2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "qapi/visitor.h"
30 #include "sysemu/sysemu.h"
31 #include "sysemu/numa.h"
34 #include "hw/fw-path-provider.h"
37 #include "sysemu/device_tree.h"
38 #include "sysemu/cpus.h"
39 #include "sysemu/hw_accel.h"
41 #include "migration/misc.h"
42 #include "migration/global_state.h"
43 #include "migration/register.h"
44 #include "mmu-hash64.h"
45 #include "mmu-book3s-v3.h"
46 #include "cpu-models.h"
49 #include "hw/boards.h"
50 #include "hw/ppc/ppc.h"
51 #include "hw/loader.h"
53 #include "hw/ppc/fdt.h"
54 #include "hw/ppc/spapr.h"
55 #include "hw/ppc/spapr_vio.h"
56 #include "hw/pci-host/spapr.h"
57 #include "hw/ppc/xics.h"
58 #include "hw/pci/msi.h"
60 #include "hw/pci/pci.h"
61 #include "hw/scsi/scsi.h"
62 #include "hw/virtio/virtio-scsi.h"
63 #include "hw/virtio/vhost-scsi-common.h"
65 #include "exec/address-spaces.h"
67 #include "qemu/config-file.h"
68 #include "qemu/error-report.h"
71 #include "hw/intc/intc.h"
73 #include "hw/compat.h"
74 #include "qemu/cutils.h"
75 #include "hw/ppc/spapr_cpu_core.h"
76 #include "hw/mem/memory-device.h"
80 /* SLOF memory layout:
82 * SLOF raw image loaded at 0, copies its romfs right below the flat
83 * device-tree, then position SLOF itself 31M below that
85 * So we set FW_OVERHEAD to 40MB which should account for all of that
88 * We load our kernel at 4M, leaving space for SLOF initial image
90 #define FDT_MAX_SIZE 0x100000
91 #define RTAS_MAX_SIZE 0x10000
92 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
93 #define FW_MAX_SIZE 0x400000
94 #define FW_FILE_NAME "slof.bin"
95 #define FW_OVERHEAD 0x2800000
96 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
98 #define MIN_RMA_SLOF 128UL
100 #define PHANDLE_XICP 0x00001111
102 /* These two functions implement the VCPU id numbering: one to compute them
103 * all and one to identify thread 0 of a VCORE. Any change to the first one
104 * is likely to have an impact on the second one, so let's keep them close.
106 static int spapr_vcpu_id(sPAPRMachineState
*spapr
, int cpu_index
)
110 (cpu_index
/ smp_threads
) * spapr
->vsmt
+ cpu_index
% smp_threads
;
112 static bool spapr_is_thread0_in_vcore(sPAPRMachineState
*spapr
,
116 return spapr_get_vcpu_id(cpu
) % spapr
->vsmt
== 0;
119 static ICSState
*spapr_ics_create(sPAPRMachineState
*spapr
,
120 const char *type_ics
,
121 int nr_irqs
, Error
**errp
)
123 Error
*local_err
= NULL
;
126 obj
= object_new(type_ics
);
127 object_property_add_child(OBJECT(spapr
), "ics", obj
, &error_abort
);
128 object_property_add_const_link(obj
, ICS_PROP_XICS
, OBJECT(spapr
),
130 object_property_set_int(obj
, nr_irqs
, "nr-irqs", &local_err
);
134 object_property_set_bool(obj
, true, "realized", &local_err
);
139 return ICS_SIMPLE(obj
);
142 error_propagate(errp
, local_err
);
146 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque
)
148 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
149 * and newer QEMUs don't even have them. In both cases, we don't want
150 * to send anything on the wire.
155 static const VMStateDescription pre_2_10_vmstate_dummy_icp
= {
156 .name
= "icp/server",
158 .minimum_version_id
= 1,
159 .needed
= pre_2_10_vmstate_dummy_icp_needed
,
160 .fields
= (VMStateField
[]) {
161 VMSTATE_UNUSED(4), /* uint32_t xirr */
162 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
163 VMSTATE_UNUSED(1), /* uint8_t mfrr */
164 VMSTATE_END_OF_LIST()
168 static void pre_2_10_vmstate_register_dummy_icp(int i
)
170 vmstate_register(NULL
, i
, &pre_2_10_vmstate_dummy_icp
,
171 (void *)(uintptr_t) i
);
174 static void pre_2_10_vmstate_unregister_dummy_icp(int i
)
176 vmstate_unregister(NULL
, &pre_2_10_vmstate_dummy_icp
,
177 (void *)(uintptr_t) i
);
180 static int xics_max_server_number(sPAPRMachineState
*spapr
)
183 return DIV_ROUND_UP(max_cpus
* spapr
->vsmt
, smp_threads
);
186 static void xics_system_init(MachineState
*machine
, int nr_irqs
, Error
**errp
)
188 sPAPRMachineState
*spapr
= SPAPR_MACHINE(machine
);
191 if (machine_kernel_irqchip_allowed(machine
) &&
192 !xics_kvm_init(spapr
, errp
)) {
193 spapr
->icp_type
= TYPE_KVM_ICP
;
194 spapr
->ics
= spapr_ics_create(spapr
, TYPE_ICS_KVM
, nr_irqs
, errp
);
196 if (machine_kernel_irqchip_required(machine
) && !spapr
->ics
) {
197 error_prepend(errp
, "kernel_irqchip requested but unavailable: ");
203 xics_spapr_init(spapr
);
204 spapr
->icp_type
= TYPE_ICP
;
205 spapr
->ics
= spapr_ics_create(spapr
, TYPE_ICS_SIMPLE
, nr_irqs
, errp
);
212 static int spapr_fixup_cpu_smt_dt(void *fdt
, int offset
, PowerPCCPU
*cpu
,
216 uint32_t servers_prop
[smt_threads
];
217 uint32_t gservers_prop
[smt_threads
* 2];
218 int index
= spapr_get_vcpu_id(cpu
);
220 if (cpu
->compat_pvr
) {
221 ret
= fdt_setprop_cell(fdt
, offset
, "cpu-version", cpu
->compat_pvr
);
227 /* Build interrupt servers and gservers properties */
228 for (i
= 0; i
< smt_threads
; i
++) {
229 servers_prop
[i
] = cpu_to_be32(index
+ i
);
230 /* Hack, direct the group queues back to cpu 0 */
231 gservers_prop
[i
*2] = cpu_to_be32(index
+ i
);
232 gservers_prop
[i
*2 + 1] = 0;
234 ret
= fdt_setprop(fdt
, offset
, "ibm,ppc-interrupt-server#s",
235 servers_prop
, sizeof(servers_prop
));
239 ret
= fdt_setprop(fdt
, offset
, "ibm,ppc-interrupt-gserver#s",
240 gservers_prop
, sizeof(gservers_prop
));
245 static int spapr_fixup_cpu_numa_dt(void *fdt
, int offset
, PowerPCCPU
*cpu
)
247 int index
= spapr_get_vcpu_id(cpu
);
248 uint32_t associativity
[] = {cpu_to_be32(0x5),
252 cpu_to_be32(cpu
->node_id
),
255 /* Advertise NUMA via ibm,associativity */
256 return fdt_setprop(fdt
, offset
, "ibm,associativity", associativity
,
257 sizeof(associativity
));
260 /* Populate the "ibm,pa-features" property */
261 static void spapr_populate_pa_features(sPAPRMachineState
*spapr
,
263 void *fdt
, int offset
,
266 uint8_t pa_features_206
[] = { 6, 0,
267 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
268 uint8_t pa_features_207
[] = { 24, 0,
269 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
270 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
271 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
272 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
273 uint8_t pa_features_300
[] = { 66, 0,
274 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
275 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
276 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
278 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
280 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
281 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
282 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
283 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
284 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
285 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
286 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
287 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
288 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
289 /* 42: PM, 44: PC RA, 46: SC vec'd */
290 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
291 /* 48: SIMD, 50: QP BFP, 52: String */
292 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
293 /* 54: DecFP, 56: DecI, 58: SHA */
294 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
295 /* 60: NM atomic, 62: RNG */
296 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
298 uint8_t *pa_features
= NULL
;
301 if (ppc_check_compat(cpu
, CPU_POWERPC_LOGICAL_2_06
, 0, cpu
->compat_pvr
)) {
302 pa_features
= pa_features_206
;
303 pa_size
= sizeof(pa_features_206
);
305 if (ppc_check_compat(cpu
, CPU_POWERPC_LOGICAL_2_07
, 0, cpu
->compat_pvr
)) {
306 pa_features
= pa_features_207
;
307 pa_size
= sizeof(pa_features_207
);
309 if (ppc_check_compat(cpu
, CPU_POWERPC_LOGICAL_3_00
, 0, cpu
->compat_pvr
)) {
310 pa_features
= pa_features_300
;
311 pa_size
= sizeof(pa_features_300
);
317 if (ppc_hash64_has(cpu
, PPC_HASH64_CI_LARGEPAGE
)) {
319 * Note: we keep CI large pages off by default because a 64K capable
320 * guest provisioned with large pages might otherwise try to map a qemu
321 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
322 * even if that qemu runs on a 4k host.
323 * We dd this bit back here if we are confident this is not an issue
325 pa_features
[3] |= 0x20;
327 if ((spapr_get_cap(spapr
, SPAPR_CAP_HTM
) != 0) && pa_size
> 24) {
328 pa_features
[24] |= 0x80; /* Transactional memory support */
330 if (legacy_guest
&& pa_size
> 40) {
331 /* Workaround for broken kernels that attempt (guest) radix
332 * mode when they can't handle it, if they see the radix bit set
333 * in pa-features. So hide it from them. */
334 pa_features
[40 + 2] &= ~0x80; /* Radix MMU */
337 _FDT((fdt_setprop(fdt
, offset
, "ibm,pa-features", pa_features
, pa_size
)));
340 static int spapr_fixup_cpu_dt(void *fdt
, sPAPRMachineState
*spapr
)
342 int ret
= 0, offset
, cpus_offset
;
345 uint32_t pft_size_prop
[] = {0, cpu_to_be32(spapr
->htab_shift
)};
348 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
349 DeviceClass
*dc
= DEVICE_GET_CLASS(cs
);
350 int index
= spapr_get_vcpu_id(cpu
);
351 int compat_smt
= MIN(smp_threads
, ppc_compat_max_vthreads(cpu
));
353 if (!spapr_is_thread0_in_vcore(spapr
, cpu
)) {
357 snprintf(cpu_model
, 32, "%s@%x", dc
->fw_name
, index
);
359 cpus_offset
= fdt_path_offset(fdt
, "/cpus");
360 if (cpus_offset
< 0) {
361 cpus_offset
= fdt_add_subnode(fdt
, 0, "cpus");
362 if (cpus_offset
< 0) {
366 offset
= fdt_subnode_offset(fdt
, cpus_offset
, cpu_model
);
368 offset
= fdt_add_subnode(fdt
, cpus_offset
, cpu_model
);
374 ret
= fdt_setprop(fdt
, offset
, "ibm,pft-size",
375 pft_size_prop
, sizeof(pft_size_prop
));
380 if (nb_numa_nodes
> 1) {
381 ret
= spapr_fixup_cpu_numa_dt(fdt
, offset
, cpu
);
387 ret
= spapr_fixup_cpu_smt_dt(fdt
, offset
, cpu
, compat_smt
);
392 spapr_populate_pa_features(spapr
, cpu
, fdt
, offset
,
393 spapr
->cas_legacy_guest_workaround
);
398 static hwaddr
spapr_node0_size(MachineState
*machine
)
402 for (i
= 0; i
< nb_numa_nodes
; ++i
) {
403 if (numa_info
[i
].node_mem
) {
404 return MIN(pow2floor(numa_info
[i
].node_mem
),
409 return machine
->ram_size
;
412 static void add_str(GString
*s
, const gchar
*s1
)
414 g_string_append_len(s
, s1
, strlen(s1
) + 1);
417 static int spapr_populate_memory_node(void *fdt
, int nodeid
, hwaddr start
,
420 uint32_t associativity
[] = {
421 cpu_to_be32(0x4), /* length */
422 cpu_to_be32(0x0), cpu_to_be32(0x0),
423 cpu_to_be32(0x0), cpu_to_be32(nodeid
)
426 uint64_t mem_reg_property
[2];
429 mem_reg_property
[0] = cpu_to_be64(start
);
430 mem_reg_property
[1] = cpu_to_be64(size
);
432 sprintf(mem_name
, "memory@" TARGET_FMT_lx
, start
);
433 off
= fdt_add_subnode(fdt
, 0, mem_name
);
435 _FDT((fdt_setprop_string(fdt
, off
, "device_type", "memory")));
436 _FDT((fdt_setprop(fdt
, off
, "reg", mem_reg_property
,
437 sizeof(mem_reg_property
))));
438 _FDT((fdt_setprop(fdt
, off
, "ibm,associativity", associativity
,
439 sizeof(associativity
))));
443 static int spapr_populate_memory(sPAPRMachineState
*spapr
, void *fdt
)
445 MachineState
*machine
= MACHINE(spapr
);
446 hwaddr mem_start
, node_size
;
447 int i
, nb_nodes
= nb_numa_nodes
;
448 NodeInfo
*nodes
= numa_info
;
451 /* No NUMA nodes, assume there is just one node with whole RAM */
452 if (!nb_numa_nodes
) {
454 ramnode
.node_mem
= machine
->ram_size
;
458 for (i
= 0, mem_start
= 0; i
< nb_nodes
; ++i
) {
459 if (!nodes
[i
].node_mem
) {
462 if (mem_start
>= machine
->ram_size
) {
465 node_size
= nodes
[i
].node_mem
;
466 if (node_size
> machine
->ram_size
- mem_start
) {
467 node_size
= machine
->ram_size
- mem_start
;
471 /* spapr_machine_init() checks for rma_size <= node0_size
473 spapr_populate_memory_node(fdt
, i
, 0, spapr
->rma_size
);
474 mem_start
+= spapr
->rma_size
;
475 node_size
-= spapr
->rma_size
;
477 for ( ; node_size
; ) {
478 hwaddr sizetmp
= pow2floor(node_size
);
480 /* mem_start != 0 here */
481 if (ctzl(mem_start
) < ctzl(sizetmp
)) {
482 sizetmp
= 1ULL << ctzl(mem_start
);
485 spapr_populate_memory_node(fdt
, i
, mem_start
, sizetmp
);
486 node_size
-= sizetmp
;
487 mem_start
+= sizetmp
;
494 static void spapr_populate_cpu_dt(CPUState
*cs
, void *fdt
, int offset
,
495 sPAPRMachineState
*spapr
)
497 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
498 CPUPPCState
*env
= &cpu
->env
;
499 PowerPCCPUClass
*pcc
= POWERPC_CPU_GET_CLASS(cs
);
500 int index
= spapr_get_vcpu_id(cpu
);
501 uint32_t segs
[] = {cpu_to_be32(28), cpu_to_be32(40),
502 0xffffffff, 0xffffffff};
503 uint32_t tbfreq
= kvm_enabled() ? kvmppc_get_tbfreq()
504 : SPAPR_TIMEBASE_FREQ
;
505 uint32_t cpufreq
= kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
506 uint32_t page_sizes_prop
[64];
507 size_t page_sizes_prop_size
;
508 uint32_t vcpus_per_socket
= smp_threads
* smp_cores
;
509 uint32_t pft_size_prop
[] = {0, cpu_to_be32(spapr
->htab_shift
)};
510 int compat_smt
= MIN(smp_threads
, ppc_compat_max_vthreads(cpu
));
511 sPAPRDRConnector
*drc
;
513 uint32_t radix_AP_encodings
[PPC_PAGE_SIZES_MAX_SZ
];
516 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_CPU
, index
);
518 drc_index
= spapr_drc_index(drc
);
519 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,my-drc-index", drc_index
)));
522 _FDT((fdt_setprop_cell(fdt
, offset
, "reg", index
)));
523 _FDT((fdt_setprop_string(fdt
, offset
, "device_type", "cpu")));
525 _FDT((fdt_setprop_cell(fdt
, offset
, "cpu-version", env
->spr
[SPR_PVR
])));
526 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-block-size",
527 env
->dcache_line_size
)));
528 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-line-size",
529 env
->dcache_line_size
)));
530 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-block-size",
531 env
->icache_line_size
)));
532 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-line-size",
533 env
->icache_line_size
)));
535 if (pcc
->l1_dcache_size
) {
536 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-size",
537 pcc
->l1_dcache_size
)));
539 warn_report("Unknown L1 dcache size for cpu");
541 if (pcc
->l1_icache_size
) {
542 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-size",
543 pcc
->l1_icache_size
)));
545 warn_report("Unknown L1 icache size for cpu");
548 _FDT((fdt_setprop_cell(fdt
, offset
, "timebase-frequency", tbfreq
)));
549 _FDT((fdt_setprop_cell(fdt
, offset
, "clock-frequency", cpufreq
)));
550 _FDT((fdt_setprop_cell(fdt
, offset
, "slb-size", cpu
->hash64_opts
->slb_size
)));
551 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,slb-size", cpu
->hash64_opts
->slb_size
)));
552 _FDT((fdt_setprop_string(fdt
, offset
, "status", "okay")));
553 _FDT((fdt_setprop(fdt
, offset
, "64-bit", NULL
, 0)));
555 if (env
->spr_cb
[SPR_PURR
].oea_read
) {
556 _FDT((fdt_setprop(fdt
, offset
, "ibm,purr", NULL
, 0)));
559 if (ppc_hash64_has(cpu
, PPC_HASH64_1TSEG
)) {
560 _FDT((fdt_setprop(fdt
, offset
, "ibm,processor-segment-sizes",
561 segs
, sizeof(segs
))));
564 /* Advertise VSX (vector extensions) if available
565 * 1 == VMX / Altivec available
568 * Only CPUs for which we create core types in spapr_cpu_core.c
569 * are possible, and all of those have VMX */
570 if (spapr_get_cap(spapr
, SPAPR_CAP_VSX
) != 0) {
571 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,vmx", 2)));
573 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,vmx", 1)));
576 /* Advertise DFP (Decimal Floating Point) if available
577 * 0 / no property == no DFP
578 * 1 == DFP available */
579 if (spapr_get_cap(spapr
, SPAPR_CAP_DFP
) != 0) {
580 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,dfp", 1)));
583 page_sizes_prop_size
= ppc_create_page_sizes_prop(cpu
, page_sizes_prop
,
584 sizeof(page_sizes_prop
));
585 if (page_sizes_prop_size
) {
586 _FDT((fdt_setprop(fdt
, offset
, "ibm,segment-page-sizes",
587 page_sizes_prop
, page_sizes_prop_size
)));
590 spapr_populate_pa_features(spapr
, cpu
, fdt
, offset
, false);
592 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,chip-id",
593 cs
->cpu_index
/ vcpus_per_socket
)));
595 _FDT((fdt_setprop(fdt
, offset
, "ibm,pft-size",
596 pft_size_prop
, sizeof(pft_size_prop
))));
598 if (nb_numa_nodes
> 1) {
599 _FDT(spapr_fixup_cpu_numa_dt(fdt
, offset
, cpu
));
602 _FDT(spapr_fixup_cpu_smt_dt(fdt
, offset
, cpu
, compat_smt
));
604 if (pcc
->radix_page_info
) {
605 for (i
= 0; i
< pcc
->radix_page_info
->count
; i
++) {
606 radix_AP_encodings
[i
] =
607 cpu_to_be32(pcc
->radix_page_info
->entries
[i
]);
609 _FDT((fdt_setprop(fdt
, offset
, "ibm,processor-radix-AP-encodings",
611 pcc
->radix_page_info
->count
*
612 sizeof(radix_AP_encodings
[0]))));
616 static void spapr_populate_cpus_dt_node(void *fdt
, sPAPRMachineState
*spapr
)
622 cpus_offset
= fdt_add_subnode(fdt
, 0, "cpus");
624 _FDT((fdt_setprop_cell(fdt
, cpus_offset
, "#address-cells", 0x1)));
625 _FDT((fdt_setprop_cell(fdt
, cpus_offset
, "#size-cells", 0x0)));
628 * We walk the CPUs in reverse order to ensure that CPU DT nodes
629 * created by fdt_add_subnode() end up in the right order in FDT
630 * for the guest kernel the enumerate the CPUs correctly.
