hw/arm/armsse: Move PPUs into data-driven framework
[qemu/ar7.git] / hw / arm / armsse.c
blobf72d1adafeaff465eb1398c46f179df05250b6c2
1 /*
2 * Arm SSE (Subsystems for Embedded): IoTKit
4 * Copyright (c) 2018 Linaro Limited
5 * Written by Peter Maydell
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 or
9 * (at your option) any later version.
12 #include "qemu/osdep.h"
13 #include "qemu/log.h"
14 #include "qemu/module.h"
15 #include "qemu/bitops.h"
16 #include "qapi/error.h"
17 #include "trace.h"
18 #include "hw/sysbus.h"
19 #include "migration/vmstate.h"
20 #include "hw/registerfields.h"
21 #include "hw/arm/armsse.h"
22 #include "hw/arm/armsse-version.h"
23 #include "hw/arm/boot.h"
24 #include "hw/irq.h"
25 #include "hw/qdev-clock.h"
28 * The SSE-300 puts some devices in different places to the
29 * SSE-200 (and original IoTKit). We use an array of these structs
30 * to define how each variant lays out these devices. (Parts of the
31 * SoC that are the same for all variants aren't handled via these
32 * data structures.)
35 #define NO_IRQ -1
36 #define NO_PPC -1
38 * Special values for ARMSSEDeviceInfo::irq to indicate that this
39 * device uses one of the inputs to the OR gate that feeds into the
40 * CPU NMI input.
42 #define NMI_0 10000
43 #define NMI_1 10001
45 typedef struct ARMSSEDeviceInfo {
46 const char *name; /* name to use for the QOM object; NULL terminates list */
47 const char *type; /* QOM type name */
48 unsigned int index; /* Which of the N devices of this type is this ? */
49 hwaddr addr;
50 hwaddr size; /* only needed for TYPE_UNIMPLEMENTED_DEVICE */
51 int ppc; /* Index of APB PPC this device is wired up to, or NO_PPC */
52 int ppc_port; /* Port number of this device on the PPC */
53 int irq; /* NO_IRQ, or 0..NUM_SSE_IRQS-1, or NMI_0 or NMI_1 */
54 bool slowclk; /* true if device uses the slow 32KHz clock */
55 } ARMSSEDeviceInfo;
57 struct ARMSSEInfo {
58 const char *name;
59 uint32_t sse_version;
60 int sram_banks;
61 int num_cpus;
62 uint32_t sys_version;
63 uint32_t iidr;
64 uint32_t cpuwait_rst;
65 bool has_mhus;
66 bool has_cachectrl;
67 bool has_cpusecctrl;
68 bool has_cpuid;
69 Property *props;
70 const ARMSSEDeviceInfo *devinfo;
73 static Property iotkit_properties[] = {
74 DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
75 MemoryRegion *),
76 DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
77 DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
78 DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
79 DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], true),
80 DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], true),
81 DEFINE_PROP_END_OF_LIST()
84 static Property armsse_properties[] = {
85 DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
86 MemoryRegion *),
87 DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
88 DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
89 DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
90 DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], false),
91 DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], false),
92 DEFINE_PROP_BOOL("CPU1_FPU", ARMSSE, cpu_fpu[1], true),
93 DEFINE_PROP_BOOL("CPU1_DSP", ARMSSE, cpu_dsp[1], true),
94 DEFINE_PROP_END_OF_LIST()
97 static const ARMSSEDeviceInfo iotkit_devices[] = {
99 .name = "timer0",
100 .type = TYPE_CMSDK_APB_TIMER,
101 .index = 0,
102 .addr = 0x40000000,
103 .ppc = 0,
104 .ppc_port = 0,
105 .irq = 3,
108 .name = "timer1",
109 .type = TYPE_CMSDK_APB_TIMER,
110 .index = 1,
111 .addr = 0x40001000,
112 .ppc = 0,
113 .ppc_port = 1,
114 .irq = 4,
117 .name = "s32ktimer",
118 .type = TYPE_CMSDK_APB_TIMER,
119 .index = 2,
120 .addr = 0x4002f000,
121 .ppc = 1,
122 .ppc_port = 0,
123 .irq = 2,
124 .slowclk = true,
127 .name = "dualtimer",
128 .type = TYPE_CMSDK_APB_DUALTIMER,
129 .index = 0,
130 .addr = 0x40002000,
131 .ppc = 0,
132 .ppc_port = 2,
133 .irq = 5,
136 .name = "s32kwatchdog",
137 .type = TYPE_CMSDK_APB_WATCHDOG,
138 .index = 0,
139 .addr = 0x5002e000,
140 .ppc = NO_PPC,
141 .irq = NMI_0,
142 .slowclk = true,
145 .name = "nswatchdog",
146 .type = TYPE_CMSDK_APB_WATCHDOG,
147 .index = 1,
148 .addr = 0x40081000,
149 .ppc = NO_PPC,
150 .irq = 1,
153 .name = "swatchdog",
154 .type = TYPE_CMSDK_APB_WATCHDOG,
155 .index = 2,
156 .addr = 0x50081000,
157 .ppc = NO_PPC,
158 .irq = NMI_1,
161 .name = "armsse-sysinfo",
162 .type = TYPE_IOTKIT_SYSINFO,
163 .index = 0,
164 .addr = 0x40020000,
165 .ppc = NO_PPC,
166 .irq = NO_IRQ,
169 .name = "armsse-sysctl",
170 .type = TYPE_IOTKIT_SYSCTL,
171 .index = 0,
172 .addr = 0x50021000,
173 .ppc = NO_PPC,
174 .irq = NO_IRQ,
177 .name = NULL,
181 static const ARMSSEDeviceInfo sse200_devices[] = {
183 .name = "timer0",
184 .type = TYPE_CMSDK_APB_TIMER,
185 .index = 0,
186 .addr = 0x40000000,
187 .ppc = 0,
188 .ppc_port = 0,
189 .irq = 3,
192 .name = "timer1",
193 .type = TYPE_CMSDK_APB_TIMER,
194 .index = 1,
195 .addr = 0x40001000,
196 .ppc = 0,
197 .ppc_port = 1,
198 .irq = 4,
201 .name = "s32ktimer",
202 .type = TYPE_CMSDK_APB_TIMER,
203 .index = 2,
204 .addr = 0x4002f000,
205 .ppc = 1,
206 .ppc_port = 0,
207 .irq = 2,
208 .slowclk = true,
211 .name = "dualtimer",
212 .type = TYPE_CMSDK_APB_DUALTIMER,
213 .index = 0,
214 .addr = 0x40002000,
215 .ppc = 0,
216 .ppc_port = 2,
217 .irq = 5,
220 .name = "s32kwatchdog",
