meson: Use -b to ignore CR vs. CR-LF issues on Windows
[qemu/ar7.git] / hw / block / fdc.c
blob224bac504f4d11da4eff66d16ca4bca32909c176
1 /*
2 * QEMU Floppy disk emulator (Intel 82078)
4 * Copyright (c) 2003, 2007 Jocelyn Mayer
5 * Copyright (c) 2008 Hervé Poussineau
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
26 * The controller is used in Sun4m systems in a slightly different
27 * way. There are changes in DOR register and DMA is not available.
30 #include "qemu/osdep.h"
31 #include "hw/block/fdc.h"
32 #include "qapi/error.h"
33 #include "qemu/error-report.h"
34 #include "qemu/timer.h"
35 #include "hw/acpi/aml-build.h"
36 #include "hw/irq.h"
37 #include "hw/isa/isa.h"
38 #include "hw/qdev-properties.h"
39 #include "hw/sysbus.h"
40 #include "migration/vmstate.h"
41 #include "hw/block/block.h"
42 #include "sysemu/block-backend.h"
43 #include "sysemu/blockdev.h"
44 #include "sysemu/sysemu.h"
45 #include "qemu/log.h"
46 #include "qemu/main-loop.h"
47 #include "qemu/module.h"
48 #include "trace.h"
49 #include "qom/object.h"
51 /********************************************************/
52 /* debug Floppy devices */
54 #define DEBUG_FLOPPY 0
56 #define FLOPPY_DPRINTF(fmt, ...) \
57 do { \
58 if (DEBUG_FLOPPY) { \
59 fprintf(stderr, "FLOPPY: " fmt , ## __VA_ARGS__); \
60 } \
61 } while (0)
64 /********************************************************/
65 /* qdev floppy bus */
67 #define TYPE_FLOPPY_BUS "floppy-bus"
68 typedef struct FloppyBus FloppyBus;
69 DECLARE_INSTANCE_CHECKER(FloppyBus, FLOPPY_BUS,
70 TYPE_FLOPPY_BUS)
72 typedef struct FDCtrl FDCtrl;
73 typedef struct FDrive FDrive;
74 static FDrive *get_drv(FDCtrl *fdctrl, int unit);
76 struct FloppyBus {
77 BusState bus;
78 FDCtrl *fdc;
81 static const TypeInfo floppy_bus_info = {
82 .name = TYPE_FLOPPY_BUS,
83 .parent = TYPE_BUS,
84 .instance_size = sizeof(FloppyBus),
87 static void floppy_bus_create(FDCtrl *fdc, FloppyBus *bus, DeviceState *dev)
89 qbus_create_inplace(bus, sizeof(FloppyBus), TYPE_FLOPPY_BUS, dev, NULL);
90 bus->fdc = fdc;
94 /********************************************************/
95 /* Floppy drive emulation */
97 typedef enum FDriveRate {
98 FDRIVE_RATE_500K = 0x00, /* 500 Kbps */
99 FDRIVE_RATE_300K = 0x01, /* 300 Kbps */
100 FDRIVE_RATE_250K = 0x02, /* 250 Kbps */
101 FDRIVE_RATE_1M = 0x03, /* 1 Mbps */
102 } FDriveRate;
104 typedef enum FDriveSize {
105 FDRIVE_SIZE_UNKNOWN,
106 FDRIVE_SIZE_350,
107 FDRIVE_SIZE_525,
108 } FDriveSize;
110 typedef struct FDFormat {
111 FloppyDriveType drive;
112 uint8_t last_sect;
113 uint8_t max_track;
114 uint8_t max_head;
115 FDriveRate rate;
116 } FDFormat;
118 /* In many cases, the total sector size of a format is enough to uniquely
119 * identify it. However, there are some total sector collisions between
120 * formats of different physical size, and these are noted below by
121 * highlighting the total sector size for entries with collisions. */
122 static const FDFormat fd_formats[] = {
123 /* First entry is default format */
124 /* 1.44 MB 3"1/2 floppy disks */
125 { FLOPPY_DRIVE_TYPE_144, 18, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 2880 */
126 { FLOPPY_DRIVE_TYPE_144, 20, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 3200 */
127 { FLOPPY_DRIVE_TYPE_144, 21, 80, 1, FDRIVE_RATE_500K, },
128 { FLOPPY_DRIVE_TYPE_144, 21, 82, 1, FDRIVE_RATE_500K, },
129 { FLOPPY_DRIVE_TYPE_144, 21, 83, 1, FDRIVE_RATE_500K, },
130 { FLOPPY_DRIVE_TYPE_144, 22, 80, 1, FDRIVE_RATE_500K, },
131 { FLOPPY_DRIVE_TYPE_144, 23, 80, 1, FDRIVE_RATE_500K, },
132 { FLOPPY_DRIVE_TYPE_144, 24, 80, 1, FDRIVE_RATE_500K, },
133 /* 2.88 MB 3"1/2 floppy disks */
134 { FLOPPY_DRIVE_TYPE_288, 36, 80, 1, FDRIVE_RATE_1M, },
135 { FLOPPY_DRIVE_TYPE_288, 39, 80, 1, FDRIVE_RATE_1M, },
136 { FLOPPY_DRIVE_TYPE_288, 40, 80, 1, FDRIVE_RATE_1M, },
137 { FLOPPY_DRIVE_TYPE_288, 44, 80, 1, FDRIVE_RATE_1M, },
138 { FLOPPY_DRIVE_TYPE_288, 48, 80, 1, FDRIVE_RATE_1M, },
139 /* 720 kB 3"1/2 floppy disks */
140 { FLOPPY_DRIVE_TYPE_144, 9, 80, 1, FDRIVE_RATE_250K, }, /* 3.5" 1440 */
141 { FLOPPY_DRIVE_TYPE_144, 10, 80, 1, FDRIVE_RATE_250K, },
142 { FLOPPY_DRIVE_TYPE_144, 10, 82, 1, FDRIVE_RATE_250K, },
143 { FLOPPY_DRIVE_TYPE_144, 10, 83, 1, FDRIVE_RATE_250K, },
144 { FLOPPY_DRIVE_TYPE_144, 13, 80, 1, FDRIVE_RATE_250K, },
145 { FLOPPY_DRIVE_TYPE_144, 14, 80, 1, FDRIVE_RATE_250K, },
146 /* 1.2 MB 5"1/4 floppy disks */
147 { FLOPPY_DRIVE_TYPE_120, 15, 80, 1, FDRIVE_RATE_500K, },
148 { FLOPPY_DRIVE_TYPE_120, 18, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 2880 */
149 { FLOPPY_DRIVE_TYPE_120, 18, 82, 1, FDRIVE_RATE_500K, },
150 { FLOPPY_DRIVE_TYPE_120, 18, 83, 1, FDRIVE_RATE_500K, },
151 { FLOPPY_DRIVE_TYPE_120, 20, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 3200 */
152 /* 720 kB 5"1/4 floppy disks */
153 { FLOPPY_DRIVE_TYPE_120, 9, 80, 1, FDRIVE_RATE_250K, }, /* 5.25" 1440 */
154 { FLOPPY_DRIVE_TYPE_120, 11, 80, 1, FDRIVE_RATE_250K, },
155 /* 360 kB 5"1/4 floppy disks */
156 { FLOPPY_DRIVE_TYPE_120, 9, 40, 1, FDRIVE_RATE_300K, }, /* 5.25" 720 */
157 { FLOPPY_DRIVE_TYPE_120, 9, 40, 0, FDRIVE_RATE_300K, },
158 { FLOPPY_DRIVE_TYPE_120, 10, 41, 1, FDRIVE_RATE_300K, },
159 { FLOPPY_DRIVE_TYPE_120, 10, 42, 1, FDRIVE_RATE_300K, },
160 /* 320 kB 5"1/4 floppy disks */
161 { FLOPPY_DRIVE_TYPE_120, 8, 40, 1, FDRIVE_RATE_250K, },
162 { FLOPPY_DRIVE_TYPE_120, 8, 40, 0, FDRIVE_RATE_250K, },
163 /* 360 kB must match 5"1/4 better than 3"1/2... */
164 { FLOPPY_DRIVE_TYPE_144, 9, 80, 0, FDRIVE_RATE_250K, }, /* 3.5" 720 */
165 /* end */
166 { FLOPPY_DRIVE_TYPE_NONE, -1, -1, 0, 0, },
169 static FDriveSize drive_size(FloppyDriveType drive)
171 switch (drive) {
172 case FLOPPY_DRIVE_TYPE_120:
173 return FDRIVE_SIZE_525;
174 case FLOPPY_DRIVE_TYPE_144:
175 case FLOPPY_DRIVE_TYPE_288:
176 return FDRIVE_SIZE_350;
177 default:
178 return FDRIVE_SIZE_UNKNOWN;
182 #define GET_CUR_DRV(fdctrl) ((fdctrl)->cur_drv)
183 #define SET_CUR_DRV(fdctrl, drive) ((fdctrl)->cur_drv = (drive))
185 /* Will always be a fixed parameter for us */
186 #define FD_SECTOR_LEN 512
187 #define FD_SECTOR_SC 2 /* Sector size code */
188 #define FD_RESET_SENSEI_COUNT 4 /* Number of sense interrupts on RESET */
190 /* Floppy disk drive emulation */
191 typedef enum FDiskFlags {
192 FDISK_DBL_SIDES = 0x01,
193 } FDiskFlags;
195 struct FDrive {
196 FDCtrl *fdctrl;
197 BlockBackend *blk;
198 BlockConf *conf;
199 /* Drive status */
200 FloppyDriveType drive; /* CMOS drive type */
201 uint8_t perpendicular; /* 2.88 MB access mode */
202 /* Position */
203 uint8_t head;
204 uint8_t track;
205 uint8_t sect;
206 /* Media */
207 FloppyDriveType disk; /* Current disk type */
208 FDiskFlags flags;
209 uint8_t last_sect; /* Nb sector per track */
210 uint8_t max_track; /* Nb of tracks */
211 uint16_t bps; /* Bytes per sector */
212 uint8_t ro; /* Is read-only */
213 uint8_t media_changed; /* Is media changed */
214 uint8_t media_rate; /* Data rate of medium */
216 bool media_validated; /* Have we validated the media? */
220 static FloppyDriveType get_fallback_drive_type(FDrive *drv);
222 /* Hack: FD_SEEK is expected to work on empty drives. However, QEMU
223 * currently goes through some pains to keep seeks within the bounds
224 * established by last_sect and max_track. Correcting this is difficult,
225 * as refactoring FDC code tends to expose nasty bugs in the Linux kernel.
227 * For now: allow empty drives to have large bounds so we can seek around,
228 * with the understanding that when a diskette is inserted, the bounds will
229 * properly tighten to match the geometry of that inserted medium.
231 static void fd_empty_seek_hack(FDrive *drv)
233 drv->last_sect = 0xFF;
234 drv->max_track = 0xFF;
237 static void fd_init(FDrive *drv)
239 /* Drive */
240 drv->perpendicular = 0;
241 /* Disk */
242 drv->disk = FLOPPY_DRIVE_TYPE_NONE;
243 drv->last_sect = 0;
244 drv->max_track = 0;
245 drv->ro = true;
246 drv->media_changed = 1;
249 #define NUM_SIDES(drv) ((drv)->flags & FDISK_DBL_SIDES ? 2 : 1)
251 static int fd_sector_calc(uint8_t head, uint8_t track, uint8_t sect,
252 uint8_t last_sect, uint8_t num_sides)
254 return (((track * num_sides) + head) * last_sect) + sect - 1;
257 /* Returns current position, in sectors, for given drive */
258 static int fd_sector(FDrive *drv)
260 return fd_sector_calc(drv->head, drv->track, drv->sect, drv->last_sect,
261 NUM_SIDES(drv));
264 /* Returns current position, in bytes, for given drive */
265 static int fd_offset(FDrive *drv)
267 g_assert(fd_sector(drv) < INT_MAX >> BDRV_SECTOR_BITS);
268 return fd_sector(drv) << BDRV_SECTOR_BITS;
271 /* Seek to a new position:
272 * returns 0 if already on right track
273 * returns 1 if track changed
274 * returns 2 if track is invalid
275 * returns 3 if sector is invalid
276 * returns 4 if seek is disabled
278 static int fd_seek(FDrive *drv, uint8_t head, uint8_t track, uint8_t sect,
279 int enable_seek)
281 uint32_t sector;
282 int ret;
284 if (track > drv->max_track ||
285 (head != 0 && (drv->flags & FDISK_DBL_SIDES) == 0)) {
286 FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
287 head, track, sect, 1,
288 (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
289 drv->max_track, drv->last_sect);
290 return 2;
292 if (sect > drv->last_sect) {
293 FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
294 head, track, sect, 1,
295 (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
296 drv->max_track, drv->last_sect);
297 return 3;
299 sector = fd_sector_calc(head, track, sect, drv->last_sect, NUM_SIDES(drv));
300 ret = 0;
301 if (sector != fd_sector(drv)) {
302 #if 0
303 if (!enable_seek) {
304 FLOPPY_DPRINTF("error: no implicit seek %d %02x %02x"
305 " (max=%d %02x %02x)\n",
306 head, track, sect, 1, drv->max_track,
307 drv->last_sect);
308 return 4;
310 #endif
311 drv->head = head;
312 if (drv->track != track) {
313 if (drv->blk != NULL && blk_is_inserted(drv->blk)) {
314 drv->media_changed = 0;
316 ret = 1;
318 drv->track = track;
319 drv->sect = sect;
322 if (drv->blk == NULL || !blk_is_inserted(drv->blk)) {
323 ret = 2;
326 return ret;
329 /* Set drive back to track 0 */
330 static void fd_recalibrate(FDrive *drv)
332 FLOPPY_DPRINTF("recalibrate\n");
333 fd_seek(drv, 0, 0, 1, 1);
337 * Determine geometry based on inserted diskette.
338 * Will not operate on an empty drive.
340 * @return: 0 on success, -1 if the drive is empty.
342 static int pick_geometry(FDrive *drv)
344 BlockBackend *blk = drv->blk;
345 const FDFormat *parse;
346 uint64_t nb_sectors, size;
347 int i;
348 int match, size_match, type_match;
349 bool magic = drv->drive == FLOPPY_DRIVE_TYPE_AUTO;
351 /* We can only pick a geometry if we have a diskette. */
352 if (!drv->blk || !blk_is_inserted(drv->blk) ||
353 drv->drive == FLOPPY_DRIVE_TYPE_NONE)
355 return -1;
358 /* We need to determine the likely geometry of the inserted medium.
359 * In order of preference, we look for:
360 * (1) The same drive type and number of sectors,
361 * (2) The same diskette size and number of sectors,
362 * (3) The same drive type.
