aspeed/smc: fix HW strapping
[qemu/ar7.git] / exec.c
blob88edb5906066549dd38541df289de7008e800d09
1 /*
2 * Virtual page mapping
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
22 #include "qemu/cutils.h"
23 #include "cpu.h"
24 #include "exec/exec-all.h"
25 #include "exec/target_page.h"
26 #include "tcg.h"
27 #include "hw/qdev-core.h"
28 #include "hw/qdev-properties.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/boards.h"
31 #include "hw/xen/xen.h"
32 #endif
33 #include "sysemu/kvm.h"
34 #include "sysemu/sysemu.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "qemu/error-report.h"
38 #if defined(CONFIG_USER_ONLY)
39 #include "qemu.h"
40 #else /* !CONFIG_USER_ONLY */
41 #include "hw/hw.h"
42 #include "exec/memory.h"
43 #include "exec/ioport.h"
44 #include "sysemu/dma.h"
45 #include "sysemu/numa.h"
46 #include "sysemu/hw_accel.h"
47 #include "exec/address-spaces.h"
48 #include "sysemu/xen-mapcache.h"
49 #include "trace-root.h"
51 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
52 #include <linux/falloc.h>
53 #endif
55 #endif
56 #include "qemu/rcu_queue.h"
57 #include "qemu/main-loop.h"
58 #include "translate-all.h"
59 #include "sysemu/replay.h"
61 #include "exec/memory-internal.h"
62 #include "exec/ram_addr.h"
63 #include "exec/log.h"
65 #include "migration/vmstate.h"
67 #include "qemu/range.h"
68 #ifndef _WIN32
69 #include "qemu/mmap-alloc.h"
70 #endif
72 #include "monitor/monitor.h"
74 //#define DEBUG_SUBPAGE
76 #if !defined(CONFIG_USER_ONLY)
77 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
78 * are protected by the ramlist lock.
80 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
82 static MemoryRegion *system_memory;
83 static MemoryRegion *system_io;
85 AddressSpace address_space_io;
86 AddressSpace address_space_memory;
88 MemoryRegion io_mem_rom, io_mem_notdirty;
89 static MemoryRegion io_mem_unassigned;
91 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
92 #define RAM_PREALLOC (1 << 0)
94 /* RAM is mmap-ed with MAP_SHARED */
95 #define RAM_SHARED (1 << 1)
97 /* Only a portion of RAM (used_length) is actually used, and migrated.
98 * This used_length size can change across reboots.
100 #define RAM_RESIZEABLE (1 << 2)
102 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
103 * zero the page and wake waiting processes.
104 * (Set during postcopy)
106 #define RAM_UF_ZEROPAGE (1 << 3)
108 /* RAM can be migrated */
109 #define RAM_MIGRATABLE (1 << 4)
110 #endif
112 #ifdef TARGET_PAGE_BITS_VARY
113 int target_page_bits;
114 bool target_page_bits_decided;
115 #endif
117 struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
118 /* current CPU in the current thread. It is only valid inside
119 cpu_exec() */
120 __thread CPUState *current_cpu;
121 /* 0 = Do not count executed instructions.
122 1 = Precise instruction counting.
123 2 = Adaptive rate instruction counting. */
124 int use_icount;
126 uintptr_t qemu_host_page_size;
127 intptr_t qemu_host_page_mask;
129 bool set_preferred_target_page_bits(int bits)
131 /* The target page size is the lowest common denominator for all
132 * the CPUs in the system, so we can only make it smaller, never
133 * larger. And we can't make it smaller once we've committed to
134 * a particular size.
136 #ifdef TARGET_PAGE_BITS_VARY
137 assert(bits >= TARGET_PAGE_BITS_MIN);
138 if (target_page_bits == 0 || target_page_bits > bits) {
139 if (target_page_bits_decided) {
140 return false;
142 target_page_bits = bits;
144 #endif
145 return true;
148 #if !defined(CONFIG_USER_ONLY)
150 static void finalize_target_page_bits(void)
152 #ifdef TARGET_PAGE_BITS_VARY
153 if (target_page_bits == 0) {
154 target_page_bits = TARGET_PAGE_BITS_MIN;
156 target_page_bits_decided = true;
157 #endif
160 typedef struct PhysPageEntry PhysPageEntry;
162 struct PhysPageEntry {
163 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
164 uint32_t skip : 6;
165 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
166 uint32_t ptr : 26;
169 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
171 /* Size of the L2 (and L3, etc) page tables. */
172 #define ADDR_SPACE_BITS 64
174 #define P_L2_BITS 9
175 #define P_L2_SIZE (1 << P_L2_BITS)
177 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
179 typedef PhysPageEntry Node[P_L2_SIZE];
181 typedef struct PhysPageMap {
182 struct rcu_head rcu;
184 unsigned sections_nb;
185 unsigned sections_nb_alloc;
186 unsigned nodes_nb;
187 unsigned nodes_nb_alloc;
188 Node *nodes;
189 MemoryRegionSection *sections;
190 } PhysPageMap;
192 struct AddressSpaceDispatch {
193 MemoryRegionSection *mru_section;
194 /* This is a multi-level map on the physical address space.
195 * The bottom level has pointers to MemoryRegionSections.
197 PhysPageEntry phys_map;
198 PhysPageMap map;
201 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
202 typedef struct subpage_t {
203 MemoryRegion iomem;
204 FlatView *fv;
205 hwaddr base;
206 uint16_t sub_section[];
207 } subpage_t;
209 #define PHYS_SECTION_UNASSIGNED 0
210 #define PHYS_SECTION_NOTDIRTY 1
211 #define PHYS_SECTION_ROM 2
212 #define PHYS_SECTION_WATCH 3
214 static void io_mem_init(void);
215 static void memory_map_init(void);
216 static void tcg_commit(MemoryListener *listener);
218 static MemoryRegion io_mem_watch;
221 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
222 * @cpu: the CPU whose AddressSpace this is
223 * @as: the AddressSpace itself
224 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
225 * @tcg_as_listener: listener for tracking changes to the AddressSpace
227 struct CPUAddressSpace {
228 CPUState *cpu;
229 AddressSpace *as;
230 struct AddressSpaceDispatch *memory_dispatch;
231 MemoryListener tcg_as_listener;
234 struct DirtyBitmapSnapshot {
235 ram_addr_t start;
236 ram_addr_t end;
237 unsigned long dirty[];
240 #endif
242 #if !defined(CONFIG_USER_ONLY)
244 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
246 static unsigned alloc_hint = 16;
247 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
248 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
249 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
250 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
251 alloc_hint = map->nodes_nb_alloc;
255 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
257 unsigned i;
258 uint32_t ret;
259 PhysPageEntry e;
260 PhysPageEntry *p;
262 ret = map->nodes_nb++;
263 p = map->nodes[ret];
264 assert(ret != PHYS_MAP_NODE_NIL);
265 assert(ret != map->nodes_nb_alloc);
267 e.skip = leaf ? 0 : 1;
268 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
269 for (i = 0; i < P_L2_SIZE; ++i) {
270 memcpy(&p[i], &e, sizeof(e));
272 return ret;
275 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
276 hwaddr *index, hwaddr *nb, uint16_t leaf,
277 int level)
279 PhysPageEntry *p;
280 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
282 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
283 lp->ptr = phys_map_node_alloc(map, level == 0);
285 p = map->nodes[lp->ptr];
286 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
288 while (*nb && lp < &p[P_L2_SIZE]) {
289 if ((*index & (step - 1)) == 0 && *nb >= step) {
290 lp->skip = 0;
291 lp->ptr = leaf;
292 *index += step;
293 *nb -= step;
294 } else {
295 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
297 ++lp;
301 static void phys_page_set(AddressSpaceDispatch *d,
302 hwaddr index, hwaddr nb,
303 uint16_t leaf)
305 /* Wildly overreserve - it doesn't matter much. */
306 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
308 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
311 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
312 * and update our entry so we can skip it and go directly to the destination.
314 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
316 unsigned valid_ptr = P_L2_SIZE;
317 int valid = 0;
318 PhysPageEntry *p;
319 int i;
321 if (lp->ptr == PHYS_MAP_NODE_NIL) {
322 return;
325 p = nodes[lp->ptr];
326 for (i = 0; i < P_L2_SIZE; i++) {
327 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
328 continue;
331 valid_ptr = i;
332 valid++;
333 if (p[i].skip) {
334 phys_page_compact(&p[i], nodes);
338 /* We can only compress if there's only one child. */
339 if (valid != 1) {
340 return;
343 assert(valid_ptr < P_L2_SIZE);
345 /* Don't compress if it won't fit in the # of bits we have. */
346 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
347 return;
350 lp->ptr = p[valid_ptr].ptr;
351 if (!p[valid_ptr].skip) {
352 /* If our only child is a leaf, make this a leaf. */
353 /* By design, we should have made this node a leaf to begin with so we
354 * should never reach here.
355 * But since it's so simple to handle this, let's do it just in case we
356 * change this rule.
358 lp->skip = 0;
359 } else {
360 lp->skip += p[valid_ptr].skip;
364 void address_space_dispatch_compact(AddressSpaceDispatch *d)
366 if (d->phys_map.skip) {
367 phys_page_compact(&d->phys_map, d->map.nodes);
371 static inline bool section_covers_addr(const MemoryRegionSection *section,
372 hwaddr addr)
374 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
375 * the section must cover the entire address space.
377 return int128_gethi(section->size) ||
378 range_covers_byte(section->offset_within_address_space,
379 int128_getlo(section->size), addr);
382 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
384 PhysPageEntry lp = d->phys_map, *p;
385 Node *nodes = d->map.nodes;
386 MemoryRegionSection *sections = d->map.sections;
387 hwaddr index = addr >> TARGET_PAGE_BITS;
388 int i;
390 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
391 if (lp.ptr == PHYS_MAP_NODE_NIL) {
392 return &sections[PHYS_SECTION_UNASSIGNED];
394 p = nodes[lp.ptr];
395 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
398 if (section_covers_addr(&sections[lp.ptr], addr)) {
399 return &sections[lp.ptr];
400 } else {
401 return &sections[PHYS_SECTION_UNASSIGNED];
405 bool memory_region_is_unassigned(MemoryRegion *mr)
407 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
408 && mr != &io_mem_watch;
411 /* Called from RCU critical section */
412 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
413 hwaddr addr,
414 bool resolve_subpage)
416 MemoryRegionSection *section = atomic_read(&d->mru_section);
417 subpage_t *subpage;
419 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
420 !section_covers_addr(section, addr)) {
421 section = phys_page_find(d, addr);
422 atomic_set(&d->mru_section, section);
424 if (resolve_subpage && section->mr->subpage) {
425 subpage = container_of(section->mr, subpage_t, iomem);
426 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
428 return section;
431 /* Called from RCU critical section */
432 static MemoryRegionSection *
433 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
434 hwaddr *plen, bool resolve_subpage)
436 MemoryRegionSection *section;
437 MemoryRegion *mr;
438 Int128 diff;
440 section = address_space_lookup_region(d, addr, resolve_subpage);
441 /* Compute offset within MemoryRegionSection */
442 addr -= section->offset_within_address_space;
444 /* Compute offset within MemoryRegion */
445 *xlat = addr + section->offset_within_region;
447 mr = section->mr;
449 /* MMIO registers can be expected to perform full-width accesses based only
450 * on their address, without considering adjacent registers that could
451 * decode to completely different MemoryRegions. When such registers
452 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
453 * regions overlap wildly. For this reason we cannot clamp the accesses
454 * here.
456 * If the length is small (as is the case for address_space_ldl/stl),
457 * everything works fine. If the incoming length is large, however,
458 * the caller really has to do the clamping through memory_access_size.
460 if (memory_region_is_ram(mr)) {
461 diff = int128_sub(section->size, int128_make64(addr));
462 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
464 return section;
468 * address_space_translate_iommu - translate an address through an IOMMU
469 * memory region and then through the target address space.
471 * @iommu_mr: the IOMMU memory region that we start the translation from
472 * @addr: the address to be translated through the MMU
473 * @xlat: the translated address offset within the destination memory region.
474 * It cannot be %NULL.
475 * @plen_out: valid read/write length of the translated address. It
476 * cannot be %NULL.
477 * @page_mask_out: page mask for the translated address. This
478 * should only be meaningful for IOMMU translated
479 * addresses, since there may be huge pages that this bit
480 * would tell. It can be %NULL if we don't care about it.
481 * @is_write: whether the translation operation is for write
482 * @is_mmio: whether this can be MMIO, set true if it can
483 * @target_as: the address space targeted by the IOMMU
484 * @attrs: transaction attributes
486 * This function is called from RCU critical section. It is the common
487 * part of flatview_do_translate and address_space_translate_cached.
489 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
490 hwaddr *xlat,
491 hwaddr *plen_out,
492 hwaddr *page_mask_out,
493 bool is_write,
494 bool is_mmio,
495 AddressSpace **target_as,
496 MemTxAttrs attrs)
498 MemoryRegionSection *section;
499 hwaddr page_mask = (hwaddr)-1;
501 do {
502 hwaddr addr = *xlat;
503 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
504 int iommu_idx = 0;
505 IOMMUTLBEntry iotlb;
507 if (imrc->attrs_to_index) {
508 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
511 iotlb = imrc->translate(iommu_mr, addr, is_write ?
