kvm: simplify kvm_align_section()
[qemu/ar7.git] / accel / kvm / kvm-all.c
blobf290f487a573adc8632165a3d8cef3a80e77c5c5
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
19 #include <linux/kvm.h>
21 #include "qemu-common.h"
22 #include "qemu/atomic.h"
23 #include "qemu/option.h"
24 #include "qemu/config-file.h"
25 #include "qemu/error-report.h"
26 #include "qapi/error.h"
27 #include "hw/hw.h"
28 #include "hw/pci/msi.h"
29 #include "hw/pci/msix.h"
30 #include "hw/s390x/adapter.h"
31 #include "exec/gdbstub.h"
32 #include "sysemu/kvm_int.h"
33 #include "sysemu/cpus.h"
34 #include "qemu/bswap.h"
35 #include "exec/memory.h"
36 #include "exec/ram_addr.h"
37 #include "exec/address-spaces.h"
38 #include "qemu/event_notifier.h"
39 #include "trace.h"
40 #include "hw/irq.h"
42 #include "hw/boards.h"
44 /* This check must be after config-host.h is included */
45 #ifdef CONFIG_EVENTFD
46 #include <sys/eventfd.h>
47 #endif
49 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
50 * need to use the real host PAGE_SIZE, as that's what KVM will use.
52 #define PAGE_SIZE getpagesize()
54 //#define DEBUG_KVM
56 #ifdef DEBUG_KVM
57 #define DPRINTF(fmt, ...) \
58 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
59 #else
60 #define DPRINTF(fmt, ...) \
61 do { } while (0)
62 #endif
64 #define KVM_MSI_HASHTAB_SIZE 256
66 struct KVMParkedVcpu {
67 unsigned long vcpu_id;
68 int kvm_fd;
69 QLIST_ENTRY(KVMParkedVcpu) node;
72 struct KVMState
74 AccelState parent_obj;
76 int nr_slots;
77 int fd;
78 int vmfd;
79 int coalesced_mmio;
80 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
81 bool coalesced_flush_in_progress;
82 int vcpu_events;
83 int robust_singlestep;
84 int debugregs;
85 #ifdef KVM_CAP_SET_GUEST_DEBUG
86 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
87 #endif
88 int many_ioeventfds;
89 int intx_set_mask;
90 bool sync_mmu;
91 /* The man page (and posix) say ioctl numbers are signed int, but
92 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
93 * unsigned, and treating them as signed here can break things */
94 unsigned irq_set_ioctl;
95 unsigned int sigmask_len;
96 GHashTable *gsimap;
97 #ifdef KVM_CAP_IRQ_ROUTING
98 struct kvm_irq_routing *irq_routes;
99 int nr_allocated_irq_routes;
100 unsigned long *used_gsi_bitmap;
101 unsigned int gsi_count;
102 QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
103 #endif
104 KVMMemoryListener memory_listener;
105 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus;
108 KVMState *kvm_state;
109 bool kvm_kernel_irqchip;
110 bool kvm_split_irqchip;
111 bool kvm_async_interrupts_allowed;
112 bool kvm_halt_in_kernel_allowed;
113 bool kvm_eventfds_allowed;
114 bool kvm_irqfds_allowed;
115 bool kvm_resamplefds_allowed;
116 bool kvm_msi_via_irqfd_allowed;
117 bool kvm_gsi_routing_allowed;
118 bool kvm_gsi_direct_mapping;
119 bool kvm_allowed;
120 bool kvm_readonly_mem_allowed;
121 bool kvm_vm_attributes_allowed;
122 bool kvm_direct_msi_allowed;
123 bool kvm_ioeventfd_any_length_allowed;
124 bool kvm_msi_use_devid;
125 static bool kvm_immediate_exit;
127 static const KVMCapabilityInfo kvm_required_capabilites[] = {
128 KVM_CAP_INFO(USER_MEMORY),
129 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
130 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
131 KVM_CAP_LAST_INFO
134 int kvm_get_max_memslots(void)
136 KVMState *s = KVM_STATE(current_machine->accelerator);
138 return s->nr_slots;
141 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
143 KVMState *s = kvm_state;
144 int i;
146 for (i = 0; i < s->nr_slots; i++) {
147 if (kml->slots[i].memory_size == 0) {
148 return &kml->slots[i];
152 return NULL;
155 bool kvm_has_free_slot(MachineState *ms)
157 KVMState *s = KVM_STATE(ms->accelerator);
159 return kvm_get_free_slot(&s->memory_listener);
162 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
164 KVMSlot *slot = kvm_get_free_slot(kml);
166 if (slot) {
167 return slot;
170 fprintf(stderr, "%s: no free slot available\n", __func__);
171 abort();
174 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
175 hwaddr start_addr,
176 hwaddr size)
178 KVMState *s = kvm_state;
179 int i;
181 for (i = 0; i < s->nr_slots; i++) {
182 KVMSlot *mem = &kml->slots[i];
184 if (start_addr == mem->start_addr && size == mem->memory_size) {
185 return mem;
189 return NULL;
193 * Calculate and align the start address and the size of the section.
194 * Return the size. If the size is 0, the aligned section is empty.
196 static hwaddr kvm_align_section(MemoryRegionSection *section,
197 hwaddr *start)
199 hwaddr size = int128_get64(section->size);
200 hwaddr delta, aligned;
202 /* kvm works in page size chunks, but the function may be called
203 with sub-page size and unaligned start address. Pad the start
204 address to next and truncate size to previous page boundary. */
205 aligned = ROUND_UP(section->offset_within_address_space,
206 qemu_real_host_page_size);
207 delta = aligned - section->offset_within_address_space;
208 *start = aligned;
209 if (delta > size) {
210 return 0;
213 return (size - delta) & qemu_real_host_page_mask;
216 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
217 hwaddr *phys_addr)
219 KVMMemoryListener *kml = &s->memory_listener;
220 int i;
222 for (i = 0; i < s->nr_slots; i++) {
223 KVMSlot *mem = &kml->slots[i];
225 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
226 *phys_addr = mem->start_addr + (ram - mem->ram);
227 return 1;
231 return 0;
234 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot)
236 KVMState *s = kvm_state;
237 struct kvm_userspace_memory_region mem;
239 mem.slot = slot->slot | (kml->as_id << 16);
240 mem.guest_phys_addr = slot->start_addr;
241 mem.userspace_addr = (unsigned long)slot->ram;
242 mem.flags = slot->flags;
244 if (slot->memory_size && mem.flags & KVM_MEM_READONLY) {
245 /* Set the slot size to 0 before setting the slot to the desired
246 * value. This is needed based on KVM commit 75d61fbc. */
247 mem.memory_size = 0;
248 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
250 mem.memory_size = slot->memory_size;
251 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
254 int kvm_destroy_vcpu(CPUState *cpu)
256 KVMState *s = kvm_state;
257 long mmap_size;
258 struct KVMParkedVcpu *vcpu = NULL;
259 int ret = 0;
261 DPRINTF("kvm_destroy_vcpu\n");
263 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
264 if (mmap_size < 0) {
265 ret = mmap_size;
266 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
267 goto err;
270 ret = munmap(cpu->kvm_run, mmap_size);
271 if (ret < 0) {
272 goto err;
275 vcpu = g_malloc0(sizeof(*vcpu));
276 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
277 vcpu->kvm_fd = cpu->kvm_fd;
278 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
279 err:
280 return ret;
283 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
285 struct KVMParkedVcpu *cpu;
287 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
288 if (cpu->vcpu_id == vcpu_id) {
289 int kvm_fd;
291 QLIST_REMOVE(cpu, node);
292 kvm_fd = cpu->kvm_fd;
293 g_free(cpu);
294 return kvm_fd;
298 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
301 int kvm_init_vcpu(CPUState *cpu)
303 KVMState *s = kvm_state;
304 long mmap_size;
305 int ret;
307 DPRINTF("kvm_init_vcpu\n");
309 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
310 if (ret < 0) {
311 DPRINTF("kvm_create_vcpu failed\n");
312 goto err;
315 cpu->kvm_fd = ret;
316 cpu->kvm_state = s;
317 cpu->vcpu_dirty = true;
319 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