364 * In all cases, matches that occur higher in the drive table will take
365 * precedence over matches that occur later in the table.
367 blk_get_geometry(blk, &nb_sectors);
368 match = size_match = type_match = -1;
369 for (i = 0; ; i++) {
370 parse = &fd_formats[i];
371 if (parse->drive == FLOPPY_DRIVE_TYPE_NONE) {
372 break;
374 size = (parse->max_head + 1) * parse->max_track * parse->last_sect;
375 if (nb_sectors == size) {
376 if (magic || parse->drive == drv->drive) {
377 /* (1) perfect match -- nb_sectors and drive type */
378 goto out;
379 } else if (drive_size(parse->drive) == drive_size(drv->drive)) {
380 /* (2) size match -- nb_sectors and physical medium size */
381 match = (match == -1) ? i : match;
382 } else {
383 /* This is suspicious -- Did the user misconfigure? */
384 size_match = (size_match == -1) ? i : size_match;
386 } else if (type_match == -1) {
387 if ((parse->drive == drv->drive) ||
388 (magic && (parse->drive == get_fallback_drive_type(drv)))) {
389 /* (3) type match -- nb_sectors mismatch, but matches the type
390 * specified explicitly by the user, or matches the fallback
391 * default type when using the drive autodetect mechanism */
392 type_match = i;
397 /* No exact match found */
398 if (match == -1) {
399 if (size_match != -1) {
400 parse = &fd_formats[size_match];
401 FLOPPY_DPRINTF("User requested floppy drive type '%s', "
402 "but inserted medium appears to be a "
403 "%"PRId64" sector '%s' type\n",
404 FloppyDriveType_str(drv->drive),
405 nb_sectors,
406 FloppyDriveType_str(parse->drive));
408 assert(type_match != -1 && "misconfigured fd_format");
409 match = type_match;
411 parse = &(fd_formats[match]);
413 out:
414 if (parse->max_head == 0) {
415 drv->flags &= ~FDISK_DBL_SIDES;
416 } else {
417 drv->flags |= FDISK_DBL_SIDES;
419 drv->max_track = parse->max_track;
420 drv->last_sect = parse->last_sect;
421 drv->disk = parse->drive;
422 drv->media_rate = parse->rate;
423 return 0;
426 static void pick_drive_type(FDrive *drv)
428 if (drv->drive != FLOPPY_DRIVE_TYPE_AUTO) {
429 return;
432 if (pick_geometry(drv) == 0) {
433 drv->drive = drv->disk;
434 } else {
435 drv->drive = get_fallback_drive_type(drv);
438 g_assert(drv->drive != FLOPPY_DRIVE_TYPE_AUTO);
441 /* Revalidate a disk drive after a disk change */
442 static void fd_revalidate(FDrive *drv)
444 int rc;
446 FLOPPY_DPRINTF("revalidate\n");
447 if (drv->blk != NULL) {
448 drv->ro = blk_is_read_only(drv->blk);
449 if (!blk_is_inserted(drv->blk)) {
450 FLOPPY_DPRINTF("No disk in drive\n");
451 drv->disk = FLOPPY_DRIVE_TYPE_NONE;
452 fd_empty_seek_hack(drv);
453 } else if (!drv->media_validated) {
454 rc = pick_geometry(drv);
455 if (rc) {
456 FLOPPY_DPRINTF("Could not validate floppy drive media");
457 } else {
458 drv->media_validated = true;
459 FLOPPY_DPRINTF("Floppy disk (%d h %d t %d s) %s\n",
460 (drv->flags & FDISK_DBL_SIDES) ? 2 : 1,
461 drv->max_track, drv->last_sect,
462 drv->ro ? "ro" : "rw");
465 } else {
466 FLOPPY_DPRINTF("No drive connected\n");
467 drv->last_sect = 0;
468 drv->max_track = 0;
469 drv->flags &= ~FDISK_DBL_SIDES;
470 drv->drive = FLOPPY_DRIVE_TYPE_NONE;
471 drv->disk = FLOPPY_DRIVE_TYPE_NONE;
475 static void fd_change_cb(void *opaque, bool load, Error **errp)
477 FDrive *drive = opaque;
479 if (!load) {
480 blk_set_perm(drive->blk, 0, BLK_PERM_ALL, &error_abort);
481 } else {
482 if (!blkconf_apply_backend_options(drive->conf,
483 blk_is_read_only(drive->blk), false,
484 errp)) {
485 return;
489 drive->media_changed = 1;
490 drive->media_validated = false;
491 fd_revalidate(drive);
494 static const BlockDevOps fd_block_ops = {
495 .change_media_cb = fd_change_cb,
499 #define TYPE_FLOPPY_DRIVE "floppy"
500 typedef struct FloppyDrive FloppyDrive;
501 DECLARE_INSTANCE_CHECKER(FloppyDrive, FLOPPY_DRIVE,
502 TYPE_FLOPPY_DRIVE)
504 struct FloppyDrive {
505 DeviceState qdev;
506 uint32_t unit;
507 BlockConf conf;
508 FloppyDriveType type;
511 static Property floppy_drive_properties[] = {
512 DEFINE_PROP_UINT32("unit", FloppyDrive, unit, -1),
513 DEFINE_BLOCK_PROPERTIES(FloppyDrive, conf),
514 DEFINE_PROP_SIGNED("drive-type", FloppyDrive, type,
515 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
516 FloppyDriveType),
517 DEFINE_PROP_END_OF_LIST(),
520 static void floppy_drive_realize(DeviceState *qdev, Error **errp)
522 FloppyDrive *dev = FLOPPY_DRIVE(qdev);
523 FloppyBus *bus = FLOPPY_BUS(qdev->parent_bus);
524 FDrive *drive;
525 bool read_only;
526 int ret;
528 if (dev->unit == -1) {
529 for (dev->unit = 0; dev->unit < MAX_FD; dev->unit++) {
530 drive = get_drv(bus->fdc, dev->unit);
531 if (!drive->blk) {
532 break;
537 if (dev->unit >= MAX_FD) {
538 error_setg(errp, "Can't create floppy unit %d, bus supports "
539 "only %d units", dev->unit, MAX_FD);
540 return;
543 drive = get_drv(bus->fdc, dev->unit);
544 if (drive->blk) {
545 error_setg(errp, "Floppy unit %d is in use", dev->unit);
546 return;
549 if (!dev->conf.blk) {
550 /* Anonymous BlockBackend for an empty drive */
551 dev->conf.blk = blk_new(qemu_get_aio_context(), 0, BLK_PERM_ALL);
552 ret = blk_attach_dev(dev->conf.blk, qdev);
553 assert(ret == 0);
555 /* Don't take write permissions on an empty drive to allow attaching a
556 * read-only node later */
557 read_only = true;
558 } else {
559 read_only = !blk_bs(dev->conf.blk) || blk_is_read_only(dev->conf.blk);
562 if (!blkconf_blocksizes(&dev->conf, errp)) {
563 return;
566 if (dev->conf.logical_block_size != 512 ||
567 dev->conf.physical_block_size != 512)
569 error_setg(errp, "Physical and logical block size must "
570 "be 512 for floppy");
571 return;
574 /* rerror/werror aren't supported by fdc and therefore not even registered
575 * with qdev. So set the defaults manually before they are used in
576 * blkconf_apply_backend_options(). */
577 dev->conf.rerror = BLOCKDEV_ON_ERROR_AUTO;
578 dev->conf.werror = BLOCKDEV_ON_ERROR_AUTO;
580 if (!blkconf_apply_backend_options(&dev->conf, read_only, false, errp)) {
581 return;
584 /* 'enospc' is the default for -drive, 'report' is what blk_new() gives us
585 * for empty drives. */
586 if (blk_get_on_error(dev->conf.blk, 0) != BLOCKDEV_ON_ERROR_ENOSPC &&
587 blk_get_on_error(dev->conf.blk, 0) != BLOCKDEV_ON_ERROR_REPORT) {
588 error_setg(errp, "fdc doesn't support drive option werror");
589 return;
591 if (blk_get_on_error(dev->conf.blk, 1) != BLOCKDEV_ON_ERROR_REPORT) {
592 error_setg(errp, "fdc doesn't support drive option rerror");
593 return;
596 drive->conf = &dev->conf;
597 drive->blk = dev->conf.blk;
598 drive->fdctrl = bus->fdc;
600 fd_init(drive);
601 blk_set_dev_ops(drive->blk, &fd_block_ops, drive);
603 /* Keep 'type' qdev property and FDrive->drive in sync */
604 drive->drive = dev->type;
605 pick_drive_type(drive);
606 dev->type = drive->drive;
608 fd_revalidate(drive);
611 static void floppy_drive_class_init(ObjectClass *klass, void *data)
613 DeviceClass *k = DEVICE_CLASS(klass);
614 k->realize = floppy_drive_realize;
615 set_bit(DEVICE_CATEGORY_STORAGE, k->categories);
616 k->bus_type = TYPE_FLOPPY_BUS;
617 device_class_set_props(k, floppy_drive_properties);
618 k->desc = "virtual floppy drive";
621 static const TypeInfo floppy_drive_info = {
622 .name = TYPE_FLOPPY_DRIVE,
623 .parent = TYPE_DEVICE,
624 .instance_size = sizeof(FloppyDrive),
625 .class_init = floppy_drive_class_init,
628 /********************************************************/
629 /* Intel 82078 floppy disk controller emulation */
631 static void fdctrl_reset(FDCtrl *fdctrl, int do_irq);
632 static void fdctrl_to_command_phase(FDCtrl *fdctrl);
633 static int fdctrl_transfer_handler (void *opaque, int nchan,
634 int dma_pos, int dma_len);
635 static void fdctrl_raise_irq(FDCtrl *fdctrl);
636 static FDrive *get_cur_drv(FDCtrl *fdctrl);
638 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl);
639 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl);
640 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl);
641 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value);
642 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl);
643 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value);
644 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl);
645 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value);
646 static uint32_t fdctrl_read_data(FDCtrl *fdctrl);
647 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value);
648 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl);
649 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value);
651 enum {
652 FD_DIR_WRITE = 0,
653 FD_DIR_READ = 1,
654 FD_DIR_SCANE = 2,
655 FD_DIR_SCANL = 3,
656 FD_DIR_SCANH = 4,
657 FD_DIR_VERIFY = 5,
660 enum {
661 FD_STATE_MULTI = 0x01, /* multi track flag */
662 FD_STATE_FORMAT = 0x02, /* format flag */
665 enum {
666 FD_REG_SRA = 0x00,
667 FD_REG_SRB = 0x01,
668 FD_REG_DOR = 0x02,
669 FD_REG_TDR = 0x03,
670 FD_REG_MSR = 0x04,
671 FD_REG_DSR = 0x04,
672 FD_REG_FIFO = 0x05,
673 FD_REG_DIR = 0x07,
674 FD_REG_CCR = 0x07,
677 enum {
678 FD_CMD_READ_TRACK = 0x02,
679 FD_CMD_SPECIFY = 0x03,
680 FD_CMD_SENSE_DRIVE_STATUS = 0x04,
681 FD_CMD_WRITE = 0x05,
682 FD_CMD_READ = 0x06,
683 FD_CMD_RECALIBRATE = 0x07,
684 FD_CMD_SENSE_INTERRUPT_STATUS = 0x08,
685 FD_CMD_WRITE_DELETED = 0x09,
686 FD_CMD_READ_ID = 0x0a,
687 FD_CMD_READ_DELETED = 0x0c,
688 FD_CMD_FORMAT_TRACK = 0x0d,
689 FD_CMD_DUMPREG = 0x0e,
690 FD_CMD_SEEK = 0x0f,
691 FD_CMD_VERSION = 0x10,
692 FD_CMD_SCAN_EQUAL = 0x11,
693 FD_CMD_PERPENDICULAR_MODE = 0x12,
694 FD_CMD_CONFIGURE = 0x13,
695 FD_CMD_LOCK = 0x14,
696 FD_CMD_VERIFY = 0x16,
697 FD_CMD_POWERDOWN_MODE = 0x17,
698 FD_CMD_PART_ID = 0x18,
699 FD_CMD_SCAN_LOW_OR_EQUAL = 0x19,
700 FD_CMD_SCAN_HIGH_OR_EQUAL = 0x1d,
701 FD_CMD_SAVE = 0x2e,
702 FD_CMD_OPTION = 0x33,
703 FD_CMD_RESTORE = 0x4e,
704 FD_CMD_DRIVE_SPECIFICATION_COMMAND = 0x8e,
705 FD_CMD_RELATIVE_SEEK_OUT = 0x8f,
706 FD_CMD_FORMAT_AND_WRITE = 0xcd,
707 FD_CMD_RELATIVE_SEEK_IN = 0xcf,
710 enum {
711 FD_CONFIG_PRETRK = 0xff, /* Pre-compensation set to track 0 */
712 FD_CONFIG_FIFOTHR = 0x0f, /* FIFO threshold set to 1 byte */
713 FD_CONFIG_POLL = 0x10, /* Poll enabled */
714 FD_CONFIG_EFIFO = 0x20, /* FIFO disabled */
715 FD_CONFIG_EIS = 0x40, /* No implied seeks */
718 enum {
719 FD_SR0_DS0 = 0x01,
720 FD_SR0_DS1 = 0x02,
721 FD_SR0_HEAD = 0x04,
722 FD_SR0_EQPMT = 0x10,
723 FD_SR0_SEEK = 0x20,
724 FD_SR0_ABNTERM = 0x40,
725 FD_SR0_INVCMD = 0x80,
726 FD_SR0_RDYCHG = 0xc0,
729 enum {
730 FD_SR1_MA = 0x01, /* Missing address mark */
731 FD_SR1_NW = 0x02, /* Not writable */
732 FD_SR1_EC = 0x80, /* End of cylinder */
735 enum {
736 FD_SR2_SNS = 0x04, /* Scan not satisfied */
737 FD_SR2_SEH = 0x08, /* Scan equal hit */
740 enum {
741 FD_SRA_DIR = 0x01,
742 FD_SRA_nWP = 0x02,
743 FD_SRA_nINDX = 0x04,
744 FD_SRA_HDSEL = 0x08,
745 FD_SRA_nTRK0 = 0x10,
746 FD_SRA_STEP = 0x20,
747 FD_SRA_nDRV2 = 0x40,
748 FD_SRA_INTPEND = 0x80,
751 enum {
752 FD_SRB_MTR0 = 0x01,
753 FD_SRB_MTR1 = 0x02,
754 FD_SRB_WGATE = 0x04,
755 FD_SRB_RDATA = 0x08,
756 FD_SRB_WDATA = 0x10,
757 FD_SRB_DR0 = 0x20,
760 enum {
761 #if MAX_FD == 4
762 FD_DOR_SELMASK = 0x03,
763 #else
764 FD_DOR_SELMASK = 0x01,
765 #endif
766 FD_DOR_nRESET = 0x04,
767 FD_DOR_DMAEN = 0x08,
768 FD_DOR_MOTEN0 = 0x10,
769 FD_DOR_MOTEN1 = 0x20,
770 FD_DOR_MOTEN2 = 0x40,
771 FD_DOR_MOTEN3 = 0x80,
774 enum {
775 #if MAX_FD == 4
776 FD_TDR_BOOTSEL = 0x0c,
777 #else
778 FD_TDR_BOOTSEL = 0x04,
779 #endif
782 enum {
783 FD_DSR_DRATEMASK= 0x03,
784 FD_DSR_PWRDOWN = 0x40,
785 FD_DSR_SWRESET = 0x80,
788 enum {
789 FD_MSR_DRV0BUSY = 0x01,
790 FD_MSR_DRV1BUSY = 0x02,
791 FD_MSR_DRV2BUSY = 0x04,
792 FD_MSR_DRV3BUSY = 0x08,
793 FD_MSR_CMDBUSY = 0x10,
794 FD_MSR_NONDMA = 0x20,
795 FD_MSR_DIO = 0x40,
796 FD_MSR_RQM = 0x80,
799 enum {
800 FD_DIR_DSKCHG = 0x80,
804 * See chapter 5.0 "Controller phases" of the spec:
806 * Command phase:
807 * The host writes a command and its parameters into the FIFO. The command
808 * phase is completed when all parameters for the command have been supplied,
809 * and execution phase is entered.
