x86: replace cpu_x86_init() with cpu_generic_init()
[qemu/ar7.git] / hw / s390x / sclp.c
blobfd097262c7d135b7ff848be068aa0809b6aebc4c
1 /*
2 * SCLP Support
4 * Copyright IBM, Corp. 2012
6 * Authors:
7 * Christian Borntraeger <borntraeger@de.ibm.com>
8 * Heinz Graalfs <graalfs@linux.vnet.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or (at your
11 * option) any later version. See the COPYING file in the top-level directory.
15 #include "qemu/osdep.h"
16 #include "qapi/error.h"
17 #include "cpu.h"
18 #include "exec/memory.h"
19 #include "sysemu/sysemu.h"
20 #include "exec/address-spaces.h"
21 #include "hw/boards.h"
22 #include "hw/s390x/sclp.h"
23 #include "hw/s390x/event-facility.h"
24 #include "hw/s390x/s390-pci-bus.h"
25 #include "hw/s390x/ipl.h"
27 static inline SCLPDevice *get_sclp_device(void)
29 static SCLPDevice *sclp;
31 if (!sclp) {
32 sclp = SCLP(object_resolve_path_type("", TYPE_SCLP, NULL));
34 return sclp;
37 static void prepare_cpu_entries(SCLPDevice *sclp, CPUEntry *entry, int count)
39 uint8_t features[SCCB_CPU_FEATURE_LEN] = { 0 };
40 int i;
42 s390_get_feat_block(S390_FEAT_TYPE_SCLP_CPU, features);
43 for (i = 0; i < count; i++) {
44 entry[i].address = i;
45 entry[i].type = 0;
46 memcpy(entry[i].features, features, sizeof(entry[i].features));
50 /* Provide information about the configuration, CPUs and storage */
51 static void read_SCP_info(SCLPDevice *sclp, SCCB *sccb)
53 ReadInfo *read_info = (ReadInfo *) sccb;
54 MachineState *machine = MACHINE(qdev_get_machine());
55 sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
56 CPUState *cpu;
57 int cpu_count = 0;
58 int rnsize, rnmax;
59 int slots = MIN(machine->ram_slots, s390_get_memslot_count());
60 IplParameterBlock *ipib = s390_ipl_get_iplb();
62 CPU_FOREACH(cpu) {
63 cpu_count++;
66 /* CPU information */
67 read_info->entries_cpu = cpu_to_be16(cpu_count);
68 read_info->offset_cpu = cpu_to_be16(offsetof(ReadInfo, entries));
69 read_info->highest_cpu = cpu_to_be16(max_cpus);
71 read_info->ibc_val = cpu_to_be32(s390_get_ibc_val());
73 /* Configuration Characteristic (Extension) */
74 s390_get_feat_block(S390_FEAT_TYPE_SCLP_CONF_CHAR,
75 read_info->conf_char);
76 s390_get_feat_block(S390_FEAT_TYPE_SCLP_CONF_CHAR_EXT,
77 read_info->conf_char_ext);
79 prepare_cpu_entries(sclp, read_info->entries, cpu_count);
81 read_info->facilities = cpu_to_be64(SCLP_HAS_CPU_INFO |
82 SCLP_HAS_IOA_RECONFIG);
84 /* Memory Hotplug is only supported for the ccw machine type */
85 if (mhd) {
86 mhd->standby_subregion_size = MEM_SECTION_SIZE;
87 /* Deduct the memory slot already used for core */
88 if (slots > 0) {
89 while ((mhd->standby_subregion_size * (slots - 1)
90 < mhd->standby_mem_size)) {
91 mhd->standby_subregion_size = mhd->standby_subregion_size << 1;
95 * Initialize mapping of guest standby memory sections indicating which
96 * are and are not online. Assume all standby memory begins offline.
