sdl: add support for high resolution window icon
[qemu/ar7.git] / target / arm / helper.c
blobf00c141ef96caf3b59f459a31f7b3aed5c3368a0
1 #include "qemu/osdep.h"
2 #include "target/arm/idau.h"
3 #include "trace.h"
4 #include "cpu.h"
5 #include "internals.h"
6 #include "exec/gdbstub.h"
7 #include "exec/helper-proto.h"
8 #include "qemu/host-utils.h"
9 #include "sysemu/arch_init.h"
10 #include "sysemu/sysemu.h"
11 #include "qemu/bitops.h"
12 #include "qemu/crc32c.h"
13 #include "exec/exec-all.h"
14 #include "exec/cpu_ldst.h"
15 #include "arm_ldst.h"
16 #include <zlib.h> /* For crc32 */
17 #include "exec/semihost.h"
18 #include "sysemu/kvm.h"
19 #include "fpu/softfloat.h"
20 #include "qemu/range.h"
22 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
24 #ifndef CONFIG_USER_ONLY
25 /* Cacheability and shareability attributes for a memory access */
26 typedef struct ARMCacheAttrs {
27 unsigned int attrs:8; /* as in the MAIR register encoding */
28 unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
29 } ARMCacheAttrs;
31 static bool get_phys_addr(CPUARMState *env, target_ulong address,
32 MMUAccessType access_type, ARMMMUIdx mmu_idx,
33 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
34 target_ulong *page_size,
35 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
37 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
38 MMUAccessType access_type, ARMMMUIdx mmu_idx,
39 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
40 target_ulong *page_size_ptr,
41 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
43 /* Security attributes for an address, as returned by v8m_security_lookup. */
44 typedef struct V8M_SAttributes {
45 bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
46 bool ns;
47 bool nsc;
48 uint8_t sregion;
49 bool srvalid;
50 uint8_t iregion;
51 bool irvalid;
52 } V8M_SAttributes;
54 static void v8m_security_lookup(CPUARMState *env, uint32_t address,
55 MMUAccessType access_type, ARMMMUIdx mmu_idx,
56 V8M_SAttributes *sattrs);
57 #endif
59 static void switch_mode(CPUARMState *env, int mode);
61 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
63 int nregs;
65 /* VFP data registers are always little-endian. */
66 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
67 if (reg < nregs) {
68 stq_le_p(buf, *aa32_vfp_dreg(env, reg));
69 return 8;
71 if (arm_feature(env, ARM_FEATURE_NEON)) {
72 /* Aliases for Q regs. */
73 nregs += 16;
74 if (reg < nregs) {
75 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
76 stq_le_p(buf, q[0]);
77 stq_le_p(buf + 8, q[1]);
78 return 16;
81 switch (reg - nregs) {
82 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
83 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
84 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
86 return 0;
89 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
91 int nregs;
93 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
94 if (reg < nregs) {
95 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
96 return 8;
98 if (arm_feature(env, ARM_FEATURE_NEON)) {
99 nregs += 16;
100 if (reg < nregs) {
101 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
102 q[0] = ldq_le_p(buf);
103 q[1] = ldq_le_p(buf + 8);
104 return 16;
107 switch (reg - nregs) {
108 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
109 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
110 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
112 return 0;
115 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
117 switch (reg) {
118 case 0 ... 31:
119 /* 128 bit FP register */
121 uint64_t *q = aa64_vfp_qreg(env, reg);
122 stq_le_p(buf, q[0]);
123 stq_le_p(buf + 8, q[1]);
124 return 16;
126 case 32:
127 /* FPSR */
128 stl_p(buf, vfp_get_fpsr(env));
129 return 4;
130 case 33:
131 /* FPCR */
132 stl_p(buf, vfp_get_fpcr(env));
133 return 4;
134 default:
135 return 0;
139 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
141 switch (reg) {
142 case 0 ... 31:
143 /* 128 bit FP register */
145 uint64_t *q = aa64_vfp_qreg(env, reg);
146 q[0] = ldq_le_p(buf);
147 q[1] = ldq_le_p(buf + 8);
148 return 16;
150 case 32:
151 /* FPSR */
152 vfp_set_fpsr(env, ldl_p(buf));
153 return 4;
154 case 33:
155 /* FPCR */
156 vfp_set_fpcr(env, ldl_p(buf));
157 return 4;
158 default:
159 return 0;
163 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
165 assert(ri->fieldoffset);
166 if (cpreg_field_is_64bit(ri)) {
167 return CPREG_FIELD64(env, ri);
168 } else {
169 return CPREG_FIELD32(env, ri);
173 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
174 uint64_t value)
176 assert(ri->fieldoffset);
177 if (cpreg_field_is_64bit(ri)) {
178 CPREG_FIELD64(env, ri) = value;
179 } else {
180 CPREG_FIELD32(env, ri) = value;
184 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
186 return (char *)env + ri->fieldoffset;
189 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
191 /* Raw read of a coprocessor register (as needed for migration, etc). */
192 if (ri->type & ARM_CP_CONST) {
193 return ri->resetvalue;
194 } else if (ri->raw_readfn) {
195 return ri->raw_readfn(env, ri);
196 } else if (ri->readfn) {
197 return ri->readfn(env, ri);
198 } else {
199 return raw_read(env, ri);
203 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
204 uint64_t v)
206 /* Raw write of a coprocessor register (as needed for migration, etc).