320 if (mmap_size < 0) {
321 ret = mmap_size;
322 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
323 goto err;
326 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
327 cpu->kvm_fd, 0);
328 if (cpu->kvm_run == MAP_FAILED) {
329 ret = -errno;
330 DPRINTF("mmap'ing vcpu state failed\n");
331 goto err;
334 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
335 s->coalesced_mmio_ring =
336 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
339 ret = kvm_arch_init_vcpu(cpu);
340 err:
341 return ret;
345 * dirty pages logging control
348 static int kvm_mem_flags(MemoryRegion *mr)
350 bool readonly = mr->readonly || memory_region_is_romd(mr);
351 int flags = 0;
353 if (memory_region_get_dirty_log_mask(mr) != 0) {
354 flags |= KVM_MEM_LOG_DIRTY_PAGES;
356 if (readonly && kvm_readonly_mem_allowed) {
357 flags |= KVM_MEM_READONLY;
359 return flags;
362 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
363 MemoryRegion *mr)
365 int old_flags;
367 old_flags = mem->flags;
368 mem->flags = kvm_mem_flags(mr);
370 /* If nothing changed effectively, no need to issue ioctl */
371 if (mem->flags == old_flags) {
372 return 0;
375 return kvm_set_user_memory_region(kml, mem);
378 static int kvm_section_update_flags(KVMMemoryListener *kml,
379 MemoryRegionSection *section)
381 hwaddr start_addr, size;
382 KVMSlot *mem;
384 size = kvm_align_section(section, &start_addr);
385 if (!size) {
386 return 0;
389 mem = kvm_lookup_matching_slot(kml, start_addr, size);
390 if (!mem) {
391 /* We don't have a slot if we want to trap every access. */
392 return 0;
395 return kvm_slot_update_flags(kml, mem, section->mr);
398 static void kvm_log_start(MemoryListener *listener,
399 MemoryRegionSection *section,
400 int old, int new)
402 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
403 int r;
405 if (old != 0) {
406 return;
409 r = kvm_section_update_flags(kml, section);
410 if (r < 0) {
411 abort();
415 static void kvm_log_stop(MemoryListener *listener,
416 MemoryRegionSection *section,
417 int old, int new)
419 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
420 int r;
422 if (new != 0) {
423 return;
426 r = kvm_section_update_flags(kml, section);
427 if (r < 0) {
428 abort();
432 /* get kvm's dirty pages bitmap and update qemu's */
433 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
434 unsigned long *bitmap)
436 ram_addr_t start = section->offset_within_region +
437 memory_region_get_ram_addr(section->mr);
438 ram_addr_t pages = int128_get64(section->size) / getpagesize();
440 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
441 return 0;
444 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
447 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
448 * This function updates qemu's dirty bitmap using
449 * memory_region_set_dirty(). This means all bits are set
450 * to dirty.
452 * @start_add: start of logged region.
453 * @end_addr: end of logged region.
455 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
456 MemoryRegionSection *section)
458 KVMState *s = kvm_state;
459 struct kvm_dirty_log d = {};
460 KVMSlot *mem;
461 hwaddr start_addr, size;
463 size = kvm_align_section(section, &start_addr);
464 if (size) {
465 mem = kvm_lookup_matching_slot(kml, start_addr, size);
466 if (!mem) {
467 /* We don't have a slot if we want to trap every access. */
468 return 0;
471 /* XXX bad kernel interface alert
472 * For dirty bitmap, kernel allocates array of size aligned to
473 * bits-per-long. But for case when the kernel is 64bits and
474 * the userspace is 32bits, userspace can't align to the same
475 * bits-per-long, since sizeof(long) is different between kernel
476 * and user space. This way, userspace will provide buffer which
477 * may be 4 bytes less than the kernel will use, resulting in
478 * userspace memory corruption (which is not detectable by valgrind
479 * too, in most cases).
480 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
481 * a hope that sizeof(long) won't become >8 any time soon.
483 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
484 /*HOST_LONG_BITS*/ 64) / 8;
485 d.dirty_bitmap = g_malloc0(size);
487 d.slot = mem->slot | (kml->as_id << 16);
488 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
489 DPRINTF("ioctl failed %d\n", errno);
490 g_free(d.dirty_bitmap);
491 return -1;
494 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
495 g_free(d.dirty_bitmap);
498 return 0;
501 static void kvm_coalesce_mmio_region(MemoryListener *listener,
502 MemoryRegionSection *secion,
503 hwaddr start, hwaddr size)
505 KVMState *s = kvm_state;
507 if (s->coalesced_mmio) {
508 struct kvm_coalesced_mmio_zone zone;
510 zone.addr = start;
511 zone.size = size;
512 zone.pad = 0;
514 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
518 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
519 MemoryRegionSection *secion,
520 hwaddr start, hwaddr size)
522 KVMState *s = kvm_state;
524 if (s->coalesced_mmio) {
525 struct kvm_coalesced_mmio_zone zone;
527 zone.addr = start;
528 zone.size = size;
529 zone.pad = 0;
531 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
535 int kvm_check_extension(KVMState *s, unsigned int extension)
537 int ret;
539 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
540 if (ret < 0) {
541 ret = 0;
544 return ret;
547 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
549 int ret;
551 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
552 if (ret < 0) {
553 /* VM wide version not implemented, use global one instead */
554 ret = kvm_check_extension(s, extension);
557 return ret;
560 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
562 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
563 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
564 * endianness, but the memory core hands them in target endianness.
565 * For example, PPC is always treated as big-endian even if running
566 * on KVM and on PPC64LE. Correct here.
568 switch (size) {
569 case 2:
570 val = bswap16(val);
571 break;
572 case 4:
573 val = bswap32(val);
574 break;
576 #endif
577 return val;
580 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
581 bool assign, uint32_t size, bool datamatch)
583 int ret;
584 struct kvm_ioeventfd iofd = {
585 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
586 .addr = addr,
587 .len = size,
588 .flags = 0,
589 .fd = fd,
592 if (!kvm_enabled()) {
593 return -ENOSYS;
596 if (datamatch) {
597 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
599 if (!assign) {
600 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
603 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
605 if (ret < 0) {
606 return -errno;
609 return 0;
612 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
613 bool assign, uint32_t size, bool datamatch)
615 struct kvm_ioeventfd kick = {
616 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
617 .addr = addr,
618 .flags = KVM_IOEVENTFD_FLAG_PIO,
619 .len = size,
620 .fd = fd,
622 int r;
623 if (!kvm_enabled()) {
624 return -ENOSYS;
626 if (datamatch) {
627 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
629 if (!assign) {
630 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
632 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
633 if (r < 0) {
634 return r;
636 return 0;
640 static int kvm_check_many_ioeventfds(void)
642 /* Userspace can use ioeventfd for io notification. This requires a host
643 * that supports eventfd(2) and an I/O thread; since eventfd does not
644 * support SIGIO it cannot interrupt the vcpu.