221 .type = TYPE_CMSDK_APB_WATCHDOG,
222 .index = 0,
223 .addr = 0x5002e000,
224 .ppc = NO_PPC,
225 .irq = NMI_0,
226 .slowclk = true,
229 .name = "nswatchdog",
230 .type = TYPE_CMSDK_APB_WATCHDOG,
231 .index = 1,
232 .addr = 0x40081000,
233 .ppc = NO_PPC,
234 .irq = 1,
237 .name = "swatchdog",
238 .type = TYPE_CMSDK_APB_WATCHDOG,
239 .index = 2,
240 .addr = 0x50081000,
241 .ppc = NO_PPC,
242 .irq = NMI_1,
245 .name = "armsse-sysinfo",
246 .type = TYPE_IOTKIT_SYSINFO,
247 .index = 0,
248 .addr = 0x40020000,
249 .ppc = NO_PPC,
250 .irq = NO_IRQ,
253 .name = "armsse-sysctl",
254 .type = TYPE_IOTKIT_SYSCTL,
255 .index = 0,
256 .addr = 0x50021000,
257 .ppc = NO_PPC,
258 .irq = NO_IRQ,
261 .name = "CPU0CORE_PPU",
262 .type = TYPE_UNIMPLEMENTED_DEVICE,
263 .index = 0,
264 .addr = 0x50023000,
265 .size = 0x1000,
266 .ppc = NO_PPC,
267 .irq = NO_IRQ,
270 .name = "CPU1CORE_PPU",
271 .type = TYPE_UNIMPLEMENTED_DEVICE,
272 .index = 1,
273 .addr = 0x50025000,
274 .size = 0x1000,
275 .ppc = NO_PPC,
276 .irq = NO_IRQ,
279 .name = "DBG_PPU",
280 .type = TYPE_UNIMPLEMENTED_DEVICE,
281 .index = 2,
282 .addr = 0x50029000,
283 .size = 0x1000,
284 .ppc = NO_PPC,
285 .irq = NO_IRQ,
288 .name = "RAM0_PPU",
289 .type = TYPE_UNIMPLEMENTED_DEVICE,
290 .index = 3,
291 .addr = 0x5002a000,
292 .size = 0x1000,
293 .ppc = NO_PPC,
294 .irq = NO_IRQ,
297 .name = "RAM1_PPU",
298 .type = TYPE_UNIMPLEMENTED_DEVICE,
299 .index = 4,
300 .addr = 0x5002b000,
301 .size = 0x1000,
302 .ppc = NO_PPC,
303 .irq = NO_IRQ,
306 .name = "RAM2_PPU",
307 .type = TYPE_UNIMPLEMENTED_DEVICE,
308 .index = 5,
309 .addr = 0x5002c000,
310 .size = 0x1000,
311 .ppc = NO_PPC,
312 .irq = NO_IRQ,
315 .name = "RAM3_PPU",
316 .type = TYPE_UNIMPLEMENTED_DEVICE,
317 .index = 6,
318 .addr = 0x5002d000,
319 .size = 0x1000,
320 .ppc = NO_PPC,
321 .irq = NO_IRQ,
324 .name = NULL,
328 static const ARMSSEInfo armsse_variants[] = {
330 .name = TYPE_IOTKIT,
331 .sse_version = ARMSSE_IOTKIT,
332 .sram_banks = 1,
333 .num_cpus = 1,
334 .sys_version = 0x41743,
335 .iidr = 0,
336 .cpuwait_rst = 0,
337 .has_mhus = false,
338 .has_cachectrl = false,
339 .has_cpusecctrl = false,
340 .has_cpuid = false,
341 .props = iotkit_properties,
342 .devinfo = iotkit_devices,
345 .name = TYPE_SSE200,
346 .sse_version = ARMSSE_SSE200,
347 .sram_banks = 4,
348 .num_cpus = 2,
349 .sys_version = 0x22041743,
350 .iidr = 0,
351 .cpuwait_rst = 2,
352 .has_mhus = true,
353 .has_cachectrl = true,
354 .has_cpusecctrl = true,
355 .has_cpuid = true,
356 .props = armsse_properties,
357 .devinfo = sse200_devices,
361 static uint32_t armsse_sys_config_value(ARMSSE *s, const ARMSSEInfo *info)
363 /* Return the SYS_CONFIG value for this SSE */
364 uint32_t sys_config;
366 switch (info->sse_version) {
367 case ARMSSE_IOTKIT:
368 sys_config = 0;
369 sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
370 sys_config = deposit32(sys_config, 4, 4, s->sram_addr_width - 12);
371 break;
372 case ARMSSE_SSE200:
373 sys_config = 0;
374 sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
375 sys_config = deposit32(sys_config, 4, 5, s->sram_addr_width);
376 sys_config = deposit32(sys_config, 24, 4, 2);
377 if (info->num_cpus > 1) {
378 sys_config = deposit32(sys_config, 10, 1, 1);
379 sys_config = deposit32(sys_config, 20, 4, info->sram_banks - 1);
380 sys_config = deposit32(sys_config, 28, 4, 2);
382 break;
383 case ARMSSE_SSE300:
384 sys_config = 0;
385 sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
386 sys_config = deposit32(sys_config, 4, 5, s->sram_addr_width);
387 sys_config = deposit32(sys_config, 16, 3, 3); /* CPU0 = Cortex-M55 */
388 break;
389 default:
390 g_assert_not_reached();
392 return sys_config;
395 /* Clock frequency in HZ of the 32KHz "slow clock" */
396 #define S32KCLK (32 * 1000)
398 /* Is internal IRQ n shared between CPUs in a multi-core SSE ? */
399 static bool irq_is_common[32] = {
400 [0 ... 5] = true,
401 /* 6, 7: per-CPU MHU interrupts */
402 [8 ... 12] = true,
403 /* 13: per-CPU icache interrupt */
404 /* 14: reserved */
405 [15 ... 20] = true,
406 /* 21: reserved */
407 [22 ... 26] = true,
408 /* 27: reserved */
409 /* 28, 29: per-CPU CTI interrupts */
410 /* 30, 31: reserved */
414 * Create an alias region in @container of @size bytes starting at @base
415 * which mirrors the memory starting at @orig.
417 static void make_alias(ARMSSE *s, MemoryRegion *mr, MemoryRegion *container,
418 const char *name, hwaddr base, hwaddr size, hwaddr orig)
420 memory_region_init_alias(mr, NULL, name, container, orig, size);
421 /* The alias is even lower priority than unimplemented_device regions */
422 memory_region_add_subregion_overlap(container, base, mr, -1500);
425 static void irq_status_forwarder(void *opaque, int n, int level)
427 qemu_irq destirq = opaque;
429 qemu_set_irq(destirq, level);
432 static void nsccfg_handler(void *opaque, int n, int level)
434 ARMSSE *s = ARM_SSE(opaque);
436 s->nsccfg = level;
439 static void armsse_forward_ppc(ARMSSE *s, const char *ppcname, int ppcnum)
441 /* Each of the 4 AHB and 4 APB PPCs that might be present in a
442 * system using the ARMSSE has a collection of control lines which
443 * are provided by the security controller and which we want to
444 * expose as control lines on the ARMSSE device itself, so the
445 * code using the ARMSSE can wire them up to the PPCs.
