progressmeter: protect with a mutex
[qemu/ar7.git] / block / block-copy.c
blob020f9846d8959e2c226ac69e2f9143f455831389
1 /*
2 * block_copy API
4 * Copyright (C) 2013 Proxmox Server Solutions
5 * Copyright (c) 2019 Virtuozzo International GmbH.
7 * Authors:
8 * Dietmar Maurer (dietmar@proxmox.com)
9 * Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
15 #include "qemu/osdep.h"
17 #include "trace.h"
18 #include "qapi/error.h"
19 #include "block/block-copy.h"
20 #include "sysemu/block-backend.h"
21 #include "qemu/units.h"
22 #include "qemu/coroutine.h"
23 #include "block/aio_task.h"
25 #define BLOCK_COPY_MAX_COPY_RANGE (16 * MiB)
26 #define BLOCK_COPY_MAX_BUFFER (1 * MiB)
27 #define BLOCK_COPY_MAX_MEM (128 * MiB)
28 #define BLOCK_COPY_MAX_WORKERS 64
29 #define BLOCK_COPY_SLICE_TIME 100000000ULL /* ns */
31 static coroutine_fn int block_copy_task_entry(AioTask *task);
33 typedef struct BlockCopyCallState {
34 /* IN parameters. Initialized in block_copy_async() and never changed. */
35 BlockCopyState *s;
36 int64_t offset;
37 int64_t bytes;
38 int max_workers;
39 int64_t max_chunk;
40 bool ignore_ratelimit;
41 BlockCopyAsyncCallbackFunc cb;
42 void *cb_opaque;
44 /* Coroutine where async block-copy is running */
45 Coroutine *co;
47 /* To reference all call states from BlockCopyState */
48 QLIST_ENTRY(BlockCopyCallState) list;
50 /* State */
51 int ret;
52 bool finished;
53 QemuCoSleep sleep;
54 bool cancelled;
56 /* OUT parameters */
57 bool error_is_read;
58 } BlockCopyCallState;
60 typedef struct BlockCopyTask {
61 AioTask task;
63 BlockCopyState *s;
64 BlockCopyCallState *call_state;
65 int64_t offset;
66 int64_t bytes;
67 bool zeroes;
68 bool copy_range;
69 QLIST_ENTRY(BlockCopyTask) list;
70 CoQueue wait_queue; /* coroutines blocked on this task */
71 } BlockCopyTask;
73 static int64_t task_end(BlockCopyTask *task)
75 return task->offset + task->bytes;
78 typedef struct BlockCopyState {
80 * BdrvChild objects are not owned or managed by block-copy. They are
81 * provided by block-copy user and user is responsible for appropriate
82 * permissions on these children.
84 BdrvChild *source;
85 BdrvChild *target;
86 BdrvDirtyBitmap *copy_bitmap;
87 int64_t in_flight_bytes;
88 int64_t cluster_size;
89 bool use_copy_range;
90 int64_t copy_size;
91 uint64_t len;
92 QLIST_HEAD(, BlockCopyTask) tasks; /* All tasks from all block-copy calls */
93 QLIST_HEAD(, BlockCopyCallState) calls;
95 BdrvRequestFlags write_flags;
98 * skip_unallocated:
100 * Used by sync=top jobs, which first scan the source node for unallocated
101 * areas and clear them in the copy_bitmap. During this process, the bitmap
102 * is thus not fully initialized: It may still have bits set for areas that
103 * are unallocated and should actually not be copied.
105 * This is indicated by skip_unallocated.
107 * In this case, block_copy() will query the source’s allocation status,
108 * skip unallocated regions, clear them in the copy_bitmap, and invoke
109 * block_copy_reset_unallocated() every time it does.
111 bool skip_unallocated;
113 ProgressMeter *progress;
115 SharedResource *mem;
117 RateLimit rate_limit;
118 } BlockCopyState;
120 static BlockCopyTask *find_conflicting_task(BlockCopyState *s,
121 int64_t offset, int64_t bytes)
123 BlockCopyTask *t;
125 QLIST_FOREACH(t, &s->tasks, list) {
126 if (offset + bytes > t->offset && offset < t->offset + t->bytes) {
127 return t;
131 return NULL;
135 * If there are no intersecting tasks return false. Otherwise, wait for the
136 * first found intersecting tasks to finish and return true.
