addr | TARGET_PAGE_MASK) >= size);
1625 flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1626 nonfault, phost, &full, retaddr, true);
1628 /* Handle clean RAM pages. */
1629 if (unlikely(flags & TLB_NOTDIRTY)) {
1630 notdirty_write(env_cpu(env), addr, 1, full, retaddr);
1631 flags &= ~TLB_NOTDIRTY;
1634 return flags;
1637 void *probe_access(CPUArchState *env, vaddr addr, int size,
1638 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1640 CPUTLBEntryFull *full;
1641 void *host;
1642 int flags;
1644 g_assert(-(addr | TARGET_PAGE_MASK) >= size);
1646 flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1647 false, &host, &full, retaddr, true);
1649 /* Per the interface, size == 0 merely faults the access. */
1650 if (size == 0) {
1651 return NULL;
1654 if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) {
1655 /* Handle watchpoints. */
1656 if (flags & TLB_WATCHPOINT) {
1657 int wp_access = (access_type == MMU_DATA_STORE
1658 ? BP_MEM_WRITE : BP_MEM_READ);
1659 cpu_check_watchpoint(env_cpu(env), addr, size,
1660 full->attrs, wp_access, retaddr);
1663 /* Handle clean RAM pages. */
1664 if (flags & TLB_NOTDIRTY) {
1665 notdirty_write(env_cpu(env), addr, 1, full, retaddr);
1669 return host;
1672 void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr,
1673 MMUAccessType access_type, int mmu_idx)
1675 CPUTLBEntryFull *full;
1676 void *host;
1677 int flags;
1679 flags = probe_access_internal(env, addr, 0, access_type,
1680 mmu_idx, true, &host, &full, 0, false);
1682 /* No combination of flags are expected by the caller. */
1683 return flags ? NULL : host;
1687 * Return a ram_addr_t for the virtual address for execution.
1689 * Return -1 if we can't translate and execute from an entire page
1690 * of RAM. This will force us to execute by loading and translating
1691 * one insn at a time, without caching.
1693 * NOTE: This function will trigger an exception if the page is
1694 * not executable.
1696 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, vaddr addr,
1697 void **hostp)
1699 CPUTLBEntryFull *full;
1700 void *p;
1702 (void)probe_access_internal(env, addr, 1, MMU_INST_FETCH,
1703 cpu_mmu_index(env, true), false,
1704 &p, &full, 0, false);
1705 if (p == NULL) {
1706 return -1;
1709 if (full->lg_page_size < TARGET_PAGE_BITS) {
1710 return -1;
1713 if (hostp) {
1714 *hostp = p;
1716 return qemu_ram_addr_from_host_nofail(p);
1719 /* Load/store with atomicity primitives. */
1720 #include "ldst_atomicity.c.inc"
1722 #ifdef CONFIG_PLUGIN
1724 * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure.
1725 * This should be a hot path as we will have just looked this path up
1726 * in the softmmu lookup code (or helper). We don't handle re-fills or
1727 * checking the victim table. This is purely informational.
1729 * This almost never fails as the memory access being instrumented
1730 * should have just filled the TLB. The one corner case is io_writex
1731 * which can cause TLB flushes and potential resizing of the TLBs
1732 * losing the information we need. In those cases we need to recover
1733 * data from a copy of the CPUTLBEntryFull. As long as this always occurs
1734 * from the same thread (which a mem callback will be) this is safe.
1737 bool tlb_plugin_lookup(CPUState *cpu, vaddr addr, int mmu_idx,
1738 bool is_store, struct qemu_plugin_hwaddr *data)
1740 CPUArchState *env = cpu->env_ptr;
1741 CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr);
1742 uintptr_t index = tlb_index(env, mmu_idx, addr);
1743 uint64_t tlb_addr = is_store ? tlb_addr_write(tlbe) : tlbe->addr_read;
1745 if (likely(tlb_hit(tlb_addr, addr))) {
1746 /* We must have an iotlb entry for MMIO */
1747 if (tlb_addr & TLB_MMIO) {
1748 CPUTLBEntryFull *full;
1749 full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1750 data->is_io = true;
1751 data->v.io.section =
1752 iotlb_to_section(cpu, full->xlat_section, full->attrs);
1753 data->v.io.offset = (full->xlat_section & TARGET_PAGE_MASK) + addr;
1754 } else {
1755 data->is_io = false;
1756 data->v.ram.hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
1758 return true;
1759 } else {
1760 SavedIOTLB *saved = &cpu->saved_iotlb;
1761 data->is_io = true;
1762 data->v.io.section = saved->section;
1763 data->v.io.offset = saved->mr_offset;
1764 return true;
1768 #endif
1771 * Probe for a load/store operation.
1772 * Return the host address and into @flags.
1775 typedef struct MMULookupPageData {
1776 CPUTLBEntryFull *full;
1777 void *haddr;
1778 vaddr addr;
1779 int flags;
1780 int size;
1781 } MMULookupPageData;
1783 typedef struct MMULookupLocals {
1784 MMULookupPageData page[2];
1785 MemOp memop;
1786 int mmu_idx;
1787 } MMULookupLocals;
1790 * mmu_lookup1: translate one page
1791 * @env: cpu context
1792 * @data: lookup parameters
1793 * @mmu_idx: virtual address context
1794 * @access_type: load/store/code
1795 * @ra: return address into tcg generated code, or 0
1797 * Resolve the translation for the one page at @data.addr, filling in
1798 * the rest of @data with the results. If the translation fails,
1799 * tlb_fill will longjmp out. Return true if the softmmu tlb for
1800 * @mmu_idx may have resized.
1802 static bool mmu_lookup1(CPUArchState *env, MMULookupPageData *data,
1803 int mmu_idx, MMUAccessType access_type, uintptr_t ra)
1805 vaddr addr = data->addr;
1806 uintptr_t index = tlb_index(env, mmu_idx, addr);
1807 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1808 uint64_t tlb_addr = tlb_read_idx(entry, access_type);
1809 bool maybe_resized = false;
1810 CPUTLBEntryFull *full;
1811 int flags;
1813 /* If the TLB entry is for a different page, reload and try again. */
1814 if (!tlb_hit(tlb_addr, addr)) {
1815 if (!victim_tlb_hit(env, mmu_idx, index, access_type,
1816 addr & TARGET_PAGE_MASK)) {
1817 tlb_fill(env_cpu(env), addr, data->size, access_type, mmu_idx, ra);
1818 maybe_resized = true;
1819 index = tlb_index(env, mmu_idx, addr);
1820 entry = tlb_entry(env, mmu_idx, addr);
1822 tlb_addr = tlb_read_idx(entry, access_type) & ~TLB_INVALID_MASK;
1825 full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1826 flags = tlb_addr & (TLB_FLAGS_MASK & ~TLB_FORCE_SLOW);
1827 flags |= full->slow_flags[access_type];
1829 data->full = full;
1830 data->flags = flags;
1831 /* Compute haddr speculatively; depending on flags it might be invalid. */
1832 data->haddr = (void *)((uintptr_t)addr + entry->addend);
1834 return maybe_resized;
1838 * mmu_watch_or_dirty
1839 * @env: cpu context
1840 * @data: lookup parameters
1841 * @access_type: load/store/code
1842 * @ra: return address into tcg generated code, or 0
1844 * Trigger watchpoints for @data.addr:@data.size;
1845 * record writes to protected clean pages.