447 SplitIRQ *splitter = &s->ppc_irq_splitter[ppcnum];
448 DeviceState *armssedev = DEVICE(s);
449 DeviceState *dev_secctl = DEVICE(&s->secctl);
450 DeviceState *dev_splitter = DEVICE(splitter);
451 char *name;
453 name = g_strdup_printf("%s_nonsec", ppcname);
454 qdev_pass_gpios(dev_secctl, armssedev, name);
455 g_free(name);
456 name = g_strdup_printf("%s_ap", ppcname);
457 qdev_pass_gpios(dev_secctl, armssedev, name);
458 g_free(name);
459 name = g_strdup_printf("%s_irq_enable", ppcname);
460 qdev_pass_gpios(dev_secctl, armssedev, name);
461 g_free(name);
462 name = g_strdup_printf("%s_irq_clear", ppcname);
463 qdev_pass_gpios(dev_secctl, armssedev, name);
464 g_free(name);
466 /* irq_status is a little more tricky, because we need to
467 * split it so we can send it both to the security controller
468 * and to our OR gate for the NVIC interrupt line.
469 * Connect up the splitter's outputs, and create a GPIO input
470 * which will pass the line state to the input splitter.
472 name = g_strdup_printf("%s_irq_status", ppcname);
473 qdev_connect_gpio_out(dev_splitter, 0,
474 qdev_get_gpio_in_named(dev_secctl,
475 name, 0));
476 qdev_connect_gpio_out(dev_splitter, 1,
477 qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), ppcnum));
478 s->irq_status_in[ppcnum] = qdev_get_gpio_in(dev_splitter, 0);
479 qdev_init_gpio_in_named_with_opaque(armssedev, irq_status_forwarder,
480 s->irq_status_in[ppcnum], name, 1);
481 g_free(name);
484 static void armsse_forward_sec_resp_cfg(ARMSSE *s)
486 /* Forward the 3rd output from the splitter device as a
487 * named GPIO output of the armsse object.
489 DeviceState *dev = DEVICE(s);
490 DeviceState *dev_splitter = DEVICE(&s->sec_resp_splitter);
492 qdev_init_gpio_out_named(dev, &s->sec_resp_cfg, "sec_resp_cfg", 1);
493 s->sec_resp_cfg_in = qemu_allocate_irq(irq_status_forwarder,
494 s->sec_resp_cfg, 1);
495 qdev_connect_gpio_out(dev_splitter, 2, s->sec_resp_cfg_in);
498 static void armsse_mainclk_update(void *opaque, ClockEvent event)
500 ARMSSE *s = ARM_SSE(opaque);
503 * Set system_clock_scale from our Clock input; this is what
504 * controls the tick rate of the CPU SysTick timer.
506 system_clock_scale = clock_ticks_to_ns(s->mainclk, 1);
509 static void armsse_init(Object *obj)
511 ARMSSE *s = ARM_SSE(obj);
512 ARMSSEClass *asc = ARM_SSE_GET_CLASS(obj);
513 const ARMSSEInfo *info = asc->info;
514 const ARMSSEDeviceInfo *devinfo;
515 int i;
517 assert(info->sram_banks <= MAX_SRAM_BANKS);
518 assert(info->num_cpus <= SSE_MAX_CPUS);
520 s->mainclk = qdev_init_clock_in(DEVICE(s), "MAINCLK",
521 armsse_mainclk_update, s, ClockUpdate);
522 s->s32kclk = qdev_init_clock_in(DEVICE(s), "S32KCLK", NULL, NULL, 0);
524 memory_region_init(&s->container, obj, "armsse-container", UINT64_MAX);
526 for (i = 0; i < info->num_cpus; i++) {
528 * We put each CPU in its own cluster as they are logically
529 * distinct and may be configured differently.
531 char *name;
533 name = g_strdup_printf("cluster%d", i);
534 object_initialize_child(obj, name, &s->cluster[i], TYPE_CPU_CLUSTER);
535 qdev_prop_set_uint32(DEVICE(&s->cluster[i]), "cluster-id", i);
536 g_free(name);
538 name = g_strdup_printf("armv7m%d", i);
539 object_initialize_child(OBJECT(&s->cluster[i]), name, &s->armv7m[i],
540 TYPE_ARMV7M);
541 qdev_prop_set_string(DEVICE(&s->armv7m[i]), "cpu-type",
542 ARM_CPU_TYPE_NAME("cortex-m33"));
543 g_free(name);
544 name = g_strdup_printf("arm-sse-cpu-container%d", i);
545 memory_region_init(&s->cpu_container[i], obj, name, UINT64_MAX);
546 g_free(name);
547 if (i > 0) {
548 name = g_strdup_printf("arm-sse-container-alias%d", i);
549 memory_region_init_alias(&s->container_alias[i - 1], obj,
550 name, &s->container, 0, UINT64_MAX);
551 g_free(name);
555 for (devinfo = info->devinfo; devinfo->name; devinfo++) {
556 assert(devinfo->ppc == NO_PPC || devinfo->ppc < ARRAY_SIZE(s->apb_ppc));
557 if (!strcmp(devinfo->type, TYPE_CMSDK_APB_TIMER)) {
558 assert(devinfo->index < ARRAY_SIZE(s->timer));
559 object_initialize_child(obj, devinfo->name,
560 &s->timer[devinfo->index],
561 TYPE_CMSDK_APB_TIMER);
562 } else if (!strcmp(devinfo->type, TYPE_CMSDK_APB_DUALTIMER)) {
563 assert(devinfo->index == 0);
564 object_initialize_child(obj, devinfo->name, &s->dualtimer,
565 TYPE_CMSDK_APB_DUALTIMER);
566 } else if (!strcmp(devinfo->type, TYPE_CMSDK_APB_WATCHDOG)) {
567 assert(devinfo->index < ARRAY_SIZE(s->cmsdk_watchdog));
568 object_initialize_child(obj, devinfo->name,
569 &s->cmsdk_watchdog[devinfo->index],
570 TYPE_CMSDK_APB_WATCHDOG);
571 } else if (!strcmp(devinfo->type, TYPE_IOTKIT_SYSINFO)) {
572 assert(devinfo->index == 0);
573 object_initialize_child(obj, devinfo->name, &s->sysinfo,
574 TYPE_IOTKIT_SYSINFO);
575 } else if (!strcmp(devinfo->type, TYPE_IOTKIT_SYSCTL)) {
576 assert(devinfo->index == 0);
577 object_initialize_child(obj, devinfo->name, &s->sysctl,
578 TYPE_IOTKIT_SYSCTL);
579 } else if (!strcmp(devinfo->type, TYPE_UNIMPLEMENTED_DEVICE)) {
580 assert(devinfo->index < ARRAY_SIZE(s->unimp));
581 object_initialize_child(obj, devinfo->name,
582 &s->unimp[devinfo->index],
583 TYPE_UNIMPLEMENTED_DEVICE);
584 } else {
585 g_assert_not_reached();
589 object_initialize_child(obj, "secctl", &s->secctl, TYPE_IOTKIT_SECCTL);
591 for (i = 0; i < ARRAY_SIZE(s->apb_ppc); i++) {
592 g_autofree char *name = g_strdup_printf("apb-ppc%d", i);
593 object_initialize_child(obj, name, &s->apb_ppc[i], TYPE_TZ_PPC);
596 for (i = 0; i < info->sram_banks; i++) {
597 char *name = g_strdup_printf("mpc%d", i);
598 object_initialize_child(obj, name, &s->mpc[i], TYPE_TZ_MPC);
599 g_free(name);
601 object_initialize_child(obj, "mpc-irq-orgate", &s->mpc_irq_orgate,
602 TYPE_OR_IRQ);
604 for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
605 char *name = g_strdup_printf("mpc-irq-splitter-%d", i);
606 SplitIRQ *splitter = &s->mpc_irq_splitter[i];
608 object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
609 g_free(name);
612 if (info->has_mhus) {
613 object_initialize_child(obj, "mhu0", &s->mhu[0], TYPE_ARMSSE_MHU);