138 static bool coroutine_fn block_copy_wait_one(BlockCopyState *s, int64_t offset,
139 int64_t bytes)
141 BlockCopyTask *task = find_conflicting_task(s, offset, bytes);
143 if (!task) {
144 return false;
147 qemu_co_queue_wait(&task->wait_queue, NULL);
149 return true;
153 * Search for the first dirty area in offset/bytes range and create task at
154 * the beginning of it.
156 static BlockCopyTask *block_copy_task_create(BlockCopyState *s,
157 BlockCopyCallState *call_state,
158 int64_t offset, int64_t bytes)
160 BlockCopyTask *task;
161 int64_t max_chunk = MIN_NON_ZERO(s->copy_size, call_state->max_chunk);
163 if (!bdrv_dirty_bitmap_next_dirty_area(s->copy_bitmap,
164 offset, offset + bytes,
165 max_chunk, &offset, &bytes))
167 return NULL;
170 assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
171 bytes = QEMU_ALIGN_UP(bytes, s->cluster_size);
173 /* region is dirty, so no existent tasks possible in it */
174 assert(!find_conflicting_task(s, offset, bytes));
176 bdrv_reset_dirty_bitmap(s->copy_bitmap, offset, bytes);
177 s->in_flight_bytes += bytes;
179 task = g_new(BlockCopyTask, 1);
180 *task = (BlockCopyTask) {
181 .task.func = block_copy_task_entry,
182 .s = s,
183 .call_state = call_state,
184 .offset = offset,
185 .bytes = bytes,
186 .copy_range = s->use_copy_range,
188 qemu_co_queue_init(&task->wait_queue);
189 QLIST_INSERT_HEAD(&s->tasks, task, list);
191 return task;
195 * block_copy_task_shrink
197 * Drop the tail of the task to be handled later. Set dirty bits back and
198 * wake up all tasks waiting for us (may be some of them are not intersecting
199 * with shrunk task)
201 static void coroutine_fn block_copy_task_shrink(BlockCopyTask *task,
202 int64_t new_bytes)
204 if (new_bytes == task->bytes) {
205 return;
208 assert(new_bytes > 0 && new_bytes < task->bytes);
210 task->s->in_flight_bytes -= task->bytes - new_bytes;
211 bdrv_set_dirty_bitmap(task->s->copy_bitmap,
212 task->offset + new_bytes, task->bytes - new_bytes);
214 task->bytes = new_bytes;
215 qemu_co_queue_restart_all(&task->wait_queue);
218 static void coroutine_fn block_copy_task_end(BlockCopyTask *task, int ret)
220 task->s->in_flight_bytes -= task->bytes;
221 if (ret < 0) {
222 bdrv_set_dirty_bitmap(task->s->copy_bitmap, task->offset, task->bytes);
224 QLIST_REMOVE(task, list);
225 qemu_co_queue_restart_all(&task->wait_queue);
228 void block_copy_state_free(BlockCopyState *s)
230 if (!s) {
231 return;
234 ratelimit_destroy(&s->rate_limit);
235 bdrv_release_dirty_bitmap(s->copy_bitmap);
236 shres_destroy(s->mem);
237 g_free(s);
240 static uint32_t block_copy_max_transfer(BdrvChild *source, BdrvChild *target)
242 return MIN_NON_ZERO(INT_MAX,
243 MIN_NON_ZERO(source->bs->bl.max_transfer,
244 target->bs->bl.max_transfer));
247 BlockCopyState *block_copy_state_new(BdrvChild *source, BdrvChild *target,
248 int64_t cluster_size, bool use_copy_range,
249 BdrvRequestFlags write_flags, Error **errp)
251 BlockCopyState *s;
252 BdrvDirtyBitmap *copy_bitmap;
254 copy_bitmap = bdrv_create_dirty_bitmap(source->bs, cluster_size, NULL,
255 errp);
256 if (!copy_bitmap) {
257 return NULL;
259 bdrv_disable_dirty_bitmap(copy_bitmap);
261 s = g_new(BlockCopyState, 1);
262 *s = (BlockCopyState) {
263 .source = source,
264 .target = target,
265 .copy_bitmap = copy_bitmap,
266 .cluster_size = cluster_size,
267 .len = bdrv_dirty_bitmap_size(copy_bitmap),
268 .write_flags = write_flags,
269 .mem = shres_create(BLOCK_COPY_MAX_MEM),
272 if (block_copy_max_transfer(source, target) < cluster_size) {
274 * copy_range does not respect max_transfer. We don't want to bother
275 * with requests smaller than block-copy cluster size, so fallback to
276 * buffered copying (read and write respect max_transfer on their
277 * behalf).