632 CPU_FOREACH_REVERSE(cs
) {
633 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
634 int index
= spapr_get_vcpu_id(cpu
);
635 DeviceClass
*dc
= DEVICE_GET_CLASS(cs
);
638 if (!spapr_is_thread0_in_vcore(spapr
, cpu
)) {
642 nodename
= g_strdup_printf("%s@%x", dc
->fw_name
, index
);
643 offset
= fdt_add_subnode(fdt
, cpus_offset
, nodename
);
646 spapr_populate_cpu_dt(cs
, fdt
, offset
, spapr
);
651 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList
*list
, ram_addr_t addr
)
653 MemoryDeviceInfoList
*info
;
655 for (info
= list
; info
; info
= info
->next
) {
656 MemoryDeviceInfo
*value
= info
->value
;
658 if (value
&& value
->type
== MEMORY_DEVICE_INFO_KIND_DIMM
) {
659 PCDIMMDeviceInfo
*pcdimm_info
= value
->u
.dimm
.data
;
661 if (pcdimm_info
->addr
>= addr
&&
662 addr
< (pcdimm_info
->addr
+ pcdimm_info
->size
)) {
663 return pcdimm_info
->node
;
671 struct sPAPRDrconfCellV2
{
679 typedef struct DrconfCellQueue
{
680 struct sPAPRDrconfCellV2 cell
;
681 QSIMPLEQ_ENTRY(DrconfCellQueue
) entry
;
684 static DrconfCellQueue
*
685 spapr_get_drconf_cell(uint32_t seq_lmbs
, uint64_t base_addr
,
686 uint32_t drc_index
, uint32_t aa_index
,
689 DrconfCellQueue
*elem
;
691 elem
= g_malloc0(sizeof(*elem
));
692 elem
->cell
.seq_lmbs
= cpu_to_be32(seq_lmbs
);
693 elem
->cell
.base_addr
= cpu_to_be64(base_addr
);
694 elem
->cell
.drc_index
= cpu_to_be32(drc_index
);
695 elem
->cell
.aa_index
= cpu_to_be32(aa_index
);
696 elem
->cell
.flags
= cpu_to_be32(flags
);
701 /* ibm,dynamic-memory-v2 */
702 static int spapr_populate_drmem_v2(sPAPRMachineState
*spapr
, void *fdt
,
703 int offset
, MemoryDeviceInfoList
*dimms
)
705 MachineState
*machine
= MACHINE(spapr
);
706 uint8_t *int_buf
, *cur_index
, buf_len
;
708 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
709 uint64_t addr
, cur_addr
, size
;
710 uint32_t nr_boot_lmbs
= (machine
->device_memory
->base
/ lmb_size
);
711 uint64_t mem_end
= machine
->device_memory
->base
+
712 memory_region_size(&machine
->device_memory
->mr
);
713 uint32_t node
, nr_entries
= 0;
714 sPAPRDRConnector
*drc
;
715 DrconfCellQueue
*elem
, *next
;
716 MemoryDeviceInfoList
*info
;
717 QSIMPLEQ_HEAD(, DrconfCellQueue
) drconf_queue
718 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue
);
720 /* Entry to cover RAM and the gap area */
721 elem
= spapr_get_drconf_cell(nr_boot_lmbs
, 0, 0, -1,
722 SPAPR_LMB_FLAGS_RESERVED
|
723 SPAPR_LMB_FLAGS_DRC_INVALID
);
724 QSIMPLEQ_INSERT_TAIL(&drconf_queue
, elem
, entry
);
727 cur_addr
= machine
->device_memory
->base
;
728 for (info
= dimms
; info
; info
= info
->next
) {
729 PCDIMMDeviceInfo
*di
= info
->value
->u
.dimm
.data
;
735 /* Entry for hot-pluggable area */
736 if (cur_addr
< addr
) {
737 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
, cur_addr
/ lmb_size
);
739 elem
= spapr_get_drconf_cell((addr
- cur_addr
) / lmb_size
,
740 cur_addr
, spapr_drc_index(drc
), -1, 0);
741 QSIMPLEQ_INSERT_TAIL(&drconf_queue
, elem
, entry
);
746 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
, addr
/ lmb_size
);
748 elem
= spapr_get_drconf_cell(size
/ lmb_size
, addr
,
749 spapr_drc_index(drc
), node
,
750 SPAPR_LMB_FLAGS_ASSIGNED
);
751 QSIMPLEQ_INSERT_TAIL(&drconf_queue
, elem
, entry
);
753 cur_addr
= addr
+ size
;
756 /* Entry for remaining hotpluggable area */
757 if (cur_addr
< mem_end
) {
758 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
, cur_addr
/ lmb_size
);
760 elem
= spapr_get_drconf_cell((mem_end
- cur_addr
) / lmb_size
,
761 cur_addr
, spapr_drc_index(drc
), -1, 0);
762 QSIMPLEQ_INSERT_TAIL(&drconf_queue
, elem
, entry
);
766 buf_len
= nr_entries
* sizeof(struct sPAPRDrconfCellV2
) + sizeof(uint32_t);
767 int_buf
= cur_index
= g_malloc0(buf_len
);
768 *(uint32_t *)int_buf
= cpu_to_be32(nr_entries
);
769 cur_index
+= sizeof(nr_entries
);
771 QSIMPLEQ_FOREACH_SAFE(elem
, &drconf_queue
, entry
, next
) {
772 memcpy(cur_index
, &elem
->cell
, sizeof(elem
->cell
));
773 cur_index
+= sizeof(elem
->cell
);
774 QSIMPLEQ_REMOVE(&drconf_queue
, elem
, DrconfCellQueue
, entry
);
778 ret
= fdt_setprop(fdt
, offset
, "ibm,dynamic-memory-v2", int_buf
, buf_len
);
786 /* ibm,dynamic-memory */
787 static int spapr_populate_drmem_v1(sPAPRMachineState
*spapr
, void *fdt
,
788 int offset
, MemoryDeviceInfoList
*dimms
)
790 MachineState
*machine
= MACHINE(spapr
);
792 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
793 uint32_t device_lmb_start
= machine
->device_memory
->base
/ lmb_size
;
794 uint32_t nr_lmbs
= (machine
->device_memory
->base
+
795 memory_region_size(&machine
->device_memory
->mr
)) /
797 uint32_t *int_buf
, *cur_index
, buf_len
;
800 * Allocate enough buffer size to fit in ibm,dynamic-memory
802 buf_len
= (nr_lmbs
* SPAPR_DR_LMB_LIST_ENTRY_SIZE
+ 1) * sizeof(uint32_t);
803 cur_index
= int_buf
= g_malloc0(buf_len
);
804 int_buf
[0] = cpu_to_be32(nr_lmbs
);
806 for (i
= 0; i
< nr_lmbs
; i
++) {
807 uint64_t addr
= i
* lmb_size
;
808 uint32_t *dynamic_memory
= cur_index
;
810 if (i
>= device_lmb_start
) {
811 sPAPRDRConnector
*drc
;
813 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
, i
);
816 dynamic_memory
[0] = cpu_to_be32(addr
>> 32);
817 dynamic_memory
[1] = cpu_to_be32(addr
& 0xffffffff);
818 dynamic_memory
[2] = cpu_to_be32(spapr_drc_index(drc
));
819 dynamic_memory
[3] = cpu_to_be32(0); /* reserved */
820 dynamic_memory
[4] = cpu_to_be32(spapr_pc_dimm_node(dimms
, addr
));
821 if (memory_region_present(get_system_memory(), addr
)) {
822 dynamic_memory
[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED
);
824 dynamic_memory
[5] = cpu_to_be32(0);
828 * LMB information for RMA, boot time RAM and gap b/n RAM and
829 * device memory region -- all these are marked as reserved
830 * and as having no valid DRC.
832 dynamic_memory
[0] = cpu_to_be32(addr
>> 32);
833 dynamic_memory
[1] = cpu_to_be32(addr
& 0xffffffff);
834 dynamic_memory
[2] = cpu_to_be32(0);
835 dynamic_memory
[3] = cpu_to_be32(0); /* reserved */
836 dynamic_memory
[4] = cpu_to_be32(-1);
837 dynamic_memory
[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED
|
838 SPAPR_LMB_FLAGS_DRC_INVALID
);
841 cur_index
+= SPAPR_DR_LMB_LIST_ENTRY_SIZE
;
843 ret
= fdt_setprop(fdt
, offset
, "ibm,dynamic-memory", int_buf
, buf_len
);
852 * Adds ibm,dynamic-reconfiguration-memory node.
853 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
854 * of this device tree node.
856 static int spapr_populate_drconf_memory(sPAPRMachineState
*spapr
, void *fdt
)
858 MachineState
*machine
= MACHINE(spapr
);
860 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
861 uint32_t prop_lmb_size
[] = {0, cpu_to_be32(lmb_size
)};
862 uint32_t *int_buf
, *cur_index
, buf_len
;
863 int nr_nodes
= nb_numa_nodes
? nb_numa_nodes
: 1;
864 MemoryDeviceInfoList
*dimms
= NULL
;
867 * Don't create the node if there is no device memory
869 if (machine
->ram_size
== machine
->maxram_size
) {
873 offset
= fdt_add_subnode(fdt
, 0, "ibm,dynamic-reconfiguration-memory");
875 ret
= fdt_setprop(fdt
, offset
, "ibm,lmb-size", prop_lmb_size
,
876 sizeof(prop_lmb_size
));
881 ret
= fdt_setprop_cell(fdt
, offset
, "ibm,memory-flags-mask", 0xff);
886 ret
= fdt_setprop_cell(fdt
, offset
, "ibm,memory-preservation-time", 0x0);
891 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
892 dimms
= qmp_memory_device_list();
893 if (spapr_ovec_test(spapr
->ov5_cas
, OV5_DRMEM_V2
)) {
894 ret
= spapr_populate_drmem_v2(spapr
, fdt
, offset
, dimms
);
896 ret
= spapr_populate_drmem_v1(spapr
, fdt
, offset
, dimms
);
898 qapi_free_MemoryDeviceInfoList(dimms
);
904 /* ibm,associativity-lookup-arrays */
905 buf_len
= (nr_nodes
* 4 + 2) * sizeof(uint32_t);
906 cur_index
= int_buf
= g_malloc0(buf_len
);
909 int_buf
[0] = cpu_to_be32(nr_nodes
);
910 int_buf
[1] = cpu_to_be32(4); /* Number of entries per associativity list */
912 for (i
= 0; i
< nr_nodes
; i
++) {
913 uint32_t associativity
[] = {
919 memcpy(cur_index
, associativity
, sizeof(associativity
));
922 ret
= fdt_setprop(fdt
, offset
, "ibm,associativity-lookup-arrays", int_buf
,
923 (cur_index
- int_buf
) * sizeof(uint32_t));
929 static int spapr_dt_cas_updates(sPAPRMachineState
*spapr
, void *fdt
,
930 sPAPROptionVector
*ov5_updates
)
932 sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
935 /* Generate ibm,dynamic-reconfiguration-memory node if required */
936 if (spapr_ovec_test(ov5_updates
, OV5_DRCONF_MEMORY
)) {
937 g_assert(smc
->dr_lmb_enabled
);
938 ret
= spapr_populate_drconf_memory(spapr
, fdt
);
944 offset
= fdt_path_offset(fdt
, "/chosen");
946 offset
= fdt_add_subnode(fdt
, 0, "chosen");
951 ret
= spapr_ovec_populate_dt(fdt
, offset
, spapr
->ov5_cas
,
952 "ibm,architecture-vec-5");
958 static bool spapr_hotplugged_dev_before_cas(void)
960 Object
*drc_container
, *obj
;
961 ObjectProperty
*prop
;
962 ObjectPropertyIterator iter
;
964 drc_container
= container_get(object_get_root(), "/dr-connector");
965 object_property_iter_init(&iter
, drc_container
);
966 while ((prop
= object_property_iter_next(&iter
))) {
967 if (!strstart(prop
->type
, "link<", NULL
)) {
970 obj
= object_property_get_link(drc_container
, prop
->name
, NULL
);
971 if (spapr_drc_needed(obj
)) {
978 int spapr_h_cas_compose_response(sPAPRMachineState
*spapr
,
979 target_ulong addr
, target_ulong size
,
980 sPAPROptionVector
*ov5_updates
)
982 void *fdt
, *fdt_skel
;
983 sPAPRDeviceTreeUpdateHeader hdr
= { .version_id
= 1 };
985 if (spapr_hotplugged_dev_before_cas()) {
989 if (size
< sizeof(hdr
) || size
> FW_MAX_SIZE
) {
990 error_report("SLOF provided an unexpected CAS buffer size "
991 TARGET_FMT_lu
" (min: %zu, max: %u)",
992 size
, sizeof(hdr
), FW_MAX_SIZE
);
998 /* Create skeleton */
999 fdt_skel
= g_malloc0(size
);
1000 _FDT((fdt_create(fdt_skel
, size
)));
1001 _FDT((fdt_finish_reservemap(fdt_skel
)));
1002 _FDT((fdt_begin_node(fdt_skel
, "")));
1003 _FDT((fdt_end_node(fdt_skel
)));
1004 _FDT((fdt_finish(fdt_skel
)));
1005 fdt
= g_malloc0(size
);
1006 _FDT((fdt_open_into(fdt_skel
, fdt
, size
)));
1009 /* Fixup cpu nodes */
1010 _FDT((spapr_fixup_cpu_dt(fdt
, spapr
)));
1012 if (spapr_dt_cas_updates(spapr
, fdt
, ov5_updates
)) {
1016 /* Pack resulting tree */
1017 _FDT((fdt_pack(fdt
)));
1019 if (fdt_totalsize(fdt
) + sizeof(hdr
) > size
) {
1020 trace_spapr_cas_failed(size
);
1024 cpu_physical_memory_write(addr
, &hdr
, sizeof(hdr
));
1025 cpu_physical_memory_write(addr
+ sizeof(hdr
), fdt
, fdt_totalsize(fdt
));
1026 trace_spapr_cas_continue(fdt_totalsize(fdt
) + sizeof(hdr
));
1032 static void spapr_dt_rtas(sPAPRMachineState
*spapr
, void *fdt
)
1035 GString
*hypertas
= g_string_sized_new(256);
1036 GString
*qemu_hypertas
= g_string_sized_new(256);
1037 uint32_t refpoints
[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
1038 uint64_t max_device_addr
= MACHINE(spapr
)->device_memory
->base
+
1039 memory_region_size(&MACHINE(spapr
)->device_memory
->mr
);
1040 uint32_t lrdr_capacity
[] = {
1041 cpu_to_be32(max_device_addr
>> 32),
1042 cpu_to_be32(max_device_addr
& 0xffffffff),
1043 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE
),
1044 cpu_to_be32(max_cpus
/ smp_threads
),
1046 uint32_t maxdomains
[] = {
1051 cpu_to_be32(nb_numa_nodes
? nb_numa_nodes
- 1 : 0),
1054 _FDT(rtas
= fdt_add_subnode(fdt
, 0, "rtas"));
1057 add_str(hypertas
, "hcall-pft");
1058 add_str(hypertas
, "hcall-term");
1059 add_str(hypertas
, "hcall-dabr");
1060 add_str(hypertas
, "hcall-interrupt");
1061 add_str(hypertas
, "hcall-tce");
1062 add_str(hypertas
, "hcall-vio");
1063 add_str(hypertas
, "hcall-splpar");
1064 add_str(hypertas
, "hcall-bulk");
1065 add_str(hypertas
, "hcall-set-mode");
1066 add_str(hypertas
, "hcall-sprg0");
1067 add_str(hypertas
, "hcall-copy");
1068 add_str(hypertas
, "hcall-debug");
1069 add_str(qemu_hypertas
, "hcall-memop1");
1071 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
1072 add_str(hypertas
, "hcall-multi-tce");
1075 if (spapr
->resize_hpt
!= SPAPR_RESIZE_HPT_DISABLED
) {
1076 add_str(hypertas
, "hcall-hpt-resize");
1079 _FDT(fdt_setprop(fdt
, rtas
, "ibm,hypertas-functions",
1080 hypertas
->str
, hypertas
->len
));
1081 g_string_free(hypertas
, TRUE
);
1082 _FDT(fdt_setprop(fdt
, rtas
, "qemu,hypertas-functions",
1083 qemu_hypertas
->str
, qemu_hypertas
->len
));
1084 g_string_free(qemu_hypertas
, TRUE
);
1086 _FDT(fdt_setprop(fdt
, rtas
, "ibm,associativity-reference-points",
1087 refpoints
, sizeof(refpoints
)));
1089 _FDT(fdt_setprop(fdt
, rtas
, "ibm,max-associativity-domains",
1090 maxdomains
, sizeof(maxdomains
)));
1092 _FDT(fdt_setprop_cell(fdt
, rtas
, "rtas-error-log-max",
1093 RTAS_ERROR_LOG_MAX
));
1094 _FDT(fdt_setprop_cell(fdt
, rtas
, "rtas-event-scan-rate",
1095 RTAS_EVENT_SCAN_RATE
));
1097 g_assert(msi_nonbroken
);
1098 _FDT(fdt_setprop(fdt
, rtas
, "ibm,change-msix-capable", NULL
, 0));
1101 * According to PAPR, rtas ibm,os-term does not guarantee a return
1102 * back to the guest cpu.