1847 static void mmu_watch_or_dirty(CPUArchState *env, MMULookupPageData *data,
1848 MMUAccessType access_type, uintptr_t ra)
1850 CPUTLBEntryFull *full = data->full;
1851 vaddr addr = data->addr;
1852 int flags = data->flags;
1853 int size = data->size;
1855 /* On watchpoint hit, this will longjmp out. */
1856 if (flags & TLB_WATCHPOINT) {
1857 int wp = access_type == MMU_DATA_STORE ? BP_MEM_WRITE : BP_MEM_READ;
1858 cpu_check_watchpoint(env_cpu(env), addr, size, full->attrs, wp, ra);
1859 flags &= ~TLB_WATCHPOINT;
1862 /* Note that notdirty is only set for writes. */
1863 if (flags & TLB_NOTDIRTY) {
1864 notdirty_write(env_cpu(env), addr, size, full, ra);
1865 flags &= ~TLB_NOTDIRTY;
1867 data->flags = flags;
1871 * mmu_lookup: translate page(s)
1872 * @env: cpu context
1873 * @addr: virtual address
1874 * @oi: combined mmu_idx and MemOp
1875 * @ra: return address into tcg generated code, or 0
1876 * @access_type: load/store/code
1877 * @l: output result
1879 * Resolve the translation for the page(s) beginning at @addr, for MemOp.size
1880 * bytes. Return true if the lookup crosses a page boundary.
1882 static bool mmu_lookup(CPUArchState *env, vaddr addr, MemOpIdx oi,
1883 uintptr_t ra, MMUAccessType type, MMULookupLocals *l)
1885 unsigned a_bits;
1886 bool crosspage;
1887 int flags;
1889 l->memop = get_memop(oi);
1890 l->mmu_idx = get_mmuidx(oi);
1892 tcg_debug_assert(l->mmu_idx < NB_MMU_MODES);
1894 /* Handle CPU specific unaligned behaviour */
1895 a_bits = get_alignment_bits(l->memop);
1896 if (addr & ((1 << a_bits) - 1)) {
1897 cpu_unaligned_access(env_cpu(env), addr, type, l->mmu_idx, ra);
1900 l->page[0].addr = addr;
1901 l->page[0].size = memop_size(l->memop);
1902 l->page[1].addr = (addr + l->page[0].size - 1) & TARGET_PAGE_MASK;
1903 l->page[1].size = 0;
1904 crosspage = (addr ^ l->page[1].addr) & TARGET_PAGE_MASK;
1906 if (likely(!crosspage)) {
1907 mmu_lookup1(env, &l->page[0], l->mmu_idx, type, ra);
1909 flags = l->page[0].flags;
1910 if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) {
1911 mmu_watch_or_dirty(env, &l->page[0], type, ra);
1913 if (unlikely(flags & TLB_BSWAP)) {
1914 l->memop ^= MO_BSWAP;
1916 } else {
1917 /* Finish compute of page crossing. */
1918 int size0 = l->page[1].addr - addr;
1919 l->page[1].size = l->page[0].size - size0;
1920 l->page[0].size = size0;
1923 * Lookup both pages, recognizing exceptions from either. If the
1924 * second lookup potentially resized, refresh first CPUTLBEntryFull.
1926 mmu_lookup1(env, &l->page[0], l->mmu_idx, type, ra);
1927 if (mmu_lookup1(env, &l->page[1], l->mmu_idx, type, ra)) {
1928 uintptr_t index = tlb_index(env, l->mmu_idx, addr);
1929 l->page[0].full = &env_tlb(env)->d[l->mmu_idx].fulltlb[index];
1932 flags = l->page[0].flags | l->page[1].flags;
1933 if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) {
1934 mmu_watch_or_dirty(env, &l->page[0], type, ra);
1935 mmu_watch_or_dirty(env, &l->page[1], type, ra);
1939 * Since target/sparc is the only user of TLB_BSWAP, and all
1940 * Sparc accesses are aligned, any treatment across two pages
1941 * would be arbitrary. Refuse it until there's a use.
1943 tcg_debug_assert((flags & TLB_BSWAP) == 0);
1946 return crosspage;
1950 * Probe for an atomic operation. Do not allow unaligned operations,
1951 * or io operations to proceed. Return the host address.
1953 static void *atomic_mmu_lookup(CPUArchState *env, vaddr addr, MemOpIdx oi,
1954 int size, uintptr_t retaddr)
1956 uintptr_t mmu_idx = get_mmuidx(oi);
1957 MemOp mop = get_memop(oi);
1958 int a_bits = get_alignment_bits(mop);
1959 uintptr_t index;
1960 CPUTLBEntry *tlbe;
1961 vaddr tlb_addr;
1962 void *hostaddr;
1963 CPUTLBEntryFull *full;
1965 tcg_debug_assert(mmu_idx < NB_MMU_MODES);
1967 /* Adjust the given return address. */
1968 retaddr -= GETPC_ADJ;
1970 /* Enforce guest required alignment. */
1971 if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) {
1972 /* ??? Maybe indicate atomic op to cpu_unaligned_access */
1973 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
1974 mmu_idx, retaddr);
1977 /* Enforce qemu required alignment. */
1978 if (unlikely(addr & (size - 1))) {
1979 /* We get here if guest alignment was not requested,
1980 or was not enforced by cpu_unaligned_access above.
1981 We might widen the access and emulate, but for now
1982 mark an exception and exit the cpu loop. */
1983 goto stop_the_world;
1986 index = tlb_index(env, mmu_idx, addr);
1987 tlbe = tlb_entry(env, mmu_idx, addr);
1989 /* Check TLB entry and enforce page permissions. */
1990 tlb_addr = tlb_addr_write(tlbe);
1991 if (!tlb_hit(tlb_addr, addr)) {
1992 if (!victim_tlb_hit(env, mmu_idx, index, MMU_DATA_STORE,
1993 addr & TARGET_PAGE_MASK)) {
1994 tlb_fill(env_cpu(env), addr, size,
1995 MMU_DATA_STORE, mmu_idx, retaddr);
1996 index = tlb_index(env, mmu_idx, addr);
1997 tlbe = tlb_entry(env, mmu_idx, addr);
1999 tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK;
2003 * Let the guest notice RMW on a write-only page.
2004 * We have just verified that the page is writable.
2005 * Subpage lookups may have left TLB_INVALID_MASK set,
2006 * but addr_read will only be -1 if PAGE_READ was unset.
2008 if (unlikely(tlbe->addr_read == -1)) {
2009 tlb_fill(env_cpu(env), addr, size, MMU_DATA_LOAD, mmu_idx, retaddr);
2011 * Since we don't support reads and writes to different
2012 * addresses, and we do have the proper page loaded for
2013 * write, this shouldn't ever return. But just in case,
2014 * handle via stop-the-world.