279 s->use_copy_range = false;
280 s->copy_size = cluster_size;
281 } else if (write_flags & BDRV_REQ_WRITE_COMPRESSED) {
282 /* Compression supports only cluster-size writes and no copy-range. */
283 s->use_copy_range = false;
284 s->copy_size = cluster_size;
285 } else {
287 * We enable copy-range, but keep small copy_size, until first
288 * successful copy_range (look at block_copy_do_copy).
290 s->use_copy_range = use_copy_range;
291 s->copy_size = MAX(s->cluster_size, BLOCK_COPY_MAX_BUFFER);
294 ratelimit_init(&s->rate_limit);
295 QLIST_INIT(&s->tasks);
296 QLIST_INIT(&s->calls);
298 return s;
301 void block_copy_set_progress_meter(BlockCopyState *s, ProgressMeter *pm)
303 s->progress = pm;
307 * Takes ownership of @task
309 * If pool is NULL directly run the task, otherwise schedule it into the pool.
311 * Returns: task.func return code if pool is NULL
312 * otherwise -ECANCELED if pool status is bad
313 * otherwise 0 (successfully scheduled)
315 static coroutine_fn int block_copy_task_run(AioTaskPool *pool,
316 BlockCopyTask *task)
318 if (!pool) {
319 int ret = task->task.func(&task->task);
321 g_free(task);
322 return ret;
325 aio_task_pool_wait_slot(pool);
326 if (aio_task_pool_status(pool) < 0) {
327 co_put_to_shres(task->s->mem, task->bytes);
328 block_copy_task_end(task, -ECANCELED);
329 g_free(task);
330 return -ECANCELED;
333 aio_task_pool_start_task(pool, &task->task);
335 return 0;
339 * block_copy_do_copy
341 * Do copy of cluster-aligned chunk. Requested region is allowed to exceed
342 * s->len only to cover last cluster when s->len is not aligned to clusters.
344 * No sync here: nor bitmap neighter intersecting requests handling, only copy.
346 * @copy_range is an in-out argument: if *copy_range is false, copy_range is not
347 * done. If *copy_range is true, copy_range is attempted. If the copy_range
348 * attempt fails, the function falls back to the usual read+write and
349 * *copy_range is set to false. *copy_range and zeroes must not be true
350 * simultaneously.
352 * Returns 0 on success.
354 static int coroutine_fn block_copy_do_copy(BlockCopyState *s,
355 int64_t offset, int64_t bytes,
356 bool zeroes, bool *copy_range,
357 bool *error_is_read)
359 int ret;
360 int64_t nbytes = MIN(offset + bytes, s->len) - offset;
361 void *bounce_buffer = NULL;
363 assert(offset >= 0 && bytes > 0 && INT64_MAX - offset >= bytes);
364 assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
365 assert(QEMU_IS_ALIGNED(bytes, s->cluster_size));
366 assert(offset < s->len);
367 assert(offset + bytes <= s->len ||
368 offset + bytes == QEMU_ALIGN_UP(s->len, s->cluster_size));
369 assert(nbytes < INT_MAX);
370 assert(!(*copy_range && zeroes));
372 if (zeroes) {
373 ret = bdrv_co_pwrite_zeroes(s->target, offset, nbytes, s->write_flags &
374 ~BDRV_REQ_WRITE_COMPRESSED);
375 if (ret < 0) {
376 trace_block_copy_write_zeroes_fail(s, offset, ret);
377 *error_is_read = false;
379 return ret;
382 if (*copy_range) {
383 ret = bdrv_co_copy_range(s->source, offset, s->target, offset, nbytes,
384 0, s->write_flags);
385 if (ret < 0) {
386 trace_block_copy_copy_range_fail(s, offset, ret);
387 *copy_range = false;
388 /* Fallback to read+write with allocated buffer */
389 } else {
390 return 0;
395 * In case of failed copy_range request above, we may proceed with buffered
396 * request larger than BLOCK_COPY_MAX_BUFFER. Still, further requests will
397 * be properly limited, so don't care too much. Moreover the most likely
398 * case (copy_range is unsupported for the configuration, so the very first
399 * copy_range request fails) is handled by setting large copy_size only
400 * after first successful copy_range.
