meson: Use -b to ignore CR vs. CR-LF issues on Windows
[qemu/ar7.git] / hw / net / sungem.c
blob91753830a7a84a8982be1a34af6c0e54a6fa8011
1 /*
2 * QEMU model of SUN GEM ethernet controller
4 * As found in Apple ASICs among others
6 * Copyright 2016 Ben Herrenschmidt
7 * Copyright 2017 Mark Cave-Ayland
8 */
10 #include "qemu/osdep.h"
11 #include "hw/pci/pci.h"
12 #include "hw/qdev-properties.h"
13 #include "migration/vmstate.h"
14 #include "qemu/log.h"
15 #include "qemu/module.h"
16 #include "net/net.h"
17 #include "net/eth.h"
18 #include "net/checksum.h"
19 #include "hw/net/mii.h"
20 #include "sysemu/sysemu.h"
21 #include "trace.h"
22 #include "qom/object.h"
24 #define TYPE_SUNGEM "sungem"
26 typedef struct SunGEMState SunGEMState;
27 DECLARE_INSTANCE_CHECKER(SunGEMState, SUNGEM,
28 TYPE_SUNGEM)
30 #define MAX_PACKET_SIZE 9016
32 #define SUNGEM_MMIO_SIZE 0x200000
34 /* Global registers */
35 #define SUNGEM_MMIO_GREG_SIZE 0x2000
37 #define GREG_SEBSTATE 0x0000UL /* SEB State Register */
39 #define GREG_STAT 0x000CUL /* Status Register */
40 #define GREG_STAT_TXINTME 0x00000001 /* TX INTME frame transferred */
41 #define GREG_STAT_TXALL 0x00000002 /* All TX frames transferred */
42 #define GREG_STAT_TXDONE 0x00000004 /* One TX frame transferred */
43 #define GREG_STAT_RXDONE 0x00000010 /* One RX frame arrived */
44 #define GREG_STAT_RXNOBUF 0x00000020 /* No free RX buffers available */
45 #define GREG_STAT_RXTAGERR 0x00000040 /* RX tag framing is corrupt */
46 #define GREG_STAT_TXMAC 0x00004000 /* TX MAC signalled interrupt */
47 #define GREG_STAT_RXMAC 0x00008000 /* RX MAC signalled interrupt */
48 #define GREG_STAT_MAC 0x00010000 /* MAC Control signalled irq */
49 #define GREG_STAT_TXNR 0xfff80000 /* == TXDMA_TXDONE reg val */
50 #define GREG_STAT_TXNR_SHIFT 19
52 /* These interrupts are edge latches in the status register,
53 * reading it (or writing the corresponding bit in IACK) will
54 * clear them
56 #define GREG_STAT_LATCH (GREG_STAT_TXALL | GREG_STAT_TXINTME | \
57 GREG_STAT_RXDONE | GREG_STAT_RXDONE | \
58 GREG_STAT_RXNOBUF | GREG_STAT_RXTAGERR)
60 #define GREG_IMASK 0x0010UL /* Interrupt Mask Register */
61 #define GREG_IACK 0x0014UL /* Interrupt ACK Register */
62 #define GREG_STAT2 0x001CUL /* Alias of GREG_STAT */
63 #define GREG_PCIESTAT 0x1000UL /* PCI Error Status Register */
64 #define GREG_PCIEMASK 0x1004UL /* PCI Error Mask Register */
66 #define GREG_SWRST 0x1010UL /* Software Reset Register */
67 #define GREG_SWRST_TXRST 0x00000001 /* TX Software Reset */
68 #define GREG_SWRST_RXRST 0x00000002 /* RX Software Reset */
69 #define GREG_SWRST_RSTOUT 0x00000004 /* Force RST# pin active */
71 /* TX DMA Registers */
72 #define SUNGEM_MMIO_TXDMA_SIZE 0x1000
74 #define TXDMA_KICK 0x0000UL /* TX Kick Register */
76 #define TXDMA_CFG 0x0004UL /* TX Configuration Register */
77 #define TXDMA_CFG_ENABLE 0x00000001 /* Enable TX DMA channel */
78 #define TXDMA_CFG_RINGSZ 0x0000001e /* TX descriptor ring size */
80 #define TXDMA_DBLOW 0x0008UL /* TX Desc. Base Low */
81 #define TXDMA_DBHI 0x000CUL /* TX Desc. Base High */
82 #define TXDMA_PCNT 0x0024UL /* TX FIFO Packet Counter */
83 #define TXDMA_SMACHINE 0x0028UL /* TX State Machine Register */
84 #define TXDMA_DPLOW 0x0030UL /* TX Data Pointer Low */
85 #define TXDMA_DPHI 0x0034UL /* TX Data Pointer High */
86 #define TXDMA_TXDONE 0x0100UL /* TX Completion Register */
87 #define TXDMA_FTAG 0x0108UL /* TX FIFO Tag */
88 #define TXDMA_FSZ 0x0118UL /* TX FIFO Size */
90 /* Receive DMA Registers */
91 #define SUNGEM_MMIO_RXDMA_SIZE 0x2000
93 #define RXDMA_CFG 0x0000UL /* RX Configuration Register */
94 #define RXDMA_CFG_ENABLE 0x00000001 /* Enable RX DMA channel */
95 #define RXDMA_CFG_RINGSZ 0x0000001e /* RX descriptor ring size */
96 #define RXDMA_CFG_FBOFF 0x00001c00 /* Offset of first data byte */
97 #define RXDMA_CFG_CSUMOFF 0x000fe000 /* Skip bytes before csum calc */
99 #define RXDMA_DBLOW 0x0004UL /* RX Descriptor Base Low */
100 #define RXDMA_DBHI 0x0008UL /* RX Descriptor Base High */
101 #define RXDMA_PCNT 0x0018UL /* RX FIFO Packet Counter */
102 #define RXDMA_SMACHINE 0x001CUL /* RX State Machine Register */
103 #define RXDMA_PTHRESH 0x0020UL /* Pause Thresholds */
104 #define RXDMA_DPLOW 0x0024UL /* RX Data Pointer Low */
105 #define RXDMA_DPHI 0x0028UL /* RX Data Pointer High */
106 #define RXDMA_KICK 0x0100UL /* RX Kick Register */
107 #define RXDMA_DONE 0x0104UL /* RX Completion Register */
108 #define RXDMA_BLANK 0x0108UL /* RX Blanking Register */
109 #define RXDMA_FTAG 0x0110UL /* RX FIFO Tag */
110 #define RXDMA_FSZ 0x0120UL /* RX FIFO Size */
112 /* MAC Registers */
113 #define SUNGEM_MMIO_MAC_SIZE 0x200
115 #define MAC_TXRST 0x0000UL /* TX MAC Software Reset Command */
116 #define MAC_RXRST 0x0004UL /* RX MAC Software Reset Command */
117 #define MAC_TXSTAT 0x0010UL /* TX MAC Status Register */
118 #define MAC_RXSTAT 0x0014UL /* RX MAC Status Register */
120 #define MAC_CSTAT 0x0018UL /* MAC Control Status Register */
121 #define MAC_CSTAT_PTR 0xffff0000 /* Pause Time Received */
123 #define MAC_TXMASK 0x0020UL /* TX MAC Mask Register */
124 #define MAC_RXMASK 0x0024UL /* RX MAC Mask Register */