1104 * While an additional ibm,extended-os-term property indicates
1105 * that rtas call return will always occur. Set this property.
1107 _FDT(fdt_setprop(fdt
, rtas
, "ibm,extended-os-term", NULL
, 0));
1109 _FDT(fdt_setprop(fdt
, rtas
, "ibm,lrdr-capacity",
1110 lrdr_capacity
, sizeof(lrdr_capacity
)));
1112 spapr_dt_rtas_tokens(fdt
, rtas
);
1115 /* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features
1116 * that the guest may request and thus the valid values for bytes 24..26 of
1117 * option vector 5: */
1118 static void spapr_dt_ov5_platform_support(void *fdt
, int chosen
)
1120 PowerPCCPU
*first_ppc_cpu
= POWERPC_CPU(first_cpu
);
1123 23, 0x00, /* Xive mode, filled in below. */
1124 24, 0x00, /* Hash/Radix, filled in below. */
1125 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1126 26, 0x40, /* Radix options: GTSE == yes. */
1129 if (!ppc_check_compat(first_ppc_cpu
, CPU_POWERPC_LOGICAL_3_00
, 0,
1130 first_ppc_cpu
->compat_pvr
)) {
1131 /* If we're in a pre POWER9 compat mode then the guest should do hash */
1132 val
[3] = 0x00; /* Hash */
1133 } else if (kvm_enabled()) {
1134 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1135 val
[3] = 0x80; /* OV5_MMU_BOTH */
1136 } else if (kvmppc_has_cap_mmu_radix()) {
1137 val
[3] = 0x40; /* OV5_MMU_RADIX_300 */
1139 val
[3] = 0x00; /* Hash */
1142 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1145 _FDT(fdt_setprop(fdt
, chosen
, "ibm,arch-vec-5-platform-support",
1149 static void spapr_dt_chosen(sPAPRMachineState
*spapr
, void *fdt
)
1151 MachineState
*machine
= MACHINE(spapr
);
1153 const char *boot_device
= machine
->boot_order
;
1154 char *stdout_path
= spapr_vio_stdout_path(spapr
->vio_bus
);
1156 char *bootlist
= get_boot_devices_list(&cb
, true);
1158 _FDT(chosen
= fdt_add_subnode(fdt
, 0, "chosen"));
1160 _FDT(fdt_setprop_string(fdt
, chosen
, "bootargs", machine
->kernel_cmdline
));
1161 _FDT(fdt_setprop_cell(fdt
, chosen
, "linux,initrd-start",
1162 spapr
->initrd_base
));
1163 _FDT(fdt_setprop_cell(fdt
, chosen
, "linux,initrd-end",
1164 spapr
->initrd_base
+ spapr
->initrd_size
));
1166 if (spapr
->kernel_size
) {
1167 uint64_t kprop
[2] = { cpu_to_be64(KERNEL_LOAD_ADDR
),
1168 cpu_to_be64(spapr
->kernel_size
) };
1170 _FDT(fdt_setprop(fdt
, chosen
, "qemu,boot-kernel",
1171 &kprop
, sizeof(kprop
)));
1172 if (spapr
->kernel_le
) {
1173 _FDT(fdt_setprop(fdt
, chosen
, "qemu,boot-kernel-le", NULL
, 0));
1177 _FDT((fdt_setprop_cell(fdt
, chosen
, "qemu,boot-menu", boot_menu
)));
1179 _FDT(fdt_setprop_cell(fdt
, chosen
, "qemu,graphic-width", graphic_width
));
1180 _FDT(fdt_setprop_cell(fdt
, chosen
, "qemu,graphic-height", graphic_height
));
1181 _FDT(fdt_setprop_cell(fdt
, chosen
, "qemu,graphic-depth", graphic_depth
));
1183 if (cb
&& bootlist
) {
1186 for (i
= 0; i
< cb
; i
++) {
1187 if (bootlist
[i
] == '\n') {
1191 _FDT(fdt_setprop_string(fdt
, chosen
, "qemu,boot-list", bootlist
));
1194 if (boot_device
&& strlen(boot_device
)) {
1195 _FDT(fdt_setprop_string(fdt
, chosen
, "qemu,boot-device", boot_device
));
1198 if (!spapr
->has_graphics
&& stdout_path
) {
1200 * "linux,stdout-path" and "stdout" properties are deprecated by linux
1201 * kernel. New platforms should only use the "stdout-path" property. Set
1202 * the new property and continue using older property to remain
1203 * compatible with the existing firmware.
1205 _FDT(fdt_setprop_string(fdt
, chosen
, "linux,stdout-path", stdout_path
));
1206 _FDT(fdt_setprop_string(fdt
, chosen
, "stdout-path", stdout_path
));
1209 spapr_dt_ov5_platform_support(fdt
, chosen
);
1211 g_free(stdout_path
);
1215 static void spapr_dt_hypervisor(sPAPRMachineState
*spapr
, void *fdt
)
1217 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1218 * KVM to work under pHyp with some guest co-operation */
1220 uint8_t hypercall
[16];
1222 _FDT(hypervisor
= fdt_add_subnode(fdt
, 0, "hypervisor"));
1223 /* indicate KVM hypercall interface */
1224 _FDT(fdt_setprop_string(fdt
, hypervisor
, "compatible", "linux,kvm"));
1225 if (kvmppc_has_cap_fixup_hcalls()) {
1227 * Older KVM versions with older guest kernels were broken
1228 * with the magic page, don't allow the guest to map it.
1230 if (!kvmppc_get_hypercall(first_cpu
->env_ptr
, hypercall
,
1231 sizeof(hypercall
))) {
1232 _FDT(fdt_setprop(fdt
, hypervisor
, "hcall-instructions",
1233 hypercall
, sizeof(hypercall
)));
1238 static void *spapr_build_fdt(sPAPRMachineState
*spapr
,
1242 MachineState
*machine
= MACHINE(spapr
);
1243 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
1244 sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
1250 fdt
= g_malloc0(FDT_MAX_SIZE
);
1251 _FDT((fdt_create_empty_tree(fdt
, FDT_MAX_SIZE
)));
1254 _FDT(fdt_setprop_string(fdt
, 0, "device_type", "chrp"));
1255 _FDT(fdt_setprop_string(fdt
, 0, "model", "IBM pSeries (emulated by qemu)"));
1256 _FDT(fdt_setprop_string(fdt
, 0, "compatible", "qemu,pseries"));
1259 * Add info to guest to indentify which host is it being run on
1260 * and what is the uuid of the guest
1262 if (kvmppc_get_host_model(&buf
)) {
1263 _FDT(fdt_setprop_string(fdt
, 0, "host-model", buf
));
1266 if (kvmppc_get_host_serial(&buf
)) {
1267 _FDT(fdt_setprop_string(fdt
, 0, "host-serial", buf
));
1271 buf
= qemu_uuid_unparse_strdup(&qemu_uuid
);
1273 _FDT(fdt_setprop_string(fdt
, 0, "vm,uuid", buf
));
1274 if (qemu_uuid_set
) {
1275 _FDT(fdt_setprop_string(fdt
, 0, "system-id", buf
));
1279 if (qemu_get_vm_name()) {
1280 _FDT(fdt_setprop_string(fdt
, 0, "ibm,partition-name",
1281 qemu_get_vm_name()));
1284 _FDT(fdt_setprop_cell(fdt
, 0, "#address-cells", 2));
1285 _FDT(fdt_setprop_cell(fdt
, 0, "#size-cells", 2));
1287 /* /interrupt controller */
1288 spapr_dt_xics(xics_max_server_number(spapr
), fdt
, PHANDLE_XICP
);
1290 ret
= spapr_populate_memory(spapr
, fdt
);
1292 error_report("couldn't setup memory nodes in fdt");
1297 spapr_dt_vdevice(spapr
->vio_bus
, fdt
);
1299 if (object_resolve_path_type("", TYPE_SPAPR_RNG
, NULL
)) {
1300 ret
= spapr_rng_populate_dt(fdt
);
1302 error_report("could not set up rng device in the fdt");
1307 QLIST_FOREACH(phb
, &spapr
->phbs
, list
) {
1308 ret
= spapr_populate_pci_dt(phb
, PHANDLE_XICP
, fdt
);
1310 error_report("couldn't setup PCI devices in fdt");
1316 spapr_populate_cpus_dt_node(fdt
, spapr
);
1318 if (smc
->dr_lmb_enabled
) {
1319 _FDT(spapr_drc_populate_dt(fdt
, 0, NULL
, SPAPR_DR_CONNECTOR_TYPE_LMB
));
1322 if (mc
->has_hotpluggable_cpus
) {
1323 int offset
= fdt_path_offset(fdt
, "/cpus");
1324 ret
= spapr_drc_populate_dt(fdt
, offset
, NULL
,
1325 SPAPR_DR_CONNECTOR_TYPE_CPU
);
1327 error_report("Couldn't set up CPU DR device tree properties");
1332 /* /event-sources */
1333 spapr_dt_events(spapr
, fdt
);
1336 spapr_dt_rtas(spapr
, fdt
);
1339 spapr_dt_chosen(spapr
, fdt
);
1342 if (kvm_enabled()) {
1343 spapr_dt_hypervisor(spapr
, fdt
);
1346 /* Build memory reserve map */
1347 if (spapr
->kernel_size
) {
1348 _FDT((fdt_add_mem_rsv(fdt
, KERNEL_LOAD_ADDR
, spapr
->kernel_size
)));
1350 if (spapr
->initrd_size
) {
1351 _FDT((fdt_add_mem_rsv(fdt
, spapr
->initrd_base
, spapr
->initrd_size
)));
1354 /* ibm,client-architecture-support updates */
1355 ret
= spapr_dt_cas_updates(spapr
, fdt
, spapr
->ov5_cas
);
1357 error_report("couldn't setup CAS properties fdt");
1364 static uint64_t translate_kernel_address(void *opaque
, uint64_t addr
)
1366 return (addr
& 0x0fffffff) + KERNEL_LOAD_ADDR
;
1369 static void emulate_spapr_hypercall(PPCVirtualHypervisor
*vhyp
,
1372 CPUPPCState
*env
= &cpu
->env
;
1374 /* The TCG path should also be holding the BQL at this point */
1375 g_assert(qemu_mutex_iothread_locked());
1378 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1379 env
->gpr
[3] = H_PRIVILEGE
;
1381 env
->gpr
[3] = spapr_hypercall(cpu
, env
->gpr
[3], &env
->gpr
[4]);
1385 static uint64_t spapr_get_patbe(PPCVirtualHypervisor
*vhyp
)
1387 sPAPRMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1389 return spapr
->patb_entry
;
1392 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1393 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1394 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1395 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1396 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1399 * Get the fd to access the kernel htab, re-opening it if necessary
1401 static int get_htab_fd(sPAPRMachineState
*spapr
)
1403 Error
*local_err
= NULL
;
1405 if (spapr
->htab_fd
>= 0) {
1406 return spapr
->htab_fd
;
1409 spapr
->htab_fd
= kvmppc_get_htab_fd(false, 0, &local_err
);
1410 if (spapr
->htab_fd
< 0) {
1411 error_report_err(local_err
);
1414 return spapr
->htab_fd
;
1417 void close_htab_fd(sPAPRMachineState
*spapr
)
1419 if (spapr
->htab_fd
>= 0) {
1420 close(spapr
->htab_fd
);
1422 spapr
->htab_fd
= -1;
1425 static hwaddr
spapr_hpt_mask(PPCVirtualHypervisor
*vhyp
)
1427 sPAPRMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1429 return HTAB_SIZE(spapr
) / HASH_PTEG_SIZE_64
- 1;
1432 static target_ulong
spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor
*vhyp
)
1434 sPAPRMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1436 assert(kvm_enabled());
1442 return (target_ulong
)(uintptr_t)spapr
->htab
| (spapr
->htab_shift
- 18);
1445 static const ppc_hash_pte64_t
*spapr_map_hptes(PPCVirtualHypervisor
*vhyp
,
1448 sPAPRMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1449 hwaddr pte_offset
= ptex
* HASH_PTE_SIZE_64
;
1453 * HTAB is controlled by KVM. Fetch into temporary buffer
1455 ppc_hash_pte64_t
*hptes
= g_malloc(n
* HASH_PTE_SIZE_64
);
1456 kvmppc_read_hptes(hptes
, ptex
, n
);
1461 * HTAB is controlled by QEMU. Just point to the internally
1464 return (const ppc_hash_pte64_t
*)(spapr
->htab
+ pte_offset
);
1467 static void spapr_unmap_hptes(PPCVirtualHypervisor
*vhyp
,
1468 const ppc_hash_pte64_t
*hptes
,
1471 sPAPRMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1474 g_free((void *)hptes
);
1477 /* Nothing to do for qemu managed HPT */
1480 static void spapr_store_hpte(PPCVirtualHypervisor
*vhyp
, hwaddr ptex
,
1481 uint64_t pte0
, uint64_t pte1
)
1483 sPAPRMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1484 hwaddr offset
= ptex
* HASH_PTE_SIZE_64
;
1487 kvmppc_write_hpte(ptex
, pte0
, pte1
);
1489 stq_p(spapr
->htab
+ offset
, pte0
);
1490 stq_p(spapr
->htab
+ offset
+ HASH_PTE_SIZE_64
/ 2, pte1
);
1494 int spapr_hpt_shift_for_ramsize(uint64_t ramsize
)
1498 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1499 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1500 * that's much more than is needed for Linux guests */
1501 shift
= ctz64(pow2ceil(ramsize
)) - 7;
1502 shift
= MAX(shift
, 18); /* Minimum architected size */
1503 shift
= MIN(shift
, 46); /* Maximum architected size */
1507 void spapr_free_hpt(sPAPRMachineState
*spapr
)
1509 g_free(spapr
->htab
);
1511 spapr
->htab_shift
= 0;
1512 close_htab_fd(spapr
);
1515 void spapr_reallocate_hpt(sPAPRMachineState
*spapr
, int shift
,
1520 /* Clean up any HPT info from a previous boot */
1521 spapr_free_hpt(spapr
);
1523 rc
= kvmppc_reset_htab(shift
);
1525 /* kernel-side HPT needed, but couldn't allocate one */
1526 error_setg_errno(errp
, errno
,
1527 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1529 /* This is almost certainly fatal, but if the caller really
1530 * wants to carry on with shift == 0, it's welcome to try */
1531 } else if (rc
> 0) {
1532 /* kernel-side HPT allocated */
1535 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1539 spapr
->htab_shift
= shift
;
1542 /* kernel-side HPT not needed, allocate in userspace instead */
1543 size_t size
= 1ULL << shift
;
1546 spapr
->htab
= qemu_memalign(size
, size
);
1548 error_setg_errno(errp
, errno
,
1549 "Could not allocate HPT of order %d", shift
);
1553 memset(spapr
->htab
, 0, size
);
1554 spapr
->htab_shift
= shift
;
1556 for (i
= 0; i
< size
/ HASH_PTE_SIZE_64
; i
++) {
1557 DIRTY_HPTE(HPTE(spapr
->htab
, i
));
1560 /* We're setting up a hash table, so that means we're not radix */
1561 spapr
->patb_entry
= 0;
1564 void spapr_setup_hpt_and_vrma(sPAPRMachineState
*spapr
)
1568 if ((spapr
->resize_hpt
== SPAPR_RESIZE_HPT_DISABLED
)
1569 || (spapr
->cas_reboot
1570 && !spapr_ovec_test(spapr
->ov5_cas
, OV5_HPT_RESIZE
))) {
1571 hpt_shift
= spapr_hpt_shift_for_ramsize(MACHINE(spapr
)->maxram_size
);
1573 uint64_t current_ram_size
;
1575 current_ram_size
= MACHINE(spapr
)->ram_size
+ get_plugged_memory_size();
1576 hpt_shift
= spapr_hpt_shift_for_ramsize(current_ram_size
);
1578 spapr_reallocate_hpt(spapr
, hpt_shift
, &error_fatal
);
1580 if (spapr
->vrma_adjust
) {
1581 spapr
->rma_size
= kvmppc_rma_size(spapr_node0_size(MACHINE(spapr
)),
1586 static int spapr_reset_drcs(Object
*child
, void *opaque
)
1588 sPAPRDRConnector
*drc
=
1589 (sPAPRDRConnector
*) object_dynamic_cast(child
,
1590 TYPE_SPAPR_DR_CONNECTOR
);
1593 spapr_drc_reset(drc
);
1599 static void spapr_machine_reset(void)
1601 MachineState
*machine
= MACHINE(qdev_get_machine());
1602 sPAPRMachineState
*spapr
= SPAPR_MACHINE(machine
);
1603 PowerPCCPU
*first_ppc_cpu
;
1604 uint32_t rtas_limit
;
1605 hwaddr rtas_addr
, fdt_addr
;
1609 spapr_caps_reset(spapr
);
1611 first_ppc_cpu
= POWERPC_CPU(first_cpu
);
1612 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1613 ppc_check_compat(first_ppc_cpu
, CPU_POWERPC_LOGICAL_3_00
, 0,
1614 spapr
->max_compat_pvr
)) {
1615 /* If using KVM with radix mode available, VCPUs can be started
1616 * without a HPT because KVM will start them in radix mode.
1617 * Set the GR bit in PATB so that we know there is no HPT. */
1618 spapr
->patb_entry
= PATBE1_GR
;
1620 spapr_setup_hpt_and_vrma(spapr
);
1623 /* if this reset wasn't generated by CAS, we should reset our
1624 * negotiated options and start from scratch */
1625 if (!spapr
->cas_reboot
) {
1626 spapr_ovec_cleanup(spapr
->ov5_cas
);
1627 spapr
->ov5_cas
= spapr_ovec_new();
1629 ppc_set_compat(first_ppc_cpu
, spapr
->max_compat_pvr
, &error_fatal
);
1632 qemu_devices_reset();
1634 /* DRC reset may cause a device to be unplugged. This will cause troubles
1635 * if this device is used by another device (eg, a running vhost backend
1636 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1637 * situations, we reset DRCs after all devices have been reset.