811 * Execution phase:
812 * Data transfers, either DMA or non-DMA. For non-DMA transfers, the FIFO
813 * contains the payload now, otherwise it's unused. When all bytes of the
814 * required data have been transferred, the state is switched to either result
815 * phase (if the command produces status bytes) or directly back into the
816 * command phase for the next command.
818 * Result phase:
819 * The host reads out the FIFO, which contains one or more result bytes now.
821 enum {
822 /* Only for migration: reconstruct phase from registers like qemu 2.3 */
823 FD_PHASE_RECONSTRUCT = 0,
825 FD_PHASE_COMMAND = 1,
826 FD_PHASE_EXECUTION = 2,
827 FD_PHASE_RESULT = 3,
830 #define FD_MULTI_TRACK(state) ((state) & FD_STATE_MULTI)
831 #define FD_FORMAT_CMD(state) ((state) & FD_STATE_FORMAT)
833 struct FDCtrl {
834 MemoryRegion iomem;
835 qemu_irq irq;
836 /* Controller state */
837 QEMUTimer *result_timer;
838 int dma_chann;
839 uint8_t phase;
840 IsaDma *dma;
841 /* Controller's identification */
842 uint8_t version;
843 /* HW */
844 uint8_t sra;
845 uint8_t srb;
846 uint8_t dor;
847 uint8_t dor_vmstate; /* only used as temp during vmstate */
848 uint8_t tdr;
849 uint8_t dsr;
850 uint8_t msr;
851 uint8_t cur_drv;
852 uint8_t status0;
853 uint8_t status1;
854 uint8_t status2;
855 /* Command FIFO */
856 uint8_t *fifo;
857 int32_t fifo_size;
858 uint32_t data_pos;
859 uint32_t data_len;
860 uint8_t data_state;
861 uint8_t data_dir;
862 uint8_t eot; /* last wanted sector */
863 /* States kept only to be returned back */
864 /* precompensation */
865 uint8_t precomp_trk;
866 uint8_t config;
867 uint8_t lock;
868 /* Power down config (also with status regB access mode */
869 uint8_t pwrd;
870 /* Floppy drives */
871 FloppyBus bus;
872 uint8_t num_floppies;
873 FDrive drives[MAX_FD];
874 struct {
875 BlockBackend *blk;
876 FloppyDriveType type;
877 } qdev_for_drives[MAX_FD];
878 int reset_sensei;
879 uint32_t check_media_rate;
880 FloppyDriveType fallback; /* type=auto failure fallback */
881 /* Timers state */
882 uint8_t timer0;
883 uint8_t timer1;
884 PortioList portio_list;
887 static FloppyDriveType get_fallback_drive_type(FDrive *drv)
889 return drv->fdctrl->fallback;
892 #define TYPE_SYSBUS_FDC "base-sysbus-fdc"
893 typedef struct FDCtrlSysBus FDCtrlSysBus;
894 DECLARE_INSTANCE_CHECKER(FDCtrlSysBus, SYSBUS_FDC,
895 TYPE_SYSBUS_FDC)
897 struct FDCtrlSysBus {
898 /*< private >*/
899 SysBusDevice parent_obj;
900 /*< public >*/
902 struct FDCtrl state;
905 typedef struct FDCtrlISABus FDCtrlISABus;
906 DECLARE_INSTANCE_CHECKER(FDCtrlISABus, ISA_FDC,
907 TYPE_ISA_FDC)
909 struct FDCtrlISABus {
910 ISADevice parent_obj;
912 uint32_t iobase;
913 uint32_t irq;
914 uint32_t dma;
915 struct FDCtrl state;
916 int32_t bootindexA;
917 int32_t bootindexB;
920 static uint32_t fdctrl_read (void *opaque, uint32_t reg)
922 FDCtrl *fdctrl = opaque;
923 uint32_t retval;
925 reg &= 7;
926 switch (reg) {
927 case FD_REG_SRA:
928 retval = fdctrl_read_statusA(fdctrl);
929 break;
930 case FD_REG_SRB:
931 retval = fdctrl_read_statusB(fdctrl);
932 break;
933 case FD_REG_DOR:
934 retval = fdctrl_read_dor(fdctrl);
935 break;
936 case FD_REG_TDR:
937 retval = fdctrl_read_tape(fdctrl);
938 break;
939 case FD_REG_MSR:
940 retval = fdctrl_read_main_status(fdctrl);
941 break;
942 case FD_REG_FIFO:
943 retval = fdctrl_read_data(fdctrl);
944 break;
945 case FD_REG_DIR:
946 retval = fdctrl_read_dir(fdctrl);
947 break;
948 default:
949 retval = (uint32_t)(-1);
950 break;
952 trace_fdc_ioport_read(reg, retval);
954 return retval;
957 static void fdctrl_write (void *opaque, uint32_t reg, uint32_t value)
959 FDCtrl *fdctrl = opaque;
961 reg &= 7;
962 trace_fdc_ioport_write(reg, value);
963 switch (reg) {
964 case FD_REG_DOR:
965 fdctrl_write_dor(fdctrl, value);
966 break;
967 case FD_REG_TDR:
968 fdctrl_write_tape(fdctrl, value);
969 break;
970 case FD_REG_DSR:
971 fdctrl_write_rate(fdctrl, value);
972 break;
973 case FD_REG_FIFO:
974 fdctrl_write_data(fdctrl, value);
975 break;
976 case FD_REG_CCR:
977 fdctrl_write_ccr(fdctrl, value);
978 break;
979 default:
980 break;
984 static uint64_t fdctrl_read_mem (void *opaque, hwaddr reg,
985 unsigned ize)
987 return fdctrl_read(opaque, (uint32_t)reg);
990 static void fdctrl_write_mem (void *opaque, hwaddr reg,
991 uint64_t value, unsigned size)
993 fdctrl_write(opaque, (uint32_t)reg, value);
996 static const MemoryRegionOps fdctrl_mem_ops = {
997 .read = fdctrl_read_mem,
998 .write = fdctrl_write_mem,
999 .endianness = DEVICE_NATIVE_ENDIAN,
1002 static const MemoryRegionOps fdctrl_mem_strict_ops = {
1003 .read = fdctrl_read_mem,
1004 .write = fdctrl_write_mem,
1005 .endianness = DEVICE_NATIVE_ENDIAN,
1006 .valid = {
1007 .min_access_size = 1,
1008 .max_access_size = 1,
1012 static bool fdrive_media_changed_needed(void *opaque)
1014 FDrive *drive = opaque;
1016 return (drive->blk != NULL && drive->media_changed != 1);
1019 static const VMStateDescription vmstate_fdrive_media_changed = {
1020 .name = "fdrive/media_changed",
1021 .version_id = 1,
1022 .minimum_version_id = 1,
1023 .needed = fdrive_media_changed_needed,
1024 .fields = (VMStateField[]) {
1025 VMSTATE_UINT8(media_changed, FDrive),
1026 VMSTATE_END_OF_LIST()
1030 static bool fdrive_media_rate_needed(void *opaque)
1032 FDrive *drive = opaque;
1034 return drive->fdctrl->check_media_rate;
1037 static const VMStateDescription vmstate_fdrive_media_rate = {
1038 .name = "fdrive/media_rate",
1039 .version_id = 1,
1040 .minimum_version_id = 1,
1041 .needed = fdrive_media_rate_needed,
1042 .fields = (VMStateField[]) {
1043 VMSTATE_UINT8(media_rate, FDrive),
1044 VMSTATE_END_OF_LIST()
1048 static bool fdrive_perpendicular_needed(void *opaque)
1050 FDrive *drive = opaque;
1052 return drive->perpendicular != 0;
1055 static const VMStateDescription vmstate_fdrive_perpendicular = {
1056 .name = "fdrive/perpendicular",
1057 .version_id = 1,
1058 .minimum_version_id = 1,
1059 .needed = fdrive_perpendicular_needed,
1060 .fields = (VMStateField[]) {
1061 VMSTATE_UINT8(perpendicular, FDrive),
1062 VMSTATE_END_OF_LIST()
1066 static int fdrive_post_load(void *opaque, int version_id)
1068 fd_revalidate(opaque);
1069 return 0;
1072 static const VMStateDescription vmstate_fdrive = {
1073 .name = "fdrive",
1074 .version_id = 1,
1075 .minimum_version_id = 1,
1076 .post_load = fdrive_post_load,
1077 .fields = (VMStateField[]) {
1078 VMSTATE_UINT8(head, FDrive),
1079 VMSTATE_UINT8(track, FDrive),
1080 VMSTATE_UINT8(sect, FDrive),
1081 VMSTATE_END_OF_LIST()
1083 .subsections = (const VMStateDescription*[]) {
1084 &vmstate_fdrive_media_changed,
1085 &vmstate_fdrive_media_rate,
1086 &vmstate_fdrive_perpendicular,
1087 NULL
1092 * Reconstructs the phase from register values according to the logic that was
1093 * implemented in qemu 2.3. This is the default value that is used if the phase
1094 * subsection is not present on migration.
1096 * Don't change this function to reflect newer qemu versions, it is part of
1097 * the migration ABI.