512 IOMMU_WO : IOMMU_RO, iommu_idx);
514 if (!(iotlb.perm & (1 << is_write))) {
515 goto unassigned;
518 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
519 | (addr & iotlb.addr_mask));
520 page_mask &= iotlb.addr_mask;
521 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
522 *target_as = iotlb.target_as;
524 section = address_space_translate_internal(
525 address_space_to_dispatch(iotlb.target_as), addr, xlat,
526 plen_out, is_mmio);
528 iommu_mr = memory_region_get_iommu(section->mr);
529 } while (unlikely(iommu_mr));
531 if (page_mask_out) {
532 *page_mask_out = page_mask;
534 return *section;
536 unassigned:
537 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
541 * flatview_do_translate - translate an address in FlatView
543 * @fv: the flat view that we want to translate on
544 * @addr: the address to be translated in above address space
545 * @xlat: the translated address offset within memory region. It
546 * cannot be @NULL.
547 * @plen_out: valid read/write length of the translated address. It
548 * can be @NULL when we don't care about it.
549 * @page_mask_out: page mask for the translated address. This
550 * should only be meaningful for IOMMU translated
551 * addresses, since there may be huge pages that this bit
552 * would tell. It can be @NULL if we don't care about it.
553 * @is_write: whether the translation operation is for write
554 * @is_mmio: whether this can be MMIO, set true if it can
555 * @target_as: the address space targeted by the IOMMU
556 * @attrs: memory transaction attributes
558 * This function is called from RCU critical section
560 static MemoryRegionSection flatview_do_translate(FlatView *fv,
561 hwaddr addr,
562 hwaddr *xlat,
563 hwaddr *plen_out,
564 hwaddr *page_mask_out,
565 bool is_write,
566 bool is_mmio,
567 AddressSpace **target_as,
568 MemTxAttrs attrs)
570 MemoryRegionSection *section;
571 IOMMUMemoryRegion *iommu_mr;
572 hwaddr plen = (hwaddr)(-1);
574 if (!plen_out) {
575 plen_out = &plen;
578 section = address_space_translate_internal(
579 flatview_to_dispatch(fv), addr, xlat,
580 plen_out, is_mmio);
582 iommu_mr = memory_region_get_iommu(section->mr);
583 if (unlikely(iommu_mr)) {
584 return address_space_translate_iommu(iommu_mr, xlat,
585 plen_out, page_mask_out,
586 is_write, is_mmio,
587 target_as, attrs);
589 if (page_mask_out) {
590 /* Not behind an IOMMU, use default page size. */
591 *page_mask_out = ~TARGET_PAGE_MASK;
594 return *section;
597 /* Called from RCU critical section */
598 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
599 bool is_write, MemTxAttrs attrs)
601 MemoryRegionSection section;
602 hwaddr xlat, page_mask;
605 * This can never be MMIO, and we don't really care about plen,
606 * but page mask.
608 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
609 NULL, &page_mask, is_write, false, &as,
610 attrs);
612 /* Illegal translation */
613 if (section.mr == &io_mem_unassigned) {
614 goto iotlb_fail;
617 /* Convert memory region offset into address space offset */
618 xlat += section.offset_within_address_space -
619 section.offset_within_region;
621 return (IOMMUTLBEntry) {
622 .target_as = as,
623 .iova = addr & ~page_mask,
624 .translated_addr = xlat & ~page_mask,
625 .addr_mask = page_mask,
626 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
627 .perm = IOMMU_RW,
630 iotlb_fail:
631 return (IOMMUTLBEntry) {0};
634 /* Called from RCU critical section */
635 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
636 hwaddr *plen, bool is_write,
637 MemTxAttrs attrs)
639 MemoryRegion *mr;
640 MemoryRegionSection section;
641 AddressSpace *as = NULL;
643 /* This can be MMIO, so setup MMIO bit. */
644 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
645 is_write, true, &as, attrs);
646 mr = section.mr;
648 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
649 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
650 *plen = MIN(page, *plen);
653 return mr;
656 typedef struct TCGIOMMUNotifier {
657 IOMMUNotifier n;
658 MemoryRegion *mr;
659 CPUState *cpu;
660 int iommu_idx;
661 bool active;
662 } TCGIOMMUNotifier;
664 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
666 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
668 if (!notifier->active) {
669 return;
671 tlb_flush(notifier->cpu);
672 notifier->active = false;
673 /* We leave the notifier struct on the list to avoid reallocating it later.
674 * Generally the number of IOMMUs a CPU deals with will be small.
675 * In any case we can't unregister the iommu notifier from a notify
676 * callback.
680 static void tcg_register_iommu_notifier(CPUState *cpu,
681 IOMMUMemoryRegion *iommu_mr,
682 int iommu_idx)
684 /* Make sure this CPU has an IOMMU notifier registered for this
685 * IOMMU/IOMMU index combination, so that we can flush its TLB
686 * when the IOMMU tells us the mappings we've cached have changed.
688 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
689 TCGIOMMUNotifier *notifier;
690 int i;
692 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
693 notifier = &g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier, i);
694 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
695 break;
698 if (i == cpu->iommu_notifiers->len) {
699 /* Not found, add a new entry at the end of the array */
700 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
701 notifier = &g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier, i);
703 notifier->mr = mr;
704 notifier->iommu_idx = iommu_idx;
705 notifier->cpu = cpu;
706 /* Rather than trying to register interest in the specific part
707 * of the iommu's address space that we've accessed and then
708 * expand it later as subsequent accesses touch more of it, we
709 * just register interest in the whole thing, on the assumption
710 * that iommu reconfiguration will be rare.
712 iommu_notifier_init(&notifier->n,
713 tcg_iommu_unmap_notify,
714 IOMMU_NOTIFIER_UNMAP,
716 HWADDR_MAX,
717 iommu_idx);
718 memory_region_register_iommu_notifier(notifier->mr, &notifier->n);
721 if (!notifier->active) {
722 notifier->active = true;
726 static void tcg_iommu_free_notifier_list(CPUState *cpu)
728 /* Destroy the CPU's notifier list */
729 int i;
730 TCGIOMMUNotifier *notifier;
732 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
733 notifier = &g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier, i);
734 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
736 g_array_free(cpu->iommu_notifiers, true);
739 /* Called from RCU critical section */
740 MemoryRegionSection *
741 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
742 hwaddr *xlat, hwaddr *plen,
743 MemTxAttrs attrs, int *prot)
745 MemoryRegionSection *section;
746 IOMMUMemoryRegion *iommu_mr;
747 IOMMUMemoryRegionClass *imrc;
748 IOMMUTLBEntry iotlb;
749 int iommu_idx;
750 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
752 for (;;) {
753 section = address_space_translate_internal(d, addr, &addr, plen, false);
755 iommu_mr = memory_region_get_iommu(section->mr);
756 if (!iommu_mr) {
757 break;
760 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
762 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
763 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
764 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
765 * doesn't short-cut its translation table walk.
767 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
768 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
769 | (addr & iotlb.addr_mask));
770 /* Update the caller's prot bits to remove permissions the IOMMU
771 * is giving us a failure response for. If we get down to no
772 * permissions left at all we can give up now.
774 if (!(iotlb.perm & IOMMU_RO)) {
775 *prot &= ~(PAGE_READ | PAGE_EXEC);
777 if (!(iotlb.perm & IOMMU_WO)) {
778 *prot &= ~PAGE_WRITE;
781 if (!*prot) {
782 goto translate_fail;
785 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
788 assert(!memory_region_is_iommu(section->mr));
789 *xlat = addr;
790 return section;
792 translate_fail:
793 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
795 #endif
797 #if !defined(CONFIG_USER_ONLY)
799 static int cpu_common_post_load(void *opaque, int version_id)
801 CPUState *cpu = opaque;
803 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
804 version_id is increased. */
805 cpu->interrupt_request &= ~0x01;
806 tlb_flush(cpu);
808 /* loadvm has just updated the content of RAM, bypassing the
809 * usual mechanisms that ensure we flush TBs for writes to
810 * memory we've translated code from. So we must flush all TBs,
811 * which will now be stale.
813 tb_flush(cpu);
815 return 0;
818 static int cpu_common_pre_load(void *opaque)
820 CPUState *cpu = opaque;
822 cpu->exception_index = -1;
824 return 0;
827 static bool cpu_common_exception_index_needed(void *opaque)
829 CPUState *cpu = opaque;
831 return tcg_enabled() && cpu->exception_index != -1;
834 static const VMStateDescription vmstate_cpu_common_exception_index = {
835 .name = "cpu_common/exception_index",
836 .version_id = 1,
837 .minimum_version_id = 1,
838 .needed = cpu_common_exception_index_needed,
839 .fields = (VMStateField[]) {
840 VMSTATE_INT32(exception_index, CPUState),
841 VMSTATE_END_OF_LIST()
845 static bool cpu_common_crash_occurred_needed(void *opaque)
847 CPUState *cpu = opaque;
849 return cpu->crash_occurred;
852 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
853 .name = "cpu_common/crash_occurred",
854 .version_id = 1,
855 .minimum_version_id = 1,
856 .needed = cpu_common_crash_occurred_needed,
857 .fields = (VMStateField[]) {
858 VMSTATE_BOOL(crash_occurred, CPUState),
859 VMSTATE_END_OF_LIST()
863 const VMStateDescription vmstate_cpu_common = {
864 .name = "cpu_common",
865 .version_id = 1,
866 .minimum_version_id = 1,
867 .pre_load = cpu_common_pre_load,
868 .post_load = cpu_common_post_load,
869 .fields = (VMStateField[]) {
870 VMSTATE_UINT32(halted, CPUState),
871 VMSTATE_UINT32(interrupt_request, CPUState),
872 VMSTATE_END_OF_LIST()
874 .subsections = (const VMStateDescription*[]) {
875 &vmstate_cpu_common_exception_index,
876 &vmstate_cpu_common_crash_occurred,
877 NULL
881 #endif
883 CPUState *qemu_get_cpu(int index)
885 CPUState *cpu;
887 CPU_FOREACH(cpu) {
888 if (cpu->cpu_index == index) {
889 return cpu;
893 return NULL;
896 #if !defined(CONFIG_USER_ONLY)
897 void cpu_address_space_init(CPUState *cpu, int asidx,
898 const char *prefix, MemoryRegion *mr)
900 CPUAddressSpace *newas;
901 AddressSpace *as = g_new0(AddressSpace, 1);
902 char *as_name;
904 assert(mr);
905 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
906 address_space_init(as, mr, as_name);
907 g_free(as_name);
909 /* Target code should have set num_ases before calling us */
910 assert(asidx < cpu->num_ases);
912 if (asidx == 0) {
913 /* address space 0 gets the convenience alias */
914 cpu->as = as;
917 /* KVM cannot currently support multiple address spaces. */
918 assert(asidx == 0 || !kvm_enabled());
920 if (!cpu->cpu_ases) {
921 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
924 newas = &cpu->cpu_ases[asidx];
925 newas->cpu = cpu;
926 newas->as = as;
927 if (tcg_enabled()) {
928 newas->tcg_as_listener.commit = tcg_commit;
929 memory_listener_register(&newas->tcg_as_listener, as);
933 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
935 /* Return the AddressSpace corresponding to the specified index */
936 return cpu->cpu_ases[asidx].as;
938 #endif
940 void cpu_exec_unrealizefn(CPUState *cpu)
942 CPUClass *cc = CPU_GET_CLASS(cpu);
944 cpu_list_remove(cpu);
946 if (cc->vmsd != NULL) {
947 vmstate_unregister(NULL, cc->vmsd, cpu);
949 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
950 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
952 #ifndef CONFIG_USER_ONLY
953 tcg_iommu_free_notifier_list(cpu);
954 #endif
957 Property cpu_common_props[] = {
958 #ifndef CONFIG_USER_ONLY
959 /* Create a memory property for softmmu CPU object,
960 * so users can wire up its memory. (This can't go in qom/cpu.c
961 * because that file is compiled only once for both user-mode
962 * and system builds.) The default if no link is set up is to use
963 * the system address space.