403 bounce_buffer = qemu_blockalign(s->source->bs, nbytes);
405 ret = bdrv_co_pread(s->source, offset, nbytes, bounce_buffer, 0);
406 if (ret < 0) {
407 trace_block_copy_read_fail(s, offset, ret);
408 *error_is_read = true;
409 goto out;
412 ret = bdrv_co_pwrite(s->target, offset, nbytes, bounce_buffer,
413 s->write_flags);
414 if (ret < 0) {
415 trace_block_copy_write_fail(s, offset, ret);
416 *error_is_read = false;
417 goto out;
420 out:
421 qemu_vfree(bounce_buffer);
423 return ret;
426 static void block_copy_handle_copy_range_result(BlockCopyState *s,
427 bool is_success)
429 if (!s->use_copy_range) {
430 /* already disabled */
431 return;
434 if (is_success) {
436 * Successful copy-range. Now increase copy_size. copy_range
437 * does not respect max_transfer (it's a TODO), so we factor
438 * that in here.
440 s->copy_size =
441 MIN(MAX(s->cluster_size, BLOCK_COPY_MAX_COPY_RANGE),
442 QEMU_ALIGN_DOWN(block_copy_max_transfer(s->source,
443 s->target),
444 s->cluster_size));
445 } else {
446 /* Copy-range failed, disable it. */
447 s->use_copy_range = false;
448 s->copy_size = MAX(s->cluster_size, BLOCK_COPY_MAX_BUFFER);
452 static coroutine_fn int block_copy_task_entry(AioTask *task)
454 BlockCopyTask *t = container_of(task, BlockCopyTask, task);
455 bool error_is_read = false;
456 bool copy_range = t->copy_range;
457 int ret;
459 ret = block_copy_do_copy(t->s, t->offset, t->bytes, t->zeroes,
460 &copy_range, &error_is_read);
461 if (t->copy_range) {
462 block_copy_handle_copy_range_result(t->s, copy_range);
464 if (ret < 0) {
465 if (!t->call_state->ret) {
466 t->call_state->ret = ret;
467 t->call_state->error_is_read = error_is_read;
469 } else {
470 progress_work_done(t->s->progress, t->bytes);
472 co_put_to_shres(t->s->mem, t->bytes);
473 block_copy_task_end(t, ret);
475 return ret;
478 static int block_copy_block_status(BlockCopyState *s, int64_t offset,
479 int64_t bytes, int64_t *pnum)
481 int64_t num;
482 BlockDriverState *base;
483 int ret;
485 if (s->skip_unallocated) {
486 base = bdrv_backing_chain_next(s->source->bs);
487 } else {
488 base = NULL;
491 ret = bdrv_block_status_above(s->source->bs, base, offset, bytes, &num,
492 NULL, NULL);
493 if (ret < 0 || num < s->cluster_size) {
495 * On error or if failed to obtain large enough chunk just fallback to
496 * copy one cluster.
498 num = s->cluster_size;
499 ret = BDRV_BLOCK_ALLOCATED | BDRV_BLOCK_DATA;
500 } else if (offset + num == s->len) {
501 num = QEMU_ALIGN_UP(num, s->cluster_size);
502 } else {
503 num = QEMU_ALIGN_DOWN(num, s->cluster_size);
506 *pnum = num;
507 return ret;
511 * Check if the cluster starting at offset is allocated or not.
512 * return via pnum the number of contiguous clusters sharing this allocation.
514 static int block_copy_is_cluster_allocated(BlockCopyState *s, int64_t offset,
515 int64_t *pnum)
517 BlockDriverState *bs = s->source->bs;
518 int64_t count, total_count = 0;
519 int64_t bytes = s->len - offset;
520 int ret;
522 assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
524 while (true) {
525 ret = bdrv_is_allocated(bs, offset, bytes, &count);
526 if (ret < 0) {
527 return ret;
530 total_count += count;
532 if (ret || count == 0) {
534 * ret: partial segment(s) are considered allocated.
535 * otherwise: unallocated tail is treated as an entire segment.
537 *pnum = DIV_ROUND_UP(total_count, s->cluster_size);
538 return ret;
541 /* Unallocated segment(s) with uncertain following segment(s) */
542 if (total_count >= s->cluster_size) {
543 *pnum = total_count / s->cluster_size;
544 return 0;
547 offset += count;
548 bytes -= count;
553 * Reset bits in copy_bitmap starting at offset if they represent unallocated
554 * data in the image. May reset subsequent contiguous bits.
