2 * Generic vector operation expansion
4 * Copyright (c) 2018 Linaro
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
22 #include "tcg/tcg-op.h"
23 #include "tcg/tcg-op-gvec.h"
24 #include "qemu/main-loop.h"
25 #include "tcg/tcg-gvec-desc.h"
29 #ifdef CONFIG_DEBUG_TCG
30 static const TCGOpcode vecop_list_empty
[1] = { 0 };
32 #define vecop_list_empty NULL
36 /* Verify vector size and alignment rules. OFS should be the OR of all
37 of the operand offsets so that we can check them all at once. */
38 static void check_size_align(uint32_t oprsz
, uint32_t maxsz
, uint32_t ofs
)
40 uint32_t opr_align
= oprsz
>= 16 ? 15 : 7;
41 uint32_t max_align
= maxsz
>= 16 || oprsz
>= 16 ? 15 : 7;
42 tcg_debug_assert(oprsz
> 0);
43 tcg_debug_assert(oprsz
<= maxsz
);
44 tcg_debug_assert((oprsz
& opr_align
) == 0);
45 tcg_debug_assert((maxsz
& max_align
) == 0);
46 tcg_debug_assert((ofs
& max_align
) == 0);
49 /* Verify vector overlap rules for two operands. */
50 static void check_overlap_2(uint32_t d
, uint32_t a
, uint32_t s
)
52 tcg_debug_assert(d
== a
|| d
+ s
<= a
|| a
+ s
<= d
);
55 /* Verify vector overlap rules for three operands. */
56 static void check_overlap_3(uint32_t d
, uint32_t a
, uint32_t b
, uint32_t s
)
58 check_overlap_2(d
, a
, s
);
59 check_overlap_2(d
, b
, s
);
60 check_overlap_2(a
, b
, s
);
63 /* Verify vector overlap rules for four operands. */
64 static void check_overlap_4(uint32_t d
, uint32_t a
, uint32_t b
,
65 uint32_t c
, uint32_t s
)
67 check_overlap_2(d
, a
, s
);
68 check_overlap_2(d
, b
, s
);
69 check_overlap_2(d
, c
, s
);
70 check_overlap_2(a
, b
, s
);
71 check_overlap_2(a
, c
, s
);
72 check_overlap_2(b
, c
, s
);
75 /* Create a descriptor from components. */
76 uint32_t simd_desc(uint32_t oprsz
, uint32_t maxsz
, int32_t data
)
80 assert(oprsz
% 8 == 0 && oprsz
<= (8 << SIMD_OPRSZ_BITS
));
81 assert(maxsz
% 8 == 0 && maxsz
<= (8 << SIMD_MAXSZ_BITS
));
82 assert(data
== sextract32(data
, 0, SIMD_DATA_BITS
));
84 oprsz
= (oprsz
/ 8) - 1;
85 maxsz
= (maxsz
/ 8) - 1;
86 desc
= deposit32(desc
, SIMD_OPRSZ_SHIFT
, SIMD_OPRSZ_BITS
, oprsz
);
87 desc
= deposit32(desc
, SIMD_MAXSZ_SHIFT
, SIMD_MAXSZ_BITS
, maxsz
);
88 desc
= deposit32(desc
, SIMD_DATA_SHIFT
, SIMD_DATA_BITS
, data
);
93 /* Generate a call to a gvec-style helper with two vector operands. */
94 void tcg_gen_gvec_2_ool(uint32_t dofs
, uint32_t aofs
,
95 uint32_t oprsz
, uint32_t maxsz
, int32_t data
,
96 gen_helper_gvec_2
*fn
)
99 TCGv_i32 desc
= tcg_const_i32(simd_desc(oprsz
, maxsz
, data
));
101 a0
= tcg_temp_new_ptr();
102 a1
= tcg_temp_new_ptr();
104 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
105 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
109 tcg_temp_free_ptr(a0
);
110 tcg_temp_free_ptr(a1
);
111 tcg_temp_free_i32(desc
);
114 /* Generate a call to a gvec-style helper with two vector operands
115 and one scalar operand. */
116 void tcg_gen_gvec_2i_ool(uint32_t dofs
, uint32_t aofs
, TCGv_i64 c
,
117 uint32_t oprsz
, uint32_t maxsz
, int32_t data
,
118 gen_helper_gvec_2i
*fn
)
121 TCGv_i32 desc
= tcg_const_i32(simd_desc(oprsz
, maxsz
, data
));
123 a0
= tcg_temp_new_ptr();
124 a1
= tcg_temp_new_ptr();
126 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
127 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
131 tcg_temp_free_ptr(a0
);
132 tcg_temp_free_ptr(a1
);
133 tcg_temp_free_i32(desc
);
136 /* Generate a call to a gvec-style helper with three vector operands. */
137 void tcg_gen_gvec_3_ool(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
138 uint32_t oprsz
, uint32_t maxsz
, int32_t data
,
139 gen_helper_gvec_3
*fn
)
142 TCGv_i32 desc
= tcg_const_i32(simd_desc(oprsz
, maxsz
, data
));
144 a0
= tcg_temp_new_ptr();
145 a1
= tcg_temp_new_ptr();
146 a2
= tcg_temp_new_ptr();
148 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
149 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
150 tcg_gen_addi_ptr(a2
, cpu_env
, bofs
);
152 fn(a0
, a1
, a2
, desc
);
154 tcg_temp_free_ptr(a0
);
155 tcg_temp_free_ptr(a1
);
156 tcg_temp_free_ptr(a2
);
157 tcg_temp_free_i32(desc
);
160 /* Generate a call to a gvec-style helper with four vector operands. */
161 void tcg_gen_gvec_4_ool(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
162 uint32_t cofs
, uint32_t oprsz
, uint32_t maxsz
,
163 int32_t data
, gen_helper_gvec_4
*fn
)
165 TCGv_ptr a0
, a1
, a2
, a3
;
166 TCGv_i32 desc
= tcg_const_i32(simd_desc(oprsz
, maxsz
, data
));
168 a0
= tcg_temp_new_ptr();
169 a1
= tcg_temp_new_ptr();
170 a2
= tcg_temp_new_ptr();
171 a3
= tcg_temp_new_ptr();
173 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
174 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
175 tcg_gen_addi_ptr(a2
, cpu_env
, bofs
);
176 tcg_gen_addi_ptr(a3
, cpu_env
, cofs
);
178 fn(a0
, a1
, a2
, a3
, desc
);
180 tcg_temp_free_ptr(a0
);
181 tcg_temp_free_ptr(a1
);
182 tcg_temp_free_ptr(a2
);
183 tcg_temp_free_ptr(a3
);
184 tcg_temp_free_i32(desc
);
187 /* Generate a call to a gvec-style helper with five vector operands. */
188 void tcg_gen_gvec_5_ool(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
189 uint32_t cofs
, uint32_t xofs
, uint32_t oprsz
,
190 uint32_t maxsz
, int32_t data
, gen_helper_gvec_5
*fn
)
192 TCGv_ptr a0
, a1
, a2
, a3
, a4
;
193 TCGv_i32 desc
= tcg_const_i32(simd_desc(oprsz
, maxsz
, data
));
195 a0
= tcg_temp_new_ptr();
196 a1
= tcg_temp_new_ptr();
197 a2
= tcg_temp_new_ptr();
198 a3
= tcg_temp_new_ptr();
199 a4
= tcg_temp_new_ptr();
201 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
202 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
203 tcg_gen_addi_ptr(a2
, cpu_env
, bofs
);
204 tcg_gen_addi_ptr(a3
, cpu_env
, cofs
);
205 tcg_gen_addi_ptr(a4
, cpu_env
, xofs
);
207 fn(a0
, a1
, a2
, a3
, a4
, desc
);
209 tcg_temp_free_ptr(a0
);
210 tcg_temp_free_ptr(a1
);
211 tcg_temp_free_ptr(a2
);
212 tcg_temp_free_ptr(a3
);
213 tcg_temp_free_ptr(a4
);
214 tcg_temp_free_i32(desc
);
217 /* Generate a call to a gvec-style helper with three vector operands
218 and an extra pointer operand. */
219 void tcg_gen_gvec_2_ptr(uint32_t dofs
, uint32_t aofs
,
220 TCGv_ptr ptr
, uint32_t oprsz
, uint32_t maxsz
,
221 int32_t data
, gen_helper_gvec_2_ptr
*fn
)
224 TCGv_i32 desc
= tcg_const_i32(simd_desc(oprsz
, maxsz
, data
));
226 a0
= tcg_temp_new_ptr();
227 a1
= tcg_temp_new_ptr();
229 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
230 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
232 fn(a0
, a1
, ptr
, desc
);
234 tcg_temp_free_ptr(a0
);
235 tcg_temp_free_ptr(a1
);
236 tcg_temp_free_i32(desc
);
239 /* Generate a call to a gvec-style helper with three vector operands
240 and an extra pointer operand. */
241 void tcg_gen_gvec_3_ptr(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
242 TCGv_ptr ptr
, uint32_t oprsz
, uint32_t maxsz
,
243 int32_t data
, gen_helper_gvec_3_ptr
*fn
)
246 TCGv_i32 desc
= tcg_const_i32(simd_desc(oprsz
, maxsz
, data
));
248 a0
= tcg_temp_new_ptr();
249 a1
= tcg_temp_new_ptr();
250 a2
= tcg_temp_new_ptr();
252 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
253 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
254 tcg_gen_addi_ptr(a2
, cpu_env
, bofs
);
256 fn(a0
, a1
, a2
, ptr
, desc
);
258 tcg_temp_free_ptr(a0
);
259 tcg_temp_free_ptr(a1
);
260 tcg_temp_free_ptr(a2
);
261 tcg_temp_free_i32(desc
);
264 /* Generate a call to a gvec-style helper with four vector operands
265 and an extra pointer operand. */
266 void tcg_gen_gvec_4_ptr(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
267 uint32_t cofs
, TCGv_ptr ptr
, uint32_t oprsz
,
268 uint32_t maxsz
, int32_t data
,
269 gen_helper_gvec_4_ptr
*fn
)
271 TCGv_ptr a0
, a1
, a2
, a3
;
272 TCGv_i32 desc
= tcg_const_i32(simd_desc(oprsz
, maxsz
, data
));
274 a0
= tcg_temp_new_ptr();
275 a1
= tcg_temp_new_ptr();
276 a2
= tcg_temp_new_ptr();
277 a3
= tcg_temp_new_ptr();
279 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
280 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
281 tcg_gen_addi_ptr(a2
, cpu_env
, bofs
);
282 tcg_gen_addi_ptr(a3
, cpu_env
, cofs
);
284 fn(a0
, a1
, a2
, a3
, ptr
, desc
);
286 tcg_temp_free_ptr(a0
);
287 tcg_temp_free_ptr(a1
);
288 tcg_temp_free_ptr(a2
);
289 tcg_temp_free_ptr(a3
);
290 tcg_temp_free_i32(desc
);
293 /* Generate a call to a gvec-style helper with five vector operands
294 and an extra pointer operand. */
295 void tcg_gen_gvec_5_ptr(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
296 uint32_t cofs
, uint32_t eofs
, TCGv_ptr ptr
,
297 uint32_t oprsz
, uint32_t maxsz
, int32_t data
,
298 gen_helper_gvec_5_ptr
*fn
)
300 TCGv_ptr a0
, a1
, a2
, a3
, a4
;
301 TCGv_i32 desc
= tcg_const_i32(simd_desc(oprsz
, maxsz
, data
));
303 a0
= tcg_temp_new_ptr();
304 a1
= tcg_temp_new_ptr();
305 a2
= tcg_temp_new_ptr();
306 a3
= tcg_temp_new_ptr();
307 a4
= tcg_temp_new_ptr();
309 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
310 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
311 tcg_gen_addi_ptr(a2
, cpu_env
, bofs
);
312 tcg_gen_addi_ptr(a3
, cpu_env
, cofs
);
313 tcg_gen_addi_ptr(a4
, cpu_env
, eofs
);
315 fn(a0
, a1
, a2
, a3
, a4
, ptr
, desc
);
317 tcg_temp_free_ptr(a0
);
318 tcg_temp_free_ptr(a1
);
319 tcg_temp_free_ptr(a2
);
320 tcg_temp_free_ptr(a3
);
321 tcg_temp_free_ptr(a4
);
322 tcg_temp_free_i32(desc
);
325 /* Return true if we want to implement something of OPRSZ bytes
326 in units of LNSZ. This limits the expansion of inline code. */
327 static inline bool check_size_impl(uint32_t oprsz
, uint32_t lnsz
)
337 tcg_debug_assert((r
& 7) == 0);
340 /* For sizes below 16, accept no remainder. */
346 * Recall that ARM SVE allows vector sizes that are not a
347 * power of 2, but always a multiple of 16. The intent is
348 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
349 * In addition, expand_clr needs to handle a multiple of 8.
350 * Thus we can handle the tail with one more operation per
351 * diminishing power of 2.
356 return q
<= MAX_UNROLL
;
359 static void expand_clr(uint32_t dofs
, uint32_t maxsz
);
361 /* Duplicate C as per VECE. */
362 uint64_t (dup_const
)(unsigned vece
, uint64_t c
)
366 return 0x0101010101010101ull
* (uint8_t)c
;
368 return 0x0001000100010001ull
* (uint16_t)c
;
370 return 0x0000000100000001ull
* (uint32_t)c
;
374 g_assert_not_reached();
378 /* Duplicate IN into OUT as per VECE. */
379 static void gen_dup_i32(unsigned vece
, TCGv_i32 out
, TCGv_i32 in
)
383 tcg_gen_ext8u_i32(out
, in
);
384 tcg_gen_muli_i32(out
, out
, 0x01010101);
387 tcg_gen_deposit_i32(out
, in
, in
, 16, 16);
390 tcg_gen_mov_i32(out
, in
);
393 g_assert_not_reached();
397 static void gen_dup_i64(unsigned vece
, TCGv_i64 out
, TCGv_i64 in
)
401 tcg_gen_ext8u_i64(out
, in
);
402 tcg_gen_muli_i64(out
, out
, 0x0101010101010101ull
);
405 tcg_gen_ext16u_i64(out
, in
);
406 tcg_gen_muli_i64(out
, out
, 0x0001000100010001ull
);
409 tcg_gen_deposit_i64(out
, in
, in
, 32, 32);
412 tcg_gen_mov_i64(out
, in
);
415 g_assert_not_reached();
419 /* Select a supported vector type for implementing an operation on SIZE
420 * bytes. If OP is 0, assume that the real operation to be performed is
421 * required by all backends. Otherwise, make sure than OP can be performed
422 * on elements of size VECE in the selected type. Do not select V64 if
423 * PREFER_I64 is true. Return 0 if no vector type is selected.
425 static TCGType
choose_vector_type(const TCGOpcode
*list
, unsigned vece
,
426 uint32_t size
, bool prefer_i64
)
429 * Recall that ARM SVE allows vector sizes that are not a
430 * power of 2, but always a multiple of 16. The intent is
431 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
432 * It is hard to imagine a case in which v256 is supported
433 * but v128 is not, but check anyway.
434 * In addition, expand_clr needs to handle a multiple of 8.
436 if (TCG_TARGET_HAS_v256
&&
437 check_size_impl(size
, 32) &&
438 tcg_can_emit_vecop_list(list
, TCG_TYPE_V256
, vece
) &&
440 (TCG_TARGET_HAS_v128
&&
441 tcg_can_emit_vecop_list(list
, TCG_TYPE_V128
, vece
))) &&
443 (TCG_TARGET_HAS_v64
&&
444 tcg_can_emit_vecop_list(list
, TCG_TYPE_V64
, vece
)))) {
445 return TCG_TYPE_V256
;
447 if (TCG_TARGET_HAS_v128
&&
448 check_size_impl(size
, 16) &&
449 tcg_can_emit_vecop_list(list
, TCG_TYPE_V128
, vece
) &&
451 (TCG_TARGET_HAS_v64
&&
452 tcg_can_emit_vecop_list(list
, TCG_TYPE_V64
, vece
)))) {
453 return TCG_TYPE_V128
;
455 if (TCG_TARGET_HAS_v64
&& !prefer_i64
&& check_size_impl(size
, 8)
456 && tcg_can_emit_vecop_list(list
, TCG_TYPE_V64
, vece
)) {
462 static void do_dup_store(TCGType type
, uint32_t dofs
, uint32_t oprsz
,
463 uint32_t maxsz
, TCGv_vec t_vec
)
467 tcg_debug_assert(oprsz
>= 8);
470 * This may be expand_clr for the tail of an operation, e.g.
471 * oprsz == 8 && maxsz == 64. The first 8 bytes of this store
472 * are misaligned wrt the maximum vector size, so do that first.