965 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
966 MemoryRegion *),
967 #endif
968 DEFINE_PROP_END_OF_LIST(),
971 void cpu_exec_initfn(CPUState *cpu)
973 cpu->as = NULL;
974 cpu->num_ases = 0;
976 #ifndef CONFIG_USER_ONLY
977 cpu->thread_id = qemu_get_thread_id();
978 cpu->memory = system_memory;
979 object_ref(OBJECT(cpu->memory));
980 #endif
983 void cpu_exec_realizefn(CPUState *cpu, Error **errp)
985 CPUClass *cc = CPU_GET_CLASS(cpu);
986 static bool tcg_target_initialized;
988 cpu_list_add(cpu);
990 if (tcg_enabled() && !tcg_target_initialized) {
991 tcg_target_initialized = true;
992 cc->tcg_initialize();
995 #ifndef CONFIG_USER_ONLY
996 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
997 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
999 if (cc->vmsd != NULL) {
1000 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
1003 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier));
1004 #endif
1007 const char *parse_cpu_model(const char *cpu_model)
1009 ObjectClass *oc;
1010 CPUClass *cc;
1011 gchar **model_pieces;
1012 const char *cpu_type;
1014 model_pieces = g_strsplit(cpu_model, ",", 2);
1016 oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
1017 if (oc == NULL) {
1018 error_report("unable to find CPU model '%s'", model_pieces[0]);
1019 g_strfreev(model_pieces);
1020 exit(EXIT_FAILURE);
1023 cpu_type = object_class_get_name(oc);
1024 cc = CPU_CLASS(oc);
1025 cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
1026 g_strfreev(model_pieces);
1027 return cpu_type;
1030 #if defined(CONFIG_USER_ONLY)
1031 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1033 mmap_lock();
1034 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1035 mmap_unlock();
1037 #else
1038 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1040 MemTxAttrs attrs;
1041 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
1042 int asidx = cpu_asidx_from_attrs(cpu, attrs);
1043 if (phys != -1) {
1044 /* Locks grabbed by tb_invalidate_phys_addr */
1045 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
1046 phys | (pc & ~TARGET_PAGE_MASK), attrs);
1049 #endif
1051 #if defined(CONFIG_USER_ONLY)
1052 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1057 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1058 int flags)
1060 return -ENOSYS;
1063 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1067 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1068 int flags, CPUWatchpoint **watchpoint)
1070 return -ENOSYS;
1072 #else
1073 /* Add a watchpoint. */
1074 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1075 int flags, CPUWatchpoint **watchpoint)
1077 CPUWatchpoint *wp;
1079 /* forbid ranges which are empty or run off the end of the address space */
1080 if (len == 0 || (addr + len - 1) < addr) {
1081 error_report("tried to set invalid watchpoint at %"
1082 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
1083 return -EINVAL;
1085 wp = g_malloc(sizeof(*wp));
1087 wp->vaddr = addr;
1088 wp->len = len;
1089 wp->flags = flags;
1091 /* keep all GDB-injected watchpoints in front */
1092 if (flags & BP_GDB) {
1093 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
1094 } else {
1095 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
1098 tlb_flush_page(cpu, addr);
1100 if (watchpoint)
1101 *watchpoint = wp;
1102 return 0;
1105 /* Remove a specific watchpoint. */
1106 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1107 int flags)
1109 CPUWatchpoint *wp;
1111 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1112 if (addr == wp->vaddr && len == wp->len
1113 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1114 cpu_watchpoint_remove_by_ref(cpu, wp);
1115 return 0;
1118 return -ENOENT;
1121 /* Remove a specific watchpoint by reference. */
1122 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1124 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
1126 tlb_flush_page(cpu, watchpoint->vaddr);
1128 g_free(watchpoint);
1131 /* Remove all matching watchpoints. */
1132 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1134 CPUWatchpoint *wp, *next;
1136 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
1137 if (wp->flags & mask) {
1138 cpu_watchpoint_remove_by_ref(cpu, wp);
1143 /* Return true if this watchpoint address matches the specified
1144 * access (ie the address range covered by the watchpoint overlaps
1145 * partially or completely with the address range covered by the
1146 * access).
1148 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
1149 vaddr addr,
1150 vaddr len)
1152 /* We know the lengths are non-zero, but a little caution is
1153 * required to avoid errors in the case where the range ends
1154 * exactly at the top of the address space and so addr + len
1155 * wraps round to zero.
1157 vaddr wpend = wp->vaddr + wp->len - 1;
1158 vaddr addrend = addr + len - 1;
1160 return !(addr > wpend || wp->vaddr > addrend);
1163 #endif
1165 /* Add a breakpoint. */
1166 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1167 CPUBreakpoint **breakpoint)
1169 CPUBreakpoint *bp;
1171 bp = g_malloc(sizeof(*bp));
1173 bp->pc = pc;
1174 bp->flags = flags;
1176 /* keep all GDB-injected breakpoints in front */
1177 if (flags & BP_GDB) {
1178 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
1179 } else {
1180 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
1183 breakpoint_invalidate(cpu, pc);
1185 if (breakpoint) {
1186 *breakpoint = bp;
1188 return 0;
1191 /* Remove a specific breakpoint. */
1192 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
1194 CPUBreakpoint *bp;
1196 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1197 if (bp->pc == pc && bp->flags == flags) {
1198 cpu_breakpoint_remove_by_ref(cpu, bp);
1199 return 0;
1202 return -ENOENT;
1205 /* Remove a specific breakpoint by reference. */
1206 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
1208 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1210 breakpoint_invalidate(cpu, breakpoint->pc);
1212 g_free(breakpoint);
1215 /* Remove all matching breakpoints. */
1216 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
1218 CPUBreakpoint *bp, *next;
1220 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
1221 if (bp->flags & mask) {
1222 cpu_breakpoint_remove_by_ref(cpu, bp);
1227 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1228 CPU loop after each instruction */
1229 void cpu_single_step(CPUState *cpu, int enabled)
1231 if (cpu->singlestep_enabled != enabled) {
1232 cpu->singlestep_enabled = enabled;
1233 if (kvm_enabled()) {
1234 kvm_update_guest_debug(cpu, 0);
1235 } else {
1236 /* must flush all the translated code to avoid inconsistencies */
1237 /* XXX: only flush what is necessary */
1238 tb_flush(cpu);
1243 void cpu_abort(CPUState *cpu, const char *fmt, ...)
1245 va_list ap;
1246 va_list ap2;
1248 va_start(ap, fmt);
1249 va_copy(ap2, ap);
1250 fprintf(stderr, "qemu: fatal: ");
1251 vfprintf(stderr, fmt, ap);
1252 fprintf(stderr, "\n");
1253 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1254 if (qemu_log_separate()) {
1255 qemu_log_lock();
1256 qemu_log("qemu: fatal: ");
1257 qemu_log_vprintf(fmt, ap2);
1258 qemu_log("\n");
1259 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1260 qemu_log_flush();
1261 qemu_log_unlock();
1262 qemu_log_close();
1264 va_end(ap2);
1265 va_end(ap);
1266 replay_finish();
1267 #if defined(CONFIG_USER_ONLY)
1269 struct sigaction act;
1270 sigfillset(&act.sa_mask);
1271 act.sa_handler = SIG_DFL;
1272 act.sa_flags = 0;
1273 sigaction(SIGABRT, &act, NULL);
1275 #endif
1276 abort();
1279 #if !defined(CONFIG_USER_ONLY)
1280 /* Called from RCU critical section */
1281 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1283 RAMBlock *block;
1285 block = atomic_rcu_read(&ram_list.mru_block);
1286 if (block && addr - block->offset < block->max_length) {
1287 return block;
1289 RAMBLOCK_FOREACH(block) {
1290 if (addr - block->offset < block->max_length) {
1291 goto found;
1295 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1296 abort();
1298 found:
1299 /* It is safe to write mru_block outside the iothread lock. This
1300 * is what happens:
1302 * mru_block = xxx
1303 * rcu_read_unlock()
1304 * xxx removed from list
1305 * rcu_read_lock()
1306 * read mru_block
1307 * mru_block = NULL;
1308 * call_rcu(reclaim_ramblock, xxx);
1309 * rcu_read_unlock()
1311 * atomic_rcu_set is not needed here. The block was already published
1312 * when it was placed into the list. Here we're just making an extra
1313 * copy of the pointer.
1315 ram_list.mru_block = block;
1316 return block;
1319 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1321 CPUState *cpu;
1322 ram_addr_t start1;
1323 RAMBlock *block;
1324 ram_addr_t end;
1326 assert(tcg_enabled());
1327 end = TARGET_PAGE_ALIGN(start + length);
1328 start &= TARGET_PAGE_MASK;
1330 rcu_read_lock();
1331 block = qemu_get_ram_block(start);
1332 assert(block == qemu_get_ram_block(end - 1));
1333 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1334 CPU_FOREACH(cpu) {
1335 tlb_reset_dirty(cpu, start1, length);
1337 rcu_read_unlock();
1340 /* Note: start and end must be within the same ram block. */
1341 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1342 ram_addr_t length,
1343 unsigned client)
1345 DirtyMemoryBlocks *blocks;
1346 unsigned long end, page;
1347 bool dirty = false;
1349 if (length == 0) {
1350 return false;
1353 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1354 page = start >> TARGET_PAGE_BITS;
1356 rcu_read_lock();
1358 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1360 while (page < end) {
1361 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1362 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1363 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1365 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1366 offset, num);
1367 page += num;
1370 rcu_read_unlock();
1372 if (dirty && tcg_enabled()) {
1373 tlb_reset_dirty_range_all(start, length);
1376 return dirty;
1379 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1380 (ram_addr_t start, ram_addr_t length, unsigned client)
1382 DirtyMemoryBlocks *blocks;
1383 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1384 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1385 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1386 DirtyBitmapSnapshot *snap;
1387 unsigned long page, end, dest;
1389 snap = g_malloc0(sizeof(*snap) +
1390 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1391 snap->start = first;
1392 snap->end = last;
1394 page = first >> TARGET_PAGE_BITS;
1395 end = last >> TARGET_PAGE_BITS;
1396 dest = 0;
1398 rcu_read_lock();
1400 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1402 while (page < end) {
1403 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1404 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1405 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1407 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1408 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1409 offset >>= BITS_PER_LEVEL;
1411 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1412 blocks->blocks[idx] + offset,
1413 num);
1414 page += num;
1415 dest += num >> BITS_PER_LEVEL;
1418 rcu_read_unlock();
1420 if (tcg_enabled()) {
1421 tlb_reset_dirty_range_all(start, length);
1424 return snap;
1427 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1428 ram_addr_t start,
1429 ram_addr_t length)
1431 unsigned long page, end;
1433 assert(start >= snap->start);
1434 assert(start + length <= snap->end);
1436 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1437 page = (start - snap->start) >> TARGET_PAGE_BITS;
1439 while (page < end) {
1440 if (test_bit(page, snap->dirty)) {
1441 return true;
1443 page++;
1445 return false;
1448 /* Called from RCU critical section */
1449 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1450 MemoryRegionSection *section,
1451 target_ulong vaddr,
1452 hwaddr paddr, hwaddr xlat,
1453 int prot,
1454 target_ulong *address)
1456 hwaddr iotlb;
1457 CPUWatchpoint *wp;
1459 if (memory_region_is_ram(section->mr)) {
1460 /* Normal RAM. */
1461 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1462 if (!section->readonly) {
1463 iotlb |= PHYS_SECTION_NOTDIRTY;
1464 } else {
1465 iotlb |= PHYS_SECTION_ROM;
1467 } else {
1468 AddressSpaceDispatch *d;
1470 d = flatview_to_dispatch(section->fv);
1471 iotlb = section - d->map.sections;
1472 iotlb += xlat;
1475 /* Make accesses to pages with watchpoints go via the
1476 watchpoint trap routines. */
1477 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1478 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
1479 /* Avoid trapping reads of pages with a write breakpoint. */
1480 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1481 iotlb = PHYS_SECTION_WATCH + paddr;
1482 *address |= TLB_MMIO;
1483 break;
1488 return iotlb;
1490 #endif /* defined(CONFIG_USER_ONLY) */
1492 #if !defined(CONFIG_USER_ONLY)
1494 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1495 uint16_t section);
1496 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1498 static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
1499 qemu_anon_ram_alloc;
1502 * Set a custom physical guest memory alloator.
1503 * Accelerators with unusual needs may need this. Hopefully, we can
1504 * get rid of it eventually.
1506 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
1508 phys_mem_alloc = alloc;
1511 static uint16_t phys_section_add(PhysPageMap *map,
1512 MemoryRegionSection *section)
1514 /* The physical section number is ORed with a page-aligned
1515 * pointer to produce the iotlb entries. Thus it should
1516 * never overflow into the page-aligned value.
1518 assert(map->sections_nb < TARGET_PAGE_SIZE);
1520 if (map->sections_nb == map->sections_nb_alloc) {
1521 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1522 map->sections = g_renew(MemoryRegionSection, map->sections,
1523 map->sections_nb_alloc);
1525 map->sections[map->sections_nb] = *section;
1526 memory_region_ref(section->mr);
1527 return map->sections_nb++;
1530 static void phys_section_destroy(MemoryRegion *mr)
1532 bool have_sub_page = mr->subpage;
1534 memory_region_unref(mr);
1536 if (have_sub_page) {
1537 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1538 object_unref(OBJECT(&subpage->iomem));
1539 g_free(subpage);
1543 static void phys_sections_free(PhysPageMap *map)
1545 while (map->sections_nb > 0) {
1546 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1547 phys_section_destroy(section->mr);
1549 g_free(map->sections);
1550 g_free(map->nodes);
1553 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1555 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1556 subpage_t *subpage;
1557 hwaddr base = section->offset_within_address_space
1558 & TARGET_PAGE_MASK;
1559 MemoryRegionSection *existing = phys_page_find(d, base);
1560 MemoryRegionSection subsection = {
1561 .offset_within_address_space = base,
1562 .size = int128_make64(TARGET_PAGE_SIZE),
1564 hwaddr start, end;
1566 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1568 if (!(existing->mr->subpage)) {
1569 subpage = subpage_init(fv, base);
1570 subsection.fv = fv;
1571 subsection.mr = &subpage->iomem;
1572 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1573 phys_section_add(&d->map, &subsection));
1574 } else {
1575 subpage = container_of(existing->mr, subpage_t, iomem);
1577 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1578 end = start + int128_get64(section->size) - 1;
1579 subpage_register(subpage, start, end,
1580 phys_section_add(&d->map, section));
1584 static void register_multipage(FlatView *fv,
1585 MemoryRegionSection *section)
1587 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1588 hwaddr start_addr = section->offset_within_address_space;
1589 uint16_t section_index = phys_section_add(&d->map, section);
1590 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1591 TARGET_PAGE_BITS));
1593 assert(num_pages);
1594 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1597 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1599 MemoryRegionSection now = *section, remain = *section;
1600 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1602 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1603 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1604 - now.offset_within_address_space;
1606 now.size = int128_min(int128_make64(left), now.size);
1607 register_subpage(fv, &now);
1608 } else {
1609 now.size = int128_zero();
1611 while (int128_ne(remain.size, now.size)) {
1612 remain.size = int128_sub(remain.size, now.size);
1613 remain.offset_within_address_space += int128_get64(now.size);
1614 remain.offset_within_region += int128_get64(now.size);
1615 now = remain;
1616 if (int128_lt(remain.size, page_size)) {
1617 register_subpage(fv, &now);
1618 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1619 now.size = page_size;
1620 register_subpage(fv, &now);
1621 } else {
1622 now.size = int128_and(now.size, int128_neg(page_size));
1623 register_multipage(fv, &now);
1628 void qemu_flush_coalesced_mmio_buffer(void)
1630 if (kvm_enabled())
1631 kvm_flush_coalesced_mmio_buffer();
1634 void qemu_mutex_lock_ramlist(void)
1636 qemu_mutex_lock(&ram_list.mutex);
1639 void qemu_mutex_unlock_ramlist(void)
1641 qemu_mutex_unlock(&ram_list.mutex);
1644 void ram_block_dump(Monitor *mon)
1646 RAMBlock *block;
1647 char *psize;
1649 rcu_read_lock();
1650 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1651 "Block Name", "PSize", "Offset", "Used", "Total");
1652 RAMBLOCK_FOREACH(block) {
1653 psize = size_to_str(block->page_size);
1654 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1655 " 0x%016" PRIx64 "\n", block->idstr, psize,
1656 (uint64_t)block->offset,
1657 (uint64_t)block->used_length,
1658 (uint64_t)block->max_length);
1659 g_free(psize);
1661 rcu_read_unlock();
1664 #ifdef __linux__
1666 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1667 * may or may not name the same files / on the same filesystem now as
1668 * when we actually open and map them. Iterate over the file
1669 * descriptors instead, and use qemu_fd_getpagesize().