98 if (mhd->standby_state_map == 0) {
99 if (mhd->standby_mem_size % mhd->standby_subregion_size) {
100 mhd->standby_state_map = g_malloc0((mhd->standby_mem_size /
101 mhd->standby_subregion_size + 1) *
102 (mhd->standby_subregion_size /
103 MEM_SECTION_SIZE));
104 } else {
105 mhd->standby_state_map = g_malloc0(mhd->standby_mem_size /
106 MEM_SECTION_SIZE);
109 mhd->padded_ram_size = ram_size + mhd->pad_size;
110 mhd->rzm = 1 << mhd->increment_size;
112 read_info->facilities |= cpu_to_be64(SCLP_FC_ASSIGN_ATTACH_READ_STOR);
114 read_info->mha_pow = s390_get_mha_pow();
115 read_info->hmfai = cpu_to_be32(s390_get_hmfai());
117 rnsize = 1 << (sclp->increment_size - 20);
118 if (rnsize <= 128) {
119 read_info->rnsize = rnsize;
120 } else {
121 read_info->rnsize = 0;
122 read_info->rnsize2 = cpu_to_be32(rnsize);
125 rnmax = machine->maxram_size >> sclp->increment_size;
126 if (rnmax < 0x10000) {
127 read_info->rnmax = cpu_to_be16(rnmax);
128 } else {
129 read_info->rnmax = cpu_to_be16(0);
130 read_info->rnmax2 = cpu_to_be64(rnmax);
133 if (ipib && ipib->flags & DIAG308_FLAGS_LP_VALID) {
134 memcpy(&read_info->loadparm, &ipib->loadparm,
135 sizeof(read_info->loadparm));
136 } else {
137 s390_ipl_set_loadparm(read_info->loadparm);
140 sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION);
143 static void read_storage_element0_info(SCLPDevice *sclp, SCCB *sccb)
145 int i, assigned;
146 int subincrement_id = SCLP_STARTING_SUBINCREMENT_ID;
147 ReadStorageElementInfo *storage_info = (ReadStorageElementInfo *) sccb;
148 sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
150 if (!mhd) {
151 sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
152 return;
155 if ((ram_size >> mhd->increment_size) >= 0x10000) {
156 sccb->h.response_code = cpu_to_be16(SCLP_RC_SCCB_BOUNDARY_VIOLATION);
157 return;
160 /* Return information regarding core memory */
161 storage_info->max_id = cpu_to_be16(mhd->standby_mem_size ? 1 : 0);
162 assigned = ram_size >> mhd->increment_size;
163 storage_info->assigned = cpu_to_be16(assigned);
165 for (i = 0; i < assigned; i++) {
166 storage_info->entries[i] = cpu_to_be32(subincrement_id);
167 subincrement_id += SCLP_INCREMENT_UNIT;
169 sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION);
172 static void read_storage_element1_info(SCLPDevice *sclp, SCCB *sccb)
174 ReadStorageElementInfo *storage_info = (ReadStorageElementInfo *) sccb;
175 sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
177 if (!mhd) {
178 sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
179 return;
182 if ((mhd->standby_mem_size >> mhd->increment_size) >= 0x10000) {
183 sccb->h.response_code = cpu_to_be16(SCLP_RC_SCCB_BOUNDARY_VIOLATION);
184 return;
187 /* Return information regarding standby memory */
188 storage_info->max_id = cpu_to_be16(mhd->standby_mem_size ? 1 : 0);
189 storage_info->assigned = cpu_to_be16(mhd->standby_mem_size >>
190 mhd->increment_size);
191 storage_info->standby = cpu_to_be16(mhd->standby_mem_size >>
192 mhd->increment_size);
193 sccb->h.response_code = cpu_to_be16(SCLP_RC_STANDBY_READ_COMPLETION);
196 static void attach_storage_element(SCLPDevice *sclp, SCCB *sccb,
197 uint16_t element)
199 int i, assigned, subincrement_id;
200 AttachStorageElement *attach_info = (AttachStorageElement *) sccb;
201 sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
203 if (!mhd) {