207 * Note that constant registers are treated as write-ignored; the
208 * caller should check for success by whether a readback gives the
209 * value written.
211 if (ri->type & ARM_CP_CONST) {
212 return;
213 } else if (ri->raw_writefn) {
214 ri->raw_writefn(env, ri, v);
215 } else if (ri->writefn) {
216 ri->writefn(env, ri, v);
217 } else {
218 raw_write(env, ri, v);
222 static int arm_gdb_get_sysreg(CPUARMState *env, uint8_t *buf, int reg)
224 ARMCPU *cpu = arm_env_get_cpu(env);
225 const ARMCPRegInfo *ri;
226 uint32_t key;
228 key = cpu->dyn_xml.cpregs_keys[reg];
229 ri = get_arm_cp_reginfo(cpu->cp_regs, key);
230 if (ri) {
231 if (cpreg_field_is_64bit(ri)) {
232 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri));
233 } else {
234 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri));
237 return 0;
240 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
242 return 0;
245 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
247 /* Return true if the regdef would cause an assertion if you called
248 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
249 * program bug for it not to have the NO_RAW flag).
250 * NB that returning false here doesn't necessarily mean that calling
251 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
252 * read/write access functions which are safe for raw use" from "has
253 * read/write access functions which have side effects but has forgotten
254 * to provide raw access functions".
255 * The tests here line up with the conditions in read/write_raw_cp_reg()
256 * and assertions in raw_read()/raw_write().
258 if ((ri->type & ARM_CP_CONST) ||
259 ri->fieldoffset ||
260 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
261 return false;
263 return true;
266 bool write_cpustate_to_list(ARMCPU *cpu)
268 /* Write the coprocessor state from cpu->env to the (index,value) list. */
269 int i;
270 bool ok = true;
272 for (i = 0; i < cpu->cpreg_array_len; i++) {
273 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
274 const ARMCPRegInfo *ri;
276 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
277 if (!ri) {
278 ok = false;
279 continue;
281 if (ri->type & ARM_CP_NO_RAW) {
282 continue;
284 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
286 return ok;
289 bool write_list_to_cpustate(ARMCPU *cpu)
291 int i;
292 bool ok = true;
294 for (i = 0; i < cpu->cpreg_array_len; i++) {
295 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
296 uint64_t v = cpu->cpreg_values[i];
297 const ARMCPRegInfo *ri;
299 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
300 if (!ri) {
301 ok = false;
302 continue;
304 if (ri->type & ARM_CP_NO_RAW) {
305 continue;
307 /* Write value and confirm it reads back as written
308 * (to catch read-only registers and partially read-only
309 * registers where the incoming migration value doesn't match)
311 write_raw_cp_reg(&cpu->env, ri, v);
312 if (read_raw_cp_reg(&cpu->env, ri) != v) {
313 ok = false;
316 return ok;
319 static void add_cpreg_to_list(gpointer key, gpointer opaque)
321 ARMCPU *cpu = opaque;
322 uint64_t regidx;
323 const ARMCPRegInfo *ri;
325 regidx = *(uint32_t *)key;
326 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
328 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
329 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
330 /* The value array need not be initialized at this point */
331 cpu->cpreg_array_len++;
335 static void count_cpreg(gpointer key, gpointer opaque)
337 ARMCPU *cpu = opaque;
338 uint64_t regidx;
339 const ARMCPRegInfo *ri;
341 regidx = *(uint32_t *)key;
342 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
344 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
345 cpu->cpreg_array_len++;
349 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
351 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
352 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
354 if (aidx > bidx) {
355 return 1;
357 if (aidx < bidx) {
358 return -1;
360 return 0;
363 void init_cpreg_list(ARMCPU *cpu)
365 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
366 * Note that we require cpreg_tuples[] to be sorted by key ID.
368 GList *keys;
369 int arraylen;
371 keys = g_hash_table_get_keys(cpu->cp_regs);
372 keys = g_list_sort(keys, cpreg_key_compare);
374 cpu->cpreg_array_len = 0;
376 g_list_foreach(keys, count_cpreg, cpu);
378 arraylen = cpu->cpreg_array_len;
379 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
380 cpu->cpreg_values = g_new(uint64_t, arraylen);
381 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
382 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
383 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
384 cpu->cpreg_array_len = 0;
386 g_list_foreach(keys, add_cpreg_to_list, cpu);
388 assert(cpu->cpreg_array_len == arraylen);
390 g_list_free(keys);
394 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
395 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
397 * access_el3_aa32ns: Used to check AArch32 register views.
398 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
400 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
401 const ARMCPRegInfo *ri,
402 bool isread)
404 bool secure = arm_is_secure_below_el3(env);
406 assert(!arm_el_is_aa64(env, 3));
407 if (secure) {
408 return CP_ACCESS_TRAP_UNCATEGORIZED;
410 return CP_ACCESS_OK;
413 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
414 const ARMCPRegInfo *ri,
415 bool isread)
417 if (!arm_el_is_aa64(env, 3)) {
418 return access_el3_aa32ns(env, ri, isread);
420 return CP_ACCESS_OK;
423 /* Some secure-only AArch32 registers trap to EL3 if used from
424 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
425 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
426 * We assume that the .access field is set to PL1_RW.