646 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
647 * can avoid creating too many ioeventfds.
649 #if defined(CONFIG_EVENTFD)
650 int ioeventfds[7];
651 int i, ret = 0;
652 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
653 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
654 if (ioeventfds[i] < 0) {
655 break;
657 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
658 if (ret < 0) {
659 close(ioeventfds[i]);
660 break;
664 /* Decide whether many devices are supported or not */
665 ret = i == ARRAY_SIZE(ioeventfds);
667 while (i-- > 0) {
668 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
669 close(ioeventfds[i]);
671 return ret;
672 #else
673 return 0;
674 #endif
677 static const KVMCapabilityInfo *
678 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
680 while (list->name) {
681 if (!kvm_check_extension(s, list->value)) {
682 return list;
684 list++;
686 return NULL;
689 static void kvm_set_phys_mem(KVMMemoryListener *kml,
690 MemoryRegionSection *section, bool add)
692 KVMSlot *mem;
693 int err;
694 MemoryRegion *mr = section->mr;
695 bool writeable = !mr->readonly && !mr->rom_device;
696 hwaddr start_addr, size;
697 void *ram;
699 if (!memory_region_is_ram(mr)) {
700 if (writeable || !kvm_readonly_mem_allowed) {
701 return;
702 } else if (!mr->romd_mode) {
703 /* If the memory device is not in romd_mode, then we actually want
704 * to remove the kvm memory slot so all accesses will trap. */
705 add = false;
709 size = kvm_align_section(section, &start_addr);
710 if (!size) {
711 return;
714 /* use aligned delta to align the ram address */
715 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region +
716 (start_addr - section->offset_within_address_space);
718 if (!add) {
719 mem = kvm_lookup_matching_slot(kml, start_addr, size);
720 if (!mem) {
721 return;
723 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
724 kvm_physical_sync_dirty_bitmap(kml, section);
727 /* unregister the slot */
728 mem->memory_size = 0;
729 err = kvm_set_user_memory_region(kml, mem);
730 if (err) {
731 fprintf(stderr, "%s: error unregistering slot: %s\n",
732 __func__, strerror(-err));
733 abort();
735 return;
738 /* register the new slot */
739 mem = kvm_alloc_slot(kml);
740 mem->memory_size = size;
741 mem->start_addr = start_addr;
742 mem->ram = ram;
743 mem->flags = kvm_mem_flags(mr);
745 err = kvm_set_user_memory_region(kml, mem);
746 if (err) {
747 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
748 strerror(-err));
749 abort();
753 static void kvm_region_add(MemoryListener *listener,
754 MemoryRegionSection *section)
756 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
758 memory_region_ref(section->mr);
759 kvm_set_phys_mem(kml, section, true);
762 static void kvm_region_del(MemoryListener *listener,
763 MemoryRegionSection *section)
765 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
767 kvm_set_phys_mem(kml, section, false);
768 memory_region_unref(section->mr);
771 static void kvm_log_sync(MemoryListener *listener,
772 MemoryRegionSection *section)
774 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
775 int r;
777 r = kvm_physical_sync_dirty_bitmap(kml, section);
778 if (r < 0) {
779 abort();
783 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
784 MemoryRegionSection *section,
785 bool match_data, uint64_t data,
786 EventNotifier *e)
788 int fd = event_notifier_get_fd(e);
789 int r;
791 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
792 data, true, int128_get64(section->size),
793 match_data);
794 if (r < 0) {
795 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
796 __func__, strerror(-r));
797 abort();
801 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
802 MemoryRegionSection *section,
803 bool match_data, uint64_t data,
804 EventNotifier *e)
806 int fd = event_notifier_get_fd(e);
807 int r;
809 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
810 data, false, int128_get64(section->size),
811 match_data);
812 if (r < 0) {
813 abort();
817 static void kvm_io_ioeventfd_add(MemoryListener *listener,
818 MemoryRegionSection *section,
819 bool match_data, uint64_t data,
820 EventNotifier *e)
822 int fd = event_notifier_get_fd(e);
823 int r;
825 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
826 data, true, int128_get64(section->size),
827 match_data);
828 if (r < 0) {
829 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
830 __func__, strerror(-r));
831 abort();
835 static void kvm_io_ioeventfd_del(MemoryListener *listener,
836 MemoryRegionSection *section,
837 bool match_data, uint64_t data,
838 EventNotifier *e)
841 int fd = event_notifier_get_fd(e);
842 int r;
844 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
845 data, false, int128_get64(section->size),
846 match_data);
847 if (r < 0) {
848 abort();
852 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
853 AddressSpace *as, int as_id)
855 int i;
857 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
858 kml->as_id = as_id;
860 for (i = 0; i < s->nr_slots; i++) {
861 kml->slots[i].slot = i;
864 kml->listener.region_add = kvm_region_add;
865 kml->listener.region_del = kvm_region_del;
866 kml->listener.log_start = kvm_log_start;
867 kml->listener.log_stop = kvm_log_stop;
868 kml->listener.log_sync = kvm_log_sync;
869 kml->listener.priority = 10;
871 memory_listener_register(&kml->listener, as);
874 static MemoryListener kvm_io_listener = {
875 .eventfd_add = kvm_io_ioeventfd_add,
876 .eventfd_del = kvm_io_ioeventfd_del,
877 .priority = 10,
880 int kvm_set_irq(KVMState *s, int irq, int level)
882 struct kvm_irq_level event;
883 int ret;
885 assert(kvm_async_interrupts_enabled());
887 event.level = level;
888 event.irq = irq;
889 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
890 if (ret < 0) {
891 perror("kvm_set_irq");
892 abort();
895 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
898 #ifdef KVM_CAP_IRQ_ROUTING
899 typedef struct KVMMSIRoute {
900 struct kvm_irq_routing_entry kroute;
901 QTAILQ_ENTRY(KVMMSIRoute) entry;
902 } KVMMSIRoute;
904 static void set_gsi(KVMState *s, unsigned int gsi)
906 set_bit(gsi, s->used_gsi_bitmap);
909 static void clear_gsi(KVMState *s, unsigned int gsi)
911 clear_bit(gsi, s->used_gsi_bitmap);
914 void kvm_init_irq_routing(KVMState *s)
916 int gsi_count, i;
918 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
919 if (gsi_count > 0) {
920 /* Round up so we can search ints using ffs */
921 s->used_gsi_bitmap = bitmap_new(gsi_count);
922 s->gsi_count = gsi_count;
925 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
926 s->nr_allocated_irq_routes = 0;
928 if (!kvm_direct_msi_allowed) {
929 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
930 QTAILQ_INIT(&s->msi_hashtab[i]);
934 kvm_arch_init_irq_routing(s);
937 void kvm_irqchip_commit_routes(KVMState *s)
939 int ret;
941 if (kvm_gsi_direct_mapping()) {
942 return;
945 if (!kvm_gsi_routing_enabled()) {
946 return;
949 s->irq_routes->flags = 0;
950 trace_kvm_irqchip_commit_routes();
951 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
952 assert(ret == 0);
955 static void kvm_add_routing_entry(KVMState *s,
956 struct kvm_irq_routing_entry *entry)
958 struct kvm_irq_routing_entry *new;
959 int n, size;
961 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
962 n = s->nr_allocated_irq_routes * 2;
963 if (n < 64) {
964 n = 64;