125 #define MAC_MCMASK 0x0028UL /* MAC Control Mask Register */
127 #define MAC_TXCFG 0x0030UL /* TX MAC Configuration Register */
128 #define MAC_TXCFG_ENAB 0x00000001 /* TX MAC Enable */
130 #define MAC_RXCFG 0x0034UL /* RX MAC Configuration Register */
131 #define MAC_RXCFG_ENAB 0x00000001 /* RX MAC Enable */
132 #define MAC_RXCFG_SFCS 0x00000004 /* Strip FCS */
133 #define MAC_RXCFG_PROM 0x00000008 /* Promiscuous Mode */
134 #define MAC_RXCFG_PGRP 0x00000010 /* Promiscuous Group */
135 #define MAC_RXCFG_HFE 0x00000020 /* Hash Filter Enable */
137 #define MAC_XIFCFG 0x003CUL /* XIF Configuration Register */
138 #define MAC_XIFCFG_LBCK 0x00000002 /* Loopback TX to RX */
140 #define MAC_MINFSZ 0x0050UL /* MinFrameSize Register */
141 #define MAC_MAXFSZ 0x0054UL /* MaxFrameSize Register */
142 #define MAC_ADDR0 0x0080UL /* MAC Address 0 Register */
143 #define MAC_ADDR1 0x0084UL /* MAC Address 1 Register */
144 #define MAC_ADDR2 0x0088UL /* MAC Address 2 Register */
145 #define MAC_ADDR3 0x008CUL /* MAC Address 3 Register */
146 #define MAC_ADDR4 0x0090UL /* MAC Address 4 Register */
147 #define MAC_ADDR5 0x0094UL /* MAC Address 5 Register */
148 #define MAC_HASH0 0x00C0UL /* Hash Table 0 Register */
149 #define MAC_PATMPS 0x0114UL /* Peak Attempts Register */
150 #define MAC_SMACHINE 0x0134UL /* State Machine Register */
152 /* MIF Registers */
153 #define SUNGEM_MMIO_MIF_SIZE 0x20
155 #define MIF_FRAME 0x000CUL /* MIF Frame/Output Register */
156 #define MIF_FRAME_OP 0x30000000 /* OPcode */
157 #define MIF_FRAME_PHYAD 0x0f800000 /* PHY ADdress */
158 #define MIF_FRAME_REGAD 0x007c0000 /* REGister ADdress */
159 #define MIF_FRAME_TALSB 0x00010000 /* Turn Around LSB */
160 #define MIF_FRAME_DATA 0x0000ffff /* Instruction Payload */
162 #define MIF_CFG 0x0010UL /* MIF Configuration Register */
163 #define MIF_CFG_MDI0 0x00000100 /* MDIO_0 present or read-bit */
164 #define MIF_CFG_MDI1 0x00000200 /* MDIO_1 present or read-bit */
166 #define MIF_STATUS 0x0018UL /* MIF Status Register */
167 #define MIF_SMACHINE 0x001CUL /* MIF State Machine Register */
169 /* PCS/Serialink Registers */
170 #define SUNGEM_MMIO_PCS_SIZE 0x60
171 #define PCS_MIISTAT 0x0004UL /* PCS MII Status Register */
172 #define PCS_ISTAT 0x0018UL /* PCS Interrupt Status Reg */
173 #define PCS_SSTATE 0x005CUL /* Serialink State Register */
175 /* Descriptors */
176 struct gem_txd {
177 uint64_t control_word;
178 uint64_t buffer;
181 #define TXDCTRL_BUFSZ 0x0000000000007fffULL /* Buffer Size */
182 #define TXDCTRL_CSTART 0x00000000001f8000ULL /* CSUM Start Offset */
183 #define TXDCTRL_COFF 0x000000001fe00000ULL /* CSUM Stuff Offset */
184 #define TXDCTRL_CENAB 0x0000000020000000ULL /* CSUM Enable */
185 #define TXDCTRL_EOF 0x0000000040000000ULL /* End of Frame */
186 #define TXDCTRL_SOF 0x0000000080000000ULL /* Start of Frame */
187 #define TXDCTRL_INTME 0x0000000100000000ULL /* "Interrupt Me" */
189 struct gem_rxd {
190 uint64_t status_word;
191 uint64_t buffer;
194 #define RXDCTRL_HPASS 0x1000000000000000ULL /* Passed Hash Filter */
195 #define RXDCTRL_ALTMAC 0x2000000000000000ULL /* Matched ALT MAC */
198 struct SunGEMState {
199 PCIDevice pdev;
201 MemoryRegion sungem;
202 MemoryRegion greg;
203 MemoryRegion txdma;
204 MemoryRegion rxdma;
205 MemoryRegion mac;
206 MemoryRegion mif;
207 MemoryRegion pcs;
208 NICState *nic;
209 NICConf conf;
210 uint32_t phy_addr;
212 uint32_t gregs[SUNGEM_MMIO_GREG_SIZE >> 2];
213 uint32_t txdmaregs[SUNGEM_MMIO_TXDMA_SIZE >> 2];
214 uint32_t rxdmaregs[SUNGEM_MMIO_RXDMA_SIZE >> 2];
215 uint32_t macregs[SUNGEM_MMIO_MAC_SIZE >> 2];
216 uint32_t mifregs[SUNGEM_MMIO_MIF_SIZE >> 2];
217 uint32_t pcsregs[SUNGEM_MMIO_PCS_SIZE >> 2];
219 /* Cache some useful things */
220 uint32_t rx_mask;
221 uint32_t tx_mask;
223 /* Current tx packet */
224 uint8_t tx_data[MAX_PACKET_SIZE];
225 uint32_t tx_size;
226 uint64_t tx_first_ctl;
230 static void sungem_eval_irq(SunGEMState *s)
232 uint32_t stat, mask;
234 mask = s->gregs[GREG_IMASK >> 2];
235 stat = s->gregs[GREG_STAT >> 2] & ~GREG_STAT_TXNR;
236 if (stat & ~mask) {
237 pci_set_irq(PCI_DEVICE(s), 1);
238 } else {
239 pci_set_irq(PCI_DEVICE(s), 0);
243 static void sungem_update_status(SunGEMState *s, uint32_t bits, bool val)
245 uint32_t stat;
247 stat = s->gregs[GREG_STAT >> 2];
248 if (val) {
249 stat |= bits;
250 } else {
251 stat &= ~bits;
253 s->gregs[GREG_STAT >> 2] = stat;
254 sungem_eval_irq(s);
257 static void sungem_eval_cascade_irq(SunGEMState *s)
259 uint32_t stat, mask;
261 mask = s->macregs[MAC_TXSTAT >> 2];
262 stat = s->macregs[MAC_TXMASK >> 2];
263 if (stat & ~mask) {
264 sungem_update_status(s, GREG_STAT_TXMAC, true);
265 } else {
266 sungem_update_status(s, GREG_STAT_TXMAC, false);
269 mask = s->macregs[MAC_RXSTAT >> 2];
270 stat = s->macregs[MAC_RXMASK >> 2];
271 if (stat & ~mask) {
272 sungem_update_status(s, GREG_STAT_RXMAC, true);
273 } else {
274 sungem_update_status(s, GREG_STAT_RXMAC, false);
277 mask = s->macregs[MAC_CSTAT >> 2];
278 stat = s->macregs[MAC_MCMASK >> 2] & ~MAC_CSTAT_PTR;
279 if (stat & ~mask) {
280 sungem_update_status(s, GREG_STAT_MAC, true);
281 } else {
282 sungem_update_status(s, GREG_STAT_MAC, false);
286 static void sungem_do_tx_csum(SunGEMState *s)