1639 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs
, NULL
);
1641 spapr_clear_pending_events(spapr
);
1644 * We place the device tree and RTAS just below either the top of the RMA,
1645 * or just below 2GB, whichever is lowere, so that it can be
1646 * processed with 32-bit real mode code if necessary
1648 rtas_limit
= MIN(spapr
->rma_size
, RTAS_MAX_ADDR
);
1649 rtas_addr
= rtas_limit
- RTAS_MAX_SIZE
;
1650 fdt_addr
= rtas_addr
- FDT_MAX_SIZE
;
1652 fdt
= spapr_build_fdt(spapr
, rtas_addr
, spapr
->rtas_size
);
1654 spapr_load_rtas(spapr
, fdt
, rtas_addr
);
1658 /* Should only fail if we've built a corrupted tree */
1661 if (fdt_totalsize(fdt
) > FDT_MAX_SIZE
) {
1662 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1663 fdt_totalsize(fdt
), FDT_MAX_SIZE
);
1668 qemu_fdt_dumpdtb(fdt
, fdt_totalsize(fdt
));
1669 cpu_physical_memory_write(fdt_addr
, fdt
, fdt_totalsize(fdt
));
1672 /* Set up the entry state */
1673 spapr_cpu_set_entry_state(first_ppc_cpu
, SPAPR_ENTRY_POINT
, fdt_addr
);
1674 first_ppc_cpu
->env
.gpr
[5] = 0;
1676 spapr
->cas_reboot
= false;
1679 static void spapr_create_nvram(sPAPRMachineState
*spapr
)
1681 DeviceState
*dev
= qdev_create(&spapr
->vio_bus
->bus
, "spapr-nvram");
1682 DriveInfo
*dinfo
= drive_get(IF_PFLASH
, 0, 0);
1685 qdev_prop_set_drive(dev
, "drive", blk_by_legacy_dinfo(dinfo
),
1689 qdev_init_nofail(dev
);
1691 spapr
->nvram
= (struct sPAPRNVRAM
*)dev
;
1694 static void spapr_rtc_create(sPAPRMachineState
*spapr
)
1696 object_initialize(&spapr
->rtc
, sizeof(spapr
->rtc
), TYPE_SPAPR_RTC
);
1697 object_property_add_child(OBJECT(spapr
), "rtc", OBJECT(&spapr
->rtc
),
1699 object_property_set_bool(OBJECT(&spapr
->rtc
), true, "realized",
1701 object_property_add_alias(OBJECT(spapr
), "rtc-time", OBJECT(&spapr
->rtc
),
1702 "date", &error_fatal
);
1705 /* Returns whether we want to use VGA or not */
1706 static bool spapr_vga_init(PCIBus
*pci_bus
, Error
**errp
)
1708 switch (vga_interface_type
) {
1715 return pci_vga_init(pci_bus
) != NULL
;
1718 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1723 static int spapr_pre_load(void *opaque
)
1727 rc
= spapr_caps_pre_load(opaque
);
1735 static int spapr_post_load(void *opaque
, int version_id
)
1737 sPAPRMachineState
*spapr
= (sPAPRMachineState
*)opaque
;
1740 err
= spapr_caps_post_migration(spapr
);
1745 if (!object_dynamic_cast(OBJECT(spapr
->ics
), TYPE_ICS_KVM
)) {
1748 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
1749 icp_resend(ICP(cpu
->intc
));
1753 /* In earlier versions, there was no separate qdev for the PAPR
1754 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1755 * So when migrating from those versions, poke the incoming offset
1756 * value into the RTC device */
1757 if (version_id
< 3) {
1758 err
= spapr_rtc_import_offset(&spapr
->rtc
, spapr
->rtc_offset
);
1761 if (kvm_enabled() && spapr
->patb_entry
) {
1762 PowerPCCPU
*cpu
= POWERPC_CPU(first_cpu
);
1763 bool radix
= !!(spapr
->patb_entry
& PATBE1_GR
);
1764 bool gtse
= !!(cpu
->env
.spr
[SPR_LPCR
] & LPCR_GTSE
);
1766 err
= kvmppc_configure_v3_mmu(cpu
, radix
, gtse
, spapr
->patb_entry
);
1768 error_report("Process table config unsupported by the host");
1776 static int spapr_pre_save(void *opaque
)
1780 rc
= spapr_caps_pre_save(opaque
);
1788 static bool version_before_3(void *opaque
, int version_id
)
1790 return version_id
< 3;
1793 static bool spapr_pending_events_needed(void *opaque
)
1795 sPAPRMachineState
*spapr
= (sPAPRMachineState
*)opaque
;
1796 return !QTAILQ_EMPTY(&spapr
->pending_events
);
1799 static const VMStateDescription vmstate_spapr_event_entry
= {
1800 .name
= "spapr_event_log_entry",
1802 .minimum_version_id
= 1,
1803 .fields
= (VMStateField
[]) {
1804 VMSTATE_UINT32(summary
, sPAPREventLogEntry
),
1805 VMSTATE_UINT32(extended_length
, sPAPREventLogEntry
),
1806 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log
, sPAPREventLogEntry
, 0,
1807 NULL
, extended_length
),
1808 VMSTATE_END_OF_LIST()
1812 static const VMStateDescription vmstate_spapr_pending_events
= {
1813 .name
= "spapr_pending_events",
1815 .minimum_version_id
= 1,
1816 .needed
= spapr_pending_events_needed
,
1817 .fields
= (VMStateField
[]) {
1818 VMSTATE_QTAILQ_V(pending_events
, sPAPRMachineState
, 1,
1819 vmstate_spapr_event_entry
, sPAPREventLogEntry
, next
),
1820 VMSTATE_END_OF_LIST()
1824 static bool spapr_ov5_cas_needed(void *opaque
)
1826 sPAPRMachineState
*spapr
= opaque
;
1827 sPAPROptionVector
*ov5_mask
= spapr_ovec_new();
1828 sPAPROptionVector
*ov5_legacy
= spapr_ovec_new();
1829 sPAPROptionVector
*ov5_removed
= spapr_ovec_new();
1832 /* Prior to the introduction of sPAPROptionVector, we had two option
1833 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1834 * Both of these options encode machine topology into the device-tree
1835 * in such a way that the now-booted OS should still be able to interact
1836 * appropriately with QEMU regardless of what options were actually
1837 * negotiatied on the source side.
1839 * As such, we can avoid migrating the CAS-negotiated options if these
1840 * are the only options available on the current machine/platform.
1841 * Since these are the only options available for pseries-2.7 and
1842 * earlier, this allows us to maintain old->new/new->old migration
1845 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1846 * via default pseries-2.8 machines and explicit command-line parameters.
1847 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1848 * of the actual CAS-negotiated values to continue working properly. For
1849 * example, availability of memory unplug depends on knowing whether
1850 * OV5_HP_EVT was negotiated via CAS.
1852 * Thus, for any cases where the set of available CAS-negotiatable
1853 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1854 * include the CAS-negotiated options in the migration stream, unless
1855 * if they affect boot time behaviour only.
1857 spapr_ovec_set(ov5_mask
, OV5_FORM1_AFFINITY
);
1858 spapr_ovec_set(ov5_mask
, OV5_DRCONF_MEMORY
);
1859 spapr_ovec_set(ov5_mask
, OV5_DRMEM_V2
);
1861 /* spapr_ovec_diff returns true if bits were removed. we avoid using
1862 * the mask itself since in the future it's possible "legacy" bits may be
1863 * removed via machine options, which could generate a false positive
1864 * that breaks migration.
1866 spapr_ovec_intersect(ov5_legacy
, spapr
->ov5
, ov5_mask
);
1867 cas_needed
= spapr_ovec_diff(ov5_removed
, spapr
->ov5
, ov5_legacy
);
1869 spapr_ovec_cleanup(ov5_mask
);
1870 spapr_ovec_cleanup(ov5_legacy
);
1871 spapr_ovec_cleanup(ov5_removed
);
1876 static const VMStateDescription vmstate_spapr_ov5_cas
= {
1877 .name
= "spapr_option_vector_ov5_cas",
1879 .minimum_version_id
= 1,
1880 .needed
= spapr_ov5_cas_needed
,
1881 .fields
= (VMStateField
[]) {
1882 VMSTATE_STRUCT_POINTER_V(ov5_cas
, sPAPRMachineState
, 1,
1883 vmstate_spapr_ovec
, sPAPROptionVector
),
1884 VMSTATE_END_OF_LIST()
1888 static bool spapr_patb_entry_needed(void *opaque
)
1890 sPAPRMachineState
*spapr
= opaque
;
1892 return !!spapr
->patb_entry
;
1895 static const VMStateDescription vmstate_spapr_patb_entry
= {
1896 .name
= "spapr_patb_entry",
1898 .minimum_version_id
= 1,
1899 .needed
= spapr_patb_entry_needed
,
1900 .fields
= (VMStateField
[]) {
1901 VMSTATE_UINT64(patb_entry
, sPAPRMachineState
),
1902 VMSTATE_END_OF_LIST()
1906 static const VMStateDescription vmstate_spapr
= {
1909 .minimum_version_id
= 1,
1910 .pre_load
= spapr_pre_load
,
1911 .post_load
= spapr_post_load
,
1912 .pre_save
= spapr_pre_save
,
1913 .fields
= (VMStateField
[]) {
1914 /* used to be @next_irq */
1915 VMSTATE_UNUSED_BUFFER(version_before_3
, 0, 4),
1918 VMSTATE_UINT64_TEST(rtc_offset
, sPAPRMachineState
, version_before_3
),
1920 VMSTATE_PPC_TIMEBASE_V(tb
, sPAPRMachineState
, 2),
1921 VMSTATE_END_OF_LIST()
1923 .subsections
= (const VMStateDescription
*[]) {
1924 &vmstate_spapr_ov5_cas
,
1925 &vmstate_spapr_patb_entry
,
1926 &vmstate_spapr_pending_events
,
1927 &vmstate_spapr_cap_htm
,
1928 &vmstate_spapr_cap_vsx
,
1929 &vmstate_spapr_cap_dfp
,
1930 &vmstate_spapr_cap_cfpc
,
1931 &vmstate_spapr_cap_sbbc
,
1932 &vmstate_spapr_cap_ibs
,
1937 static int htab_save_setup(QEMUFile
*f
, void *opaque
)
1939 sPAPRMachineState
*spapr
= opaque
;
1941 /* "Iteration" header */
1942 if (!spapr
->htab_shift
) {
1943 qemu_put_be32(f
, -1);
1945 qemu_put_be32(f
, spapr
->htab_shift
);
1949 spapr
->htab_save_index
= 0;
1950 spapr
->htab_first_pass
= true;
1952 if (spapr
->htab_shift
) {
1953 assert(kvm_enabled());
1961 static void htab_save_chunk(QEMUFile
*f
, sPAPRMachineState
*spapr
,
1962 int chunkstart
, int n_valid
, int n_invalid
)
1964 qemu_put_be32(f
, chunkstart
);
1965 qemu_put_be16(f
, n_valid
);
1966 qemu_put_be16(f
, n_invalid
);
1967 qemu_put_buffer(f
, HPTE(spapr
->htab
, chunkstart
),
1968 HASH_PTE_SIZE_64
* n_valid
);
1971 static void htab_save_end_marker(QEMUFile
*f
)
1973 qemu_put_be32(f
, 0);
1974 qemu_put_be16(f
, 0);
1975 qemu_put_be16(f
, 0);
1978 static void htab_save_first_pass(QEMUFile
*f
, sPAPRMachineState
*spapr
,
1981 bool has_timeout
= max_ns
!= -1;
1982 int htabslots
= HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
;
1983 int index
= spapr
->htab_save_index
;
1984 int64_t starttime
= qemu_clock_get_ns(QEMU_CLOCK_REALTIME
);
1986 assert(spapr
->htab_first_pass
);
1991 /* Consume invalid HPTEs */
1992 while ((index
< htabslots
)
1993 && !HPTE_VALID(HPTE(spapr
->htab
, index
))) {
1994 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
1998 /* Consume valid HPTEs */
2000 while ((index
< htabslots
) && (index
- chunkstart
< USHRT_MAX
)
2001 && HPTE_VALID(HPTE(spapr
->htab
, index
))) {
2002 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
2006 if (index
> chunkstart
) {
2007 int n_valid
= index
- chunkstart
;
2009 htab_save_chunk(f
, spapr
, chunkstart
, n_valid
, 0);
2012 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME
) - starttime
) > max_ns
) {
2016 } while ((index
< htabslots
) && !qemu_file_rate_limit(f
));
2018 if (index
>= htabslots
) {
2019 assert(index
== htabslots
);
2021 spapr
->htab_first_pass
= false;
2023 spapr
->htab_save_index
= index
;
2026 static int htab_save_later_pass(QEMUFile
*f
, sPAPRMachineState
*spapr
,
2029 bool final
= max_ns
< 0;
2030 int htabslots
= HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
;
2031 int examined
= 0, sent
= 0;
2032 int index
= spapr
->htab_save_index
;
2033 int64_t starttime
= qemu_clock_get_ns(QEMU_CLOCK_REALTIME
);
2035 assert(!spapr
->htab_first_pass
);
2038 int chunkstart
, invalidstart
;
2040 /* Consume non-dirty HPTEs */
2041 while ((index
< htabslots
)
2042 && !HPTE_DIRTY(HPTE(spapr
->htab
, index
))) {
2048 /* Consume valid dirty HPTEs */
2049 while ((index
< htabslots
) && (index
- chunkstart
< USHRT_MAX
)
2050 && HPTE_DIRTY(HPTE(spapr
->htab
, index
))
2051 && HPTE_VALID(HPTE(spapr
->htab
, index
))) {
2052 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
2057 invalidstart
= index
;
2058 /* Consume invalid dirty HPTEs */
2059 while ((index
< htabslots
) && (index
- invalidstart
< USHRT_MAX
)
2060 && HPTE_DIRTY(HPTE(spapr
->htab
, index
))
2061 && !HPTE_VALID(HPTE(spapr
->htab
, index
))) {
2062 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
2067 if (index
> chunkstart
) {
2068 int n_valid
= invalidstart
- chunkstart
;
2069 int n_invalid
= index
- invalidstart
;
2071 htab_save_chunk(f
, spapr
, chunkstart
, n_valid
, n_invalid
);
2072 sent
+= index
- chunkstart
;
2074 if (!final
&& (qemu_clock_get_ns(QEMU_CLOCK_REALTIME
) - starttime
) > max_ns
) {
2079 if (examined
>= htabslots
) {
2083 if (index
>= htabslots
) {
2084 assert(index
== htabslots
);
2087 } while ((examined
< htabslots
) && (!qemu_file_rate_limit(f
) || final
));
2089 if (index
>= htabslots
) {
2090 assert(index
== htabslots
);
2094 spapr
->htab_save_index
= index
;
2096 return (examined
>= htabslots
) && (sent
== 0) ? 1 : 0;
2099 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2100 #define MAX_KVM_BUF_SIZE 2048
2102 static int htab_save_iterate(QEMUFile
*f
, void *opaque
)
2104 sPAPRMachineState
*spapr
= opaque
;
2108 /* Iteration header */
2109 if (!spapr
->htab_shift
) {
2110 qemu_put_be32(f
, -1);
2113 qemu_put_be32(f
, 0);
2117 assert(kvm_enabled());
2119 fd
= get_htab_fd(spapr
);
2124 rc
= kvmppc_save_htab(f
, fd
, MAX_KVM_BUF_SIZE
, MAX_ITERATION_NS
);
2128 } else if (spapr
->htab_first_pass
) {
2129 htab_save_first_pass(f
, spapr
, MAX_ITERATION_NS
);
2131 rc
= htab_save_later_pass(f
, spapr
, MAX_ITERATION_NS
);
2134 htab_save_end_marker(f
);
2139 static int htab_save_complete(QEMUFile
*f
, void *opaque
)
2141 sPAPRMachineState
*spapr
= opaque
;
2144 /* Iteration header */
2145 if (!spapr
->htab_shift
) {
2146 qemu_put_be32(f
, -1);
2149 qemu_put_be32(f
, 0);
2155 assert(kvm_enabled());
2157 fd
= get_htab_fd(spapr
);
2162 rc
= kvmppc_save_htab(f
, fd
, MAX_KVM_BUF_SIZE
, -1);
2167 if (spapr
->htab_first_pass
) {
2168 htab_save_first_pass(f
, spapr
, -1);
2170 htab_save_later_pass(f
, spapr
, -1);
2174 htab_save_end_marker(f
);
2179 static int htab_load(QEMUFile
*f
, void *opaque
, int version_id
)
2181 sPAPRMachineState
*spapr
= opaque
;
2182 uint32_t section_hdr
;
2184 Error
*local_err
= NULL
;
2186 if (version_id
< 1 || version_id
> 1) {
2187 error_report("htab_load() bad version");
2191 section_hdr
= qemu_get_be32(f
);
2193 if (section_hdr
== -1) {
2194 spapr_free_hpt(spapr
);
2199 /* First section gives the htab size */
2200 spapr_reallocate_hpt(spapr
, section_hdr
, &local_err
);
2202 error_report_err(local_err
);
2209 assert(kvm_enabled());
2211 fd
= kvmppc_get_htab_fd(true, 0, &local_err
);
2213 error_report_err(local_err
);
2220 uint16_t n_valid
, n_invalid
;
2222 index
= qemu_get_be32(f
);
2223 n_valid
= qemu_get_be16(f
);
2224 n_invalid
= qemu_get_be16(f
);
2226 if ((index
== 0) && (n_valid
== 0) && (n_invalid
== 0)) {
2231 if ((index
+ n_valid
+ n_invalid
) >
2232 (HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
)) {
2233 /* Bad index in stream */
2235 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2236 index
, n_valid
, n_invalid
, spapr
->htab_shift
);
2242 qemu_get_buffer(f
, HPTE(spapr
->htab
, index
),
2243 HASH_PTE_SIZE_64
* n_valid
);
2246 memset(HPTE(spapr
->htab
, index
+ n_valid
), 0,
2247 HASH_PTE_SIZE_64
* n_invalid
);
2254 rc
= kvmppc_load_htab_chunk(f
, fd
, index
, n_valid
, n_invalid
);
2269 static void htab_save_cleanup(void *opaque
)
2271 sPAPRMachineState
*spapr
= opaque
;
2273 close_htab_fd(spapr
);
2276 static SaveVMHandlers savevm_htab_handlers
= {
2277 .save_setup
= htab_save_setup
,
2278 .save_live_iterate
= htab_save_iterate
,
2279 .save_live_complete_precopy
= htab_save_complete
,
2280 .save_cleanup
= htab_save_cleanup
,
2281 .load_state
= htab_load
,
2284 static void spapr_boot_set(void *opaque
, const char *boot_device
,
2287 MachineState
*machine
= MACHINE(opaque
);
2288 machine
->boot_order
= g_strdup(boot_device
);
2291 static void spapr_create_lmb_dr_connectors(sPAPRMachineState
*spapr
)
2293 MachineState
*machine
= MACHINE(spapr
);
2294 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
2295 uint32_t nr_lmbs
= (machine
->maxram_size
- machine
->ram_size
)/lmb_size
;
2298 for (i
= 0; i
< nr_lmbs
; i
++) {
2301 addr
= i
* lmb_size
+ machine
->device_memory
->base
;
2302 spapr_dr_connector_new(OBJECT(spapr
), TYPE_SPAPR_DRC_LMB
,
2308 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2309 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2310 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2312 static void spapr_validate_node_memory(MachineState
*machine
, Error
**errp
)
2316 if (machine
->ram_size
% SPAPR_MEMORY_BLOCK_SIZE
) {
2317 error_setg(errp
, "Memory size 0x" RAM_ADDR_FMT
2318 " is not aligned to %llu MiB",
2320 SPAPR_MEMORY_BLOCK_SIZE
/ M_BYTE
);
2324 if (machine
->maxram_size
% SPAPR_MEMORY_BLOCK_SIZE
) {
2325 error_setg(errp
, "Maximum memory size 0x" RAM_ADDR_FMT
2326 " is not aligned to %llu MiB",
2328 SPAPR_MEMORY_BLOCK_SIZE
/ M_BYTE
);
2332 for (i
= 0; i
< nb_numa_nodes
; i
++) {
2333 if (numa_info
[i
].node_mem
% SPAPR_MEMORY_BLOCK_SIZE
) {
2335 "Node %d memory size 0x%" PRIx64
2336 " is not aligned to %llu MiB",
2337 i
, numa_info
[i
].node_mem
,
2338 SPAPR_MEMORY_BLOCK_SIZE
/ M_BYTE
);
2344 /* find cpu slot in machine->possible_cpus by core_id */
2345 static CPUArchId
*spapr_find_cpu_slot(MachineState
*ms
, uint32_t id
, int *idx
)
2347 int index
= id
/ smp_threads
;
2349 if (index
>= ms
->possible_cpus
->len
) {
2355 return &ms
->possible_cpus
->cpus
[index
];
2358 static void spapr_set_vsmt_mode(sPAPRMachineState
*spapr
, Error
**errp
)
2360 Error
*local_err
= NULL
;
2361 bool vsmt_user
= !!spapr
->vsmt
;
2362 int kvm_smt
= kvmppc_smt_threads();
2365 if (!kvm_enabled() && (smp_threads
> 1)) {
2366 error_setg(&local_err
, "TCG cannot support more than 1 thread/core "
2367 "on a pseries machine");
2370 if (!is_power_of_2(smp_threads
)) {
2371 error_setg(&local_err
, "Cannot support %d threads/core on a pseries "
2372 "machine because it must be a power of 2", smp_threads
);
2376 /* Detemine the VSMT mode to use: */
2378 if (spapr
->vsmt
< smp_threads
) {
2379 error_setg(&local_err
, "Cannot support VSMT mode %d"
2380 " because it must be >= threads/core (%d)",
2381 spapr
->vsmt
, smp_threads
);
2384 /* In this case, spapr->vsmt has been set by the command line */
2387 * Default VSMT value is tricky, because we need it to be as
2388 * consistent as possible (for migration), but this requires
2389 * changing it for at least some existing cases. We pick 8 as
2390 * the value that we'd get with KVM on POWER8, the
2391 * overwhelmingly common case in production systems.