555 * @return 0 when the cluster at @offset was unallocated,
556 * 1 otherwise, and -ret on error.
558 int64_t block_copy_reset_unallocated(BlockCopyState *s,
559 int64_t offset, int64_t *count)
561 int ret;
562 int64_t clusters, bytes;
564 ret = block_copy_is_cluster_allocated(s, offset, &clusters);
565 if (ret < 0) {
566 return ret;
569 bytes = clusters * s->cluster_size;
571 if (!ret) {
572 bdrv_reset_dirty_bitmap(s->copy_bitmap, offset, bytes);
573 progress_set_remaining(s->progress,
574 bdrv_get_dirty_count(s->copy_bitmap) +
575 s->in_flight_bytes);
578 *count = bytes;
579 return ret;
583 * block_copy_dirty_clusters
585 * Copy dirty clusters in @offset/@bytes range.
586 * Returns 1 if dirty clusters found and successfully copied, 0 if no dirty
587 * clusters found and -errno on failure.
589 static int coroutine_fn
590 block_copy_dirty_clusters(BlockCopyCallState *call_state)
592 BlockCopyState *s = call_state->s;
593 int64_t offset = call_state->offset;
594 int64_t bytes = call_state->bytes;
596 int ret = 0;
597 bool found_dirty = false;
598 int64_t end = offset + bytes;
599 AioTaskPool *aio = NULL;
602 * block_copy() user is responsible for keeping source and target in same
603 * aio context
605 assert(bdrv_get_aio_context(s->source->bs) ==
606 bdrv_get_aio_context(s->target->bs));
608 assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
609 assert(QEMU_IS_ALIGNED(bytes, s->cluster_size));
611 while (bytes && aio_task_pool_status(aio) == 0 && !call_state->cancelled) {
612 BlockCopyTask *task;
613 int64_t status_bytes;
615 task = block_copy_task_create(s, call_state, offset, bytes);
616 if (!task) {
617 /* No more dirty bits in the bitmap */
618 trace_block_copy_skip_range(s, offset, bytes);
619 break;
621 if (task->offset > offset) {
622 trace_block_copy_skip_range(s, offset, task->offset - offset);
625 found_dirty = true;
627 ret = block_copy_block_status(s, task->offset, task->bytes,
628 &status_bytes);
629 assert(ret >= 0); /* never fail */
630 if (status_bytes < task->bytes) {
631 block_copy_task_shrink(task, status_bytes);
633 if (s->skip_unallocated && !(ret & BDRV_BLOCK_ALLOCATED)) {
634 block_copy_task_end(task, 0);
635 progress_set_remaining(s->progress,
636 bdrv_get_dirty_count(s->copy_bitmap) +
637 s->in_flight_bytes);
638 trace_block_copy_skip_range(s, task->offset, task->bytes);
639 offset = task_end(task);
640 bytes = end - offset;
641 g_free(task);
642 continue;
644 if (ret & BDRV_BLOCK_ZERO) {
645 task->zeroes = true;
646 task->copy_range = false;
649 if (!call_state->ignore_ratelimit) {
650 uint64_t ns = ratelimit_calculate_delay(&s->rate_limit, 0);
651 if (ns > 0) {
652 block_copy_task_end(task, -EAGAIN);
653 g_free(task);
654 qemu_co_sleep_ns_wakeable(&call_state->sleep,
655 QEMU_CLOCK_REALTIME, ns);
656 continue;
660 ratelimit_calculate_delay(&s->rate_limit, task->bytes);
662 trace_block_copy_process(s, task->offset);
664 co_get_from_shres(s->mem, task->bytes);
666 offset = task_end(task);
667 bytes = end - offset;
669 if (!aio && bytes) {
670 aio = aio_task_pool_new(call_state->max_workers);
673 ret = block_copy_task_run(aio, task);
674 if (ret < 0) {
675 goto out;
679 out:
680 if (aio) {
681 aio_task_pool_wait_all(aio);
684 * We are not really interested in -ECANCELED returned from
685 * block_copy_task_run. If it fails, it means some task already failed
686 * for real reason, let's return first failure.
687 * Still, assert that we don't rewrite failure by success.
689 * Note: ret may be positive here because of block-status result.
691 assert(ret >= 0 || aio_task_pool_status(aio) < 0);
692 ret = aio_task_pool_status(aio);
694 aio_task_pool_free(aio);
697 return ret < 0 ? ret : found_dirty;
700 void block_copy_kick(BlockCopyCallState *call_state)
702 qemu_co_sleep_wake(&call_state->sleep);
706 * block_copy_common
708 * Copy requested region, accordingly to dirty bitmap.