2016 goto stop_the_world;
2018 /* Collect tlb flags for read. */
2019 tlb_addr |= tlbe->addr_read;
2021 /* Notice an IO access or a needs-MMU-lookup access */
2022 if (unlikely(tlb_addr & (TLB_MMIO | TLB_DISCARD_WRITE))) {
2023 /* There's really nothing that can be done to
2024 support this apart from stop-the-world. */
2025 goto stop_the_world;
2028 hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
2029 full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
2031 if (unlikely(tlb_addr & TLB_NOTDIRTY)) {
2032 notdirty_write(env_cpu(env), addr, size, full, retaddr);
2035 if (unlikely(tlb_addr & TLB_FORCE_SLOW)) {
2036 int wp_flags = 0;
2038 if (full->slow_flags[MMU_DATA_STORE] & TLB_WATCHPOINT) {
2039 wp_flags |= BP_MEM_WRITE;
2041 if (full->slow_flags[MMU_DATA_LOAD] & TLB_WATCHPOINT) {
2042 wp_flags |= BP_MEM_READ;
2044 if (wp_flags) {
2045 cpu_check_watchpoint(env_cpu(env), addr, size,
2046 full->attrs, wp_flags, retaddr);
2050 return hostaddr;
2052 stop_the_world:
2053 cpu_loop_exit_atomic(env_cpu(env), retaddr);
2057 * Load Helpers
2059 * We support two different access types. SOFTMMU_CODE_ACCESS is
2060 * specifically for reading instructions from system memory. It is
2061 * called by the translation loop and in some helpers where the code
2062 * is disassembled. It shouldn't be called directly by guest code.
2064 * For the benefit of TCG generated code, we want to avoid the
2065 * complication of ABI-specific return type promotion and always
2066 * return a value extended to the register size of the host. This is
2067 * tcg_target_long, except in the case of a 32-bit host and 64-bit
2068 * data, and for that we always have uint64_t.
2070 * We don't bother with this widened value for SOFTMMU_CODE_ACCESS.
2074 * do_ld_mmio_beN:
2075 * @env: cpu context
2076 * @full: page parameters
2077 * @ret_be: accumulated data
2078 * @addr: virtual address
2079 * @size: number of bytes
2080 * @mmu_idx: virtual address context
2081 * @ra: return address into tcg generated code, or 0
2082 * Context: iothread lock held
2084 * Load @size bytes from @addr, which is memory-mapped i/o.
2085 * The bytes are concatenated in big-endian order with @ret_be.
2087 static uint64_t do_ld_mmio_beN(CPUArchState *env, CPUTLBEntryFull *full,
2088 uint64_t ret_be, vaddr addr, int size,
2089 int mmu_idx, MMUAccessType type, uintptr_t ra)
2091 uint64_t t;
2093 tcg_debug_assert(size > 0 && size <= 8);
2094 do {
2095 /* Read aligned pieces up to 8 bytes. */
2096 switch ((size | (int)addr) & 7) {
2097 case 1:
2098 case 3:
2099 case 5:
2100 case 7:
2101 t = io_readx(env, full, mmu_idx, addr, ra, type, MO_UB);
2102 ret_be = (ret_be << 8) | t;
2103 size -= 1;
2104 addr += 1;
2105 break;
2106 case 2:
2107 case 6:
2108 t = io_readx(env, full, mmu_idx, addr, ra, type, MO_BEUW);
2109 ret_be = (ret_be << 16) | t;
2110 size -= 2;
2111 addr += 2;
2112 break;
2113 case 4:
2114 t = io_readx(env, full, mmu_idx, addr, ra, type, MO_BEUL);
2115 ret_be = (ret_be << 32) | t;
2116 size -= 4;
2117 addr += 4;
2118 break;
2119 case 0:
2120 return io_readx(env, full, mmu_idx, addr, ra, type, MO_BEUQ);
2121 default:
2122 qemu_build_not_reached();
2124 } while (size);
2125 return ret_be;
2129 * do_ld_bytes_beN
2130 * @p: translation parameters
2131 * @ret_be: accumulated data
2133 * Load @p->size bytes from @p->haddr, which is RAM.
2134 * The bytes to concatenated in big-endian order with @ret_be.
2136 static uint64_t do_ld_bytes_beN(MMULookupPageData *p, uint64_t ret_be)
2138 uint8_t *haddr = p->haddr;
2139 int i, size = p->size;
2141 for (i = 0; i < size; i++) {
2142 ret_be = (ret_be << 8) | haddr[i];
2144 return ret_be;
2148 * do_ld_parts_beN
2149 * @p: translation parameters
2150 * @ret_be: accumulated data
2152 * As do_ld_bytes_beN, but atomically on each aligned part.
2154 static uint64_t do_ld_parts_beN(MMULookupPageData *p, uint64_t ret_be)
2156 void *haddr = p->haddr;
2157 int size = p->size;
2159 do {
2160 uint64_t x;
2161 int n;
2164 * Find minimum of alignment and size.
2165 * This is slightly stronger than required by MO_ATOM_SUBALIGN, which
2166 * would have only checked the low bits of addr|size once at the start,
2167 * but is just as easy.
2169 switch (((uintptr_t)haddr | size) & 7) {
2170 case 4:
2171 x = cpu_to_be32(load_atomic4(haddr));
2172 ret_be = (ret_be << 32) | x;
2173 n = 4;
2174 break;
2175 case 2:
2176 case 6:
2177 x = cpu_to_be16(load_atomic2(haddr));
2178 ret_be = (ret_be << 16) | x;
2179 n = 2;
2180 break;
2181 default:
2182 x = *(uint8_t *)haddr;
2183 ret_be = (ret_be << 8) | x;
2184 n = 1;
2185 break;
2186 case 0:
2187 g_assert_not_reached();
2189 haddr += n;
2190 size -= n;
2191 } while (size != 0);
2192 return ret_be;
2196 * do_ld_parts_be4
2197 * @p: translation parameters
2198 * @ret_be: accumulated data
2200 * As do_ld_bytes_beN, but with one atomic load.
2201 * Four aligned bytes are guaranteed to cover the load.
2203 static uint64_t do_ld_whole_be4(MMULookupPageData *p, uint64_t ret_be)
2205 int o = p->addr & 3;
2206 uint32_t x = load_atomic4(p->haddr - o);
2208 x = cpu_to_be32(x);
2209 x <<= o * 8;
2210 x >>= (4 - p->size) * 8;
2211 return (ret_be << (p->size * 8)) | x;
2215 * do_ld_parts_be8
2216 * @p: translation parameters
2217 * @ret_be: accumulated data
2219 * As do_ld_bytes_beN, but with one atomic load.
2220 * Eight aligned bytes are guaranteed to cover the load.
2222 static uint64_t do_ld_whole_be8(CPUArchState *env, uintptr_t ra,
2223 MMULookupPageData *p, uint64_t ret_be)
2225 int o = p->addr & 7;
2226 uint64_t x = load_atomic8_or_exit(env, ra, p->haddr - o);
2228 x = cpu_to_be64(x);
2229 x <<= o * 8;
2230 x >>= (8 - p->size) * 8;
2231 return (ret_be << (p->size * 8)) | x;
2235 * do_ld_parts_be16
2236 * @p: translation parameters
2237 * @ret_be: accumulated data
2239 * As do_ld_bytes_beN, but with one atomic load.