475 tcg_gen_stl_vec(t_vec
, cpu_env
, dofs
+ i
, TCG_TYPE_V64
);
482 * Recall that ARM SVE allows vector sizes that are not a
483 * power of 2, but always a multiple of 16. The intent is
484 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
486 for (; i
+ 32 <= oprsz
; i
+= 32) {
487 tcg_gen_stl_vec(t_vec
, cpu_env
, dofs
+ i
, TCG_TYPE_V256
);
491 for (; i
+ 16 <= oprsz
; i
+= 16) {
492 tcg_gen_stl_vec(t_vec
, cpu_env
, dofs
+ i
, TCG_TYPE_V128
);
496 for (; i
< oprsz
; i
+= 8) {
497 tcg_gen_stl_vec(t_vec
, cpu_env
, dofs
+ i
, TCG_TYPE_V64
);
501 g_assert_not_reached();
505 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
509 /* Set OPRSZ bytes at DOFS to replications of IN_32, IN_64 or IN_C.
510 * Only one of IN_32 or IN_64 may be set;
511 * IN_C is used if IN_32 and IN_64 are unset.
513 static void do_dup(unsigned vece
, uint32_t dofs
, uint32_t oprsz
,
514 uint32_t maxsz
, TCGv_i32 in_32
, TCGv_i64 in_64
,
519 TCGv_i32 t_32
, t_desc
;
523 assert(vece
<= (in_32
? MO_32
: MO_64
));
524 assert(in_32
== NULL
|| in_64
== NULL
);
526 /* If we're storing 0, expand oprsz to maxsz. */
527 if (in_32
== NULL
&& in_64
== NULL
) {
528 in_c
= dup_const(vece
, in_c
);
534 /* Implement inline with a vector type, if possible.
535 * Prefer integer when 64-bit host and no variable dup.
537 type
= choose_vector_type(NULL
, vece
, oprsz
,
538 (TCG_TARGET_REG_BITS
== 64 && in_32
== NULL
539 && (in_64
== NULL
|| vece
== MO_64
)));
541 TCGv_vec t_vec
= tcg_temp_new_vec(type
);
544 tcg_gen_dup_i32_vec(vece
, t_vec
, in_32
);
546 tcg_gen_dup_i64_vec(vece
, t_vec
, in_64
);
548 tcg_gen_dupi_vec(vece
, t_vec
, in_c
);
550 do_dup_store(type
, dofs
, oprsz
, maxsz
, t_vec
);
551 tcg_temp_free_vec(t_vec
);
555 /* Otherwise, inline with an integer type, unless "large". */
556 if (check_size_impl(oprsz
, TCG_TARGET_REG_BITS
/ 8)) {
561 /* We are given a 32-bit variable input. For a 64-bit host,
562 use a 64-bit operation unless the 32-bit operation would
564 if (TCG_TARGET_REG_BITS
== 64
565 && (vece
!= MO_32
|| !check_size_impl(oprsz
, 4))) {
566 t_64
= tcg_temp_new_i64();
567 tcg_gen_extu_i32_i64(t_64
, in_32
);
568 gen_dup_i64(vece
, t_64
, t_64
);
570 t_32
= tcg_temp_new_i32();
571 gen_dup_i32(vece
, t_32
, in_32
);
574 /* We are given a 64-bit variable input. */
575 t_64
= tcg_temp_new_i64();
576 gen_dup_i64(vece
, t_64
, in_64
);
578 /* We are given a constant input. */
579 /* For 64-bit hosts, use 64-bit constants for "simple" constants
580 or when we'd need too many 32-bit stores, or when a 64-bit
581 constant is really required. */
583 || (TCG_TARGET_REG_BITS
== 64
584 && (in_c
== 0 || in_c
== -1
585 || !check_size_impl(oprsz
, 4)))) {
586 t_64
= tcg_const_i64(in_c
);
588 t_32
= tcg_const_i32(in_c
);
592 /* Implement inline if we picked an implementation size above. */
594 for (i
= 0; i
< oprsz
; i
+= 4) {
595 tcg_gen_st_i32(t_32
, cpu_env
, dofs
+ i
);
597 tcg_temp_free_i32(t_32
);
601 for (i
= 0; i
< oprsz
; i
+= 8) {
602 tcg_gen_st_i64(t_64
, cpu_env
, dofs
+ i
);
604 tcg_temp_free_i64(t_64
);
609 /* Otherwise implement out of line. */
610 t_ptr
= tcg_temp_new_ptr();
611 tcg_gen_addi_ptr(t_ptr
, cpu_env
, dofs
);
612 t_desc
= tcg_const_i32(simd_desc(oprsz
, maxsz
, 0));
616 gen_helper_gvec_dup64(t_ptr
, t_desc
, in_64
);
618 t_64
= tcg_const_i64(in_c
);
619 gen_helper_gvec_dup64(t_ptr
, t_desc
, t_64
);
620 tcg_temp_free_i64(t_64
);
623 typedef void dup_fn(TCGv_ptr
, TCGv_i32
, TCGv_i32
);
624 static dup_fn
* const fns
[3] = {
625 gen_helper_gvec_dup8
,
626 gen_helper_gvec_dup16
,
627 gen_helper_gvec_dup32
631 fns
[vece
](t_ptr
, t_desc
, in_32
);
633 t_32
= tcg_temp_new_i32();
635 tcg_gen_extrl_i64_i32(t_32
, in_64
);
636 } else if (vece
== MO_8
) {
637 tcg_gen_movi_i32(t_32
, in_c
& 0xff);
638 } else if (vece
== MO_16
) {
639 tcg_gen_movi_i32(t_32
, in_c
& 0xffff);
641 tcg_gen_movi_i32(t_32
, in_c
);
643 fns
[vece
](t_ptr
, t_desc
, t_32
);
644 tcg_temp_free_i32(t_32
);
648 tcg_temp_free_ptr(t_ptr
);
649 tcg_temp_free_i32(t_desc
);
654 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
658 /* Likewise, but with zero. */
659 static void expand_clr(uint32_t dofs
, uint32_t maxsz
)
661 do_dup(MO_8
, dofs
, maxsz
, maxsz
, NULL
, NULL
, 0);
664 /* Expand OPSZ bytes worth of two-operand operations using i32 elements. */
665 static void expand_2_i32(uint32_t dofs
, uint32_t aofs
, uint32_t oprsz
,
666 bool load_dest
, void (*fni
)(TCGv_i32
, TCGv_i32
))
668 TCGv_i32 t0
= tcg_temp_new_i32();
669 TCGv_i32 t1
= tcg_temp_new_i32();
672 for (i
= 0; i
< oprsz
; i
+= 4) {
673 tcg_gen_ld_i32(t0
, cpu_env
, aofs
+ i
);
675 tcg_gen_ld_i32(t1
, cpu_env
, dofs
+ i
);
678 tcg_gen_st_i32(t1
, cpu_env
, dofs
+ i
);
680 tcg_temp_free_i32(t0
);
681 tcg_temp_free_i32(t1
);
684 static void expand_2i_i32(uint32_t dofs
, uint32_t aofs
, uint32_t oprsz
,
685 int32_t c
, bool load_dest
,
686 void (*fni
)(TCGv_i32
, TCGv_i32
, int32_t))
688 TCGv_i32 t0
= tcg_temp_new_i32();
689 TCGv_i32 t1
= tcg_temp_new_i32();
692 for (i
= 0; i
< oprsz
; i
+= 4) {
693 tcg_gen_ld_i32(t0
, cpu_env
, aofs
+ i
);
695 tcg_gen_ld_i32(t1
, cpu_env
, dofs
+ i
);
698 tcg_gen_st_i32(t1
, cpu_env
, dofs
+ i
);
700 tcg_temp_free_i32(t0
);
701 tcg_temp_free_i32(t1
);
704 static void expand_2s_i32(uint32_t dofs
, uint32_t aofs
, uint32_t oprsz
,
705 TCGv_i32 c
, bool scalar_first
,
706 void (*fni
)(TCGv_i32
, TCGv_i32
, TCGv_i32
))
708 TCGv_i32 t0
= tcg_temp_new_i32();
709 TCGv_i32 t1
= tcg_temp_new_i32();
712 for (i
= 0; i
< oprsz
; i
+= 4) {
713 tcg_gen_ld_i32(t0
, cpu_env
, aofs
+ i
);
719 tcg_gen_st_i32(t1
, cpu_env
, dofs
+ i
);
721 tcg_temp_free_i32(t0
);
722 tcg_temp_free_i32(t1
);
725 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
726 static void expand_3_i32(uint32_t dofs
, uint32_t aofs
,
727 uint32_t bofs
, uint32_t oprsz
, bool load_dest
,
728 void (*fni
)(TCGv_i32
, TCGv_i32
, TCGv_i32
))
730 TCGv_i32 t0
= tcg_temp_new_i32();
731 TCGv_i32 t1
= tcg_temp_new_i32();
732 TCGv_i32 t2
= tcg_temp_new_i32();
735 for (i
= 0; i
< oprsz
; i
+= 4) {
736 tcg_gen_ld_i32(t0
, cpu_env
, aofs
+ i
);
737 tcg_gen_ld_i32(t1
, cpu_env
, bofs
+ i
);
739 tcg_gen_ld_i32(t2
, cpu_env
, dofs
+ i
);
742 tcg_gen_st_i32(t2
, cpu_env
, dofs
+ i
);
744 tcg_temp_free_i32(t2
);
745 tcg_temp_free_i32(t1
);
746 tcg_temp_free_i32(t0
);
749 static void expand_3i_i32(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
750 uint32_t oprsz
, int32_t c
, bool load_dest
,
751 void (*fni
)(TCGv_i32
, TCGv_i32
, TCGv_i32
, int32_t))
753 TCGv_i32 t0
= tcg_temp_new_i32();
754 TCGv_i32 t1
= tcg_temp_new_i32();
755 TCGv_i32 t2
= tcg_temp_new_i32();
758 for (i
= 0; i
< oprsz
; i
+= 4) {
759 tcg_gen_ld_i32(t0
, cpu_env
, aofs
+ i
);
760 tcg_gen_ld_i32(t1
, cpu_env
, bofs
+ i
);
762 tcg_gen_ld_i32(t2
, cpu_env
, dofs
+ i
);
765 tcg_gen_st_i32(t2
, cpu_env
, dofs
+ i
);
767 tcg_temp_free_i32(t0
);
768 tcg_temp_free_i32(t1
);
769 tcg_temp_free_i32(t2
);
772 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
773 static void expand_4_i32(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
774 uint32_t cofs
, uint32_t oprsz
, bool write_aofs
,
775 void (*fni
)(TCGv_i32
, TCGv_i32
, TCGv_i32
, TCGv_i32
))
777 TCGv_i32 t0
= tcg_temp_new_i32();
778 TCGv_i32 t1
= tcg_temp_new_i32();
779 TCGv_i32 t2
= tcg_temp_new_i32();
780 TCGv_i32 t3
= tcg_temp_new_i32();
783 for (i
= 0; i
< oprsz
; i
+= 4) {
784 tcg_gen_ld_i32(t1
, cpu_env
, aofs
+ i
);
785 tcg_gen_ld_i32(t2
, cpu_env
, bofs
+ i
);
786 tcg_gen_ld_i32(t3
, cpu_env
, cofs
+ i
);
788 tcg_gen_st_i32(t0
, cpu_env
, dofs
+ i
);
790 tcg_gen_st_i32(t1
, cpu_env
, aofs
+ i
);
793 tcg_temp_free_i32(t3
);
794 tcg_temp_free_i32(t2
);
795 tcg_temp_free_i32(t1
);
796 tcg_temp_free_i32(t0
);
799 /* Expand OPSZ bytes worth of two-operand operations using i64 elements. */
800 static void expand_2_i64(uint32_t dofs
, uint32_t aofs
, uint32_t oprsz
,
801 bool load_dest
, void (*fni
)(TCGv_i64
, TCGv_i64
))
803 TCGv_i64 t0
= tcg_temp_new_i64();
804 TCGv_i64 t1
= tcg_temp_new_i64();
807 for (i
= 0; i
< oprsz
; i
+= 8) {
808 tcg_gen_ld_i64(t0
, cpu_env
, aofs
+ i
);
810 tcg_gen_ld_i64(t1
, cpu_env
, dofs
+ i
);
813 tcg_gen_st_i64(t1
, cpu_env
, dofs
+ i
);
815 tcg_temp_free_i64(t0
);
816 tcg_temp_free_i64(t1
);
819 static void expand_2i_i64(uint32_t dofs
, uint32_t aofs
, uint32_t oprsz
,
820 int64_t c
, bool load_dest
,
821 void (*fni
)(TCGv_i64
, TCGv_i64
, int64_t))
823 TCGv_i64 t0
= tcg_temp_new_i64();
824 TCGv_i64 t1
= tcg_temp_new_i64();
827 for (i
= 0; i
< oprsz
; i
+= 8) {
828 tcg_gen_ld_i64(t0
, cpu_env
, aofs
+ i
);
830 tcg_gen_ld_i64(t1
, cpu_env
, dofs
+ i
);
833 tcg_gen_st_i64(t1
, cpu_env
, dofs
+ i
);
835 tcg_temp_free_i64(t0
);
836 tcg_temp_free_i64(t1
);
839 static void expand_2s_i64(uint32_t dofs
, uint32_t aofs
, uint32_t oprsz
,
840 TCGv_i64 c
, bool scalar_first
,
841 void (*fni
)(TCGv_i64
, TCGv_i64
, TCGv_i64
))
843 TCGv_i64 t0
= tcg_temp_new_i64();
844 TCGv_i64 t1
= tcg_temp_new_i64();
847 for (i
= 0; i
< oprsz
; i
+= 8) {
848 tcg_gen_ld_i64(t0
, cpu_env
, aofs
+ i
);
854 tcg_gen_st_i64(t1
, cpu_env
, dofs
+ i
);
856 tcg_temp_free_i64(t0
);
857 tcg_temp_free_i64(t1
);
860 /* Expand OPSZ bytes worth of three-operand operations using i64 elements. */
861 static void expand_3_i64(uint32_t dofs
, uint32_t aofs
,
862 uint32_t bofs
, uint32_t oprsz
, bool load_dest
,
863 void (*fni
)(TCGv_i64
, TCGv_i64
, TCGv_i64
))
865 TCGv_i64 t0
= tcg_temp_new_i64();
866 TCGv_i64 t1
= tcg_temp_new_i64();
867 TCGv_i64 t2
= tcg_temp_new_i64();
870 for (i
= 0; i
< oprsz
; i
+= 8) {
871 tcg_gen_ld_i64(t0
, cpu_env
, aofs
+ i
);
872 tcg_gen_ld_i64(t1
, cpu_env
, bofs
+ i
);
874 tcg_gen_ld_i64(t2
, cpu_env
, dofs
+ i
);
877 tcg_gen_st_i64(t2
, cpu_env
, dofs
+ i
);
879 tcg_temp_free_i64(t2
);
880 tcg_temp_free_i64(t1
);
881 tcg_temp_free_i64(t0
);
884 static void expand_3i_i64(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
885 uint32_t oprsz
, int64_t c
, bool load_dest
,
886 void (*fni
)(TCGv_i64
, TCGv_i64
, TCGv_i64
, int64_t))
888 TCGv_i64 t0
= tcg_temp_new_i64();
889 TCGv_i64 t1
= tcg_temp_new_i64();
890 TCGv_i64 t2
= tcg_temp_new_i64();
893 for (i
= 0; i
< oprsz
; i
+= 8) {
894 tcg_gen_ld_i64(t0
, cpu_env
, aofs
+ i
);
895 tcg_gen_ld_i64(t1
, cpu_env
, bofs
+ i
);
897 tcg_gen_ld_i64(t2
, cpu_env
, dofs
+ i
);
900 tcg_gen_st_i64(t2
, cpu_env
, dofs
+ i
);
902 tcg_temp_free_i64(t0
);
903 tcg_temp_free_i64(t1
);
904 tcg_temp_free_i64(t2
);
907 /* Expand OPSZ bytes worth of three-operand operations using i64 elements. */
908 static void expand_4_i64(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
909 uint32_t cofs
, uint32_t oprsz
, bool write_aofs
,
910 void (*fni
)(TCGv_i64
, TCGv_i64
, TCGv_i64
, TCGv_i64
))
912 TCGv_i64 t0
= tcg_temp_new_i64();
913 TCGv_i64 t1
= tcg_temp_new_i64();
914 TCGv_i64 t2
= tcg_temp_new_i64();
915 TCGv_i64 t3
= tcg_temp_new_i64();
918 for (i
= 0; i
< oprsz
; i
+= 8) {
919 tcg_gen_ld_i64(t1
, cpu_env
, aofs
+ i
);
920 tcg_gen_ld_i64(t2
, cpu_env
, bofs
+ i
);
921 tcg_gen_ld_i64(t3
, cpu_env
, cofs
+ i
);
923 tcg_gen_st_i64(t0
, cpu_env
, dofs
+ i
);
925 tcg_gen_st_i64(t1
, cpu_env
, aofs
+ i
);
928 tcg_temp_free_i64(t3
);
929 tcg_temp_free_i64(t2
);
930 tcg_temp_free_i64(t1
);
931 tcg_temp_free_i64(t0
);
934 /* Expand OPSZ bytes worth of two-operand operations using host vectors. */
935 static void expand_2_vec(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
936 uint32_t oprsz
, uint32_t tysz
, TCGType type
,
938 void (*fni
)(unsigned, TCGv_vec
, TCGv_vec
))
940 TCGv_vec t0
= tcg_temp_new_vec(type
);
941 TCGv_vec t1
= tcg_temp_new_vec(type
);
944 for (i
= 0; i
< oprsz
; i
+= tysz
) {
945 tcg_gen_ld_vec(t0
, cpu_env
, aofs
+ i
);
947 tcg_gen_ld_vec(t1
, cpu_env
, dofs
+ i
);
950 tcg_gen_st_vec(t1
, cpu_env
, dofs
+ i
);
952 tcg_temp_free_vec(t0
);
953 tcg_temp_free_vec(t1
);
956 /* Expand OPSZ bytes worth of two-vector operands and an immediate operand
957 using host vectors. */
958 static void expand_2i_vec(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
959 uint32_t oprsz
, uint32_t tysz
, TCGType type
,
960 int64_t c
, bool load_dest
,
961 void (*fni
)(unsigned, TCGv_vec
, TCGv_vec
, int64_t))
963 TCGv_vec t0
= tcg_temp_new_vec(type
);
964 TCGv_vec t1
= tcg_temp_new_vec(type
);
967 for (i
= 0; i
< oprsz
; i
+= tysz
) {
968 tcg_gen_ld_vec(t0
, cpu_env
, aofs
+ i
);
970 tcg_gen_ld_vec(t1
, cpu_env
, dofs
+ i
);
972 fni(vece
, t1
, t0
, c
);
973 tcg_gen_st_vec(t1
, cpu_env
, dofs
+ i
);
975 tcg_temp_free_vec(t0
);
976 tcg_temp_free_vec(t1
);
979 static void expand_2s_vec(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
980 uint32_t oprsz
, uint32_t tysz
, TCGType type
,
981 TCGv_vec c
, bool scalar_first
,
982 void (*fni
)(unsigned, TCGv_vec
, TCGv_vec
, TCGv_vec
))
984 TCGv_vec t0
= tcg_temp_new_vec(type
);
985 TCGv_vec t1
= tcg_temp_new_vec(type
);
988 for (i
= 0; i
< oprsz
; i
+= tysz
) {
989 tcg_gen_ld_vec(t0
, cpu_env
, aofs
+ i
);
991 fni(vece
, t1
, c
, t0
);
993 fni(vece
, t1
, t0
, c
);
995 tcg_gen_st_vec(t1
, cpu_env
, dofs
+ i
);
997 tcg_temp_free_vec(t0
);
998 tcg_temp_free_vec(t1
);
1001 /* Expand OPSZ bytes worth of three-operand operations using host vectors. */
1002 static void expand_3_vec(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1003 uint32_t bofs
, uint32_t oprsz
,
1004 uint32_t tysz
, TCGType type
, bool load_dest
,
1005 void (*fni
)(unsigned, TCGv_vec
, TCGv_vec
, TCGv_vec
))
1007 TCGv_vec t0
= tcg_temp_new_vec(type
);
1008 TCGv_vec t1
= tcg_temp_new_vec(type
);
1009 TCGv_vec t2
= tcg_temp_new_vec(type
);
1012 for (i
= 0; i
< oprsz
; i
+= tysz
) {
1013 tcg_gen_ld_vec(t0
, cpu_env
, aofs
+ i
);
1014 tcg_gen_ld_vec(t1
, cpu_env
, bofs
+ i
);
1016 tcg_gen_ld_vec(t2
, cpu_env
, dofs
+ i
);
1018 fni(vece
, t2
, t0
, t1
);
1019 tcg_gen_st_vec(t2
, cpu_env
, dofs
+ i
);
1021 tcg_temp_free_vec(t2
);
1022 tcg_temp_free_vec(t1
);
1023 tcg_temp_free_vec(t0
);
1027 * Expand OPSZ bytes worth of three-vector operands and an immediate operand
1028 * using host vectors.