2393 spapr
->vsmt
= MAX(8, smp_threads
);
2396 /* KVM: If necessary, set the SMT mode: */
2397 if (kvm_enabled() && (spapr
->vsmt
!= kvm_smt
)) {
2398 ret
= kvmppc_set_smt_threads(spapr
->vsmt
);
2400 /* Looks like KVM isn't able to change VSMT mode */
2401 error_setg(&local_err
,
2402 "Failed to set KVM's VSMT mode to %d (errno %d)",
2404 /* We can live with that if the default one is big enough
2405 * for the number of threads, and a submultiple of the one
2406 * we want. In this case we'll waste some vcpu ids, but
2407 * behaviour will be correct */
2408 if ((kvm_smt
>= smp_threads
) && ((spapr
->vsmt
% kvm_smt
) == 0)) {
2409 warn_report_err(local_err
);
2414 error_append_hint(&local_err
,
2415 "On PPC, a VM with %d threads/core"
2416 " on a host with %d threads/core"
2417 " requires the use of VSMT mode %d.\n",
2418 smp_threads
, kvm_smt
, spapr
->vsmt
);
2420 kvmppc_hint_smt_possible(&local_err
);
2425 /* else TCG: nothing to do currently */
2427 error_propagate(errp
, local_err
);
2430 static void spapr_init_cpus(sPAPRMachineState
*spapr
)
2432 MachineState
*machine
= MACHINE(spapr
);
2433 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
2434 sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
2435 const char *type
= spapr_get_cpu_core_type(machine
->cpu_type
);
2436 const CPUArchIdList
*possible_cpus
;
2437 int boot_cores_nr
= smp_cpus
/ smp_threads
;
2440 possible_cpus
= mc
->possible_cpu_arch_ids(machine
);
2441 if (mc
->has_hotpluggable_cpus
) {
2442 if (smp_cpus
% smp_threads
) {
2443 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2444 smp_cpus
, smp_threads
);
2447 if (max_cpus
% smp_threads
) {
2448 error_report("max_cpus (%u) must be multiple of threads (%u)",
2449 max_cpus
, smp_threads
);
2453 if (max_cpus
!= smp_cpus
) {
2454 error_report("This machine version does not support CPU hotplug");
2457 boot_cores_nr
= possible_cpus
->len
;
2460 /* VSMT must be set in order to be able to compute VCPU ids, ie to
2461 * call xics_max_server_number() or spapr_vcpu_id().
2463 spapr_set_vsmt_mode(spapr
, &error_fatal
);
2465 if (smc
->pre_2_10_has_unused_icps
) {
2468 for (i
= 0; i
< xics_max_server_number(spapr
); i
++) {
2469 /* Dummy entries get deregistered when real ICPState objects
2470 * are registered during CPU core hotplug.
2472 pre_2_10_vmstate_register_dummy_icp(i
);
2476 for (i
= 0; i
< possible_cpus
->len
; i
++) {
2477 int core_id
= i
* smp_threads
;
2479 if (mc
->has_hotpluggable_cpus
) {
2480 spapr_dr_connector_new(OBJECT(spapr
), TYPE_SPAPR_DRC_CPU
,
2481 spapr_vcpu_id(spapr
, core_id
));
2484 if (i
< boot_cores_nr
) {
2485 Object
*core
= object_new(type
);
2486 int nr_threads
= smp_threads
;
2488 /* Handle the partially filled core for older machine types */
2489 if ((i
+ 1) * smp_threads
>= smp_cpus
) {
2490 nr_threads
= smp_cpus
- i
* smp_threads
;
2493 object_property_set_int(core
, nr_threads
, "nr-threads",
2495 object_property_set_int(core
, core_id
, CPU_CORE_PROP_CORE_ID
,
2497 object_property_set_bool(core
, true, "realized", &error_fatal
);
2502 /* pSeries LPAR / sPAPR hardware init */
2503 static void spapr_machine_init(MachineState
*machine
)
2505 sPAPRMachineState
*spapr
= SPAPR_MACHINE(machine
);
2506 sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
2507 const char *kernel_filename
= machine
->kernel_filename
;
2508 const char *initrd_filename
= machine
->initrd_filename
;
2511 MemoryRegion
*sysmem
= get_system_memory();
2512 MemoryRegion
*ram
= g_new(MemoryRegion
, 1);
2513 hwaddr node0_size
= spapr_node0_size(machine
);
2514 long load_limit
, fw_size
;
2516 Error
*resize_hpt_err
= NULL
;
2517 PowerPCCPU
*first_ppc_cpu
;
2519 msi_nonbroken
= true;
2521 QLIST_INIT(&spapr
->phbs
);
2522 QTAILQ_INIT(&spapr
->pending_dimm_unplugs
);
2524 /* Check HPT resizing availability */
2525 kvmppc_check_papr_resize_hpt(&resize_hpt_err
);
2526 if (spapr
->resize_hpt
== SPAPR_RESIZE_HPT_DEFAULT
) {
2528 * If the user explicitly requested a mode we should either
2529 * supply it, or fail completely (which we do below). But if
2530 * it's not set explicitly, we reset our mode to something
2533 if (resize_hpt_err
) {
2534 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_DISABLED
;
2535 error_free(resize_hpt_err
);
2536 resize_hpt_err
= NULL
;
2538 spapr
->resize_hpt
= smc
->resize_hpt_default
;
2542 assert(spapr
->resize_hpt
!= SPAPR_RESIZE_HPT_DEFAULT
);
2544 if ((spapr
->resize_hpt
!= SPAPR_RESIZE_HPT_DISABLED
) && resize_hpt_err
) {
2546 * User requested HPT resize, but this host can't supply it. Bail out
2548 error_report_err(resize_hpt_err
);
2552 spapr
->rma_size
= node0_size
;
2554 /* With KVM, we don't actually know whether KVM supports an
2555 * unbounded RMA (PR KVM) or is limited by the hash table size
2556 * (HV KVM using VRMA), so we always assume the latter
2558 * In that case, we also limit the initial allocations for RTAS
2559 * etc... to 256M since we have no way to know what the VRMA size
2560 * is going to be as it depends on the size of the hash table
2561 * which isn't determined yet.
2563 if (kvm_enabled()) {
2564 spapr
->vrma_adjust
= 1;
2565 spapr
->rma_size
= MIN(spapr
->rma_size
, 0x10000000);
2568 /* Actually we don't support unbounded RMA anymore since we added
2569 * proper emulation of HV mode. The max we can get is 16G which
2570 * also happens to be what we configure for PAPR mode so make sure
2571 * we don't do anything bigger than that
2573 spapr
->rma_size
= MIN(spapr
->rma_size
, 0x400000000ull
);
2575 if (spapr
->rma_size
> node0_size
) {
2576 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx
")",
2581 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2582 load_limit
= MIN(spapr
->rma_size
, RTAS_MAX_ADDR
) - FW_OVERHEAD
;
2584 /* Set up Interrupt Controller before we create the VCPUs */
2585 xics_system_init(machine
, XICS_IRQS_SPAPR
, &error_fatal
);
2587 /* Set up containers for ibm,client-architecture-support negotiated options
2589 spapr
->ov5
= spapr_ovec_new();
2590 spapr
->ov5_cas
= spapr_ovec_new();
2592 if (smc
->dr_lmb_enabled
) {
2593 spapr_ovec_set(spapr
->ov5
, OV5_DRCONF_MEMORY
);
2594 spapr_validate_node_memory(machine
, &error_fatal
);
2597 spapr_ovec_set(spapr
->ov5
, OV5_FORM1_AFFINITY
);
2599 /* advertise support for dedicated HP event source to guests */
2600 if (spapr
->use_hotplug_event_source
) {
2601 spapr_ovec_set(spapr
->ov5
, OV5_HP_EVT
);
2604 /* advertise support for HPT resizing */
2605 if (spapr
->resize_hpt
!= SPAPR_RESIZE_HPT_DISABLED
) {
2606 spapr_ovec_set(spapr
->ov5
, OV5_HPT_RESIZE
);
2609 /* advertise support for ibm,dyamic-memory-v2 */
2610 spapr_ovec_set(spapr
->ov5
, OV5_DRMEM_V2
);
2613 spapr_init_cpus(spapr
);
2615 first_ppc_cpu
= POWERPC_CPU(first_cpu
);
2616 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2617 ppc_check_compat(first_ppc_cpu
, CPU_POWERPC_LOGICAL_3_00
, 0,
2618 spapr
->max_compat_pvr
)) {
2619 /* KVM and TCG always allow GTSE with radix... */
2620 spapr_ovec_set(spapr
->ov5
, OV5_MMU_RADIX_GTSE
);
2622 /* ... but not with hash (currently). */
2624 if (kvm_enabled()) {
2625 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2626 kvmppc_enable_logical_ci_hcalls();
2627 kvmppc_enable_set_mode_hcall();
2629 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2630 kvmppc_enable_clear_ref_mod_hcalls();
2634 memory_region_allocate_system_memory(ram
, NULL
, "ppc_spapr.ram",
2636 memory_region_add_subregion(sysmem
, 0, ram
);
2638 /* always allocate the device memory information */
2639 machine
->device_memory
= g_malloc0(sizeof(*machine
->device_memory
));
2641 /* initialize hotplug memory address space */
2642 if (machine
->ram_size
< machine
->maxram_size
) {
2643 ram_addr_t device_mem_size
= machine
->maxram_size
- machine
->ram_size
;
2645 * Limit the number of hotpluggable memory slots to half the number
2646 * slots that KVM supports, leaving the other half for PCI and other
2647 * devices. However ensure that number of slots doesn't drop below 32.
2649 int max_memslots
= kvm_enabled() ? kvm_get_max_memslots() / 2 :
2650 SPAPR_MAX_RAM_SLOTS
;
2652 if (max_memslots
< SPAPR_MAX_RAM_SLOTS
) {
2653 max_memslots
= SPAPR_MAX_RAM_SLOTS
;
2655 if (machine
->ram_slots
> max_memslots
) {
2656 error_report("Specified number of memory slots %"
2657 PRIu64
" exceeds max supported %d",
2658 machine
->ram_slots
, max_memslots
);
2662 machine
->device_memory
->base
= ROUND_UP(machine
->ram_size
,
2663 SPAPR_DEVICE_MEM_ALIGN
);
2664 memory_region_init(&machine
->device_memory
->mr
, OBJECT(spapr
),
2665 "device-memory", device_mem_size
);
2666 memory_region_add_subregion(sysmem
, machine
->device_memory
->base
,
2667 &machine
->device_memory
->mr
);
2670 if (smc
->dr_lmb_enabled
) {
2671 spapr_create_lmb_dr_connectors(spapr
);
2674 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, "spapr-rtas.bin");
2676 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2679 spapr
->rtas_size
= get_image_size(filename
);
2680 if (spapr
->rtas_size
< 0) {
2681 error_report("Could not get size of LPAR rtas '%s'", filename
);
2684 spapr
->rtas_blob
= g_malloc(spapr
->rtas_size
);
2685 if (load_image_size(filename
, spapr
->rtas_blob
, spapr
->rtas_size
) < 0) {
2686 error_report("Could not load LPAR rtas '%s'", filename
);
2689 if (spapr
->rtas_size
> RTAS_MAX_SIZE
) {
2690 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2691 (size_t)spapr
->rtas_size
, RTAS_MAX_SIZE
);
2696 /* Set up RTAS event infrastructure */
2697 spapr_events_init(spapr
);
2699 /* Set up the RTC RTAS interfaces */
2700 spapr_rtc_create(spapr
);
2702 /* Set up VIO bus */
2703 spapr
->vio_bus
= spapr_vio_bus_init();
2705 for (i
= 0; i
< serial_max_hds(); i
++) {
2707 spapr_vty_create(spapr
->vio_bus
, serial_hd(i
));
2711 /* We always have at least the nvram device on VIO */
2712 spapr_create_nvram(spapr
);
2715 spapr_pci_rtas_init();
2717 phb
= spapr_create_phb(spapr
, 0);
2719 for (i
= 0; i
< nb_nics
; i
++) {
2720 NICInfo
*nd
= &nd_table
[i
];
2723 nd
->model
= g_strdup("spapr-vlan");
2726 if (g_str_equal(nd
->model
, "spapr-vlan") ||
2727 g_str_equal(nd
->model
, "ibmveth")) {
2728 spapr_vlan_create(spapr
->vio_bus
, nd
);
2730 pci_nic_init_nofail(&nd_table
[i
], phb
->bus
, nd
->model
, NULL
);
2734 for (i
= 0; i
<= drive_get_max_bus(IF_SCSI
); i
++) {
2735 spapr_vscsi_create(spapr
->vio_bus
);
2739 if (spapr_vga_init(phb
->bus
, &error_fatal
)) {
2740 spapr
->has_graphics
= true;
2741 machine
->usb
|= defaults_enabled() && !machine
->usb_disabled
;
2745 if (smc
->use_ohci_by_default
) {
2746 pci_create_simple(phb
->bus
, -1, "pci-ohci");
2748 pci_create_simple(phb
->bus
, -1, "nec-usb-xhci");
2751 if (spapr
->has_graphics
) {
2752 USBBus
*usb_bus
= usb_bus_find(-1);
2754 usb_create_simple(usb_bus
, "usb-kbd");
2755 usb_create_simple(usb_bus
, "usb-mouse");
2759 if (spapr
->rma_size
< (MIN_RMA_SLOF
<< 20)) {
2761 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2766 if (kernel_filename
) {
2767 uint64_t lowaddr
= 0;
2769 spapr
->kernel_size
= load_elf(kernel_filename
, translate_kernel_address
,
2770 NULL
, NULL
, &lowaddr
, NULL
, 1,
2771 PPC_ELF_MACHINE
, 0, 0);
2772 if (spapr
->kernel_size
== ELF_LOAD_WRONG_ENDIAN
) {
2773 spapr
->kernel_size
= load_elf(kernel_filename
,
2774 translate_kernel_address
, NULL
, NULL
,
2775 &lowaddr
, NULL
, 0, PPC_ELF_MACHINE
,
2777 spapr
->kernel_le
= spapr
->kernel_size
> 0;
2779 if (spapr
->kernel_size
< 0) {
2780 error_report("error loading %s: %s", kernel_filename
,
2781 load_elf_strerror(spapr
->kernel_size
));
2786 if (initrd_filename
) {
2787 /* Try to locate the initrd in the gap between the kernel
2788 * and the firmware. Add a bit of space just in case
2790 spapr
->initrd_base
= (KERNEL_LOAD_ADDR
+ spapr
->kernel_size
2791 + 0x1ffff) & ~0xffff;
2792 spapr
->initrd_size
= load_image_targphys(initrd_filename
,
2795 - spapr
->initrd_base
);
2796 if (spapr
->initrd_size
< 0) {
2797 error_report("could not load initial ram disk '%s'",
2804 if (bios_name
== NULL
) {
2805 bios_name
= FW_FILE_NAME
;
2807 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, bios_name
);
2809 error_report("Could not find LPAR firmware '%s'", bios_name
);
2812 fw_size
= load_image_targphys(filename
, 0, FW_MAX_SIZE
);
2814 error_report("Could not load LPAR firmware '%s'", filename
);
2819 /* FIXME: Should register things through the MachineState's qdev
2820 * interface, this is a legacy from the sPAPREnvironment structure
2821 * which predated MachineState but had a similar function */
2822 vmstate_register(NULL
, 0, &vmstate_spapr
, spapr
);
2823 register_savevm_live(NULL
, "spapr/htab", -1, 1,
2824 &savevm_htab_handlers
, spapr
);
2826 qemu_register_boot_set(spapr_boot_set
, spapr
);
2828 if (kvm_enabled()) {
2829 /* to stop and start vmclock */
2830 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change
,
2833 kvmppc_spapr_enable_inkernel_multitce();
2837 static int spapr_kvm_type(const char *vm_type
)
2843 if (!strcmp(vm_type
, "HV")) {
2847 if (!strcmp(vm_type
, "PR")) {
2851 error_report("Unknown kvm-type specified '%s'", vm_type
);
2856 * Implementation of an interface to adjust firmware path
2857 * for the bootindex property handling.