709 * Collaborate with parallel block_copy requests: if they succeed it will help
710 * us. If they fail, we will retry not-copied regions. So, if we return error,
711 * it means that some I/O operation failed in context of _this_ block_copy call,
712 * not some parallel operation.
714 static int coroutine_fn block_copy_common(BlockCopyCallState *call_state)
716 int ret;
718 QLIST_INSERT_HEAD(&call_state->s->calls, call_state, list);
720 do {
721 ret = block_copy_dirty_clusters(call_state);
723 if (ret == 0 && !call_state->cancelled) {
724 ret = block_copy_wait_one(call_state->s, call_state->offset,
725 call_state->bytes);
729 * We retry in two cases:
730 * 1. Some progress done
731 * Something was copied, which means that there were yield points
732 * and some new dirty bits may have appeared (due to failed parallel
733 * block-copy requests).
734 * 2. We have waited for some intersecting block-copy request
735 * It may have failed and produced new dirty bits.
737 } while (ret > 0 && !call_state->cancelled);
739 call_state->finished = true;
741 if (call_state->cb) {
742 call_state->cb(call_state->cb_opaque);
745 QLIST_REMOVE(call_state, list);
747 return ret;
750 int coroutine_fn block_copy(BlockCopyState *s, int64_t start, int64_t bytes,
751 bool ignore_ratelimit)
753 BlockCopyCallState call_state = {
754 .s = s,
755 .offset = start,
756 .bytes = bytes,
757 .ignore_ratelimit = ignore_ratelimit,
758 .max_workers = BLOCK_COPY_MAX_WORKERS,
761 return block_copy_common(&call_state);
764 static void coroutine_fn block_copy_async_co_entry(void *opaque)
766 block_copy_common(opaque);
769 BlockCopyCallState *block_copy_async(BlockCopyState *s,
770 int64_t offset, int64_t bytes,
771 int max_workers, int64_t max_chunk,
772 BlockCopyAsyncCallbackFunc cb,
773 void *cb_opaque)
775 BlockCopyCallState *call_state = g_new(BlockCopyCallState, 1);
777 *call_state = (BlockCopyCallState) {
778 .s = s,
779 .offset = offset,
780 .bytes = bytes,
781 .max_workers = max_workers,
782 .max_chunk = max_chunk,
783 .cb = cb,
784 .cb_opaque = cb_opaque,
786 .co = qemu_coroutine_create(block_copy_async_co_entry, call_state),
789 qemu_coroutine_enter(call_state->co);
791 return call_state;
794 void block_copy_call_free(BlockCopyCallState *call_state)
796 if (!call_state) {
797 return;
800 assert(call_state->finished);
801 g_free(call_state);
804 bool block_copy_call_finished(BlockCopyCallState *call_state)
806 return call_state->finished;
809 bool block_copy_call_succeeded(BlockCopyCallState *call_state)
811 return call_state->finished && !call_state->cancelled &&
812 call_state->ret == 0;
815 bool block_copy_call_failed(BlockCopyCallState *call_state)
817 return call_state->finished && !call_state->cancelled &&
818 call_state->ret < 0;
821 bool block_copy_call_cancelled(BlockCopyCallState *call_state)
823 return call_state->cancelled;
826 int block_copy_call_status(BlockCopyCallState *call_state, bool *error_is_read)
828 assert(call_state->finished);
829 if (error_is_read) {
830 *error_is_read = call_state->error_is_read;
832 return call_state->ret;
835 void block_copy_call_cancel(BlockCopyCallState *call_state)
837 call_state->cancelled = true;
838 block_copy_kick(call_state);
841 BdrvDirtyBitmap *block_copy_dirty_bitmap(BlockCopyState *s)
843 return s->copy_bitmap;
846 void block_copy_set_skip_unallocated(BlockCopyState *s, bool skip)
848 s->skip_unallocated = skip;
851 void block_copy_set_speed(BlockCopyState *s, uint64_t speed)
853 ratelimit_set_speed(&s->rate_limit, speed, BLOCK_COPY_SLICE_TIME);
856 * Note: it's good to kick all call states from here, but it should be done
857 * only from a coroutine, to not crash if s->calls list changed while
858 * entering one call. So for now, the only user of this function kicks its
859 * only one call_state by hand.