1099 static int reconstruct_phase(FDCtrl *fdctrl)
1101 if (fdctrl->msr & FD_MSR_NONDMA) {
1102 return FD_PHASE_EXECUTION;
1103 } else if ((fdctrl->msr & FD_MSR_RQM) == 0) {
1104 /* qemu 2.3 disabled RQM only during DMA transfers */
1105 return FD_PHASE_EXECUTION;
1106 } else if (fdctrl->msr & FD_MSR_DIO) {
1107 return FD_PHASE_RESULT;
1108 } else {
1109 return FD_PHASE_COMMAND;
1113 static int fdc_pre_save(void *opaque)
1115 FDCtrl *s = opaque;
1117 s->dor_vmstate = s->dor | GET_CUR_DRV(s);
1119 return 0;
1122 static int fdc_pre_load(void *opaque)
1124 FDCtrl *s = opaque;
1125 s->phase = FD_PHASE_RECONSTRUCT;
1126 return 0;
1129 static int fdc_post_load(void *opaque, int version_id)
1131 FDCtrl *s = opaque;
1133 SET_CUR_DRV(s, s->dor_vmstate & FD_DOR_SELMASK);
1134 s->dor = s->dor_vmstate & ~FD_DOR_SELMASK;
1136 if (s->phase == FD_PHASE_RECONSTRUCT) {
1137 s->phase = reconstruct_phase(s);
1140 return 0;
1143 static bool fdc_reset_sensei_needed(void *opaque)
1145 FDCtrl *s = opaque;
1147 return s->reset_sensei != 0;
1150 static const VMStateDescription vmstate_fdc_reset_sensei = {
1151 .name = "fdc/reset_sensei",
1152 .version_id = 1,
1153 .minimum_version_id = 1,
1154 .needed = fdc_reset_sensei_needed,
1155 .fields = (VMStateField[]) {
1156 VMSTATE_INT32(reset_sensei, FDCtrl),
1157 VMSTATE_END_OF_LIST()
1161 static bool fdc_result_timer_needed(void *opaque)
1163 FDCtrl *s = opaque;
1165 return timer_pending(s->result_timer);
1168 static const VMStateDescription vmstate_fdc_result_timer = {
1169 .name = "fdc/result_timer",
1170 .version_id = 1,
1171 .minimum_version_id = 1,
1172 .needed = fdc_result_timer_needed,
1173 .fields = (VMStateField[]) {
1174 VMSTATE_TIMER_PTR(result_timer, FDCtrl),
1175 VMSTATE_END_OF_LIST()
1179 static bool fdc_phase_needed(void *opaque)
1181 FDCtrl *fdctrl = opaque;
1183 return reconstruct_phase(fdctrl) != fdctrl->phase;
1186 static const VMStateDescription vmstate_fdc_phase = {
1187 .name = "fdc/phase",
1188 .version_id = 1,
1189 .minimum_version_id = 1,
1190 .needed = fdc_phase_needed,
1191 .fields = (VMStateField[]) {
1192 VMSTATE_UINT8(phase, FDCtrl),
1193 VMSTATE_END_OF_LIST()
1197 static const VMStateDescription vmstate_fdc = {
1198 .name = "fdc",
1199 .version_id = 2,
1200 .minimum_version_id = 2,
1201 .pre_save = fdc_pre_save,
1202 .pre_load = fdc_pre_load,
1203 .post_load = fdc_post_load,
1204 .fields = (VMStateField[]) {
1205 /* Controller State */
1206 VMSTATE_UINT8(sra, FDCtrl),
1207 VMSTATE_UINT8(srb, FDCtrl),
1208 VMSTATE_UINT8(dor_vmstate, FDCtrl),
1209 VMSTATE_UINT8(tdr, FDCtrl),
1210 VMSTATE_UINT8(dsr, FDCtrl),
1211 VMSTATE_UINT8(msr, FDCtrl),
1212 VMSTATE_UINT8(status0, FDCtrl),
1213 VMSTATE_UINT8(status1, FDCtrl),
1214 VMSTATE_UINT8(status2, FDCtrl),
1215 /* Command FIFO */
1216 VMSTATE_VARRAY_INT32(fifo, FDCtrl, fifo_size, 0, vmstate_info_uint8,
1217 uint8_t),
1218 VMSTATE_UINT32(data_pos, FDCtrl),
1219 VMSTATE_UINT32(data_len, FDCtrl),
1220 VMSTATE_UINT8(data_state, FDCtrl),
1221 VMSTATE_UINT8(data_dir, FDCtrl),
1222 VMSTATE_UINT8(eot, FDCtrl),
1223 /* States kept only to be returned back */
1224 VMSTATE_UINT8(timer0, FDCtrl),
1225 VMSTATE_UINT8(timer1, FDCtrl),
1226 VMSTATE_UINT8(precomp_trk, FDCtrl),
1227 VMSTATE_UINT8(config, FDCtrl),
1228 VMSTATE_UINT8(lock, FDCtrl),
1229 VMSTATE_UINT8(pwrd, FDCtrl),
1230 VMSTATE_UINT8_EQUAL(num_floppies, FDCtrl, NULL),
1231 VMSTATE_STRUCT_ARRAY(drives, FDCtrl, MAX_FD, 1,
1232 vmstate_fdrive, FDrive),
1233 VMSTATE_END_OF_LIST()
1235 .subsections = (const VMStateDescription*[]) {
1236 &vmstate_fdc_reset_sensei,
1237 &vmstate_fdc_result_timer,
1238 &vmstate_fdc_phase,
1239 NULL
1243 static void fdctrl_external_reset_sysbus(DeviceState *d)
1245 FDCtrlSysBus *sys = SYSBUS_FDC(d);
1246 FDCtrl *s = &sys->state;
1248 fdctrl_reset(s, 0);
1251 static void fdctrl_external_reset_isa(DeviceState *d)
1253 FDCtrlISABus *isa = ISA_FDC(d);
1254 FDCtrl *s = &isa->state;
1256 fdctrl_reset(s, 0);
1259 static void fdctrl_handle_tc(void *opaque, int irq, int level)
1261 //FDCtrl *s = opaque;
1263 if (level) {
1264 // XXX
1265 FLOPPY_DPRINTF("TC pulsed\n");
1269 /* Change IRQ state */
1270 static void fdctrl_reset_irq(FDCtrl *fdctrl)
1272 fdctrl->status0 = 0;
1273 if (!(fdctrl->sra & FD_SRA_INTPEND))
1274 return;
1275 FLOPPY_DPRINTF("Reset interrupt\n");
1276 qemu_set_irq(fdctrl->irq, 0);
1277 fdctrl->sra &= ~FD_SRA_INTPEND;
1280 static void fdctrl_raise_irq(FDCtrl *fdctrl)
1282 if (!(fdctrl->sra & FD_SRA_INTPEND)) {
1283 qemu_set_irq(fdctrl->irq, 1);
1284 fdctrl->sra |= FD_SRA_INTPEND;
1287 fdctrl->reset_sensei = 0;
1288 FLOPPY_DPRINTF("Set interrupt status to 0x%02x\n", fdctrl->status0);
1291 /* Reset controller */
1292 static void fdctrl_reset(FDCtrl *fdctrl, int do_irq)
1294 int i;
1296 FLOPPY_DPRINTF("reset controller\n");
1297 fdctrl_reset_irq(fdctrl);
1298 /* Initialise controller */
1299 fdctrl->sra = 0;
1300 fdctrl->srb = 0xc0;
1301 if (!fdctrl->drives[1].blk) {
1302 fdctrl->sra |= FD_SRA_nDRV2;
1304 fdctrl->cur_drv = 0;
1305 fdctrl->dor = FD_DOR_nRESET;
1306 fdctrl->dor |= (fdctrl->dma_chann != -1) ? FD_DOR_DMAEN : 0;
1307 fdctrl->msr = FD_MSR_RQM;
1308 fdctrl->reset_sensei = 0;
1309 timer_del(fdctrl->result_timer);
1310 /* FIFO state */
1311 fdctrl->data_pos = 0;
1312 fdctrl->data_len = 0;
1313 fdctrl->data_state = 0;
1314 fdctrl->data_dir = FD_DIR_WRITE;
1315 for (i = 0; i < MAX_FD; i++)
1316 fd_recalibrate(&fdctrl->drives[i]);
1317 fdctrl_to_command_phase(fdctrl);
1318 if (do_irq) {
1319 fdctrl->status0 |= FD_SR0_RDYCHG;
1320 fdctrl_raise_irq(fdctrl);
1321 fdctrl->reset_sensei = FD_RESET_SENSEI_COUNT;
1325 static inline FDrive *drv0(FDCtrl *fdctrl)
1327 return &fdctrl->drives[(fdctrl->tdr & FD_TDR_BOOTSEL) >> 2];
1330 static inline FDrive *drv1(FDCtrl *fdctrl)
1332 if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (1 << 2))
1333 return &fdctrl->drives[1];
1334 else
1335 return &fdctrl->drives[0];
1338 #if MAX_FD == 4
1339 static inline FDrive *drv2(FDCtrl *fdctrl)
1341 if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (2 << 2))
1342 return &fdctrl->drives[2];
1343 else
1344 return &fdctrl->drives[1];
1347 static inline FDrive *drv3(FDCtrl *fdctrl)
1349 if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (3 << 2))
1350 return &fdctrl->drives[3];
1351 else
1352 return &fdctrl->drives[2];
1354 #endif
1356 static FDrive *get_drv(FDCtrl *fdctrl, int unit)
1358 switch (unit) {
1359 case 0: return drv0(fdctrl);
1360 case 1: return drv1(fdctrl);
1361 #if MAX_FD == 4
1362 case 2: return drv2(fdctrl);
1363 case 3: return drv3(fdctrl);
1364 #endif
1365 default: return NULL;
1369 static FDrive *get_cur_drv(FDCtrl *fdctrl)
1371 return get_drv(fdctrl, fdctrl->cur_drv);
1374 /* Status A register : 0x00 (read-only) */
1375 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl)
1377 uint32_t retval = fdctrl->sra;
1379 FLOPPY_DPRINTF("status register A: 0x%02x\n", retval);
1381 return retval;
1384 /* Status B register : 0x01 (read-only) */
1385 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl)
1387 uint32_t retval = fdctrl->srb;
1389 FLOPPY_DPRINTF("status register B: 0x%02x\n", retval);
1391 return retval;
1394 /* Digital output register : 0x02 */
1395 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl)
1397 uint32_t retval = fdctrl->dor;
1399 /* Selected drive */
1400 retval |= fdctrl->cur_drv;
1401 FLOPPY_DPRINTF("digital output register: 0x%02x\n", retval);
1403 return retval;
1406 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value)
1408 FLOPPY_DPRINTF("digital output register set to 0x%02x\n", value);
1410 /* Motors */
1411 if (value & FD_DOR_MOTEN0)
1412 fdctrl->srb |= FD_SRB_MTR0;
1413 else
1414 fdctrl->srb &= ~FD_SRB_MTR0;
1415 if (value & FD_DOR_MOTEN1)
1416 fdctrl->srb |= FD_SRB_MTR1;
1417 else
1418 fdctrl->srb &= ~FD_SRB_MTR1;
1420 /* Drive */
1421 if (value & 1)
1422 fdctrl->srb |= FD_SRB_DR0;
1423 else
1424 fdctrl->srb &= ~FD_SRB_DR0;
1426 /* Reset */
1427 if (!(value & FD_DOR_nRESET)) {
1428 if (fdctrl->dor & FD_DOR_nRESET) {
1429 FLOPPY_DPRINTF("controller enter RESET state\n");
1431 } else {
1432 if (!(fdctrl->dor & FD_DOR_nRESET)) {
1433 FLOPPY_DPRINTF("controller out of RESET state\n");
1434 fdctrl_reset(fdctrl, 1);
1435 fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1438 /* Selected drive */
1439 fdctrl->cur_drv = value & FD_DOR_SELMASK;
1441 fdctrl->dor = value;
1444 /* Tape drive register : 0x03 */
1445 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl)
1447 uint32_t retval = fdctrl->tdr;
1449 FLOPPY_DPRINTF("tape drive register: 0x%02x\n", retval);
1451 return retval;
1454 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value)
1456 /* Reset mode */
1457 if (!(fdctrl->dor & FD_DOR_nRESET)) {
1458 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1459 return;
1461 FLOPPY_DPRINTF("tape drive register set to 0x%02x\n", value);
1462 /* Disk boot selection indicator */
1463 fdctrl->tdr = value & FD_TDR_BOOTSEL;
1464 /* Tape indicators: never allow */
1467 /* Main status register : 0x04 (read) */
1468 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl)
1470 uint32_t retval = fdctrl->msr;
1472 fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1473 fdctrl->dor |= FD_DOR_nRESET;
1475 FLOPPY_DPRINTF("main status register: 0x%02x\n", retval);
1477 return retval;
1480 /* Data select rate register : 0x04 (write) */
1481 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value)
1483 /* Reset mode */
1484 if (!(fdctrl->dor & FD_DOR_nRESET)) {
1485 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1486 return;
1488 FLOPPY_DPRINTF("select rate register set to 0x%02x\n", value);
1489 /* Reset: autoclear */
1490 if (value & FD_DSR_SWRESET) {
1491 fdctrl->dor &= ~FD_DOR_nRESET;
1492 fdctrl_reset(fdctrl, 1);
1493 fdctrl->dor |= FD_DOR_nRESET;
1495 if (value & FD_DSR_PWRDOWN) {
1496 fdctrl_reset(fdctrl, 1);
1498 fdctrl->dsr = value;
1501 /* Configuration control register: 0x07 (write) */
1502 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value)
1504 /* Reset mode */
1505 if (!(fdctrl->dor & FD_DOR_nRESET)) {
1506 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1507 return;
1509 FLOPPY_DPRINTF("configuration control register set to 0x%02x\n", value);
1511 /* Only the rate selection bits used in AT mode, and we
1512 * store those in the DSR.
1514 fdctrl->dsr = (fdctrl->dsr & ~FD_DSR_DRATEMASK) |
1515 (value & FD_DSR_DRATEMASK);
1518 static int fdctrl_media_changed(FDrive *drv)
1520 return drv->media_changed;
1523 /* Digital input register : 0x07 (read-only) */
1524 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl)
1526 uint32_t retval = 0;
1528 if (fdctrl_media_changed(get_cur_drv(fdctrl))) {
1529 retval |= FD_DIR_DSKCHG;
1531 if (retval != 0) {
1532 FLOPPY_DPRINTF("Floppy digital input register: 0x%02x\n", retval);
1535 return retval;
1538 /* Clear the FIFO and update the state for receiving the next command */
1539 static void fdctrl_to_command_phase(FDCtrl *fdctrl)
1541 fdctrl->phase = FD_PHASE_COMMAND;
1542 fdctrl->data_dir = FD_DIR_WRITE;
1543 fdctrl->data_pos = 0;
1544 fdctrl->data_len = 1; /* Accept command byte, adjust for params later */
1545 fdctrl->msr &= ~(FD_MSR_CMDBUSY | FD_MSR_DIO);
1546 fdctrl->msr |= FD_MSR_RQM;
1549 /* Update the state to allow the guest to read out the command status.