288 uint16_t start, off;
289 uint32_t csum;
291 start = (s->tx_first_ctl & TXDCTRL_CSTART) >> 15;
292 off = (s->tx_first_ctl & TXDCTRL_COFF) >> 21;
294 trace_sungem_tx_checksum(start, off);
296 if (start > (s->tx_size - 2) || off > (s->tx_size - 2)) {
297 trace_sungem_tx_checksum_oob();
298 return;
301 csum = net_raw_checksum(s->tx_data + start, s->tx_size - start);
302 stw_be_p(s->tx_data + off, csum);
305 static void sungem_send_packet(SunGEMState *s, const uint8_t *buf,
306 int size)
308 NetClientState *nc = qemu_get_queue(s->nic);
310 if (s->macregs[MAC_XIFCFG >> 2] & MAC_XIFCFG_LBCK) {
311 nc->info->receive(nc, buf, size);
312 } else {
313 qemu_send_packet(nc, buf, size);
317 static void sungem_process_tx_desc(SunGEMState *s, struct gem_txd *desc)
319 PCIDevice *d = PCI_DEVICE(s);
320 uint32_t len;
322 /* If it's a start of frame, discard anything we had in the
323 * buffer and start again. This should be an error condition
324 * if we had something ... for now we ignore it
326 if (desc->control_word & TXDCTRL_SOF) {
327 if (s->tx_first_ctl) {
328 trace_sungem_tx_unfinished();
330 s->tx_size = 0;
331 s->tx_first_ctl = desc->control_word;
334 /* Grab data size */
335 len = desc->control_word & TXDCTRL_BUFSZ;
337 /* Clamp it to our max size */
338 if ((s->tx_size + len) > MAX_PACKET_SIZE) {
339 trace_sungem_tx_overflow();
340 len = MAX_PACKET_SIZE - s->tx_size;
343 /* Read the data */
344 pci_dma_read(d, desc->buffer, &s->tx_data[s->tx_size], len);
345 s->tx_size += len;
347 /* If end of frame, send packet */
348 if (desc->control_word & TXDCTRL_EOF) {
349 trace_sungem_tx_finished(s->tx_size);
351 /* Handle csum */
352 if (s->tx_first_ctl & TXDCTRL_CENAB) {
353 sungem_do_tx_csum(s);
356 /* Send it */
357 sungem_send_packet(s, s->tx_data, s->tx_size);
359 /* No more pending packet */
360 s->tx_size = 0;
361 s->tx_first_ctl = 0;
365 static void sungem_tx_kick(SunGEMState *s)
367 PCIDevice *d = PCI_DEVICE(s);
368 uint32_t comp, kick;
369 uint32_t txdma_cfg, txmac_cfg, ints;
370 uint64_t dbase;
372 trace_sungem_tx_kick();
374 /* Check that both TX MAC and TX DMA are enabled. We don't
375 * handle DMA-less direct FIFO operations (we don't emulate
376 * the FIFO at all).
378 * A write to TXDMA_KICK while DMA isn't enabled can happen
379 * when the driver is resetting the pointer.
381 txdma_cfg = s->txdmaregs[TXDMA_CFG >> 2];
382 txmac_cfg = s->macregs[MAC_TXCFG >> 2];
383 if (!(txdma_cfg & TXDMA_CFG_ENABLE) ||
384 !(txmac_cfg & MAC_TXCFG_ENAB)) {
385 trace_sungem_tx_disabled();
386 return;
389 /* XXX Test min frame size register ? */
390 /* XXX Test max frame size register ? */
392 dbase = s->txdmaregs[TXDMA_DBHI >> 2];
393 dbase = (dbase << 32) | s->txdmaregs[TXDMA_DBLOW >> 2];
395 comp = s->txdmaregs[TXDMA_TXDONE >> 2] & s->tx_mask;
396 kick = s->txdmaregs[TXDMA_KICK >> 2] & s->tx_mask;
398 trace_sungem_tx_process(comp, kick, s->tx_mask + 1);
400 /* This is rather primitive for now, we just send everything we
401 * can in one go, like e1000. Ideally we should do the sending
402 * from some kind of background task
404 while (comp != kick) {
405 struct gem_txd desc;
407 /* Read the next descriptor */
408 pci_dma_read(d, dbase + comp * sizeof(desc), &desc, sizeof(desc));
410 /* Byteswap descriptor */
411 desc.control_word = le64_to_cpu(desc.control_word);
412 desc.buffer = le64_to_cpu(desc.buffer);
413 trace_sungem_tx_desc(comp, desc.control_word, desc.buffer);
415 /* Send it for processing */
416 sungem_process_tx_desc(s, &desc);
418 /* Interrupt */
419 ints = GREG_STAT_TXDONE;
420 if (desc.control_word & TXDCTRL_INTME) {
421 ints |= GREG_STAT_TXINTME;
423 sungem_update_status(s, ints, true);
425 /* Next ! */
426 comp = (comp + 1) & s->tx_mask;
427 s->txdmaregs[TXDMA_TXDONE >> 2] = comp;
430 /* We sent everything, set status/irq bit */
431 sungem_update_status(s, GREG_STAT_TXALL, true);
434 static bool sungem_rx_full(SunGEMState *s, uint32_t kick, uint32_t done)
436 return kick == ((done + 1) & s->rx_mask);
439 static bool sungem_can_receive(NetClientState *nc)
441 SunGEMState *s = qemu_get_nic_opaque(nc);
442 uint32_t kick, done, rxdma_cfg, rxmac_cfg;
443 bool full;
445 rxmac_cfg = s->macregs[MAC_RXCFG >> 2];
446 rxdma_cfg = s->rxdmaregs[RXDMA_CFG >> 2];
448 /* If MAC disabled, can't receive */
449 if ((rxmac_cfg & MAC_RXCFG_ENAB) == 0) {
450 trace_sungem_rx_mac_disabled();
451 return false;
453 if ((rxdma_cfg & RXDMA_CFG_ENABLE) == 0) {
454 trace_sungem_rx_txdma_disabled();
455 return false;
458 /* Check RX availability */
459 kick = s->rxdmaregs[RXDMA_KICK >> 2];
460 done = s->rxdmaregs[RXDMA_DONE >> 2];
461 full = sungem_rx_full(s, kick, done);
463 trace_sungem_rx_check(!full, kick, done);
465 return !full;
468 enum {
469 rx_no_match,
470 rx_match_promisc,
471 rx_match_bcast,
472 rx_match_allmcast,
473 rx_match_mcast,
474 rx_match_mac,
475 rx_match_altmac,
478 static int sungem_check_rx_mac(SunGEMState *s, const uint8_t *mac, uint32_t crc)
480 uint32_t rxcfg = s->macregs[MAC_RXCFG >> 2];
481 uint32_t mac0, mac1, mac2;
483 /* Promisc enabled ? */
484 if (rxcfg & MAC_RXCFG_PROM) {
485 return rx_match_promisc;
488 /* Format MAC address into dwords */
489 mac0 = (mac[4] << 8) | mac[5];