614 object_initialize_child(obj, "mhu1", &s->mhu[1], TYPE_ARMSSE_MHU);
616 if (info->has_cachectrl) {
617 for (i = 0; i < info->num_cpus; i++) {
618 char *name = g_strdup_printf("cachectrl%d", i);
620 object_initialize_child(obj, name, &s->cachectrl[i],
621 TYPE_UNIMPLEMENTED_DEVICE);
622 g_free(name);
625 if (info->has_cpusecctrl) {
626 for (i = 0; i < info->num_cpus; i++) {
627 char *name = g_strdup_printf("cpusecctrl%d", i);
629 object_initialize_child(obj, name, &s->cpusecctrl[i],
630 TYPE_UNIMPLEMENTED_DEVICE);
631 g_free(name);
634 if (info->has_cpuid) {
635 for (i = 0; i < info->num_cpus; i++) {
636 char *name = g_strdup_printf("cpuid%d", i);
638 object_initialize_child(obj, name, &s->cpuid[i],
639 TYPE_ARMSSE_CPUID);
640 g_free(name);
643 object_initialize_child(obj, "nmi-orgate", &s->nmi_orgate, TYPE_OR_IRQ);
644 object_initialize_child(obj, "ppc-irq-orgate", &s->ppc_irq_orgate,
645 TYPE_OR_IRQ);
646 object_initialize_child(obj, "sec-resp-splitter", &s->sec_resp_splitter,
647 TYPE_SPLIT_IRQ);
648 for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
649 char *name = g_strdup_printf("ppc-irq-splitter-%d", i);
650 SplitIRQ *splitter = &s->ppc_irq_splitter[i];
652 object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
653 g_free(name);
655 if (info->num_cpus > 1) {
656 for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
657 if (irq_is_common[i]) {
658 char *name = g_strdup_printf("cpu-irq-splitter%d", i);
659 SplitIRQ *splitter = &s->cpu_irq_splitter[i];
661 object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
662 g_free(name);
668 static void armsse_exp_irq(void *opaque, int n, int level)
670 qemu_irq *irqarray = opaque;
672 qemu_set_irq(irqarray[n], level);
675 static void armsse_mpcexp_status(void *opaque, int n, int level)
677 ARMSSE *s = ARM_SSE(opaque);
678 qemu_set_irq(s->mpcexp_status_in[n], level);
681 static qemu_irq armsse_get_common_irq_in(ARMSSE *s, int irqno)
684 * Return a qemu_irq which can be used to signal IRQ n to
685 * all CPUs in the SSE.
687 ARMSSEClass *asc = ARM_SSE_GET_CLASS(s);
688 const ARMSSEInfo *info = asc->info;
690 assert(irq_is_common[irqno]);
692 if (info->num_cpus == 1) {
693 /* Only one CPU -- just connect directly to it */
694 return qdev_get_gpio_in(DEVICE(&s->armv7m[0]), irqno);
695 } else {
696 /* Connect to the splitter which feeds all CPUs */
697 return qdev_get_gpio_in(DEVICE(&s->cpu_irq_splitter[irqno]), 0);
701 static void armsse_realize(DeviceState *dev, Error **errp)
703 ARMSSE *s = ARM_SSE(dev);
704 ARMSSEClass *asc = ARM_SSE_GET_CLASS(dev);
705 const ARMSSEInfo *info = asc->info;
706 const ARMSSEDeviceInfo *devinfo;
707 int i;
708 MemoryRegion *mr;
709 Error *err = NULL;
710 SysBusDevice *sbd_apb_ppc0;
711 SysBusDevice *sbd_secctl;
712 DeviceState *dev_apb_ppc0;
713 DeviceState *dev_apb_ppc1;
714 DeviceState *dev_secctl;
715 DeviceState *dev_splitter;
716 uint32_t addr_width_max;
718 if (!s->board_memory) {
719 error_setg(errp, "memory property was not set");
720 return;
723 if (!clock_has_source(s->mainclk)) {
724 error_setg(errp, "MAINCLK clock was not connected");
726 if (!clock_has_source(s->s32kclk)) {
727 error_setg(errp, "S32KCLK clock was not connected");
730 assert(info->num_cpus <= SSE_MAX_CPUS);
732 /* max SRAM_ADDR_WIDTH: 24 - log2(SRAM_NUM_BANK) */
733 assert(is_power_of_2(info->sram_banks));
734 addr_width_max = 24 - ctz32(info->sram_banks);
735 if (s->sram_addr_width < 1 || s->sram_addr_width > addr_width_max) {
736 error_setg(errp, "SRAM_ADDR_WIDTH must be between 1 and %d",
737 addr_width_max);
738 return;
741 /* Handling of which devices should be available only to secure
742 * code is usually done differently for M profile than for A profile.
743 * Instead of putting some devices only into the secure address space,
744 * devices exist in both address spaces but with hard-wired security
745 * permissions that will cause the CPU to fault for non-secure accesses.
747 * The ARMSSE has an IDAU (Implementation Defined Access Unit),
748 * which specifies hard-wired security permissions for different
749 * areas of the physical address space. For the ARMSSE IDAU, the
750 * top 4 bits of the physical address are the IDAU region ID, and
751 * if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS
752 * region, otherwise it is an S region.
754 * The various devices and RAMs are generally all mapped twice,
755 * once into a region that the IDAU defines as secure and once
756 * into a non-secure region. They sit behind either a Memory
757 * Protection Controller (for RAM) or a Peripheral Protection
758 * Controller (for devices), which allow a more fine grained
759 * configuration of whether non-secure accesses are permitted.
761 * (The other place that guest software can configure security
762 * permissions is in the architected SAU (Security Attribution
763 * Unit), which is entirely inside the CPU. The IDAU can upgrade
764 * the security attributes for a region to more restrictive than
765 * the SAU specifies, but cannot downgrade them.)
767 * 0x10000000..0x1fffffff alias of 0x00000000..0x0fffffff
768 * 0x20000000..0x2007ffff 32KB FPGA block RAM
769 * 0x30000000..0x3fffffff alias of 0x20000000..0x2fffffff
770 * 0x40000000..0x4000ffff base peripheral region 1
771 * 0x40010000..0x4001ffff CPU peripherals (none for ARMSSE)
772 * 0x40020000..0x4002ffff system control element peripherals
773 * 0x40080000..0x400fffff base peripheral region 2
774 * 0x50000000..0x5fffffff alias of 0x40000000..0x4fffffff
777 memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -2);
779 for (i = 0; i < info->num_cpus; i++) {
780 DeviceState *cpudev = DEVICE(&s->armv7m[i]);
781 Object *cpuobj = OBJECT(&s->armv7m[i]);
782 int j;
783 char *gpioname;
785 qdev_prop_set_uint32(cpudev, "num-irq", s->exp_numirq + NUM_SSE_IRQS);
787 * In real hardware the initial Secure VTOR is set from the INITSVTOR*
788 * registers in the IoT Kit System Control Register block. In QEMU
789 * we set the initial value here, and also the reset value of the
790 * sysctl register, from this object's QOM init-svtor property.