1550 * @fifo_len is the number of result bytes to be read out. */
1551 static void fdctrl_to_result_phase(FDCtrl *fdctrl, int fifo_len)
1553 fdctrl->phase = FD_PHASE_RESULT;
1554 fdctrl->data_dir = FD_DIR_READ;
1555 fdctrl->data_len = fifo_len;
1556 fdctrl->data_pos = 0;
1557 fdctrl->msr |= FD_MSR_CMDBUSY | FD_MSR_RQM | FD_MSR_DIO;
1560 /* Set an error: unimplemented/unknown command */
1561 static void fdctrl_unimplemented(FDCtrl *fdctrl, int direction)
1563 qemu_log_mask(LOG_UNIMP, "fdc: unimplemented command 0x%02x\n",
1564 fdctrl->fifo[0]);
1565 fdctrl->fifo[0] = FD_SR0_INVCMD;
1566 fdctrl_to_result_phase(fdctrl, 1);
1569 /* Seek to next sector
1570 * returns 0 when end of track reached (for DBL_SIDES on head 1)
1571 * otherwise returns 1
1573 static int fdctrl_seek_to_next_sect(FDCtrl *fdctrl, FDrive *cur_drv)
1575 FLOPPY_DPRINTF("seek to next sector (%d %02x %02x => %d)\n",
1576 cur_drv->head, cur_drv->track, cur_drv->sect,
1577 fd_sector(cur_drv));
1578 /* XXX: cur_drv->sect >= cur_drv->last_sect should be an
1579 error in fact */
1580 uint8_t new_head = cur_drv->head;
1581 uint8_t new_track = cur_drv->track;
1582 uint8_t new_sect = cur_drv->sect;
1584 int ret = 1;
1586 if (new_sect >= cur_drv->last_sect ||
1587 new_sect == fdctrl->eot) {
1588 new_sect = 1;
1589 if (FD_MULTI_TRACK(fdctrl->data_state)) {
1590 if (new_head == 0 &&
1591 (cur_drv->flags & FDISK_DBL_SIDES) != 0) {
1592 new_head = 1;
1593 } else {
1594 new_head = 0;
1595 new_track++;
1596 fdctrl->status0 |= FD_SR0_SEEK;
1597 if ((cur_drv->flags & FDISK_DBL_SIDES) == 0) {
1598 ret = 0;
1601 } else {
1602 fdctrl->status0 |= FD_SR0_SEEK;
1603 new_track++;
1604 ret = 0;
1606 if (ret == 1) {
1607 FLOPPY_DPRINTF("seek to next track (%d %02x %02x => %d)\n",
1608 new_head, new_track, new_sect, fd_sector(cur_drv));
1610 } else {
1611 new_sect++;
1613 fd_seek(cur_drv, new_head, new_track, new_sect, 1);
1614 return ret;
1617 /* Callback for transfer end (stop or abort) */
1618 static void fdctrl_stop_transfer(FDCtrl *fdctrl, uint8_t status0,
1619 uint8_t status1, uint8_t status2)
1621 FDrive *cur_drv;
1622 cur_drv = get_cur_drv(fdctrl);
1624 fdctrl->status0 &= ~(FD_SR0_DS0 | FD_SR0_DS1 | FD_SR0_HEAD);
1625 fdctrl->status0 |= GET_CUR_DRV(fdctrl);
1626 if (cur_drv->head) {
1627 fdctrl->status0 |= FD_SR0_HEAD;
1629 fdctrl->status0 |= status0;
1631 FLOPPY_DPRINTF("transfer status: %02x %02x %02x (%02x)\n",
1632 status0, status1, status2, fdctrl->status0);
1633 fdctrl->fifo[0] = fdctrl->status0;
1634 fdctrl->fifo[1] = status1;
1635 fdctrl->fifo[2] = status2;
1636 fdctrl->fifo[3] = cur_drv->track;
1637 fdctrl->fifo[4] = cur_drv->head;
1638 fdctrl->fifo[5] = cur_drv->sect;
1639 fdctrl->fifo[6] = FD_SECTOR_SC;
1640 fdctrl->data_dir = FD_DIR_READ;
1641 if (fdctrl->dma_chann != -1 && !(fdctrl->msr & FD_MSR_NONDMA)) {
1642 IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma);
1643 k->release_DREQ(fdctrl->dma, fdctrl->dma_chann);
1645 fdctrl->msr |= FD_MSR_RQM | FD_MSR_DIO;
1646 fdctrl->msr &= ~FD_MSR_NONDMA;
1648 fdctrl_to_result_phase(fdctrl, 7);
1649 fdctrl_raise_irq(fdctrl);
1652 /* Prepare a data transfer (either DMA or FIFO) */
1653 static void fdctrl_start_transfer(FDCtrl *fdctrl, int direction)
1655 FDrive *cur_drv;
1656 uint8_t kh, kt, ks;
1658 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1659 cur_drv = get_cur_drv(fdctrl);
1660 kt = fdctrl->fifo[2];
1661 kh = fdctrl->fifo[3];
1662 ks = fdctrl->fifo[4];
1663 FLOPPY_DPRINTF("Start transfer at %d %d %02x %02x (%d)\n",
1664 GET_CUR_DRV(fdctrl), kh, kt, ks,
1665 fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
1666 NUM_SIDES(cur_drv)));
1667 switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
1668 case 2:
1669 /* sect too big */
1670 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1671 fdctrl->fifo[3] = kt;
1672 fdctrl->fifo[4] = kh;
1673 fdctrl->fifo[5] = ks;
1674 return;
1675 case 3:
1676 /* track too big */
1677 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
1678 fdctrl->fifo[3] = kt;
1679 fdctrl->fifo[4] = kh;
1680 fdctrl->fifo[5] = ks;
1681 return;
1682 case 4:
1683 /* No seek enabled */
1684 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1685 fdctrl->fifo[3] = kt;
1686 fdctrl->fifo[4] = kh;
1687 fdctrl->fifo[5] = ks;
1688 return;
1689 case 1:
1690 fdctrl->status0 |= FD_SR0_SEEK;
1691 break;
1692 default:
1693 break;
1696 /* Check the data rate. If the programmed data rate does not match
1697 * the currently inserted medium, the operation has to fail. */
1698 if (fdctrl->check_media_rate &&
1699 (fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
1700 FLOPPY_DPRINTF("data rate mismatch (fdc=%d, media=%d)\n",
1701 fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
1702 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
1703 fdctrl->fifo[3] = kt;
1704 fdctrl->fifo[4] = kh;
1705 fdctrl->fifo[5] = ks;
1706 return;
1709 /* Set the FIFO state */
1710 fdctrl->data_dir = direction;
1711 fdctrl->data_pos = 0;
1712 assert(fdctrl->msr & FD_MSR_CMDBUSY);
1713 if (fdctrl->fifo[0] & 0x80)
1714 fdctrl->data_state |= FD_STATE_MULTI;
1715 else
1716 fdctrl->data_state &= ~FD_STATE_MULTI;
1717 if (fdctrl->fifo[5] == 0) {
1718 fdctrl->data_len = fdctrl->fifo[8];
1719 } else {
1720 int tmp;
1721 fdctrl->data_len = 128 << (fdctrl->fifo[5] > 7 ? 7 : fdctrl->fifo[5]);
1722 tmp = (fdctrl->fifo[6] - ks + 1);
1723 if (fdctrl->fifo[0] & 0x80)
1724 tmp += fdctrl->fifo[6];
1725 fdctrl->data_len *= tmp;
1727 fdctrl->eot = fdctrl->fifo[6];
1728 if (fdctrl->dor & FD_DOR_DMAEN) {
1729 /* DMA transfer is enabled. */
1730 IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma);
1732 FLOPPY_DPRINTF("direction=%d (%d - %d)\n",
1733 direction, (128 << fdctrl->fifo[5]) *
1734 (cur_drv->last_sect - ks + 1), fdctrl->data_len);
1736 /* No access is allowed until DMA transfer has completed */
1737 fdctrl->msr &= ~FD_MSR_RQM;
1738 if (direction != FD_DIR_VERIFY) {
1740 * Now, we just have to wait for the DMA controller to
1741 * recall us...
1743 k->hold_DREQ(fdctrl->dma, fdctrl->dma_chann);
1744 k->schedule(fdctrl->dma);
1745 } else {
1746 /* Start transfer */
1747 fdctrl_transfer_handler(fdctrl, fdctrl->dma_chann, 0,
1748 fdctrl->data_len);
1750 return;
1752 FLOPPY_DPRINTF("start non-DMA transfer\n");
1753 fdctrl->msr |= FD_MSR_NONDMA | FD_MSR_RQM;
1754 if (direction != FD_DIR_WRITE)
1755 fdctrl->msr |= FD_MSR_DIO;
1756 /* IO based transfer: calculate len */
1757 fdctrl_raise_irq(fdctrl);
1760 /* Prepare a transfer of deleted data */
1761 static void fdctrl_start_transfer_del(FDCtrl *fdctrl, int direction)
1763 qemu_log_mask(LOG_UNIMP, "fdctrl_start_transfer_del() unimplemented\n");
1765 /* We don't handle deleted data,
1766 * so we don't return *ANYTHING*
1768 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1771 /* handlers for DMA transfers */
1772 static int fdctrl_transfer_handler (void *opaque, int nchan,
1773 int dma_pos, int dma_len)
1775 FDCtrl *fdctrl;
1776 FDrive *cur_drv;
1777 int len, start_pos, rel_pos;
1778 uint8_t status0 = 0x00, status1 = 0x00, status2 = 0x00;
1779 IsaDmaClass *k;
1781 fdctrl = opaque;
1782 if (fdctrl->msr & FD_MSR_RQM) {
1783 FLOPPY_DPRINTF("Not in DMA transfer mode !\n");
1784 return 0;
1786 k = ISADMA_GET_CLASS(fdctrl->dma);
1787 cur_drv = get_cur_drv(fdctrl);
1788 if (fdctrl->data_dir == FD_DIR_SCANE || fdctrl->data_dir == FD_DIR_SCANL ||
1789 fdctrl->data_dir == FD_DIR_SCANH)
1790 status2 = FD_SR2_SNS;
1791 if (dma_len > fdctrl->data_len)
1792 dma_len = fdctrl->data_len;
1793 if (cur_drv->blk == NULL) {
1794 if (fdctrl->data_dir == FD_DIR_WRITE)
1795 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1796 else
1797 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1798 len = 0;
1799 goto transfer_error;
1801 rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
1802 for (start_pos = fdctrl->data_pos; fdctrl->data_pos < dma_len;) {
1803 len = dma_len - fdctrl->data_pos;
1804 if (len + rel_pos > FD_SECTOR_LEN)
1805 len = FD_SECTOR_LEN - rel_pos;
1806 FLOPPY_DPRINTF("copy %d bytes (%d %d %d) %d pos %d %02x "
1807 "(%d-0x%08x 0x%08x)\n", len, dma_len, fdctrl->data_pos,
1808 fdctrl->data_len, GET_CUR_DRV(fdctrl), cur_drv->head,
1809 cur_drv->track, cur_drv->sect, fd_sector(cur_drv),
1810 fd_sector(cur_drv) * FD_SECTOR_LEN);
1811 if (fdctrl->data_dir != FD_DIR_WRITE ||
1812 len < FD_SECTOR_LEN || rel_pos != 0) {
1813 /* READ & SCAN commands and realign to a sector for WRITE */
1814 if (blk_pread(cur_drv->blk, fd_offset(cur_drv),
1815 fdctrl->fifo, BDRV_SECTOR_SIZE) < 0) {
1816 FLOPPY_DPRINTF("Floppy: error getting sector %d\n",
1817 fd_sector(cur_drv));
1818 /* Sure, image size is too small... */
1819 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1822 switch (fdctrl->data_dir) {
1823 case FD_DIR_READ:
1824 /* READ commands */
1825 k->write_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos,
1826 fdctrl->data_pos, len);
1827 break;
1828 case FD_DIR_WRITE:
1829 /* WRITE commands */
1830 if (cur_drv->ro) {
1831 /* Handle readonly medium early, no need to do DMA, touch the
1832 * LED or attempt any writes. A real floppy doesn't attempt
1833 * to write to readonly media either. */
1834 fdctrl_stop_transfer(fdctrl,
1835 FD_SR0_ABNTERM | FD_SR0_SEEK, FD_SR1_NW,
1836 0x00);
1837 goto transfer_error;
1840 k->read_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos,
1841 fdctrl->data_pos, len);
1842 if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv),
1843 fdctrl->fifo, BDRV_SECTOR_SIZE, 0) < 0) {
1844 FLOPPY_DPRINTF("error writing sector %d\n",
1845 fd_sector(cur_drv));
1846 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1847 goto transfer_error;
1849 break;
1850 case FD_DIR_VERIFY:
1851 /* VERIFY commands */
1852 break;
1853 default:
1854 /* SCAN commands */
1856 uint8_t tmpbuf[FD_SECTOR_LEN];
1857 int ret;
1858 k->read_memory(fdctrl->dma, nchan, tmpbuf, fdctrl->data_pos,
1859 len);
1860 ret = memcmp(tmpbuf, fdctrl->fifo + rel_pos, len);
1861 if (ret == 0) {
1862 status2 = FD_SR2_SEH;
1863 goto end_transfer;
1865 if ((ret < 0 && fdctrl->data_dir == FD_DIR_SCANL) ||
1866 (ret > 0 && fdctrl->data_dir == FD_DIR_SCANH)) {
1867 status2 = 0x00;
1868 goto end_transfer;
1871 break;
1873 fdctrl->data_pos += len;
1874 rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
1875 if (rel_pos == 0) {
1876 /* Seek to next sector */
1877 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv))
1878 break;
1881 end_transfer:
1882 len = fdctrl->data_pos - start_pos;
1883 FLOPPY_DPRINTF("end transfer %d %d %d\n",
1884 fdctrl->data_pos, len, fdctrl->data_len);
1885 if (fdctrl->data_dir == FD_DIR_SCANE ||
1886 fdctrl->data_dir == FD_DIR_SCANL ||
1887 fdctrl->data_dir == FD_DIR_SCANH)
1888 status2 = FD_SR2_SEH;
1889 fdctrl->data_len -= len;
1890 fdctrl_stop_transfer(fdctrl, status0, status1, status2);
1891 transfer_error:
1893 return len;
1896 /* Data register : 0x05 */
1897 static uint32_t fdctrl_read_data(FDCtrl *fdctrl)
1899 FDrive *cur_drv;
1900 uint32_t retval = 0;
1901 uint32_t pos;
1903 cur_drv = get_cur_drv(fdctrl);
1904 fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1905 if (!(fdctrl->msr & FD_MSR_RQM) || !(fdctrl->msr & FD_MSR_DIO)) {
1906 FLOPPY_DPRINTF("error: controller not ready for reading\n");
1907 return 0;
1910 /* If data_len spans multiple sectors, the current position in the FIFO
1911 * wraps around while fdctrl->data_pos is the real position in the whole
1912 * request. */
1913 pos = fdctrl->data_pos;
1914 pos %= FD_SECTOR_LEN;
1916 switch (fdctrl->phase) {
1917 case FD_PHASE_EXECUTION:
1918 assert(fdctrl->msr & FD_MSR_NONDMA);
1919 if (pos == 0) {
1920 if (fdctrl->data_pos != 0)
1921 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