204 sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
205 return;
208 if (element != 1) {
209 sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
210 return;
213 assigned = mhd->standby_mem_size >> mhd->increment_size;
214 attach_info->assigned = cpu_to_be16(assigned);
215 subincrement_id = ((ram_size >> mhd->increment_size) << 16)
216 + SCLP_STARTING_SUBINCREMENT_ID;
217 for (i = 0; i < assigned; i++) {
218 attach_info->entries[i] = cpu_to_be32(subincrement_id);
219 subincrement_id += SCLP_INCREMENT_UNIT;
221 sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION);
224 static void assign_storage(SCLPDevice *sclp, SCCB *sccb)
226 MemoryRegion *mr = NULL;
227 uint64_t this_subregion_size;
228 AssignStorage *assign_info = (AssignStorage *) sccb;
229 sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
230 ram_addr_t assign_addr;
231 MemoryRegion *sysmem = get_system_memory();
233 if (!mhd) {
234 sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
235 return;
237 assign_addr = (assign_info->rn - 1) * mhd->rzm;
239 if ((assign_addr % MEM_SECTION_SIZE == 0) &&
240 (assign_addr >= mhd->padded_ram_size)) {
241 /* Re-use existing memory region if found */
242 mr = memory_region_find(sysmem, assign_addr, 1).mr;
243 memory_region_unref(mr);
244 if (!mr) {
246 MemoryRegion *standby_ram = g_new(MemoryRegion, 1);
248 /* offset to align to standby_subregion_size for allocation */
249 ram_addr_t offset = assign_addr -
250 (assign_addr - mhd->padded_ram_size)
251 % mhd->standby_subregion_size;
253 /* strlen("standby.ram") + 4 (Max of KVM_MEMORY_SLOTS) + NULL */
254 char id[16];
255 snprintf(id, 16, "standby.ram%d",
256 (int)((offset - mhd->padded_ram_size) /
257 mhd->standby_subregion_size) + 1);
259 /* Allocate a subregion of the calculated standby_subregion_size */
260 if (offset + mhd->standby_subregion_size >
261 mhd->padded_ram_size + mhd->standby_mem_size) {
262 this_subregion_size = mhd->padded_ram_size +
263 mhd->standby_mem_size - offset;
264 } else {
265 this_subregion_size = mhd->standby_subregion_size;
268 memory_region_init_ram(standby_ram, NULL, id, this_subregion_size,
269 &error_fatal);
270 /* This is a hack to make memory hotunplug work again. Once we have
271 * subdevices, we have to unparent them when unassigning memory,
272 * instead of doing it via the ref count of the MemoryRegion. */
273 object_ref(OBJECT(standby_ram));
274 object_unparent(OBJECT(standby_ram));
275 memory_region_add_subregion(sysmem, offset, standby_ram);
277 /* The specified subregion is no longer in standby */
278 mhd->standby_state_map[(assign_addr - mhd->padded_ram_size)
279 / MEM_SECTION_SIZE] = 1;
281 sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION);
284 static void unassign_storage(SCLPDevice *sclp, SCCB *sccb)
286 MemoryRegion *mr = NULL;
287 AssignStorage *assign_info = (AssignStorage *) sccb;
288 sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
289 ram_addr_t unassign_addr;
290 MemoryRegion *sysmem = get_system_memory();
292 if (!mhd) {
293 sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
294 return;
296 unassign_addr = (assign_info->rn - 1) * mhd->rzm;
298 /* if the addr is a multiple of 256 MB */
299 if ((unassign_addr % MEM_SECTION_SIZE == 0) &&
300 (unassign_addr >= mhd->padded_ram_size)) {
301 mhd->standby_state_map[(unassign_addr -
302 mhd->padded_ram_size) / MEM_SECTION_SIZE] = 0;
304 /* find the specified memory region and destroy it */