428 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
429 const ARMCPRegInfo *ri,
430 bool isread)
432 if (arm_current_el(env) == 3) {
433 return CP_ACCESS_OK;
435 if (arm_is_secure_below_el3(env)) {
436 return CP_ACCESS_TRAP_EL3;
438 /* This will be EL1 NS and EL2 NS, which just UNDEF */
439 return CP_ACCESS_TRAP_UNCATEGORIZED;
442 /* Check for traps to "powerdown debug" registers, which are controlled
443 * by MDCR.TDOSA
445 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
446 bool isread)
448 int el = arm_current_el(env);
449 bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) ||
450 (env->cp15.mdcr_el2 & MDCR_TDE) ||
451 (arm_hcr_el2_eff(env) & HCR_TGE);
453 if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) {
454 return CP_ACCESS_TRAP_EL2;
456 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
457 return CP_ACCESS_TRAP_EL3;
459 return CP_ACCESS_OK;
462 /* Check for traps to "debug ROM" registers, which are controlled
463 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
465 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
466 bool isread)
468 int el = arm_current_el(env);
469 bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) ||
470 (env->cp15.mdcr_el2 & MDCR_TDE) ||
471 (arm_hcr_el2_eff(env) & HCR_TGE);
473 if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) {
474 return CP_ACCESS_TRAP_EL2;
476 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
477 return CP_ACCESS_TRAP_EL3;
479 return CP_ACCESS_OK;
482 /* Check for traps to general debug registers, which are controlled
483 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
485 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
486 bool isread)
488 int el = arm_current_el(env);
489 bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) ||
490 (env->cp15.mdcr_el2 & MDCR_TDE) ||
491 (arm_hcr_el2_eff(env) & HCR_TGE);
493 if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) {
494 return CP_ACCESS_TRAP_EL2;
496 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
497 return CP_ACCESS_TRAP_EL3;
499 return CP_ACCESS_OK;
502 /* Check for traps to performance monitor registers, which are controlled
503 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
505 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
506 bool isread)
508 int el = arm_current_el(env);
510 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
511 && !arm_is_secure_below_el3(env)) {
512 return CP_ACCESS_TRAP_EL2;
514 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
515 return CP_ACCESS_TRAP_EL3;
517 return CP_ACCESS_OK;
520 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
522 ARMCPU *cpu = arm_env_get_cpu(env);
524 raw_write(env, ri, value);
525 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
528 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
530 ARMCPU *cpu = arm_env_get_cpu(env);
532 if (raw_read(env, ri) != value) {
533 /* Unlike real hardware the qemu TLB uses virtual addresses,
534 * not modified virtual addresses, so this causes a TLB flush.
536 tlb_flush(CPU(cpu));
537 raw_write(env, ri, value);
541 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
542 uint64_t value)
544 ARMCPU *cpu = arm_env_get_cpu(env);
546 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
547 && !extended_addresses_enabled(env)) {
548 /* For VMSA (when not using the LPAE long descriptor page table
549 * format) this register includes the ASID, so do a TLB flush.
550 * For PMSA it is purely a process ID and no action is needed.
552 tlb_flush(CPU(cpu));
554 raw_write(env, ri, value);
557 /* IS variants of TLB operations must affect all cores */
558 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
559 uint64_t value)
561 CPUState *cs = ENV_GET_CPU(env);
563 tlb_flush_all_cpus_synced(cs);
566 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
567 uint64_t value)
569 CPUState *cs = ENV_GET_CPU(env);
571 tlb_flush_all_cpus_synced(cs);
574 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
575 uint64_t value)
577 CPUState *cs = ENV_GET_CPU(env);
579 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
582 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
583 uint64_t value)
585 CPUState *cs = ENV_GET_CPU(env);
587 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
591 * Non-IS variants of TLB operations are upgraded to
592 * IS versions if we are at NS EL1 and HCR_EL2.FB is set to
593 * force broadcast of these operations.
595 static bool tlb_force_broadcast(CPUARMState *env)
597 return (env->cp15.hcr_el2 & HCR_FB) &&
598 arm_current_el(env) == 1 && arm_is_secure_below_el3(env);
601 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
602 uint64_t value)
604 /* Invalidate all (TLBIALL) */
605 ARMCPU *cpu = arm_env_get_cpu(env);
607 if (tlb_force_broadcast(env)) {
608 tlbiall_is_write(env, NULL, value);
609 return;
612 tlb_flush(CPU(cpu));
615 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
616 uint64_t value)
618 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
619 ARMCPU *cpu = arm_env_get_cpu(env);
621 if (tlb_force_broadcast(env)) {
622 tlbimva_is_write(env, NULL, value);
623 return;
626 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
629 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
630 uint64_t value)
632 /* Invalidate by ASID (TLBIASID) */
633 ARMCPU *cpu = arm_env_get_cpu(env);
635 if (tlb_force_broadcast(env)) {
636 tlbiasid_is_write(env, NULL, value);
637 return;
640 tlb_flush(CPU(cpu));
643 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
644 uint64_t value)
646 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
647 ARMCPU *cpu = arm_env_get_cpu(env);
649 if (tlb_force_broadcast(env)) {
650 tlbimvaa_is_write(env, NULL, value);
651 return;
654 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
657 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
658 uint64_t value)
660 CPUState *cs = ENV_GET_CPU(env);
662 tlb_flush_by_mmuidx(cs,
663 ARMMMUIdxBit_S12NSE1 |
664 ARMMMUIdxBit_S12NSE0 |
665 ARMMMUIdxBit_S2NS);
668 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
669 uint64_t value)
671 CPUState *cs = ENV_GET_CPU(env);
673 tlb_flush_by_mmuidx_all_cpus_synced(cs,
674 ARMMMUIdxBit_S12NSE1 |
675 ARMMMUIdxBit_S12NSE0 |
676 ARMMMUIdxBit_S2NS);
679 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
680 uint64_t value)
682 /* Invalidate by IPA. This has to invalidate any structures that
683 * contain only stage 2 translation information, but does not need
684 * to apply to structures that contain combined stage 1 and stage 2
685 * translation information.