1671 static int find_max_supported_pagesize(Object *obj, void *opaque)
1673 long *hpsize_min = opaque;
1675 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1676 long hpsize = host_memory_backend_pagesize(MEMORY_BACKEND(obj));
1678 if (hpsize < *hpsize_min) {
1679 *hpsize_min = hpsize;
1683 return 0;
1686 long qemu_getrampagesize(void)
1688 long hpsize = LONG_MAX;
1689 long mainrampagesize;
1690 Object *memdev_root;
1692 mainrampagesize = qemu_mempath_getpagesize(mem_path);
1694 /* it's possible we have memory-backend objects with
1695 * hugepage-backed RAM. these may get mapped into system
1696 * address space via -numa parameters or memory hotplug
1697 * hooks. we want to take these into account, but we
1698 * also want to make sure these supported hugepage
1699 * sizes are applicable across the entire range of memory
1700 * we may boot from, so we take the min across all
1701 * backends, and assume normal pages in cases where a
1702 * backend isn't backed by hugepages.
1704 memdev_root = object_resolve_path("/objects", NULL);
1705 if (memdev_root) {
1706 object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
1708 if (hpsize == LONG_MAX) {
1709 /* No additional memory regions found ==> Report main RAM page size */
1710 return mainrampagesize;
1713 /* If NUMA is disabled or the NUMA nodes are not backed with a
1714 * memory-backend, then there is at least one node using "normal" RAM,
1715 * so if its page size is smaller we have got to report that size instead.
1717 if (hpsize > mainrampagesize &&
1718 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1719 static bool warned;
1720 if (!warned) {
1721 error_report("Huge page support disabled (n/a for main memory).");
1722 warned = true;
1724 return mainrampagesize;
1727 return hpsize;
1729 #else
1730 long qemu_getrampagesize(void)
1732 return getpagesize();
1734 #endif
1736 #ifdef __linux__
1737 static int64_t get_file_size(int fd)
1739 int64_t size = lseek(fd, 0, SEEK_END);
1740 if (size < 0) {
1741 return -errno;
1743 return size;
1746 static int file_ram_open(const char *path,
1747 const char *region_name,
1748 bool *created,
1749 Error **errp)
1751 char *filename;
1752 char *sanitized_name;
1753 char *c;
1754 int fd = -1;
1756 *created = false;
1757 for (;;) {
1758 fd = open(path, O_RDWR);
1759 if (fd >= 0) {
1760 /* @path names an existing file, use it */
1761 break;
1763 if (errno == ENOENT) {
1764 /* @path names a file that doesn't exist, create it */
1765 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1766 if (fd >= 0) {
1767 *created = true;
1768 break;
1770 } else if (errno == EISDIR) {
1771 /* @path names a directory, create a file there */
1772 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1773 sanitized_name = g_strdup(region_name);
1774 for (c = sanitized_name; *c != '\0'; c++) {
1775 if (*c == '/') {
1776 *c = '_';
1780 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1781 sanitized_name);
1782 g_free(sanitized_name);
1784 fd = mkstemp(filename);
1785 if (fd >= 0) {
1786 unlink(filename);
1787 g_free(filename);
1788 break;
1790 g_free(filename);
1792 if (errno != EEXIST && errno != EINTR) {
1793 error_setg_errno(errp, errno,
1794 "can't open backing store %s for guest RAM",
1795 path);
1796 return -1;
1799 * Try again on EINTR and EEXIST. The latter happens when
1800 * something else creates the file between our two open().
1804 return fd;
1807 static void *file_ram_alloc(RAMBlock *block,
1808 ram_addr_t memory,
1809 int fd,
1810 bool truncate,
1811 Error **errp)
1813 void *area;
1815 block->page_size = qemu_fd_getpagesize(fd);
1816 if (block->mr->align % block->page_size) {
1817 error_setg(errp, "alignment 0x%" PRIx64
1818 " must be multiples of page size 0x%zx",
1819 block->mr->align, block->page_size);
1820 return NULL;
1822 block->mr->align = MAX(block->page_size, block->mr->align);
1823 #if defined(__s390x__)
1824 if (kvm_enabled()) {
1825 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1827 #endif
1829 if (memory < block->page_size) {
1830 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1831 "or larger than page size 0x%zx",
1832 memory, block->page_size);
1833 return NULL;
1836 memory = ROUND_UP(memory, block->page_size);
1839 * ftruncate is not supported by hugetlbfs in older
1840 * hosts, so don't bother bailing out on errors.
1841 * If anything goes wrong with it under other filesystems,
1842 * mmap will fail.
1844 * Do not truncate the non-empty backend file to avoid corrupting
1845 * the existing data in the file. Disabling shrinking is not
1846 * enough. For example, the current vNVDIMM implementation stores
1847 * the guest NVDIMM labels at the end of the backend file. If the
1848 * backend file is later extended, QEMU will not be able to find
1849 * those labels. Therefore, extending the non-empty backend file
1850 * is disabled as well.
1852 if (truncate && ftruncate(fd, memory)) {
1853 perror("ftruncate");
1856 area = qemu_ram_mmap(fd, memory, block->mr->align,
1857 block->flags & RAM_SHARED);
1858 if (area == MAP_FAILED) {
1859 error_setg_errno(errp, errno,
1860 "unable to map backing store for guest RAM");
1861 return NULL;
1864 if (mem_prealloc) {
1865 os_mem_prealloc(fd, area, memory, smp_cpus, errp);
1866 if (errp && *errp) {
1867 qemu_ram_munmap(area, memory);
1868 return NULL;
1872 block->fd = fd;
1873 return area;
1875 #endif
1877 /* Allocate space within the ram_addr_t space that governs the
1878 * dirty bitmaps.
1879 * Called with the ramlist lock held.
1881 static ram_addr_t find_ram_offset(ram_addr_t size)
1883 RAMBlock *block, *next_block;
1884 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1886 assert(size != 0); /* it would hand out same offset multiple times */
1888 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1889 return 0;
1892 RAMBLOCK_FOREACH(block) {
1893 ram_addr_t candidate, next = RAM_ADDR_MAX;
1895 /* Align blocks to start on a 'long' in the bitmap
1896 * which makes the bitmap sync'ing take the fast path.
1898 candidate = block->offset + block->max_length;
1899 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1901 /* Search for the closest following block
1902 * and find the gap.
1904 RAMBLOCK_FOREACH(next_block) {
1905 if (next_block->offset >= candidate) {
1906 next = MIN(next, next_block->offset);
1910 /* If it fits remember our place and remember the size
1911 * of gap, but keep going so that we might find a smaller
1912 * gap to fill so avoiding fragmentation.
1914 if (next - candidate >= size && next - candidate < mingap) {
1915 offset = candidate;
1916 mingap = next - candidate;
1919 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1922 if (offset == RAM_ADDR_MAX) {
1923 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1924 (uint64_t)size);
1925 abort();
1928 trace_find_ram_offset(size, offset);
1930 return offset;
1933 unsigned long last_ram_page(void)
1935 RAMBlock *block;
1936 ram_addr_t last = 0;
1938 rcu_read_lock();
1939 RAMBLOCK_FOREACH(block) {
1940 last = MAX(last, block->offset + block->max_length);
1942 rcu_read_unlock();
1943 return last >> TARGET_PAGE_BITS;
1946 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1948 int ret;
1950 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1951 if (!machine_dump_guest_core(current_machine)) {
1952 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1953 if (ret) {
1954 perror("qemu_madvise");
1955 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1956 "but dump_guest_core=off specified\n");
1961 const char *qemu_ram_get_idstr(RAMBlock *rb)
1963 return rb->idstr;
1966 bool qemu_ram_is_shared(RAMBlock *rb)
1968 return rb->flags & RAM_SHARED;
1971 /* Note: Only set at the start of postcopy */
1972 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1974 return rb->flags & RAM_UF_ZEROPAGE;
1977 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1979 rb->flags |= RAM_UF_ZEROPAGE;
1982 bool qemu_ram_is_migratable(RAMBlock *rb)
1984 return rb->flags & RAM_MIGRATABLE;
1987 void qemu_ram_set_migratable(RAMBlock *rb)
1989 rb->flags |= RAM_MIGRATABLE;
1992 void qemu_ram_unset_migratable(RAMBlock *rb)
1994 rb->flags &= ~RAM_MIGRATABLE;
1997 /* Called with iothread lock held. */
1998 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
2000 RAMBlock *block;
2002 assert(new_block);
2003 assert(!new_block->idstr[0]);
2005 if (dev) {
2006 char *id = qdev_get_dev_path(dev);
2007 if (id) {
2008 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2009 g_free(id);
2012 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2014 rcu_read_lock();
2015 RAMBLOCK_FOREACH(block) {
2016 if (block != new_block &&
2017 !strcmp(block->idstr, new_block->idstr)) {
2018 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2019 new_block->idstr);
2020 abort();
2023 rcu_read_unlock();
2026 /* Called with iothread lock held. */
2027 void qemu_ram_unset_idstr(RAMBlock *block)
2029 /* FIXME: arch_init.c assumes that this is not called throughout
2030 * migration. Ignore the problem since hot-unplug during migration
2031 * does not work anyway.
2033 if (block) {
2034 memset(block->idstr, 0, sizeof(block->idstr));
2038 size_t qemu_ram_pagesize(RAMBlock *rb)
2040 return rb->page_size;
2043 /* Returns the largest size of page in use */
2044 size_t qemu_ram_pagesize_largest(void)
2046 RAMBlock *block;
2047 size_t largest = 0;
2049 RAMBLOCK_FOREACH(block) {
2050 largest = MAX(largest, qemu_ram_pagesize(block));
2053 return largest;
2056 static int memory_try_enable_merging(void *addr, size_t len)
2058 if (!machine_mem_merge(current_machine)) {
2059 /* disabled by the user */
2060 return 0;
2063 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
2066 /* Only legal before guest might have detected the memory size: e.g. on
2067 * incoming migration, or right after reset.
2069 * As memory core doesn't know how is memory accessed, it is up to
2070 * resize callback to update device state and/or add assertions to detect
2071 * misuse, if necessary.