490 mac1 = (mac[2] << 8) | mac[3];
491 mac2 = (mac[0] << 8) | mac[1];
493 trace_sungem_rx_mac_check(mac0, mac1, mac2);
495 /* Is this a broadcast frame ? */
496 if (mac0 == 0xffff && mac1 == 0xffff && mac2 == 0xffff) {
497 return rx_match_bcast;
500 /* TODO: Implement address filter registers (or we don't care ?) */
502 /* Is this a multicast frame ? */
503 if (mac[0] & 1) {
504 trace_sungem_rx_mac_multicast();
506 /* Promisc group enabled ? */
507 if (rxcfg & MAC_RXCFG_PGRP) {
508 return rx_match_allmcast;
511 /* TODO: Check MAC control frames (or we don't care) ? */
513 /* Check hash filter (somebody check that's correct ?) */
514 if (rxcfg & MAC_RXCFG_HFE) {
515 uint32_t hash, idx;
517 crc >>= 24;
518 idx = (crc >> 2) & 0x3c;
519 hash = s->macregs[(MAC_HASH0 + idx) >> 2];
520 if (hash & (1 << (15 - (crc & 0xf)))) {
521 return rx_match_mcast;
524 return rx_no_match;
527 /* Main MAC check */
528 trace_sungem_rx_mac_compare(s->macregs[MAC_ADDR0 >> 2],
529 s->macregs[MAC_ADDR1 >> 2],
530 s->macregs[MAC_ADDR2 >> 2]);
532 if (mac0 == s->macregs[MAC_ADDR0 >> 2] &&
533 mac1 == s->macregs[MAC_ADDR1 >> 2] &&
534 mac2 == s->macregs[MAC_ADDR2 >> 2]) {
535 return rx_match_mac;
538 /* Alt MAC check */
539 if (mac0 == s->macregs[MAC_ADDR3 >> 2] &&
540 mac1 == s->macregs[MAC_ADDR4 >> 2] &&
541 mac2 == s->macregs[MAC_ADDR5 >> 2]) {
542 return rx_match_altmac;
545 return rx_no_match;
548 static ssize_t sungem_receive(NetClientState *nc, const uint8_t *buf,
549 size_t size)
551 SunGEMState *s = qemu_get_nic_opaque(nc);
552 PCIDevice *d = PCI_DEVICE(s);
553 uint32_t mac_crc, done, kick, max_fsize;
554 uint32_t fcs_size, ints, rxdma_cfg, rxmac_cfg, csum, coff;
555 uint8_t smallbuf[60];
556 struct gem_rxd desc;
557 uint64_t dbase, baddr;
558 unsigned int rx_cond;
560 trace_sungem_rx_packet(size);
562 rxmac_cfg = s->macregs[MAC_RXCFG >> 2];
563 rxdma_cfg = s->rxdmaregs[RXDMA_CFG >> 2];
564 max_fsize = s->macregs[MAC_MAXFSZ >> 2] & 0x7fff;
566 /* If MAC or DMA disabled, can't receive */
567 if (!(rxdma_cfg & RXDMA_CFG_ENABLE) ||
568 !(rxmac_cfg & MAC_RXCFG_ENAB)) {
569 trace_sungem_rx_disabled();
570 return 0;
573 /* Size adjustment for FCS */
574 if (rxmac_cfg & MAC_RXCFG_SFCS) {
575 fcs_size = 0;
576 } else {
577 fcs_size = 4;
580 /* Discard frame smaller than a MAC or larger than max frame size
581 * (when accounting for FCS)
583 if (size < 6 || (size + 4) > max_fsize) {
584 trace_sungem_rx_bad_frame_size(size);
585 /* XXX Increment error statistics ? */
586 return size;
589 /* We don't drop too small frames since we get them in qemu, we pad
590 * them instead. We should probably use the min frame size register
591 * but I don't want to use a variable size staging buffer and I
592 * know both MacOS and Linux use the default 64 anyway. We use 60
593 * here to account for the non-existent FCS.
595 if (size < 60) {
596 memcpy(smallbuf, buf, size);
597 memset(&smallbuf[size], 0, 60 - size);
598 buf = smallbuf;
599 size = 60;
602 /* Get MAC crc */
603 mac_crc = net_crc32_le(buf, ETH_ALEN);
605 /* Packet isn't for me ? */
606 rx_cond = sungem_check_rx_mac(s, buf, mac_crc);
607 if (rx_cond == rx_no_match) {
608 /* Just drop it */
609 trace_sungem_rx_unmatched();
610 return size;
613 /* Get ring pointers */
614 kick = s->rxdmaregs[RXDMA_KICK >> 2] & s->rx_mask;
615 done = s->rxdmaregs[RXDMA_DONE >> 2] & s->rx_mask;
617 trace_sungem_rx_process(done, kick, s->rx_mask + 1);
619 /* Ring full ? Can't receive */
620 if (sungem_rx_full(s, kick, done)) {
621 trace_sungem_rx_ringfull();
622 return 0;
625 /* Note: The real GEM will fetch descriptors in blocks of 4,
626 * for now we handle them one at a time, I think the driver will
627 * cope
630 dbase = s->rxdmaregs[RXDMA_DBHI >> 2];
631 dbase = (dbase << 32) | s->rxdmaregs[RXDMA_DBLOW >> 2];
633 /* Read the next descriptor */
634 pci_dma_read(d, dbase + done * sizeof(desc), &desc, sizeof(desc));
636 trace_sungem_rx_desc(le64_to_cpu(desc.status_word),
637 le64_to_cpu(desc.buffer));
639 /* Effective buffer address */
640 baddr = le64_to_cpu(desc.buffer) & ~7ull;
641 baddr |= (rxdma_cfg & RXDMA_CFG_FBOFF) >> 10;
643 /* Write buffer out */
644 pci_dma_write(d, baddr, buf, size);
646 if (fcs_size) {
647 /* Should we add an FCS ? Linux doesn't ask us to strip it,
648 * however I believe nothing checks it... For now we just
649 * do nothing. It's faster this way.
653 /* Calculate the checksum */
654 coff = (rxdma_cfg & RXDMA_CFG_CSUMOFF) >> 13;
655 csum = net_raw_checksum((uint8_t *)buf + coff, size - coff);
657 /* Build the updated descriptor */
658 desc.status_word = (size + fcs_size) << 16;
659 desc.status_word |= ((uint64_t)(mac_crc >> 16)) << 44;
660 desc.status_word |= csum;
661 if (rx_cond == rx_match_mcast) {
662 desc.status_word |= RXDCTRL_HPASS;
664 if (rx_cond == rx_match_altmac) {
665 desc.status_word |= RXDCTRL_ALTMAC;
667 desc.status_word = cpu_to_le64(desc.status_word);
669 pci_dma_write(d, dbase + done * sizeof(desc), &desc, sizeof(desc));
671 done = (done + 1) & s->rx_mask;
672 s->rxdmaregs[RXDMA_DONE >> 2] = done;
674 /* XXX Unconditionally set RX interrupt for now. The interrupt
675 * mitigation timer might well end up adding more overhead than
676 * helping here...