1030 static void expand_3i_vec(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1031 uint32_t bofs
, uint32_t oprsz
, uint32_t tysz
,
1032 TCGType type
, int64_t c
, bool load_dest
,
1033 void (*fni
)(unsigned, TCGv_vec
, TCGv_vec
, TCGv_vec
,
1036 TCGv_vec t0
= tcg_temp_new_vec(type
);
1037 TCGv_vec t1
= tcg_temp_new_vec(type
);
1038 TCGv_vec t2
= tcg_temp_new_vec(type
);
1041 for (i
= 0; i
< oprsz
; i
+= tysz
) {
1042 tcg_gen_ld_vec(t0
, cpu_env
, aofs
+ i
);
1043 tcg_gen_ld_vec(t1
, cpu_env
, bofs
+ i
);
1045 tcg_gen_ld_vec(t2
, cpu_env
, dofs
+ i
);
1047 fni(vece
, t2
, t0
, t1
, c
);
1048 tcg_gen_st_vec(t2
, cpu_env
, dofs
+ i
);
1050 tcg_temp_free_vec(t0
);
1051 tcg_temp_free_vec(t1
);
1052 tcg_temp_free_vec(t2
);
1055 /* Expand OPSZ bytes worth of four-operand operations using host vectors. */
1056 static void expand_4_vec(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1057 uint32_t bofs
, uint32_t cofs
, uint32_t oprsz
,
1058 uint32_t tysz
, TCGType type
, bool write_aofs
,
1059 void (*fni
)(unsigned, TCGv_vec
, TCGv_vec
,
1060 TCGv_vec
, TCGv_vec
))
1062 TCGv_vec t0
= tcg_temp_new_vec(type
);
1063 TCGv_vec t1
= tcg_temp_new_vec(type
);
1064 TCGv_vec t2
= tcg_temp_new_vec(type
);
1065 TCGv_vec t3
= tcg_temp_new_vec(type
);
1068 for (i
= 0; i
< oprsz
; i
+= tysz
) {
1069 tcg_gen_ld_vec(t1
, cpu_env
, aofs
+ i
);
1070 tcg_gen_ld_vec(t2
, cpu_env
, bofs
+ i
);
1071 tcg_gen_ld_vec(t3
, cpu_env
, cofs
+ i
);
1072 fni(vece
, t0
, t1
, t2
, t3
);
1073 tcg_gen_st_vec(t0
, cpu_env
, dofs
+ i
);
1075 tcg_gen_st_vec(t1
, cpu_env
, aofs
+ i
);
1078 tcg_temp_free_vec(t3
);
1079 tcg_temp_free_vec(t2
);
1080 tcg_temp_free_vec(t1
);
1081 tcg_temp_free_vec(t0
);
1084 /* Expand a vector two-operand operation. */
1085 void tcg_gen_gvec_2(uint32_t dofs
, uint32_t aofs
,
1086 uint32_t oprsz
, uint32_t maxsz
, const GVecGen2
*g
)
1088 const TCGOpcode
*this_list
= g
->opt_opc
? : vecop_list_empty
;
1089 const TCGOpcode
*hold_list
= tcg_swap_vecop_list(this_list
);
1093 check_size_align(oprsz
, maxsz
, dofs
| aofs
);
1094 check_overlap_2(dofs
, aofs
, maxsz
);
1098 type
= choose_vector_type(g
->opt_opc
, g
->vece
, oprsz
, g
->prefer_i64
);
1102 /* Recall that ARM SVE allows vector sizes that are not a
1103 * power of 2, but always a multiple of 16. The intent is
1104 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1106 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
1107 expand_2_vec(g
->vece
, dofs
, aofs
, some
, 32, TCG_TYPE_V256
,
1108 g
->load_dest
, g
->fniv
);
1109 if (some
== oprsz
) {
1118 expand_2_vec(g
->vece
, dofs
, aofs
, oprsz
, 16, TCG_TYPE_V128
,
1119 g
->load_dest
, g
->fniv
);
1122 expand_2_vec(g
->vece
, dofs
, aofs
, oprsz
, 8, TCG_TYPE_V64
,
1123 g
->load_dest
, g
->fniv
);
1127 if (g
->fni8
&& check_size_impl(oprsz
, 8)) {
1128 expand_2_i64(dofs
, aofs
, oprsz
, g
->load_dest
, g
->fni8
);
1129 } else if (g
->fni4
&& check_size_impl(oprsz
, 4)) {
1130 expand_2_i32(dofs
, aofs
, oprsz
, g
->load_dest
, g
->fni4
);
1132 assert(g
->fno
!= NULL
);
1133 tcg_gen_gvec_2_ool(dofs
, aofs
, oprsz
, maxsz
, g
->data
, g
->fno
);
1139 g_assert_not_reached();
1141 tcg_swap_vecop_list(hold_list
);
1143 if (oprsz
< maxsz
) {
1144 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1148 /* Expand a vector operation with two vectors and an immediate. */
1149 void tcg_gen_gvec_2i(uint32_t dofs
, uint32_t aofs
, uint32_t oprsz
,
1150 uint32_t maxsz
, int64_t c
, const GVecGen2i
*g
)
1152 const TCGOpcode
*this_list
= g
->opt_opc
? : vecop_list_empty
;
1153 const TCGOpcode
*hold_list
= tcg_swap_vecop_list(this_list
);
1157 check_size_align(oprsz
, maxsz
, dofs
| aofs
);
1158 check_overlap_2(dofs
, aofs
, maxsz
);
1162 type
= choose_vector_type(g
->opt_opc
, g
->vece
, oprsz
, g
->prefer_i64
);
1166 /* Recall that ARM SVE allows vector sizes that are not a
1167 * power of 2, but always a multiple of 16. The intent is
1168 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1170 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
1171 expand_2i_vec(g
->vece
, dofs
, aofs
, some
, 32, TCG_TYPE_V256
,
1172 c
, g
->load_dest
, g
->fniv
);
1173 if (some
== oprsz
) {
1182 expand_2i_vec(g
->vece
, dofs
, aofs
, oprsz
, 16, TCG_TYPE_V128
,
1183 c
, g
->load_dest
, g
->fniv
);
1186 expand_2i_vec(g
->vece
, dofs
, aofs
, oprsz
, 8, TCG_TYPE_V64
,
1187 c
, g
->load_dest
, g
->fniv
);
1191 if (g
->fni8
&& check_size_impl(oprsz
, 8)) {
1192 expand_2i_i64(dofs
, aofs
, oprsz
, c
, g
->load_dest
, g
->fni8
);
1193 } else if (g
->fni4
&& check_size_impl(oprsz
, 4)) {
1194 expand_2i_i32(dofs
, aofs
, oprsz
, c
, g
->load_dest
, g
->fni4
);
1197 tcg_gen_gvec_2_ool(dofs
, aofs
, oprsz
, maxsz
, c
, g
->fno
);
1199 TCGv_i64 tcg_c
= tcg_const_i64(c
);
1200 tcg_gen_gvec_2i_ool(dofs
, aofs
, tcg_c
, oprsz
,
1202 tcg_temp_free_i64(tcg_c
);
1209 g_assert_not_reached();
1211 tcg_swap_vecop_list(hold_list
);
1213 if (oprsz
< maxsz
) {
1214 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1218 /* Expand a vector operation with two vectors and a scalar. */
1219 void tcg_gen_gvec_2s(uint32_t dofs
, uint32_t aofs
, uint32_t oprsz
,
1220 uint32_t maxsz
, TCGv_i64 c
, const GVecGen2s
*g
)
1224 check_size_align(oprsz
, maxsz
, dofs
| aofs
);
1225 check_overlap_2(dofs
, aofs
, maxsz
);
1229 type
= choose_vector_type(g
->opt_opc
, g
->vece
, oprsz
, g
->prefer_i64
);
1232 const TCGOpcode
*this_list
= g
->opt_opc
? : vecop_list_empty
;
1233 const TCGOpcode
*hold_list
= tcg_swap_vecop_list(this_list
);
1234 TCGv_vec t_vec
= tcg_temp_new_vec(type
);
1237 tcg_gen_dup_i64_vec(g
->vece
, t_vec
, c
);
1241 /* Recall that ARM SVE allows vector sizes that are not a
1242 * power of 2, but always a multiple of 16. The intent is
1243 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1245 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
1246 expand_2s_vec(g
->vece
, dofs
, aofs
, some
, 32, TCG_TYPE_V256
,
1247 t_vec
, g
->scalar_first
, g
->fniv
);
1248 if (some
== oprsz
) {
1258 expand_2s_vec(g
->vece
, dofs
, aofs
, oprsz
, 16, TCG_TYPE_V128
,
1259 t_vec
, g
->scalar_first
, g
->fniv
);
1263 expand_2s_vec(g
->vece
, dofs
, aofs
, oprsz
, 8, TCG_TYPE_V64
,
1264 t_vec
, g
->scalar_first
, g
->fniv
);
1268 g_assert_not_reached();
1270 tcg_temp_free_vec(t_vec
);
1271 tcg_swap_vecop_list(hold_list
);
1272 } else if (g
->fni8
&& check_size_impl(oprsz
, 8)) {
1273 TCGv_i64 t64
= tcg_temp_new_i64();
1275 gen_dup_i64(g
->vece
, t64
, c
);
1276 expand_2s_i64(dofs
, aofs
, oprsz
, t64
, g
->scalar_first
, g
->fni8
);
1277 tcg_temp_free_i64(t64
);
1278 } else if (g
->fni4
&& check_size_impl(oprsz
, 4)) {
1279 TCGv_i32 t32
= tcg_temp_new_i32();
1281 tcg_gen_extrl_i64_i32(t32
, c
);
1282 gen_dup_i32(g
->vece
, t32
, t32
);
1283 expand_2s_i32(dofs
, aofs
, oprsz
, t32
, g
->scalar_first
, g
->fni4
);
1284 tcg_temp_free_i32(t32
);
1286 tcg_gen_gvec_2i_ool(dofs
, aofs
, c
, oprsz
, maxsz
, 0, g
->fno
);
1290 if (oprsz
< maxsz
) {
1291 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1295 /* Expand a vector three-operand operation. */
1296 void tcg_gen_gvec_3(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
1297 uint32_t oprsz
, uint32_t maxsz
, const GVecGen3
*g
)
1299 const TCGOpcode
*this_list
= g
->opt_opc
? : vecop_list_empty
;
1300 const TCGOpcode
*hold_list
= tcg_swap_vecop_list(this_list
);
1304 check_size_align(oprsz
, maxsz
, dofs
| aofs
| bofs
);
1305 check_overlap_3(dofs
, aofs
, bofs
, maxsz
);
1309 type
= choose_vector_type(g
->opt_opc
, g
->vece
, oprsz
, g
->prefer_i64
);
1313 /* Recall that ARM SVE allows vector sizes that are not a
1314 * power of 2, but always a multiple of 16. The intent is
1315 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1317 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
1318 expand_3_vec(g
->vece
, dofs
, aofs
, bofs
, some
, 32, TCG_TYPE_V256
,
1319 g
->load_dest
, g
->fniv
);
1320 if (some
== oprsz
) {
1330 expand_3_vec(g
->vece
, dofs
, aofs
, bofs
, oprsz
, 16, TCG_TYPE_V128
,
1331 g
->load_dest
, g
->fniv
);
1334 expand_3_vec(g
->vece
, dofs
, aofs
, bofs
, oprsz
, 8, TCG_TYPE_V64
,
1335 g
->load_dest
, g
->fniv
);
1339 if (g
->fni8
&& check_size_impl(oprsz
, 8)) {
1340 expand_3_i64(dofs
, aofs
, bofs
, oprsz
, g
->load_dest
, g
->fni8
);
1341 } else if (g
->fni4
&& check_size_impl(oprsz
, 4)) {
1342 expand_3_i32(dofs
, aofs
, bofs
, oprsz
, g
->load_dest
, g
->fni4
);
1344 assert(g
->fno
!= NULL
);
1345 tcg_gen_gvec_3_ool(dofs
, aofs
, bofs
, oprsz
,
1346 maxsz
, g
->data
, g
->fno
);
1352 g_assert_not_reached();
1354 tcg_swap_vecop_list(hold_list
);
1356 if (oprsz
< maxsz
) {
1357 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1361 /* Expand a vector operation with three vectors and an immediate. */
1362 void tcg_gen_gvec_3i(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
1363 uint32_t oprsz
, uint32_t maxsz
, int64_t c
,
1366 const TCGOpcode
*this_list
= g
->opt_opc
? : vecop_list_empty
;
1367 const TCGOpcode
*hold_list
= tcg_swap_vecop_list(this_list
);
1371 check_size_align(oprsz
, maxsz
, dofs
| aofs
| bofs
);
1372 check_overlap_3(dofs
, aofs
, bofs
, maxsz
);
1376 type
= choose_vector_type(g
->opt_opc
, g
->vece
, oprsz
, g
->prefer_i64
);
1381 * Recall that ARM SVE allows vector sizes that are not a
1382 * power of 2, but always a multiple of 16. The intent is
1383 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1385 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
1386 expand_3i_vec(g
->vece
, dofs
, aofs
, bofs
, some
, 32, TCG_TYPE_V256
,
1387 c
, g
->load_dest
, g
->fniv
);
1388 if (some
== oprsz
) {
1398 expand_3i_vec(g
->vece
, dofs
, aofs
, bofs
, oprsz
, 16, TCG_TYPE_V128
,
1399 c
, g
->load_dest
, g
->fniv
);
1402 expand_3i_vec(g
->vece
, dofs
, aofs
, bofs
, oprsz
, 8, TCG_TYPE_V64
,
1403 c
, g
->load_dest
, g
->fniv
);
1407 if (g
->fni8
&& check_size_impl(oprsz
, 8)) {
1408 expand_3i_i64(dofs
, aofs
, bofs
, oprsz
, c
, g
->load_dest
, g
->fni8
);
1409 } else if (g
->fni4
&& check_size_impl(oprsz
, 4)) {
1410 expand_3i_i32(dofs
, aofs
, bofs
, oprsz
, c
, g
->load_dest
, g
->fni4
);
1412 assert(g
->fno
!= NULL
);
1413 tcg_gen_gvec_3_ool(dofs
, aofs
, bofs
, oprsz
, maxsz
, c
, g
->fno
);
1419 g_assert_not_reached();
1421 tcg_swap_vecop_list(hold_list
);
1423 if (oprsz
< maxsz
) {
1424 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1428 /* Expand a vector four-operand operation. */
1429 void tcg_gen_gvec_4(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
, uint32_t cofs
,
1430 uint32_t oprsz
, uint32_t maxsz
, const GVecGen4
*g
)
1432 const TCGOpcode
*this_list
= g
->opt_opc
? : vecop_list_empty
;
1433 const TCGOpcode
*hold_list
= tcg_swap_vecop_list(this_list
);
1437 check_size_align(oprsz
, maxsz
, dofs
| aofs
| bofs
| cofs
);
1438 check_overlap_4(dofs
, aofs
, bofs
, cofs
, maxsz
);
1442 type
= choose_vector_type(g
->opt_opc
, g
->vece
, oprsz
, g
->prefer_i64
);
1446 /* Recall that ARM SVE allows vector sizes that are not a
1447 * power of 2, but always a multiple of 16. The intent is
1448 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1450 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
1451 expand_4_vec(g
->vece
, dofs
, aofs
, bofs
, cofs
, some
,
1452 32, TCG_TYPE_V256
, g
->write_aofs
, g
->fniv
);
1453 if (some
== oprsz
) {
1464 expand_4_vec(g
->vece
, dofs
, aofs
, bofs
, cofs
, oprsz
,
1465 16, TCG_TYPE_V128
, g
->write_aofs
, g
->fniv
);
1468 expand_4_vec(g
->vece
, dofs
, aofs
, bofs
, cofs
, oprsz
,
1469 8, TCG_TYPE_V64
, g
->write_aofs
, g
->fniv
);
1473 if (g
->fni8
&& check_size_impl(oprsz
, 8)) {
1474 expand_4_i64(dofs
, aofs
, bofs
, cofs
, oprsz
,
1475 g
->write_aofs
, g
->fni8
);
1476 } else if (g
->fni4
&& check_size_impl(oprsz
, 4)) {
1477 expand_4_i32(dofs
, aofs
, bofs
, cofs
, oprsz
,
1478 g
->write_aofs
, g
->fni4
);
1480 assert(g
->fno
!= NULL
);
1481 tcg_gen_gvec_4_ool(dofs
, aofs
, bofs
, cofs
,
1482 oprsz
, maxsz
, g
->data
, g
->fno
);
1488 g_assert_not_reached();
1490 tcg_swap_vecop_list(hold_list
);
1492 if (oprsz
< maxsz
) {
1493 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1498 * Expand specific vector operations.
