2 * ARM implementation of KVM hooks
4 * Copyright Christoffer Dall 2009-2010
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
11 #include "qemu/osdep.h"
12 #include <sys/ioctl.h>
14 #include <linux/kvm.h>
16 #include "qemu-common.h"
17 #include "qemu/timer.h"
18 #include "qemu/error-report.h"
19 #include "sysemu/sysemu.h"
20 #include "sysemu/kvm.h"
23 #include "internals.h"
24 #include "hw/arm/arm.h"
25 #include "exec/memattrs.h"
26 #include "hw/boards.h"
29 const KVMCapabilityInfo kvm_arch_required_capabilities
[] = {
33 static bool cap_has_mp_state
;
35 int kvm_arm_vcpu_init(CPUState
*cs
)
37 ARMCPU
*cpu
= ARM_CPU(cs
);
38 struct kvm_vcpu_init init
;
40 init
.target
= cpu
->kvm_target
;
41 memcpy(init
.features
, cpu
->kvm_init_features
, sizeof(init
.features
));
43 return kvm_vcpu_ioctl(cs
, KVM_ARM_VCPU_INIT
, &init
);
46 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try
,
48 struct kvm_vcpu_init
*init
)
50 int ret
, kvmfd
= -1, vmfd
= -1, cpufd
= -1;
52 kvmfd
= qemu_open("/dev/kvm", O_RDWR
);
56 vmfd
= ioctl(kvmfd
, KVM_CREATE_VM
, 0);
60 cpufd
= ioctl(vmfd
, KVM_CREATE_VCPU
, 0);
66 /* Caller doesn't want the VCPU to be initialized, so skip it */
70 ret
= ioctl(vmfd
, KVM_ARM_PREFERRED_TARGET
, init
);
72 ret
= ioctl(cpufd
, KVM_ARM_VCPU_INIT
, init
);
76 } else if (cpus_to_try
) {
77 /* Old kernel which doesn't know about the
78 * PREFERRED_TARGET ioctl: we know it will only support
79 * creating one kind of guest CPU which is its preferred
82 while (*cpus_to_try
!= QEMU_KVM_ARM_TARGET_NONE
) {
83 init
->target
= *cpus_to_try
++;
84 memset(init
->features
, 0, sizeof(init
->features
));
85 ret
= ioctl(cpufd
, KVM_ARM_VCPU_INIT
, init
);
94 /* Treat a NULL cpus_to_try argument the same as an empty
95 * list, which means we will fail the call since this must
96 * be an old kernel which doesn't support PREFERRED_TARGET.
122 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray
)
126 for (i
= 2; i
>= 0; i
--) {
131 static void kvm_arm_host_cpu_class_init(ObjectClass
*oc
, void *data
)
133 ARMHostCPUClass
*ahcc
= ARM_HOST_CPU_CLASS(oc
);
135 /* All we really need to set up for the 'host' CPU
136 * is the feature bits -- we rely on the fact that the
137 * various ID register values in ARMCPU are only used for
140 if (!kvm_arm_get_host_cpu_features(ahcc
)) {
141 fprintf(stderr
, "Failed to retrieve host CPU features!\n");
146 static void kvm_arm_host_cpu_initfn(Object
*obj
)
148 ARMHostCPUClass
*ahcc
= ARM_HOST_CPU_GET_CLASS(obj
);
149 ARMCPU
*cpu
= ARM_CPU(obj
);
150 CPUARMState
*env
= &cpu
->env
;
152 cpu
->kvm_target
= ahcc
->target
;
153 cpu
->dtb_compatible
= ahcc
->dtb_compatible
;
154 env
->features
= ahcc
->features
;
157 static const TypeInfo host_arm_cpu_type_info
= {
158 .name
= TYPE_ARM_HOST_CPU
,
159 #ifdef TARGET_AARCH64
160 .parent
= TYPE_AARCH64_CPU
,
162 .parent
= TYPE_ARM_CPU
,
164 .instance_init
= kvm_arm_host_cpu_initfn
,
165 .class_init
= kvm_arm_host_cpu_class_init
,
166 .class_size
= sizeof(ARMHostCPUClass
),
169 int kvm_arch_init(MachineState
*ms
, KVMState
*s
)
171 /* For ARM interrupt delivery is always asynchronous,
172 * whether we are using an in-kernel VGIC or not.