678 ints = GREG_STAT_RXDONE;
679 if (sungem_rx_full(s, kick, done)) {
680 ints |= GREG_STAT_RXNOBUF;
682 sungem_update_status(s, ints, true);
684 return size;
687 static void sungem_set_link_status(NetClientState *nc)
689 /* We don't do anything for now as I believe none of the OSes
690 * drivers use the MIF autopoll feature nor the PHY interrupt
694 static void sungem_update_masks(SunGEMState *s)
696 uint32_t sz;
698 sz = 1 << (((s->rxdmaregs[RXDMA_CFG >> 2] & RXDMA_CFG_RINGSZ) >> 1) + 5);
699 s->rx_mask = sz - 1;
701 sz = 1 << (((s->txdmaregs[TXDMA_CFG >> 2] & TXDMA_CFG_RINGSZ) >> 1) + 5);
702 s->tx_mask = sz - 1;
705 static void sungem_reset_rx(SunGEMState *s)
707 trace_sungem_rx_reset();
709 /* XXX Do RXCFG */
710 /* XXX Check value */
711 s->rxdmaregs[RXDMA_FSZ >> 2] = 0x140;
712 s->rxdmaregs[RXDMA_DONE >> 2] = 0;
713 s->rxdmaregs[RXDMA_KICK >> 2] = 0;
714 s->rxdmaregs[RXDMA_CFG >> 2] = 0x1000010;
715 s->rxdmaregs[RXDMA_PTHRESH >> 2] = 0xf8;
716 s->rxdmaregs[RXDMA_BLANK >> 2] = 0;
718 sungem_update_masks(s);
721 static void sungem_reset_tx(SunGEMState *s)
723 trace_sungem_tx_reset();
725 /* XXX Do TXCFG */
726 /* XXX Check value */
727 s->txdmaregs[TXDMA_FSZ >> 2] = 0x90;
728 s->txdmaregs[TXDMA_TXDONE >> 2] = 0;
729 s->txdmaregs[TXDMA_KICK >> 2] = 0;
730 s->txdmaregs[TXDMA_CFG >> 2] = 0x118010;
732 sungem_update_masks(s);
734 s->tx_size = 0;
735 s->tx_first_ctl = 0;
738 static void sungem_reset_all(SunGEMState *s, bool pci_reset)
740 trace_sungem_reset(pci_reset);
742 sungem_reset_rx(s);
743 sungem_reset_tx(s);
745 s->gregs[GREG_IMASK >> 2] = 0xFFFFFFF;
746 s->gregs[GREG_STAT >> 2] = 0;
747 if (pci_reset) {
748 uint8_t *ma = s->conf.macaddr.a;
750 s->gregs[GREG_SWRST >> 2] = 0;
751 s->macregs[MAC_ADDR0 >> 2] = (ma[4] << 8) | ma[5];
752 s->macregs[MAC_ADDR1 >> 2] = (ma[2] << 8) | ma[3];
753 s->macregs[MAC_ADDR2 >> 2] = (ma[0] << 8) | ma[1];
754 } else {
755 s->gregs[GREG_SWRST >> 2] &= GREG_SWRST_RSTOUT;
757 s->mifregs[MIF_CFG >> 2] = MIF_CFG_MDI0;
760 static void sungem_mii_write(SunGEMState *s, uint8_t phy_addr,
761 uint8_t reg_addr, uint16_t val)
763 trace_sungem_mii_write(phy_addr, reg_addr, val);
765 /* XXX TODO */
768 static uint16_t __sungem_mii_read(SunGEMState *s, uint8_t phy_addr,
769 uint8_t reg_addr)
771 if (phy_addr != s->phy_addr) {
772 return 0xffff;
774 /* Primitive emulation of a BCM5201 to please the driver,
775 * ID is 0x00406210. TODO: Do a gigabit PHY like BCM5400
777 switch (reg_addr) {
778 case MII_BMCR:
779 return 0;
780 case MII_PHYID1:
781 return 0x0040;
782 case MII_PHYID2:
783 return 0x6210;
784 case MII_BMSR:
785 if (qemu_get_queue(s->nic)->link_down) {
786 return MII_BMSR_100TX_FD | MII_BMSR_AUTONEG;
787 } else {
788 return MII_BMSR_100TX_FD | MII_BMSR_AN_COMP |
789 MII_BMSR_AUTONEG | MII_BMSR_LINK_ST;
791 case MII_ANLPAR:
792 case MII_ANAR:
793 return MII_ANLPAR_TXFD;
794 case 0x18: /* 5201 AUX status */
795 return 3; /* 100FD */
796 default:
797 return 0;
800 static uint16_t sungem_mii_read(SunGEMState *s, uint8_t phy_addr,
801 uint8_t reg_addr)
803 uint16_t val;
805 val = __sungem_mii_read(s, phy_addr, reg_addr);
807 trace_sungem_mii_read(phy_addr, reg_addr, val);
809 return val;
812 static uint32_t sungem_mii_op(SunGEMState *s, uint32_t val)
814 uint8_t phy_addr, reg_addr, op;
816 /* Ignore not start of frame */
817 if ((val >> 30) != 1) {
818 trace_sungem_mii_invalid_sof(val >> 30);
819 return 0xffff;
821 phy_addr = (val & MIF_FRAME_PHYAD) >> 23;
822 reg_addr = (val & MIF_FRAME_REGAD) >> 18;
823 op = (val & MIF_FRAME_OP) >> 28;
824 switch (op) {
825 case 1:
826 sungem_mii_write(s, phy_addr, reg_addr, val & MIF_FRAME_DATA);
827 return val | MIF_FRAME_TALSB;
828 case 2:
829 return sungem_mii_read(s, phy_addr, reg_addr) | MIF_FRAME_TALSB;
830 default:
831 trace_sungem_mii_invalid_op(op);
833 return 0xffff | MIF_FRAME_TALSB;
836 static void sungem_mmio_greg_write(void *opaque, hwaddr addr, uint64_t val,
837 unsigned size)
839 SunGEMState *s = opaque;
841 if (!(addr < 0x20) && !(addr >= 0x1000 && addr <= 0x1010)) {
842 qemu_log_mask(LOG_GUEST_ERROR,
843 "Write to unknown GREG register 0x%"HWADDR_PRIx"\n",
844 addr);
845 return;
848 trace_sungem_mmio_greg_write(addr, val);
850 /* Pre-write filter */
851 switch (addr) {
852 /* Read only registers */
853 case GREG_SEBSTATE:
854 case GREG_STAT:
855 case GREG_STAT2:
856 case GREG_PCIESTAT:
857 return; /* No actual write */
858 case GREG_IACK:
859 val &= GREG_STAT_LATCH;
860 s->gregs[GREG_STAT >> 2] &= ~val;
861 sungem_eval_irq(s);
862 return; /* No actual write */
863 case GREG_PCIEMASK:
864 val &= 0x7;
865 break;
868 s->gregs[addr >> 2] = val;
870 /* Post write action */
871 switch (addr) {
872 case GREG_IMASK:
873 /* Re-evaluate interrupt */
874 sungem_eval_irq(s);
875 break;
876 case GREG_SWRST:
877 switch (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST)) {
878 case GREG_SWRST_RXRST:
879 sungem_reset_rx(s);