2073 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
2075 assert(block);
2077 newsize = HOST_PAGE_ALIGN(newsize);
2079 if (block->used_length == newsize) {
2080 return 0;
2083 if (!(block->flags & RAM_RESIZEABLE)) {
2084 error_setg_errno(errp, EINVAL,
2085 "Length mismatch: %s: 0x" RAM_ADDR_FMT
2086 " in != 0x" RAM_ADDR_FMT, block->idstr,
2087 newsize, block->used_length);
2088 return -EINVAL;
2091 if (block->max_length < newsize) {
2092 error_setg_errno(errp, EINVAL,
2093 "Length too large: %s: 0x" RAM_ADDR_FMT
2094 " > 0x" RAM_ADDR_FMT, block->idstr,
2095 newsize, block->max_length);
2096 return -EINVAL;
2099 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
2100 block->used_length = newsize;
2101 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
2102 DIRTY_CLIENTS_ALL);
2103 memory_region_set_size(block->mr, newsize);
2104 if (block->resized) {
2105 block->resized(block->idstr, newsize, block->host);
2107 return 0;
2110 /* Called with ram_list.mutex held */
2111 static void dirty_memory_extend(ram_addr_t old_ram_size,
2112 ram_addr_t new_ram_size)
2114 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
2115 DIRTY_MEMORY_BLOCK_SIZE);
2116 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
2117 DIRTY_MEMORY_BLOCK_SIZE);
2118 int i;
2120 /* Only need to extend if block count increased */
2121 if (new_num_blocks <= old_num_blocks) {
2122 return;
2125 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
2126 DirtyMemoryBlocks *old_blocks;
2127 DirtyMemoryBlocks *new_blocks;
2128 int j;
2130 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
2131 new_blocks = g_malloc(sizeof(*new_blocks) +
2132 sizeof(new_blocks->blocks[0]) * new_num_blocks);
2134 if (old_num_blocks) {
2135 memcpy(new_blocks->blocks, old_blocks->blocks,
2136 old_num_blocks * sizeof(old_blocks->blocks[0]));
2139 for (j = old_num_blocks; j < new_num_blocks; j++) {
2140 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
2143 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
2145 if (old_blocks) {
2146 g_free_rcu(old_blocks, rcu);
2151 static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
2153 RAMBlock *block;
2154 RAMBlock *last_block = NULL;
2155 ram_addr_t old_ram_size, new_ram_size;
2156 Error *err = NULL;
2158 old_ram_size = last_ram_page();
2160 qemu_mutex_lock_ramlist();
2161 new_block->offset = find_ram_offset(new_block->max_length);
2163 if (!new_block->host) {
2164 if (xen_enabled()) {
2165 xen_ram_alloc(new_block->offset, new_block->max_length,
2166 new_block->mr, &err);
2167 if (err) {
2168 error_propagate(errp, err);
2169 qemu_mutex_unlock_ramlist();
2170 return;
2172 } else {
2173 new_block->host = phys_mem_alloc(new_block->max_length,
2174 &new_block->mr->align, shared);
2175 if (!new_block->host) {
2176 error_setg_errno(errp, errno,
2177 "cannot set up guest memory '%s'",
2178 memory_region_name(new_block->mr));
2179 qemu_mutex_unlock_ramlist();
2180 return;
2182 memory_try_enable_merging(new_block->host, new_block->max_length);
2186 new_ram_size = MAX(old_ram_size,
2187 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2188 if (new_ram_size > old_ram_size) {
2189 dirty_memory_extend(old_ram_size, new_ram_size);
2191 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2192 * QLIST (which has an RCU-friendly variant) does not have insertion at
2193 * tail, so save the last element in last_block.
2195 RAMBLOCK_FOREACH(block) {
2196 last_block = block;
2197 if (block->max_length < new_block->max_length) {
2198 break;
2201 if (block) {
2202 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
2203 } else if (last_block) {
2204 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
2205 } else { /* list is empty */
2206 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2208 ram_list.mru_block = NULL;
2210 /* Write list before version */
2211 smp_wmb();
2212 ram_list.version++;
2213 qemu_mutex_unlock_ramlist();
2215 cpu_physical_memory_set_dirty_range(new_block->offset,
2216 new_block->used_length,
2217 DIRTY_CLIENTS_ALL);
2219 if (new_block->host) {
2220 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2221 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
2222 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
2223 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
2224 ram_block_notify_add(new_block->host, new_block->max_length);
2228 #ifdef __linux__
2229 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2230 bool share, int fd,
2231 Error **errp)
2233 RAMBlock *new_block;
2234 Error *local_err = NULL;
2235 int64_t file_size;
2237 if (xen_enabled()) {
2238 error_setg(errp, "-mem-path not supported with Xen");
2239 return NULL;
2242 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2243 error_setg(errp,
2244 "host lacks kvm mmu notifiers, -mem-path unsupported");
2245 return NULL;
2248 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2250 * file_ram_alloc() needs to allocate just like
2251 * phys_mem_alloc, but we haven't bothered to provide
2252 * a hook there.
2254 error_setg(errp,
2255 "-mem-path not supported with this accelerator");
2256 return NULL;
2259 size = HOST_PAGE_ALIGN(size);
2260 file_size = get_file_size(fd);
2261 if (file_size > 0 && file_size < size) {
2262 error_setg(errp, "backing store %s size 0x%" PRIx64
2263 " does not match 'size' option 0x" RAM_ADDR_FMT,
2264 mem_path, file_size, size);
2265 return NULL;
2268 new_block = g_malloc0(sizeof(*new_block));
2269 new_block->mr = mr;
2270 new_block->used_length = size;
2271 new_block->max_length = size;
2272 new_block->flags = share ? RAM_SHARED : 0;
2273 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2274 if (!new_block->host) {
2275 g_free(new_block);
2276 return NULL;
2279 ram_block_add(new_block, &local_err, share);
2280 if (local_err) {
2281 g_free(new_block);
2282 error_propagate(errp, local_err);
2283 return NULL;
2285 return new_block;
2290 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2291 bool share, const char *mem_path,
2292 Error **errp)
2294 int fd;
2295 bool created;
2296 RAMBlock *block;
2298 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2299 if (fd < 0) {
2300 return NULL;
2303 block = qemu_ram_alloc_from_fd(size, mr, share, fd, errp);
2304 if (!block) {
2305 if (created) {
2306 unlink(mem_path);
2308 close(fd);
2309 return NULL;
2312 return block;
2314 #endif
2316 static
2317 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2318 void (*resized)(const char*,
2319 uint64_t length,
2320 void *host),
2321 void *host, bool resizeable, bool share,
2322 MemoryRegion *mr, Error **errp)
2324 RAMBlock *new_block;
2325 Error *local_err = NULL;
2327 size = HOST_PAGE_ALIGN(size);
2328 max_size = HOST_PAGE_ALIGN(max_size);
2329 new_block = g_malloc0(sizeof(*new_block));
2330 new_block->mr = mr;
2331 new_block->resized = resized;
2332 new_block->used_length = size;
2333 new_block->max_length = max_size;
2334 assert(max_size >= size);
2335 new_block->fd = -1;
2336 new_block->page_size = getpagesize();
2337 new_block->host = host;
2338 if (host) {
2339 new_block->flags |= RAM_PREALLOC;
2341 if (resizeable) {
2342 new_block->flags |= RAM_RESIZEABLE;
2344 ram_block_add(new_block, &local_err, share);
2345 if (local_err) {
2346 g_free(new_block);
2347 error_propagate(errp, local_err);
2348 return NULL;
2350 return new_block;
2353 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2354 MemoryRegion *mr, Error **errp)
2356 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2357 false, mr, errp);
2360 RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2361 MemoryRegion *mr, Error **errp)
2363 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2364 share, mr, errp);
2367 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2368 void (*resized)(const char*,
2369 uint64_t length,
2370 void *host),
2371 MemoryRegion *mr, Error **errp)
2373 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2374 false, mr, errp);
2377 static void reclaim_ramblock(RAMBlock *block)
2379 if (block->flags & RAM_PREALLOC) {
2381 } else if (xen_enabled()) {
2382 xen_invalidate_map_cache_entry(block->host);
2383 #ifndef _WIN32
2384 } else if (block->fd >= 0) {
2385 qemu_ram_munmap(block->host, block->max_length);
2386 close(block->fd);
2387 #endif
2388 } else {
2389 qemu_anon_ram_free(block->host, block->max_length);
2391 g_free(block);
2394 void qemu_ram_free(RAMBlock *block)
2396 if (!block) {
2397 return;
2400 if (block->host) {
2401 ram_block_notify_remove(block->host, block->max_length);
2404 qemu_mutex_lock_ramlist();
2405 QLIST_REMOVE_RCU(block, next);
2406 ram_list.mru_block = NULL;
2407 /* Write list before version */
2408 smp_wmb();
2409 ram_list.version++;
2410 call_rcu(block, reclaim_ramblock, rcu);
2411 qemu_mutex_unlock_ramlist();
2414 #ifndef _WIN32
2415 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2417 RAMBlock *block;
2418 ram_addr_t offset;
2419 int flags;
2420 void *area, *vaddr;
2422 RAMBLOCK_FOREACH(block) {
2423 offset = addr - block->offset;
2424 if (offset < block->max_length) {
2425 vaddr = ramblock_ptr(block, offset);
2426 if (block->flags & RAM_PREALLOC) {
2428 } else if (xen_enabled()) {
2429 abort();
2430 } else {
2431 flags = MAP_FIXED;
2432 if (block->fd >= 0) {
2433 flags |= (block->flags & RAM_SHARED ?
2434 MAP_SHARED : MAP_PRIVATE);
2435 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2436 flags, block->fd, offset);
2437 } else {
2439 * Remap needs to match alloc. Accelerators that
2440 * set phys_mem_alloc never remap. If they did,
2441 * we'd need a remap hook here.
2443 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2445 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2446 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2447 flags, -1, 0);
2449 if (area != vaddr) {
2450 error_report("Could not remap addr: "
2451 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2452 length, addr);
2453 exit(1);
2455 memory_try_enable_merging(vaddr, length);
2456 qemu_ram_setup_dump(vaddr, length);
2461 #endif /* !_WIN32 */
2463 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2464 * This should not be used for general purpose DMA. Use address_space_map
2465 * or address_space_rw instead. For local memory (e.g. video ram) that the
2466 * device owns, use memory_region_get_ram_ptr.
2468 * Called within RCU critical section.
2470 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2472 RAMBlock *block = ram_block;
2474 if (block == NULL) {
2475 block = qemu_get_ram_block(addr);
2476 addr -= block->offset;
2479 if (xen_enabled() && block->host == NULL) {
2480 /* We need to check if the requested address is in the RAM
2481 * because we don't want to map the entire memory in QEMU.
2482 * In that case just map until the end of the page.
2484 if (block->offset == 0) {
2485 return xen_map_cache(addr, 0, 0, false);
2488 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2490 return ramblock_ptr(block, addr);
2493 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2494 * but takes a size argument.
2496 * Called within RCU critical section.
2498 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2499 hwaddr *size, bool lock)
2501 RAMBlock *block = ram_block;
2502 if (*size == 0) {
2503 return NULL;
2506 if (block == NULL) {
2507 block = qemu_get_ram_block(addr);
2508 addr -= block->offset;
2510 *size = MIN(*size, block->max_length - addr);
2512 if (xen_enabled() && block->host == NULL) {
2513 /* We need to check if the requested address is in the RAM
2514 * because we don't want to map the entire memory in QEMU.
2515 * In that case just map the requested area.
2517 if (block->offset == 0) {
2518 return xen_map_cache(addr, *size, lock, lock);
2521 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2524 return ramblock_ptr(block, addr);
2527 /* Return the offset of a hostpointer within a ramblock */
2528 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2530 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2531 assert((uintptr_t)host >= (uintptr_t)rb->host);
2532 assert(res < rb->max_length);
2534 return res;
2538 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2539 * in that RAMBlock.
2541 * ptr: Host pointer to look up
2542 * round_offset: If true round the result offset down to a page boundary
2543 * *ram_addr: set to result ram_addr
2544 * *offset: set to result offset within the RAMBlock
2546 * Returns: RAMBlock (or NULL if not found)
2548 * By the time this function returns, the returned pointer is not protected
2549 * by RCU anymore. If the caller is not within an RCU critical section and
2550 * does not hold the iothread lock, it must have other means of protecting the
2551 * pointer, such as a reference to the region that includes the incoming
2552 * ram_addr_t.
2554 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2555 ram_addr_t *offset)
2557 RAMBlock *block;
2558 uint8_t *host = ptr;
2560 if (xen_enabled()) {
2561 ram_addr_t ram_addr;
2562 rcu_read_lock();
2563 ram_addr = xen_ram_addr_from_mapcache(ptr);
2564 block = qemu_get_ram_block(ram_addr);
2565 if (block) {
2566 *offset = ram_addr - block->offset;
2568 rcu_read_unlock();
2569 return block;
2572 rcu_read_lock();
2573 block = atomic_rcu_read(&ram_list.mru_block);
2574 if (block && block->host && host - block->host < block->max_length) {
2575 goto found;
2578 RAMBLOCK_FOREACH(block) {
2579 /* This case append when the block is not mapped. */
2580 if (block->host == NULL) {
2581 continue;
2583 if (host - block->host < block->max_length) {
2584 goto found;
2588 rcu_read_unlock();
2589 return NULL;
2591 found:
2592 *offset = (host - block->host);
2593 if (round_offset) {
2594 *offset &= TARGET_PAGE_MASK;
2596 rcu_read_unlock();
2597 return block;
2601 * Finds the named RAMBlock
2603 * name: The name of RAMBlock to find
2605 * Returns: RAMBlock (or NULL if not found)
2607 RAMBlock *qemu_ram_block_by_name(const char *name)
2609 RAMBlock *block;
2611 RAMBLOCK_FOREACH(block) {
2612 if (!strcmp(name, block->idstr)) {
2613 return block;
2617 return NULL;
2620 /* Some of the softmmu routines need to translate from a host pointer
2621 (typically a TLB entry) back to a ram offset. */
2622 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2624 RAMBlock *block;
2625 ram_addr_t offset;
2627 block = qemu_ram_block_from_host(ptr, false, &offset);
2628 if (!block) {
2629 return RAM_ADDR_INVALID;
2632 return block->offset + offset;
2635 /* Called within RCU critical section. */
2636 void memory_notdirty_write_prepare(NotDirtyInfo *ndi,
2637 CPUState *cpu,
2638 vaddr mem_vaddr,
2639 ram_addr_t ram_addr,
2640 unsigned size)
2642 ndi->cpu = cpu;
2643 ndi->ram_addr = ram_addr;
2644 ndi->mem_vaddr = mem_vaddr;
2645 ndi->size = size;
2646 ndi->pages = NULL;
2648 assert(tcg_enabled());
2649 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
2650 ndi->pages = page_collection_lock(ram_addr, ram_addr + size);
2651 tb_invalidate_phys_page_fast(ndi->pages, ram_addr, size);
2655 /* Called within RCU critical section. */
2656 void memory_notdirty_write_complete(NotDirtyInfo *ndi)
2658 if (ndi->pages) {
2659 assert(tcg_enabled());
2660 page_collection_unlock(ndi->pages);
2661 ndi->pages = NULL;
2664 /* Set both VGA and migration bits for simplicity and to remove
2665 * the notdirty callback faster.