1922 FLOPPY_DPRINTF("error seeking to next sector %d\n",
1923 fd_sector(cur_drv));
1924 return 0;
1926 if (blk_pread(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
1927 BDRV_SECTOR_SIZE)
1928 < 0) {
1929 FLOPPY_DPRINTF("error getting sector %d\n",
1930 fd_sector(cur_drv));
1931 /* Sure, image size is too small... */
1932 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1936 if (++fdctrl->data_pos == fdctrl->data_len) {
1937 fdctrl->msr &= ~FD_MSR_RQM;
1938 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
1940 break;
1942 case FD_PHASE_RESULT:
1943 assert(!(fdctrl->msr & FD_MSR_NONDMA));
1944 if (++fdctrl->data_pos == fdctrl->data_len) {
1945 fdctrl->msr &= ~FD_MSR_RQM;
1946 fdctrl_to_command_phase(fdctrl);
1947 fdctrl_reset_irq(fdctrl);
1949 break;
1951 case FD_PHASE_COMMAND:
1952 default:
1953 abort();
1956 retval = fdctrl->fifo[pos];
1957 FLOPPY_DPRINTF("data register: 0x%02x\n", retval);
1959 return retval;
1962 static void fdctrl_format_sector(FDCtrl *fdctrl)
1964 FDrive *cur_drv;
1965 uint8_t kh, kt, ks;
1967 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1968 cur_drv = get_cur_drv(fdctrl);
1969 kt = fdctrl->fifo[6];
1970 kh = fdctrl->fifo[7];
1971 ks = fdctrl->fifo[8];
1972 FLOPPY_DPRINTF("format sector at %d %d %02x %02x (%d)\n",
1973 GET_CUR_DRV(fdctrl), kh, kt, ks,
1974 fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
1975 NUM_SIDES(cur_drv)));
1976 switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
1977 case 2:
1978 /* sect too big */
1979 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1980 fdctrl->fifo[3] = kt;
1981 fdctrl->fifo[4] = kh;
1982 fdctrl->fifo[5] = ks;
1983 return;
1984 case 3:
1985 /* track too big */
1986 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
1987 fdctrl->fifo[3] = kt;
1988 fdctrl->fifo[4] = kh;
1989 fdctrl->fifo[5] = ks;
1990 return;
1991 case 4:
1992 /* No seek enabled */
1993 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1994 fdctrl->fifo[3] = kt;
1995 fdctrl->fifo[4] = kh;
1996 fdctrl->fifo[5] = ks;
1997 return;
1998 case 1:
1999 fdctrl->status0 |= FD_SR0_SEEK;
2000 break;
2001 default:
2002 break;
2004 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
2005 if (cur_drv->blk == NULL ||
2006 blk_pwrite(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
2007 BDRV_SECTOR_SIZE, 0) < 0) {
2008 FLOPPY_DPRINTF("error formatting sector %d\n", fd_sector(cur_drv));
2009 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
2010 } else {
2011 if (cur_drv->sect == cur_drv->last_sect) {
2012 fdctrl->data_state &= ~FD_STATE_FORMAT;
2013 /* Last sector done */
2014 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2015 } else {
2016 /* More to do */
2017 fdctrl->data_pos = 0;
2018 fdctrl->data_len = 4;
2023 static void fdctrl_handle_lock(FDCtrl *fdctrl, int direction)
2025 fdctrl->lock = (fdctrl->fifo[0] & 0x80) ? 1 : 0;
2026 fdctrl->fifo[0] = fdctrl->lock << 4;
2027 fdctrl_to_result_phase(fdctrl, 1);
2030 static void fdctrl_handle_dumpreg(FDCtrl *fdctrl, int direction)
2032 FDrive *cur_drv = get_cur_drv(fdctrl);
2034 /* Drives position */
2035 fdctrl->fifo[0] = drv0(fdctrl)->track;
2036 fdctrl->fifo[1] = drv1(fdctrl)->track;
2037 #if MAX_FD == 4
2038 fdctrl->fifo[2] = drv2(fdctrl)->track;
2039 fdctrl->fifo[3] = drv3(fdctrl)->track;
2040 #else
2041 fdctrl->fifo[2] = 0;
2042 fdctrl->fifo[3] = 0;
2043 #endif
2044 /* timers */
2045 fdctrl->fifo[4] = fdctrl->timer0;
2046 fdctrl->fifo[5] = (fdctrl->timer1 << 1) | (fdctrl->dor & FD_DOR_DMAEN ? 1 : 0);
2047 fdctrl->fifo[6] = cur_drv->last_sect;
2048 fdctrl->fifo[7] = (fdctrl->lock << 7) |
2049 (cur_drv->perpendicular << 2);
2050 fdctrl->fifo[8] = fdctrl->config;
2051 fdctrl->fifo[9] = fdctrl->precomp_trk;
2052 fdctrl_to_result_phase(fdctrl, 10);
2055 static void fdctrl_handle_version(FDCtrl *fdctrl, int direction)
2057 /* Controller's version */
2058 fdctrl->fifo[0] = fdctrl->version;
2059 fdctrl_to_result_phase(fdctrl, 1);
2062 static void fdctrl_handle_partid(FDCtrl *fdctrl, int direction)
2064 fdctrl->fifo[0] = 0x41; /* Stepping 1 */
2065 fdctrl_to_result_phase(fdctrl, 1);
2068 static void fdctrl_handle_restore(FDCtrl *fdctrl, int direction)
2070 FDrive *cur_drv = get_cur_drv(fdctrl);
2072 /* Drives position */
2073 drv0(fdctrl)->track = fdctrl->fifo[3];
2074 drv1(fdctrl)->track = fdctrl->fifo[4];
2075 #if MAX_FD == 4
2076 drv2(fdctrl)->track = fdctrl->fifo[5];
2077 drv3(fdctrl)->track = fdctrl->fifo[6];
2078 #endif
2079 /* timers */
2080 fdctrl->timer0 = fdctrl->fifo[7];
2081 fdctrl->timer1 = fdctrl->fifo[8];
2082 cur_drv->last_sect = fdctrl->fifo[9];
2083 fdctrl->lock = fdctrl->fifo[10] >> 7;
2084 cur_drv->perpendicular = (fdctrl->fifo[10] >> 2) & 0xF;
2085 fdctrl->config = fdctrl->fifo[11];
2086 fdctrl->precomp_trk = fdctrl->fifo[12];
2087 fdctrl->pwrd = fdctrl->fifo[13];
2088 fdctrl_to_command_phase(fdctrl);
2091 static void fdctrl_handle_save(FDCtrl *fdctrl, int direction)
2093 FDrive *cur_drv = get_cur_drv(fdctrl);
2095 fdctrl->fifo[0] = 0;
2096 fdctrl->fifo[1] = 0;
2097 /* Drives position */
2098 fdctrl->fifo[2] = drv0(fdctrl)->track;
2099 fdctrl->fifo[3] = drv1(fdctrl)->track;
2100 #if MAX_FD == 4
2101 fdctrl->fifo[4] = drv2(fdctrl)->track;
2102 fdctrl->fifo[5] = drv3(fdctrl)->track;
2103 #else
2104 fdctrl->fifo[4] = 0;
2105 fdctrl->fifo[5] = 0;
2106 #endif
2107 /* timers */
2108 fdctrl->fifo[6] = fdctrl->timer0;
2109 fdctrl->fifo[7] = fdctrl->timer1;
2110 fdctrl->fifo[8] = cur_drv->last_sect;
2111 fdctrl->fifo[9] = (fdctrl->lock << 7) |
2112 (cur_drv->perpendicular << 2);
2113 fdctrl->fifo[10] = fdctrl->config;
2114 fdctrl->fifo[11] = fdctrl->precomp_trk;
2115 fdctrl->fifo[12] = fdctrl->pwrd;
2116 fdctrl->fifo[13] = 0;
2117 fdctrl->fifo[14] = 0;
2118 fdctrl_to_result_phase(fdctrl, 15);
2121 static void fdctrl_handle_readid(FDCtrl *fdctrl, int direction)
2123 FDrive *cur_drv = get_cur_drv(fdctrl);
2125 cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
2126 timer_mod(fdctrl->result_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
2127 (NANOSECONDS_PER_SECOND / 50));
2130 static void fdctrl_handle_format_track(FDCtrl *fdctrl, int direction)
2132 FDrive *cur_drv;
2134 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2135 cur_drv = get_cur_drv(fdctrl);
2136 fdctrl->data_state |= FD_STATE_FORMAT;
2137 if (fdctrl->fifo[0] & 0x80)
2138 fdctrl->data_state |= FD_STATE_MULTI;
2139 else
2140 fdctrl->data_state &= ~FD_STATE_MULTI;
2141 cur_drv->bps =
2142 fdctrl->fifo[2] > 7 ? 16384 : 128 << fdctrl->fifo[2];
2143 #if 0
2144 cur_drv->last_sect =
2145 cur_drv->flags & FDISK_DBL_SIDES ? fdctrl->fifo[3] :
2146 fdctrl->fifo[3] / 2;
2147 #else
2148 cur_drv->last_sect = fdctrl->fifo[3];
2149 #endif
2150 /* TODO: implement format using DMA expected by the Bochs BIOS
2151 * and Linux fdformat (read 3 bytes per sector via DMA and fill
2152 * the sector with the specified fill byte
2154 fdctrl->data_state &= ~FD_STATE_FORMAT;
2155 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2158 static void fdctrl_handle_specify(FDCtrl *fdctrl, int direction)
2160 fdctrl->timer0 = (fdctrl->fifo[1] >> 4) & 0xF;
2161 fdctrl->timer1 = fdctrl->fifo[2] >> 1;
2162 if (fdctrl->fifo[2] & 1)
2163 fdctrl->dor &= ~FD_DOR_DMAEN;
2164 else
2165 fdctrl->dor |= FD_DOR_DMAEN;
2166 /* No result back */
2167 fdctrl_to_command_phase(fdctrl);
2170 static void fdctrl_handle_sense_drive_status(FDCtrl *fdctrl, int direction)
2172 FDrive *cur_drv;
2174 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2175 cur_drv = get_cur_drv(fdctrl);
2176 cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
2177 /* 1 Byte status back */
2178 fdctrl->fifo[0] = (cur_drv->ro << 6) |
2179 (cur_drv->track == 0 ? 0x10 : 0x00) |
2180 (cur_drv->head << 2) |
2181 GET_CUR_DRV(fdctrl) |
2182 0x28;
2183 fdctrl_to_result_phase(fdctrl, 1);
2186 static void fdctrl_handle_recalibrate(FDCtrl *fdctrl, int direction)
2188 FDrive *cur_drv;
2190 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2191 cur_drv = get_cur_drv(fdctrl);
2192 fd_recalibrate(cur_drv);
2193 fdctrl_to_command_phase(fdctrl);
2194 /* Raise Interrupt */
2195 fdctrl->status0 |= FD_SR0_SEEK;
2196 fdctrl_raise_irq(fdctrl);
2199 static void fdctrl_handle_sense_interrupt_status(FDCtrl *fdctrl, int direction)
2201 FDrive *cur_drv = get_cur_drv(fdctrl);
2203 if (fdctrl->reset_sensei > 0) {
2204 fdctrl->fifo[0] =
2205 FD_SR0_RDYCHG + FD_RESET_SENSEI_COUNT - fdctrl->reset_sensei;
2206 fdctrl->reset_sensei--;
2207 } else if (!(fdctrl->sra & FD_SRA_INTPEND)) {
2208 fdctrl->fifo[0] = FD_SR0_INVCMD;
2209 fdctrl_to_result_phase(fdctrl, 1);
2210 return;
2211 } else {
2212 fdctrl->fifo[0] =
2213 (fdctrl->status0 & ~(FD_SR0_HEAD | FD_SR0_DS1 | FD_SR0_DS0))
2214 | GET_CUR_DRV(fdctrl);
2217 fdctrl->fifo[1] = cur_drv->track;
2218 fdctrl_to_result_phase(fdctrl, 2);
2219 fdctrl_reset_irq(fdctrl);
2220 fdctrl->status0 = FD_SR0_RDYCHG;
2223 static void fdctrl_handle_seek(FDCtrl *fdctrl, int direction)
2225 FDrive *cur_drv;
2227 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2228 cur_drv = get_cur_drv(fdctrl);
2229 fdctrl_to_command_phase(fdctrl);
2230 /* The seek command just sends step pulses to the drive and doesn't care if
2231 * there is a medium inserted of if it's banging the head against the drive.
2233 fd_seek(cur_drv, cur_drv->head, fdctrl->fifo[2], cur_drv->sect, 1);
2234 /* Raise Interrupt */
2235 fdctrl->status0 |= FD_SR0_SEEK;
2236 fdctrl_raise_irq(fdctrl);
2239 static void fdctrl_handle_perpendicular_mode(FDCtrl *fdctrl, int direction)
2241 FDrive *cur_drv = get_cur_drv(fdctrl);
2243 if (fdctrl->fifo[1] & 0x80)
2244 cur_drv->perpendicular = fdctrl->fifo[1] & 0x7;
2245 /* No result back */
2246 fdctrl_to_command_phase(fdctrl);
2249 static void fdctrl_handle_configure(FDCtrl *fdctrl, int direction)
2251 fdctrl->config = fdctrl->fifo[2];
2252 fdctrl->precomp_trk = fdctrl->fifo[3];
2253 /* No result back */
2254 fdctrl_to_command_phase(fdctrl);
2257 static void fdctrl_handle_powerdown_mode(FDCtrl *fdctrl, int direction)
2259 fdctrl->pwrd = fdctrl->fifo[1];
2260 fdctrl->fifo[0] = fdctrl->fifo[1];
2261 fdctrl_to_result_phase(fdctrl, 1);
2264 static void fdctrl_handle_option(FDCtrl *fdctrl, int direction)
2266 /* No result back */
2267 fdctrl_to_command_phase(fdctrl);
2270 static void fdctrl_handle_drive_specification_command(FDCtrl *fdctrl, int direction)
2272 FDrive *cur_drv = get_cur_drv(fdctrl);
2273 uint32_t pos;
2275 pos = fdctrl->data_pos - 1;
2276 pos %= FD_SECTOR_LEN;
2277 if (fdctrl->fifo[pos] & 0x80) {
2278 /* Command parameters done */
2279 if (fdctrl->fifo[pos] & 0x40) {
2280 fdctrl->fifo[0] = fdctrl->fifo[1];
2281 fdctrl->fifo[2] = 0;
2282 fdctrl->fifo[3] = 0;
2283 fdctrl_to_result_phase(fdctrl, 4);
2284 } else {
2285 fdctrl_to_command_phase(fdctrl);
2287 } else if (fdctrl->data_len > 7) {
2288 /* ERROR */
2289 fdctrl->fifo[0] = 0x80 |
2290 (cur_drv->head << 2) | GET_CUR_DRV(fdctrl);
2291 fdctrl_to_result_phase(fdctrl, 1);
2295 static void fdctrl_handle_relative_seek_in(FDCtrl *fdctrl, int direction)
2297 FDrive *cur_drv;
2299 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2300 cur_drv = get_cur_drv(fdctrl);
2301 if (fdctrl->fifo[2] + cur_drv->track >= cur_drv->max_track) {
2302 fd_seek(cur_drv, cur_drv->head, cur_drv->max_track - 1,
2303 cur_drv->sect, 1);
2304 } else {
2305 fd_seek(cur_drv, cur_drv->head,
2306 cur_drv->track + fdctrl->fifo[2], cur_drv->sect, 1);
2308 fdctrl_to_command_phase(fdctrl);
2309 /* Raise Interrupt */
2310 fdctrl->status0 |= FD_SR0_SEEK;
2311 fdctrl_raise_irq(fdctrl);
2314 static void fdctrl_handle_relative_seek_out(FDCtrl *fdctrl, int direction)
2316 FDrive *cur_drv;
2318 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2319 cur_drv = get_cur_drv(fdctrl);
2320 if (fdctrl->fifo[2] > cur_drv->track) {