1501 static void vec_mov2(unsigned vece
, TCGv_vec a
, TCGv_vec b
)
1503 tcg_gen_mov_vec(a
, b
);
1506 void tcg_gen_gvec_mov(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1507 uint32_t oprsz
, uint32_t maxsz
)
1509 static const GVecGen2 g
= {
1510 .fni8
= tcg_gen_mov_i64
,
1512 .fno
= gen_helper_gvec_mov
,
1513 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
1516 tcg_gen_gvec_2(dofs
, aofs
, oprsz
, maxsz
, &g
);
1518 check_size_align(oprsz
, maxsz
, dofs
);
1519 if (oprsz
< maxsz
) {
1520 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1525 void tcg_gen_gvec_dup_i32(unsigned vece
, uint32_t dofs
, uint32_t oprsz
,
1526 uint32_t maxsz
, TCGv_i32 in
)
1528 check_size_align(oprsz
, maxsz
, dofs
);
1529 tcg_debug_assert(vece
<= MO_32
);
1530 do_dup(vece
, dofs
, oprsz
, maxsz
, in
, NULL
, 0);
1533 void tcg_gen_gvec_dup_i64(unsigned vece
, uint32_t dofs
, uint32_t oprsz
,
1534 uint32_t maxsz
, TCGv_i64 in
)
1536 check_size_align(oprsz
, maxsz
, dofs
);
1537 tcg_debug_assert(vece
<= MO_64
);
1538 do_dup(vece
, dofs
, oprsz
, maxsz
, NULL
, in
, 0);
1541 void tcg_gen_gvec_dup_mem(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1542 uint32_t oprsz
, uint32_t maxsz
)
1544 check_size_align(oprsz
, maxsz
, dofs
);
1545 if (vece
<= MO_64
) {
1546 TCGType type
= choose_vector_type(NULL
, vece
, oprsz
, 0);
1548 TCGv_vec t_vec
= tcg_temp_new_vec(type
);
1549 tcg_gen_dup_mem_vec(vece
, t_vec
, cpu_env
, aofs
);
1550 do_dup_store(type
, dofs
, oprsz
, maxsz
, t_vec
);
1551 tcg_temp_free_vec(t_vec
);
1552 } else if (vece
<= MO_32
) {
1553 TCGv_i32 in
= tcg_temp_new_i32();
1556 tcg_gen_ld8u_i32(in
, cpu_env
, aofs
);
1559 tcg_gen_ld16u_i32(in
, cpu_env
, aofs
);
1562 tcg_gen_ld_i32(in
, cpu_env
, aofs
);
1565 do_dup(vece
, dofs
, oprsz
, maxsz
, in
, NULL
, 0);
1566 tcg_temp_free_i32(in
);
1568 TCGv_i64 in
= tcg_temp_new_i64();
1569 tcg_gen_ld_i64(in
, cpu_env
, aofs
);
1570 do_dup(vece
, dofs
, oprsz
, maxsz
, NULL
, in
, 0);
1571 tcg_temp_free_i64(in
);
1573 } else if (vece
== 4) {
1574 /* 128-bit duplicate. */
1577 tcg_debug_assert(oprsz
>= 16);
1578 if (TCG_TARGET_HAS_v128
) {
1579 TCGv_vec in
= tcg_temp_new_vec(TCG_TYPE_V128
);
1581 tcg_gen_ld_vec(in
, cpu_env
, aofs
);
1582 for (i
= (aofs
== dofs
) * 16; i
< oprsz
; i
+= 16) {
1583 tcg_gen_st_vec(in
, cpu_env
, dofs
+ i
);
1585 tcg_temp_free_vec(in
);
1587 TCGv_i64 in0
= tcg_temp_new_i64();
1588 TCGv_i64 in1
= tcg_temp_new_i64();
1590 tcg_gen_ld_i64(in0
, cpu_env
, aofs
);
1591 tcg_gen_ld_i64(in1
, cpu_env
, aofs
+ 8);
1592 for (i
= (aofs
== dofs
) * 16; i
< oprsz
; i
+= 16) {
1593 tcg_gen_st_i64(in0
, cpu_env
, dofs
+ i
);
1594 tcg_gen_st_i64(in1
, cpu_env
, dofs
+ i
+ 8);
1596 tcg_temp_free_i64(in0
);
1597 tcg_temp_free_i64(in1
);
1599 if (oprsz
< maxsz
) {
1600 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1602 } else if (vece
== 5) {
1603 /* 256-bit duplicate. */
1606 tcg_debug_assert(oprsz
>= 32);
1607 tcg_debug_assert(oprsz
% 32 == 0);
1608 if (TCG_TARGET_HAS_v256
) {
1609 TCGv_vec in
= tcg_temp_new_vec(TCG_TYPE_V256
);
1611 tcg_gen_ld_vec(in
, cpu_env
, aofs
);
1612 for (i
= (aofs
== dofs
) * 32; i
< oprsz
; i
+= 32) {
1613 tcg_gen_st_vec(in
, cpu_env
, dofs
+ i
);
1615 tcg_temp_free_vec(in
);
1616 } else if (TCG_TARGET_HAS_v128
) {
1617 TCGv_vec in0
= tcg_temp_new_vec(TCG_TYPE_V128
);
1618 TCGv_vec in1
= tcg_temp_new_vec(TCG_TYPE_V128
);
1620 tcg_gen_ld_vec(in0
, cpu_env
, aofs
);
1621 tcg_gen_ld_vec(in1
, cpu_env
, aofs
+ 16);
1622 for (i
= (aofs
== dofs
) * 32; i
< oprsz
; i
+= 32) {
1623 tcg_gen_st_vec(in0
, cpu_env
, dofs
+ i
);
1624 tcg_gen_st_vec(in1
, cpu_env
, dofs
+ i
+ 16);
1626 tcg_temp_free_vec(in0
);
1627 tcg_temp_free_vec(in1
);
1632 for (j
= 0; j
< 4; ++j
) {
1633 in
[j
] = tcg_temp_new_i64();
1634 tcg_gen_ld_i64(in
[j
], cpu_env
, aofs
+ j
* 8);
1636 for (i
= (aofs
== dofs
) * 32; i
< oprsz
; i
+= 32) {
1637 for (j
= 0; j
< 4; ++j
) {
1638 tcg_gen_st_i64(in
[j
], cpu_env
, dofs
+ i
+ j
* 8);
1641 for (j
= 0; j
< 4; ++j
) {
1642 tcg_temp_free_i64(in
[j
]);
1645 if (oprsz
< maxsz
) {
1646 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1649 g_assert_not_reached();
1653 void tcg_gen_gvec_dup_imm(unsigned vece
, uint32_t dofs
, uint32_t oprsz
,
1654 uint32_t maxsz
, uint64_t x
)
1656 check_size_align(oprsz
, maxsz
, dofs
);
1657 do_dup(vece
, dofs
, oprsz
, maxsz
, NULL
, NULL
, x
);
1660 void tcg_gen_gvec_not(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1661 uint32_t oprsz
, uint32_t maxsz
)
1663 static const GVecGen2 g
= {
1664 .fni8
= tcg_gen_not_i64
,
1665 .fniv
= tcg_gen_not_vec
,
1666 .fno
= gen_helper_gvec_not
,
1667 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
1669 tcg_gen_gvec_2(dofs
, aofs
, oprsz
, maxsz
, &g
);
1672 /* Perform a vector addition using normal addition and a mask. The mask
1673 should be the sign bit of each lane. This 6-operation form is more
1674 efficient than separate additions when there are 4 or more lanes in
1675 the 64-bit operation. */
1676 static void gen_addv_mask(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
, TCGv_i64 m
)
1678 TCGv_i64 t1
= tcg_temp_new_i64();
1679 TCGv_i64 t2
= tcg_temp_new_i64();
1680 TCGv_i64 t3
= tcg_temp_new_i64();
1682 tcg_gen_andc_i64(t1
, a
, m
);
1683 tcg_gen_andc_i64(t2
, b
, m
);
1684 tcg_gen_xor_i64(t3
, a
, b
);
1685 tcg_gen_add_i64(d
, t1
, t2
);
1686 tcg_gen_and_i64(t3
, t3
, m
);
1687 tcg_gen_xor_i64(d
, d
, t3
);
1689 tcg_temp_free_i64(t1
);
1690 tcg_temp_free_i64(t2
);
1691 tcg_temp_free_i64(t3
);
1694 void tcg_gen_vec_add8_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
1696 TCGv_i64 m
= tcg_const_i64(dup_const(MO_8
, 0x80));
1697 gen_addv_mask(d
, a
, b
, m
);
1698 tcg_temp_free_i64(m
);
1701 void tcg_gen_vec_add16_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
1703 TCGv_i64 m
= tcg_const_i64(dup_const(MO_16
, 0x8000));
1704 gen_addv_mask(d
, a
, b
, m
);
1705 tcg_temp_free_i64(m
);
1708 void tcg_gen_vec_add32_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
1710 TCGv_i64 t1
= tcg_temp_new_i64();
1711 TCGv_i64 t2
= tcg_temp_new_i64();
1713 tcg_gen_andi_i64(t1
, a
, ~0xffffffffull
);
1714 tcg_gen_add_i64(t2
, a
, b
);
1715 tcg_gen_add_i64(t1
, t1
, b
);
1716 tcg_gen_deposit_i64(d
, t1
, t2
, 0, 32);
1718 tcg_temp_free_i64(t1
);
1719 tcg_temp_free_i64(t2
);
1722 static const TCGOpcode vecop_list_add
[] = { INDEX_op_add_vec
, 0 };
1724 void tcg_gen_gvec_add(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1725 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
1727 static const GVecGen3 g
[4] = {
1728 { .fni8
= tcg_gen_vec_add8_i64
,
1729 .fniv
= tcg_gen_add_vec
,
1730 .fno
= gen_helper_gvec_add8
,
1731 .opt_opc
= vecop_list_add
,
1733 { .fni8
= tcg_gen_vec_add16_i64
,
1734 .fniv
= tcg_gen_add_vec
,
1735 .fno
= gen_helper_gvec_add16
,
1736 .opt_opc
= vecop_list_add
,
1738 { .fni4
= tcg_gen_add_i32
,
1739 .fniv
= tcg_gen_add_vec
,
1740 .fno
= gen_helper_gvec_add32
,
1741 .opt_opc
= vecop_list_add
,
1743 { .fni8
= tcg_gen_add_i64
,
1744 .fniv
= tcg_gen_add_vec
,
1745 .fno
= gen_helper_gvec_add64
,
1746 .opt_opc
= vecop_list_add
,
1747 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
1751 tcg_debug_assert(vece
<= MO_64
);
1752 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
1755 void tcg_gen_gvec_adds(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1756 TCGv_i64 c
, uint32_t oprsz
, uint32_t maxsz
)
1758 static const GVecGen2s g
[4] = {
1759 { .fni8
= tcg_gen_vec_add8_i64
,
1760 .fniv
= tcg_gen_add_vec
,
1761 .fno
= gen_helper_gvec_adds8
,
1762 .opt_opc
= vecop_list_add
,
1764 { .fni8
= tcg_gen_vec_add16_i64
,
1765 .fniv
= tcg_gen_add_vec
,
1766 .fno
= gen_helper_gvec_adds16
,
1767 .opt_opc
= vecop_list_add
,
1769 { .fni4
= tcg_gen_add_i32
,
1770 .fniv
= tcg_gen_add_vec
,
1771 .fno
= gen_helper_gvec_adds32
,
1772 .opt_opc
= vecop_list_add
,
1774 { .fni8
= tcg_gen_add_i64
,
1775 .fniv
= tcg_gen_add_vec
,
1776 .fno
= gen_helper_gvec_adds64
,
1777 .opt_opc
= vecop_list_add
,
1778 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
1782 tcg_debug_assert(vece
<= MO_64
);
1783 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, c
, &g
[vece
]);
1786 void tcg_gen_gvec_addi(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1787 int64_t c
, uint32_t oprsz
, uint32_t maxsz
)
1789 TCGv_i64 tmp
= tcg_const_i64(c
);
1790 tcg_gen_gvec_adds(vece
, dofs
, aofs
, tmp
, oprsz
, maxsz
);
1791 tcg_temp_free_i64(tmp
);
1794 static const TCGOpcode vecop_list_sub
[] = { INDEX_op_sub_vec
, 0 };
1796 void tcg_gen_gvec_subs(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1797 TCGv_i64 c
, uint32_t oprsz
, uint32_t maxsz
)
1799 static const GVecGen2s g
[4] = {
1800 { .fni8
= tcg_gen_vec_sub8_i64
,
1801 .fniv
= tcg_gen_sub_vec
,
1802 .fno
= gen_helper_gvec_subs8
,
1803 .opt_opc
= vecop_list_sub
,
1805 { .fni8
= tcg_gen_vec_sub16_i64
,
1806 .fniv
= tcg_gen_sub_vec
,
1807 .fno
= gen_helper_gvec_subs16
,
1808 .opt_opc
= vecop_list_sub
,
1810 { .fni4
= tcg_gen_sub_i32
,
1811 .fniv
= tcg_gen_sub_vec
,
1812 .fno
= gen_helper_gvec_subs32
,
1813 .opt_opc
= vecop_list_sub
,
1815 { .fni8
= tcg_gen_sub_i64
,
1816 .fniv
= tcg_gen_sub_vec
,
1817 .fno
= gen_helper_gvec_subs64
,
1818 .opt_opc
= vecop_list_sub
,
1819 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
1823 tcg_debug_assert(vece
<= MO_64
);
1824 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, c
, &g
[vece
]);
1827 /* Perform a vector subtraction using normal subtraction and a mask.