305 mr = memory_region_find(sysmem, unassign_addr, 1).mr;
306 memory_region_unref(mr);
307 if (mr) {
308 int i;
309 int is_removable = 1;
310 ram_addr_t map_offset = (unassign_addr - mhd->padded_ram_size -
311 (unassign_addr - mhd->padded_ram_size)
312 % mhd->standby_subregion_size);
313 /* Mark all affected subregions as 'standby' once again */
314 for (i = 0;
315 i < (mhd->standby_subregion_size / MEM_SECTION_SIZE);
316 i++) {
318 if (mhd->standby_state_map[i + map_offset / MEM_SECTION_SIZE]) {
319 is_removable = 0;
320 break;
323 if (is_removable) {
324 memory_region_del_subregion(sysmem, mr);
325 object_unref(OBJECT(mr));
329 sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION);
332 /* Provide information about the CPU */
333 static void sclp_read_cpu_info(SCLPDevice *sclp, SCCB *sccb)
335 ReadCpuInfo *cpu_info = (ReadCpuInfo *) sccb;
336 CPUState *cpu;
337 int cpu_count = 0;
339 CPU_FOREACH(cpu) {
340 cpu_count++;
343 cpu_info->nr_configured = cpu_to_be16(cpu_count);
344 cpu_info->offset_configured = cpu_to_be16(offsetof(ReadCpuInfo, entries));
345 cpu_info->nr_standby = cpu_to_be16(0);
347 /* The standby offset is 16-byte for each CPU */
348 cpu_info->offset_standby = cpu_to_be16(cpu_info->offset_configured
349 + cpu_info->nr_configured*sizeof(CPUEntry));
351 prepare_cpu_entries(sclp, cpu_info->entries, cpu_count);
353 sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION);
356 static void sclp_configure_io_adapter(SCLPDevice *sclp, SCCB *sccb,
357 bool configure)
359 int rc;
361 if (be16_to_cpu(sccb->h.length) < 16) {
362 rc = SCLP_RC_INSUFFICIENT_SCCB_LENGTH;
363 goto out_err;
366 switch (((IoaCfgSccb *)sccb)->atype) {
367 case SCLP_RECONFIG_PCI_ATYPE:
368 if (s390_has_feat(S390_FEAT_ZPCI)) {
369 if (configure) {
370 s390_pci_sclp_configure(sccb);
371 } else {
372 s390_pci_sclp_deconfigure(sccb);
374 return;
376 /* fallthrough */
377 default:
378 rc = SCLP_RC_ADAPTER_TYPE_NOT_RECOGNIZED;
381 out_err:
382 sccb->h.response_code = cpu_to_be16(rc);
385 static void sclp_execute(SCLPDevice *sclp, SCCB *sccb, uint32_t code)
387 SCLPDeviceClass *sclp_c = SCLP_GET_CLASS(sclp);
388 SCLPEventFacility *ef = sclp->event_facility;
389 SCLPEventFacilityClass *efc = EVENT_FACILITY_GET_CLASS(ef);
391 switch (code & SCLP_CMD_CODE_MASK) {
392 case SCLP_CMDW_READ_SCP_INFO:
393 case SCLP_CMDW_READ_SCP_INFO_FORCED:
394 sclp_c->read_SCP_info(sclp, sccb);
395 break;
396 case SCLP_CMDW_READ_CPU_INFO:
397 sclp_c->read_cpu_info(sclp, sccb);
398 break;
399 case SCLP_READ_STORAGE_ELEMENT_INFO:
400 if (code & 0xff00) {
401 sclp_c->read_storage_element1_info(sclp, sccb);
402 } else {
403 sclp_c->read_storage_element0_info(sclp, sccb);
405 break;
406 case SCLP_ATTACH_STORAGE_ELEMENT:
407 sclp_c->attach_storage_element(sclp, sccb, (code & 0xff00) >> 8);
408 break;
409 case SCLP_ASSIGN_STORAGE:
410 sclp_c->assign_storage(sclp, sccb);
411 break;
412 case SCLP_UNASSIGN_STORAGE:
413 sclp_c->unassign_storage(sclp, sccb);
414 break;
415 case SCLP_CMDW_CONFIGURE_IOA:
416 sclp_configure_io_adapter(sclp, sccb, true);
417 break;
418 case SCLP_CMDW_DECONFIGURE_IOA:
419 sclp_configure_io_adapter(sclp, sccb, false);
420 break;
421 default:
422 efc->command_handler(ef, sccb, code);
423 break;
427 int sclp_service_call(CPUS390XState *env, uint64_t sccb, uint32_t code)
429 SCLPDevice *sclp = get_sclp_device();