2240 * 16 aligned bytes are guaranteed to cover the load.
2242 static Int128 do_ld_whole_be16(CPUArchState *env, uintptr_t ra,
2243 MMULookupPageData *p, uint64_t ret_be)
2245 int o = p->addr & 15;
2246 Int128 x, y = load_atomic16_or_exit(env, ra, p->haddr - o);
2247 int size = p->size;
2249 if (!HOST_BIG_ENDIAN) {
2250 y = bswap128(y);
2252 y = int128_lshift(y, o * 8);
2253 y = int128_urshift(y, (16 - size) * 8);
2254 x = int128_make64(ret_be);
2255 x = int128_lshift(x, size * 8);
2256 return int128_or(x, y);
2260 * Wrapper for the above.
2262 static uint64_t do_ld_beN(CPUArchState *env, MMULookupPageData *p,
2263 uint64_t ret_be, int mmu_idx, MMUAccessType type,
2264 MemOp mop, uintptr_t ra)
2266 MemOp atom;
2267 unsigned tmp, half_size;
2269 if (unlikely(p->flags & TLB_MMIO)) {
2270 QEMU_IOTHREAD_LOCK_GUARD();
2271 return do_ld_mmio_beN(env, p->full, ret_be, p->addr, p->size,
2272 mmu_idx, type, ra);
2276 * It is a given that we cross a page and therefore there is no
2277 * atomicity for the load as a whole, but subobjects may need attention.
2279 atom = mop & MO_ATOM_MASK;
2280 switch (atom) {
2281 case MO_ATOM_SUBALIGN:
2282 return do_ld_parts_beN(p, ret_be);
2284 case MO_ATOM_IFALIGN_PAIR:
2285 case MO_ATOM_WITHIN16_PAIR:
2286 tmp = mop & MO_SIZE;
2287 tmp = tmp ? tmp - 1 : 0;
2288 half_size = 1 << tmp;
2289 if (atom == MO_ATOM_IFALIGN_PAIR
2290 ? p->size == half_size
2291 : p->size >= half_size) {
2292 if (!HAVE_al8_fast && p->size < 4) {
2293 return do_ld_whole_be4(p, ret_be);
2294 } else {
2295 return do_ld_whole_be8(env, ra, p, ret_be);
2298 /* fall through */
2300 case MO_ATOM_IFALIGN:
2301 case MO_ATOM_WITHIN16:
2302 case MO_ATOM_NONE:
2303 return do_ld_bytes_beN(p, ret_be);
2305 default:
2306 g_assert_not_reached();
2311 * Wrapper for the above, for 8 < size < 16.
2313 static Int128 do_ld16_beN(CPUArchState *env, MMULookupPageData *p,
2314 uint64_t a, int mmu_idx, MemOp mop, uintptr_t ra)
2316 int size = p->size;
2317 uint64_t b;
2318 MemOp atom;
2320 if (unlikely(p->flags & TLB_MMIO)) {
2321 QEMU_IOTHREAD_LOCK_GUARD();
2322 a = do_ld_mmio_beN(env, p->full, a, p->addr, size - 8,
2323 mmu_idx, MMU_DATA_LOAD, ra);
2324 b = do_ld_mmio_beN(env, p->full, 0, p->addr + 8, 8,
2325 mmu_idx, MMU_DATA_LOAD, ra);
2326 return int128_make128(b, a);
2330 * It is a given that we cross a page and therefore there is no
2331 * atomicity for the load as a whole, but subobjects may need attention.
2333 atom = mop & MO_ATOM_MASK;
2334 switch (atom) {
2335 case MO_ATOM_SUBALIGN:
2336 p->size = size - 8;
2337 a = do_ld_parts_beN(p, a);
2338 p->haddr += size - 8;
2339 p->size = 8;
2340 b = do_ld_parts_beN(p, 0);
2341 break;
2343 case MO_ATOM_WITHIN16_PAIR:
2344 /* Since size > 8, this is the half that must be atomic. */
2345 return do_ld_whole_be16(env, ra, p, a);
2347 case MO_ATOM_IFALIGN_PAIR:
2349 * Since size > 8, both halves are misaligned,
2350 * and so neither is atomic.
2352 case MO_ATOM_IFALIGN:
2353 case MO_ATOM_WITHIN16:
2354 case MO_ATOM_NONE:
2355 p->size = size - 8;
2356 a = do_ld_bytes_beN(p, a);
2357 b = ldq_be_p(p->haddr + size - 8);
2358 break;
2360 default:
2361 g_assert_not_reached();
2364 return int128_make128(b, a);
2367 static uint8_t do_ld_1(CPUArchState *env, MMULookupPageData *p, int mmu_idx,
2368 MMUAccessType type, uintptr_t ra)
2370 if (unlikely(p->flags & TLB_MMIO)) {
2371 return io_readx(env, p->full, mmu_idx, p->addr, ra, type, MO_UB);
2372 } else {
2373 return *(uint8_t *)p->haddr;
2377 static uint16_t do_ld_2(CPUArchState *env, MMULookupPageData *p, int mmu_idx,
2378 MMUAccessType type, MemOp memop, uintptr_t ra)
2380 uint16_t ret;
2382 if (unlikely(p->flags & TLB_MMIO)) {
2383 QEMU_IOTHREAD_LOCK_GUARD();
2384 ret = do_ld_mmio_beN(env, p->full, 0, p->addr, 2, mmu_idx, type, ra);
2385 if ((memop & MO_BSWAP) == MO_LE) {
2386 ret = bswap16(ret);
2388 } else {
2389 /* Perform the load host endian, then swap if necessary. */
2390 ret = load_atom_2(env, ra, p->haddr, memop);
2391 if (memop & MO_BSWAP) {
2392 ret = bswap16(ret);
2395 return ret;
2398 static uint32_t do_ld_4(CPUArchState *env, MMULookupPageData *p, int mmu_idx,
2399 MMUAccessType type, MemOp memop, uintptr_t ra)
2401 uint32_t ret;
2403 if (unlikely(p->flags & TLB_MMIO)) {
2404 QEMU_IOTHREAD_LOCK_GUARD();
2405 ret = do_ld_mmio_beN(env, p->full, 0, p->addr, 4, mmu_idx, type, ra);
2406 if ((memop & MO_BSWAP) == MO_LE) {
2407 ret = bswap32(ret);
2409 } else {
2410 /* Perform the load host endian. */
2411 ret = load_atom_4(env, ra, p->haddr, memop);
2412 if (memop & MO_BSWAP) {
2413 ret = bswap32(ret);
2416 return ret;
2419 static uint64_t do_ld_8(CPUArchState *env, MMULookupPageData *p, int mmu_idx,
2420 MMUAccessType type, MemOp memop, uintptr_t ra)
2422 uint64_t ret;
2424 if (unlikely(p->flags & TLB_MMIO)) {
2425 QEMU_IOTHREAD_LOCK_GUARD();
2426 ret = do_ld_mmio_beN(env, p->full, 0, p->addr, 8, mmu_idx, type, ra);
2427 if ((memop & MO_BSWAP) == MO_LE) {
2428 ret = bswap64(ret);
2430 } else {
2431 /* Perform the load host endian. */
2432 ret = load_atom_8(env, ra, p->haddr, memop);
2433 if (memop & MO_BSWAP) {
2434 ret = bswap64(ret);
2437 return ret;
2440 static uint8_t do_ld1_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi,
2441 uintptr_t ra, MMUAccessType access_type)
2443 MMULookupLocals l;
2444 bool crosspage;
2446 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2447 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l);
2448 tcg_debug_assert(!crosspage);
2450 return do_ld_1(env, &l.page[0], l.mmu_idx, access_type, ra);
2453 tcg_target_ulong helper_ldub_mmu(CPUArchState *env, uint64_t addr,
2454 MemOpIdx oi, uintptr_t retaddr)
2456 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_8);