2859 static char *spapr_get_fw_dev_path(FWPathProvider
*p
, BusState
*bus
,
2862 #define CAST(type, obj, name) \
2863 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2864 SCSIDevice
*d
= CAST(SCSIDevice
, dev
, TYPE_SCSI_DEVICE
);
2865 sPAPRPHBState
*phb
= CAST(sPAPRPHBState
, dev
, TYPE_SPAPR_PCI_HOST_BRIDGE
);
2866 VHostSCSICommon
*vsc
= CAST(VHostSCSICommon
, dev
, TYPE_VHOST_SCSI_COMMON
);
2869 void *spapr
= CAST(void, bus
->parent
, "spapr-vscsi");
2870 VirtIOSCSI
*virtio
= CAST(VirtIOSCSI
, bus
->parent
, TYPE_VIRTIO_SCSI
);
2871 USBDevice
*usb
= CAST(USBDevice
, bus
->parent
, TYPE_USB_DEVICE
);
2875 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2876 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2877 * in the top 16 bits of the 64-bit LUN
2879 unsigned id
= 0x8000 | (d
->id
<< 8) | d
->lun
;
2880 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
2881 (uint64_t)id
<< 48);
2882 } else if (virtio
) {
2884 * We use SRP luns of the form 01000000 | (target << 8) | lun
2885 * in the top 32 bits of the 64-bit LUN
2886 * Note: the quote above is from SLOF and it is wrong,
2887 * the actual binding is:
2888 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2890 unsigned id
= 0x1000000 | (d
->id
<< 16) | d
->lun
;
2891 if (d
->lun
>= 256) {
2892 /* Use the LUN "flat space addressing method" */
2895 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
2896 (uint64_t)id
<< 32);
2899 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2900 * in the top 32 bits of the 64-bit LUN
2902 unsigned usb_port
= atoi(usb
->port
->path
);
2903 unsigned id
= 0x1000000 | (usb_port
<< 16) | d
->lun
;
2904 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
2905 (uint64_t)id
<< 32);
2910 * SLOF probes the USB devices, and if it recognizes that the device is a
2911 * storage device, it changes its name to "storage" instead of "usb-host",
2912 * and additionally adds a child node for the SCSI LUN, so the correct
2913 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2915 if (strcmp("usb-host", qdev_fw_name(dev
)) == 0) {
2916 USBDevice
*usbdev
= CAST(USBDevice
, dev
, TYPE_USB_DEVICE
);
2917 if (usb_host_dev_is_scsi_storage(usbdev
)) {
2918 return g_strdup_printf("storage@%s/disk", usbdev
->port
->path
);
2923 /* Replace "pci" with "pci@800000020000000" */
2924 return g_strdup_printf("pci@%"PRIX64
, phb
->buid
);
2928 /* Same logic as virtio above */
2929 unsigned id
= 0x1000000 | (vsc
->target
<< 16) | vsc
->lun
;
2930 return g_strdup_printf("disk@%"PRIX64
, (uint64_t)id
<< 32);
2933 if (g_str_equal("pci-bridge", qdev_fw_name(dev
))) {
2934 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
2935 PCIDevice
*pcidev
= CAST(PCIDevice
, dev
, TYPE_PCI_DEVICE
);
2936 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev
->devfn
));
2942 static char *spapr_get_kvm_type(Object
*obj
, Error
**errp
)
2944 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
2946 return g_strdup(spapr
->kvm_type
);
2949 static void spapr_set_kvm_type(Object
*obj
, const char *value
, Error
**errp
)
2951 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
2953 g_free(spapr
->kvm_type
);
2954 spapr
->kvm_type
= g_strdup(value
);
2957 static bool spapr_get_modern_hotplug_events(Object
*obj
, Error
**errp
)
2959 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
2961 return spapr
->use_hotplug_event_source
;
2964 static void spapr_set_modern_hotplug_events(Object
*obj
, bool value
,
2967 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
2969 spapr
->use_hotplug_event_source
= value
;
2972 static bool spapr_get_msix_emulation(Object
*obj
, Error
**errp
)
2977 static char *spapr_get_resize_hpt(Object
*obj
, Error
**errp
)
2979 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
2981 switch (spapr
->resize_hpt
) {
2982 case SPAPR_RESIZE_HPT_DEFAULT
:
2983 return g_strdup("default");
2984 case SPAPR_RESIZE_HPT_DISABLED
:
2985 return g_strdup("disabled");
2986 case SPAPR_RESIZE_HPT_ENABLED
:
2987 return g_strdup("enabled");
2988 case SPAPR_RESIZE_HPT_REQUIRED
:
2989 return g_strdup("required");
2991 g_assert_not_reached();
2994 static void spapr_set_resize_hpt(Object
*obj
, const char *value
, Error
**errp
)
2996 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
2998 if (strcmp(value
, "default") == 0) {
2999 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_DEFAULT
;
3000 } else if (strcmp(value
, "disabled") == 0) {
3001 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_DISABLED
;
3002 } else if (strcmp(value
, "enabled") == 0) {
3003 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_ENABLED
;
3004 } else if (strcmp(value
, "required") == 0) {
3005 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_REQUIRED
;
3007 error_setg(errp
, "Bad value for \"resize-hpt\" property");
3011 static void spapr_get_vsmt(Object
*obj
, Visitor
*v
, const char *name
,
3012 void *opaque
, Error
**errp
)
3014 visit_type_uint32(v
, name
, (uint32_t *)opaque
, errp
);
3017 static void spapr_set_vsmt(Object
*obj
, Visitor
*v
, const char *name
,
3018 void *opaque
, Error
**errp
)
3020 visit_type_uint32(v
, name
, (uint32_t *)opaque
, errp
);
3023 static void spapr_instance_init(Object
*obj
)
3025 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
3027 spapr
->htab_fd
= -1;
3028 spapr
->use_hotplug_event_source
= true;
3029 object_property_add_str(obj
, "kvm-type",
3030 spapr_get_kvm_type
, spapr_set_kvm_type
, NULL
);
3031 object_property_set_description(obj
, "kvm-type",
3032 "Specifies the KVM virtualization mode (HV, PR)",
3034 object_property_add_bool(obj
, "modern-hotplug-events",
3035 spapr_get_modern_hotplug_events
,
3036 spapr_set_modern_hotplug_events
,
3038 object_property_set_description(obj
, "modern-hotplug-events",
3039 "Use dedicated hotplug event mechanism in"
3040 " place of standard EPOW events when possible"
3041 " (required for memory hot-unplug support)",
3043 ppc_compat_add_property(obj
, "max-cpu-compat", &spapr
->max_compat_pvr
,
3044 "Maximum permitted CPU compatibility mode",
3047 object_property_add_str(obj
, "resize-hpt",
3048 spapr_get_resize_hpt
, spapr_set_resize_hpt
, NULL
);
3049 object_property_set_description(obj
, "resize-hpt",
3050 "Resizing of the Hash Page Table (enabled, disabled, required)",
3052 object_property_add(obj
, "vsmt", "uint32", spapr_get_vsmt
,
3053 spapr_set_vsmt
, NULL
, &spapr
->vsmt
, &error_abort
);
3054 object_property_set_description(obj
, "vsmt",
3055 "Virtual SMT: KVM behaves as if this were"
3056 " the host's SMT mode", &error_abort
);
3057 object_property_add_bool(obj
, "vfio-no-msix-emulation",
3058 spapr_get_msix_emulation
, NULL
, NULL
);
3061 static void spapr_machine_finalizefn(Object
*obj
)
3063 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
3065 g_free(spapr
->kvm_type
);
3068 void spapr_do_system_reset_on_cpu(CPUState
*cs
, run_on_cpu_data arg
)
3070 cpu_synchronize_state(cs
);
3071 ppc_cpu_do_system_reset(cs
);
3074 static void spapr_nmi(NMIState
*n
, int cpu_index
, Error
**errp
)
3079 async_run_on_cpu(cs
, spapr_do_system_reset_on_cpu
, RUN_ON_CPU_NULL
);
3083 static void spapr_add_lmbs(DeviceState
*dev
, uint64_t addr_start
, uint64_t size
,
3084 uint32_t node
, bool dedicated_hp_event_source
,
3087 sPAPRDRConnector
*drc
;
3088 uint32_t nr_lmbs
= size
/SPAPR_MEMORY_BLOCK_SIZE
;
3089 int i
, fdt_offset
, fdt_size
;
3091 uint64_t addr
= addr_start
;
3092 bool hotplugged
= spapr_drc_hotplugged(dev
);
3093 Error
*local_err
= NULL
;
3095 for (i
= 0; i
< nr_lmbs
; i
++) {
3096 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3097 addr
/ SPAPR_MEMORY_BLOCK_SIZE
);
3100 fdt
= create_device_tree(&fdt_size
);
3101 fdt_offset
= spapr_populate_memory_node(fdt
, node
, addr
,
3102 SPAPR_MEMORY_BLOCK_SIZE
);
3104 spapr_drc_attach(drc
, dev
, fdt
, fdt_offset
, &local_err
);
3106 while (addr
> addr_start
) {
3107 addr
-= SPAPR_MEMORY_BLOCK_SIZE
;
3108 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3109 addr
/ SPAPR_MEMORY_BLOCK_SIZE
);
3110 spapr_drc_detach(drc
);
3113 error_propagate(errp
, local_err
);
3117 spapr_drc_reset(drc
);
3119 addr
+= SPAPR_MEMORY_BLOCK_SIZE
;
3121 /* send hotplug notification to the
3122 * guest only in case of hotplugged memory
3125 if (dedicated_hp_event_source
) {
3126 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3127 addr_start
/ SPAPR_MEMORY_BLOCK_SIZE
);
3128 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB
,
3130 spapr_drc_index(drc
));
3132 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB
,
3138 static void spapr_memory_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3141 Error
*local_err
= NULL
;
3142 sPAPRMachineState
*ms
= SPAPR_MACHINE(hotplug_dev
);
3143 PCDIMMDevice
*dimm
= PC_DIMM(dev
);
3144 PCDIMMDeviceClass
*ddc
= PC_DIMM_GET_CLASS(dimm
);
3146 uint64_t align
, size
, addr
;
3149 mr
= ddc
->get_memory_region(dimm
, &local_err
);
3153 align
= memory_region_get_alignment(mr
);
3154 size
= memory_region_size(mr
);
3156 pc_dimm_memory_plug(dev
, MACHINE(ms
), align
, &local_err
);
3161 addr
= object_property_get_uint(OBJECT(dimm
),
3162 PC_DIMM_ADDR_PROP
, &local_err
);
3167 node
= object_property_get_uint(OBJECT(dev
), PC_DIMM_NODE_PROP
,
3169 spapr_add_lmbs(dev
, addr
, size
, node
,
3170 spapr_ovec_test(ms
->ov5_cas
, OV5_HP_EVT
),
3179 pc_dimm_memory_unplug(dev
, MACHINE(ms
));
3181 error_propagate(errp
, local_err
);
3184 static void spapr_memory_pre_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3187 const sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(hotplug_dev
);
3188 PCDIMMDevice
*dimm
= PC_DIMM(dev
);
3189 PCDIMMDeviceClass
*ddc
= PC_DIMM_GET_CLASS(dimm
);
3194 if (!smc
->dr_lmb_enabled
) {
3195 error_setg(errp
, "Memory hotplug not supported for this machine");
3199 mr
= ddc
->get_memory_region(dimm
, errp
);
3203 size
= memory_region_size(mr
);
3205 if (size
% SPAPR_MEMORY_BLOCK_SIZE
) {
3206 error_setg(errp
, "Hotplugged memory size must be a multiple of "
3207 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE
/ M_BYTE
);
3211 mem_dev
= object_property_get_str(OBJECT(dimm
), PC_DIMM_MEMDEV_PROP
, NULL
);
3212 if (mem_dev
&& !kvmppc_is_mem_backend_page_size_ok(mem_dev
)) {
3213 error_setg(errp
, "Memory backend has bad page size. "
3214 "Use 'memory-backend-file' with correct mem-path.");
3222 struct sPAPRDIMMState
{
3225 QTAILQ_ENTRY(sPAPRDIMMState
) next
;
3228 static sPAPRDIMMState
*spapr_pending_dimm_unplugs_find(sPAPRMachineState
*s
,
3231 sPAPRDIMMState
*dimm_state
= NULL
;
3233 QTAILQ_FOREACH(dimm_state
, &s
->pending_dimm_unplugs
, next
) {
3234 if (dimm_state
->dimm
== dimm
) {
3241 static sPAPRDIMMState
*spapr_pending_dimm_unplugs_add(sPAPRMachineState
*spapr
,
3245 sPAPRDIMMState
*ds
= NULL
;
3248 * If this request is for a DIMM whose removal had failed earlier
3249 * (due to guest's refusal to remove the LMBs), we would have this
3250 * dimm already in the pending_dimm_unplugs list. In that
3251 * case don't add again.
3253 ds
= spapr_pending_dimm_unplugs_find(spapr
, dimm
);
3255 ds
= g_malloc0(sizeof(sPAPRDIMMState
));
3256 ds
->nr_lmbs
= nr_lmbs
;
3258 QTAILQ_INSERT_HEAD(&spapr
->pending_dimm_unplugs
, ds
, next
);
3263 static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState
*spapr
,
3264 sPAPRDIMMState
*dimm_state
)
3266 QTAILQ_REMOVE(&spapr
->pending_dimm_unplugs
, dimm_state
, next
);
3270 static sPAPRDIMMState
*spapr_recover_pending_dimm_state(sPAPRMachineState
*ms
,
3273 sPAPRDRConnector
*drc
;
3274 PCDIMMDeviceClass
*ddc
= PC_DIMM_GET_CLASS(dimm
);
3275 MemoryRegion
*mr
= ddc
->get_memory_region(dimm
, &error_abort
);
3276 uint64_t size
= memory_region_size(mr
);
3277 uint32_t nr_lmbs
= size
/ SPAPR_MEMORY_BLOCK_SIZE
;
3278 uint32_t avail_lmbs
= 0;
3279 uint64_t addr_start
, addr
;
3282 addr_start
= object_property_get_int(OBJECT(dimm
), PC_DIMM_ADDR_PROP
,
3286 for (i
= 0; i
< nr_lmbs
; i
++) {
3287 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3288 addr
/ SPAPR_MEMORY_BLOCK_SIZE
);
3293 addr
+= SPAPR_MEMORY_BLOCK_SIZE
;
3296 return spapr_pending_dimm_unplugs_add(ms
, avail_lmbs
, dimm
);
3299 /* Callback to be called during DRC release. */
3300 void spapr_lmb_release(DeviceState
*dev
)
3302 HotplugHandler
*hotplug_ctrl
= qdev_get_hotplug_handler(dev
);
3303 sPAPRMachineState
*spapr
= SPAPR_MACHINE(hotplug_ctrl
);
3304 sPAPRDIMMState
*ds
= spapr_pending_dimm_unplugs_find(spapr
, PC_DIMM(dev
));
3306 /* This information will get lost if a migration occurs
3307 * during the unplug process. In this case recover it. */
3309 ds
= spapr_recover_pending_dimm_state(spapr
, PC_DIMM(dev
));
3311 /* The DRC being examined by the caller at least must be counted */
3312 g_assert(ds
->nr_lmbs
);
3315 if (--ds
->nr_lmbs
) {
3320 * Now that all the LMBs have been removed by the guest, call the
3321 * unplug handler chain. This can never fail.
3323 hotplug_handler_unplug(hotplug_ctrl
, dev
, &error_abort
);
3326 static void spapr_memory_unplug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
3328 sPAPRMachineState
*spapr
= SPAPR_MACHINE(hotplug_dev
);
3329 sPAPRDIMMState
*ds
= spapr_pending_dimm_unplugs_find(spapr
, PC_DIMM(dev
));
3331 pc_dimm_memory_unplug(dev
, MACHINE(hotplug_dev
));
3332 object_unparent(OBJECT(dev
));
3333 spapr_pending_dimm_unplugs_remove(spapr
, ds
);
3336 static void spapr_memory_unplug_request(HotplugHandler
*hotplug_dev
,
3337 DeviceState
*dev
, Error
**errp
)
3339 sPAPRMachineState
*spapr
= SPAPR_MACHINE(hotplug_dev
);
3340 Error
*local_err
= NULL
;
3341 PCDIMMDevice
*dimm
= PC_DIMM(dev
);
3342 PCDIMMDeviceClass
*ddc
= PC_DIMM_GET_CLASS(dimm
);
3345 uint64_t size
, addr_start
, addr
;
3347 sPAPRDRConnector
*drc
;
3349 mr
= ddc
->get_memory_region(dimm
, &local_err
);
3353 size
= memory_region_size(mr
);
3354 nr_lmbs
= size
/ SPAPR_MEMORY_BLOCK_SIZE
;
3356 addr_start
= object_property_get_uint(OBJECT(dimm
), PC_DIMM_ADDR_PROP
,
3363 * An existing pending dimm state for this DIMM means that there is an
3364 * unplug operation in progress, waiting for the spapr_lmb_release
3365 * callback to complete the job (BQL can't cover that far). In this case,
3366 * bail out to avoid detaching DRCs that were already released.