686 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
688 CPUState *cs = ENV_GET_CPU(env);
689 uint64_t pageaddr;
691 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
692 return;
695 pageaddr = sextract64(value << 12, 0, 40);
697 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
700 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
701 uint64_t value)
703 CPUState *cs = ENV_GET_CPU(env);
704 uint64_t pageaddr;
706 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
707 return;
710 pageaddr = sextract64(value << 12, 0, 40);
712 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
713 ARMMMUIdxBit_S2NS);
716 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
717 uint64_t value)
719 CPUState *cs = ENV_GET_CPU(env);
721 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
724 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
725 uint64_t value)
727 CPUState *cs = ENV_GET_CPU(env);
729 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
732 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
733 uint64_t value)
735 CPUState *cs = ENV_GET_CPU(env);
736 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
738 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
741 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
742 uint64_t value)
744 CPUState *cs = ENV_GET_CPU(env);
745 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
747 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
748 ARMMMUIdxBit_S1E2);
751 static const ARMCPRegInfo cp_reginfo[] = {
752 /* Define the secure and non-secure FCSE identifier CP registers
753 * separately because there is no secure bank in V8 (no _EL3). This allows
754 * the secure register to be properly reset and migrated. There is also no
755 * v8 EL1 version of the register so the non-secure instance stands alone.
757 { .name = "FCSEIDR",
758 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
759 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
760 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
761 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
762 { .name = "FCSEIDR_S",
763 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
764 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
765 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
766 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
767 /* Define the secure and non-secure context identifier CP registers
768 * separately because there is no secure bank in V8 (no _EL3). This allows
769 * the secure register to be properly reset and migrated. In the
770 * non-secure case, the 32-bit register will have reset and migration
771 * disabled during registration as it is handled by the 64-bit instance.
773 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
774 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
775 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
776 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
777 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
778 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
779 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
780 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
781 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
782 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
783 REGINFO_SENTINEL
786 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
787 /* NB: Some of these registers exist in v8 but with more precise
788 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
790 /* MMU Domain access control / MPU write buffer control */
791 { .name = "DACR",
792 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
793 .access = PL1_RW, .resetvalue = 0,
794 .writefn = dacr_write, .raw_writefn = raw_write,
795 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
796 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
797 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
798 * For v6 and v5, these mappings are overly broad.
800 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
801 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
802 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
803 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
804 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
805 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
806 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
807 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
808 /* Cache maintenance ops; some of this space may be overridden later. */
809 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
810 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
811 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
812 REGINFO_SENTINEL
815 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
816 /* Not all pre-v6 cores implemented this WFI, so this is slightly
817 * over-broad.
819 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
820 .access = PL1_W, .type = ARM_CP_WFI },
821 REGINFO_SENTINEL
824 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
825 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
826 * is UNPREDICTABLE; we choose to NOP as most implementations do).
828 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
829 .access = PL1_W, .type = ARM_CP_WFI },
830 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
831 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
832 * OMAPCP will override this space.
834 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
835 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
836 .resetvalue = 0 },
837 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
838 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
839 .resetvalue = 0 },
840 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
841 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
842 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
843 .resetvalue = 0 },
844 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
845 * implementing it as RAZ means the "debug architecture version" bits
846 * will read as a reserved value, which should cause Linux to not try
847 * to use the debug hardware.
849 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
850 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
851 /* MMU TLB control. Note that the wildcarding means we cover not just
852 * the unified TLB ops but also the dside/iside/inner-shareable variants.
854 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
855 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
856 .type = ARM_CP_NO_RAW },
857 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
858 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
859 .type = ARM_CP_NO_RAW },
860 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
861 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
862 .type = ARM_CP_NO_RAW },
863 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
864 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
865 .type = ARM_CP_NO_RAW },
866 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
867 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
868 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
869 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
870 REGINFO_SENTINEL
873 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
874 uint64_t value)
876 uint32_t mask = 0;
878 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
879 if (!arm_feature(env, ARM_FEATURE_V8)) {
880 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
881 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
882 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
884 if (arm_feature(env, ARM_FEATURE_VFP)) {
885 /* VFP coprocessor: cp10 & cp11 [23:20] */
886 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
888 if (!arm_feature(env, ARM_FEATURE_NEON)) {
889 /* ASEDIS [31] bit is RAO/WI */
890 value |= (1 << 31);
893 /* VFPv3 and upwards with NEON implement 32 double precision
894 * registers (D0-D31).