2457 return do_ld1_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD);
2460 static uint16_t do_ld2_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi,
2461 uintptr_t ra, MMUAccessType access_type)
2463 MMULookupLocals l;
2464 bool crosspage;
2465 uint16_t ret;
2466 uint8_t a, b;
2468 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2469 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l);
2470 if (likely(!crosspage)) {
2471 return do_ld_2(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2474 a = do_ld_1(env, &l.page[0], l.mmu_idx, access_type, ra);
2475 b = do_ld_1(env, &l.page[1], l.mmu_idx, access_type, ra);
2477 if ((l.memop & MO_BSWAP) == MO_LE) {
2478 ret = a | (b << 8);
2479 } else {
2480 ret = b | (a << 8);
2482 return ret;
2485 tcg_target_ulong helper_lduw_mmu(CPUArchState *env, uint64_t addr,
2486 MemOpIdx oi, uintptr_t retaddr)
2488 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16);
2489 return do_ld2_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD);
2492 static uint32_t do_ld4_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi,
2493 uintptr_t ra, MMUAccessType access_type)
2495 MMULookupLocals l;
2496 bool crosspage;
2497 uint32_t ret;
2499 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2500 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l);
2501 if (likely(!crosspage)) {
2502 return do_ld_4(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2505 ret = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra);
2506 ret = do_ld_beN(env, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra);
2507 if ((l.memop & MO_BSWAP) == MO_LE) {
2508 ret = bswap32(ret);
2510 return ret;
2513 tcg_target_ulong helper_ldul_mmu(CPUArchState *env, uint64_t addr,
2514 MemOpIdx oi, uintptr_t retaddr)
2516 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32);
2517 return do_ld4_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD);
2520 static uint64_t do_ld8_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi,
2521 uintptr_t ra, MMUAccessType access_type)
2523 MMULookupLocals l;
2524 bool crosspage;
2525 uint64_t ret;
2527 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2528 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l);
2529 if (likely(!crosspage)) {
2530 return do_ld_8(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2533 ret = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra);
2534 ret = do_ld_beN(env, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra);
2535 if ((l.memop & MO_BSWAP) == MO_LE) {
2536 ret = bswap64(ret);
2538 return ret;
2541 uint64_t helper_ldq_mmu(CPUArchState *env, uint64_t addr,
2542 MemOpIdx oi, uintptr_t retaddr)
2544 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64);
2545 return do_ld8_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD);
2549 * Provide signed versions of the load routines as well. We can of course
2550 * avoid this for 64-bit data, or for 32-bit data on 32-bit host.
2553 tcg_target_ulong helper_ldsb_mmu(CPUArchState *env, uint64_t addr,
2554 MemOpIdx oi, uintptr_t retaddr)
2556 return (int8_t)helper_ldub_mmu(env, addr, oi, retaddr);
2559 tcg_target_ulong helper_ldsw_mmu(CPUArchState *env, uint64_t addr,
2560 MemOpIdx oi, uintptr_t retaddr)
2562 return (int16_t)helper_lduw_mmu(env, addr, oi, retaddr);
2565 tcg_target_ulong helper_ldsl_mmu(CPUArchState *env, uint64_t addr,
2566 MemOpIdx oi, uintptr_t retaddr)
2568 return (int32_t)helper_ldul_mmu(env, addr, oi, retaddr);
2571 static Int128 do_ld16_mmu(CPUArchState *env, vaddr addr,
2572 MemOpIdx oi, uintptr_t ra)
2574 MMULookupLocals l;
2575 bool crosspage;
2576 uint64_t a, b;
2577 Int128 ret;
2578 int first;
2580 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2581 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD, &l);
2582 if (likely(!crosspage)) {
2583 if (unlikely(l.page[0].flags & TLB_MMIO)) {
2584 QEMU_IOTHREAD_LOCK_GUARD();
2585 a = do_ld_mmio_beN(env, l.page[0].full, 0, addr, 8,
2586 l.mmu_idx, MMU_DATA_LOAD, ra);
2587 b = do_ld_mmio_beN(env, l.page[0].full, 0, addr + 8, 8,
2588 l.mmu_idx, MMU_DATA_LOAD, ra);
2589 ret = int128_make128(b, a);
2590 if ((l.memop & MO_BSWAP) == MO_LE) {
2591 ret = bswap128(ret);
2593 } else {
2594 /* Perform the load host endian. */
2595 ret = load_atom_16(env, ra, l.page[0].haddr, l.memop);
2596 if (l.memop & MO_BSWAP) {
2597 ret = bswap128(ret);
2600 return ret;
2603 first = l.page[0].size;
2604 if (first == 8) {
2605 MemOp mop8 = (l.memop & ~MO_SIZE) | MO_64;
2607 a = do_ld_8(env, &l.page[0], l.mmu_idx, MMU_DATA_LOAD, mop8, ra);
2608 b = do_ld_8(env, &l.page[1], l.mmu_idx, MMU_DATA_LOAD, mop8, ra);
2609 if ((mop8 & MO_BSWAP) == MO_LE) {
2610 ret = int128_make128(a, b);
2611 } else {
2612 ret = int128_make128(b, a);
2614 return ret;
2617 if (first < 8) {
2618 a = do_ld_beN(env, &l.page[0], 0, l.mmu_idx,
2619 MMU_DATA_LOAD, l.memop, ra);
2620 ret = do_ld16_beN(env, &l.page[1], a, l.mmu_idx, l.memop, ra);
2621 } else {
2622 ret = do_ld16_beN(env, &l.page[0], 0, l.mmu_idx, l.memop, ra);
2623 b = int128_getlo(ret);
2624 ret = int128_lshift(ret, l.page[1].size * 8);
2625 a = int128_gethi(ret);
2626 b = do_ld_beN(env, &l.page[1], b, l.mmu_idx,
2627 MMU_DATA_LOAD, l.memop, ra);
2628 ret = int128_make128(b, a);
2630 if ((l.memop & MO_BSWAP) == MO_LE) {
2631 ret = bswap128(ret);
2633 return ret;
2636 Int128 helper_ld16_mmu(CPUArchState *env, uint64_t addr,
2637 uint32_t oi, uintptr_t retaddr)
2639 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128);
2640 return do_ld16_mmu(env, addr, oi, retaddr);
2643 Int128 helper_ld_i128(CPUArchState *env, uint64_t addr, uint32_t oi)
2645 return helper_ld16_mmu(env, addr, oi, GETPC());
2649 * Load helpers for cpu_ldst.h.