966 size = sizeof(struct kvm_irq_routing);
967 size += n * sizeof(*new);
968 s->irq_routes = g_realloc(s->irq_routes, size);
969 s->nr_allocated_irq_routes = n;
971 n = s->irq_routes->nr++;
972 new = &s->irq_routes->entries[n];
974 *new = *entry;
976 set_gsi(s, entry->gsi);
979 static int kvm_update_routing_entry(KVMState *s,
980 struct kvm_irq_routing_entry *new_entry)
982 struct kvm_irq_routing_entry *entry;
983 int n;
985 for (n = 0; n < s->irq_routes->nr; n++) {
986 entry = &s->irq_routes->entries[n];
987 if (entry->gsi != new_entry->gsi) {
988 continue;
991 if(!memcmp(entry, new_entry, sizeof *entry)) {
992 return 0;
995 *entry = *new_entry;
997 return 0;
1000 return -ESRCH;
1003 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1005 struct kvm_irq_routing_entry e = {};
1007 assert(pin < s->gsi_count);
1009 e.gsi = irq;
1010 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1011 e.flags = 0;
1012 e.u.irqchip.irqchip = irqchip;
1013 e.u.irqchip.pin = pin;
1014 kvm_add_routing_entry(s, &e);
1017 void kvm_irqchip_release_virq(KVMState *s, int virq)
1019 struct kvm_irq_routing_entry *e;
1020 int i;
1022 if (kvm_gsi_direct_mapping()) {
1023 return;
1026 for (i = 0; i < s->irq_routes->nr; i++) {
1027 e = &s->irq_routes->entries[i];
1028 if (e->gsi == virq) {
1029 s->irq_routes->nr--;
1030 *e = s->irq_routes->entries[s->irq_routes->nr];
1033 clear_gsi(s, virq);
1034 kvm_arch_release_virq_post(virq);
1035 trace_kvm_irqchip_release_virq(virq);
1038 static unsigned int kvm_hash_msi(uint32_t data)
1040 /* This is optimized for IA32 MSI layout. However, no other arch shall
1041 * repeat the mistake of not providing a direct MSI injection API. */
1042 return data & 0xff;
1045 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1047 KVMMSIRoute *route, *next;
1048 unsigned int hash;
1050 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1051 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1052 kvm_irqchip_release_virq(s, route->kroute.gsi);
1053 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1054 g_free(route);
1059 static int kvm_irqchip_get_virq(KVMState *s)
1061 int next_virq;
1064 * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1065 * GSI numbers are more than the number of IRQ route. Allocating a GSI
1066 * number can succeed even though a new route entry cannot be added.
1067 * When this happens, flush dynamic MSI entries to free IRQ route entries.
1069 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
1070 kvm_flush_dynamic_msi_routes(s);
1073 /* Return the lowest unused GSI in the bitmap */
1074 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
1075 if (next_virq >= s->gsi_count) {
1076 return -ENOSPC;
1077 } else {
1078 return next_virq;
1082 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1084 unsigned int hash = kvm_hash_msi(msg.data);
1085 KVMMSIRoute *route;
1087 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1088 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1089 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1090 route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1091 return route;
1094 return NULL;
1097 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1099 struct kvm_msi msi;
1100 KVMMSIRoute *route;
1102 if (kvm_direct_msi_allowed) {
1103 msi.address_lo = (uint32_t)msg.address;
1104 msi.address_hi = msg.address >> 32;
1105 msi.data = le32_to_cpu(msg.data);
1106 msi.flags = 0;
1107 memset(msi.pad, 0, sizeof(msi.pad));
1109 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1112 route = kvm_lookup_msi_route(s, msg);
1113 if (!route) {
1114 int virq;
1116 virq = kvm_irqchip_get_virq(s);
1117 if (virq < 0) {
1118 return virq;
1121 route = g_malloc0(sizeof(KVMMSIRoute));
1122 route->kroute.gsi = virq;
1123 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1124 route->kroute.flags = 0;
1125 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1126 route->kroute.u.msi.address_hi = msg.address >> 32;
1127 route->kroute.u.msi.data = le32_to_cpu(msg.data);
1129 kvm_add_routing_entry(s, &route->kroute);
1130 kvm_irqchip_commit_routes(s);
1132 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1133 entry);
1136 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1138 return kvm_set_irq(s, route->kroute.gsi, 1);
1141 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1143 struct kvm_irq_routing_entry kroute = {};
1144 int virq;
1145 MSIMessage msg = {0, 0};
1147 if (pci_available && dev) {
1148 msg = pci_get_msi_message(dev, vector);
1151 if (kvm_gsi_direct_mapping()) {
1152 return kvm_arch_msi_data_to_gsi(msg.data);
1155 if (!kvm_gsi_routing_enabled()) {
1156 return -ENOSYS;
1159 virq = kvm_irqchip_get_virq(s);
1160 if (virq < 0) {
1161 return virq;
1164 kroute.gsi = virq;
1165 kroute.type = KVM_IRQ_ROUTING_MSI;
1166 kroute.flags = 0;
1167 kroute.u.msi.address_lo = (uint32_t)msg.address;
1168 kroute.u.msi.address_hi = msg.address >> 32;
1169 kroute.u.msi.data = le32_to_cpu(msg.data);
1170 if (pci_available && kvm_msi_devid_required()) {
1171 kroute.flags = KVM_MSI_VALID_DEVID;
1172 kroute.u.msi.devid = pci_requester_id(dev);
1174 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1175 kvm_irqchip_release_virq(s, virq);
1176 return -EINVAL;
1179 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
1180 vector, virq);
1182 kvm_add_routing_entry(s, &kroute);
1183 kvm_arch_add_msi_route_post(&kroute, vector, dev);
1184 kvm_irqchip_commit_routes(s);
1186 return virq;
1189 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
1190 PCIDevice *dev)
1192 struct kvm_irq_routing_entry kroute = {};
1194 if (kvm_gsi_direct_mapping()) {
1195 return 0;
1198 if (!kvm_irqchip_in_kernel()) {
1199 return -ENOSYS;
1202 kroute.gsi = virq;
1203 kroute.type = KVM_IRQ_ROUTING_MSI;
1204 kroute.flags = 0;
1205 kroute.u.msi.address_lo = (uint32_t)msg.address;
1206 kroute.u.msi.address_hi = msg.address >> 32;
1207 kroute.u.msi.data = le32_to_cpu(msg.data);
1208 if (pci_available && kvm_msi_devid_required()) {
1209 kroute.flags = KVM_MSI_VALID_DEVID;
1210 kroute.u.msi.devid = pci_requester_id(dev);
1212 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1213 return -EINVAL;
1216 trace_kvm_irqchip_update_msi_route(virq);
1218 return kvm_update_routing_entry(s, &kroute);
1221 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq,
1222 bool assign)
1224 struct kvm_irqfd irqfd = {
1225 .fd = fd,
1226 .gsi = virq,
1227 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1230 if (rfd != -1) {
1231 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1232 irqfd.resamplefd = rfd;
1235 if (!kvm_irqfds_enabled()) {
1236 return -ENOSYS;
1239 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1242 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1244 struct kvm_irq_routing_entry kroute = {};
1245 int virq;
1247 if (!kvm_gsi_routing_enabled()) {
1248 return -ENOSYS;
1251 virq = kvm_irqchip_get_virq(s);
1252 if (virq < 0) {
1253 return virq;
1256 kroute.gsi = virq;
1257 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
1258 kroute.flags = 0;
1259 kroute.u.adapter.summary_addr = adapter->summary_addr;
1260 kroute.u.adapter.ind_addr = adapter->ind_addr;
1261 kroute.u.adapter.summary_offset = adapter->summary_offset;
1262 kroute.u.adapter.ind_offset = adapter->ind_offset;
1263 kroute.u.adapter.adapter_id = adapter->adapter_id;
1265 kvm_add_routing_entry(s, &kroute);