896 if (!arm_feature(env, ARM_FEATURE_NEON) ||
897 !arm_feature(env, ARM_FEATURE_VFP3)) {
898 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
899 value |= (1 << 30);
902 value &= mask;
904 env->cp15.cpacr_el1 = value;
907 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
909 /* Call cpacr_write() so that we reset with the correct RAO bits set
910 * for our CPU features.
912 cpacr_write(env, ri, 0);
915 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
916 bool isread)
918 if (arm_feature(env, ARM_FEATURE_V8)) {
919 /* Check if CPACR accesses are to be trapped to EL2 */
920 if (arm_current_el(env) == 1 &&
921 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
922 return CP_ACCESS_TRAP_EL2;
923 /* Check if CPACR accesses are to be trapped to EL3 */
924 } else if (arm_current_el(env) < 3 &&
925 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
926 return CP_ACCESS_TRAP_EL3;
930 return CP_ACCESS_OK;
933 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
934 bool isread)
936 /* Check if CPTR accesses are set to trap to EL3 */
937 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
938 return CP_ACCESS_TRAP_EL3;
941 return CP_ACCESS_OK;
944 static const ARMCPRegInfo v6_cp_reginfo[] = {
945 /* prefetch by MVA in v6, NOP in v7 */
946 { .name = "MVA_prefetch",
947 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
948 .access = PL1_W, .type = ARM_CP_NOP },
949 /* We need to break the TB after ISB to execute self-modifying code
950 * correctly and also to take any pending interrupts immediately.
951 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
953 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
954 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
955 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
956 .access = PL0_W, .type = ARM_CP_NOP },
957 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
958 .access = PL0_W, .type = ARM_CP_NOP },
959 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
960 .access = PL1_RW,
961 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
962 offsetof(CPUARMState, cp15.ifar_ns) },
963 .resetvalue = 0, },
964 /* Watchpoint Fault Address Register : should actually only be present
965 * for 1136, 1176, 11MPCore.
967 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
968 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
969 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
970 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
971 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
972 .resetfn = cpacr_reset, .writefn = cpacr_write },
973 REGINFO_SENTINEL
976 /* Definitions for the PMU registers */
977 #define PMCRN_MASK 0xf800
978 #define PMCRN_SHIFT 11
979 #define PMCRD 0x8
980 #define PMCRC 0x4
981 #define PMCRE 0x1
983 static inline uint32_t pmu_num_counters(CPUARMState *env)
985 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT;
988 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
989 static inline uint64_t pmu_counter_mask(CPUARMState *env)
991 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
994 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
995 bool isread)
997 /* Performance monitor registers user accessibility is controlled
998 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
999 * trapping to EL2 or EL3 for other accesses.
1001 int el = arm_current_el(env);
1003 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1004 return CP_ACCESS_TRAP;
1006 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
1007 && !arm_is_secure_below_el3(env)) {
1008 return CP_ACCESS_TRAP_EL2;
1010 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1011 return CP_ACCESS_TRAP_EL3;
1014 return CP_ACCESS_OK;
1017 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1018 const ARMCPRegInfo *ri,
1019 bool isread)
1021 /* ER: event counter read trap control */
1022 if (arm_feature(env, ARM_FEATURE_V8)
1023 && arm_current_el(env) == 0
1024 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1025 && isread) {
1026 return CP_ACCESS_OK;
1029 return pmreg_access(env, ri, isread);
1032 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1033 const ARMCPRegInfo *ri,
1034 bool isread)
1036 /* SW: software increment write trap control */
1037 if (arm_feature(env, ARM_FEATURE_V8)
1038 && arm_current_el(env) == 0
1039 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1040 && !isread) {
1041 return CP_ACCESS_OK;
1044 return pmreg_access(env, ri, isread);
1047 #ifndef CONFIG_USER_ONLY
1049 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1050 const ARMCPRegInfo *ri,
1051 bool isread)
1053 /* ER: event counter read trap control */
1054 if (arm_feature(env, ARM_FEATURE_V8)
1055 && arm_current_el(env) == 0
1056 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1057 return CP_ACCESS_OK;
1060 return pmreg_access(env, ri, isread);
1063 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1064 const ARMCPRegInfo *ri,
1065 bool isread)
1067 /* CR: cycle counter read trap control */
1068 if (arm_feature(env, ARM_FEATURE_V8)
1069 && arm_current_el(env) == 0
1070 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1071 && isread) {
1072 return CP_ACCESS_OK;
1075 return pmreg_access(env, ri, isread);
1078 static inline bool arm_ccnt_enabled(CPUARMState *env)
1080 /* This does not support checking PMCCFILTR_EL0 register */
1082 if (!(env->cp15.c9_pmcr & PMCRE) || !(env->cp15.c9_pmcnten & (1 << 31))) {
1083 return false;
1086 return true;
1089 void pmccntr_sync(CPUARMState *env)
1091 uint64_t temp_ticks;
1093 temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1094 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1096 if (env->cp15.c9_pmcr & PMCRD) {
1097 /* Increment once every 64 processor clock cycles */
1098 temp_ticks /= 64;
1101 if (arm_ccnt_enabled(env)) {
1102 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
1106 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1107 uint64_t value)
1109 pmccntr_sync(env);
1111 if (value & PMCRC) {
1112 /* The counter has been reset */
1113 env->cp15.c15_ccnt = 0;
1116 /* only the DP, X, D and E bits are writable */
1117 env->cp15.c9_pmcr &= ~0x39;
1118 env->cp15.c9_pmcr |= (value & 0x39);
1120 pmccntr_sync(env);
1123 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1125 uint64_t total_ticks;
1127 if (!arm_ccnt_enabled(env)) {
1128 /* Counter is disabled, do not change value */
1129 return env->cp15.c15_ccnt;
1132 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1133 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1135 if (env->cp15.c9_pmcr & PMCRD) {
1136 /* Increment once every 64 processor clock cycles */
1137 total_ticks /= 64;
1139 return total_ticks - env->cp15.c15_ccnt;
1142 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1143 uint64_t value)
1145 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1146 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1147 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1148 * accessed.