1828 Compare gen_addv_mask above. */
1829 static void gen_subv_mask(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
, TCGv_i64 m
)
1831 TCGv_i64 t1
= tcg_temp_new_i64();
1832 TCGv_i64 t2
= tcg_temp_new_i64();
1833 TCGv_i64 t3
= tcg_temp_new_i64();
1835 tcg_gen_or_i64(t1
, a
, m
);
1836 tcg_gen_andc_i64(t2
, b
, m
);
1837 tcg_gen_eqv_i64(t3
, a
, b
);
1838 tcg_gen_sub_i64(d
, t1
, t2
);
1839 tcg_gen_and_i64(t3
, t3
, m
);
1840 tcg_gen_xor_i64(d
, d
, t3
);
1842 tcg_temp_free_i64(t1
);
1843 tcg_temp_free_i64(t2
);
1844 tcg_temp_free_i64(t3
);
1847 void tcg_gen_vec_sub8_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
1849 TCGv_i64 m
= tcg_const_i64(dup_const(MO_8
, 0x80));
1850 gen_subv_mask(d
, a
, b
, m
);
1851 tcg_temp_free_i64(m
);
1854 void tcg_gen_vec_sub16_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
1856 TCGv_i64 m
= tcg_const_i64(dup_const(MO_16
, 0x8000));
1857 gen_subv_mask(d
, a
, b
, m
);
1858 tcg_temp_free_i64(m
);
1861 void tcg_gen_vec_sub32_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
1863 TCGv_i64 t1
= tcg_temp_new_i64();
1864 TCGv_i64 t2
= tcg_temp_new_i64();
1866 tcg_gen_andi_i64(t1
, b
, ~0xffffffffull
);
1867 tcg_gen_sub_i64(t2
, a
, b
);
1868 tcg_gen_sub_i64(t1
, a
, t1
);
1869 tcg_gen_deposit_i64(d
, t1
, t2
, 0, 32);
1871 tcg_temp_free_i64(t1
);
1872 tcg_temp_free_i64(t2
);
1875 void tcg_gen_gvec_sub(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1876 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
1878 static const GVecGen3 g
[4] = {
1879 { .fni8
= tcg_gen_vec_sub8_i64
,
1880 .fniv
= tcg_gen_sub_vec
,
1881 .fno
= gen_helper_gvec_sub8
,
1882 .opt_opc
= vecop_list_sub
,
1884 { .fni8
= tcg_gen_vec_sub16_i64
,
1885 .fniv
= tcg_gen_sub_vec
,
1886 .fno
= gen_helper_gvec_sub16
,
1887 .opt_opc
= vecop_list_sub
,
1889 { .fni4
= tcg_gen_sub_i32
,
1890 .fniv
= tcg_gen_sub_vec
,
1891 .fno
= gen_helper_gvec_sub32
,
1892 .opt_opc
= vecop_list_sub
,
1894 { .fni8
= tcg_gen_sub_i64
,
1895 .fniv
= tcg_gen_sub_vec
,
1896 .fno
= gen_helper_gvec_sub64
,
1897 .opt_opc
= vecop_list_sub
,
1898 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
1902 tcg_debug_assert(vece
<= MO_64
);
1903 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
1906 static const TCGOpcode vecop_list_mul
[] = { INDEX_op_mul_vec
, 0 };
1908 void tcg_gen_gvec_mul(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1909 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
1911 static const GVecGen3 g
[4] = {
1912 { .fniv
= tcg_gen_mul_vec
,
1913 .fno
= gen_helper_gvec_mul8
,
1914 .opt_opc
= vecop_list_mul
,
1916 { .fniv
= tcg_gen_mul_vec
,
1917 .fno
= gen_helper_gvec_mul16
,
1918 .opt_opc
= vecop_list_mul
,
1920 { .fni4
= tcg_gen_mul_i32
,
1921 .fniv
= tcg_gen_mul_vec
,
1922 .fno
= gen_helper_gvec_mul32
,
1923 .opt_opc
= vecop_list_mul
,
1925 { .fni8
= tcg_gen_mul_i64
,
1926 .fniv
= tcg_gen_mul_vec
,
1927 .fno
= gen_helper_gvec_mul64
,
1928 .opt_opc
= vecop_list_mul
,
1929 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
1933 tcg_debug_assert(vece
<= MO_64
);
1934 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
1937 void tcg_gen_gvec_muls(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1938 TCGv_i64 c
, uint32_t oprsz
, uint32_t maxsz
)
1940 static const GVecGen2s g
[4] = {
1941 { .fniv
= tcg_gen_mul_vec
,
1942 .fno
= gen_helper_gvec_muls8
,
1943 .opt_opc
= vecop_list_mul
,
1945 { .fniv
= tcg_gen_mul_vec
,
1946 .fno
= gen_helper_gvec_muls16
,
1947 .opt_opc
= vecop_list_mul
,
1949 { .fni4
= tcg_gen_mul_i32
,
1950 .fniv
= tcg_gen_mul_vec
,
1951 .fno
= gen_helper_gvec_muls32
,
1952 .opt_opc
= vecop_list_mul
,
1954 { .fni8
= tcg_gen_mul_i64
,
1955 .fniv
= tcg_gen_mul_vec
,
1956 .fno
= gen_helper_gvec_muls64
,
1957 .opt_opc
= vecop_list_mul
,
1958 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
1962 tcg_debug_assert(vece
<= MO_64
);
1963 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, c
, &g
[vece
]);
1966 void tcg_gen_gvec_muli(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1967 int64_t c
, uint32_t oprsz
, uint32_t maxsz
)
1969 TCGv_i64 tmp
= tcg_const_i64(c
);
1970 tcg_gen_gvec_muls(vece
, dofs
, aofs
, tmp
, oprsz
, maxsz
);
1971 tcg_temp_free_i64(tmp
);
1974 void tcg_gen_gvec_ssadd(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1975 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
1977 static const TCGOpcode vecop_list
[] = { INDEX_op_ssadd_vec
, 0 };
1978 static const GVecGen3 g
[4] = {
1979 { .fniv
= tcg_gen_ssadd_vec
,
1980 .fno
= gen_helper_gvec_ssadd8
,
1981 .opt_opc
= vecop_list
,
1983 { .fniv
= tcg_gen_ssadd_vec
,
1984 .fno
= gen_helper_gvec_ssadd16
,
1985 .opt_opc
= vecop_list
,
1987 { .fniv
= tcg_gen_ssadd_vec
,
1988 .fno
= gen_helper_gvec_ssadd32
,
1989 .opt_opc
= vecop_list
,
1991 { .fniv
= tcg_gen_ssadd_vec
,
1992 .fno
= gen_helper_gvec_ssadd64
,
1993 .opt_opc
= vecop_list
,
1996 tcg_debug_assert(vece
<= MO_64
);
1997 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2000 void tcg_gen_gvec_sssub(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2001 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2003 static const TCGOpcode vecop_list
[] = { INDEX_op_sssub_vec
, 0 };
2004 static const GVecGen3 g
[4] = {
2005 { .fniv
= tcg_gen_sssub_vec
,
2006 .fno
= gen_helper_gvec_sssub8
,
2007 .opt_opc
= vecop_list
,
2009 { .fniv
= tcg_gen_sssub_vec
,
2010 .fno
= gen_helper_gvec_sssub16
,
2011 .opt_opc
= vecop_list
,
2013 { .fniv
= tcg_gen_sssub_vec
,
2014 .fno
= gen_helper_gvec_sssub32
,
2015 .opt_opc
= vecop_list
,
2017 { .fniv
= tcg_gen_sssub_vec
,
2018 .fno
= gen_helper_gvec_sssub64
,
2019 .opt_opc
= vecop_list
,
2022 tcg_debug_assert(vece
<= MO_64
);
2023 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2026 static void tcg_gen_usadd_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
2028 TCGv_i32 max
= tcg_const_i32(-1);
2029 tcg_gen_add_i32(d
, a
, b
);
2030 tcg_gen_movcond_i32(TCG_COND_LTU
, d
, d
, a
, max
, d
);
2031 tcg_temp_free_i32(max
);
2034 static void tcg_gen_usadd_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
2036 TCGv_i64 max
= tcg_const_i64(-1);
2037 tcg_gen_add_i64(d
, a
, b
);
2038 tcg_gen_movcond_i64(TCG_COND_LTU
, d
, d
, a
, max
, d
);
2039 tcg_temp_free_i64(max
);
2042 void tcg_gen_gvec_usadd(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2043 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2045 static const TCGOpcode vecop_list
[] = { INDEX_op_usadd_vec
, 0 };
2046 static const GVecGen3 g
[4] = {
2047 { .fniv
= tcg_gen_usadd_vec
,
2048 .fno
= gen_helper_gvec_usadd8
,
2049 .opt_opc
= vecop_list
,
2051 { .fniv
= tcg_gen_usadd_vec
,
2052 .fno
= gen_helper_gvec_usadd16
,
2053 .opt_opc
= vecop_list
,
2055 { .fni4
= tcg_gen_usadd_i32
,
2056 .fniv
= tcg_gen_usadd_vec
,
2057 .fno
= gen_helper_gvec_usadd32
,
2058 .opt_opc
= vecop_list
,
2060 { .fni8
= tcg_gen_usadd_i64
,
2061 .fniv
= tcg_gen_usadd_vec
,
2062 .fno
= gen_helper_gvec_usadd64
,
2063 .opt_opc
= vecop_list
,
2066 tcg_debug_assert(vece
<= MO_64
);
2067 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2070 static void tcg_gen_ussub_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
2072 TCGv_i32 min
= tcg_const_i32(0);
2073 tcg_gen_sub_i32(d
, a
, b
);
2074 tcg_gen_movcond_i32(TCG_COND_LTU
, d
, a
, b
, min
, d
);
2075 tcg_temp_free_i32(min
);
2078 static void tcg_gen_ussub_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
2080 TCGv_i64 min
= tcg_const_i64(0);
2081 tcg_gen_sub_i64(d
, a
, b
);
2082 tcg_gen_movcond_i64(TCG_COND_LTU
, d
, a
, b
, min
, d
);
2083 tcg_temp_free_i64(min
);
2086 void tcg_gen_gvec_ussub(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2087 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2089 static const TCGOpcode vecop_list
[] = { INDEX_op_ussub_vec
, 0 };
2090 static const GVecGen3 g
[4] = {
2091 { .fniv
= tcg_gen_ussub_vec
,
2092 .fno
= gen_helper_gvec_ussub8
,
2093 .opt_opc
= vecop_list
,
2095 { .fniv
= tcg_gen_ussub_vec
,
2096 .fno
= gen_helper_gvec_ussub16
,
2097 .opt_opc
= vecop_list
,
2099 { .fni4
= tcg_gen_ussub_i32
,
2100 .fniv
= tcg_gen_ussub_vec
,
2101 .fno
= gen_helper_gvec_ussub32
,
2102 .opt_opc
= vecop_list
,
2104 { .fni8
= tcg_gen_ussub_i64
,
2105 .fniv
= tcg_gen_ussub_vec
,
2106 .fno
= gen_helper_gvec_ussub64
,
2107 .opt_opc
= vecop_list
,
2110 tcg_debug_assert(vece
<= MO_64
);
2111 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2114 void tcg_gen_gvec_smin(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2115 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2117 static const TCGOpcode vecop_list
[] = { INDEX_op_smin_vec
, 0 };
2118 static const GVecGen3 g
[4] = {
2119 { .fniv
= tcg_gen_smin_vec
,
2120 .fno
= gen_helper_gvec_smin8
,
2121 .opt_opc
= vecop_list
,
2123 { .fniv
= tcg_gen_smin_vec
,
2124 .fno
= gen_helper_gvec_smin16
,
2125 .opt_opc
= vecop_list
,
2127 { .fni4
= tcg_gen_smin_i32
,
2128 .fniv
= tcg_gen_smin_vec
,
2129 .fno
= gen_helper_gvec_smin32
,
2130 .opt_opc
= vecop_list
,
2132 { .fni8
= tcg_gen_smin_i64
,
2133 .fniv
= tcg_gen_smin_vec
,
2134 .fno
= gen_helper_gvec_smin64
,
2135 .opt_opc
= vecop_list
,
2138 tcg_debug_assert(vece
<= MO_64
);
2139 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2142 void tcg_gen_gvec_umin(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2143 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2145 static const TCGOpcode vecop_list
[] = { INDEX_op_umin_vec
, 0 };
2146 static const GVecGen3 g
[4] = {
2147 { .fniv
= tcg_gen_umin_vec
,
2148 .fno
= gen_helper_gvec_umin8
,
2149 .opt_opc
= vecop_list
,
2151 { .fniv
= tcg_gen_umin_vec
,
2152 .fno
= gen_helper_gvec_umin16
,
2153 .opt_opc
= vecop_list
,
2155 { .fni4
= tcg_gen_umin_i32
,
2156 .fniv
= tcg_gen_umin_vec
,
2157 .fno
= gen_helper_gvec_umin32
,
2158 .opt_opc
= vecop_list
,
2160 { .fni8
= tcg_gen_umin_i64
,
2161 .fniv
= tcg_gen_umin_vec
,
2162 .fno
= gen_helper_gvec_umin64
,
2163 .opt_opc
= vecop_list
,
2166 tcg_debug_assert(vece
<= MO_64
);
2167 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2170 void tcg_gen_gvec_smax(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2171 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2173 static const TCGOpcode vecop_list
[] = { INDEX_op_smax_vec
, 0 };
2174 static const GVecGen3 g
[4] = {
2175 { .fniv
= tcg_gen_smax_vec
,
2176 .fno
= gen_helper_gvec_smax8
,
2177 .opt_opc
= vecop_list
,
2179 { .fniv
= tcg_gen_smax_vec
,
2180 .fno
= gen_helper_gvec_smax16
,
2181 .opt_opc
= vecop_list
,
2183 { .fni4
= tcg_gen_smax_i32
,
2184 .fniv
= tcg_gen_smax_vec
,
2185 .fno
= gen_helper_gvec_smax32
,
2186 .opt_opc
= vecop_list
,
2188 { .fni8
= tcg_gen_smax_i64
,
2189 .fniv
= tcg_gen_smax_vec
,
2190 .fno
= gen_helper_gvec_smax64
,
2191 .opt_opc
= vecop_list
,
2194 tcg_debug_assert(vece
<= MO_64
);
2195 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2198 void tcg_gen_gvec_umax(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2199 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2201 static const TCGOpcode vecop_list
[] = { INDEX_op_umax_vec
, 0 };
2202 static const GVecGen3 g
[4] = {
2203 { .fniv
= tcg_gen_umax_vec
,
2204 .fno
= gen_helper_gvec_umax8
,
2205 .opt_opc
= vecop_list
,
2207 { .fniv
= tcg_gen_umax_vec
,
2208 .fno
= gen_helper_gvec_umax16
,
2209 .opt_opc
= vecop_list
,
2211 { .fni4
= tcg_gen_umax_i32
,
2212 .fniv
= tcg_gen_umax_vec
,
2213 .fno
= gen_helper_gvec_umax32
,
2214 .opt_opc
= vecop_list
,
2216 { .fni8
= tcg_gen_umax_i64
,
2217 .fniv
= tcg_gen_umax_vec
,
2218 .fno
= gen_helper_gvec_umax64
,
2219 .opt_opc
= vecop_list
,
2222 tcg_debug_assert(vece
<= MO_64
);
2223 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2226 /* Perform a vector negation using normal negation and a mask.