1267 return virq;
1270 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1272 struct kvm_irq_routing_entry kroute = {};
1273 int virq;
1275 if (!kvm_gsi_routing_enabled()) {
1276 return -ENOSYS;
1278 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
1279 return -ENOSYS;
1281 virq = kvm_irqchip_get_virq(s);
1282 if (virq < 0) {
1283 return virq;
1286 kroute.gsi = virq;
1287 kroute.type = KVM_IRQ_ROUTING_HV_SINT;
1288 kroute.flags = 0;
1289 kroute.u.hv_sint.vcpu = vcpu;
1290 kroute.u.hv_sint.sint = sint;
1292 kvm_add_routing_entry(s, &kroute);
1293 kvm_irqchip_commit_routes(s);
1295 return virq;
1298 #else /* !KVM_CAP_IRQ_ROUTING */
1300 void kvm_init_irq_routing(KVMState *s)
1304 void kvm_irqchip_release_virq(KVMState *s, int virq)
1308 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1310 abort();
1313 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1315 return -ENOSYS;
1318 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1320 return -ENOSYS;
1323 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1325 return -ENOSYS;
1328 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1330 abort();
1333 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1335 return -ENOSYS;
1337 #endif /* !KVM_CAP_IRQ_ROUTING */
1339 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1340 EventNotifier *rn, int virq)
1342 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n),
1343 rn ? event_notifier_get_fd(rn) : -1, virq, true);
1346 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1347 int virq)
1349 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq,
1350 false);
1353 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1354 EventNotifier *rn, qemu_irq irq)
1356 gpointer key, gsi;
1357 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1359 if (!found) {
1360 return -ENXIO;
1362 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
1365 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
1366 qemu_irq irq)
1368 gpointer key, gsi;
1369 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1371 if (!found) {
1372 return -ENXIO;
1374 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
1377 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
1379 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
1382 static void kvm_irqchip_create(MachineState *machine, KVMState *s)
1384 int ret;
1386 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1388 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
1389 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
1390 if (ret < 0) {
1391 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
1392 exit(1);
1394 } else {
1395 return;
1398 /* First probe and see if there's a arch-specific hook to create the
1399 * in-kernel irqchip for us */
1400 ret = kvm_arch_irqchip_create(machine, s);
1401 if (ret == 0) {
1402 if (machine_kernel_irqchip_split(machine)) {
1403 perror("Split IRQ chip mode not supported.");
1404 exit(1);
1405 } else {
1406 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1409 if (ret < 0) {
1410 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
1411 exit(1);
1414 kvm_kernel_irqchip = true;
1415 /* If we have an in-kernel IRQ chip then we must have asynchronous
1416 * interrupt delivery (though the reverse is not necessarily true)
1418 kvm_async_interrupts_allowed = true;
1419 kvm_halt_in_kernel_allowed = true;
1421 kvm_init_irq_routing(s);
1423 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
1426 /* Find number of supported CPUs using the recommended
1427 * procedure from the kernel API documentation to cope with
1428 * older kernels that may be missing capabilities.
1430 static int kvm_recommended_vcpus(KVMState *s)
1432 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
1433 return (ret) ? ret : 4;
1436 static int kvm_max_vcpus(KVMState *s)
1438 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1439 return (ret) ? ret : kvm_recommended_vcpus(s);
1442 static int kvm_max_vcpu_id(KVMState *s)
1444 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
1445 return (ret) ? ret : kvm_max_vcpus(s);
1448 bool kvm_vcpu_id_is_valid(int vcpu_id)
1450 KVMState *s = KVM_STATE(current_machine->accelerator);
1451 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
1454 static int kvm_init(MachineState *ms)
1456 MachineClass *mc = MACHINE_GET_CLASS(ms);
1457 static const char upgrade_note[] =
1458 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1459 "(see http://sourceforge.net/projects/kvm).\n";
1460 struct {
1461 const char *name;
1462 int num;
1463 } num_cpus[] = {
1464 { "SMP", smp_cpus },
1465 { "hotpluggable", max_cpus },
1466 { NULL, }
1467 }, *nc = num_cpus;
1468 int soft_vcpus_limit, hard_vcpus_limit;
1469 KVMState *s;
1470 const KVMCapabilityInfo *missing_cap;
1471 int ret;
1472 int type = 0;
1473 const char *kvm_type;
1475 s = KVM_STATE(ms->accelerator);
1478 * On systems where the kernel can support different base page
1479 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1480 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1481 * page size for the system though.
1483 assert(TARGET_PAGE_SIZE <= getpagesize());
1485 s->sigmask_len = 8;
1487 #ifdef KVM_CAP_SET_GUEST_DEBUG
1488 QTAILQ_INIT(&s->kvm_sw_breakpoints);
1489 #endif
1490 QLIST_INIT(&s->kvm_parked_vcpus);
1491 s->vmfd = -1;
1492 s->fd = qemu_open("/dev/kvm", O_RDWR);
1493 if (s->fd == -1) {
1494 fprintf(stderr, "Could not access KVM kernel module: %m\n");
1495 ret = -errno;
1496 goto err;
1499 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1500 if (ret < KVM_API_VERSION) {
1501 if (ret >= 0) {
1502 ret = -EINVAL;
1504 fprintf(stderr, "kvm version too old\n");
1505 goto err;
1508 if (ret > KVM_API_VERSION) {
1509 ret = -EINVAL;
1510 fprintf(stderr, "kvm version not supported\n");
1511 goto err;
1514 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
1515 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
1517 /* If unspecified, use the default value */
1518 if (!s->nr_slots) {
1519 s->nr_slots = 32;
1522 kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
1523 if (mc->kvm_type) {
1524 type = mc->kvm_type(kvm_type);
1525 } else if (kvm_type) {
1526 ret = -EINVAL;
1527 fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type);
1528 goto err;
1531 do {
1532 ret = kvm_ioctl(s, KVM_CREATE_VM, type);
1533 } while (ret == -EINTR);
1535 if (ret < 0) {
1536 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
1537 strerror(-ret));
1539 #ifdef TARGET_S390X
1540 if (ret == -EINVAL) {
1541 fprintf(stderr,
1542 "Host kernel setup problem detected. Please verify:\n");
1543 fprintf(stderr, "- for kernels supporting the switch_amode or"
1544 " user_mode parameters, whether\n");
1545 fprintf(stderr,
1546 " user space is running in primary address space\n");
1547 fprintf(stderr,
1548 "- for kernels supporting the vm.allocate_pgste sysctl, "
1549 "whether it is enabled\n");
1551 #endif
1552 goto err;
1555 s->vmfd = ret;
1557 /* check the vcpu limits */
1558 soft_vcpus_limit = kvm_recommended_vcpus(s);
1559 hard_vcpus_limit = kvm_max_vcpus(s);
1561 while (nc->name) {
1562 if (nc->num > soft_vcpus_limit) {
1563 warn_report("Number of %s cpus requested (%d) exceeds "
1564 "the recommended cpus supported by KVM (%d)",
1565 nc->name, nc->num, soft_vcpus_limit);
1567 if (nc->num > hard_vcpus_limit) {
1568 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