2321 fd_seek(cur_drv, cur_drv->head, 0, cur_drv->sect, 1);
2322 } else {
2323 fd_seek(cur_drv, cur_drv->head,
2324 cur_drv->track - fdctrl->fifo[2], cur_drv->sect, 1);
2326 fdctrl_to_command_phase(fdctrl);
2327 /* Raise Interrupt */
2328 fdctrl->status0 |= FD_SR0_SEEK;
2329 fdctrl_raise_irq(fdctrl);
2333 * Handlers for the execution phase of each command
2335 typedef struct FDCtrlCommand {
2336 uint8_t value;
2337 uint8_t mask;
2338 const char* name;
2339 int parameters;
2340 void (*handler)(FDCtrl *fdctrl, int direction);
2341 int direction;
2342 } FDCtrlCommand;
2344 static const FDCtrlCommand handlers[] = {
2345 { FD_CMD_READ, 0x1f, "READ", 8, fdctrl_start_transfer, FD_DIR_READ },
2346 { FD_CMD_WRITE, 0x3f, "WRITE", 8, fdctrl_start_transfer, FD_DIR_WRITE },
2347 { FD_CMD_SEEK, 0xff, "SEEK", 2, fdctrl_handle_seek },
2348 { FD_CMD_SENSE_INTERRUPT_STATUS, 0xff, "SENSE INTERRUPT STATUS", 0, fdctrl_handle_sense_interrupt_status },
2349 { FD_CMD_RECALIBRATE, 0xff, "RECALIBRATE", 1, fdctrl_handle_recalibrate },
2350 { FD_CMD_FORMAT_TRACK, 0xbf, "FORMAT TRACK", 5, fdctrl_handle_format_track },
2351 { FD_CMD_READ_TRACK, 0xbf, "READ TRACK", 8, fdctrl_start_transfer, FD_DIR_READ },
2352 { FD_CMD_RESTORE, 0xff, "RESTORE", 17, fdctrl_handle_restore }, /* part of READ DELETED DATA */
2353 { FD_CMD_SAVE, 0xff, "SAVE", 0, fdctrl_handle_save }, /* part of READ DELETED DATA */
2354 { FD_CMD_READ_DELETED, 0x1f, "READ DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_READ },
2355 { FD_CMD_SCAN_EQUAL, 0x1f, "SCAN EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANE },
2356 { FD_CMD_VERIFY, 0x1f, "VERIFY", 8, fdctrl_start_transfer, FD_DIR_VERIFY },
2357 { FD_CMD_SCAN_LOW_OR_EQUAL, 0x1f, "SCAN LOW OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANL },
2358 { FD_CMD_SCAN_HIGH_OR_EQUAL, 0x1f, "SCAN HIGH OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANH },
2359 { FD_CMD_WRITE_DELETED, 0x3f, "WRITE DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_WRITE },
2360 { FD_CMD_READ_ID, 0xbf, "READ ID", 1, fdctrl_handle_readid },
2361 { FD_CMD_SPECIFY, 0xff, "SPECIFY", 2, fdctrl_handle_specify },
2362 { FD_CMD_SENSE_DRIVE_STATUS, 0xff, "SENSE DRIVE STATUS", 1, fdctrl_handle_sense_drive_status },
2363 { FD_CMD_PERPENDICULAR_MODE, 0xff, "PERPENDICULAR MODE", 1, fdctrl_handle_perpendicular_mode },
2364 { FD_CMD_CONFIGURE, 0xff, "CONFIGURE", 3, fdctrl_handle_configure },
2365 { FD_CMD_POWERDOWN_MODE, 0xff, "POWERDOWN MODE", 2, fdctrl_handle_powerdown_mode },
2366 { FD_CMD_OPTION, 0xff, "OPTION", 1, fdctrl_handle_option },
2367 { FD_CMD_DRIVE_SPECIFICATION_COMMAND, 0xff, "DRIVE SPECIFICATION COMMAND", 5, fdctrl_handle_drive_specification_command },
2368 { FD_CMD_RELATIVE_SEEK_OUT, 0xff, "RELATIVE SEEK OUT", 2, fdctrl_handle_relative_seek_out },
2369 { FD_CMD_FORMAT_AND_WRITE, 0xff, "FORMAT AND WRITE", 10, fdctrl_unimplemented },
2370 { FD_CMD_RELATIVE_SEEK_IN, 0xff, "RELATIVE SEEK IN", 2, fdctrl_handle_relative_seek_in },
2371 { FD_CMD_LOCK, 0x7f, "LOCK", 0, fdctrl_handle_lock },
2372 { FD_CMD_DUMPREG, 0xff, "DUMPREG", 0, fdctrl_handle_dumpreg },
2373 { FD_CMD_VERSION, 0xff, "VERSION", 0, fdctrl_handle_version },
2374 { FD_CMD_PART_ID, 0xff, "PART ID", 0, fdctrl_handle_partid },
2375 { FD_CMD_WRITE, 0x1f, "WRITE (BeOS)", 8, fdctrl_start_transfer, FD_DIR_WRITE }, /* not in specification ; BeOS 4.5 bug */
2376 { 0, 0, "unknown", 0, fdctrl_unimplemented }, /* default handler */
2378 /* Associate command to an index in the 'handlers' array */
2379 static uint8_t command_to_handler[256];
2381 static const FDCtrlCommand *get_command(uint8_t cmd)
2383 int idx;
2385 idx = command_to_handler[cmd];
2386 FLOPPY_DPRINTF("%s command\n", handlers[idx].name);
2387 return &handlers[idx];
2390 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value)
2392 FDrive *cur_drv;
2393 const FDCtrlCommand *cmd;
2394 uint32_t pos;
2396 /* Reset mode */
2397 if (!(fdctrl->dor & FD_DOR_nRESET)) {
2398 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
2399 return;
2401 if (!(fdctrl->msr & FD_MSR_RQM) || (fdctrl->msr & FD_MSR_DIO)) {
2402 FLOPPY_DPRINTF("error: controller not ready for writing\n");
2403 return;
2405 fdctrl->dsr &= ~FD_DSR_PWRDOWN;
2407 FLOPPY_DPRINTF("%s: %02x\n", __func__, value);
2409 /* If data_len spans multiple sectors, the current position in the FIFO
2410 * wraps around while fdctrl->data_pos is the real position in the whole
2411 * request. */
2412 pos = fdctrl->data_pos++;
2413 pos %= FD_SECTOR_LEN;
2414 fdctrl->fifo[pos] = value;
2416 if (fdctrl->data_pos == fdctrl->data_len) {
2417 fdctrl->msr &= ~FD_MSR_RQM;
2420 switch (fdctrl->phase) {
2421 case FD_PHASE_EXECUTION:
2422 /* For DMA requests, RQM should be cleared during execution phase, so
2423 * we would have errored out above. */
2424 assert(fdctrl->msr & FD_MSR_NONDMA);
2426 /* FIFO data write */
2427 if (pos == FD_SECTOR_LEN - 1 ||
2428 fdctrl->data_pos == fdctrl->data_len) {
2429 cur_drv = get_cur_drv(fdctrl);
2430 if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
2431 BDRV_SECTOR_SIZE, 0) < 0) {
2432 FLOPPY_DPRINTF("error writing sector %d\n",
2433 fd_sector(cur_drv));
2434 break;
2436 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
2437 FLOPPY_DPRINTF("error seeking to next sector %d\n",
2438 fd_sector(cur_drv));
2439 break;
2443 /* Switch to result phase when done with the transfer */
2444 if (fdctrl->data_pos == fdctrl->data_len) {
2445 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2447 break;
2449 case FD_PHASE_COMMAND:
2450 assert(!(fdctrl->msr & FD_MSR_NONDMA));
2451 assert(fdctrl->data_pos < FD_SECTOR_LEN);
2453 if (pos == 0) {
2454 /* The first byte specifies the command. Now we start reading
2455 * as many parameters as this command requires. */
2456 cmd = get_command(value);
2457 fdctrl->data_len = cmd->parameters + 1;
2458 if (cmd->parameters) {
2459 fdctrl->msr |= FD_MSR_RQM;
2461 fdctrl->msr |= FD_MSR_CMDBUSY;
2464 if (fdctrl->data_pos == fdctrl->data_len) {
2465 /* We have all parameters now, execute the command */
2466 fdctrl->phase = FD_PHASE_EXECUTION;
2468 if (fdctrl->data_state & FD_STATE_FORMAT) {
2469 fdctrl_format_sector(fdctrl);
2470 break;
2473 cmd = get_command(fdctrl->fifo[0]);
2474 FLOPPY_DPRINTF("Calling handler for '%s'\n", cmd->name);
2475 cmd->handler(fdctrl, cmd->direction);
2477 break;
2479 case FD_PHASE_RESULT:
2480 default:
2481 abort();
2485 static void fdctrl_result_timer(void *opaque)
2487 FDCtrl *fdctrl = opaque;
2488 FDrive *cur_drv = get_cur_drv(fdctrl);
2490 /* Pretend we are spinning.
2491 * This is needed for Coherent, which uses READ ID to check for
2492 * sector interleaving.
2494 if (cur_drv->last_sect != 0) {
2495 cur_drv->sect = (cur_drv->sect % cur_drv->last_sect) + 1;
2497 /* READ_ID can't automatically succeed! */
2498 if (fdctrl->check_media_rate &&
2499 (fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
2500 FLOPPY_DPRINTF("read id rate mismatch (fdc=%d, media=%d)\n",
2501 fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
2502 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
2503 } else {
2504 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2508 /* Init functions */
2510 static void fdctrl_init_drives(FloppyBus *bus, DriveInfo **fds)
2512 DeviceState *dev;
2513 int i;
2515 for (i = 0; i < MAX_FD; i++) {
2516 if (fds[i]) {
2517 dev = qdev_new("floppy");
2518 qdev_prop_set_uint32(dev, "unit", i);
2519 qdev_prop_set_enum(dev, "drive-type", FLOPPY_DRIVE_TYPE_AUTO);
2520 qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(fds[i]),
2521 &error_fatal);
2522 qdev_realize_and_unref(dev, &bus->bus, &error_fatal);
2527 void isa_fdc_init_drives(ISADevice *fdc, DriveInfo **fds)
2529 fdctrl_init_drives(&ISA_FDC(fdc)->state.bus, fds);
2532 static void fdctrl_connect_drives(FDCtrl *fdctrl, DeviceState *fdc_dev,
2533 Error **errp)
2535 unsigned int i;
2536 FDrive *drive;
2537 DeviceState *dev;
2538 BlockBackend *blk;
2539 bool ok;
2540 const char *fdc_name, *drive_suffix;
2542 for (i = 0; i < MAX_FD; i++) {
2543 drive = &fdctrl->drives[i];
2544 drive->fdctrl = fdctrl;
2546 /* If the drive is not present, we skip creating the qdev device, but
2547 * still have to initialise the controller. */
2548 blk = fdctrl->qdev_for_drives[i].blk;
2549 if (!blk) {
2550 fd_init(drive);
2551 fd_revalidate(drive);
2552 continue;
2555 fdc_name = object_get_typename(OBJECT(fdc_dev));
2556 drive_suffix = !strcmp(fdc_name, "SUNW,fdtwo") ? "" : i ? "B" : "A";
2557 warn_report("warning: property %s.drive%s is deprecated",
2558 fdc_name, drive_suffix);
2559 error_printf("Use -device floppy,unit=%d,drive=... instead.\n", i);
2561 dev = qdev_new("floppy");
2562 qdev_prop_set_uint32(dev, "unit", i);
2563 qdev_prop_set_enum(dev, "drive-type", fdctrl->qdev_for_drives[i].type);
2566 * Hack alert: we move the backend from the floppy controller
2567 * device to the floppy device. We first need to detach the
2568 * controller, or else floppy_create()'s qdev_prop_set_drive()
2569 * will die when it attaches floppy device. We also need to
2570 * take another reference so that blk_detach_dev() doesn't
2571 * free blk while we still need it.
2573 * The hack is probably a bad idea.
2575 blk_ref(blk);
2576 blk_detach_dev(blk, fdc_dev);
2577 fdctrl->qdev_for_drives[i].blk = NULL;
2578 ok = qdev_prop_set_drive_err(dev, "drive", blk, errp);
2579 blk_unref(blk);
2580 if (!ok) {
2581 return;
2584 if (!qdev_realize_and_unref(dev, &fdctrl->bus.bus, errp)) {
2585 return;
2590 void fdctrl_init_sysbus(qemu_irq irq, int dma_chann,
2591 hwaddr mmio_base, DriveInfo **fds)
2593 FDCtrl *fdctrl;
2594 DeviceState *dev;
2595 SysBusDevice *sbd;
2596 FDCtrlSysBus *sys;
2598 dev = qdev_new("sysbus-fdc");
2599 sys = SYSBUS_FDC(dev);
2600 fdctrl = &sys->state;
2601 fdctrl->dma_chann = dma_chann; /* FIXME */
2602 sbd = SYS_BUS_DEVICE(dev);
2603 sysbus_realize_and_unref(sbd, &error_fatal);
2604 sysbus_connect_irq(sbd, 0, irq);
2605 sysbus_mmio_map(sbd, 0, mmio_base);
2607 fdctrl_init_drives(&sys->state.bus, fds);
2610 void sun4m_fdctrl_init(qemu_irq irq, hwaddr io_base,
2611 DriveInfo **fds, qemu_irq *fdc_tc)
2613 DeviceState *dev;
2614 FDCtrlSysBus *sys;
2616 dev = qdev_new("SUNW,fdtwo");
2617 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
2618 sys = SYSBUS_FDC(dev);
2619 sysbus_connect_irq(SYS_BUS_DEVICE(sys), 0, irq);
2620 sysbus_mmio_map(SYS_BUS_DEVICE(sys), 0, io_base);
2621 *fdc_tc = qdev_get_gpio_in(dev, 0);
2623 fdctrl_init_drives(&sys->state.bus, fds);
2626 static void fdctrl_realize_common(DeviceState *dev, FDCtrl *fdctrl,
2627 Error **errp)
2629 int i, j;
2630 static int command_tables_inited = 0;
2632 if (fdctrl->fallback == FLOPPY_DRIVE_TYPE_AUTO) {
2633 error_setg(errp, "Cannot choose a fallback FDrive type of 'auto'");
2634 return;
2637 /* Fill 'command_to_handler' lookup table */
2638 if (!command_tables_inited) {
2639 command_tables_inited = 1;
2640 for (i = ARRAY_SIZE(handlers) - 1; i >= 0; i--) {
2641 for (j = 0; j < sizeof(command_to_handler); j++) {
2642 if ((j & handlers[i].mask) == handlers[i].value) {
2643 command_to_handler[j] = i;
2649 FLOPPY_DPRINTF("init controller\n");
2650 fdctrl->fifo = qemu_memalign(512, FD_SECTOR_LEN);
2651 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
2652 fdctrl->fifo_size = 512;
2653 fdctrl->result_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
2654 fdctrl_result_timer, fdctrl);
2656 fdctrl->version = 0x90; /* Intel 82078 controller */
2657 fdctrl->config = FD_CONFIG_EIS | FD_CONFIG_EFIFO; /* Implicit seek, polling & FIFO enabled */
2658 fdctrl->num_floppies = MAX_FD;
2660 if (fdctrl->dma_chann != -1) {
2661 IsaDmaClass *k;
2662 assert(fdctrl->dma);
2663 k = ISADMA_GET_CLASS(fdctrl->dma);