880 break;
881 case GREG_SWRST_TXRST:
882 sungem_reset_tx(s);
883 break;
884 case GREG_SWRST_RXRST | GREG_SWRST_TXRST:
885 sungem_reset_all(s, false);
887 break;
891 static uint64_t sungem_mmio_greg_read(void *opaque, hwaddr addr, unsigned size)
893 SunGEMState *s = opaque;
894 uint32_t val;
896 if (!(addr < 0x20) && !(addr >= 0x1000 && addr <= 0x1010)) {
897 qemu_log_mask(LOG_GUEST_ERROR,
898 "Read from unknown GREG register 0x%"HWADDR_PRIx"\n",
899 addr);
900 return 0;
903 val = s->gregs[addr >> 2];
905 trace_sungem_mmio_greg_read(addr, val);
907 switch (addr) {
908 case GREG_STAT:
909 /* Side effect, clear bottom 7 bits */
910 s->gregs[GREG_STAT >> 2] &= ~GREG_STAT_LATCH;
911 sungem_eval_irq(s);
913 /* Inject TX completion in returned value */
914 val = (val & ~GREG_STAT_TXNR) |
915 (s->txdmaregs[TXDMA_TXDONE >> 2] << GREG_STAT_TXNR_SHIFT);
916 break;
917 case GREG_STAT2:
918 /* Return the status reg without side effect
919 * (and inject TX completion in returned value)
921 val = (s->gregs[GREG_STAT >> 2] & ~GREG_STAT_TXNR) |
922 (s->txdmaregs[TXDMA_TXDONE >> 2] << GREG_STAT_TXNR_SHIFT);
923 break;
926 return val;
929 static const MemoryRegionOps sungem_mmio_greg_ops = {
930 .read = sungem_mmio_greg_read,
931 .write = sungem_mmio_greg_write,
932 .endianness = DEVICE_LITTLE_ENDIAN,
933 .impl = {
934 .min_access_size = 4,
935 .max_access_size = 4,
939 static void sungem_mmio_txdma_write(void *opaque, hwaddr addr, uint64_t val,
940 unsigned size)
942 SunGEMState *s = opaque;
944 if (!(addr < 0x38) && !(addr >= 0x100 && addr <= 0x118)) {
945 qemu_log_mask(LOG_GUEST_ERROR,
946 "Write to unknown TXDMA register 0x%"HWADDR_PRIx"\n",
947 addr);
948 return;
951 trace_sungem_mmio_txdma_write(addr, val);
953 /* Pre-write filter */
954 switch (addr) {
955 /* Read only registers */
956 case TXDMA_TXDONE:
957 case TXDMA_PCNT:
958 case TXDMA_SMACHINE:
959 case TXDMA_DPLOW:
960 case TXDMA_DPHI:
961 case TXDMA_FSZ:
962 case TXDMA_FTAG:
963 return; /* No actual write */
966 s->txdmaregs[addr >> 2] = val;
968 /* Post write action */
969 switch (addr) {
970 case TXDMA_KICK:
971 sungem_tx_kick(s);
972 break;
973 case TXDMA_CFG:
974 sungem_update_masks(s);
975 break;
979 static uint64_t sungem_mmio_txdma_read(void *opaque, hwaddr addr, unsigned size)
981 SunGEMState *s = opaque;
982 uint32_t val;
984 if (!(addr < 0x38) && !(addr >= 0x100 && addr <= 0x118)) {
985 qemu_log_mask(LOG_GUEST_ERROR,
986 "Read from unknown TXDMA register 0x%"HWADDR_PRIx"\n",
987 addr);
988 return 0;
991 val = s->txdmaregs[addr >> 2];
993 trace_sungem_mmio_txdma_read(addr, val);
995 return val;
998 static const MemoryRegionOps sungem_mmio_txdma_ops = {
999 .read = sungem_mmio_txdma_read,
1000 .write = sungem_mmio_txdma_write,
1001 .endianness = DEVICE_LITTLE_ENDIAN,
1002 .impl = {
1003 .min_access_size = 4,
1004 .max_access_size = 4,
1008 static void sungem_mmio_rxdma_write(void *opaque, hwaddr addr, uint64_t val,
1009 unsigned size)
1011 SunGEMState *s = opaque;
1013 if (!(addr <= 0x28) && !(addr >= 0x100 && addr <= 0x120)) {
1014 qemu_log_mask(LOG_GUEST_ERROR,
1015 "Write to unknown RXDMA register 0x%"HWADDR_PRIx"\n",
1016 addr);
1017 return;
1020 trace_sungem_mmio_rxdma_write(addr, val);
1022 /* Pre-write filter */
1023 switch (addr) {
1024 /* Read only registers */
1025 case RXDMA_DONE:
1026 case RXDMA_PCNT:
1027 case RXDMA_SMACHINE:
1028 case RXDMA_DPLOW:
1029 case RXDMA_DPHI:
1030 case RXDMA_FSZ:
1031 case RXDMA_FTAG:
1032 return; /* No actual write */
1035 s->rxdmaregs[addr >> 2] = val;
1037 /* Post write action */
1038 switch (addr) {
1039 case RXDMA_KICK:
1040 trace_sungem_rx_kick(val);
1041 break;
1042 case RXDMA_CFG:
1043 sungem_update_masks(s);
1044 if ((s->macregs[MAC_RXCFG >> 2] & MAC_RXCFG_ENAB) != 0 &&
1045 (s->rxdmaregs[RXDMA_CFG >> 2] & RXDMA_CFG_ENABLE) != 0) {
1046 qemu_flush_queued_packets(qemu_get_queue(s->nic));
1048 break;
1052 static uint64_t sungem_mmio_rxdma_read(void *opaque, hwaddr addr, unsigned size)
1054 SunGEMState *s = opaque;
1055 uint32_t val;
1057 if (!(addr <= 0x28) && !(addr >= 0x100 && addr <= 0x120)) {
1058 qemu_log_mask(LOG_GUEST_ERROR,
1059 "Read from unknown RXDMA register 0x%"HWADDR_PRIx"\n",
1060 addr);
1061 return 0;
1064 val = s->rxdmaregs[addr >> 2];
1066 trace_sungem_mmio_rxdma_read(addr, val);
1068 return val;
1071 static const MemoryRegionOps sungem_mmio_rxdma_ops = {
1072 .read = sungem_mmio_rxdma_read,
1073 .write = sungem_mmio_rxdma_write,
1074 .endianness = DEVICE_LITTLE_ENDIAN,
1075 .impl = {
1076 .min_access_size = 4,
1077 .max_access_size = 4,
1081 static void sungem_mmio_mac_write(void *opaque, hwaddr addr, uint64_t val,
1082 unsigned size)
1084 SunGEMState *s = opaque;
1086 if (!(addr <= 0x134)) {
1087 qemu_log_mask(LOG_GUEST_ERROR,
1088 "Write to unknown MAC register 0x%"HWADDR_PRIx"\n",
1089 addr);
1090 return;
1093 trace_sungem_mmio_mac_write(addr, val);
1095 /* Pre-write filter */