2652 static void plugin_load_cb(CPUArchState *env, abi_ptr addr, MemOpIdx oi)
2654 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
2657 uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra)
2659 uint8_t ret;
2661 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_UB);
2662 ret = do_ld1_mmu(env, addr, oi, ra, MMU_DATA_LOAD);
2663 plugin_load_cb(env, addr, oi);
2664 return ret;
2667 uint16_t cpu_ldw_mmu(CPUArchState *env, abi_ptr addr,
2668 MemOpIdx oi, uintptr_t ra)
2670 uint16_t ret;
2672 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16);
2673 ret = do_ld2_mmu(env, addr, oi, ra, MMU_DATA_LOAD);
2674 plugin_load_cb(env, addr, oi);
2675 return ret;
2678 uint32_t cpu_ldl_mmu(CPUArchState *env, abi_ptr addr,
2679 MemOpIdx oi, uintptr_t ra)
2681 uint32_t ret;
2683 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32);
2684 ret = do_ld4_mmu(env, addr, oi, ra, MMU_DATA_LOAD);
2685 plugin_load_cb(env, addr, oi);
2686 return ret;
2689 uint64_t cpu_ldq_mmu(CPUArchState *env, abi_ptr addr,
2690 MemOpIdx oi, uintptr_t ra)
2692 uint64_t ret;
2694 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64);
2695 ret = do_ld8_mmu(env, addr, oi, ra, MMU_DATA_LOAD);
2696 plugin_load_cb(env, addr, oi);
2697 return ret;
2700 Int128 cpu_ld16_mmu(CPUArchState *env, abi_ptr addr,
2701 MemOpIdx oi, uintptr_t ra)
2703 Int128 ret;
2705 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128);
2706 ret = do_ld16_mmu(env, addr, oi, ra);
2707 plugin_load_cb(env, addr, oi);
2708 return ret;
2712 * Store Helpers
2716 * do_st_mmio_leN:
2717 * @env: cpu context
2718 * @full: page parameters
2719 * @val_le: data to store
2720 * @addr: virtual address
2721 * @size: number of bytes
2722 * @mmu_idx: virtual address context
2723 * @ra: return address into tcg generated code, or 0
2724 * Context: iothread lock held
2726 * Store @size bytes at @addr, which is memory-mapped i/o.
2727 * The bytes to store are extracted in little-endian order from @val_le;
2728 * return the bytes of @val_le beyond @p->size that have not been stored.
2730 static uint64_t do_st_mmio_leN(CPUArchState *env, CPUTLBEntryFull *full,
2731 uint64_t val_le, vaddr addr, int size,
2732 int mmu_idx, uintptr_t ra)
2734 tcg_debug_assert(size > 0 && size <= 8);
2736 do {
2737 /* Store aligned pieces up to 8 bytes. */
2738 switch ((size | (int)addr) & 7) {
2739 case 1:
2740 case 3:
2741 case 5:
2742 case 7:
2743 io_writex(env, full, mmu_idx, val_le, addr, ra, MO_UB);
2744 val_le >>= 8;
2745 size -= 1;
2746 addr += 1;
2747 break;
2748 case 2:
2749 case 6:
2750 io_writex(env, full, mmu_idx, val_le, addr, ra, MO_LEUW);
2751 val_le >>= 16;
2752 size -= 2;
2753 addr += 2;
2754 break;
2755 case 4:
2756 io_writex(env, full, mmu_idx, val_le, addr, ra, MO_LEUL);
2757 val_le >>= 32;
2758 size -= 4;
2759 addr += 4;
2760 break;
2761 case 0:
2762 io_writex(env, full, mmu_idx, val_le, addr, ra, MO_LEUQ);
2763 return 0;
2764 default:
2765 qemu_build_not_reached();
2767 } while (size);
2769 return val_le;
2773 * Wrapper for the above.
2775 static uint64_t do_st_leN(CPUArchState *env, MMULookupPageData *p,
2776 uint64_t val_le, int mmu_idx,
2777 MemOp mop, uintptr_t ra)
2779 MemOp atom;
2780 unsigned tmp, half_size;
2782 if (unlikely(p->flags & TLB_MMIO)) {
2783 QEMU_IOTHREAD_LOCK_GUARD();
2784 return do_st_mmio_leN(env, p->full, val_le, p->addr,
2785 p->size, mmu_idx, ra);
2786 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2787 return val_le >> (p->size * 8);
2791 * It is a given that we cross a page and therefore there is no atomicity
2792 * for the store as a whole, but subobjects may need attention.
2794 atom = mop & MO_ATOM_MASK;
2795 switch (atom) {
2796 case MO_ATOM_SUBALIGN:
2797 return store_parts_leN(p->haddr, p->size, val_le);
2799 case MO_ATOM_IFALIGN_PAIR:
2800 case MO_ATOM_WITHIN16_PAIR:
2801 tmp = mop & MO_SIZE;
2802 tmp = tmp ? tmp - 1 : 0;
2803 half_size = 1 << tmp;
2804 if (atom == MO_ATOM_IFALIGN_PAIR
2805 ? p->size == half_size
2806 : p->size >= half_size) {
2807 if (!HAVE_al8_fast && p->size <= 4) {
2808 return store_whole_le4(p->haddr, p->size, val_le);
2809 } else if (HAVE_al8) {
2810 return store_whole_le8(p->haddr, p->size, val_le);
2811 } else {
2812 cpu_loop_exit_atomic(env_cpu(env), ra);
2815 /* fall through */
2817 case MO_ATOM_IFALIGN:
2818 case MO_ATOM_WITHIN16:
2819 case MO_ATOM_NONE:
2820 return store_bytes_leN(p->haddr, p->size, val_le);
2822 default:
2823 g_assert_not_reached();
2828 * Wrapper for the above, for 8 < size < 16.
2830 static uint64_t do_st16_leN(CPUArchState *env, MMULookupPageData *p,
2831 Int128 val_le, int mmu_idx,
2832 MemOp mop, uintptr_t ra)
2834 int size = p->size;
2835 MemOp atom;
2837 if (unlikely(p->flags & TLB_MMIO)) {
2838 QEMU_IOTHREAD_LOCK_GUARD();
2839 do_st_mmio_leN(env, p->full, int128_getlo(val_le),
2840 p->addr, 8, mmu_idx, ra);
2841 return do_st_mmio_leN(env, p->full, int128_gethi(val_le),
2842 p->addr + 8, size - 8, mmu_idx, ra);
2843 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2844 return int128_gethi(val_le) >> ((size - 8) * 8);
2848 * It is a given that we cross a page and therefore there is no atomicity
2849 * for the store as a whole, but subobjects may need attention.