174 kvm_async_interrupts_allowed
= true;
176 cap_has_mp_state
= kvm_check_extension(s
, KVM_CAP_MP_STATE
);
178 type_register_static(&host_arm_cpu_type_info
);
183 unsigned long kvm_arch_vcpu_id(CPUState
*cpu
)
185 return cpu
->cpu_index
;
188 /* We track all the KVM devices which need their memory addresses
189 * passing to the kernel in a list of these structures.
190 * When board init is complete we run through the list and
191 * tell the kernel the base addresses of the memory regions.
192 * We use a MemoryListener to track mapping and unmapping of
193 * the regions during board creation, so the board models don't
194 * need to do anything special for the KVM case.
196 typedef struct KVMDevice
{
197 struct kvm_arm_device_addr kda
;
198 struct kvm_device_attr kdattr
;
200 QSLIST_ENTRY(KVMDevice
) entries
;
204 static QSLIST_HEAD(kvm_devices_head
, KVMDevice
) kvm_devices_head
;
206 static void kvm_arm_devlistener_add(MemoryListener
*listener
,
207 MemoryRegionSection
*section
)
211 QSLIST_FOREACH(kd
, &kvm_devices_head
, entries
) {
212 if (section
->mr
== kd
->mr
) {
213 kd
->kda
.addr
= section
->offset_within_address_space
;
218 static void kvm_arm_devlistener_del(MemoryListener
*listener
,
219 MemoryRegionSection
*section
)
223 QSLIST_FOREACH(kd
, &kvm_devices_head
, entries
) {
224 if (section
->mr
== kd
->mr
) {
230 static MemoryListener devlistener
= {
231 .region_add
= kvm_arm_devlistener_add
,
232 .region_del
= kvm_arm_devlistener_del
,
235 static void kvm_arm_set_device_addr(KVMDevice
*kd
)
237 struct kvm_device_attr
*attr
= &kd
->kdattr
;
240 /* If the device control API is available and we have a device fd on the
241 * KVMDevice struct, let's use the newer API
243 if (kd
->dev_fd
>= 0) {
244 uint64_t addr
= kd
->kda
.addr
;
245 attr
->addr
= (uintptr_t)&addr
;
246 ret
= kvm_device_ioctl(kd
->dev_fd
, KVM_SET_DEVICE_ATTR
, attr
);
248 ret
= kvm_vm_ioctl(kvm_state
, KVM_ARM_SET_DEVICE_ADDR
, &kd
->kda
);
252 fprintf(stderr
, "Failed to set device address: %s\n",
258 static void kvm_arm_machine_init_done(Notifier
*notifier
, void *data
)
262 memory_listener_unregister(&devlistener
);
263 QSLIST_FOREACH_SAFE(kd
, &kvm_devices_head
, entries
, tkd
) {
264 if (kd
->kda
.addr
!= -1) {
265 kvm_arm_set_device_addr(kd
);
267 memory_region_unref(kd
->mr
);
272 static Notifier notify
= {
273 .notify
= kvm_arm_machine_init_done
,
276 void kvm_arm_register_device(MemoryRegion
*mr
, uint64_t devid
, uint64_t group
,
277 uint64_t attr
, int dev_fd
)
281 if (!kvm_irqchip_in_kernel()) {
285 if (QSLIST_EMPTY(&kvm_devices_head
)) {
286 memory_listener_register(&devlistener
, NULL
);
287 qemu_add_machine_init_done_notifier(¬ify
);
289 kd
= g_new0(KVMDevice
, 1);
293 kd
->kdattr
.flags
= 0;
294 kd
->kdattr
.group
= group
;
295 kd
->kdattr
.attr
= attr
;
297 QSLIST_INSERT_HEAD(&kvm_devices_head
, kd
, entries
);
298 memory_region_ref(kd
->mr
);
301 static int compare_u64(const void *a
, const void *b
)
303 if (*(uint64_t *)a
> *(uint64_t *)b
) {
306 if (*(uint64_t *)a
< *(uint64_t *)b
) {
312 /* Initialize the CPUState's cpreg list according to the kernel's
313 * definition of what CPU registers it knows about (and throw away
314 * the previous TCG-created cpreg list).