3368 if (spapr_pending_dimm_unplugs_find(spapr
, dimm
)) {
3369 error_setg(&local_err
,
3370 "Memory unplug already in progress for device %s",
3375 spapr_pending_dimm_unplugs_add(spapr
, nr_lmbs
, dimm
);
3378 for (i
= 0; i
< nr_lmbs
; i
++) {
3379 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3380 addr
/ SPAPR_MEMORY_BLOCK_SIZE
);
3383 spapr_drc_detach(drc
);
3384 addr
+= SPAPR_MEMORY_BLOCK_SIZE
;
3387 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3388 addr_start
/ SPAPR_MEMORY_BLOCK_SIZE
);
3389 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB
,
3390 nr_lmbs
, spapr_drc_index(drc
));
3392 error_propagate(errp
, local_err
);
3395 static void *spapr_populate_hotplug_cpu_dt(CPUState
*cs
, int *fdt_offset
,
3396 sPAPRMachineState
*spapr
)
3398 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
3399 DeviceClass
*dc
= DEVICE_GET_CLASS(cs
);
3400 int id
= spapr_get_vcpu_id(cpu
);
3402 int offset
, fdt_size
;
3405 fdt
= create_device_tree(&fdt_size
);
3406 nodename
= g_strdup_printf("%s@%x", dc
->fw_name
, id
);
3407 offset
= fdt_add_subnode(fdt
, 0, nodename
);
3409 spapr_populate_cpu_dt(cs
, fdt
, offset
, spapr
);
3412 *fdt_offset
= offset
;
3416 /* Callback to be called during DRC release. */
3417 void spapr_core_release(DeviceState
*dev
)
3419 HotplugHandler
*hotplug_ctrl
= qdev_get_hotplug_handler(dev
);
3421 /* Call the unplug handler chain. This can never fail. */
3422 hotplug_handler_unplug(hotplug_ctrl
, dev
, &error_abort
);
3425 static void spapr_core_unplug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
3427 MachineState
*ms
= MACHINE(hotplug_dev
);
3428 sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(ms
);
3429 CPUCore
*cc
= CPU_CORE(dev
);
3430 CPUArchId
*core_slot
= spapr_find_cpu_slot(ms
, cc
->core_id
, NULL
);
3432 if (smc
->pre_2_10_has_unused_icps
) {
3433 sPAPRCPUCore
*sc
= SPAPR_CPU_CORE(OBJECT(dev
));
3436 for (i
= 0; i
< cc
->nr_threads
; i
++) {
3437 CPUState
*cs
= CPU(sc
->threads
[i
]);
3439 pre_2_10_vmstate_register_dummy_icp(cs
->cpu_index
);
3444 core_slot
->cpu
= NULL
;
3445 object_unparent(OBJECT(dev
));
3449 void spapr_core_unplug_request(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3452 sPAPRMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
3454 sPAPRDRConnector
*drc
;
3455 CPUCore
*cc
= CPU_CORE(dev
);
3457 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev
), cc
->core_id
, &index
)) {
3458 error_setg(errp
, "Unable to find CPU core with core-id: %d",
3463 error_setg(errp
, "Boot CPU core may not be unplugged");
3467 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_CPU
,
3468 spapr_vcpu_id(spapr
, cc
->core_id
));
3471 spapr_drc_detach(drc
);
3473 spapr_hotplug_req_remove_by_index(drc
);
3476 static void spapr_core_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3479 sPAPRMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
3480 MachineClass
*mc
= MACHINE_GET_CLASS(spapr
);
3481 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
3482 sPAPRCPUCore
*core
= SPAPR_CPU_CORE(OBJECT(dev
));
3483 CPUCore
*cc
= CPU_CORE(dev
);
3484 CPUState
*cs
= CPU(core
->threads
[0]);
3485 sPAPRDRConnector
*drc
;
3486 Error
*local_err
= NULL
;
3487 CPUArchId
*core_slot
;
3489 bool hotplugged
= spapr_drc_hotplugged(dev
);
3491 core_slot
= spapr_find_cpu_slot(MACHINE(hotplug_dev
), cc
->core_id
, &index
);
3493 error_setg(errp
, "Unable to find CPU core with core-id: %d",
3497 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_CPU
,
3498 spapr_vcpu_id(spapr
, cc
->core_id
));
3500 g_assert(drc
|| !mc
->has_hotpluggable_cpus
);
3506 fdt
= spapr_populate_hotplug_cpu_dt(cs
, &fdt_offset
, spapr
);
3508 spapr_drc_attach(drc
, dev
, fdt
, fdt_offset
, &local_err
);
3511 error_propagate(errp
, local_err
);
3517 * Send hotplug notification interrupt to the guest only
3518 * in case of hotplugged CPUs.
3520 spapr_hotplug_req_add_by_index(drc
);
3522 spapr_drc_reset(drc
);
3526 core_slot
->cpu
= OBJECT(dev
);
3528 if (smc
->pre_2_10_has_unused_icps
) {
3531 for (i
= 0; i
< cc
->nr_threads
; i
++) {
3532 cs
= CPU(core
->threads
[i
]);
3533 pre_2_10_vmstate_unregister_dummy_icp(cs
->cpu_index
);
3538 static void spapr_core_pre_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3541 MachineState
*machine
= MACHINE(OBJECT(hotplug_dev
));
3542 MachineClass
*mc
= MACHINE_GET_CLASS(hotplug_dev
);
3543 Error
*local_err
= NULL
;
3544 CPUCore
*cc
= CPU_CORE(dev
);
3545 const char *base_core_type
= spapr_get_cpu_core_type(machine
->cpu_type
);
3546 const char *type
= object_get_typename(OBJECT(dev
));
3547 CPUArchId
*core_slot
;
3550 if (dev
->hotplugged
&& !mc
->has_hotpluggable_cpus
) {
3551 error_setg(&local_err
, "CPU hotplug not supported for this machine");
3555 if (strcmp(base_core_type
, type
)) {
3556 error_setg(&local_err
, "CPU core type should be %s", base_core_type
);
3560 if (cc
->core_id
% smp_threads
) {
3561 error_setg(&local_err
, "invalid core id %d", cc
->core_id
);
3566 * In general we should have homogeneous threads-per-core, but old
3567 * (pre hotplug support) machine types allow the last core to have
3568 * reduced threads as a compatibility hack for when we allowed
3569 * total vcpus not a multiple of threads-per-core.
3571 if (mc
->has_hotpluggable_cpus
&& (cc
->nr_threads
!= smp_threads
)) {
3572 error_setg(&local_err
, "invalid nr-threads %d, must be %d",
3573 cc
->nr_threads
, smp_threads
);
3577 core_slot
= spapr_find_cpu_slot(MACHINE(hotplug_dev
), cc
->core_id
, &index
);
3579 error_setg(&local_err
, "core id %d out of range", cc
->core_id
);
3583 if (core_slot
->cpu
) {
3584 error_setg(&local_err
, "core %d already populated", cc
->core_id
);
3588 numa_cpu_pre_plug(core_slot
, dev
, &local_err
);
3591 error_propagate(errp
, local_err
);
3594 static void spapr_machine_device_plug(HotplugHandler
*hotplug_dev
,
3595 DeviceState
*dev
, Error
**errp
)
3597 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
3598 spapr_memory_plug(hotplug_dev
, dev
, errp
);
3599 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
3600 spapr_core_plug(hotplug_dev
, dev
, errp
);
3604 static void spapr_machine_device_unplug(HotplugHandler
*hotplug_dev
,
3605 DeviceState
*dev
, Error
**errp
)
3607 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
3608 spapr_memory_unplug(hotplug_dev
, dev
);
3609 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
3610 spapr_core_unplug(hotplug_dev
, dev
);
3614 static void spapr_machine_device_unplug_request(HotplugHandler
*hotplug_dev
,
3615 DeviceState
*dev
, Error
**errp
)
3617 sPAPRMachineState
*sms
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
3618 MachineClass
*mc
= MACHINE_GET_CLASS(sms
);
3620 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
3621 if (spapr_ovec_test(sms
->ov5_cas
, OV5_HP_EVT
)) {
3622 spapr_memory_unplug_request(hotplug_dev
, dev
, errp
);
3624 /* NOTE: this means there is a window after guest reset, prior to
3625 * CAS negotiation, where unplug requests will fail due to the
3626 * capability not being detected yet. This is a bit different than
3627 * the case with PCI unplug, where the events will be queued and
3628 * eventually handled by the guest after boot
3630 error_setg(errp
, "Memory hot unplug not supported for this guest");
3632 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
3633 if (!mc
->has_hotpluggable_cpus
) {
3634 error_setg(errp
, "CPU hot unplug not supported on this machine");
3637 spapr_core_unplug_request(hotplug_dev
, dev
, errp
);
3641 static void spapr_machine_device_pre_plug(HotplugHandler
*hotplug_dev
,
3642 DeviceState
*dev
, Error
**errp
)
3644 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
3645 spapr_memory_pre_plug(hotplug_dev
, dev
, errp
);
3646 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
3647 spapr_core_pre_plug(hotplug_dev
, dev
, errp
);
3651 static HotplugHandler
*spapr_get_hotplug_handler(MachineState
*machine
,
3654 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
) ||
3655 object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
3656 return HOTPLUG_HANDLER(machine
);
3661 static CpuInstanceProperties
3662 spapr_cpu_index_to_props(MachineState
*machine
, unsigned cpu_index
)
3664 CPUArchId
*core_slot
;
3665 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
3667 /* make sure possible_cpu are intialized */
3668 mc
->possible_cpu_arch_ids(machine
);
3669 /* get CPU core slot containing thread that matches cpu_index */
3670 core_slot
= spapr_find_cpu_slot(machine
, cpu_index
, NULL
);
3672 return core_slot
->props
;
3675 static int64_t spapr_get_default_cpu_node_id(const MachineState
*ms
, int idx
)
3677 return idx
/ smp_cores
% nb_numa_nodes
;
3680 static const CPUArchIdList
*spapr_possible_cpu_arch_ids(MachineState
*machine
)
3683 const char *core_type
;
3684 int spapr_max_cores
= max_cpus
/ smp_threads
;
3685 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
3687 if (!mc
->has_hotpluggable_cpus
) {
3688 spapr_max_cores
= QEMU_ALIGN_UP(smp_cpus
, smp_threads
) / smp_threads
;
3690 if (machine
->possible_cpus
) {
3691 assert(machine
->possible_cpus
->len
== spapr_max_cores
);
3692 return machine
->possible_cpus
;
3695 core_type
= spapr_get_cpu_core_type(machine
->cpu_type
);
3697 error_report("Unable to find sPAPR CPU Core definition");
3701 machine
->possible_cpus
= g_malloc0(sizeof(CPUArchIdList
) +
3702 sizeof(CPUArchId
) * spapr_max_cores
);
3703 machine
->possible_cpus
->len
= spapr_max_cores
;
3704 for (i
= 0; i
< machine
->possible_cpus
->len
; i
++) {
3705 int core_id
= i
* smp_threads
;
3707 machine
->possible_cpus
->cpus
[i
].type
= core_type
;
3708 machine
->possible_cpus
->cpus
[i
].vcpus_count
= smp_threads
;
3709 machine
->possible_cpus
->cpus
[i
].arch_id
= core_id
;
3710 machine
->possible_cpus
->cpus
[i
].props
.has_core_id
= true;
3711 machine
->possible_cpus
->cpus
[i
].props
.core_id
= core_id
;
3713 return machine
->possible_cpus
;
3716 static void spapr_phb_placement(sPAPRMachineState
*spapr
, uint32_t index
,
3717 uint64_t *buid
, hwaddr
*pio
,
3718 hwaddr
*mmio32
, hwaddr
*mmio64
,
3719 unsigned n_dma
, uint32_t *liobns
, Error
**errp
)
3722 * New-style PHB window placement.
3724 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
3725 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
3728 * Some guest kernels can't work with MMIO windows above 1<<46
3729 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
3731 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
3732 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
3733 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
3734 * 1TiB 64-bit MMIO windows for each PHB.
3736 const uint64_t base_buid
= 0x800000020000000ULL
;
3737 #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
3738 SPAPR_PCI_MEM64_WIN_SIZE - 1)
3741 /* Sanity check natural alignments */
3742 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE
% SPAPR_PCI_MEM64_WIN_SIZE
) != 0);
3743 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT
% SPAPR_PCI_MEM64_WIN_SIZE
) != 0);
3744 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE
% SPAPR_PCI_MEM32_WIN_SIZE
) != 0);
3745 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE
% SPAPR_PCI_IO_WIN_SIZE
) != 0);
3746 /* Sanity check bounds */
3747 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS
* SPAPR_PCI_IO_WIN_SIZE
) >
3748 SPAPR_PCI_MEM32_WIN_SIZE
);
3749 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS
* SPAPR_PCI_MEM32_WIN_SIZE
) >
3750 SPAPR_PCI_MEM64_WIN_SIZE
);
3752 if (index
>= SPAPR_MAX_PHBS
) {
3753 error_setg(errp
, "\"index\" for PAPR PHB is too large (max %llu)",
3754 SPAPR_MAX_PHBS
- 1);
3758 *buid
= base_buid
+ index
;
3759 for (i
= 0; i
< n_dma
; ++i
) {
3760 liobns
[i
] = SPAPR_PCI_LIOBN(index
, i
);
3763 *pio
= SPAPR_PCI_BASE
+ index
* SPAPR_PCI_IO_WIN_SIZE
;
3764 *mmio32
= SPAPR_PCI_BASE
+ (index
+ 1) * SPAPR_PCI_MEM32_WIN_SIZE
;
3765 *mmio64
= SPAPR_PCI_BASE
+ (index
+ 1) * SPAPR_PCI_MEM64_WIN_SIZE
;
3768 static ICSState
*spapr_ics_get(XICSFabric
*dev
, int irq
)
3770 sPAPRMachineState
*spapr
= SPAPR_MACHINE(dev
);
3772 return ics_valid_irq(spapr
->ics
, irq
) ? spapr
->ics
: NULL
;
3775 static void spapr_ics_resend(XICSFabric
*dev
)
3777 sPAPRMachineState
*spapr
= SPAPR_MACHINE(dev
);
3779 ics_resend(spapr
->ics
);
3782 static ICPState
*spapr_icp_get(XICSFabric
*xi
, int vcpu_id
)
3784 PowerPCCPU
*cpu
= spapr_find_cpu(vcpu_id
);
3786 return cpu
? ICP(cpu
->intc
) : NULL
;
3789 #define ICS_IRQ_FREE(ics, srcno) \
3790 (!((ics)->irqs[(srcno)].flags & (XICS_FLAGS_IRQ_MASK)))
3792 static int ics_find_free_block(ICSState
*ics
, int num
, int alignnum
)
3796 for (first
= 0; first
< ics
->nr_irqs
; first
+= alignnum
) {
3797 if (num
> (ics
->nr_irqs
- first
)) {
3800 for (i
= first
; i
< first
+ num
; ++i
) {
3801 if (!ICS_IRQ_FREE(ics
, i
)) {
3805 if (i
== (first
+ num
)) {
3814 * Allocate the IRQ number and set the IRQ type, LSI or MSI
3816 static void spapr_irq_set_lsi(sPAPRMachineState
*spapr
, int irq
, bool lsi
)
3818 ics_set_irq_type(spapr
->ics
, irq
- spapr
->ics
->offset
, lsi
);
3821 int spapr_irq_alloc(sPAPRMachineState
*spapr
, int irq_hint
, bool lsi
,
3824 ICSState
*ics
= spapr
->ics
;
3830 if (!ICS_IRQ_FREE(ics
, irq_hint
- ics
->offset
)) {
3831 error_setg(errp
, "can't allocate IRQ %d: already in use", irq_hint
);
3836 irq
= ics_find_free_block(ics
, 1, 1);
3838 error_setg(errp
, "can't allocate IRQ: no IRQ left");
3844 spapr_irq_set_lsi(spapr
, irq
, lsi
);
3845 trace_spapr_irq_alloc(irq
);
3851 * Allocate block of consecutive IRQs, and return the number of the first IRQ in
3852 * the block. If align==true, aligns the first IRQ number to num.
3854 int spapr_irq_alloc_block(sPAPRMachineState
*spapr
, int num
, bool lsi
,
3855 bool align
, Error
**errp
)
3857 ICSState
*ics
= spapr
->ics
;
3863 * MSIMesage::data is used for storing VIRQ so
3864 * it has to be aligned to num to support multiple
3865 * MSI vectors. MSI-X is not affected by this.
3866 * The hint is used for the first IRQ, the rest should
3867 * be allocated continuously.