1150 env->cp15.c9_pmselr = value & 0x1f;
1153 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1154 uint64_t value)
1156 uint64_t total_ticks;
1158 if (!arm_ccnt_enabled(env)) {
1159 /* Counter is disabled, set the absolute value */
1160 env->cp15.c15_ccnt = value;
1161 return;
1164 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1165 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1167 if (env->cp15.c9_pmcr & PMCRD) {
1168 /* Increment once every 64 processor clock cycles */
1169 total_ticks /= 64;
1171 env->cp15.c15_ccnt = total_ticks - value;
1174 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1175 uint64_t value)
1177 uint64_t cur_val = pmccntr_read(env, NULL);
1179 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1182 #else /* CONFIG_USER_ONLY */
1184 void pmccntr_sync(CPUARMState *env)
1188 #endif
1190 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1191 uint64_t value)
1193 pmccntr_sync(env);
1194 env->cp15.pmccfiltr_el0 = value & 0xfc000000;
1195 pmccntr_sync(env);
1198 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1199 uint64_t value)
1201 value &= pmu_counter_mask(env);
1202 env->cp15.c9_pmcnten |= value;
1205 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1206 uint64_t value)
1208 value &= pmu_counter_mask(env);
1209 env->cp15.c9_pmcnten &= ~value;
1212 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1213 uint64_t value)
1215 value &= pmu_counter_mask(env);
1216 env->cp15.c9_pmovsr &= ~value;
1219 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1220 uint64_t value)
1222 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1223 * PMSELR value is equal to or greater than the number of implemented
1224 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1226 if (env->cp15.c9_pmselr == 0x1f) {
1227 pmccfiltr_write(env, ri, value);
1231 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1233 /* We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1234 * are CONSTRAINED UNPREDICTABLE. See comments in pmxevtyper_write().
1236 if (env->cp15.c9_pmselr == 0x1f) {
1237 return env->cp15.pmccfiltr_el0;
1238 } else {
1239 return 0;
1243 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1244 uint64_t value)
1246 if (arm_feature(env, ARM_FEATURE_V8)) {
1247 env->cp15.c9_pmuserenr = value & 0xf;
1248 } else {
1249 env->cp15.c9_pmuserenr = value & 1;
1253 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1254 uint64_t value)
1256 /* We have no event counters so only the C bit can be changed */
1257 value &= pmu_counter_mask(env);
1258 env->cp15.c9_pminten |= value;
1261 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1262 uint64_t value)
1264 value &= pmu_counter_mask(env);
1265 env->cp15.c9_pminten &= ~value;
1268 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1269 uint64_t value)
1271 /* Note that even though the AArch64 view of this register has bits
1272 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1273 * architectural requirements for bits which are RES0 only in some
1274 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1275 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1277 raw_write(env, ri, value & ~0x1FULL);
1280 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1282 /* Begin with base v8.0 state. */
1283 uint32_t valid_mask = 0x3fff;
1284 ARMCPU *cpu = arm_env_get_cpu(env);
1286 if (arm_el_is_aa64(env, 3)) {
1287 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */
1288 valid_mask &= ~SCR_NET;
1289 } else {
1290 valid_mask &= ~(SCR_RW | SCR_ST);
1293 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1294 valid_mask &= ~SCR_HCE;
1296 /* On ARMv7, SMD (or SCD as it is called in v7) is only
1297 * supported if EL2 exists. The bit is UNK/SBZP when
1298 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1299 * when EL2 is unavailable.
1300 * On ARMv8, this bit is always available.