316 int kvm_arm_init_cpreg_list(ARMCPU
*cpu
)
318 struct kvm_reg_list rl
;
319 struct kvm_reg_list
*rlp
;
320 int i
, ret
, arraylen
;
321 CPUState
*cs
= CPU(cpu
);
324 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_REG_LIST
, &rl
);
328 rlp
= g_malloc(sizeof(struct kvm_reg_list
) + rl
.n
* sizeof(uint64_t));
330 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_REG_LIST
, rlp
);
334 /* Sort the list we get back from the kernel, since cpreg_tuples
335 * must be in strictly ascending order.
337 qsort(&rlp
->reg
, rlp
->n
, sizeof(rlp
->reg
[0]), compare_u64
);
339 for (i
= 0, arraylen
= 0; i
< rlp
->n
; i
++) {
340 if (!kvm_arm_reg_syncs_via_cpreg_list(rlp
->reg
[i
])) {
343 switch (rlp
->reg
[i
] & KVM_REG_SIZE_MASK
) {
344 case KVM_REG_SIZE_U32
:
345 case KVM_REG_SIZE_U64
:
348 fprintf(stderr
, "Can't handle size of register in kernel list\n");
356 cpu
->cpreg_indexes
= g_renew(uint64_t, cpu
->cpreg_indexes
, arraylen
);
357 cpu
->cpreg_values
= g_renew(uint64_t, cpu
->cpreg_values
, arraylen
);
358 cpu
->cpreg_vmstate_indexes
= g_renew(uint64_t, cpu
->cpreg_vmstate_indexes
,
360 cpu
->cpreg_vmstate_values
= g_renew(uint64_t, cpu
->cpreg_vmstate_values
,
362 cpu
->cpreg_array_len
= arraylen
;
363 cpu
->cpreg_vmstate_array_len
= arraylen
;
365 for (i
= 0, arraylen
= 0; i
< rlp
->n
; i
++) {
366 uint64_t regidx
= rlp
->reg
[i
];
367 if (!kvm_arm_reg_syncs_via_cpreg_list(regidx
)) {
370 cpu
->cpreg_indexes
[arraylen
] = regidx
;
373 assert(cpu
->cpreg_array_len
== arraylen
);
375 if (!write_kvmstate_to_list(cpu
)) {
376 /* Shouldn't happen unless kernel is inconsistent about
377 * what registers exist.
379 fprintf(stderr
, "Initial read of kernel register state failed\n");
389 bool write_kvmstate_to_list(ARMCPU
*cpu
)
391 CPUState
*cs
= CPU(cpu
);
395 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
396 struct kvm_one_reg r
;
397 uint64_t regidx
= cpu
->cpreg_indexes
[i
];
403 switch (regidx
& KVM_REG_SIZE_MASK
) {
404 case KVM_REG_SIZE_U32
:
405 r
.addr
= (uintptr_t)&v32
;
406 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
408 cpu
->cpreg_values
[i
] = v32
;
411 case KVM_REG_SIZE_U64
:
412 r
.addr
= (uintptr_t)(cpu
->cpreg_values
+ i
);
413 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
425 bool write_list_to_kvmstate(ARMCPU
*cpu
, int level
)
427 CPUState
*cs
= CPU(cpu
);
431 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
432 struct kvm_one_reg r
;
433 uint64_t regidx
= cpu
->cpreg_indexes
[i
];
437 if (kvm_arm_cpreg_level(regidx
) > level
) {
442 switch (regidx
& KVM_REG_SIZE_MASK
) {
443 case KVM_REG_SIZE_U32
:
444 v32
= cpu
->cpreg_values
[i
];
445 r
.addr
= (uintptr_t)&v32
;
447 case KVM_REG_SIZE_U64
:
448 r
.addr
= (uintptr_t)(cpu
->cpreg_values
+ i
);
453 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, &r
);
455 /* We might fail for "unknown register" and also for
456 * "you tried to set a register which is constant with
457 * a different value from what it actually contains".
465 void kvm_arm_reset_vcpu(ARMCPU
*cpu
)
469 /* Re-init VCPU so that all registers are set to
470 * their respective reset values.