3870 assert((num
== 1) || (num
== 2) || (num
== 4) ||
3871 (num
== 8) || (num
== 16) || (num
== 32));
3872 first
= ics_find_free_block(ics
, num
, num
);
3874 first
= ics_find_free_block(ics
, num
, 1);
3877 error_setg(errp
, "can't find a free %d-IRQ block", num
);
3881 first
+= ics
->offset
;
3882 for (i
= first
; i
< first
+ num
; ++i
) {
3883 spapr_irq_set_lsi(spapr
, i
, lsi
);
3886 trace_spapr_irq_alloc_block(first
, num
, lsi
, align
);
3891 void spapr_irq_free(sPAPRMachineState
*spapr
, int irq
, int num
)
3893 ICSState
*ics
= spapr
->ics
;
3894 int srcno
= irq
- ics
->offset
;
3897 if (ics_valid_irq(ics
, irq
)) {
3898 trace_spapr_irq_free(0, irq
, num
);
3899 for (i
= srcno
; i
< srcno
+ num
; ++i
) {
3900 if (ICS_IRQ_FREE(ics
, i
)) {
3901 trace_spapr_irq_free_warn(0, i
+ ics
->offset
);
3903 memset(&ics
->irqs
[i
], 0, sizeof(ICSIRQState
));
3908 qemu_irq
spapr_qirq(sPAPRMachineState
*spapr
, int irq
)
3910 ICSState
*ics
= spapr
->ics
;
3912 if (ics_valid_irq(ics
, irq
)) {
3913 return ics
->qirqs
[irq
- ics
->offset
];
3919 static void spapr_pic_print_info(InterruptStatsProvider
*obj
,
3922 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
3926 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
3928 icp_pic_print_info(ICP(cpu
->intc
), mon
);
3931 ics_pic_print_info(spapr
->ics
, mon
);
3934 int spapr_get_vcpu_id(PowerPCCPU
*cpu
)
3936 return cpu
->vcpu_id
;
3939 void spapr_set_vcpu_id(PowerPCCPU
*cpu
, int cpu_index
, Error
**errp
)
3941 sPAPRMachineState
*spapr
= SPAPR_MACHINE(qdev_get_machine());
3944 vcpu_id
= spapr_vcpu_id(spapr
, cpu_index
);
3946 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id
)) {
3947 error_setg(errp
, "Can't create CPU with id %d in KVM", vcpu_id
);
3948 error_append_hint(errp
, "Adjust the number of cpus to %d "
3949 "or try to raise the number of threads per core\n",
3950 vcpu_id
* smp_threads
/ spapr
->vsmt
);
3954 cpu
->vcpu_id
= vcpu_id
;
3957 PowerPCCPU
*spapr_find_cpu(int vcpu_id
)
3962 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
3964 if (spapr_get_vcpu_id(cpu
) == vcpu_id
) {
3972 static void spapr_machine_class_init(ObjectClass
*oc
, void *data
)
3974 MachineClass
*mc
= MACHINE_CLASS(oc
);
3975 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(oc
);
3976 FWPathProviderClass
*fwc
= FW_PATH_PROVIDER_CLASS(oc
);
3977 NMIClass
*nc
= NMI_CLASS(oc
);
3978 HotplugHandlerClass
*hc
= HOTPLUG_HANDLER_CLASS(oc
);
3979 PPCVirtualHypervisorClass
*vhc
= PPC_VIRTUAL_HYPERVISOR_CLASS(oc
);
3980 XICSFabricClass
*xic
= XICS_FABRIC_CLASS(oc
);
3981 InterruptStatsProviderClass
*ispc
= INTERRUPT_STATS_PROVIDER_CLASS(oc
);
3983 mc
->desc
= "pSeries Logical Partition (PAPR compliant)";
3986 * We set up the default / latest behaviour here. The class_init
3987 * functions for the specific versioned machine types can override
3988 * these details for backwards compatibility
3990 mc
->init
= spapr_machine_init
;
3991 mc
->reset
= spapr_machine_reset
;
3992 mc
->block_default_type
= IF_SCSI
;
3993 mc
->max_cpus
= 1024;
3994 mc
->no_parallel
= 1;
3995 mc
->default_boot_order
= "";
3996 mc
->default_ram_size
= 512 * M_BYTE
;
3997 mc
->kvm_type
= spapr_kvm_type
;
3998 machine_class_allow_dynamic_sysbus_dev(mc
, TYPE_SPAPR_PCI_HOST_BRIDGE
);
3999 mc
->pci_allow_0_address
= true;
4000 assert(!mc
->get_hotplug_handler
);
4001 mc
->get_hotplug_handler
= spapr_get_hotplug_handler
;
4002 hc
->pre_plug
= spapr_machine_device_pre_plug
;
4003 hc
->plug
= spapr_machine_device_plug
;
4004 mc
->cpu_index_to_instance_props
= spapr_cpu_index_to_props
;
4005 mc
->get_default_cpu_node_id
= spapr_get_default_cpu_node_id
;
4006 mc
->possible_cpu_arch_ids
= spapr_possible_cpu_arch_ids
;
4007 hc
->unplug_request
= spapr_machine_device_unplug_request
;
4008 hc
->unplug
= spapr_machine_device_unplug
;
4010 smc
->dr_lmb_enabled
= true;
4011 mc
->default_cpu_type
= POWERPC_CPU_TYPE_NAME("power8_v2.0");
4012 mc
->has_hotpluggable_cpus
= true;
4013 smc
->resize_hpt_default
= SPAPR_RESIZE_HPT_ENABLED
;
4014 fwc
->get_dev_path
= spapr_get_fw_dev_path
;
4015 nc
->nmi_monitor_handler
= spapr_nmi
;
4016 smc
->phb_placement
= spapr_phb_placement
;
4017 vhc
->hypercall
= emulate_spapr_hypercall
;
4018 vhc
->hpt_mask
= spapr_hpt_mask
;
4019 vhc
->map_hptes
= spapr_map_hptes
;
4020 vhc
->unmap_hptes
= spapr_unmap_hptes
;
4021 vhc
->store_hpte
= spapr_store_hpte
;
4022 vhc
->get_patbe
= spapr_get_patbe
;
4023 vhc
->encode_hpt_for_kvm_pr
= spapr_encode_hpt_for_kvm_pr
;
4024 xic
->ics_get
= spapr_ics_get
;
4025 xic
->ics_resend
= spapr_ics_resend
;
4026 xic
->icp_get
= spapr_icp_get
;
4027 ispc
->print_info
= spapr_pic_print_info
;
4028 /* Force NUMA node memory size to be a multiple of
4029 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4030 * in which LMBs are represented and hot-added
4032 mc
->numa_mem_align_shift
= 28;
4034 smc
->default_caps
.caps
[SPAPR_CAP_HTM
] = SPAPR_CAP_OFF
;
4035 smc
->default_caps
.caps
[SPAPR_CAP_VSX
] = SPAPR_CAP_ON
;
4036 smc
->default_caps
.caps
[SPAPR_CAP_DFP
] = SPAPR_CAP_ON
;
4037 smc
->default_caps
.caps
[SPAPR_CAP_CFPC
] = SPAPR_CAP_BROKEN
;
4038 smc
->default_caps
.caps
[SPAPR_CAP_SBBC
] = SPAPR_CAP_BROKEN
;
4039 smc
->default_caps
.caps
[SPAPR_CAP_IBS
] = SPAPR_CAP_BROKEN
;
4040 spapr_caps_add_properties(smc
, &error_abort
);
4043 static const TypeInfo spapr_machine_info
= {
4044 .name
= TYPE_SPAPR_MACHINE
,
4045 .parent
= TYPE_MACHINE
,
4047 .instance_size
= sizeof(sPAPRMachineState
),
4048 .instance_init
= spapr_instance_init
,
4049 .instance_finalize
= spapr_machine_finalizefn
,
4050 .class_size
= sizeof(sPAPRMachineClass
),
4051 .class_init
= spapr_machine_class_init
,
4052 .interfaces
= (InterfaceInfo
[]) {
4053 { TYPE_FW_PATH_PROVIDER
},
4055 { TYPE_HOTPLUG_HANDLER
},
4056 { TYPE_PPC_VIRTUAL_HYPERVISOR
},
4057 { TYPE_XICS_FABRIC
},
4058 { TYPE_INTERRUPT_STATS_PROVIDER
},
4063 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4064 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4067 MachineClass *mc = MACHINE_CLASS(oc); \
4068 spapr_machine_##suffix##_class_options(mc); \
4070 mc->alias = "pseries"; \
4071 mc->is_default = 1; \
4074 static void spapr_machine_##suffix##_instance_init(Object *obj) \
4076 MachineState *machine = MACHINE(obj); \
4077 spapr_machine_##suffix##_instance_options(machine); \
4079 static const TypeInfo spapr_machine_##suffix##_info = { \
4080 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4081 .parent = TYPE_SPAPR_MACHINE, \
4082 .class_init = spapr_machine_##suffix##_class_init, \
4083 .instance_init = spapr_machine_##suffix##_instance_init, \
4085 static void spapr_machine_register_##suffix(void) \
4087 type_register(&spapr_machine_##suffix##_info); \
4089 type_init(spapr_machine_register_##suffix)
4094 static void spapr_machine_3_0_instance_options(MachineState
*machine
)
4098 static void spapr_machine_3_0_class_options(MachineClass
*mc
)
4100 /* Defaults for the latest behaviour inherited from the base class */
4103 DEFINE_SPAPR_MACHINE(3_0
, "3.0", true);
4108 #define SPAPR_COMPAT_2_12 \
4111 .driver = TYPE_POWERPC_CPU, \
4112 .property = "pre-3.0-migration", \
4116 static void spapr_machine_2_12_instance_options(MachineState
*machine
)
4118 spapr_machine_3_0_instance_options(machine
);
4121 static void spapr_machine_2_12_class_options(MachineClass
*mc
)
4123 spapr_machine_3_0_class_options(mc
);
4124 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_12
);
4127 DEFINE_SPAPR_MACHINE(2_12
, "2.12", false);
4129 static void spapr_machine_2_12_sxxm_instance_options(MachineState
*machine
)
4131 spapr_machine_2_12_instance_options(machine
);
4134 static void spapr_machine_2_12_sxxm_class_options(MachineClass
*mc
)
4136 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4138 spapr_machine_2_12_class_options(mc
);
4139 smc
->default_caps
.caps
[SPAPR_CAP_CFPC
] = SPAPR_CAP_WORKAROUND
;
4140 smc
->default_caps
.caps
[SPAPR_CAP_SBBC
] = SPAPR_CAP_WORKAROUND
;
4141 smc
->default_caps
.caps
[SPAPR_CAP_IBS
] = SPAPR_CAP_FIXED_CCD
;
4144 DEFINE_SPAPR_MACHINE(2_12_sxxm
, "2.12-sxxm", false);
4149 #define SPAPR_COMPAT_2_11 \
4152 static void spapr_machine_2_11_instance_options(MachineState
*machine
)
4154 spapr_machine_2_12_instance_options(machine
);
4157 static void spapr_machine_2_11_class_options(MachineClass
*mc
)
4159 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4161 spapr_machine_2_12_class_options(mc
);
4162 smc
->default_caps
.caps
[SPAPR_CAP_HTM
] = SPAPR_CAP_ON
;
4163 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_11
);
4166 DEFINE_SPAPR_MACHINE(2_11
, "2.11", false);
4171 #define SPAPR_COMPAT_2_10 \
4174 static void spapr_machine_2_10_instance_options(MachineState
*machine
)
4176 spapr_machine_2_11_instance_options(machine
);
4179 static void spapr_machine_2_10_class_options(MachineClass
*mc
)
4181 spapr_machine_2_11_class_options(mc
);
4182 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_10
);
4185 DEFINE_SPAPR_MACHINE(2_10
, "2.10", false);
4190 #define SPAPR_COMPAT_2_9 \
4193 .driver = TYPE_POWERPC_CPU, \
4194 .property = "pre-2.10-migration", \
4198 static void spapr_machine_2_9_instance_options(MachineState *machine)
4200 spapr_machine_2_10_instance_options(machine
);
4203 static void spapr_machine_2_9_class_options(MachineClass
*mc
)
4205 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4207 spapr_machine_2_10_class_options(mc
);
4208 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_9
);
4209 mc
->numa_auto_assign_ram
= numa_legacy_auto_assign_ram
;
4210 smc
->pre_2_10_has_unused_icps
= true;
4211 smc
->resize_hpt_default
= SPAPR_RESIZE_HPT_DISABLED
;
4214 DEFINE_SPAPR_MACHINE(2_9
, "2.9", false);
4219 #define SPAPR_COMPAT_2_8 \
4222 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
4223 .property = "pcie-extended-configuration-space", \
4227 static void spapr_machine_2_8_instance_options(MachineState
*machine
)
4229 spapr_machine_2_9_instance_options(machine
);
4232 static void spapr_machine_2_8_class_options(MachineClass
*mc
)
4234 spapr_machine_2_9_class_options(mc
);
4235 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_8
);
4236 mc
->numa_mem_align_shift
= 23;
4239 DEFINE_SPAPR_MACHINE(2_8
, "2.8", false);
4244 #define SPAPR_COMPAT_2_7 \
4247 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
4248 .property = "mem_win_size", \
4249 .value = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
4252 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
4253 .property = "mem64_win_size", \
4257 .driver = TYPE_POWERPC_CPU, \
4258 .property = "pre-2.8-migration", \
4262 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
4263 .property = "pre-2.8-migration", \
4267 static void phb_placement_2_7(sPAPRMachineState
*spapr
, uint32_t index
,
4268 uint64_t *buid
, hwaddr
*pio
,
4269 hwaddr
*mmio32
, hwaddr
*mmio64
,
4270 unsigned n_dma
, uint32_t *liobns
, Error
**errp
)
4272 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4273 const uint64_t base_buid
= 0x800000020000000ULL
;
4274 const hwaddr phb_spacing
= 0x1000000000ULL
; /* 64 GiB */
4275 const hwaddr mmio_offset
= 0xa0000000; /* 2 GiB + 512 MiB */
4276 const hwaddr pio_offset
= 0x80000000; /* 2 GiB */
4277 const uint32_t max_index
= 255;
4278 const hwaddr phb0_alignment
= 0x10000000000ULL
; /* 1 TiB */
4280 uint64_t ram_top
= MACHINE(spapr
)->ram_size
;
4281 hwaddr phb0_base
, phb_base
;
4284 /* Do we have device memory? */
4285 if (MACHINE(spapr
)->maxram_size
> ram_top
) {
4286 /* Can't just use maxram_size, because there may be an
4287 * alignment gap between normal and device memory regions
4289 ram_top
= MACHINE(spapr
)->device_memory
->base
+
4290 memory_region_size(&MACHINE(spapr
)->device_memory
->mr
);
4293 phb0_base
= QEMU_ALIGN_UP(ram_top
, phb0_alignment
);
4295 if (index
> max_index
) {
4296 error_setg(errp
, "\"index\" for PAPR PHB is too large (max %u)",
4301 *buid
= base_buid
+ index
;
4302 for (i
= 0; i
< n_dma
; ++i
) {
4303 liobns
[i
] = SPAPR_PCI_LIOBN(index
, i
);
4306 phb_base
= phb0_base
+ index
* phb_spacing
;
4307 *pio
= phb_base
+ pio_offset
;
4308 *mmio32
= phb_base
+ mmio_offset
;
4310 * We don't set the 64-bit MMIO window, relying on the PHB's
4311 * fallback behaviour of automatically splitting a large "32-bit"
4312 * window into contiguous 32-bit and 64-bit windows
4316 static void spapr_machine_2_7_instance_options(MachineState
*machine
)
4318 sPAPRMachineState
*spapr
= SPAPR_MACHINE(machine
);
4320 spapr_machine_2_8_instance_options(machine
);
4321 spapr
->use_hotplug_event_source
= false;
4324 static void spapr_machine_2_7_class_options(MachineClass
*mc
)
4326 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4328 spapr_machine_2_8_class_options(mc
);
4329 mc
->default_cpu_type
= POWERPC_CPU_TYPE_NAME("power7_v2.3");
4330 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_7
);
4331 smc
->phb_placement
= phb_placement_2_7
;
4334 DEFINE_SPAPR_MACHINE(2_7
, "2.7", false);
4339 #define SPAPR_COMPAT_2_6 \
4342 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
4344 .value = stringify(off),\
4347 static void spapr_machine_2_6_instance_options(MachineState
*machine
)
4349 spapr_machine_2_7_instance_options(machine
);
4352 static void spapr_machine_2_6_class_options(MachineClass
*mc
)
4354 spapr_machine_2_7_class_options(mc
);
4355 mc
->has_hotpluggable_cpus
= false;
4356 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_6
);
4359 DEFINE_SPAPR_MACHINE(2_6
, "2.6", false);
4364 #define SPAPR_COMPAT_2_5 \
4367 .driver = "spapr-vlan", \
4368 .property = "use-rx-buffer-pools", \
4372 static void spapr_machine_2_5_instance_options(MachineState
*machine
)
4374 spapr_machine_2_6_instance_options(machine
);
4377 static void spapr_machine_2_5_class_options(MachineClass
*mc
)
4379 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4381 spapr_machine_2_6_class_options(mc
);
4382 smc
->use_ohci_by_default
= true;
4383 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_5
);
4386 DEFINE_SPAPR_MACHINE(2_5
, "2.5", false);
4391 #define SPAPR_COMPAT_2_4 \
4394 static void spapr_machine_2_4_instance_options(MachineState
*machine
)
4396 spapr_machine_2_5_instance_options(machine
);
4399 static void spapr_machine_2_4_class_options(MachineClass
*mc
)
4401 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4403 spapr_machine_2_5_class_options(mc
);
4404 smc
->dr_lmb_enabled
= false;
4405 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_4
);
4408 DEFINE_SPAPR_MACHINE(2_4
, "2.4", false);
4413 #define SPAPR_COMPAT_2_3 \
4416 .driver = "spapr-pci-host-bridge",\
4417 .property = "dynamic-reconfiguration",\
4421 static void spapr_machine_2_3_instance_options(MachineState
*machine
)
4423 spapr_machine_2_4_instance_options(machine
);
4426 static void spapr_machine_2_3_class_options(MachineClass
*mc
)
4428 spapr_machine_2_4_class_options(mc
);
4429 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_3
);
4431 DEFINE_SPAPR_MACHINE(2_3
, "2.3", false);
4437 #define SPAPR_COMPAT_2_2 \
4440 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
4441 .property = "mem_win_size",\
4442 .value = "0x20000000",\
4445 static void spapr_machine_2_2_instance_options(MachineState
*machine
)
4447 spapr_machine_2_3_instance_options(machine
);
4448 machine
->suppress_vmdesc
= true;
4451 static void spapr_machine_2_2_class_options(MachineClass
*mc
)
4453 spapr_machine_2_3_class_options(mc
);
4454 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_2
);
4456 DEFINE_SPAPR_MACHINE(2_2
, "2.2", false);
4461 #define SPAPR_COMPAT_2_1 \
4464 static void spapr_machine_2_1_instance_options(MachineState
*machine
)
4466 spapr_machine_2_2_instance_options(machine
);
4469 static void spapr_machine_2_1_class_options(MachineClass
*mc
)
4471 spapr_machine_2_2_class_options(mc
);
4472 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_1
);
4474 DEFINE_SPAPR_MACHINE(2_1
, "2.1", false);
4476 static void spapr_machine_register_types(void)
4478 type_register_static(&spapr_machine_info
);
4481 type_init(spapr_machine_register_types
)