2227 Compare gen_subv_mask above. */
2228 static void gen_negv_mask(TCGv_i64 d
, TCGv_i64 b
, TCGv_i64 m
)
2230 TCGv_i64 t2
= tcg_temp_new_i64();
2231 TCGv_i64 t3
= tcg_temp_new_i64();
2233 tcg_gen_andc_i64(t3
, m
, b
);
2234 tcg_gen_andc_i64(t2
, b
, m
);
2235 tcg_gen_sub_i64(d
, m
, t2
);
2236 tcg_gen_xor_i64(d
, d
, t3
);
2238 tcg_temp_free_i64(t2
);
2239 tcg_temp_free_i64(t3
);
2242 void tcg_gen_vec_neg8_i64(TCGv_i64 d
, TCGv_i64 b
)
2244 TCGv_i64 m
= tcg_const_i64(dup_const(MO_8
, 0x80));
2245 gen_negv_mask(d
, b
, m
);
2246 tcg_temp_free_i64(m
);
2249 void tcg_gen_vec_neg16_i64(TCGv_i64 d
, TCGv_i64 b
)
2251 TCGv_i64 m
= tcg_const_i64(dup_const(MO_16
, 0x8000));
2252 gen_negv_mask(d
, b
, m
);
2253 tcg_temp_free_i64(m
);
2256 void tcg_gen_vec_neg32_i64(TCGv_i64 d
, TCGv_i64 b
)
2258 TCGv_i64 t1
= tcg_temp_new_i64();
2259 TCGv_i64 t2
= tcg_temp_new_i64();
2261 tcg_gen_andi_i64(t1
, b
, ~0xffffffffull
);
2262 tcg_gen_neg_i64(t2
, b
);
2263 tcg_gen_neg_i64(t1
, t1
);
2264 tcg_gen_deposit_i64(d
, t1
, t2
, 0, 32);
2266 tcg_temp_free_i64(t1
);
2267 tcg_temp_free_i64(t2
);
2270 void tcg_gen_gvec_neg(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2271 uint32_t oprsz
, uint32_t maxsz
)
2273 static const TCGOpcode vecop_list
[] = { INDEX_op_neg_vec
, 0 };
2274 static const GVecGen2 g
[4] = {
2275 { .fni8
= tcg_gen_vec_neg8_i64
,
2276 .fniv
= tcg_gen_neg_vec
,
2277 .fno
= gen_helper_gvec_neg8
,
2278 .opt_opc
= vecop_list
,
2280 { .fni8
= tcg_gen_vec_neg16_i64
,
2281 .fniv
= tcg_gen_neg_vec
,
2282 .fno
= gen_helper_gvec_neg16
,
2283 .opt_opc
= vecop_list
,
2285 { .fni4
= tcg_gen_neg_i32
,
2286 .fniv
= tcg_gen_neg_vec
,
2287 .fno
= gen_helper_gvec_neg32
,
2288 .opt_opc
= vecop_list
,
2290 { .fni8
= tcg_gen_neg_i64
,
2291 .fniv
= tcg_gen_neg_vec
,
2292 .fno
= gen_helper_gvec_neg64
,
2293 .opt_opc
= vecop_list
,
2294 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2298 tcg_debug_assert(vece
<= MO_64
);
2299 tcg_gen_gvec_2(dofs
, aofs
, oprsz
, maxsz
, &g
[vece
]);
2302 static void gen_absv_mask(TCGv_i64 d
, TCGv_i64 b
, unsigned vece
)
2304 TCGv_i64 t
= tcg_temp_new_i64();
2305 int nbit
= 8 << vece
;
2307 /* Create -1 for each negative element. */
2308 tcg_gen_shri_i64(t
, b
, nbit
- 1);
2309 tcg_gen_andi_i64(t
, t
, dup_const(vece
, 1));
2310 tcg_gen_muli_i64(t
, t
, (1 << nbit
) - 1);
2313 * Invert (via xor -1) and add one.
2314 * Because of the ordering the msb is cleared,
2315 * so we never have carry into the next element.
2317 tcg_gen_xor_i64(d
, b
, t
);
2318 tcg_gen_andi_i64(t
, t
, dup_const(vece
, 1));
2319 tcg_gen_add_i64(d
, d
, t
);
2321 tcg_temp_free_i64(t
);
2324 static void tcg_gen_vec_abs8_i64(TCGv_i64 d
, TCGv_i64 b
)
2326 gen_absv_mask(d
, b
, MO_8
);
2329 static void tcg_gen_vec_abs16_i64(TCGv_i64 d
, TCGv_i64 b
)
2331 gen_absv_mask(d
, b
, MO_16
);
2334 void tcg_gen_gvec_abs(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2335 uint32_t oprsz
, uint32_t maxsz
)
2337 static const TCGOpcode vecop_list
[] = { INDEX_op_abs_vec
, 0 };
2338 static const GVecGen2 g
[4] = {
2339 { .fni8
= tcg_gen_vec_abs8_i64
,
2340 .fniv
= tcg_gen_abs_vec
,
2341 .fno
= gen_helper_gvec_abs8
,
2342 .opt_opc
= vecop_list
,
2344 { .fni8
= tcg_gen_vec_abs16_i64
,
2345 .fniv
= tcg_gen_abs_vec
,
2346 .fno
= gen_helper_gvec_abs16
,
2347 .opt_opc
= vecop_list
,
2349 { .fni4
= tcg_gen_abs_i32
,
2350 .fniv
= tcg_gen_abs_vec
,
2351 .fno
= gen_helper_gvec_abs32
,
2352 .opt_opc
= vecop_list
,
2354 { .fni8
= tcg_gen_abs_i64
,
2355 .fniv
= tcg_gen_abs_vec
,
2356 .fno
= gen_helper_gvec_abs64
,
2357 .opt_opc
= vecop_list
,
2358 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2362 tcg_debug_assert(vece
<= MO_64
);
2363 tcg_gen_gvec_2(dofs
, aofs
, oprsz
, maxsz
, &g
[vece
]);
2366 void tcg_gen_gvec_and(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2367 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2369 static const GVecGen3 g
= {
2370 .fni8
= tcg_gen_and_i64
,
2371 .fniv
= tcg_gen_and_vec
,
2372 .fno
= gen_helper_gvec_and
,
2373 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2377 tcg_gen_gvec_mov(vece
, dofs
, aofs
, oprsz
, maxsz
);
2379 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
);
2383 void tcg_gen_gvec_or(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2384 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2386 static const GVecGen3 g
= {
2387 .fni8
= tcg_gen_or_i64
,
2388 .fniv
= tcg_gen_or_vec
,
2389 .fno
= gen_helper_gvec_or
,
2390 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2394 tcg_gen_gvec_mov(vece
, dofs
, aofs
, oprsz
, maxsz
);
2396 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
);
2400 void tcg_gen_gvec_xor(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2401 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2403 static const GVecGen3 g
= {
2404 .fni8
= tcg_gen_xor_i64
,
2405 .fniv
= tcg_gen_xor_vec
,
2406 .fno
= gen_helper_gvec_xor
,
2407 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2411 tcg_gen_gvec_dup_imm(MO_64
, dofs
, oprsz
, maxsz
, 0);
2413 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
);
2417 void tcg_gen_gvec_andc(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2418 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2420 static const GVecGen3 g
= {
2421 .fni8
= tcg_gen_andc_i64
,
2422 .fniv
= tcg_gen_andc_vec
,
2423 .fno
= gen_helper_gvec_andc
,
2424 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2428 tcg_gen_gvec_dup_imm(MO_64
, dofs
, oprsz
, maxsz
, 0);
2430 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
);
2434 void tcg_gen_gvec_orc(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2435 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2437 static const GVecGen3 g
= {
2438 .fni8
= tcg_gen_orc_i64
,
2439 .fniv
= tcg_gen_orc_vec
,
2440 .fno
= gen_helper_gvec_orc
,
2441 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2445 tcg_gen_gvec_dup_imm(MO_64
, dofs
, oprsz
, maxsz
, -1);
2447 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
);
2451 void tcg_gen_gvec_nand(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2452 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2454 static const GVecGen3 g
= {
2455 .fni8
= tcg_gen_nand_i64
,
2456 .fniv
= tcg_gen_nand_vec
,
2457 .fno
= gen_helper_gvec_nand
,
2458 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2462 tcg_gen_gvec_not(vece
, dofs
, aofs
, oprsz
, maxsz
);
2464 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
);
2468 void tcg_gen_gvec_nor(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2469 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2471 static const GVecGen3 g
= {
2472 .fni8
= tcg_gen_nor_i64
,
2473 .fniv
= tcg_gen_nor_vec
,
2474 .fno
= gen_helper_gvec_nor
,
2475 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2479 tcg_gen_gvec_not(vece
, dofs
, aofs
, oprsz
, maxsz
);
2481 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
);
2485 void tcg_gen_gvec_eqv(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2486 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2488 static const GVecGen3 g
= {
2489 .fni8
= tcg_gen_eqv_i64
,
2490 .fniv
= tcg_gen_eqv_vec
,
2491 .fno
= gen_helper_gvec_eqv
,
2492 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2496 tcg_gen_gvec_dup_imm(MO_64
, dofs
, oprsz
, maxsz
, -1);
2498 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
);
2502 static const GVecGen2s gop_ands
= {
2503 .fni8
= tcg_gen_and_i64
,
2504 .fniv
= tcg_gen_and_vec
,
2505 .fno
= gen_helper_gvec_ands
,
2506 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2510 void tcg_gen_gvec_ands(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2511 TCGv_i64 c
, uint32_t oprsz
, uint32_t maxsz
)
2513 TCGv_i64 tmp
= tcg_temp_new_i64();
2514 gen_dup_i64(vece
, tmp
, c
);
2515 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, tmp
, &gop_ands
);
2516 tcg_temp_free_i64(tmp
);
2519 void tcg_gen_gvec_andi(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2520 int64_t c
, uint32_t oprsz
, uint32_t maxsz
)
2522 TCGv_i64 tmp
= tcg_const_i64(dup_const(vece
, c
));
2523 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, tmp
, &gop_ands
);
2524 tcg_temp_free_i64(tmp
);
2527 static const GVecGen2s gop_xors
= {
2528 .fni8
= tcg_gen_xor_i64
,
2529 .fniv
= tcg_gen_xor_vec
,
2530 .fno
= gen_helper_gvec_xors
,
2531 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2535 void tcg_gen_gvec_xors(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2536 TCGv_i64 c
, uint32_t oprsz
, uint32_t maxsz
)
2538 TCGv_i64 tmp
= tcg_temp_new_i64();
2539 gen_dup_i64(vece
, tmp
, c
);
2540 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, tmp
, &gop_xors
);
2541 tcg_temp_free_i64(tmp
);
2544 void tcg_gen_gvec_xori(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2545 int64_t c
, uint32_t oprsz
, uint32_t maxsz
)
2547 TCGv_i64 tmp
= tcg_const_i64(dup_const(vece
, c
));
2548 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, tmp
, &gop_xors
);
2549 tcg_temp_free_i64(tmp
);
2552 static const GVecGen2s gop_ors
= {
2553 .fni8
= tcg_gen_or_i64
,
2554 .fniv
= tcg_gen_or_vec
,
2555 .fno
= gen_helper_gvec_ors
,
2556 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2560 void tcg_gen_gvec_ors(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2561 TCGv_i64 c
, uint32_t oprsz
, uint32_t maxsz
)
2563 TCGv_i64 tmp
= tcg_temp_new_i64();
2564 gen_dup_i64(vece
, tmp
, c
);
2565 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, tmp
, &gop_ors
);
2566 tcg_temp_free_i64(tmp
);
2569 void tcg_gen_gvec_ori(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2570 int64_t c
, uint32_t oprsz
, uint32_t maxsz
)
2572 TCGv_i64 tmp
= tcg_const_i64(dup_const(vece
, c
));
2573 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, tmp
, &gop_ors
);
2574 tcg_temp_free_i64(tmp
);
2577 void tcg_gen_vec_shl8i_i64(TCGv_i64 d
, TCGv_i64 a
, int64_t c
)
2579 uint64_t mask
= dup_const(MO_8
, 0xff << c
);
2580 tcg_gen_shli_i64(d
, a
, c
);
2581 tcg_gen_andi_i64(d
, d
, mask
);
2584 void tcg_gen_vec_shl16i_i64(TCGv_i64 d
, TCGv_i64 a
, int64_t c
)
2586 uint64_t mask
= dup_const(MO_16
, 0xffff << c
);
2587 tcg_gen_shli_i64(d
, a
, c
);
2588 tcg_gen_andi_i64(d
, d
, mask
);
2591 void tcg_gen_gvec_shli(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2592 int64_t shift
, uint32_t oprsz
, uint32_t maxsz
)
2594 static const TCGOpcode vecop_list
[] = { INDEX_op_shli_vec
, 0 };
2595 static const GVecGen2i g
[4] = {
2596 { .fni8
= tcg_gen_vec_shl8i_i64
,
2597 .fniv
= tcg_gen_shli_vec
,
2598 .fno
= gen_helper_gvec_shl8i
,
2599 .opt_opc
= vecop_list
,
2601 { .fni8
= tcg_gen_vec_shl16i_i64
,
2602 .fniv
= tcg_gen_shli_vec
,
2603 .fno
= gen_helper_gvec_shl16i
,
2604 .opt_opc
= vecop_list
,
2606 { .fni4
= tcg_gen_shli_i32
,
2607 .fniv
= tcg_gen_shli_vec
,
2608 .fno
= gen_helper_gvec_shl32i
,
2609 .opt_opc
= vecop_list
,
2611 { .fni8
= tcg_gen_shli_i64
,
2612 .fniv
= tcg_gen_shli_vec
,
2613 .fno
= gen_helper_gvec_shl64i
,
2614 .opt_opc
= vecop_list
,
2615 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2619 tcg_debug_assert(vece
<= MO_64
);
2620 tcg_debug_assert(shift
>= 0 && shift
< (8 << vece
));
2622 tcg_gen_gvec_mov(vece
, dofs
, aofs
, oprsz
, maxsz
);
2624 tcg_gen_gvec_2i(dofs
, aofs
, oprsz
, maxsz
, shift
, &g
[vece
]);
2628 void tcg_gen_vec_shr8i_i64(TCGv_i64 d
, TCGv_i64 a
, int64_t c
)
2630 uint64_t mask
= dup_const(MO_8
, 0xff >> c
);
2631 tcg_gen_shri_i64(d
, a
, c
);
2632 tcg_gen_andi_i64(d
, d
, mask
);
2635 void tcg_gen_vec_shr16i_i64(TCGv_i64 d
, TCGv_i64 a
, int64_t c
)
2637 uint64_t mask
= dup_const(MO_16
, 0xffff >> c
);
2638 tcg_gen_shri_i64(d
, a
, c
);
2639 tcg_gen_andi_i64(d
, d
, mask
);
2642 void tcg_gen_gvec_shri(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2643 int64_t shift
, uint32_t oprsz
, uint32_t maxsz
)
2645 static const TCGOpcode vecop_list
[] = { INDEX_op_shri_vec
, 0 };
2646 static const GVecGen2i g
[4] = {
2647 { .fni8
= tcg_gen_vec_shr8i_i64
,
2648 .fniv
= tcg_gen_shri_vec
,
2649 .fno
= gen_helper_gvec_shr8i
,
2650 .opt_opc
= vecop_list
,
2652 { .fni8
= tcg_gen_vec_shr16i_i64
,
2653 .fniv
= tcg_gen_shri_vec
,
2654 .fno
= gen_helper_gvec_shr16i
,
2655 .opt_opc
= vecop_list
,
2657 { .fni4
= tcg_gen_shri_i32
,
2658 .fniv
= tcg_gen_shri_vec
,
2659 .fno
= gen_helper_gvec_shr32i
,
2660 .opt_opc
= vecop_list
,
2662 { .fni8
= tcg_gen_shri_i64
,
2663 .fniv
= tcg_gen_shri_vec
,
2664 .fno
= gen_helper_gvec_shr64i
,
2665 .opt_opc
= vecop_list
,
2666 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2670 tcg_debug_assert(vece
<= MO_64
);
2671 tcg_debug_assert(shift
>= 0 && shift
< (8 << vece
));
2673 tcg_gen_gvec_mov(vece
, dofs
, aofs
, oprsz
, maxsz
);
2675 tcg_gen_gvec_2i(dofs
, aofs
, oprsz
, maxsz
, shift
, &g
[vece
]);
2679 void tcg_gen_vec_sar8i_i64(TCGv_i64 d
, TCGv_i64 a
, int64_t c
)
2681 uint64_t s_mask
= dup_const(MO_8
, 0x80 >> c
);
2682 uint64_t c_mask
= dup_const(MO_8
, 0xff >> c
);
2683 TCGv_i64 s
= tcg_temp_new_i64();
2685 tcg_gen_shri_i64(d
, a
, c
);
2686 tcg_gen_andi_i64(s
, d
, s_mask
); /* isolate (shifted) sign bit */
2687 tcg_gen_muli_i64(s
, s
, (2 << c
) - 2); /* replicate isolated signs */
2688 tcg_gen_andi_i64(d
, d
, c_mask
); /* clear out bits above sign */
2689 tcg_gen_or_i64(d
, d
, s
); /* include sign extension */
2690 tcg_temp_free_i64(s
);
2693 void tcg_gen_vec_sar16i_i64(TCGv_i64 d
, TCGv_i64 a
, int64_t c
)
2695 uint64_t s_mask
= dup_const(MO_16
, 0x8000 >> c
);
2696 uint64_t c_mask
= dup_const(MO_16
, 0xffff >> c
);
2697 TCGv_i64 s
= tcg_temp_new_i64();
2699 tcg_gen_shri_i64(d
, a
, c
);
2700 tcg_gen_andi_i64(s
, d
, s_mask
); /* isolate (shifted) sign bit */
2701 tcg_gen_andi_i64(d
, d
, c_mask
); /* clear out bits above sign */
2702 tcg_gen_muli_i64(s
, s
, (2 << c
) - 2); /* replicate isolated signs */
2703 tcg_gen_or_i64(d
, d
, s
); /* include sign extension */
2704 tcg_temp_free_i64(s
);
2707 void tcg_gen_gvec_sari(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2708 int64_t shift
, uint32_t oprsz
, uint32_t maxsz
)
2710 static const TCGOpcode vecop_list
[] = { INDEX_op_sari_vec
, 0 };
2711 static const GVecGen2i g
[4] = {
2712 { .fni8
= tcg_gen_vec_sar8i_i64
,
2713 .fniv
= tcg_gen_sari_vec
,
2714 .fno
= gen_helper_gvec_sar8i
,
2715 .opt_opc
= vecop_list
,
2717 { .fni8
= tcg_gen_vec_sar16i_i64
,
2718 .fniv
= tcg_gen_sari_vec
,
2719 .fno
= gen_helper_gvec_sar16i
,
2720 .opt_opc
= vecop_list
,
2722 { .fni4
= tcg_gen_sari_i32
,
2723 .fniv
= tcg_gen_sari_vec
,
2724 .fno
= gen_helper_gvec_sar32i
,
2725 .opt_opc
= vecop_list
,
2727 { .fni8
= tcg_gen_sari_i64
,
2728 .fniv
= tcg_gen_sari_vec
,
2729 .fno
= gen_helper_gvec_sar64i
,
2730 .opt_opc
= vecop_list
,
2731 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2735 tcg_debug_assert(vece
<= MO_64
);
2736 tcg_debug_assert(shift
>= 0 && shift
< (8 << vece
));
2738 tcg_gen_gvec_mov(vece
, dofs
, aofs
, oprsz
, maxsz
);
2740 tcg_gen_gvec_2i(dofs
, aofs
, oprsz
, maxsz
, shift
, &g
[vece
]);
2744 void tcg_gen_vec_rotl8i_i64(TCGv_i64 d
, TCGv_i64 a
, int64_t c
)
2746 uint64_t mask
= dup_const(MO_8
, 0xff << c
);
2748 tcg_gen_shli_i64(d
, a
, c
);
2749 tcg_gen_shri_i64(a
, a
, 8 - c
);
2750 tcg_gen_andi_i64(d
, d
, mask
);
2751 tcg_gen_andi_i64(a
, a
, ~mask
);
2752 tcg_gen_or_i64(d
, d
, a
);
2755 void tcg_gen_vec_rotl16i_i64(TCGv_i64 d
, TCGv_i64 a
, int64_t c
)
2757 uint64_t mask
= dup_const(MO_16
, 0xffff << c
);
2759 tcg_gen_shli_i64(d
, a
, c
);
2760 tcg_gen_shri_i64(a
, a
, 16 - c
);
2761 tcg_gen_andi_i64(d
, d
, mask
);
2762 tcg_gen_andi_i64(a
, a
, ~mask
);
2763 tcg_gen_or_i64(d
, d
, a
);
2766 void tcg_gen_gvec_rotli(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2767 int64_t shift
, uint32_t oprsz
, uint32_t maxsz
)
2769 static const TCGOpcode vecop_list
[] = { INDEX_op_rotli_vec
, 0 };
2770 static const GVecGen2i g
[4] = {
2771 { .fni8
= tcg_gen_vec_rotl8i_i64
,
2772 .fniv
= tcg_gen_rotli_vec
,
2773 .fno
= gen_helper_gvec_rotl8i
,
2774 .opt_opc
= vecop_list
,
2776 { .fni8
= tcg_gen_vec_rotl16i_i64
,
2777 .fniv
= tcg_gen_rotli_vec
,
2778 .fno
= gen_helper_gvec_rotl16i
,
2779 .opt_opc
= vecop_list
,
2781 { .fni4
= tcg_gen_rotli_i32
,
2782 .fniv
= tcg_gen_rotli_vec
,
2783 .fno
= gen_helper_gvec_rotl32i
,
2784 .opt_opc
= vecop_list
,
2786 { .fni8
= tcg_gen_rotli_i64
,
2787 .fniv
= tcg_gen_rotli_vec
,
2788 .fno
= gen_helper_gvec_rotl64i
,
2789 .opt_opc
= vecop_list
,
2790 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2794 tcg_debug_assert(vece
<= MO_64
);
2795 tcg_debug_assert(shift
>= 0 && shift
< (8 << vece
));
2797 tcg_gen_gvec_mov(vece
, dofs
, aofs
, oprsz
, maxsz
);
2799 tcg_gen_gvec_2i(dofs
, aofs
, oprsz
, maxsz
, shift
, &g
[vece
]);
2803 void tcg_gen_gvec_rotri(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2804 int64_t shift
, uint32_t oprsz
, uint32_t maxsz
)
2806 tcg_debug_assert(vece
<= MO_64
);
2807 tcg_debug_assert(shift
>= 0 && shift
< (8 << vece
));
2808 tcg_gen_gvec_rotli(vece
, dofs
, aofs
, -shift
& ((8 << vece
) - 1),
2813 * Specialized generation vector shifts by a non-constant scalar.