2667 cpu_physical_memory_set_dirty_range(ndi->ram_addr, ndi->size,
2668 DIRTY_CLIENTS_NOCODE);
2669 /* we remove the notdirty callback only if the code has been
2670 flushed */
2671 if (!cpu_physical_memory_is_clean(ndi->ram_addr)) {
2672 tlb_set_dirty(ndi->cpu, ndi->mem_vaddr);
2676 /* Called within RCU critical section. */
2677 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2678 uint64_t val, unsigned size)
2680 NotDirtyInfo ndi;
2682 memory_notdirty_write_prepare(&ndi, current_cpu, current_cpu->mem_io_vaddr,
2683 ram_addr, size);
2685 stn_p(qemu_map_ram_ptr(NULL, ram_addr), size, val);
2686 memory_notdirty_write_complete(&ndi);
2689 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2690 unsigned size, bool is_write,
2691 MemTxAttrs attrs)
2693 return is_write;
2696 static const MemoryRegionOps notdirty_mem_ops = {
2697 .write = notdirty_mem_write,
2698 .valid.accepts = notdirty_mem_accepts,
2699 .endianness = DEVICE_NATIVE_ENDIAN,
2700 .valid = {
2701 .min_access_size = 1,
2702 .max_access_size = 8,
2703 .unaligned = false,
2705 .impl = {
2706 .min_access_size = 1,
2707 .max_access_size = 8,
2708 .unaligned = false,
2712 /* Generate a debug exception if a watchpoint has been hit. */
2713 static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
2715 CPUState *cpu = current_cpu;
2716 CPUClass *cc = CPU_GET_CLASS(cpu);
2717 target_ulong vaddr;
2718 CPUWatchpoint *wp;
2720 assert(tcg_enabled());
2721 if (cpu->watchpoint_hit) {
2722 /* We re-entered the check after replacing the TB. Now raise
2723 * the debug interrupt so that is will trigger after the
2724 * current instruction. */
2725 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2726 return;
2728 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2729 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
2730 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2731 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2732 && (wp->flags & flags)) {
2733 if (flags == BP_MEM_READ) {
2734 wp->flags |= BP_WATCHPOINT_HIT_READ;
2735 } else {
2736 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2738 wp->hitaddr = vaddr;
2739 wp->hitattrs = attrs;
2740 if (!cpu->watchpoint_hit) {
2741 if (wp->flags & BP_CPU &&
2742 !cc->debug_check_watchpoint(cpu, wp)) {
2743 wp->flags &= ~BP_WATCHPOINT_HIT;
2744 continue;
2746 cpu->watchpoint_hit = wp;
2748 mmap_lock();
2749 tb_check_watchpoint(cpu);
2750 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2751 cpu->exception_index = EXCP_DEBUG;
2752 mmap_unlock();
2753 cpu_loop_exit(cpu);
2754 } else {
2755 /* Force execution of one insn next time. */
2756 cpu->cflags_next_tb = 1 | curr_cflags();
2757 mmap_unlock();
2758 cpu_loop_exit_noexc(cpu);
2761 } else {
2762 wp->flags &= ~BP_WATCHPOINT_HIT;
2767 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2768 so these check for a hit then pass through to the normal out-of-line
2769 phys routines. */
2770 static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2771 unsigned size, MemTxAttrs attrs)
2773 MemTxResult res;
2774 uint64_t data;
2775 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2776 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2778 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2779 switch (size) {
2780 case 1:
2781 data = address_space_ldub(as, addr, attrs, &res);
2782 break;
2783 case 2:
2784 data = address_space_lduw(as, addr, attrs, &res);
2785 break;
2786 case 4:
2787 data = address_space_ldl(as, addr, attrs, &res);
2788 break;
2789 case 8:
2790 data = address_space_ldq(as, addr, attrs, &res);
2791 break;
2792 default: abort();
2794 *pdata = data;
2795 return res;
2798 static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2799 uint64_t val, unsigned size,
2800 MemTxAttrs attrs)
2802 MemTxResult res;
2803 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2804 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2806 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2807 switch (size) {
2808 case 1:
2809 address_space_stb(as, addr, val, attrs, &res);
2810 break;
2811 case 2:
2812 address_space_stw(as, addr, val, attrs, &res);
2813 break;
2814 case 4:
2815 address_space_stl(as, addr, val, attrs, &res);
2816 break;
2817 case 8:
2818 address_space_stq(as, addr, val, attrs, &res);
2819 break;
2820 default: abort();
2822 return res;
2825 static const MemoryRegionOps watch_mem_ops = {
2826 .read_with_attrs = watch_mem_read,
2827 .write_with_attrs = watch_mem_write,
2828 .endianness = DEVICE_NATIVE_ENDIAN,
2829 .valid = {
2830 .min_access_size = 1,
2831 .max_access_size = 8,
2832 .unaligned = false,
2834 .impl = {
2835 .min_access_size = 1,
2836 .max_access_size = 8,
2837 .unaligned = false,
2841 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2842 MemTxAttrs attrs, uint8_t *buf, int len);
2843 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2844 const uint8_t *buf, int len);
2845 static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
2846 bool is_write, MemTxAttrs attrs);
2848 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2849 unsigned len, MemTxAttrs attrs)
2851 subpage_t *subpage = opaque;
2852 uint8_t buf[8];
2853 MemTxResult res;
2855 #if defined(DEBUG_SUBPAGE)
2856 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2857 subpage, len, addr);
2858 #endif
2859 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2860 if (res) {
2861 return res;
2863 *data = ldn_p(buf, len);
2864 return MEMTX_OK;
2867 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2868 uint64_t value, unsigned len, MemTxAttrs attrs)
2870 subpage_t *subpage = opaque;
2871 uint8_t buf[8];
2873 #if defined(DEBUG_SUBPAGE)
2874 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2875 " value %"PRIx64"\n",
2876 __func__, subpage, len, addr, value);
2877 #endif
2878 stn_p(buf, len, value);
2879 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2882 static bool subpage_accepts(void *opaque, hwaddr addr,
2883 unsigned len, bool is_write,
2884 MemTxAttrs attrs)
2886 subpage_t *subpage = opaque;
2887 #if defined(DEBUG_SUBPAGE)
2888 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2889 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2890 #endif
2892 return flatview_access_valid(subpage->fv, addr + subpage->base,
2893 len, is_write, attrs);
2896 static const MemoryRegionOps subpage_ops = {
2897 .read_with_attrs = subpage_read,
2898 .write_with_attrs = subpage_write,
2899 .impl.min_access_size = 1,
2900 .impl.max_access_size = 8,
2901 .valid.min_access_size = 1,
2902 .valid.max_access_size = 8,
2903 .valid.accepts = subpage_accepts,
2904 .endianness = DEVICE_NATIVE_ENDIAN,
2907 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2908 uint16_t section)
2910 int idx, eidx;
2912 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2913 return -1;
2914 idx = SUBPAGE_IDX(start);
2915 eidx = SUBPAGE_IDX(end);
2916 #if defined(DEBUG_SUBPAGE)
2917 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2918 __func__, mmio, start, end, idx, eidx, section);
2919 #endif
2920 for (; idx <= eidx; idx++) {
2921 mmio->sub_section[idx] = section;
2924 return 0;
2927 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2929 subpage_t *mmio;
2931 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2932 mmio->fv = fv;
2933 mmio->base = base;
2934 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2935 NULL, TARGET_PAGE_SIZE);
2936 mmio->iomem.subpage = true;
2937 #if defined(DEBUG_SUBPAGE)
2938 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2939 mmio, base, TARGET_PAGE_SIZE);
2940 #endif
2941 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
2943 return mmio;
2946 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2948 assert(fv);
2949 MemoryRegionSection section = {
2950 .fv = fv,
2951 .mr = mr,
2952 .offset_within_address_space = 0,
2953 .offset_within_region = 0,
2954 .size = int128_2_64(),
2957 return phys_section_add(map, &section);
2960 static void readonly_mem_write(void *opaque, hwaddr addr,
2961 uint64_t val, unsigned size)
2963 /* Ignore any write to ROM. */
2966 static bool readonly_mem_accepts(void *opaque, hwaddr addr,
2967 unsigned size, bool is_write,
2968 MemTxAttrs attrs)
2970 return is_write;
2973 /* This will only be used for writes, because reads are special cased
2974 * to directly access the underlying host ram.
2976 static const MemoryRegionOps readonly_mem_ops = {
2977 .write = readonly_mem_write,
2978 .valid.accepts = readonly_mem_accepts,
2979 .endianness = DEVICE_NATIVE_ENDIAN,
2980 .valid = {
2981 .min_access_size = 1,
2982 .max_access_size = 8,
2983 .unaligned = false,
2985 .impl = {
2986 .min_access_size = 1,
2987 .max_access_size = 8,
2988 .unaligned = false,
2992 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2993 hwaddr index, MemTxAttrs attrs)
2995 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2996 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2997 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
2998 MemoryRegionSection *sections = d->map.sections;
3000 return &sections[index & ~TARGET_PAGE_MASK];
3003 static void io_mem_init(void)
3005 memory_region_init_io(&io_mem_rom, NULL, &readonly_mem_ops,
3006 NULL, NULL, UINT64_MAX);
3007 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
3008 NULL, UINT64_MAX);
3010 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
3011 * which can be called without the iothread mutex.
3013 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
3014 NULL, UINT64_MAX);
3015 memory_region_clear_global_locking(&io_mem_notdirty);
3017 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
3018 NULL, UINT64_MAX);
3021 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
3023 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
3024 uint16_t n;
3026 n = dummy_section(&d->map, fv, &io_mem_unassigned);
3027 assert(n == PHYS_SECTION_UNASSIGNED);
3028 n = dummy_section(&d->map, fv, &io_mem_notdirty);
3029 assert(n == PHYS_SECTION_NOTDIRTY);
3030 n = dummy_section(&d->map, fv, &io_mem_rom);
3031 assert(n == PHYS_SECTION_ROM);
3032 n = dummy_section(&d->map, fv, &io_mem_watch);
3033 assert(n == PHYS_SECTION_WATCH);
3035 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
3037 return d;
3040 void address_space_dispatch_free(AddressSpaceDispatch *d)
3042 phys_sections_free(&d->map);
3043 g_free(d);
3046 static void tcg_commit(MemoryListener *listener)
3048 CPUAddressSpace *cpuas;
3049 AddressSpaceDispatch *d;
3051 assert(tcg_enabled());
3052 /* since each CPU stores ram addresses in its TLB cache, we must
3053 reset the modified entries */
3054 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
3055 cpu_reloading_memory_map();
3056 /* The CPU and TLB are protected by the iothread lock.
3057 * We reload the dispatch pointer now because cpu_reloading_memory_map()
3058 * may have split the RCU critical section.
3060 d = address_space_to_dispatch(cpuas->as);
3061 atomic_rcu_set(&cpuas->memory_dispatch, d);
3062 tlb_flush(cpuas->cpu);
3065 static void memory_map_init(void)
3067 system_memory = g_malloc(sizeof(*system_memory));
3069 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
3070 address_space_init(&address_space_memory, system_memory, "memory");
3072 system_io = g_malloc(sizeof(*system_io));
3073 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
3074 65536);
3075 address_space_init(&address_space_io, system_io, "I/O");
3078 MemoryRegion *get_system_memory(void)
3080 return system_memory;
3083 MemoryRegion *get_system_io(void)
3085 return system_io;
3088 #endif /* !defined(CONFIG_USER_ONLY) */
3090 /* physical memory access (slow version, mainly for debug) */
3091 #if defined(CONFIG_USER_ONLY)
3092 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3093 uint8_t *buf, int len, int is_write)
3095 int l, flags;
3096 target_ulong page;
3097 void * p;
3099 while (len > 0) {
3100 page = addr & TARGET_PAGE_MASK;
3101 l = (page + TARGET_PAGE_SIZE) - addr;
3102 if (l > len)
3103 l = len;
3104 flags = page_get_flags(page);
3105 if (!(flags & PAGE_VALID))
3106 return -1;
3107 if (is_write) {
3108 if (!(flags & PAGE_WRITE))
3109 return -1;
3110 /* XXX: this code should not depend on lock_user */
3111 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3112 return -1;
3113 memcpy(p, buf, l);
3114 unlock_user(p, addr, l);
3115 } else {
3116 if (!(flags & PAGE_READ))
3117 return -1;
3118 /* XXX: this code should not depend on lock_user */
3119 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3120 return -1;
3121 memcpy(buf, p, l);
3122 unlock_user(p, addr, 0);
3124 len -= l;
3125 buf += l;
3126 addr += l;
3128 return 0;
3131 #else
3133 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
3134 hwaddr length)
3136 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3137 addr += memory_region_get_ram_addr(mr);
3139 /* No early return if dirty_log_mask is or becomes 0, because
3140 * cpu_physical_memory_set_dirty_range will still call
3141 * xen_modified_memory.