1096 switch (addr) {
1097 /* Read only registers */
1098 case MAC_TXRST: /* Not technically read-only but will do for now */
1099 case MAC_RXRST: /* Not technically read-only but will do for now */
1100 case MAC_TXSTAT:
1101 case MAC_RXSTAT:
1102 case MAC_CSTAT:
1103 case MAC_PATMPS:
1104 case MAC_SMACHINE:
1105 return; /* No actual write */
1106 case MAC_MINFSZ:
1107 /* 10-bits implemented */
1108 val &= 0x3ff;
1109 break;
1112 s->macregs[addr >> 2] = val;
1114 /* Post write action */
1115 switch (addr) {
1116 case MAC_TXMASK:
1117 case MAC_RXMASK:
1118 case MAC_MCMASK:
1119 sungem_eval_cascade_irq(s);
1120 break;
1121 case MAC_RXCFG:
1122 sungem_update_masks(s);
1123 if ((s->macregs[MAC_RXCFG >> 2] & MAC_RXCFG_ENAB) != 0 &&
1124 (s->rxdmaregs[RXDMA_CFG >> 2] & RXDMA_CFG_ENABLE) != 0) {
1125 qemu_flush_queued_packets(qemu_get_queue(s->nic));
1127 break;
1131 static uint64_t sungem_mmio_mac_read(void *opaque, hwaddr addr, unsigned size)
1133 SunGEMState *s = opaque;
1134 uint32_t val;
1136 if (!(addr <= 0x134)) {
1137 qemu_log_mask(LOG_GUEST_ERROR,
1138 "Read from unknown MAC register 0x%"HWADDR_PRIx"\n",
1139 addr);
1140 return 0;
1143 val = s->macregs[addr >> 2];
1145 trace_sungem_mmio_mac_read(addr, val);
1147 switch (addr) {
1148 case MAC_TXSTAT:
1149 /* Side effect, clear all */
1150 s->macregs[addr >> 2] = 0;
1151 sungem_update_status(s, GREG_STAT_TXMAC, false);
1152 break;
1153 case MAC_RXSTAT:
1154 /* Side effect, clear all */
1155 s->macregs[addr >> 2] = 0;
1156 sungem_update_status(s, GREG_STAT_RXMAC, false);
1157 break;
1158 case MAC_CSTAT:
1159 /* Side effect, interrupt bits */
1160 s->macregs[addr >> 2] &= MAC_CSTAT_PTR;
1161 sungem_update_status(s, GREG_STAT_MAC, false);
1162 break;
1165 return val;
1168 static const MemoryRegionOps sungem_mmio_mac_ops = {
1169 .read = sungem_mmio_mac_read,
1170 .write = sungem_mmio_mac_write,
1171 .endianness = DEVICE_LITTLE_ENDIAN,
1172 .impl = {
1173 .min_access_size = 4,
1174 .max_access_size = 4,
1178 static void sungem_mmio_mif_write(void *opaque, hwaddr addr, uint64_t val,
1179 unsigned size)
1181 SunGEMState *s = opaque;
1183 if (!(addr <= 0x1c)) {
1184 qemu_log_mask(LOG_GUEST_ERROR,
1185 "Write to unknown MIF register 0x%"HWADDR_PRIx"\n",
1186 addr);
1187 return;
1190 trace_sungem_mmio_mif_write(addr, val);
1192 /* Pre-write filter */
1193 switch (addr) {
1194 /* Read only registers */
1195 case MIF_STATUS:
1196 case MIF_SMACHINE:
1197 return; /* No actual write */
1198 case MIF_CFG:
1199 /* Maintain the RO MDI bits to advertize an MDIO PHY on MDI0 */
1200 val &= ~MIF_CFG_MDI1;
1201 val |= MIF_CFG_MDI0;
1202 break;
1205 s->mifregs[addr >> 2] = val;
1207 /* Post write action */
1208 switch (addr) {
1209 case MIF_FRAME:
1210 s->mifregs[addr >> 2] = sungem_mii_op(s, val);
1211 break;
1215 static uint64_t sungem_mmio_mif_read(void *opaque, hwaddr addr, unsigned size)
1217 SunGEMState *s = opaque;
1218 uint32_t val;
1220 if (!(addr <= 0x1c)) {
1221 qemu_log_mask(LOG_GUEST_ERROR,
1222 "Read from unknown MIF register 0x%"HWADDR_PRIx"\n",
1223 addr);
1224 return 0;
1227 val = s->mifregs[addr >> 2];
1229 trace_sungem_mmio_mif_read(addr, val);
1231 return val;
1234 static const MemoryRegionOps sungem_mmio_mif_ops = {
1235 .read = sungem_mmio_mif_read,
1236 .write = sungem_mmio_mif_write,
1237 .endianness = DEVICE_LITTLE_ENDIAN,
1238 .impl = {
1239 .min_access_size = 4,
1240 .max_access_size = 4,
1244 static void sungem_mmio_pcs_write(void *opaque, hwaddr addr, uint64_t val,
1245 unsigned size)
1247 SunGEMState *s = opaque;
1249 if (!(addr <= 0x18) && !(addr >= 0x50 && addr <= 0x5c)) {
1250 qemu_log_mask(LOG_GUEST_ERROR,
1251 "Write to unknown PCS register 0x%"HWADDR_PRIx"\n",
1252 addr);
1253 return;
1256 trace_sungem_mmio_pcs_write(addr, val);
1258 /* Pre-write filter */
1259 switch (addr) {
1260 /* Read only registers */
1261 case PCS_MIISTAT:
1262 case PCS_ISTAT:
1263 case PCS_SSTATE:
1264 return; /* No actual write */
1267 s->pcsregs[addr >> 2] = val;
1270 static uint64_t sungem_mmio_pcs_read(void *opaque, hwaddr addr, unsigned size)
1272 SunGEMState *s = opaque;
1273 uint32_t val;
1275 if (!(addr <= 0x18) && !(addr >= 0x50 && addr <= 0x5c)) {
1276 qemu_log_mask(LOG_GUEST_ERROR,
1277 "Read from unknown PCS register 0x%"HWADDR_PRIx"\n",
1278 addr);
1279 return 0;
1282 val = s->pcsregs[addr >> 2];
1284 trace_sungem_mmio_pcs_read(addr, val);
1286 return val;
1289 static const MemoryRegionOps sungem_mmio_pcs_ops = {
1290 .read = sungem_mmio_pcs_read,
1291 .write = sungem_mmio_pcs_write,
1292 .endianness = DEVICE_LITTLE_ENDIAN,
1293 .impl = {
1294 .min_access_size = 4,
1295 .max_access_size = 4,
1299 static void sungem_uninit(PCIDevice *dev)
1301 SunGEMState *s = SUNGEM(dev);
1303 qemu_del_nic(s->nic);
1306 static NetClientInfo net_sungem_info = {
1307 .type = NET_CLIENT_DRIVER_NIC,
1308 .size = sizeof(NICState),
1309 .can_receive = sungem_can_receive,