791 * If the guest changes the INITSVTOR* registers at runtime then the
792 * code in iotkit-sysctl.c will update the CPU init-svtor property
793 * (which will then take effect on the next CPU warm-reset).
795 * Note that typically a board using the SSE-200 will have a system
796 * control processor whose boot firmware initializes the INITSVTOR*
797 * registers before powering up the CPUs. QEMU doesn't emulate
798 * the control processor, so instead we behave in the way that the
799 * firmware does: the initial value should be set by the board code
800 * (using the init-svtor property on the ARMSSE object) to match
801 * whatever its firmware does.
803 qdev_prop_set_uint32(cpudev, "init-svtor", s->init_svtor);
805 * CPUs start powered down if the corresponding bit in the CPUWAIT
806 * register is 1. In real hardware the CPUWAIT register reset value is
807 * a configurable property of the SSE-200 (via the CPUWAIT0_RST and
808 * CPUWAIT1_RST parameters), but since all the boards we care about
809 * start CPU0 and leave CPU1 powered off, we hard-code that in
810 * info->cpuwait_rst for now. We can add QOM properties for this
811 * later if necessary.
813 if (extract32(info->cpuwait_rst, i, 1)) {
814 if (!object_property_set_bool(cpuobj, "start-powered-off", true,
815 errp)) {
816 return;
819 if (!s->cpu_fpu[i]) {
820 if (!object_property_set_bool(cpuobj, "vfp", false, errp)) {
821 return;
824 if (!s->cpu_dsp[i]) {
825 if (!object_property_set_bool(cpuobj, "dsp", false, errp)) {
826 return;
830 if (i > 0) {
831 memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
832 &s->container_alias[i - 1], -1);
833 } else {
834 memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
835 &s->container, -1);
837 object_property_set_link(cpuobj, "memory",
838 OBJECT(&s->cpu_container[i]), &error_abort);
839 object_property_set_link(cpuobj, "idau", OBJECT(s), &error_abort);
840 if (!sysbus_realize(SYS_BUS_DEVICE(cpuobj), errp)) {
841 return;
844 * The cluster must be realized after the armv7m container, as
845 * the container's CPU object is only created on realize, and the
846 * CPU must exist and have been parented into the cluster before
847 * the cluster is realized.
849 if (!qdev_realize(DEVICE(&s->cluster[i]), NULL, errp)) {
850 return;
853 /* Connect EXP_IRQ/EXP_CPUn_IRQ GPIOs to the NVIC's lines 32 and up */
854 s->exp_irqs[i] = g_new(qemu_irq, s->exp_numirq);
855 for (j = 0; j < s->exp_numirq; j++) {
856 s->exp_irqs[i][j] = qdev_get_gpio_in(cpudev, j + NUM_SSE_IRQS);
858 if (i == 0) {
859 gpioname = g_strdup("EXP_IRQ");
860 } else {
861 gpioname = g_strdup_printf("EXP_CPU%d_IRQ", i);
863 qdev_init_gpio_in_named_with_opaque(dev, armsse_exp_irq,
864 s->exp_irqs[i],
865 gpioname, s->exp_numirq);
866 g_free(gpioname);
869 /* Wire up the splitters that connect common IRQs to all CPUs */
870 if (info->num_cpus > 1) {
871 for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
872 if (irq_is_common[i]) {
873 Object *splitter = OBJECT(&s->cpu_irq_splitter[i]);
874 DeviceState *devs = DEVICE(splitter);
875 int cpunum;
877 if (!object_property_set_int(splitter, "num-lines",
878 info->num_cpus, errp)) {
879 return;
881 if (!qdev_realize(DEVICE(splitter), NULL, errp)) {
882 return;
884 for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
885 DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
887 qdev_connect_gpio_out(devs, cpunum,
888 qdev_get_gpio_in(cpudev, i));
894 /* Set up the big aliases first */
895 make_alias(s, &s->alias1, &s->container, "alias 1",
896 0x10000000, 0x10000000, 0x00000000);
897 make_alias(s, &s->alias2, &s->container,
898 "alias 2", 0x30000000, 0x10000000, 0x20000000);
899 /* The 0x50000000..0x5fffffff region is not a pure alias: it has
900 * a few extra devices that only appear there (generally the
901 * control interfaces for the protection controllers).
902 * We implement this by mapping those devices over the top of this
903 * alias MR at a higher priority. Some of the devices in this range
904 * are per-CPU, so we must put this alias in the per-cpu containers.
906 for (i = 0; i < info->num_cpus; i++) {
907 make_alias(s, &s->alias3[i], &s->cpu_container[i],
908 "alias 3", 0x50000000, 0x10000000, 0x40000000);
911 /* Security controller */
912 object_property_set_int(OBJECT(&s->secctl), "sse-version",
913 info->sse_version, &error_abort);
914 if (!sysbus_realize(SYS_BUS_DEVICE(&s->secctl), errp)) {
915 return;
917 sbd_secctl = SYS_BUS_DEVICE(&s->secctl);
918 dev_secctl = DEVICE(&s->secctl);
919 sysbus_mmio_map(sbd_secctl, 0, 0x50080000);
920 sysbus_mmio_map(sbd_secctl, 1, 0x40080000);
922 s->nsc_cfg_in = qemu_allocate_irq(nsccfg_handler, s, 1);
923 qdev_connect_gpio_out_named(dev_secctl, "nsc_cfg", 0, s->nsc_cfg_in);
925 /* The sec_resp_cfg output from the security controller must be split into
926 * multiple lines, one for each of the PPCs within the ARMSSE and one
927 * that will be an output from the ARMSSE to the system.