2664 k->register_channel(fdctrl->dma, fdctrl->dma_chann,
2665 &fdctrl_transfer_handler, fdctrl);
2668 floppy_bus_create(fdctrl, &fdctrl->bus, dev);
2669 fdctrl_connect_drives(fdctrl, dev, errp);
2672 static const MemoryRegionPortio fdc_portio_list[] = {
2673 { 1, 5, 1, .read = fdctrl_read, .write = fdctrl_write },
2674 { 7, 1, 1, .read = fdctrl_read, .write = fdctrl_write },
2675 PORTIO_END_OF_LIST(),
2678 static void isabus_fdc_realize(DeviceState *dev, Error **errp)
2680 ISADevice *isadev = ISA_DEVICE(dev);
2681 FDCtrlISABus *isa = ISA_FDC(dev);
2682 FDCtrl *fdctrl = &isa->state;
2683 Error *err = NULL;
2685 isa_register_portio_list(isadev, &fdctrl->portio_list,
2686 isa->iobase, fdc_portio_list, fdctrl,
2687 "fdc");
2689 isa_init_irq(isadev, &fdctrl->irq, isa->irq);
2690 fdctrl->dma_chann = isa->dma;
2691 if (fdctrl->dma_chann != -1) {
2692 fdctrl->dma = isa_get_dma(isa_bus_from_device(isadev), isa->dma);
2693 if (!fdctrl->dma) {
2694 error_setg(errp, "ISA controller does not support DMA");
2695 return;
2699 qdev_set_legacy_instance_id(dev, isa->iobase, 2);
2700 fdctrl_realize_common(dev, fdctrl, &err);
2701 if (err != NULL) {
2702 error_propagate(errp, err);
2703 return;
2707 static void sysbus_fdc_initfn(Object *obj)
2709 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2710 FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2711 FDCtrl *fdctrl = &sys->state;
2713 fdctrl->dma_chann = -1;
2715 memory_region_init_io(&fdctrl->iomem, obj, &fdctrl_mem_ops, fdctrl,
2716 "fdc", 0x08);
2717 sysbus_init_mmio(sbd, &fdctrl->iomem);
2720 static void sun4m_fdc_initfn(Object *obj)
2722 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2723 FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2724 FDCtrl *fdctrl = &sys->state;
2726 fdctrl->dma_chann = -1;
2728 memory_region_init_io(&fdctrl->iomem, obj, &fdctrl_mem_strict_ops,
2729 fdctrl, "fdctrl", 0x08);
2730 sysbus_init_mmio(sbd, &fdctrl->iomem);
2733 static void sysbus_fdc_common_initfn(Object *obj)
2735 DeviceState *dev = DEVICE(obj);
2736 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
2737 FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2738 FDCtrl *fdctrl = &sys->state;
2740 qdev_set_legacy_instance_id(dev, 0 /* io */, 2); /* FIXME */
2742 sysbus_init_irq(sbd, &fdctrl->irq);
2743 qdev_init_gpio_in(dev, fdctrl_handle_tc, 1);
2746 static void sysbus_fdc_common_realize(DeviceState *dev, Error **errp)
2748 FDCtrlSysBus *sys = SYSBUS_FDC(dev);
2749 FDCtrl *fdctrl = &sys->state;
2751 fdctrl_realize_common(dev, fdctrl, errp);
2754 FloppyDriveType isa_fdc_get_drive_type(ISADevice *fdc, int i)
2756 FDCtrlISABus *isa = ISA_FDC(fdc);
2758 return isa->state.drives[i].drive;
2761 static void isa_fdc_get_drive_max_chs(FloppyDriveType type, uint8_t *maxc,
2762 uint8_t *maxh, uint8_t *maxs)
2764 const FDFormat *fdf;
2766 *maxc = *maxh = *maxs = 0;
2767 for (fdf = fd_formats; fdf->drive != FLOPPY_DRIVE_TYPE_NONE; fdf++) {
2768 if (fdf->drive != type) {
2769 continue;
2771 if (*maxc < fdf->max_track) {
2772 *maxc = fdf->max_track;
2774 if (*maxh < fdf->max_head) {
2775 *maxh = fdf->max_head;
2777 if (*maxs < fdf->last_sect) {
2778 *maxs = fdf->last_sect;
2781 (*maxc)--;
2784 static Aml *build_fdinfo_aml(int idx, FloppyDriveType type)
2786 Aml *dev, *fdi;
2787 uint8_t maxc, maxh, maxs;
2789 isa_fdc_get_drive_max_chs(type, &maxc, &maxh, &maxs);
2791 dev = aml_device("FLP%c", 'A' + idx);
2793 aml_append(dev, aml_name_decl("_ADR", aml_int(idx)));
2795 fdi = aml_package(16);
2796 aml_append(fdi, aml_int(idx)); /* Drive Number */
2797 aml_append(fdi,
2798 aml_int(cmos_get_fd_drive_type(type))); /* Device Type */
2800 * the values below are the limits of the drive, and are thus independent
2801 * of the inserted media
2803 aml_append(fdi, aml_int(maxc)); /* Maximum Cylinder Number */
2804 aml_append(fdi, aml_int(maxs)); /* Maximum Sector Number */
2805 aml_append(fdi, aml_int(maxh)); /* Maximum Head Number */
2807 * SeaBIOS returns the below values for int 0x13 func 0x08 regardless of
2808 * the drive type, so shall we
2810 aml_append(fdi, aml_int(0xAF)); /* disk_specify_1 */
2811 aml_append(fdi, aml_int(0x02)); /* disk_specify_2 */
2812 aml_append(fdi, aml_int(0x25)); /* disk_motor_wait */
2813 aml_append(fdi, aml_int(0x02)); /* disk_sector_siz */
2814 aml_append(fdi, aml_int(0x12)); /* disk_eot */
2815 aml_append(fdi, aml_int(0x1B)); /* disk_rw_gap */
2816 aml_append(fdi, aml_int(0xFF)); /* disk_dtl */
2817 aml_append(fdi, aml_int(0x6C)); /* disk_formt_gap */
2818 aml_append(fdi, aml_int(0xF6)); /* disk_fill */
2819 aml_append(fdi, aml_int(0x0F)); /* disk_head_sttl */
2820 aml_append(fdi, aml_int(0x08)); /* disk_motor_strt */
2822 aml_append(dev, aml_name_decl("_FDI", fdi));
2823 return dev;
2826 int cmos_get_fd_drive_type(FloppyDriveType fd0)
2828 int val;
2830 switch (fd0) {
2831 case FLOPPY_DRIVE_TYPE_144:
2832 /* 1.44 Mb 3"5 drive */
2833 val = 4;
2834 break;
2835 case FLOPPY_DRIVE_TYPE_288:
2836 /* 2.88 Mb 3"5 drive */
2837 val = 5;
2838 break;
2839 case FLOPPY_DRIVE_TYPE_120:
2840 /* 1.2 Mb 5"5 drive */
2841 val = 2;
2842 break;
2843 case FLOPPY_DRIVE_TYPE_NONE:
2844 default:
2845 val = 0;
2846 break;
2848 return val;
2851 static void fdc_isa_build_aml(ISADevice *isadev, Aml *scope)
2853 Aml *dev;
2854 Aml *crs;
2855 int i;
2857 #define ACPI_FDE_MAX_FD 4
2858 uint32_t fde_buf[5] = {
2859 0, 0, 0, 0, /* presence of floppy drives #0 - #3 */
2860 cpu_to_le32(2) /* tape presence (2 == never present) */
2863 crs = aml_resource_template();
2864 aml_append(crs, aml_io(AML_DECODE16, 0x03F2, 0x03F2, 0x00, 0x04));
2865 aml_append(crs, aml_io(AML_DECODE16, 0x03F7, 0x03F7, 0x00, 0x01));
2866 aml_append(crs, aml_irq_no_flags(6));
2867 aml_append(crs,
2868 aml_dma(AML_COMPATIBILITY, AML_NOTBUSMASTER, AML_TRANSFER8, 2));
2870 dev = aml_device("FDC0");
2871 aml_append(dev, aml_name_decl("_HID", aml_eisaid("PNP0700")));
2872 aml_append(dev, aml_name_decl("_CRS", crs));
2874 for (i = 0; i < MIN(MAX_FD, ACPI_FDE_MAX_FD); i++) {
2875 FloppyDriveType type = isa_fdc_get_drive_type(isadev, i);
2877 if (type < FLOPPY_DRIVE_TYPE_NONE) {
2878 fde_buf[i] = cpu_to_le32(1); /* drive present */
2879 aml_append(dev, build_fdinfo_aml(i, type));
2882 aml_append(dev, aml_name_decl("_FDE",
2883 aml_buffer(sizeof(fde_buf), (uint8_t *)fde_buf)));
2885 aml_append(scope, dev);
2888 static const VMStateDescription vmstate_isa_fdc ={
2889 .name = "fdc",
2890 .version_id = 2,
2891 .minimum_version_id = 2,
2892 .fields = (VMStateField[]) {
2893 VMSTATE_STRUCT(state, FDCtrlISABus, 0, vmstate_fdc, FDCtrl),
2894 VMSTATE_END_OF_LIST()
2898 static Property isa_fdc_properties[] = {
2899 DEFINE_PROP_UINT32("iobase", FDCtrlISABus, iobase, 0x3f0),
2900 DEFINE_PROP_UINT32("irq", FDCtrlISABus, irq, 6),
2901 DEFINE_PROP_UINT32("dma", FDCtrlISABus, dma, 2),
2902 DEFINE_PROP_DRIVE("driveA", FDCtrlISABus, state.qdev_for_drives[0].blk),
2903 DEFINE_PROP_DRIVE("driveB", FDCtrlISABus, state.qdev_for_drives[1].blk),
2904 DEFINE_PROP_BIT("check_media_rate", FDCtrlISABus, state.check_media_rate,
2905 0, true),
2906 DEFINE_PROP_SIGNED("fdtypeA", FDCtrlISABus, state.qdev_for_drives[0].type,
2907 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2908 FloppyDriveType),
2909 DEFINE_PROP_SIGNED("fdtypeB", FDCtrlISABus, state.qdev_for_drives[1].type,
2910 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2911 FloppyDriveType),
2912 DEFINE_PROP_SIGNED("fallback", FDCtrlISABus, state.fallback,
2913 FLOPPY_DRIVE_TYPE_288, qdev_prop_fdc_drive_type,
2914 FloppyDriveType),
2915 DEFINE_PROP_END_OF_LIST(),
2918 static void isabus_fdc_class_init(ObjectClass *klass, void *data)
2920 DeviceClass *dc = DEVICE_CLASS(klass);
2921 ISADeviceClass *isa = ISA_DEVICE_CLASS(klass);
2923 dc->realize = isabus_fdc_realize;
2924 dc->fw_name = "fdc";
2925 dc->reset = fdctrl_external_reset_isa;
2926 dc->vmsd = &vmstate_isa_fdc;
2927 isa->build_aml = fdc_isa_build_aml;
2928 device_class_set_props(dc, isa_fdc_properties);
2929 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2932 static void isabus_fdc_instance_init(Object *obj)
2934 FDCtrlISABus *isa = ISA_FDC(obj);
2936 device_add_bootindex_property(obj, &isa->bootindexA,
2937 "bootindexA", "/floppy@0",
2938 DEVICE(obj));
2939 device_add_bootindex_property(obj, &isa->bootindexB,
2940 "bootindexB", "/floppy@1",
2941 DEVICE(obj));
2944 static const TypeInfo isa_fdc_info = {
2945 .name = TYPE_ISA_FDC,
2946 .parent = TYPE_ISA_DEVICE,
2947 .instance_size = sizeof(FDCtrlISABus),
2948 .class_init = isabus_fdc_class_init,
2949 .instance_init = isabus_fdc_instance_init,
2952 static const VMStateDescription vmstate_sysbus_fdc ={
2953 .name = "fdc",
2954 .version_id = 2,
2955 .minimum_version_id = 2,
2956 .fields = (VMStateField[]) {
2957 VMSTATE_STRUCT(state, FDCtrlSysBus, 0, vmstate_fdc, FDCtrl),
2958 VMSTATE_END_OF_LIST()
2962 static Property sysbus_fdc_properties[] = {
2963 DEFINE_PROP_DRIVE("driveA", FDCtrlSysBus, state.qdev_for_drives[0].blk),
2964 DEFINE_PROP_DRIVE("driveB", FDCtrlSysBus, state.qdev_for_drives[1].blk),
2965 DEFINE_PROP_SIGNED("fdtypeA", FDCtrlSysBus, state.qdev_for_drives[0].type,
2966 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2967 FloppyDriveType),
2968 DEFINE_PROP_SIGNED("fdtypeB", FDCtrlSysBus, state.qdev_for_drives[1].type,
2969 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2970 FloppyDriveType),
2971 DEFINE_PROP_SIGNED("fallback", FDCtrlISABus, state.fallback,
2972 FLOPPY_DRIVE_TYPE_144, qdev_prop_fdc_drive_type,
2973 FloppyDriveType),
2974 DEFINE_PROP_END_OF_LIST(),
2977 static void sysbus_fdc_class_init(ObjectClass *klass, void *data)
2979 DeviceClass *dc = DEVICE_CLASS(klass);
2981 device_class_set_props(dc, sysbus_fdc_properties);
2982 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2985 static const TypeInfo sysbus_fdc_info = {
2986 .name = "sysbus-fdc",
2987 .parent = TYPE_SYSBUS_FDC,
2988 .instance_init = sysbus_fdc_initfn,
2989 .class_init = sysbus_fdc_class_init,
2992 static Property sun4m_fdc_properties[] = {
2993 DEFINE_PROP_DRIVE("drive", FDCtrlSysBus, state.qdev_for_drives[0].blk),
2994 DEFINE_PROP_SIGNED("fdtype", FDCtrlSysBus, state.qdev_for_drives[0].type,
2995 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2996 FloppyDriveType),
2997 DEFINE_PROP_SIGNED("fallback", FDCtrlISABus, state.fallback,
2998 FLOPPY_DRIVE_TYPE_144, qdev_prop_fdc_drive_type,
2999 FloppyDriveType),
3000 DEFINE_PROP_END_OF_LIST(),
3003 static void sun4m_fdc_class_init(ObjectClass *klass, void *data)
3005 DeviceClass *dc = DEVICE_CLASS(klass);
3007 device_class_set_props(dc, sun4m_fdc_properties);
3008 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
3011 static const TypeInfo sun4m_fdc_info = {
3012 .name = "SUNW,fdtwo",
3013 .parent = TYPE_SYSBUS_FDC,
3014 .instance_init = sun4m_fdc_initfn,
3015 .class_init = sun4m_fdc_class_init,
3018 static void sysbus_fdc_common_class_init(ObjectClass *klass, void *data)
3020 DeviceClass *dc = DEVICE_CLASS(klass);
3022 dc->realize = sysbus_fdc_common_realize;
3023 dc->reset = fdctrl_external_reset_sysbus;
3024 dc->vmsd = &vmstate_sysbus_fdc;
3027 static const TypeInfo sysbus_fdc_type_info = {
3028 .name = TYPE_SYSBUS_FDC,
3029 .parent = TYPE_SYS_BUS_DEVICE,
3030 .instance_size = sizeof(FDCtrlSysBus),
3031 .instance_init = sysbus_fdc_common_initfn,
3032 .abstract = true,
3033 .class_init = sysbus_fdc_common_class_init,
3036 static void fdc_register_types(void)
3038 type_register_static(&isa_fdc_info);
3039 type_register_static(&sysbus_fdc_type_info);
3040 type_register_static(&sysbus_fdc_info);
3041 type_register_static(&sun4m_fdc_info);
3042 type_register_static(&floppy_bus_info);
3043 type_register_static(&floppy_drive_info);
3046 type_init(fdc_register_types)