1569 "the maximum cpus supported by KVM (%d)\n",
1570 nc->name, nc->num, hard_vcpus_limit);
1571 exit(1);
1574 nc++;
1577 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1578 if (!missing_cap) {
1579 missing_cap =
1580 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1582 if (missing_cap) {
1583 ret = -EINVAL;
1584 fprintf(stderr, "kvm does not support %s\n%s",
1585 missing_cap->name, upgrade_note);
1586 goto err;
1589 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1591 #ifdef KVM_CAP_VCPU_EVENTS
1592 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1593 #endif
1595 s->robust_singlestep =
1596 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1598 #ifdef KVM_CAP_DEBUGREGS
1599 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1600 #endif
1602 #ifdef KVM_CAP_IRQ_ROUTING
1603 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1604 #endif
1606 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1608 s->irq_set_ioctl = KVM_IRQ_LINE;
1609 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1610 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
1613 #ifdef KVM_CAP_READONLY_MEM
1614 kvm_readonly_mem_allowed =
1615 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
1616 #endif
1618 kvm_eventfds_allowed =
1619 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
1621 kvm_irqfds_allowed =
1622 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
1624 kvm_resamplefds_allowed =
1625 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
1627 kvm_vm_attributes_allowed =
1628 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
1630 kvm_ioeventfd_any_length_allowed =
1631 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
1633 kvm_state = s;
1635 ret = kvm_arch_init(ms, s);
1636 if (ret < 0) {
1637 goto err;
1640 if (machine_kernel_irqchip_allowed(ms)) {
1641 kvm_irqchip_create(ms, s);
1644 if (kvm_eventfds_allowed) {
1645 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
1646 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
1648 s->memory_listener.listener.coalesced_mmio_add = kvm_coalesce_mmio_region;
1649 s->memory_listener.listener.coalesced_mmio_del = kvm_uncoalesce_mmio_region;
1651 kvm_memory_listener_register(s, &s->memory_listener,
1652 &address_space_memory, 0);
1653 memory_listener_register(&kvm_io_listener,
1654 &address_space_io);
1656 s->many_ioeventfds = kvm_check_many_ioeventfds();
1658 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1660 return 0;
1662 err:
1663 assert(ret < 0);
1664 if (s->vmfd >= 0) {
1665 close(s->vmfd);
1667 if (s->fd != -1) {
1668 close(s->fd);
1670 g_free(s->memory_listener.slots);
1672 return ret;
1675 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
1677 s->sigmask_len = sigmask_len;
1680 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
1681 int size, uint32_t count)
1683 int i;
1684 uint8_t *ptr = data;
1686 for (i = 0; i < count; i++) {
1687 address_space_rw(&address_space_io, port, attrs,
1688 ptr, size,
1689 direction == KVM_EXIT_IO_OUT);
1690 ptr += size;
1694 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
1696 fprintf(stderr, "KVM internal error. Suberror: %d\n",
1697 run->internal.suberror);
1699 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1700 int i;
1702 for (i = 0; i < run->internal.ndata; ++i) {
1703 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1704 i, (uint64_t)run->internal.data[i]);
1707 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1708 fprintf(stderr, "emulation failure\n");
1709 if (!kvm_arch_stop_on_emulation_error(cpu)) {
1710 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1711 return EXCP_INTERRUPT;
1714 /* FIXME: Should trigger a qmp message to let management know
1715 * something went wrong.
1717 return -1;
1720 void kvm_flush_coalesced_mmio_buffer(void)
1722 KVMState *s = kvm_state;
1724 if (s->coalesced_flush_in_progress) {
1725 return;
1728 s->coalesced_flush_in_progress = true;
1730 if (s->coalesced_mmio_ring) {
1731 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1732 while (ring->first != ring->last) {
1733 struct kvm_coalesced_mmio *ent;
1735 ent = &ring->coalesced_mmio[ring->first];
1737 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1738 smp_wmb();
1739 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1743 s->coalesced_flush_in_progress = false;
1746 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
1748 if (!cpu->vcpu_dirty) {
1749 kvm_arch_get_registers(cpu);
1750 cpu->vcpu_dirty = true;
1754 void kvm_cpu_synchronize_state(CPUState *cpu)
1756 if (!cpu->vcpu_dirty) {
1757 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
1761 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
1763 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
1764 cpu->vcpu_dirty = false;
1767 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
1769 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
1772 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
1774 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
1775 cpu->vcpu_dirty = false;
1778 void kvm_cpu_synchronize_post_init(CPUState *cpu)
1780 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
1783 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
1785 cpu->vcpu_dirty = true;
1788 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
1790 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
1793 #ifdef KVM_HAVE_MCE_INJECTION
1794 static __thread void *pending_sigbus_addr;
1795 static __thread int pending_sigbus_code;
1796 static __thread bool have_sigbus_pending;
1797 #endif
1799 static void kvm_cpu_kick(CPUState *cpu)
1801 atomic_set(&cpu->kvm_run->immediate_exit, 1);
1804 static void kvm_cpu_kick_self(void)
1806 if (kvm_immediate_exit) {
1807 kvm_cpu_kick(current_cpu);
1808 } else {
1809 qemu_cpu_kick_self();
1813 static void kvm_eat_signals(CPUState *cpu)
1815 struct timespec ts = { 0, 0 };
1816 siginfo_t siginfo;
1817 sigset_t waitset;
1818 sigset_t chkset;
1819 int r;
1821 if (kvm_immediate_exit) {
1822 atomic_set(&cpu->kvm_run->immediate_exit, 0);
1823 /* Write kvm_run->immediate_exit before the cpu->exit_request
1824 * write in kvm_cpu_exec.
1826 smp_wmb();
1827 return;
1830 sigemptyset(&waitset);
1831 sigaddset(&waitset, SIG_IPI);
1833 do {
1834 r = sigtimedwait(&waitset, &siginfo, &ts);
1835 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
1836 perror("sigtimedwait");
1837 exit(1);
1840 r = sigpending(&chkset);
1841 if (r == -1) {
1842 perror("sigpending");
1843 exit(1);
1845 } while (sigismember(&chkset, SIG_IPI));
1848 int kvm_cpu_exec(CPUState *cpu)
1850 struct kvm_run *run = cpu->kvm_run;
1851 int ret, run_ret;
1853 DPRINTF("kvm_cpu_exec()\n");
1855 if (kvm_arch_process_async_events(cpu)) {
1856 atomic_set(&cpu->exit_request, 0);
1857 return EXCP_HLT;
1860 qemu_mutex_unlock_iothread();
1861 cpu_exec_start(cpu);
1863 do {
1864 MemTxAttrs attrs;
1866 if (cpu->vcpu_dirty) {
1867 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
1868 cpu->vcpu_dirty = false;
1871 kvm_arch_pre_run(cpu, run);
1872 if (atomic_read(&cpu->exit_request)) {
1873 DPRINTF("interrupt exit requested\n");
1875 * KVM requires us to reenter the kernel after IO exits to complete
1876 * instruction emulation. This self-signal will ensure that we
1877 * leave ASAP again.
1879 kvm_cpu_kick_self();
1882 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
1883 * Matching barrier in kvm_eat_signals.