929 if (!object_property_set_int(OBJECT(&s->sec_resp_splitter),
930 "num-lines", 3, errp)) {
931 return;
933 if (!qdev_realize(DEVICE(&s->sec_resp_splitter), NULL, errp)) {
934 return;
936 dev_splitter = DEVICE(&s->sec_resp_splitter);
937 qdev_connect_gpio_out_named(dev_secctl, "sec_resp_cfg", 0,
938 qdev_get_gpio_in(dev_splitter, 0));
940 /* Each SRAM bank lives behind its own Memory Protection Controller */
941 for (i = 0; i < info->sram_banks; i++) {
942 char *ramname = g_strdup_printf("armsse.sram%d", i);
943 SysBusDevice *sbd_mpc;
944 uint32_t sram_bank_size = 1 << s->sram_addr_width;
946 memory_region_init_ram(&s->sram[i], NULL, ramname,
947 sram_bank_size, &err);
948 g_free(ramname);
949 if (err) {
950 error_propagate(errp, err);
951 return;
953 object_property_set_link(OBJECT(&s->mpc[i]), "downstream",
954 OBJECT(&s->sram[i]), &error_abort);
955 if (!sysbus_realize(SYS_BUS_DEVICE(&s->mpc[i]), errp)) {
956 return;
958 /* Map the upstream end of the MPC into the right place... */
959 sbd_mpc = SYS_BUS_DEVICE(&s->mpc[i]);
960 memory_region_add_subregion(&s->container,
961 0x20000000 + i * sram_bank_size,
962 sysbus_mmio_get_region(sbd_mpc, 1));
963 /* ...and its register interface */
964 memory_region_add_subregion(&s->container, 0x50083000 + i * 0x1000,
965 sysbus_mmio_get_region(sbd_mpc, 0));
968 /* We must OR together lines from the MPC splitters to go to the NVIC */
969 if (!object_property_set_int(OBJECT(&s->mpc_irq_orgate), "num-lines",
970 IOTS_NUM_EXP_MPC + info->sram_banks,
971 errp)) {
972 return;
974 if (!qdev_realize(DEVICE(&s->mpc_irq_orgate), NULL, errp)) {
975 return;
977 qdev_connect_gpio_out(DEVICE(&s->mpc_irq_orgate), 0,
978 armsse_get_common_irq_in(s, 9));
980 /* This OR gate wires together outputs from the secure watchdogs to NMI */
981 if (!object_property_set_int(OBJECT(&s->nmi_orgate), "num-lines", 2,
982 errp)) {
983 return;
985 if (!qdev_realize(DEVICE(&s->nmi_orgate), NULL, errp)) {
986 return;
988 qdev_connect_gpio_out(DEVICE(&s->nmi_orgate), 0,
989 qdev_get_gpio_in_named(DEVICE(&s->armv7m), "NMI", 0));
991 /* Devices behind APB PPC0:
992 * 0x40000000: timer0
993 * 0x40001000: timer1
994 * 0x40002000: dual timer
995 * 0x40003000: MHU0 (SSE-200 only)
996 * 0x40004000: MHU1 (SSE-200 only)
997 * We must configure and realize each downstream device and connect
998 * it to the appropriate PPC port; then we can realize the PPC and
999 * map its upstream ends to the right place in the container.
1001 for (devinfo = info->devinfo; devinfo->name; devinfo++) {
1002 SysBusDevice *sbd;
1003 qemu_irq irq;
1005 if (!strcmp(devinfo->type, TYPE_CMSDK_APB_TIMER)) {
1006 sbd = SYS_BUS_DEVICE(&s->timer[devinfo->index]);
1008 qdev_connect_clock_in(DEVICE(sbd), "pclk",
1009 devinfo->slowclk ? s->s32kclk : s->mainclk);
1010 if (!sysbus_realize(sbd, errp)) {
1011 return;
1013 mr = sysbus_mmio_get_region(sbd, 0);
1014 } else if (!strcmp(devinfo->type, TYPE_CMSDK_APB_DUALTIMER)) {
1015 sbd = SYS_BUS_DEVICE(&s->dualtimer);
1017 qdev_connect_clock_in(DEVICE(sbd), "TIMCLK", s->mainclk);
1018 if (!sysbus_realize(sbd, errp)) {
1019 return;
1021 mr = sysbus_mmio_get_region(sbd, 0);
1022 } else if (!strcmp(devinfo->type, TYPE_CMSDK_APB_WATCHDOG)) {
1023 sbd = SYS_BUS_DEVICE(&s->cmsdk_watchdog[devinfo->index]);
1025 qdev_connect_clock_in(DEVICE(sbd), "WDOGCLK",
1026 devinfo->slowclk ? s->s32kclk : s->mainclk);
1027 if (!sysbus_realize(sbd, errp)) {
1028 return;
1030 mr = sysbus_mmio_get_region(sbd, 0);
1031 } else if (!strcmp(devinfo->type, TYPE_IOTKIT_SYSINFO)) {
1032 sbd = SYS_BUS_DEVICE(&s->sysinfo);
1034 object_property_set_int(OBJECT(&s->sysinfo), "SYS_VERSION",
1035 info->sys_version, &error_abort);
1036 object_property_set_int(OBJECT(&s->sysinfo), "SYS_CONFIG",
1037 armsse_sys_config_value(s, info),
1038 &error_abort);
1039 object_property_set_int(OBJECT(&s->sysinfo), "sse-version",
1040 info->sse_version, &error_abort);
1041 object_property_set_int(OBJECT(&s->sysinfo), "IIDR",
1042 info->iidr, &error_abort);
1043 if (!sysbus_realize(sbd, errp)) {
1044 return;
1046 mr = sysbus_mmio_get_region(sbd, 0);
1047 } else if (!strcmp(devinfo->type, TYPE_IOTKIT_SYSCTL)) {
1048 /* System control registers */
1049 sbd = SYS_BUS_DEVICE(&s->sysctl);
1051 object_property_set_int(OBJECT(&s->sysctl), "sse-version",
1052 info->sse_version, &error_abort);
1053 object_property_set_int(OBJECT(&s->sysctl), "CPUWAIT_RST",
1054 info->cpuwait_rst, &error_abort);
1055 object_property_set_int(OBJECT(&s->sysctl), "INITSVTOR0_RST",
1056 s->init_svtor, &error_abort);
1057 object_property_set_int(OBJECT(&s->sysctl), "INITSVTOR1_RST",
1058 s->init_svtor, &error_abort);
1059 if (!sysbus_realize(sbd, errp)) {
1060 return;
1062 mr = sysbus_mmio_get_region(sbd, 0);
1063 } else if (!strcmp(devinfo->type, TYPE_UNIMPLEMENTED_DEVICE)) {
1064 sbd = SYS_BUS_DEVICE(&s->unimp[devinfo->index]);
1066 qdev_prop_set_string(DEVICE(sbd), "name", devinfo->name);
1067 qdev_prop_set_uint64(DEVICE(sbd), "size", devinfo->size);
1068 if (!sysbus_realize(sbd, errp)) {
1069 return;
1071 mr = sysbus_mmio_get_region(sbd, 0);
1072 } else {
1073 g_assert_not_reached();
1076 switch (devinfo->irq) {
1077 case NO_IRQ:
1078 irq = NULL;
1079 break;
1080 case 0 ... NUM_SSE_IRQS - 1:
1081 irq = armsse_get_common_irq_in(s, devinfo->irq);
1082 break;
1083 case NMI_0:
1084 case NMI_1:
1085 irq = qdev_get_gpio_in(DEVICE(&s->nmi_orgate),
1086 devinfo->irq - NMI_0);
1087 break;
1088 default:
1089 g_assert_not_reached();
1092 if (irq) {
1093 sysbus_connect_irq(sbd, 0, irq);
1097 * Devices connected to a PPC are connected to the port here;
1098 * we will map the upstream end of that port to the right address
1099 * in the container later after the PPC has been realized.
1100 * Devices not connected to a PPC can be mapped immediately.
1102 if (devinfo->ppc != NO_PPC) {
1103 TZPPC *ppc = &s->apb_ppc[devinfo->ppc];
1104 g_autofree char *portname = g_strdup_printf("port[%d]",
1105 devinfo->ppc_port);
1106 object_property_set_link(OBJECT(ppc), portname, OBJECT(mr),
1107 &error_abort);
1108 } else {
1109 memory_region_add_subregion(&s->container, devinfo->addr, mr);
1113 if (info->has_mhus) {
1115 * An SSE-200 with only one CPU should have only one MHU created,
1116 * with the region where the second MHU usually is being RAZ/WI.
1117 * We don't implement that SSE-200 config; if we want to support
1118 * it then this code needs to be enhanced to handle creating the
1119 * RAZ/WI region instead of the second MHU.