1302 if (arm_feature(env, ARM_FEATURE_V7) &&
1303 !arm_feature(env, ARM_FEATURE_V8)) {
1304 valid_mask &= ~SCR_SMD;
1307 if (cpu_isar_feature(aa64_lor, cpu)) {
1308 valid_mask |= SCR_TLOR;
1311 /* Clear all-context RES0 bits. */
1312 value &= valid_mask;
1313 raw_write(env, ri, value);
1316 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1318 ARMCPU *cpu = arm_env_get_cpu(env);
1320 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1321 * bank
1323 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1324 ri->secure & ARM_CP_SECSTATE_S);
1326 return cpu->ccsidr[index];
1329 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1330 uint64_t value)
1332 raw_write(env, ri, value & 0xf);
1335 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1337 CPUState *cs = ENV_GET_CPU(env);
1338 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
1339 uint64_t ret = 0;
1341 if (hcr_el2 & HCR_IMO) {
1342 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
1343 ret |= CPSR_I;
1345 } else {
1346 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1347 ret |= CPSR_I;
1351 if (hcr_el2 & HCR_FMO) {
1352 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
1353 ret |= CPSR_F;
1355 } else {
1356 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1357 ret |= CPSR_F;
1361 /* External aborts are not possible in QEMU so A bit is always clear */
1362 return ret;
1365 static const ARMCPRegInfo v7_cp_reginfo[] = {
1366 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1367 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1368 .access = PL1_W, .type = ARM_CP_NOP },
1369 /* Performance monitors are implementation defined in v7,
1370 * but with an ARM recommended set of registers, which we
1371 * follow (although we don't actually implement any counters)
1373 * Performance registers fall into three categories:
1374 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1375 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1376 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1377 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1378 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1380 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1381 .access = PL0_RW, .type = ARM_CP_ALIAS,
1382 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1383 .writefn = pmcntenset_write,
1384 .accessfn = pmreg_access,
1385 .raw_writefn = raw_write },
1386 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1387 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1388 .access = PL0_RW, .accessfn = pmreg_access,
1389 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1390 .writefn = pmcntenset_write, .raw_writefn = raw_write },
1391 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1392 .access = PL0_RW,
1393 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1394 .accessfn = pmreg_access,
1395 .writefn = pmcntenclr_write,
1396 .type = ARM_CP_ALIAS },
1397 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1398 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1399 .access = PL0_RW, .accessfn = pmreg_access,
1400 .type = ARM_CP_ALIAS,
1401 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1402 .writefn = pmcntenclr_write },
1403 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1404 .access = PL0_RW,
1405 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
1406 .accessfn = pmreg_access,
1407 .writefn = pmovsr_write,
1408 .raw_writefn = raw_write },
1409 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1410 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1411 .access = PL0_RW, .accessfn = pmreg_access,
1412 .type = ARM_CP_ALIAS,
1413 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1414 .writefn = pmovsr_write,
1415 .raw_writefn = raw_write },
1416 /* Unimplemented so WI. */
1417 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
1418 .access = PL0_W, .accessfn = pmreg_access_swinc, .type = ARM_CP_NOP },
1419 #ifndef CONFIG_USER_ONLY
1420 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
1421 .access = PL0_RW, .type = ARM_CP_ALIAS,
1422 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
1423 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
1424 .raw_writefn = raw_write},
1425 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
1426 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
1427 .access = PL0_RW, .accessfn = pmreg_access_selr,
1428 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
1429 .writefn = pmselr_write, .raw_writefn = raw_write, },
1430 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
1431 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
1432 .readfn = pmccntr_read, .writefn = pmccntr_write32,
1433 .accessfn = pmreg_access_ccntr },
1434 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
1435 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
1436 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
1437 .type = ARM_CP_IO,
1438 .readfn = pmccntr_read, .writefn = pmccntr_write, },
1439 #endif
1440 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
1441 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
1442 .writefn = pmccfiltr_write,
1443 .access = PL0_RW, .accessfn = pmreg_access,
1444 .type = ARM_CP_IO,
1445 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
1446 .resetvalue = 0, },
1447 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
1448 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1449 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1450 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
1451 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
1452 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1453 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1454 /* Unimplemented, RAZ/WI. */
1455 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
1456 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
1457 .accessfn = pmreg_access_xevcntr },
1458 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
1459 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
1460 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
1461 .resetvalue = 0,
1462 .writefn = pmuserenr_write, .raw_writefn = raw_write },
1463 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
1464 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
1465 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1466 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1467 .resetvalue = 0,
1468 .writefn = pmuserenr_write, .raw_writefn = raw_write },
1469 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
1470 .access = PL1_RW, .accessfn = access_tpm,
1471 .type = ARM_CP_ALIAS | ARM_CP_IO,
1472 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
1473 .resetvalue = 0,
1474 .writefn = pmintenset_write, .raw_writefn = raw_write },
1475 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
1476 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
1477 .access = PL1_RW, .accessfn = access_tpm,
1478 .type = ARM_CP_IO,
1479 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1480 .writefn = pmintenset_write, .raw_writefn = raw_write,
1481 .resetvalue = 0x0 },
1482 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
1483 .access = PL1_RW, .accessfn = access_tpm,
1484 .type = ARM_CP_ALIAS | ARM_CP_IO,
1485 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1486 .writefn = pmintenclr_write, },
1487 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
1488 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
1489 .access = PL1_RW, .accessfn = access_tpm,
1490 .type = ARM_CP_ALIAS | ARM_CP_IO,
1491 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1492 .writefn = pmintenclr_write },
1493 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
1494 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
1495 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
1496 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
1497 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
1498 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
1499 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
1500 offsetof(CPUARMState, cp15.csselr_ns) } },
1501 /* Auxiliary ID register: this actually has an IMPDEF value but for now
1502 * just RAZ for all cores:
1504 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
1505 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
1506 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1507 /* Auxiliary fault status registers: these also are IMPDEF, and we
1508 * choose to RAZ/WI for all cores.
1510 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
1511 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
1512 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1513 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
1514 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
1515 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1516 /* MAIR can just read-as-written because we don't implement caches
1517 * and so don't need to care about memory attributes.
1519 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
1520 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
1521 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
1522 .resetvalue = 0 },
1523 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
1524 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
1525 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
1526 .resetvalue = 0 },
1527 /* For non-long-descriptor page tables these are PRRR and NMRR;
1528 * regardless they still act as reads-as-written for QEMU.