2817 void (*fni4
)(TCGv_i32
, TCGv_i32
, TCGv_i32
);
2818 void (*fni8
)(TCGv_i64
, TCGv_i64
, TCGv_i64
);
2819 void (*fniv_s
)(unsigned, TCGv_vec
, TCGv_vec
, TCGv_i32
);
2820 void (*fniv_v
)(unsigned, TCGv_vec
, TCGv_vec
, TCGv_vec
);
2821 gen_helper_gvec_2
*fno
[4];
2822 TCGOpcode s_list
[2];
2823 TCGOpcode v_list
[2];
2826 static void expand_2sh_vec(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2827 uint32_t oprsz
, uint32_t tysz
, TCGType type
,
2829 void (*fni
)(unsigned, TCGv_vec
, TCGv_vec
, TCGv_i32
))
2831 TCGv_vec t0
= tcg_temp_new_vec(type
);
2834 for (i
= 0; i
< oprsz
; i
+= tysz
) {
2835 tcg_gen_ld_vec(t0
, cpu_env
, aofs
+ i
);
2836 fni(vece
, t0
, t0
, shift
);
2837 tcg_gen_st_vec(t0
, cpu_env
, dofs
+ i
);
2839 tcg_temp_free_vec(t0
);
2843 do_gvec_shifts(unsigned vece
, uint32_t dofs
, uint32_t aofs
, TCGv_i32 shift
,
2844 uint32_t oprsz
, uint32_t maxsz
, const GVecGen2sh
*g
)
2849 check_size_align(oprsz
, maxsz
, dofs
| aofs
);
2850 check_overlap_2(dofs
, aofs
, maxsz
);
2852 /* If the backend has a scalar expansion, great. */
2853 type
= choose_vector_type(g
->s_list
, vece
, oprsz
, vece
== MO_64
);
2855 const TCGOpcode
*hold_list
= tcg_swap_vecop_list(NULL
);
2858 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
2859 expand_2sh_vec(vece
, dofs
, aofs
, some
, 32,
2860 TCG_TYPE_V256
, shift
, g
->fniv_s
);
2861 if (some
== oprsz
) {
2870 expand_2sh_vec(vece
, dofs
, aofs
, oprsz
, 16,
2871 TCG_TYPE_V128
, shift
, g
->fniv_s
);
2874 expand_2sh_vec(vece
, dofs
, aofs
, oprsz
, 8,
2875 TCG_TYPE_V64
, shift
, g
->fniv_s
);
2878 g_assert_not_reached();
2880 tcg_swap_vecop_list(hold_list
);
2884 /* If the backend supports variable vector shifts, also cool. */
2885 type
= choose_vector_type(g
->v_list
, vece
, oprsz
, vece
== MO_64
);
2887 const TCGOpcode
*hold_list
= tcg_swap_vecop_list(NULL
);
2888 TCGv_vec v_shift
= tcg_temp_new_vec(type
);
2890 if (vece
== MO_64
) {
2891 TCGv_i64 sh64
= tcg_temp_new_i64();
2892 tcg_gen_extu_i32_i64(sh64
, shift
);
2893 tcg_gen_dup_i64_vec(MO_64
, v_shift
, sh64
);
2894 tcg_temp_free_i64(sh64
);
2896 tcg_gen_dup_i32_vec(vece
, v_shift
, shift
);
2901 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
2902 expand_2s_vec(vece
, dofs
, aofs
, some
, 32, TCG_TYPE_V256
,
2903 v_shift
, false, g
->fniv_v
);
2904 if (some
== oprsz
) {
2913 expand_2s_vec(vece
, dofs
, aofs
, oprsz
, 16, TCG_TYPE_V128
,
2914 v_shift
, false, g
->fniv_v
);
2917 expand_2s_vec(vece
, dofs
, aofs
, oprsz
, 8, TCG_TYPE_V64
,
2918 v_shift
, false, g
->fniv_v
);
2921 g_assert_not_reached();
2923 tcg_temp_free_vec(v_shift
);
2924 tcg_swap_vecop_list(hold_list
);
2928 /* Otherwise fall back to integral... */
2929 if (vece
== MO_32
&& check_size_impl(oprsz
, 4)) {
2930 expand_2s_i32(dofs
, aofs
, oprsz
, shift
, false, g
->fni4
);
2931 } else if (vece
== MO_64
&& check_size_impl(oprsz
, 8)) {
2932 TCGv_i64 sh64
= tcg_temp_new_i64();
2933 tcg_gen_extu_i32_i64(sh64
, shift
);
2934 expand_2s_i64(dofs
, aofs
, oprsz
, sh64
, false, g
->fni8
);
2935 tcg_temp_free_i64(sh64
);
2937 TCGv_ptr a0
= tcg_temp_new_ptr();
2938 TCGv_ptr a1
= tcg_temp_new_ptr();
2939 TCGv_i32 desc
= tcg_temp_new_i32();
2941 tcg_gen_shli_i32(desc
, shift
, SIMD_DATA_SHIFT
);
2942 tcg_gen_ori_i32(desc
, desc
, simd_desc(oprsz
, maxsz
, 0));
2943 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
2944 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
2946 g
->fno
[vece
](a0
, a1
, desc
);
2948 tcg_temp_free_ptr(a0
);
2949 tcg_temp_free_ptr(a1
);
2950 tcg_temp_free_i32(desc
);
2955 if (oprsz
< maxsz
) {
2956 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
2960 void tcg_gen_gvec_shls(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2961 TCGv_i32 shift
, uint32_t oprsz
, uint32_t maxsz
)
2963 static const GVecGen2sh g
= {
2964 .fni4
= tcg_gen_shl_i32
,
2965 .fni8
= tcg_gen_shl_i64
,
2966 .fniv_s
= tcg_gen_shls_vec
,
2967 .fniv_v
= tcg_gen_shlv_vec
,
2969 gen_helper_gvec_shl8i
,
2970 gen_helper_gvec_shl16i
,
2971 gen_helper_gvec_shl32i
,
2972 gen_helper_gvec_shl64i
,
2974 .s_list
= { INDEX_op_shls_vec
, 0 },
2975 .v_list
= { INDEX_op_shlv_vec
, 0 },
2978 tcg_debug_assert(vece
<= MO_64
);
2979 do_gvec_shifts(vece
, dofs
, aofs
, shift
, oprsz
, maxsz
, &g
);
2982 void tcg_gen_gvec_shrs(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2983 TCGv_i32 shift
, uint32_t oprsz
, uint32_t maxsz
)
2985 static const GVecGen2sh g
= {
2986 .fni4
= tcg_gen_shr_i32
,
2987 .fni8
= tcg_gen_shr_i64
,
2988 .fniv_s
= tcg_gen_shrs_vec
,
2989 .fniv_v
= tcg_gen_shrv_vec
,
2991 gen_helper_gvec_shr8i
,
2992 gen_helper_gvec_shr16i
,
2993 gen_helper_gvec_shr32i
,
2994 gen_helper_gvec_shr64i
,
2996 .s_list
= { INDEX_op_shrs_vec
, 0 },
2997 .v_list
= { INDEX_op_shrv_vec
, 0 },
3000 tcg_debug_assert(vece
<= MO_64
);
3001 do_gvec_shifts(vece
, dofs
, aofs
, shift
, oprsz
, maxsz
, &g
);
3004 void tcg_gen_gvec_sars(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3005 TCGv_i32 shift
, uint32_t oprsz
, uint32_t maxsz
)
3007 static const GVecGen2sh g
= {
3008 .fni4
= tcg_gen_sar_i32
,
3009 .fni8
= tcg_gen_sar_i64
,
3010 .fniv_s
= tcg_gen_sars_vec
,
3011 .fniv_v
= tcg_gen_sarv_vec
,
3013 gen_helper_gvec_sar8i
,
3014 gen_helper_gvec_sar16i
,
3015 gen_helper_gvec_sar32i
,
3016 gen_helper_gvec_sar64i
,
3018 .s_list
= { INDEX_op_sars_vec
, 0 },
3019 .v_list
= { INDEX_op_sarv_vec
, 0 },
3022 tcg_debug_assert(vece
<= MO_64
);
3023 do_gvec_shifts(vece
, dofs
, aofs
, shift
, oprsz
, maxsz
, &g
);
3026 void tcg_gen_gvec_rotls(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3027 TCGv_i32 shift
, uint32_t oprsz
, uint32_t maxsz
)
3029 static const GVecGen2sh g
= {
3030 .fni4
= tcg_gen_rotl_i32
,
3031 .fni8
= tcg_gen_rotl_i64
,
3032 .fniv_s
= tcg_gen_rotls_vec
,
3033 .fniv_v
= tcg_gen_rotlv_vec
,
3035 gen_helper_gvec_rotl8i
,
3036 gen_helper_gvec_rotl16i
,
3037 gen_helper_gvec_rotl32i
,
3038 gen_helper_gvec_rotl64i
,
3040 .s_list
= { INDEX_op_rotls_vec
, 0 },
3041 .v_list
= { INDEX_op_rotlv_vec
, 0 },
3044 tcg_debug_assert(vece
<= MO_64
);
3045 do_gvec_shifts(vece
, dofs
, aofs
, shift
, oprsz
, maxsz
, &g
);
3049 * Expand D = A << (B % element bits)
3051 * Unlike scalar shifts, where it is easy for the target front end
3052 * to include the modulo as part of the expansion. If the target
3053 * naturally includes the modulo as part of the operation, great!
3054 * If the target has some other behaviour from out-of-range shifts,
3055 * then it could not use this function anyway, and would need to
3056 * do it's own expansion with custom functions.
3058 static void tcg_gen_shlv_mod_vec(unsigned vece
, TCGv_vec d
,
3059 TCGv_vec a
, TCGv_vec b
)
3061 TCGv_vec t
= tcg_temp_new_vec_matching(d
);
3063 tcg_gen_dupi_vec(vece
, t
, (8 << vece
) - 1);
3064 tcg_gen_and_vec(vece
, t
, t
, b
);
3065 tcg_gen_shlv_vec(vece
, d
, a
, t
);
3066 tcg_temp_free_vec(t
);
3069 static void tcg_gen_shl_mod_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
3071 TCGv_i32 t
= tcg_temp_new_i32();
3073 tcg_gen_andi_i32(t
, b
, 31);
3074 tcg_gen_shl_i32(d
, a
, t
);
3075 tcg_temp_free_i32(t
);
3078 static void tcg_gen_shl_mod_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
3080 TCGv_i64 t
= tcg_temp_new_i64();
3082 tcg_gen_andi_i64(t
, b
, 63);
3083 tcg_gen_shl_i64(d
, a
, t
);
3084 tcg_temp_free_i64(t
);
3087 void tcg_gen_gvec_shlv(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3088 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
3090 static const TCGOpcode vecop_list
[] = { INDEX_op_shlv_vec
, 0 };
3091 static const GVecGen3 g
[4] = {
3092 { .fniv
= tcg_gen_shlv_mod_vec
,
3093 .fno
= gen_helper_gvec_shl8v
,
3094 .opt_opc
= vecop_list
,
3096 { .fniv
= tcg_gen_shlv_mod_vec
,
3097 .fno
= gen_helper_gvec_shl16v
,
3098 .opt_opc
= vecop_list
,
3100 { .fni4
= tcg_gen_shl_mod_i32
,
3101 .fniv
= tcg_gen_shlv_mod_vec
,
3102 .fno
= gen_helper_gvec_shl32v
,
3103 .opt_opc
= vecop_list
,
3105 { .fni8
= tcg_gen_shl_mod_i64
,
3106 .fniv
= tcg_gen_shlv_mod_vec
,
3107 .fno
= gen_helper_gvec_shl64v
,
3108 .opt_opc
= vecop_list
,
3109 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
3113 tcg_debug_assert(vece
<= MO_64
);
3114 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
3118 * Similarly for logical right shifts.