1310 .receive = sungem_receive,
1311 .link_status_changed = sungem_set_link_status,
1314 static void sungem_realize(PCIDevice *pci_dev, Error **errp)
1316 DeviceState *dev = DEVICE(pci_dev);
1317 SunGEMState *s = SUNGEM(pci_dev);
1318 uint8_t *pci_conf;
1320 pci_conf = pci_dev->config;
1322 pci_set_word(pci_conf + PCI_STATUS,
1323 PCI_STATUS_FAST_BACK |
1324 PCI_STATUS_DEVSEL_MEDIUM |
1325 PCI_STATUS_66MHZ);
1327 pci_set_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID, 0x0);
1328 pci_set_word(pci_conf + PCI_SUBSYSTEM_ID, 0x0);
1330 pci_conf[PCI_INTERRUPT_PIN] = 1; /* interrupt pin A */
1331 pci_conf[PCI_MIN_GNT] = 0x40;
1332 pci_conf[PCI_MAX_LAT] = 0x40;
1334 sungem_reset_all(s, true);
1335 memory_region_init(&s->sungem, OBJECT(s), "sungem", SUNGEM_MMIO_SIZE);
1337 memory_region_init_io(&s->greg, OBJECT(s), &sungem_mmio_greg_ops, s,
1338 "sungem.greg", SUNGEM_MMIO_GREG_SIZE);
1339 memory_region_add_subregion(&s->sungem, 0, &s->greg);
1341 memory_region_init_io(&s->txdma, OBJECT(s), &sungem_mmio_txdma_ops, s,
1342 "sungem.txdma", SUNGEM_MMIO_TXDMA_SIZE);
1343 memory_region_add_subregion(&s->sungem, 0x2000, &s->txdma);
1345 memory_region_init_io(&s->rxdma, OBJECT(s), &sungem_mmio_rxdma_ops, s,
1346 "sungem.rxdma", SUNGEM_MMIO_RXDMA_SIZE);
1347 memory_region_add_subregion(&s->sungem, 0x4000, &s->rxdma);
1349 memory_region_init_io(&s->mac, OBJECT(s), &sungem_mmio_mac_ops, s,
1350 "sungem.mac", SUNGEM_MMIO_MAC_SIZE);
1351 memory_region_add_subregion(&s->sungem, 0x6000, &s->mac);
1353 memory_region_init_io(&s->mif, OBJECT(s), &sungem_mmio_mif_ops, s,
1354 "sungem.mif", SUNGEM_MMIO_MIF_SIZE);
1355 memory_region_add_subregion(&s->sungem, 0x6200, &s->mif);
1357 memory_region_init_io(&s->pcs, OBJECT(s), &sungem_mmio_pcs_ops, s,
1358 "sungem.pcs", SUNGEM_MMIO_PCS_SIZE);
1359 memory_region_add_subregion(&s->sungem, 0x9000, &s->pcs);
1361 pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->sungem);
1363 qemu_macaddr_default_if_unset(&s->conf.macaddr);
1364 s->nic = qemu_new_nic(&net_sungem_info, &s->conf,
1365 object_get_typename(OBJECT(dev)),
1366 dev->id, s);
1367 qemu_format_nic_info_str(qemu_get_queue(s->nic),
1368 s->conf.macaddr.a);
1371 static void sungem_reset(DeviceState *dev)
1373 SunGEMState *s = SUNGEM(dev);
1375 sungem_reset_all(s, true);
1378 static void sungem_instance_init(Object *obj)
1380 SunGEMState *s = SUNGEM(obj);
1382 device_add_bootindex_property(obj, &s->conf.bootindex,
1383 "bootindex", "/ethernet-phy@0",
1384 DEVICE(obj));
1387 static Property sungem_properties[] = {
1388 DEFINE_NIC_PROPERTIES(SunGEMState, conf),
1389 /* Phy address should be 0 for most Apple machines except
1390 * for K2 in which case it's 1. Will be set by a machine
1391 * override.
1393 DEFINE_PROP_UINT32("phy_addr", SunGEMState, phy_addr, 0),
1394 DEFINE_PROP_END_OF_LIST(),
1397 static const VMStateDescription vmstate_sungem = {
1398 .name = "sungem",
1399 .version_id = 0,
1400 .minimum_version_id = 0,
1401 .fields = (VMStateField[]) {
1402 VMSTATE_PCI_DEVICE(pdev, SunGEMState),
1403 VMSTATE_MACADDR(conf.macaddr, SunGEMState),
1404 VMSTATE_UINT32(phy_addr, SunGEMState),
1405 VMSTATE_UINT32_ARRAY(gregs, SunGEMState, (SUNGEM_MMIO_GREG_SIZE >> 2)),
1406 VMSTATE_UINT32_ARRAY(txdmaregs, SunGEMState,
1407 (SUNGEM_MMIO_TXDMA_SIZE >> 2)),
1408 VMSTATE_UINT32_ARRAY(rxdmaregs, SunGEMState,
1409 (SUNGEM_MMIO_RXDMA_SIZE >> 2)),
1410 VMSTATE_UINT32_ARRAY(macregs, SunGEMState, (SUNGEM_MMIO_MAC_SIZE >> 2)),
1411 VMSTATE_UINT32_ARRAY(mifregs, SunGEMState, (SUNGEM_MMIO_MIF_SIZE >> 2)),
1412 VMSTATE_UINT32_ARRAY(pcsregs, SunGEMState, (SUNGEM_MMIO_PCS_SIZE >> 2)),
1413 VMSTATE_UINT32(rx_mask, SunGEMState),
1414 VMSTATE_UINT32(tx_mask, SunGEMState),
1415 VMSTATE_UINT8_ARRAY(tx_data, SunGEMState, MAX_PACKET_SIZE),
1416 VMSTATE_UINT32(tx_size, SunGEMState),
1417 VMSTATE_UINT64(tx_first_ctl, SunGEMState),
1418 VMSTATE_END_OF_LIST()
1422 static void sungem_class_init(ObjectClass *klass, void *data)
1424 DeviceClass *dc = DEVICE_CLASS(klass);
1425 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
1427 k->realize = sungem_realize;
1428 k->exit = sungem_uninit;
1429 k->vendor_id = PCI_VENDOR_ID_APPLE;
1430 k->device_id = PCI_DEVICE_ID_APPLE_UNI_N_GMAC;
1431 k->revision = 0x01;
1432 k->class_id = PCI_CLASS_NETWORK_ETHERNET;
1433 dc->vmsd = &vmstate_sungem;
1434 dc->reset = sungem_reset;
1435 device_class_set_props(dc, sungem_properties);
1436 set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
1439 static const TypeInfo sungem_info = {
1440 .name = TYPE_SUNGEM,
1441 .parent = TYPE_PCI_DEVICE,
1442 .instance_size = sizeof(SunGEMState),
1443 .class_init = sungem_class_init,
1444 .instance_init = sungem_instance_init,
1445 .interfaces = (InterfaceInfo[]) {
1446 { INTERFACE_CONVENTIONAL_PCI_DEVICE },
1451 static void sungem_register_types(void)
1453 type_register_static(&sungem_info);
1456 type_init(sungem_register_types)