430 SCLPDeviceClass *sclp_c = SCLP_GET_CLASS(sclp);
431 int r = 0;
432 SCCB work_sccb;
434 hwaddr sccb_len = sizeof(SCCB);
436 /* first some basic checks on program checks */
437 if (env->psw.mask & PSW_MASK_PSTATE) {
438 r = -PGM_PRIVILEGED;
439 goto out;
441 if (cpu_physical_memory_is_io(sccb)) {
442 r = -PGM_ADDRESSING;
443 goto out;
445 if ((sccb & ~0x1fffUL) == 0 || (sccb & ~0x1fffUL) == env->psa
446 || (sccb & ~0x7ffffff8UL) != 0) {
447 r = -PGM_SPECIFICATION;
448 goto out;
452 * we want to work on a private copy of the sccb, to prevent guests
453 * from playing dirty tricks by modifying the memory content after
454 * the host has checked the values
456 cpu_physical_memory_read(sccb, &work_sccb, sccb_len);
458 /* Valid sccb sizes */
459 if (be16_to_cpu(work_sccb.h.length) < sizeof(SCCBHeader) ||
460 be16_to_cpu(work_sccb.h.length) > SCCB_SIZE) {
461 r = -PGM_SPECIFICATION;
462 goto out;
465 sclp_c->execute(sclp, &work_sccb, code);
467 cpu_physical_memory_write(sccb, &work_sccb,
468 be16_to_cpu(work_sccb.h.length));
470 sclp_c->service_interrupt(sclp, sccb);
472 out:
473 return r;
476 static void service_interrupt(SCLPDevice *sclp, uint32_t sccb)
478 SCLPEventFacility *ef = sclp->event_facility;
479 SCLPEventFacilityClass *efc = EVENT_FACILITY_GET_CLASS(ef);
481 uint32_t param = sccb & ~3;
483 /* Indicate whether an event is still pending */
484 param |= efc->event_pending(ef) ? 1 : 0;
486 if (!param) {
487 /* No need to send an interrupt, there's nothing to be notified about */
488 return;
490 s390_sclp_extint(param);
493 void sclp_service_interrupt(uint32_t sccb)
495 SCLPDevice *sclp = get_sclp_device();
496 SCLPDeviceClass *sclp_c = SCLP_GET_CLASS(sclp);
498 sclp_c->service_interrupt(sclp, sccb);
501 /* qemu object creation and initialization functions */
503 void s390_sclp_init(void)
505 Object *new = object_new(TYPE_SCLP);
507 object_property_add_child(qdev_get_machine(), TYPE_SCLP, new,
508 NULL);
509 object_unref(OBJECT(new));
510 qdev_init_nofail(DEVICE(new));
513 static void sclp_realize(DeviceState *dev, Error **errp)
515 MachineState *machine = MACHINE(qdev_get_machine());
516 SCLPDevice *sclp = SCLP(dev);
517 Error *err = NULL;
518 uint64_t hw_limit;
519 int ret;
521 object_property_set_bool(OBJECT(sclp->event_facility), true, "realized",
522 &err);
523 if (err) {
524 goto out;
527 * qdev_device_add searches the sysbus for TYPE_SCLP_EVENTS_BUS. As long
528 * as we can't find a fitting bus via the qom tree, we have to add the
529 * event facility to the sysbus, so e.g. a sclp console can be created.
531 qdev_set_parent_bus(DEVICE(sclp->event_facility), sysbus_get_default());
533 ret = s390_set_memory_limit(machine->maxram_size, &hw_limit);
534 if (ret == -E2BIG) {
535 error_setg(&err, "host supports a maximum of %" PRIu64 " GB",
536 hw_limit >> 30);
537 } else if (ret) {
538 error_setg(&err, "setting the guest size failed");
541 out:
542 error_propagate(errp, err);
545 static void sclp_memory_init(SCLPDevice *sclp)
547 MachineState *machine = MACHINE(qdev_get_machine());
548 ram_addr_t initial_mem = machine->ram_size;
549 ram_addr_t max_mem = machine->maxram_size;
550 ram_addr_t standby_mem = max_mem - initial_mem;
551 ram_addr_t pad_mem = 0;
552 int increment_size = 20;
554 /* The storage increment size is a multiple of 1M and is a power of 2.
555 * The number of storage increments must be MAX_STORAGE_INCREMENTS or fewer.