3143 if (dirty_log_mask) {
3144 dirty_log_mask =
3145 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
3147 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
3148 assert(tcg_enabled());
3149 mmap_lock();
3150 tb_invalidate_phys_range(addr, addr + length);
3151 mmap_unlock();
3152 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
3154 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
3157 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
3159 unsigned access_size_max = mr->ops->valid.max_access_size;
3161 /* Regions are assumed to support 1-4 byte accesses unless
3162 otherwise specified. */
3163 if (access_size_max == 0) {
3164 access_size_max = 4;
3167 /* Bound the maximum access by the alignment of the address. */
3168 if (!mr->ops->impl.unaligned) {
3169 unsigned align_size_max = addr & -addr;
3170 if (align_size_max != 0 && align_size_max < access_size_max) {
3171 access_size_max = align_size_max;
3175 /* Don't attempt accesses larger than the maximum. */
3176 if (l > access_size_max) {
3177 l = access_size_max;
3179 l = pow2floor(l);
3181 return l;
3184 static bool prepare_mmio_access(MemoryRegion *mr)
3186 bool unlocked = !qemu_mutex_iothread_locked();
3187 bool release_lock = false;
3189 if (unlocked && mr->global_locking) {
3190 qemu_mutex_lock_iothread();
3191 unlocked = false;
3192 release_lock = true;
3194 if (mr->flush_coalesced_mmio) {
3195 if (unlocked) {
3196 qemu_mutex_lock_iothread();
3198 qemu_flush_coalesced_mmio_buffer();
3199 if (unlocked) {
3200 qemu_mutex_unlock_iothread();
3204 return release_lock;
3207 /* Called within RCU critical section. */
3208 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3209 MemTxAttrs attrs,
3210 const uint8_t *buf,
3211 int len, hwaddr addr1,
3212 hwaddr l, MemoryRegion *mr)
3214 uint8_t *ptr;
3215 uint64_t val;
3216 MemTxResult result = MEMTX_OK;
3217 bool release_lock = false;
3219 for (;;) {
3220 if (!memory_access_is_direct(mr, true)) {
3221 release_lock |= prepare_mmio_access(mr);
3222 l = memory_access_size(mr, l, addr1);
3223 /* XXX: could force current_cpu to NULL to avoid
3224 potential bugs */
3225 val = ldn_p(buf, l);
3226 result |= memory_region_dispatch_write(mr, addr1, val, l, attrs);
3227 } else {
3228 /* RAM case */
3229 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3230 memcpy(ptr, buf, l);
3231 invalidate_and_set_dirty(mr, addr1, l);
3234 if (release_lock) {
3235 qemu_mutex_unlock_iothread();
3236 release_lock = false;
3239 len -= l;
3240 buf += l;
3241 addr += l;
3243 if (!len) {
3244 break;
3247 l = len;
3248 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3251 return result;
3254 /* Called from RCU critical section. */
3255 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3256 const uint8_t *buf, int len)
3258 hwaddr l;
3259 hwaddr addr1;
3260 MemoryRegion *mr;
3261 MemTxResult result = MEMTX_OK;
3263 l = len;
3264 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3265 result = flatview_write_continue(fv, addr, attrs, buf, len,
3266 addr1, l, mr);
3268 return result;
3271 /* Called within RCU critical section. */
3272 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3273 MemTxAttrs attrs, uint8_t *buf,
3274 int len, hwaddr addr1, hwaddr l,
3275 MemoryRegion *mr)
3277 uint8_t *ptr;
3278 uint64_t val;
3279 MemTxResult result = MEMTX_OK;
3280 bool release_lock = false;
3282 for (;;) {
3283 if (!memory_access_is_direct(mr, false)) {
3284 /* I/O case */
3285 release_lock |= prepare_mmio_access(mr);
3286 l = memory_access_size(mr, l, addr1);
3287 result |= memory_region_dispatch_read(mr, addr1, &val, l, attrs);
3288 stn_p(buf, l, val);
3289 } else {
3290 /* RAM case */
3291 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3292 memcpy(buf, ptr, l);
3295 if (release_lock) {
3296 qemu_mutex_unlock_iothread();
3297 release_lock = false;
3300 len -= l;
3301 buf += l;
3302 addr += l;
3304 if (!len) {
3305 break;
3308 l = len;
3309 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3312 return result;
3315 /* Called from RCU critical section. */
3316 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
3317 MemTxAttrs attrs, uint8_t *buf, int len)
3319 hwaddr l;
3320 hwaddr addr1;
3321 MemoryRegion *mr;
3323 l = len;
3324 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3325 return flatview_read_continue(fv, addr, attrs, buf, len,
3326 addr1, l, mr);
3329 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3330 MemTxAttrs attrs, uint8_t *buf, int len)
3332 MemTxResult result = MEMTX_OK;
3333 FlatView *fv;
3335 if (len > 0) {
3336 rcu_read_lock();
3337 fv = address_space_to_flatview(as);
3338 result = flatview_read(fv, addr, attrs, buf, len);
3339 rcu_read_unlock();
3342 return result;
3345 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3346 MemTxAttrs attrs,
3347 const uint8_t *buf, int len)
3349 MemTxResult result = MEMTX_OK;
3350 FlatView *fv;
3352 if (len > 0) {
3353 rcu_read_lock();
3354 fv = address_space_to_flatview(as);
3355 result = flatview_write(fv, addr, attrs, buf, len);
3356 rcu_read_unlock();
3359 return result;
3362 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3363 uint8_t *buf, int len, bool is_write)
3365 if (is_write) {
3366 return address_space_write(as, addr, attrs, buf, len);
3367 } else {
3368 return address_space_read_full(as, addr, attrs, buf, len);
3372 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
3373 int len, int is_write)
3375 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3376 buf, len, is_write);
3379 enum write_rom_type {
3380 WRITE_DATA,
3381 FLUSH_CACHE,
3384 static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
3385 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
3387 hwaddr l;
3388 uint8_t *ptr;
3389 hwaddr addr1;
3390 MemoryRegion *mr;
3392 rcu_read_lock();
3393 while (len > 0) {
3394 l = len;
3395 mr = address_space_translate(as, addr, &addr1, &l, true,
3396 MEMTXATTRS_UNSPECIFIED);
3398 if (!(memory_region_is_ram(mr) ||
3399 memory_region_is_romd(mr))) {
3400 l = memory_access_size(mr, l, addr1);
3401 } else {
3402 /* ROM/RAM case */
3403 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3404 switch (type) {
3405 case WRITE_DATA:
3406 memcpy(ptr, buf, l);
3407 invalidate_and_set_dirty(mr, addr1, l);
3408 break;
3409 case FLUSH_CACHE:
3410 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3411 break;
3414 len -= l;
3415 buf += l;
3416 addr += l;
3418 rcu_read_unlock();
3421 /* used for ROM loading : can write in RAM and ROM */
3422 void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
3423 const uint8_t *buf, int len)
3425 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
3428 void cpu_flush_icache_range(hwaddr start, int len)
3431 * This function should do the same thing as an icache flush that was
3432 * triggered from within the guest. For TCG we are always cache coherent,
3433 * so there is no need to flush anything. For KVM / Xen we need to flush
3434 * the host's instruction cache at least.
3436 if (tcg_enabled()) {
3437 return;
3440 cpu_physical_memory_write_rom_internal(&address_space_memory,
3441 start, NULL, len, FLUSH_CACHE);
3444 typedef struct {
3445 MemoryRegion *mr;
3446 void *buffer;
3447 hwaddr addr;
3448 hwaddr len;
3449 bool in_use;
3450 } BounceBuffer;
3452 static BounceBuffer bounce;
3454 typedef struct MapClient {
3455 QEMUBH *bh;
3456 QLIST_ENTRY(MapClient) link;
3457 } MapClient;
3459 QemuMutex map_client_list_lock;
3460 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3461 = QLIST_HEAD_INITIALIZER(map_client_list);
3463 static void cpu_unregister_map_client_do(MapClient *client)
3465 QLIST_REMOVE(client, link);
3466 g_free(client);
3469 static void cpu_notify_map_clients_locked(void)
3471 MapClient *client;
3473 while (!QLIST_EMPTY(&map_client_list)) {
3474 client = QLIST_FIRST(&map_client_list);
3475 qemu_bh_schedule(client->bh);
3476 cpu_unregister_map_client_do(client);
3480 void cpu_register_map_client(QEMUBH *bh)
3482 MapClient *client = g_malloc(sizeof(*client));
3484 qemu_mutex_lock(&map_client_list_lock);
3485 client->bh = bh;
3486 QLIST_INSERT_HEAD(&map_client_list, client, link);
3487 if (!atomic_read(&bounce.in_use)) {
3488 cpu_notify_map_clients_locked();
3490 qemu_mutex_unlock(&map_client_list_lock);
3493 void cpu_exec_init_all(void)
3495 qemu_mutex_init(&ram_list.mutex);
3496 /* The data structures we set up here depend on knowing the page size,
3497 * so no more changes can be made after this point.
3498 * In an ideal world, nothing we did before we had finished the
3499 * machine setup would care about the target page size, and we could
3500 * do this much later, rather than requiring board models to state
3501 * up front what their requirements are.
3503 finalize_target_page_bits();
3504 io_mem_init();
3505 memory_map_init();
3506 qemu_mutex_init(&map_client_list_lock);
3509 void cpu_unregister_map_client(QEMUBH *bh)
3511 MapClient *client;
3513 qemu_mutex_lock(&map_client_list_lock);
3514 QLIST_FOREACH(client, &map_client_list, link) {
3515 if (client->bh == bh) {
3516 cpu_unregister_map_client_do(client);
3517 break;
3520 qemu_mutex_unlock(&map_client_list_lock);
3523 static void cpu_notify_map_clients(void)
3525 qemu_mutex_lock(&map_client_list_lock);
3526 cpu_notify_map_clients_locked();
3527 qemu_mutex_unlock(&map_client_list_lock);
3530 static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
3531 bool is_write, MemTxAttrs attrs)
3533 MemoryRegion *mr;
3534 hwaddr l, xlat;
3536 while (len > 0) {
3537 l = len;
3538 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3539 if (!memory_access_is_direct(mr, is_write)) {
3540 l = memory_access_size(mr, l, addr);
3541 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3542 return false;
3546 len -= l;
3547 addr += l;
3549 return true;
3552 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3553 int len, bool is_write,
3554 MemTxAttrs attrs)
3556 FlatView *fv;
3557 bool result;
3559 rcu_read_lock();
3560 fv = address_space_to_flatview(as);
3561 result = flatview_access_valid(fv, addr, len, is_write, attrs);
3562 rcu_read_unlock();
3563 return result;
3566 static hwaddr
3567 flatview_extend_translation(FlatView *fv, hwaddr addr,
3568 hwaddr target_len,
3569 MemoryRegion *mr, hwaddr base, hwaddr len,
3570 bool is_write, MemTxAttrs attrs)
3572 hwaddr done = 0;
3573 hwaddr xlat;
3574 MemoryRegion *this_mr;
3576 for (;;) {
3577 target_len -= len;
3578 addr += len;
3579 done += len;
3580 if (target_len == 0) {
3581 return done;
3584 len = target_len;
3585 this_mr = flatview_translate(fv, addr, &xlat,
3586 &len, is_write, attrs);
3587 if (this_mr != mr || xlat != base + done) {
3588 return done;
3593 /* Map a physical memory region into a host virtual address.
3594 * May map a subset of the requested range, given by and returned in *plen.
3595 * May return NULL if resources needed to perform the mapping are exhausted.
3596 * Use only for reads OR writes - not for read-modify-write operations.
3597 * Use cpu_register_map_client() to know when retrying the map operation is
3598 * likely to succeed.
3600 void *address_space_map(AddressSpace *as,
3601 hwaddr addr,
3602 hwaddr *plen,
3603 bool is_write,
3604 MemTxAttrs attrs)
3606 hwaddr len = *plen;
3607 hwaddr l, xlat;
3608 MemoryRegion *mr;
3609 void *ptr;
3610 FlatView *fv;
3612 if (len == 0) {
3613 return NULL;
3616 l = len;
3617 rcu_read_lock();
3618 fv = address_space_to_flatview(as);
3619 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3621 if (!memory_access_is_direct(mr, is_write)) {
3622 if (atomic_xchg(&bounce.in_use, true)) {
3623 rcu_read_unlock();
3624 return NULL;
3626 /* Avoid unbounded allocations */
3627 l = MIN(l, TARGET_PAGE_SIZE);
3628 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3629 bounce.addr = addr;
3630 bounce.len = l;
3632 memory_region_ref(mr);
3633 bounce.mr = mr;
3634 if (!is_write) {
3635 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3636 bounce.buffer, l);
3639 rcu_read_unlock();
3640 *plen = l;
3641 return bounce.buffer;
3645 memory_region_ref(mr);
3646 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3647 l, is_write, attrs);
3648 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3649 rcu_read_unlock();
3651 return ptr;
3654 /* Unmaps a memory region previously mapped by address_space_map().
3655 * Will also mark the memory as dirty if is_write == 1. access_len gives
3656 * the amount of memory that was actually read or written by the caller.