1121 assert(info->num_cpus == ARRAY_SIZE(s->mhu));
1123 for (i = 0; i < ARRAY_SIZE(s->mhu); i++) {
1124 char *port;
1125 int cpunum;
1126 SysBusDevice *mhu_sbd = SYS_BUS_DEVICE(&s->mhu[i]);
1128 if (!sysbus_realize(SYS_BUS_DEVICE(&s->mhu[i]), errp)) {
1129 return;
1131 port = g_strdup_printf("port[%d]", i + 3);
1132 mr = sysbus_mmio_get_region(mhu_sbd, 0);
1133 object_property_set_link(OBJECT(&s->apb_ppc[0]), port, OBJECT(mr),
1134 &error_abort);
1135 g_free(port);
1138 * Each MHU has an irq line for each CPU:
1139 * MHU 0 irq line 0 -> CPU 0 IRQ 6
1140 * MHU 0 irq line 1 -> CPU 1 IRQ 6
1141 * MHU 1 irq line 0 -> CPU 0 IRQ 7
1142 * MHU 1 irq line 1 -> CPU 1 IRQ 7
1144 for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
1145 DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
1147 sysbus_connect_irq(mhu_sbd, cpunum,
1148 qdev_get_gpio_in(cpudev, 6 + i));
1153 if (!sysbus_realize(SYS_BUS_DEVICE(&s->apb_ppc[0]), errp)) {
1154 return;
1157 sbd_apb_ppc0 = SYS_BUS_DEVICE(&s->apb_ppc[0]);
1158 dev_apb_ppc0 = DEVICE(&s->apb_ppc[0]);
1160 if (info->has_mhus) {
1161 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 3);
1162 memory_region_add_subregion(&s->container, 0x40003000, mr);
1163 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 4);
1164 memory_region_add_subregion(&s->container, 0x40004000, mr);
1166 for (i = 0; i < IOTS_APB_PPC0_NUM_PORTS; i++) {
1167 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_nonsec", i,
1168 qdev_get_gpio_in_named(dev_apb_ppc0,
1169 "cfg_nonsec", i));
1170 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_ap", i,
1171 qdev_get_gpio_in_named(dev_apb_ppc0,
1172 "cfg_ap", i));
1174 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_enable", 0,
1175 qdev_get_gpio_in_named(dev_apb_ppc0,
1176 "irq_enable", 0));
1177 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_clear", 0,
1178 qdev_get_gpio_in_named(dev_apb_ppc0,
1179 "irq_clear", 0));
1180 qdev_connect_gpio_out(dev_splitter, 0,
1181 qdev_get_gpio_in_named(dev_apb_ppc0,
1182 "cfg_sec_resp", 0));
1184 /* All the PPC irq lines (from the 2 internal PPCs and the 8 external
1185 * ones) are sent individually to the security controller, and also
1186 * ORed together to give a single combined PPC interrupt to the NVIC.
1188 if (!object_property_set_int(OBJECT(&s->ppc_irq_orgate),
1189 "num-lines", NUM_PPCS, errp)) {
1190 return;
1192 if (!qdev_realize(DEVICE(&s->ppc_irq_orgate), NULL, errp)) {
1193 return;
1195 qdev_connect_gpio_out(DEVICE(&s->ppc_irq_orgate), 0,
1196 armsse_get_common_irq_in(s, 10));
1199 * 0x40010000 .. 0x4001ffff (and the 0x5001000... secure-only alias):
1200 * private per-CPU region (all these devices are SSE-200 only):
1201 * 0x50010000: L1 icache control registers
1202 * 0x50011000: CPUSECCTRL (CPU local security control registers)
1203 * 0x4001f000 and 0x5001f000: CPU_IDENTITY register block
1205 if (info->has_cachectrl) {
1206 for (i = 0; i < info->num_cpus; i++) {
1207 char *name = g_strdup_printf("cachectrl%d", i);
1208 MemoryRegion *mr;
1210 qdev_prop_set_string(DEVICE(&s->cachectrl[i]), "name", name);
1211 g_free(name);
1212 qdev_prop_set_uint64(DEVICE(&s->cachectrl[i]), "size", 0x1000);
1213 if (!sysbus_realize(SYS_BUS_DEVICE(&s->cachectrl[i]), errp)) {
1214 return;
1217 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cachectrl[i]), 0);
1218 memory_region_add_subregion(&s->cpu_container[i], 0x50010000, mr);
1221 if (info->has_cpusecctrl) {
1222 for (i = 0; i < info->num_cpus; i++) {
1223 char *name = g_strdup_printf("CPUSECCTRL%d", i);
1224 MemoryRegion *mr;
1226 qdev_prop_set_string(DEVICE(&s->cpusecctrl[i]), "name", name);
1227 g_free(name);
1228 qdev_prop_set_uint64(DEVICE(&s->cpusecctrl[i]), "size", 0x1000);
1229 if (!sysbus_realize(SYS_BUS_DEVICE(&s->cpusecctrl[i]), errp)) {
1230 return;
1233 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpusecctrl[i]), 0);
1234 memory_region_add_subregion(&s->cpu_container[i], 0x50011000, mr);
1237 if (info->has_cpuid) {
1238 for (i = 0; i < info->num_cpus; i++) {
1239 MemoryRegion *mr;
1241 qdev_prop_set_uint32(DEVICE(&s->cpuid[i]), "CPUID", i);
1242 if (!sysbus_realize(SYS_BUS_DEVICE(&s->cpuid[i]), errp)) {
1243 return;
1246 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpuid[i]), 0);
1247 memory_region_add_subregion(&s->cpu_container[i], 0x4001F000, mr);
1251 if (!sysbus_realize(SYS_BUS_DEVICE(&s->apb_ppc[1]), errp)) {
1252 return;
1255 dev_apb_ppc1 = DEVICE(&s->apb_ppc[1]);
1256 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_nonsec", 0,
1257 qdev_get_gpio_in_named(dev_apb_ppc1,
1258 "cfg_nonsec", 0));
1259 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_ap", 0,
1260 qdev_get_gpio_in_named(dev_apb_ppc1,
1261 "cfg_ap", 0));
1262 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_enable", 0,
1263 qdev_get_gpio_in_named(dev_apb_ppc1,
1264 "irq_enable", 0));
1265 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_clear", 0,
1266 qdev_get_gpio_in_named(dev_apb_ppc1,
1267 "irq_clear", 0));
1268 qdev_connect_gpio_out(dev_splitter, 1,
1269 qdev_get_gpio_in_named(dev_apb_ppc1,
1270 "cfg_sec_resp", 0));
1273 * Now both PPCs are realized we can map the upstream ends of
1274 * ports which correspond to entries in the devinfo array.
1275 * The ports which are connected to non-devinfo devices have
1276 * already been mapped.