556 * The variable 'increment_size' is an exponent of 2 that can be
557 * used to calculate the size (in bytes) of an increment. */
558 while ((initial_mem >> increment_size) > MAX_STORAGE_INCREMENTS) {
559 increment_size++;
561 if (machine->ram_slots) {
562 while ((standby_mem >> increment_size) > MAX_STORAGE_INCREMENTS) {
563 increment_size++;
566 sclp->increment_size = increment_size;
568 /* The core and standby memory areas need to be aligned with
569 * the increment size. In effect, this can cause the
570 * user-specified memory size to be rounded down to align
571 * with the nearest increment boundary. */
572 initial_mem = initial_mem >> increment_size << increment_size;
573 standby_mem = standby_mem >> increment_size << increment_size;
575 /* If the size of ram is not on a MEM_SECTION_SIZE boundary,
576 calculate the pad size necessary to force this boundary. */
577 if (machine->ram_slots && standby_mem) {
578 sclpMemoryHotplugDev *mhd = init_sclp_memory_hotplug_dev();
580 if (initial_mem % MEM_SECTION_SIZE) {
581 pad_mem = MEM_SECTION_SIZE - initial_mem % MEM_SECTION_SIZE;
583 mhd->increment_size = increment_size;
584 mhd->pad_size = pad_mem;
585 mhd->standby_mem_size = standby_mem;
587 machine->ram_size = initial_mem;
588 machine->maxram_size = initial_mem + pad_mem + standby_mem;
589 /* let's propagate the changed ram size into the global variable. */
590 ram_size = initial_mem;
593 static void sclp_init(Object *obj)
595 SCLPDevice *sclp = SCLP(obj);
596 Object *new;
598 new = object_new(TYPE_SCLP_EVENT_FACILITY);
599 object_property_add_child(obj, TYPE_SCLP_EVENT_FACILITY, new, NULL);
600 object_unref(new);
601 sclp->event_facility = EVENT_FACILITY(new);
603 sclp_memory_init(sclp);
606 static void sclp_class_init(ObjectClass *oc, void *data)
608 SCLPDeviceClass *sc = SCLP_CLASS(oc);
609 DeviceClass *dc = DEVICE_CLASS(oc);
611 dc->desc = "SCLP (Service-Call Logical Processor)";
612 dc->realize = sclp_realize;
613 dc->hotpluggable = false;
614 set_bit(DEVICE_CATEGORY_MISC, dc->categories);
616 sc->read_SCP_info = read_SCP_info;
617 sc->read_storage_element0_info = read_storage_element0_info;
618 sc->read_storage_element1_info = read_storage_element1_info;
619 sc->attach_storage_element = attach_storage_element;
620 sc->assign_storage = assign_storage;
621 sc->unassign_storage = unassign_storage;
622 sc->read_cpu_info = sclp_read_cpu_info;
623 sc->execute = sclp_execute;
624 sc->service_interrupt = service_interrupt;
627 static TypeInfo sclp_info = {
628 .name = TYPE_SCLP,
629 .parent = TYPE_DEVICE,
630 .instance_init = sclp_init,
631 .instance_size = sizeof(SCLPDevice),
632 .class_init = sclp_class_init,
633 .class_size = sizeof(SCLPDeviceClass),
636 sclpMemoryHotplugDev *init_sclp_memory_hotplug_dev(void)
638 DeviceState *dev;
639 dev = qdev_create(NULL, TYPE_SCLP_MEMORY_HOTPLUG_DEV);
640 object_property_add_child(qdev_get_machine(),
641 TYPE_SCLP_MEMORY_HOTPLUG_DEV,
642 OBJECT(dev), NULL);
643 qdev_init_nofail(dev);
644 return SCLP_MEMORY_HOTPLUG_DEV(object_resolve_path(
645 TYPE_SCLP_MEMORY_HOTPLUG_DEV, NULL));
648 sclpMemoryHotplugDev *get_sclp_memory_hotplug_dev(void)
650 return SCLP_MEMORY_HOTPLUG_DEV(object_resolve_path(
651 TYPE_SCLP_MEMORY_HOTPLUG_DEV, NULL));
654 static void sclp_memory_hotplug_dev_class_init(ObjectClass *klass,
655 void *data)
657 DeviceClass *dc = DEVICE_CLASS(klass);
659 set_bit(DEVICE_CATEGORY_MISC, dc->categories);
662 static TypeInfo sclp_memory_hotplug_dev_info = {
663 .name = TYPE_SCLP_MEMORY_HOTPLUG_DEV,
664 .parent = TYPE_SYS_BUS_DEVICE,
665 .instance_size = sizeof(sclpMemoryHotplugDev),
666 .class_init = sclp_memory_hotplug_dev_class_init,
669 static void register_types(void)
671 type_register_static(&sclp_memory_hotplug_dev_info);
672 type_register_static(&sclp_info);
674 type_init(register_types);