2851 atom = mop & MO_ATOM_MASK;
2852 switch (atom) {
2853 case MO_ATOM_SUBALIGN:
2854 store_parts_leN(p->haddr, 8, int128_getlo(val_le));
2855 return store_parts_leN(p->haddr + 8, p->size - 8,
2856 int128_gethi(val_le));
2858 case MO_ATOM_WITHIN16_PAIR:
2859 /* Since size > 8, this is the half that must be atomic. */
2860 if (!HAVE_ATOMIC128_RW) {
2861 cpu_loop_exit_atomic(env_cpu(env), ra);
2863 return store_whole_le16(p->haddr, p->size, val_le);
2865 case MO_ATOM_IFALIGN_PAIR:
2867 * Since size > 8, both halves are misaligned,
2868 * and so neither is atomic.
2870 case MO_ATOM_IFALIGN:
2871 case MO_ATOM_WITHIN16:
2872 case MO_ATOM_NONE:
2873 stq_le_p(p->haddr, int128_getlo(val_le));
2874 return store_bytes_leN(p->haddr + 8, p->size - 8,
2875 int128_gethi(val_le));
2877 default:
2878 g_assert_not_reached();
2882 static void do_st_1(CPUArchState *env, MMULookupPageData *p, uint8_t val,
2883 int mmu_idx, uintptr_t ra)
2885 if (unlikely(p->flags & TLB_MMIO)) {
2886 io_writex(env, p->full, mmu_idx, val, p->addr, ra, MO_UB);
2887 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2888 /* nothing */
2889 } else {
2890 *(uint8_t *)p->haddr = val;
2894 static void do_st_2(CPUArchState *env, MMULookupPageData *p, uint16_t val,
2895 int mmu_idx, MemOp memop, uintptr_t ra)
2897 if (unlikely(p->flags & TLB_MMIO)) {
2898 if ((memop & MO_BSWAP) != MO_LE) {
2899 val = bswap16(val);
2901 QEMU_IOTHREAD_LOCK_GUARD();
2902 do_st_mmio_leN(env, p->full, val, p->addr, 2, mmu_idx, ra);
2903 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2904 /* nothing */
2905 } else {
2906 /* Swap to host endian if necessary, then store. */
2907 if (memop & MO_BSWAP) {
2908 val = bswap16(val);
2910 store_atom_2(env, ra, p->haddr, memop, val);
2914 static void do_st_4(CPUArchState *env, MMULookupPageData *p, uint32_t val,
2915 int mmu_idx, MemOp memop, uintptr_t ra)
2917 if (unlikely(p->flags & TLB_MMIO)) {
2918 if ((memop & MO_BSWAP) != MO_LE) {
2919 val = bswap32(val);
2921 QEMU_IOTHREAD_LOCK_GUARD();
2922 do_st_mmio_leN(env, p->full, val, p->addr, 4, mmu_idx, ra);
2923 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2924 /* nothing */
2925 } else {
2926 /* Swap to host endian if necessary, then store. */
2927 if (memop & MO_BSWAP) {
2928 val = bswap32(val);
2930 store_atom_4(env, ra, p->haddr, memop, val);
2934 static void do_st_8(CPUArchState *env, MMULookupPageData *p, uint64_t val,
2935 int mmu_idx, MemOp memop, uintptr_t ra)
2937 if (unlikely(p->flags & TLB_MMIO)) {
2938 if ((memop & MO_BSWAP) != MO_LE) {
2939 val = bswap64(val);
2941 QEMU_IOTHREAD_LOCK_GUARD();
2942 do_st_mmio_leN(env, p->full, val, p->addr, 8, mmu_idx, ra);
2943 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2944 /* nothing */
2945 } else {
2946 /* Swap to host endian if necessary, then store. */
2947 if (memop & MO_BSWAP) {
2948 val = bswap64(val);
2950 store_atom_8(env, ra, p->haddr, memop, val);
2954 void helper_stb_mmu(CPUArchState *env, uint64_t addr, uint32_t val,
2955 MemOpIdx oi, uintptr_t ra)
2957 MMULookupLocals l;
2958 bool crosspage;
2960 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_8);
2961 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
2962 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
2963 tcg_debug_assert(!crosspage);
2965 do_st_1(env, &l.page[0], val, l.mmu_idx, ra);
2968 static void do_st2_mmu(CPUArchState *env, vaddr addr, uint16_t val,
2969 MemOpIdx oi, uintptr_t ra)
2971 MMULookupLocals l;
2972 bool crosspage;
2973 uint8_t a, b;
2975 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
2976 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
2977 if (likely(!crosspage)) {
2978 do_st_2(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
2979 return;
2982 if ((l.memop & MO_BSWAP) == MO_LE) {
2983 a = val, b = val >> 8;
2984 } else {
2985 b = val, a = val >> 8;
2987 do_st_1(env, &l.page[0], a, l.mmu_idx, ra);
2988 do_st_1(env, &l.page[1], b, l.mmu_idx, ra);
2991 void helper_stw_mmu(CPUArchState *env, uint64_t addr, uint32_t val,
2992 MemOpIdx oi, uintptr_t retaddr)
2994 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16);
2995 do_st2_mmu(env, addr, val, oi, retaddr);
2998 static void do_st4_mmu(CPUArchState *env, vaddr addr, uint32_t val,
2999 MemOpIdx oi, uintptr_t ra)
3001 MMULookupLocals l;
3002 bool crosspage;
3004 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
3005 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
3006 if (likely(!crosspage)) {
3007 do_st_4(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
3008 return;
3011 /* Swap to little endian for simplicity, then store by bytes. */
3012 if ((l.memop & MO_BSWAP) != MO_LE) {
3013 val = bswap32(val);
3015 val = do_st_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
3016 (void) do_st_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra);
3019 void helper_stl_mmu(CPUArchState *env, uint64_t addr, uint32_t val,
3020 MemOpIdx oi, uintptr_t retaddr)
3022 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32);
3023 do_st4_mmu(env, addr, val, oi, retaddr);
3026 static void do_st8_mmu(CPUArchState *env, vaddr addr, uint64_t val,
3027 MemOpIdx oi, uintptr_t ra)
3029 MMULookupLocals l;
3030 bool crosspage;
3032 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
3033 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
3034 if (likely(!crosspage)) {
3035 do_st_8(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
3036 return;
3039 /* Swap to little endian for simplicity, then store by bytes. */
3040 if ((l.memop & MO_BSWAP) != MO_LE) {
3041 val = bswap64(val);
3043 val = do_st_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
3044 (void) do_st_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra);
3047 void helper_stq_mmu(CPUArchState *env, uint64_t addr, uint64_t val,
3048 MemOpIdx oi, uintptr_t retaddr)