3658 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3659 int is_write, hwaddr access_len)
3661 if (buffer != bounce.buffer) {
3662 MemoryRegion *mr;
3663 ram_addr_t addr1;
3665 mr = memory_region_from_host(buffer, &addr1);
3666 assert(mr != NULL);
3667 if (is_write) {
3668 invalidate_and_set_dirty(mr, addr1, access_len);
3670 if (xen_enabled()) {
3671 xen_invalidate_map_cache_entry(buffer);
3673 memory_region_unref(mr);
3674 return;
3676 if (is_write) {
3677 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3678 bounce.buffer, access_len);
3680 qemu_vfree(bounce.buffer);
3681 bounce.buffer = NULL;
3682 memory_region_unref(bounce.mr);
3683 atomic_mb_set(&bounce.in_use, false);
3684 cpu_notify_map_clients();
3687 void *cpu_physical_memory_map(hwaddr addr,
3688 hwaddr *plen,
3689 int is_write)
3691 return address_space_map(&address_space_memory, addr, plen, is_write,
3692 MEMTXATTRS_UNSPECIFIED);
3695 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3696 int is_write, hwaddr access_len)
3698 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3701 #define ARG1_DECL AddressSpace *as
3702 #define ARG1 as
3703 #define SUFFIX
3704 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3705 #define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3706 #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3707 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3708 #define RCU_READ_LOCK(...) rcu_read_lock()
3709 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3710 #include "memory_ldst.inc.c"
3712 int64_t address_space_cache_init(MemoryRegionCache *cache,
3713 AddressSpace *as,
3714 hwaddr addr,
3715 hwaddr len,
3716 bool is_write)
3718 AddressSpaceDispatch *d;
3719 hwaddr l;
3720 MemoryRegion *mr;
3722 assert(len > 0);
3724 l = len;
3725 cache->fv = address_space_get_flatview(as);
3726 d = flatview_to_dispatch(cache->fv);
3727 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3729 mr = cache->mrs.mr;
3730 memory_region_ref(mr);
3731 if (memory_access_is_direct(mr, is_write)) {
3732 /* We don't care about the memory attributes here as we're only
3733 * doing this if we found actual RAM, which behaves the same
3734 * regardless of attributes; so UNSPECIFIED is fine.
3736 l = flatview_extend_translation(cache->fv, addr, len, mr,
3737 cache->xlat, l, is_write,
3738 MEMTXATTRS_UNSPECIFIED);
3739 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3740 } else {
3741 cache->ptr = NULL;
3744 cache->len = l;
3745 cache->is_write = is_write;
3746 return l;
3749 void address_space_cache_invalidate(MemoryRegionCache *cache,
3750 hwaddr addr,
3751 hwaddr access_len)
3753 assert(cache->is_write);
3754 if (likely(cache->ptr)) {
3755 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3759 void address_space_cache_destroy(MemoryRegionCache *cache)
3761 if (!cache->mrs.mr) {
3762 return;
3765 if (xen_enabled()) {
3766 xen_invalidate_map_cache_entry(cache->ptr);
3768 memory_region_unref(cache->mrs.mr);
3769 flatview_unref(cache->fv);
3770 cache->mrs.mr = NULL;
3771 cache->fv = NULL;
3774 /* Called from RCU critical section. This function has the same
3775 * semantics as address_space_translate, but it only works on a
3776 * predefined range of a MemoryRegion that was mapped with
3777 * address_space_cache_init.
3779 static inline MemoryRegion *address_space_translate_cached(
3780 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3781 hwaddr *plen, bool is_write, MemTxAttrs attrs)
3783 MemoryRegionSection section;
3784 MemoryRegion *mr;
3785 IOMMUMemoryRegion *iommu_mr;
3786 AddressSpace *target_as;
3788 assert(!cache->ptr);
3789 *xlat = addr + cache->xlat;
3791 mr = cache->mrs.mr;
3792 iommu_mr = memory_region_get_iommu(mr);
3793 if (!iommu_mr) {
3794 /* MMIO region. */
3795 return mr;
3798 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3799 NULL, is_write, true,
3800 &target_as, attrs);
3801 return section.mr;
3804 /* Called from RCU critical section. address_space_read_cached uses this
3805 * out of line function when the target is an MMIO or IOMMU region.
3807 void
3808 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3809 void *buf, int len)
3811 hwaddr addr1, l;
3812 MemoryRegion *mr;
3814 l = len;
3815 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3816 MEMTXATTRS_UNSPECIFIED);
3817 flatview_read_continue(cache->fv,
3818 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3819 addr1, l, mr);
3822 /* Called from RCU critical section. address_space_write_cached uses this
3823 * out of line function when the target is an MMIO or IOMMU region.
3825 void
3826 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3827 const void *buf, int len)
3829 hwaddr addr1, l;
3830 MemoryRegion *mr;
3832 l = len;
3833 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3834 MEMTXATTRS_UNSPECIFIED);
3835 flatview_write_continue(cache->fv,
3836 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3837 addr1, l, mr);
3840 #define ARG1_DECL MemoryRegionCache *cache
3841 #define ARG1 cache
3842 #define SUFFIX _cached_slow
3843 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3844 #define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3845 #define MAP_RAM(mr, ofs) (cache->ptr + (ofs - cache->xlat))
3846 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3847 #define RCU_READ_LOCK() ((void)0)
3848 #define RCU_READ_UNLOCK() ((void)0)
3849 #include "memory_ldst.inc.c"
3851 /* virtual memory access for debug (includes writing to ROM) */
3852 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3853 uint8_t *buf, int len, int is_write)
3855 int l;
3856 hwaddr phys_addr;
3857 target_ulong page;
3859 cpu_synchronize_state(cpu);
3860 while (len > 0) {
3861 int asidx;
3862 MemTxAttrs attrs;
3864 page = addr & TARGET_PAGE_MASK;
3865 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3866 asidx = cpu_asidx_from_attrs(cpu, attrs);
3867 /* if no physical page mapped, return an error */
3868 if (phys_addr == -1)
3869 return -1;
3870 l = (page + TARGET_PAGE_SIZE) - addr;
3871 if (l > len)
3872 l = len;
3873 phys_addr += (addr & ~TARGET_PAGE_MASK);
3874 if (is_write) {
3875 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3876 phys_addr, buf, l);
3877 } else {
3878 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3879 MEMTXATTRS_UNSPECIFIED,
3880 buf, l, 0);
3882 len -= l;
3883 buf += l;
3884 addr += l;
3886 return 0;
3890 * Allows code that needs to deal with migration bitmaps etc to still be built
3891 * target independent.
3893 size_t qemu_target_page_size(void)
3895 return TARGET_PAGE_SIZE;
3898 int qemu_target_page_bits(void)
3900 return TARGET_PAGE_BITS;
3903 int qemu_target_page_bits_min(void)
3905 return TARGET_PAGE_BITS_MIN;
3907 #endif
3910 * A helper function for the _utterly broken_ virtio device model to find out if
3911 * it's running on a big endian machine. Don't do this at home kids!
3913 bool target_words_bigendian(void);
3914 bool target_words_bigendian(void)
3916 #if defined(TARGET_WORDS_BIGENDIAN)
3917 return true;
3918 #else
3919 return false;
3920 #endif
3923 #ifndef CONFIG_USER_ONLY
3924 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3926 MemoryRegion*mr;
3927 hwaddr l = 1;
3928 bool res;
3930 rcu_read_lock();
3931 mr = address_space_translate(&address_space_memory,
3932 phys_addr, &phys_addr, &l, false,
3933 MEMTXATTRS_UNSPECIFIED);
3935 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3936 rcu_read_unlock();
3937 return res;
3940 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3942 RAMBlock *block;
3943 int ret = 0;
3945 rcu_read_lock();
3946 RAMBLOCK_FOREACH(block) {
3947 ret = func(block->idstr, block->host, block->offset,
3948 block->used_length, opaque);
3949 if (ret) {
3950 break;
3953 rcu_read_unlock();
3954 return ret;
3957 int qemu_ram_foreach_migratable_block(RAMBlockIterFunc func, void *opaque)
3959 RAMBlock *block;
3960 int ret = 0;
3962 rcu_read_lock();
3963 RAMBLOCK_FOREACH(block) {
3964 if (!qemu_ram_is_migratable(block)) {
3965 continue;
3967 ret = func(block->idstr, block->host, block->offset,
3968 block->used_length, opaque);
3969 if (ret) {
3970 break;
3973 rcu_read_unlock();
3974 return ret;
3978 * Unmap pages of memory from start to start+length such that
3979 * they a) read as 0, b) Trigger whatever fault mechanism
3980 * the OS provides for postcopy.
3981 * The pages must be unmapped by the end of the function.
3982 * Returns: 0 on success, none-0 on failure
3985 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3987 int ret = -1;
3989 uint8_t *host_startaddr = rb->host + start;
3991 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
3992 error_report("ram_block_discard_range: Unaligned start address: %p",
3993 host_startaddr);
3994 goto err;
3997 if ((start + length) <= rb->used_length) {
3998 bool need_madvise, need_fallocate;
3999 uint8_t *host_endaddr = host_startaddr + length;
4000 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
4001 error_report("ram_block_discard_range: Unaligned end address: %p",
4002 host_endaddr);
4003 goto err;
4006 errno = ENOTSUP; /* If we are missing MADVISE etc */
4008 /* The logic here is messy;
4009 * madvise DONTNEED fails for hugepages
4010 * fallocate works on hugepages and shmem
4012 need_madvise = (rb->page_size == qemu_host_page_size);
4013 need_fallocate = rb->fd != -1;
4014 if (need_fallocate) {
4015 /* For a file, this causes the area of the file to be zero'd
4016 * if read, and for hugetlbfs also causes it to be unmapped
4017 * so a userfault will trigger.
4019 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
4020 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
4021 start, length);
4022 if (ret) {
4023 ret = -errno;
4024 error_report("ram_block_discard_range: Failed to fallocate "
4025 "%s:%" PRIx64 " +%zx (%d)",
4026 rb->idstr, start, length, ret);
4027 goto err;
4029 #else
4030 ret = -ENOSYS;
4031 error_report("ram_block_discard_range: fallocate not available/file"
4032 "%s:%" PRIx64 " +%zx (%d)",
4033 rb->idstr, start, length, ret);
4034 goto err;
4035 #endif
4037 if (need_madvise) {
4038 /* For normal RAM this causes it to be unmapped,
4039 * for shared memory it causes the local mapping to disappear
4040 * and to fall back on the file contents (which we just
4041 * fallocate'd away).
4043 #if defined(CONFIG_MADVISE)
4044 ret = madvise(host_startaddr, length, MADV_DONTNEED);
4045 if (ret) {
4046 ret = -errno;
4047 error_report("ram_block_discard_range: Failed to discard range "
4048 "%s:%" PRIx64 " +%zx (%d)",
4049 rb->idstr, start, length, ret);
4050 goto err;
4052 #else
4053 ret = -ENOSYS;
4054 error_report("ram_block_discard_range: MADVISE not available"
4055 "%s:%" PRIx64 " +%zx (%d)",
4056 rb->idstr, start, length, ret);
4057 goto err;
4058 #endif
4060 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
4061 need_madvise, need_fallocate, ret);
4062 } else {
4063 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
4064 "/%zx/" RAM_ADDR_FMT")",
4065 rb->idstr, start, length, rb->used_length);
4068 err:
4069 return ret;
4072 #endif
4074 void page_size_init(void)
4076 /* NOTE: we can always suppose that qemu_host_page_size >=
4077 TARGET_PAGE_SIZE */
4078 if (qemu_host_page_size == 0) {
4079 qemu_host_page_size = qemu_real_host_page_size;
4081 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
4082 qemu_host_page_size = TARGET_PAGE_SIZE;
4084 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
4087 #if !defined(CONFIG_USER_ONLY)
4089 static void mtree_print_phys_entries(fprintf_function mon, void *f,
4090 int start, int end, int skip, int ptr)
4092 if (start == end - 1) {
4093 mon(f, "\t%3d ", start);
4094 } else {
4095 mon(f, "\t%3d..%-3d ", start, end - 1);
4097 mon(f, " skip=%d ", skip);
4098 if (ptr == PHYS_MAP_NODE_NIL) {
4099 mon(f, " ptr=NIL");
4100 } else if (!skip) {
4101 mon(f, " ptr=#%d", ptr);
4102 } else {
4103 mon(f, " ptr=[%d]", ptr);
4105 mon(f, "\n");
4108 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
4109 int128_sub((size), int128_one())) : 0)
4111 void mtree_print_dispatch(fprintf_function mon, void *f,
4112 AddressSpaceDispatch *d, MemoryRegion *root)
4114 int i;
4116 mon(f, " Dispatch\n");
4117 mon(f, " Physical sections\n");
4119 for (i = 0; i < d->map.sections_nb; ++i) {
4120 MemoryRegionSection *s = d->map.sections + i;
4121 const char *names[] = { " [unassigned]", " [not dirty]",
4122 " [ROM]", " [watch]" };
4124 mon(f, " #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx " %s%s%s%s%s",
4126 s->offset_within_address_space,
4127 s->offset_within_address_space + MR_SIZE(s->mr->size),
4128 s->mr->name ? s->mr->name : "(noname)",
4129 i < ARRAY_SIZE(names) ? names[i] : "",
4130 s->mr == root ? " [ROOT]" : "",
4131 s == d->mru_section ? " [MRU]" : "",
4132 s->mr->is_iommu ? " [iommu]" : "");
4134 if (s->mr->alias) {
4135 mon(f, " alias=%s", s->mr->alias->name ?
4136 s->mr->alias->name : "noname");
4138 mon(f, "\n");
4141 mon(f, " Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
4142 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
4143 for (i = 0; i < d->map.nodes_nb; ++i) {
4144 int j, jprev;
4145 PhysPageEntry prev;
4146 Node *n = d->map.nodes + i;
4148 mon(f, " [%d]\n", i);
4150 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
4151 PhysPageEntry *pe = *n + j;
4153 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4154 continue;
4157 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
4159 jprev = j;
4160 prev = *pe;
4163 if (jprev != ARRAY_SIZE(*n)) {
4164 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
4169 #endif