472 ret
= kvm_arm_vcpu_init(CPU(cpu
));
474 fprintf(stderr
, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret
));
477 if (!write_kvmstate_to_list(cpu
)) {
478 fprintf(stderr
, "write_kvmstate_to_list failed\n");
484 * Update KVM's MP_STATE based on what QEMU thinks it is
486 int kvm_arm_sync_mpstate_to_kvm(ARMCPU
*cpu
)
488 if (cap_has_mp_state
) {
489 struct kvm_mp_state mp_state
= {
491 cpu
->powered_off
? KVM_MP_STATE_STOPPED
: KVM_MP_STATE_RUNNABLE
493 int ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MP_STATE
, &mp_state
);
495 fprintf(stderr
, "%s: failed to set MP_STATE %d/%s\n",
496 __func__
, ret
, strerror(-ret
));
505 * Sync the KVM MP_STATE into QEMU
507 int kvm_arm_sync_mpstate_to_qemu(ARMCPU
*cpu
)
509 if (cap_has_mp_state
) {
510 struct kvm_mp_state mp_state
;
511 int ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_MP_STATE
, &mp_state
);
513 fprintf(stderr
, "%s: failed to get MP_STATE %d/%s\n",
514 __func__
, ret
, strerror(-ret
));
517 cpu
->powered_off
= (mp_state
.mp_state
== KVM_MP_STATE_STOPPED
);
523 void kvm_arch_pre_run(CPUState
*cs
, struct kvm_run
*run
)
527 MemTxAttrs
kvm_arch_post_run(CPUState
*cs
, struct kvm_run
*run
)
529 return MEMTXATTRS_UNSPECIFIED
;
533 int kvm_arch_handle_exit(CPUState
*cs
, struct kvm_run
*run
)
537 switch (run
->exit_reason
) {
539 if (kvm_arm_handle_debug(cs
, &run
->debug
.arch
)) {
541 } /* otherwise return to guest */
544 qemu_log_mask(LOG_UNIMP
, "%s: un-handled exit reason %d\n",
545 __func__
, run
->exit_reason
);
551 bool kvm_arch_stop_on_emulation_error(CPUState
*cs
)
556 int kvm_arch_process_async_events(CPUState
*cs
)
561 int kvm_arch_on_sigbus_vcpu(CPUState
*cs
, int code
, void *addr
)
566 int kvm_arch_on_sigbus(int code
, void *addr
)
571 /* The #ifdef protections are until 32bit headers are imported and can
572 * be removed once both 32 and 64 bit reach feature parity.
574 void kvm_arch_update_guest_debug(CPUState
*cs
, struct kvm_guest_debug
*dbg
)
576 #ifdef KVM_GUESTDBG_USE_SW_BP
577 if (kvm_sw_breakpoints_active(cs
)) {
578 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_SW_BP
;
581 #ifdef KVM_GUESTDBG_USE_HW
582 if (kvm_arm_hw_debug_active(cs
)) {
583 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_HW
;
584 kvm_arm_copy_hw_debug_data(&dbg
->arch
);
589 void kvm_arch_init_irq_routing(KVMState
*s
)
593 int kvm_arch_irqchip_create(MachineState
*ms
, KVMState
*s
)
595 if (machine_kernel_irqchip_split(ms
)) {
596 perror("-machine kernel_irqchip=split is not supported on ARM.");
600 /* If we can create the VGIC using the newer device control API, we
601 * let the device do this when it initializes itself, otherwise we
602 * fall back to the old API */
603 return kvm_check_extension(s
, KVM_CAP_DEVICE_CTRL
);
606 int kvm_arm_vgic_probe(void)
608 if (kvm_create_device(kvm_state
,
609 KVM_DEV_TYPE_ARM_VGIC_V3
, true) == 0) {
611 } else if (kvm_create_device(kvm_state
,
612 KVM_DEV_TYPE_ARM_VGIC_V2
, true) == 0) {
619 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry
*route
,
620 uint64_t address
, uint32_t data
, PCIDevice
*dev
)
625 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry
*route
,
626 int vector
, PCIDevice
*dev
)
631 int kvm_arch_release_virq_post(int virq
)
636 int kvm_arch_msi_data_to_gsi(uint32_t data
)
638 return (data
- 32) & 0xffff;