3050 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64);
3051 do_st8_mmu(env, addr, val, oi, retaddr);
3054 static void do_st16_mmu(CPUArchState *env, vaddr addr, Int128 val,
3055 MemOpIdx oi, uintptr_t ra)
3057 MMULookupLocals l;
3058 bool crosspage;
3059 uint64_t a, b;
3060 int first;
3062 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
3063 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
3064 if (likely(!crosspage)) {
3065 if (unlikely(l.page[0].flags & TLB_MMIO)) {
3066 if ((l.memop & MO_BSWAP) != MO_LE) {
3067 val = bswap128(val);
3069 a = int128_getlo(val);
3070 b = int128_gethi(val);
3071 QEMU_IOTHREAD_LOCK_GUARD();
3072 do_st_mmio_leN(env, l.page[0].full, a, addr, 8, l.mmu_idx, ra);
3073 do_st_mmio_leN(env, l.page[0].full, b, addr + 8, 8, l.mmu_idx, ra);
3074 } else if (unlikely(l.page[0].flags & TLB_DISCARD_WRITE)) {
3075 /* nothing */
3076 } else {
3077 /* Swap to host endian if necessary, then store. */
3078 if (l.memop & MO_BSWAP) {
3079 val = bswap128(val);
3081 store_atom_16(env, ra, l.page[0].haddr, l.memop, val);
3083 return;
3086 first = l.page[0].size;
3087 if (first == 8) {
3088 MemOp mop8 = (l.memop & ~(MO_SIZE | MO_BSWAP)) | MO_64;
3090 if (l.memop & MO_BSWAP) {
3091 val = bswap128(val);
3093 if (HOST_BIG_ENDIAN) {
3094 b = int128_getlo(val), a = int128_gethi(val);
3095 } else {
3096 a = int128_getlo(val), b = int128_gethi(val);
3098 do_st_8(env, &l.page[0], a, l.mmu_idx, mop8, ra);
3099 do_st_8(env, &l.page[1], b, l.mmu_idx, mop8, ra);
3100 return;
3103 if ((l.memop & MO_BSWAP) != MO_LE) {
3104 val = bswap128(val);
3106 if (first < 8) {
3107 do_st_leN(env, &l.page[0], int128_getlo(val), l.mmu_idx, l.memop, ra);
3108 val = int128_urshift(val, first * 8);
3109 do_st16_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra);
3110 } else {
3111 b = do_st16_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
3112 do_st_leN(env, &l.page[1], b, l.mmu_idx, l.memop, ra);
3116 void helper_st16_mmu(CPUArchState *env, uint64_t addr, Int128 val,
3117 MemOpIdx oi, uintptr_t retaddr)
3119 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128);
3120 do_st16_mmu(env, addr, val, oi, retaddr);
3123 void helper_st_i128(CPUArchState *env, uint64_t addr, Int128 val, MemOpIdx oi)
3125 helper_st16_mmu(env, addr, val, oi, GETPC());
3129 * Store Helpers for cpu_ldst.h
3132 static void plugin_store_cb(CPUArchState *env, abi_ptr addr, MemOpIdx oi)
3134 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
3137 void cpu_stb_mmu(CPUArchState *env, abi_ptr addr, uint8_t val,
3138 MemOpIdx oi, uintptr_t retaddr)
3140 helper_stb_mmu(env, addr, val, oi, retaddr);
3141 plugin_store_cb(env, addr, oi);
3144 void cpu_stw_mmu(CPUArchState *env, abi_ptr addr, uint16_t val,
3145 MemOpIdx oi, uintptr_t retaddr)
3147 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16);
3148 do_st2_mmu(env, addr, val, oi, retaddr);
3149 plugin_store_cb(env, addr, oi);
3152 void cpu_stl_mmu(CPUArchState *env, abi_ptr addr, uint32_t val,
3153 MemOpIdx oi, uintptr_t retaddr)
3155 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32);
3156 do_st4_mmu(env, addr, val, oi, retaddr);
3157 plugin_store_cb(env, addr, oi);
3160 void cpu_stq_mmu(CPUArchState *env, abi_ptr addr, uint64_t val,
3161 MemOpIdx oi, uintptr_t retaddr)
3163 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64);
3164 do_st8_mmu(env, addr, val, oi, retaddr);
3165 plugin_store_cb(env, addr, oi);
3168 void cpu_st16_mmu(CPUArchState *env, abi_ptr addr, Int128 val,
3169 MemOpIdx oi, uintptr_t retaddr)
3171 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128);
3172 do_st16_mmu(env, addr, val, oi, retaddr);
3173 plugin_store_cb(env, addr, oi);
3176 #include "ldst_common.c.inc"
3179 * First set of functions passes in OI and RETADDR.
3180 * This makes them callable from other helpers.
3183 #define ATOMIC_NAME(X) \
3184 glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu)
3186 #define ATOMIC_MMU_CLEANUP
3188 #include "atomic_common.c.inc"
3190 #define DATA_SIZE 1
3191 #include "atomic_template.h"
3193 #define DATA_SIZE 2
3194 #include "atomic_template.h"
3196 #define DATA_SIZE 4
3197 #include "atomic_template.h"
3199 #ifdef CONFIG_ATOMIC64
3200 #define DATA_SIZE 8
3201 #include "atomic_template.h"
3202 #endif
3204 #if defined(CONFIG_ATOMIC128) || HAVE_CMPXCHG128
3205 #define DATA_SIZE 16
3206 #include "atomic_template.h"
3207 #endif
3209 /* Code access functions. */
3211 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr)
3213 MemOpIdx oi = make_memop_idx(MO_UB, cpu_mmu_index(env, true));
3214 return do_ld1_mmu(env, addr, oi, 0, MMU_INST_FETCH);
3217 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr)
3219 MemOpIdx oi = make_memop_idx(MO_TEUW, cpu_mmu_index(env, true));
3220 return do_ld2_mmu(env, addr, oi, 0, MMU_INST_FETCH);
3223 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr)
3225 MemOpIdx oi = make_memop_idx(MO_TEUL, cpu_mmu_index(env, true));
3226 return do_ld4_mmu(env, addr, oi, 0, MMU_INST_FETCH);
3229 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr)
3231 MemOpIdx oi = make_memop_idx(MO_TEUQ, cpu_mmu_index(env, true));
3232 return do_ld8_mmu(env, addr, oi, 0, MMU_INST_FETCH);
3235 uint8_t cpu_ldb_code_mmu(CPUArchState *env, abi_ptr addr,
3236 MemOpIdx oi, uintptr_t retaddr)
3238 return do_ld1_mmu(env, addr, oi, retaddr, MMU_INST_FETCH);
3241 uint16_t cpu_ldw_code_mmu(CPUArchState *env, abi_ptr addr,
3242 MemOpIdx oi, uintptr_t retaddr)
3244 return do_ld2_mmu(env, addr, oi, retaddr, MMU_INST_FETCH);
3247 uint32_t cpu_ldl_code_mmu(CPUArchState *env, abi_ptr addr,
3248 MemOpIdx oi, uintptr_t retaddr)
3250 return do_ld4_mmu(env, addr, oi, retaddr, MMU_INST_FETCH);
3253 uint64_t cpu_ldq_code_mmu(CPUArchState *env, abi_ptr addr,
3254 MemOpIdx oi, uintptr_t retaddr)
3256 return do_ld8_mmu(env, addr, oi, retaddr, MMU_INST_FETCH);