1885 smp_rmb();
1887 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
1889 attrs = kvm_arch_post_run(cpu, run);
1891 #ifdef KVM_HAVE_MCE_INJECTION
1892 if (unlikely(have_sigbus_pending)) {
1893 qemu_mutex_lock_iothread();
1894 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
1895 pending_sigbus_addr);
1896 have_sigbus_pending = false;
1897 qemu_mutex_unlock_iothread();
1899 #endif
1901 if (run_ret < 0) {
1902 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1903 DPRINTF("io window exit\n");
1904 kvm_eat_signals(cpu);
1905 ret = EXCP_INTERRUPT;
1906 break;
1908 fprintf(stderr, "error: kvm run failed %s\n",
1909 strerror(-run_ret));
1910 #ifdef TARGET_PPC
1911 if (run_ret == -EBUSY) {
1912 fprintf(stderr,
1913 "This is probably because your SMT is enabled.\n"
1914 "VCPU can only run on primary threads with all "
1915 "secondary threads offline.\n");
1917 #endif
1918 ret = -1;
1919 break;
1922 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
1923 switch (run->exit_reason) {
1924 case KVM_EXIT_IO:
1925 DPRINTF("handle_io\n");
1926 /* Called outside BQL */
1927 kvm_handle_io(run->io.port, attrs,
1928 (uint8_t *)run + run->io.data_offset,
1929 run->io.direction,
1930 run->io.size,
1931 run->io.count);
1932 ret = 0;
1933 break;
1934 case KVM_EXIT_MMIO:
1935 DPRINTF("handle_mmio\n");
1936 /* Called outside BQL */
1937 address_space_rw(&address_space_memory,
1938 run->mmio.phys_addr, attrs,
1939 run->mmio.data,
1940 run->mmio.len,
1941 run->mmio.is_write);
1942 ret = 0;
1943 break;
1944 case KVM_EXIT_IRQ_WINDOW_OPEN:
1945 DPRINTF("irq_window_open\n");
1946 ret = EXCP_INTERRUPT;
1947 break;
1948 case KVM_EXIT_SHUTDOWN:
1949 DPRINTF("shutdown\n");
1950 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1951 ret = EXCP_INTERRUPT;
1952 break;
1953 case KVM_EXIT_UNKNOWN:
1954 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1955 (uint64_t)run->hw.hardware_exit_reason);
1956 ret = -1;
1957 break;
1958 case KVM_EXIT_INTERNAL_ERROR:
1959 ret = kvm_handle_internal_error(cpu, run);
1960 break;
1961 case KVM_EXIT_SYSTEM_EVENT:
1962 switch (run->system_event.type) {
1963 case KVM_SYSTEM_EVENT_SHUTDOWN:
1964 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
1965 ret = EXCP_INTERRUPT;
1966 break;
1967 case KVM_SYSTEM_EVENT_RESET:
1968 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1969 ret = EXCP_INTERRUPT;
1970 break;
1971 case KVM_SYSTEM_EVENT_CRASH:
1972 kvm_cpu_synchronize_state(cpu);
1973 qemu_mutex_lock_iothread();
1974 qemu_system_guest_panicked(cpu_get_crash_info(cpu));
1975 qemu_mutex_unlock_iothread();
1976 ret = 0;
1977 break;
1978 default:
1979 DPRINTF("kvm_arch_handle_exit\n");
1980 ret = kvm_arch_handle_exit(cpu, run);
1981 break;
1983 break;
1984 default:
1985 DPRINTF("kvm_arch_handle_exit\n");
1986 ret = kvm_arch_handle_exit(cpu, run);
1987 break;
1989 } while (ret == 0);
1991 cpu_exec_end(cpu);
1992 qemu_mutex_lock_iothread();
1994 if (ret < 0) {
1995 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1996 vm_stop(RUN_STATE_INTERNAL_ERROR);
1999 atomic_set(&cpu->exit_request, 0);
2000 return ret;
2003 int kvm_ioctl(KVMState *s, int type, ...)
2005 int ret;
2006 void *arg;
2007 va_list ap;
2009 va_start(ap, type);
2010 arg = va_arg(ap, void *);
2011 va_end(ap);
2013 trace_kvm_ioctl(type, arg);
2014 ret = ioctl(s->fd, type, arg);
2015 if (ret == -1) {
2016 ret = -errno;
2018 return ret;
2021 int kvm_vm_ioctl(KVMState *s, int type, ...)
2023 int ret;
2024 void *arg;
2025 va_list ap;
2027 va_start(ap, type);
2028 arg = va_arg(ap, void *);
2029 va_end(ap);
2031 trace_kvm_vm_ioctl(type, arg);
2032 ret = ioctl(s->vmfd, type, arg);
2033 if (ret == -1) {
2034 ret = -errno;
2036 return ret;
2039 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
2041 int ret;
2042 void *arg;
2043 va_list ap;
2045 va_start(ap, type);
2046 arg = va_arg(ap, void *);
2047 va_end(ap);
2049 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
2050 ret = ioctl(cpu->kvm_fd, type, arg);
2051 if (ret == -1) {
2052 ret = -errno;
2054 return ret;
2057 int kvm_device_ioctl(int fd, int type, ...)
2059 int ret;
2060 void *arg;
2061 va_list ap;
2063 va_start(ap, type);
2064 arg = va_arg(ap, void *);
2065 va_end(ap);
2067 trace_kvm_device_ioctl(fd, type, arg);
2068 ret = ioctl(fd, type, arg);
2069 if (ret == -1) {
2070 ret = -errno;
2072 return ret;
2075 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
2077 int ret;
2078 struct kvm_device_attr attribute = {
2079 .group = group,
2080 .attr = attr,
2083 if (!kvm_vm_attributes_allowed) {
2084 return 0;
2087 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
2088 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
2089 return ret ? 0 : 1;
2092 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
2094 struct kvm_device_attr attribute = {
2095 .group = group,
2096 .attr = attr,
2097 .flags = 0,
2100 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
2103 int kvm_device_access(int fd, int group, uint64_t attr,
2104 void *val, bool write, Error **errp)
2106 struct kvm_device_attr kvmattr;
2107 int err;
2109 kvmattr.flags = 0;
2110 kvmattr.group = group;
2111 kvmattr.attr = attr;
2112 kvmattr.addr = (uintptr_t)val;
2114 err = kvm_device_ioctl(fd,
2115 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
2116 &kvmattr);
2117 if (err < 0) {
2118 error_setg_errno(errp, -err,
2119 "KVM_%s_DEVICE_ATTR failed: Group %d "
2120 "attr 0x%016" PRIx64,
2121 write ? "SET" : "GET", group, attr);
2123 return err;
2126 bool kvm_has_sync_mmu(void)
2128 return kvm_state->sync_mmu;
2131 int kvm_has_vcpu_events(void)
2133 return kvm_state->vcpu_events;
2136 int kvm_has_robust_singlestep(void)
2138 return kvm_state->robust_singlestep;
2141 int kvm_has_debugregs(void)
2143 return kvm_state->debugregs;
2146 int kvm_has_many_ioeventfds(void)
2148 if (!kvm_enabled()) {
2149 return 0;
2151 return kvm_state->many_ioeventfds;
2154 int kvm_has_gsi_routing(void)
2156 #ifdef KVM_CAP_IRQ_ROUTING
2157 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
2158 #else
2159 return false;
2160 #endif
2163 int kvm_has_intx_set_mask(void)
2165 return kvm_state->intx_set_mask;
2168 bool kvm_arm_supports_user_irq(void)
2170 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
2173 #ifdef KVM_CAP_SET_GUEST_DEBUG
2174 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
2175 target_ulong pc)
2177 struct kvm_sw_breakpoint *bp;
2179 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
2180 if (bp->pc == pc) {
2181 return bp;
2184 return NULL;
2187 int kvm_sw_breakpoints_active(CPUState *cpu)
2189 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
2192 struct kvm_set_guest_debug_data {
2193 struct kvm_guest_debug dbg;
2194 int err;
2197 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
2199 struct kvm_set_guest_debug_data *dbg_data =
2200 (struct kvm_set_guest_debug_data *) data.host_ptr;
2202 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