1278 for (devinfo = info->devinfo; devinfo->name; devinfo++) {
1279 SysBusDevice *ppc_sbd;
1281 if (devinfo->ppc == NO_PPC) {
1282 continue;
1284 ppc_sbd = SYS_BUS_DEVICE(&s->apb_ppc[devinfo->ppc]);
1285 mr = sysbus_mmio_get_region(ppc_sbd, devinfo->ppc_port);
1286 memory_region_add_subregion(&s->container, devinfo->addr, mr);
1289 for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
1290 Object *splitter = OBJECT(&s->ppc_irq_splitter[i]);
1292 if (!object_property_set_int(splitter, "num-lines", 2, errp)) {
1293 return;
1295 if (!qdev_realize(DEVICE(splitter), NULL, errp)) {
1296 return;
1300 for (i = 0; i < IOTS_NUM_AHB_EXP_PPC; i++) {
1301 char *ppcname = g_strdup_printf("ahb_ppcexp%d", i);
1303 armsse_forward_ppc(s, ppcname, i);
1304 g_free(ppcname);
1307 for (i = 0; i < IOTS_NUM_APB_EXP_PPC; i++) {
1308 char *ppcname = g_strdup_printf("apb_ppcexp%d", i);
1310 armsse_forward_ppc(s, ppcname, i + IOTS_NUM_AHB_EXP_PPC);
1311 g_free(ppcname);
1314 for (i = NUM_EXTERNAL_PPCS; i < NUM_PPCS; i++) {
1315 /* Wire up IRQ splitter for internal PPCs */
1316 DeviceState *devs = DEVICE(&s->ppc_irq_splitter[i]);
1317 char *gpioname = g_strdup_printf("apb_ppc%d_irq_status",
1318 i - NUM_EXTERNAL_PPCS);
1319 TZPPC *ppc = &s->apb_ppc[i - NUM_EXTERNAL_PPCS];
1321 qdev_connect_gpio_out(devs, 0,
1322 qdev_get_gpio_in_named(dev_secctl, gpioname, 0));
1323 qdev_connect_gpio_out(devs, 1,
1324 qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), i));
1325 qdev_connect_gpio_out_named(DEVICE(ppc), "irq", 0,
1326 qdev_get_gpio_in(devs, 0));
1327 g_free(gpioname);
1330 /* Wire up the splitters for the MPC IRQs */
1331 for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
1332 SplitIRQ *splitter = &s->mpc_irq_splitter[i];
1333 DeviceState *dev_splitter = DEVICE(splitter);
1335 if (!object_property_set_int(OBJECT(splitter), "num-lines", 2,
1336 errp)) {
1337 return;
1339 if (!qdev_realize(DEVICE(splitter), NULL, errp)) {
1340 return;
1343 if (i < IOTS_NUM_EXP_MPC) {
1344 /* Splitter input is from GPIO input line */
1345 s->mpcexp_status_in[i] = qdev_get_gpio_in(dev_splitter, 0);
1346 qdev_connect_gpio_out(dev_splitter, 0,
1347 qdev_get_gpio_in_named(dev_secctl,
1348 "mpcexp_status", i));
1349 } else {
1350 /* Splitter input is from our own MPC */
1351 qdev_connect_gpio_out_named(DEVICE(&s->mpc[i - IOTS_NUM_EXP_MPC]),
1352 "irq", 0,
1353 qdev_get_gpio_in(dev_splitter, 0));
1354 qdev_connect_gpio_out(dev_splitter, 0,
1355 qdev_get_gpio_in_named(dev_secctl,
1356 "mpc_status",
1357 i - IOTS_NUM_EXP_MPC));
1360 qdev_connect_gpio_out(dev_splitter, 1,
1361 qdev_get_gpio_in(DEVICE(&s->mpc_irq_orgate), i));
1363 /* Create GPIO inputs which will pass the line state for our
1364 * mpcexp_irq inputs to the correct splitter devices.
1366 qdev_init_gpio_in_named(dev, armsse_mpcexp_status, "mpcexp_status",
1367 IOTS_NUM_EXP_MPC);
1369 armsse_forward_sec_resp_cfg(s);
1371 /* Forward the MSC related signals */
1372 qdev_pass_gpios(dev_secctl, dev, "mscexp_status");
1373 qdev_pass_gpios(dev_secctl, dev, "mscexp_clear");
1374 qdev_pass_gpios(dev_secctl, dev, "mscexp_ns");
1375 qdev_connect_gpio_out_named(dev_secctl, "msc_irq", 0,
1376 armsse_get_common_irq_in(s, 11));
1379 * Expose our container region to the board model; this corresponds
1380 * to the AHB Slave Expansion ports which allow bus master devices
1381 * (eg DMA controllers) in the board model to make transactions into
1382 * devices in the ARMSSE.
1384 sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->container);
1386 /* Set initial system_clock_scale from MAINCLK */
1387 armsse_mainclk_update(s, ClockUpdate);
1390 static void armsse_idau_check(IDAUInterface *ii, uint32_t address,
1391 int *iregion, bool *exempt, bool *ns, bool *nsc)
1394 * For ARMSSE systems the IDAU responses are simple logical functions
1395 * of the address bits. The NSC attribute is guest-adjustable via the
1396 * NSCCFG register in the security controller.
1398 ARMSSE *s = ARM_SSE(ii);
1399 int region = extract32(address, 28, 4);
1401 *ns = !(region & 1);
1402 *nsc = (region == 1 && (s->nsccfg & 1)) || (region == 3 && (s->nsccfg & 2));
1403 /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
1404 *exempt = (address & 0xeff00000) == 0xe0000000;
1405 *iregion = region;
1408 static const VMStateDescription armsse_vmstate = {
1409 .name = "iotkit",
1410 .version_id = 2,
1411 .minimum_version_id = 2,
1412 .fields = (VMStateField[]) {
1413 VMSTATE_CLOCK(mainclk, ARMSSE),
1414 VMSTATE_CLOCK(s32kclk, ARMSSE),
1415 VMSTATE_UINT32(nsccfg, ARMSSE),
1416 VMSTATE_END_OF_LIST()
1420 static void armsse_reset(DeviceState *dev)
1422 ARMSSE *s = ARM_SSE(dev);
1424 s->nsccfg = 0;
1427 static void armsse_class_init(ObjectClass *klass, void *data)
1429 DeviceClass *dc = DEVICE_CLASS(klass);
1430 IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(klass);
1431 ARMSSEClass *asc = ARM_SSE_CLASS(klass);
1432 const ARMSSEInfo *info = data;
1434 dc->realize = armsse_realize;
1435 dc->vmsd = &armsse_vmstate;
1436 device_class_set_props(dc, info->props);
1437 dc->reset = armsse_reset;
1438 iic->check = armsse_idau_check;
1439 asc->info = info;
1442 static const TypeInfo armsse_info = {
1443 .name = TYPE_ARM_SSE,
1444 .parent = TYPE_SYS_BUS_DEVICE,
1445 .instance_size = sizeof(ARMSSE),
1446 .class_size = sizeof(ARMSSEClass),
1447 .instance_init = armsse_init,
1448 .abstract = true,
1449 .interfaces = (InterfaceInfo[]) {
1450 { TYPE_IDAU_INTERFACE },
1455 static void armsse_register_types(void)
1457 int i;
1459 type_register_static(&armsse_info);
1461 for (i = 0; i < ARRAY_SIZE(armsse_variants); i++) {
1462 TypeInfo ti = {
1463 .name = armsse_variants[i].name,
1464 .parent = TYPE_ARM_SSE,
1465 .class_init = armsse_class_init,
1466 .class_data = (void *)&armsse_variants[i],
1468 type_register(&ti);
1472 type_init(armsse_register_types);