3121 static void tcg_gen_shrv_mod_vec(unsigned vece
, TCGv_vec d
,
3122 TCGv_vec a
, TCGv_vec b
)
3124 TCGv_vec t
= tcg_temp_new_vec_matching(d
);
3126 tcg_gen_dupi_vec(vece
, t
, (8 << vece
) - 1);
3127 tcg_gen_and_vec(vece
, t
, t
, b
);
3128 tcg_gen_shrv_vec(vece
, d
, a
, t
);
3129 tcg_temp_free_vec(t
);
3132 static void tcg_gen_shr_mod_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
3134 TCGv_i32 t
= tcg_temp_new_i32();
3136 tcg_gen_andi_i32(t
, b
, 31);
3137 tcg_gen_shr_i32(d
, a
, t
);
3138 tcg_temp_free_i32(t
);
3141 static void tcg_gen_shr_mod_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
3143 TCGv_i64 t
= tcg_temp_new_i64();
3145 tcg_gen_andi_i64(t
, b
, 63);
3146 tcg_gen_shr_i64(d
, a
, t
);
3147 tcg_temp_free_i64(t
);
3150 void tcg_gen_gvec_shrv(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3151 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
3153 static const TCGOpcode vecop_list
[] = { INDEX_op_shrv_vec
, 0 };
3154 static const GVecGen3 g
[4] = {
3155 { .fniv
= tcg_gen_shrv_mod_vec
,
3156 .fno
= gen_helper_gvec_shr8v
,
3157 .opt_opc
= vecop_list
,
3159 { .fniv
= tcg_gen_shrv_mod_vec
,
3160 .fno
= gen_helper_gvec_shr16v
,
3161 .opt_opc
= vecop_list
,
3163 { .fni4
= tcg_gen_shr_mod_i32
,
3164 .fniv
= tcg_gen_shrv_mod_vec
,
3165 .fno
= gen_helper_gvec_shr32v
,
3166 .opt_opc
= vecop_list
,
3168 { .fni8
= tcg_gen_shr_mod_i64
,
3169 .fniv
= tcg_gen_shrv_mod_vec
,
3170 .fno
= gen_helper_gvec_shr64v
,
3171 .opt_opc
= vecop_list
,
3172 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
3176 tcg_debug_assert(vece
<= MO_64
);
3177 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
3181 * Similarly for arithmetic right shifts.
3184 static void tcg_gen_sarv_mod_vec(unsigned vece
, TCGv_vec d
,
3185 TCGv_vec a
, TCGv_vec b
)
3187 TCGv_vec t
= tcg_temp_new_vec_matching(d
);
3189 tcg_gen_dupi_vec(vece
, t
, (8 << vece
) - 1);
3190 tcg_gen_and_vec(vece
, t
, t
, b
);
3191 tcg_gen_sarv_vec(vece
, d
, a
, t
);
3192 tcg_temp_free_vec(t
);
3195 static void tcg_gen_sar_mod_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
3197 TCGv_i32 t
= tcg_temp_new_i32();
3199 tcg_gen_andi_i32(t
, b
, 31);
3200 tcg_gen_sar_i32(d
, a
, t
);
3201 tcg_temp_free_i32(t
);
3204 static void tcg_gen_sar_mod_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
3206 TCGv_i64 t
= tcg_temp_new_i64();
3208 tcg_gen_andi_i64(t
, b
, 63);
3209 tcg_gen_sar_i64(d
, a
, t
);
3210 tcg_temp_free_i64(t
);
3213 void tcg_gen_gvec_sarv(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3214 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
3216 static const TCGOpcode vecop_list
[] = { INDEX_op_sarv_vec
, 0 };
3217 static const GVecGen3 g
[4] = {
3218 { .fniv
= tcg_gen_sarv_mod_vec
,
3219 .fno
= gen_helper_gvec_sar8v
,
3220 .opt_opc
= vecop_list
,
3222 { .fniv
= tcg_gen_sarv_mod_vec
,
3223 .fno
= gen_helper_gvec_sar16v
,
3224 .opt_opc
= vecop_list
,
3226 { .fni4
= tcg_gen_sar_mod_i32
,
3227 .fniv
= tcg_gen_sarv_mod_vec
,
3228 .fno
= gen_helper_gvec_sar32v
,
3229 .opt_opc
= vecop_list
,
3231 { .fni8
= tcg_gen_sar_mod_i64
,
3232 .fniv
= tcg_gen_sarv_mod_vec
,
3233 .fno
= gen_helper_gvec_sar64v
,
3234 .opt_opc
= vecop_list
,
3235 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
3239 tcg_debug_assert(vece
<= MO_64
);
3240 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
3244 * Similarly for rotates.
3247 static void tcg_gen_rotlv_mod_vec(unsigned vece
, TCGv_vec d
,
3248 TCGv_vec a
, TCGv_vec b
)
3250 TCGv_vec t
= tcg_temp_new_vec_matching(d
);
3252 tcg_gen_dupi_vec(vece
, t
, (8 << vece
) - 1);
3253 tcg_gen_and_vec(vece
, t
, t
, b
);
3254 tcg_gen_rotlv_vec(vece
, d
, a
, t
);
3255 tcg_temp_free_vec(t
);
3258 static void tcg_gen_rotl_mod_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
3260 TCGv_i32 t
= tcg_temp_new_i32();
3262 tcg_gen_andi_i32(t
, b
, 31);
3263 tcg_gen_rotl_i32(d
, a
, t
);
3264 tcg_temp_free_i32(t
);
3267 static void tcg_gen_rotl_mod_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
3269 TCGv_i64 t
= tcg_temp_new_i64();
3271 tcg_gen_andi_i64(t
, b
, 63);
3272 tcg_gen_rotl_i64(d
, a
, t
);
3273 tcg_temp_free_i64(t
);
3276 void tcg_gen_gvec_rotlv(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3277 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
3279 static const TCGOpcode vecop_list
[] = { INDEX_op_rotlv_vec
, 0 };
3280 static const GVecGen3 g
[4] = {
3281 { .fniv
= tcg_gen_rotlv_mod_vec
,
3282 .fno
= gen_helper_gvec_rotl8v
,
3283 .opt_opc
= vecop_list
,
3285 { .fniv
= tcg_gen_rotlv_mod_vec
,
3286 .fno
= gen_helper_gvec_rotl16v
,
3287 .opt_opc
= vecop_list
,
3289 { .fni4
= tcg_gen_rotl_mod_i32
,
3290 .fniv
= tcg_gen_rotlv_mod_vec
,
3291 .fno
= gen_helper_gvec_rotl32v
,
3292 .opt_opc
= vecop_list
,
3294 { .fni8
= tcg_gen_rotl_mod_i64
,
3295 .fniv
= tcg_gen_rotlv_mod_vec
,
3296 .fno
= gen_helper_gvec_rotl64v
,
3297 .opt_opc
= vecop_list
,
3298 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
3302 tcg_debug_assert(vece
<= MO_64
);
3303 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
3306 static void tcg_gen_rotrv_mod_vec(unsigned vece
, TCGv_vec d
,
3307 TCGv_vec a
, TCGv_vec b
)
3309 TCGv_vec t
= tcg_temp_new_vec_matching(d
);
3311 tcg_gen_dupi_vec(vece
, t
, (8 << vece
) - 1);
3312 tcg_gen_and_vec(vece
, t
, t
, b
);
3313 tcg_gen_rotrv_vec(vece
, d
, a
, t
);
3314 tcg_temp_free_vec(t
);
3317 static void tcg_gen_rotr_mod_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
3319 TCGv_i32 t
= tcg_temp_new_i32();
3321 tcg_gen_andi_i32(t
, b
, 31);
3322 tcg_gen_rotr_i32(d
, a
, t
);
3323 tcg_temp_free_i32(t
);
3326 static void tcg_gen_rotr_mod_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
3328 TCGv_i64 t
= tcg_temp_new_i64();
3330 tcg_gen_andi_i64(t
, b
, 63);
3331 tcg_gen_rotr_i64(d
, a
, t
);
3332 tcg_temp_free_i64(t
);
3335 void tcg_gen_gvec_rotrv(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3336 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
3338 static const TCGOpcode vecop_list
[] = { INDEX_op_rotrv_vec
, 0 };
3339 static const GVecGen3 g
[4] = {
3340 { .fniv
= tcg_gen_rotrv_mod_vec
,
3341 .fno
= gen_helper_gvec_rotr8v
,
3342 .opt_opc
= vecop_list
,
3344 { .fniv
= tcg_gen_rotrv_mod_vec
,
3345 .fno
= gen_helper_gvec_rotr16v
,
3346 .opt_opc
= vecop_list
,
3348 { .fni4
= tcg_gen_rotr_mod_i32
,
3349 .fniv
= tcg_gen_rotrv_mod_vec
,
3350 .fno
= gen_helper_gvec_rotr32v
,
3351 .opt_opc
= vecop_list
,
3353 { .fni8
= tcg_gen_rotr_mod_i64
,
3354 .fniv
= tcg_gen_rotrv_mod_vec
,
3355 .fno
= gen_helper_gvec_rotr64v
,
3356 .opt_opc
= vecop_list
,
3357 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
3361 tcg_debug_assert(vece
<= MO_64
);
3362 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
3365 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
3366 static void expand_cmp_i32(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
3367 uint32_t oprsz
, TCGCond cond
)
3369 TCGv_i32 t0
= tcg_temp_new_i32();
3370 TCGv_i32 t1
= tcg_temp_new_i32();
3373 for (i
= 0; i
< oprsz
; i
+= 4) {
3374 tcg_gen_ld_i32(t0
, cpu_env
, aofs
+ i
);
3375 tcg_gen_ld_i32(t1
, cpu_env
, bofs
+ i
);
3376 tcg_gen_setcond_i32(cond
, t0
, t0
, t1
);
3377 tcg_gen_neg_i32(t0
, t0
);
3378 tcg_gen_st_i32(t0
, cpu_env
, dofs
+ i
);
3380 tcg_temp_free_i32(t1
);
3381 tcg_temp_free_i32(t0
);
3384 static void expand_cmp_i64(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
3385 uint32_t oprsz
, TCGCond cond
)
3387 TCGv_i64 t0
= tcg_temp_new_i64();
3388 TCGv_i64 t1
= tcg_temp_new_i64();
3391 for (i
= 0; i
< oprsz
; i
+= 8) {
3392 tcg_gen_ld_i64(t0
, cpu_env
, aofs
+ i
);
3393 tcg_gen_ld_i64(t1
, cpu_env
, bofs
+ i
);
3394 tcg_gen_setcond_i64(cond
, t0
, t0
, t1
);
3395 tcg_gen_neg_i64(t0
, t0
);
3396 tcg_gen_st_i64(t0
, cpu_env
, dofs
+ i
);
3398 tcg_temp_free_i64(t1
);
3399 tcg_temp_free_i64(t0
);
3402 static void expand_cmp_vec(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3403 uint32_t bofs
, uint32_t oprsz
, uint32_t tysz
,
3404 TCGType type
, TCGCond cond
)
3406 TCGv_vec t0
= tcg_temp_new_vec(type
);
3407 TCGv_vec t1
= tcg_temp_new_vec(type
);
3410 for (i
= 0; i
< oprsz
; i
+= tysz
) {
3411 tcg_gen_ld_vec(t0
, cpu_env
, aofs
+ i
);
3412 tcg_gen_ld_vec(t1
, cpu_env
, bofs
+ i
);
3413 tcg_gen_cmp_vec(cond
, vece
, t0
, t0
, t1
);
3414 tcg_gen_st_vec(t0
, cpu_env
, dofs
+ i
);
3416 tcg_temp_free_vec(t1
);
3417 tcg_temp_free_vec(t0
);
3420 void tcg_gen_gvec_cmp(TCGCond cond
, unsigned vece
, uint32_t dofs
,
3421 uint32_t aofs
, uint32_t bofs
,
3422 uint32_t oprsz
, uint32_t maxsz
)
3424 static const TCGOpcode cmp_list
[] = { INDEX_op_cmp_vec
, 0 };
3425 static gen_helper_gvec_3
* const eq_fn
[4] = {
3426 gen_helper_gvec_eq8
, gen_helper_gvec_eq16
,
3427 gen_helper_gvec_eq32
, gen_helper_gvec_eq64
3429 static gen_helper_gvec_3
* const ne_fn
[4] = {
3430 gen_helper_gvec_ne8
, gen_helper_gvec_ne16
,
3431 gen_helper_gvec_ne32
, gen_helper_gvec_ne64
3433 static gen_helper_gvec_3
* const lt_fn
[4] = {
3434 gen_helper_gvec_lt8
, gen_helper_gvec_lt16
,
3435 gen_helper_gvec_lt32
, gen_helper_gvec_lt64
3437 static gen_helper_gvec_3
* const le_fn
[4] = {
3438 gen_helper_gvec_le8
, gen_helper_gvec_le16
,
3439 gen_helper_gvec_le32
, gen_helper_gvec_le64
3441 static gen_helper_gvec_3
* const ltu_fn
[4] = {
3442 gen_helper_gvec_ltu8
, gen_helper_gvec_ltu16
,
3443 gen_helper_gvec_ltu32
, gen_helper_gvec_ltu64
3445 static gen_helper_gvec_3
* const leu_fn
[4] = {
3446 gen_helper_gvec_leu8
, gen_helper_gvec_leu16
,
3447 gen_helper_gvec_leu32
, gen_helper_gvec_leu64
3449 static gen_helper_gvec_3
* const * const fns
[16] = {
3450 [TCG_COND_EQ
] = eq_fn
,
3451 [TCG_COND_NE
] = ne_fn
,
3452 [TCG_COND_LT
] = lt_fn
,
3453 [TCG_COND_LE
] = le_fn
,
3454 [TCG_COND_LTU
] = ltu_fn
,
3455 [TCG_COND_LEU
] = leu_fn
,
3458 const TCGOpcode
*hold_list
;
3462 check_size_align(oprsz
, maxsz
, dofs
| aofs
| bofs
);
3463 check_overlap_3(dofs
, aofs
, bofs
, maxsz
);
3465 if (cond
== TCG_COND_NEVER
|| cond
== TCG_COND_ALWAYS
) {
3466 do_dup(MO_8
, dofs
, oprsz
, maxsz
,
3467 NULL
, NULL
, -(cond
== TCG_COND_ALWAYS
));
3472 * Implement inline with a vector type, if possible.
3473 * Prefer integer when 64-bit host and 64-bit comparison.
3475 hold_list
= tcg_swap_vecop_list(cmp_list
);
3476 type
= choose_vector_type(cmp_list
, vece
, oprsz
,
3477 TCG_TARGET_REG_BITS
== 64 && vece
== MO_64
);
3480 /* Recall that ARM SVE allows vector sizes that are not a
3481 * power of 2, but always a multiple of 16. The intent is
3482 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
3484 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
3485 expand_cmp_vec(vece
, dofs
, aofs
, bofs
, some
, 32, TCG_TYPE_V256
, cond
);
3486 if (some
== oprsz
) {
3496 expand_cmp_vec(vece
, dofs
, aofs
, bofs
, oprsz
, 16, TCG_TYPE_V128
, cond
);
3499 expand_cmp_vec(vece
, dofs
, aofs
, bofs
, oprsz
, 8, TCG_TYPE_V64
, cond
);
3503 if (vece
== MO_64
&& check_size_impl(oprsz
, 8)) {
3504 expand_cmp_i64(dofs
, aofs
, bofs
, oprsz
, cond
);
3505 } else if (vece
== MO_32
&& check_size_impl(oprsz
, 4)) {
3506 expand_cmp_i32(dofs
, aofs
, bofs
, oprsz
, cond
);
3508 gen_helper_gvec_3
* const *fn
= fns
[cond
];
3512 tmp
= aofs
, aofs
= bofs
, bofs
= tmp
;
3513 cond
= tcg_swap_cond(cond
);
3517 tcg_gen_gvec_3_ool(dofs
, aofs
, bofs
, oprsz
, maxsz
, 0, fn
[vece
]);
3523 g_assert_not_reached();
3525 tcg_swap_vecop_list(hold_list
);
3527 if (oprsz
< maxsz
) {
3528 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
3532 static void tcg_gen_bitsel_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
, TCGv_i64 c
)
3534 TCGv_i64 t
= tcg_temp_new_i64();
3536 tcg_gen_and_i64(t
, b
, a
);
3537 tcg_gen_andc_i64(d
, c
, a
);
3538 tcg_gen_or_i64(d
, d
, t
);
3539 tcg_temp_free_i64(t
);
3542 void tcg_gen_gvec_bitsel(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3543 uint32_t bofs
, uint32_t cofs
,
3544 uint32_t oprsz
, uint32_t maxsz
)
3546 static const GVecGen4 g
= {
3547 .fni8
= tcg_gen_bitsel_i64
,
3548 .fniv
= tcg_gen_bitsel_vec
,
3549 .fno
= gen_helper_gvec_bitsel
,
3552 tcg_gen_gvec_4(dofs
, aofs
, bofs
, cofs
, oprsz
, maxsz
, &g
);