2203 &dbg_data->dbg);
2206 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2208 struct kvm_set_guest_debug_data data;
2210 data.dbg.control = reinject_trap;
2212 if (cpu->singlestep_enabled) {
2213 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
2215 kvm_arch_update_guest_debug(cpu, &data.dbg);
2217 run_on_cpu(cpu, kvm_invoke_set_guest_debug,
2218 RUN_ON_CPU_HOST_PTR(&data));
2219 return data.err;
2222 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2223 target_ulong len, int type)
2225 struct kvm_sw_breakpoint *bp;
2226 int err;
2228 if (type == GDB_BREAKPOINT_SW) {
2229 bp = kvm_find_sw_breakpoint(cpu, addr);
2230 if (bp) {
2231 bp->use_count++;
2232 return 0;
2235 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
2236 bp->pc = addr;
2237 bp->use_count = 1;
2238 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
2239 if (err) {
2240 g_free(bp);
2241 return err;
2244 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2245 } else {
2246 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
2247 if (err) {
2248 return err;
2252 CPU_FOREACH(cpu) {
2253 err = kvm_update_guest_debug(cpu, 0);
2254 if (err) {
2255 return err;
2258 return 0;
2261 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2262 target_ulong len, int type)
2264 struct kvm_sw_breakpoint *bp;
2265 int err;
2267 if (type == GDB_BREAKPOINT_SW) {
2268 bp = kvm_find_sw_breakpoint(cpu, addr);
2269 if (!bp) {
2270 return -ENOENT;
2273 if (bp->use_count > 1) {
2274 bp->use_count--;
2275 return 0;
2278 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
2279 if (err) {
2280 return err;
2283 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2284 g_free(bp);
2285 } else {
2286 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
2287 if (err) {
2288 return err;
2292 CPU_FOREACH(cpu) {
2293 err = kvm_update_guest_debug(cpu, 0);
2294 if (err) {
2295 return err;
2298 return 0;
2301 void kvm_remove_all_breakpoints(CPUState *cpu)
2303 struct kvm_sw_breakpoint *bp, *next;
2304 KVMState *s = cpu->kvm_state;
2305 CPUState *tmpcpu;
2307 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
2308 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
2309 /* Try harder to find a CPU that currently sees the breakpoint. */
2310 CPU_FOREACH(tmpcpu) {
2311 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
2312 break;
2316 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2317 g_free(bp);
2319 kvm_arch_remove_all_hw_breakpoints();
2321 CPU_FOREACH(cpu) {
2322 kvm_update_guest_debug(cpu, 0);
2326 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2328 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2330 return -EINVAL;
2333 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2334 target_ulong len, int type)
2336 return -EINVAL;
2339 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2340 target_ulong len, int type)
2342 return -EINVAL;
2345 void kvm_remove_all_breakpoints(CPUState *cpu)
2348 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2350 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2352 KVMState *s = kvm_state;
2353 struct kvm_signal_mask *sigmask;
2354 int r;
2356 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2358 sigmask->len = s->sigmask_len;
2359 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2360 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2361 g_free(sigmask);
2363 return r;
2366 static void kvm_ipi_signal(int sig)
2368 if (current_cpu) {
2369 assert(kvm_immediate_exit);
2370 kvm_cpu_kick(current_cpu);
2374 void kvm_init_cpu_signals(CPUState *cpu)
2376 int r;
2377 sigset_t set;
2378 struct sigaction sigact;
2380 memset(&sigact, 0, sizeof(sigact));
2381 sigact.sa_handler = kvm_ipi_signal;
2382 sigaction(SIG_IPI, &sigact, NULL);
2384 pthread_sigmask(SIG_BLOCK, NULL, &set);
2385 #if defined KVM_HAVE_MCE_INJECTION
2386 sigdelset(&set, SIGBUS);
2387 pthread_sigmask(SIG_SETMASK, &set, NULL);
2388 #endif
2389 sigdelset(&set, SIG_IPI);
2390 if (kvm_immediate_exit) {
2391 r = pthread_sigmask(SIG_SETMASK, &set, NULL);
2392 } else {
2393 r = kvm_set_signal_mask(cpu, &set);
2395 if (r) {
2396 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
2397 exit(1);
2401 /* Called asynchronously in VCPU thread. */
2402 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2404 #ifdef KVM_HAVE_MCE_INJECTION
2405 if (have_sigbus_pending) {
2406 return 1;
2408 have_sigbus_pending = true;
2409 pending_sigbus_addr = addr;
2410 pending_sigbus_code = code;
2411 atomic_set(&cpu->exit_request, 1);
2412 return 0;
2413 #else
2414 return 1;
2415 #endif
2418 /* Called synchronously (via signalfd) in main thread. */
2419 int kvm_on_sigbus(int code, void *addr)
2421 #ifdef KVM_HAVE_MCE_INJECTION
2422 /* Action required MCE kills the process if SIGBUS is blocked. Because
2423 * that's what happens in the I/O thread, where we handle MCE via signalfd,
2424 * we can only get action optional here.
2426 assert(code != BUS_MCEERR_AR);
2427 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
2428 return 0;
2429 #else
2430 return 1;
2431 #endif
2434 int kvm_create_device(KVMState *s, uint64_t type, bool test)
2436 int ret;
2437 struct kvm_create_device create_dev;
2439 create_dev.type = type;
2440 create_dev.fd = -1;
2441 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
2443 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
2444 return -ENOTSUP;
2447 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
2448 if (ret) {
2449 return ret;
2452 return test ? 0 : create_dev.fd;
2455 bool kvm_device_supported(int vmfd, uint64_t type)
2457 struct kvm_create_device create_dev = {
2458 .type = type,
2459 .fd = -1,
2460 .flags = KVM_CREATE_DEVICE_TEST,
2463 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
2464 return false;
2467 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
2470 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
2472 struct kvm_one_reg reg;
2473 int r;
2475 reg.id = id;
2476 reg.addr = (uintptr_t) source;
2477 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
2478 if (r) {
2479 trace_kvm_failed_reg_set(id, strerror(-r));
2481 return r;
2484 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
2486 struct kvm_one_reg reg;
2487 int r;
2489 reg.id = id;
2490 reg.addr = (uintptr_t) target;
2491 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
2492 if (r) {
2493 trace_kvm_failed_reg_get(id, strerror(-r));
2495 return r;
2498 static void kvm_accel_class_init(ObjectClass *oc, void *data)
2500 AccelClass *ac = ACCEL_CLASS(oc);
2501 ac->name = "KVM";
2502 ac->init_machine = kvm_init;
2503 ac->allowed = &kvm_allowed;
2506 static const TypeInfo kvm_accel_type = {
2507 .name = TYPE_KVM_ACCEL,
2508 .parent = TYPE_ACCEL,
2509 .class_init = kvm_accel_class_init,
2510 .instance_size = sizeof(KVMState),
2513 static void kvm_type_init(void)
2515 type_register_static(&kvm_accel_type);
2518 type_init(kvm_type_init);