1530 /* MAIR0/1 are defined separately from their 64-bit counterpart which
1531 * allows them to assign the correct fieldoffset based on the endianness
1532 * handled in the field definitions.
1534 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
1535 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
1536 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
1537 offsetof(CPUARMState, cp15.mair0_ns) },
1538 .resetfn = arm_cp_reset_ignore },
1539 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
1540 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
1541 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
1542 offsetof(CPUARMState, cp15.mair1_ns) },
1543 .resetfn = arm_cp_reset_ignore },
1544 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
1545 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
1546 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
1547 /* 32 bit ITLB invalidates */
1548 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
1549 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1550 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
1551 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1552 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
1553 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1554 /* 32 bit DTLB invalidates */
1555 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
1556 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1557 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
1558 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1559 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
1560 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1561 /* 32 bit TLB invalidates */
1562 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
1563 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1564 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
1565 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1566 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
1567 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1568 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
1569 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
1570 REGINFO_SENTINEL
1573 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
1574 /* 32 bit TLB invalidates, Inner Shareable */
1575 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
1576 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
1577 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
1578 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
1579 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
1580 .type = ARM_CP_NO_RAW, .access = PL1_W,
1581 .writefn = tlbiasid_is_write },
1582 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
1583 .type = ARM_CP_NO_RAW, .access = PL1_W,
1584 .writefn = tlbimvaa_is_write },
1585 REGINFO_SENTINEL
1588 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1589 uint64_t value)
1591 value &= 1;
1592 env->teecr = value;
1595 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1596 bool isread)
1598 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
1599 return CP_ACCESS_TRAP;
1601 return CP_ACCESS_OK;
1604 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
1605 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
1606 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
1607 .resetvalue = 0,
1608 .writefn = teecr_write },
1609 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
1610 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
1611 .accessfn = teehbr_access, .resetvalue = 0 },
1612 REGINFO_SENTINEL
1615 static const ARMCPRegInfo v6k_cp_reginfo[] = {
1616 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
1617 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
1618 .access = PL0_RW,
1619 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
1620 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
1621 .access = PL0_RW,
1622 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
1623 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
1624 .resetfn = arm_cp_reset_ignore },
1625 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
1626 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
1627 .access = PL0_R|PL1_W,
1628 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
1629 .resetvalue = 0},
1630 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
1631 .access = PL0_R|PL1_W,
1632 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
1633 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
1634 .resetfn = arm_cp_reset_ignore },
1635 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
1636 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
1637 .access = PL1_RW,
1638 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
1639 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
1640 .access = PL1_RW,
1641 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
1642 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
1643 .resetvalue = 0 },
1644 REGINFO_SENTINEL
1647 #ifndef CONFIG_USER_ONLY
1649 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
1650 bool isread)
1652 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
1653 * Writable only at the highest implemented exception level.
1655 int el = arm_current_el(env);
1657 switch (el) {
1658 case 0:
1659 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
1660 return CP_ACCESS_TRAP;
1662 break;
1663 case 1:
1664 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
1665 arm_is_secure_below_el3(env)) {
1666 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
1667 return CP_ACCESS_TRAP_UNCATEGORIZED;
1669 break;
1670 case 2:
1671 case 3:
1672 break;
1675 if (!isread && el < arm_highest_el(env)) {
1676 return CP_ACCESS_TRAP_UNCATEGORIZED;
1679 return CP_ACCESS_OK;
1682 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
1683 bool isread)
1685 unsigned int cur_el = arm_current_el(env);
1686 bool secure = arm_is_secure(env);
1688 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1689 if (cur_el == 0 &&
1690 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
1691 return CP_ACCESS_TRAP;
1694 if (arm_feature(env, ARM_FEATURE_EL2) &&
1695 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1696 !extract32(env->cp15.cnthctl_el2, 0, 1)) {
1697 return CP_ACCESS_TRAP_EL2;
1699 return CP_ACCESS_OK;
1702 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
1703 bool isread)
1705 unsigned int cur_el = arm_current_el(env);
1706 bool secure = arm_is_secure(env);
1708 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1709 * EL0[PV]TEN is zero.
1711 if (cur_el == 0 &&
1712 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
1713 return CP_ACCESS_TRAP;
1716 if (arm_feature(env, ARM_FEATURE_EL2) &&
1717 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1718 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
1719 return CP_ACCESS_TRAP_EL2;
1721 return CP_ACCESS_OK;
1724 static CPAccessResult gt_pct_access(CPUARMState *env,
1725 const ARMCPRegInfo *ri,
1726 bool isread)
1728 return gt_counter_access(env, GTIMER_PHYS, isread);
1731 static CPAccessResult gt_vct_access(CPUARMState *env,
1732 const ARMCPRegInfo *ri,
1733 bool isread)
1735 return gt_counter_access(env, GTIMER_VIRT, isread);
1738 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1739 bool isread)
1741 return gt_timer_access(env, GTIMER_PHYS, isread);
1744 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1745 bool isread)
1747 return gt_timer_access(env, GTIMER_VIRT, isread);
1750 static CPAccessResult gt_stimer_access(CPUARMState *env,
1751 const ARMCPRegInfo *ri,
1752 bool isread)
1754 /* The AArch64 register view of the secure physical timer is
1755 * always accessible from EL3, and configurably accessible from
1756 * Secure EL1.
1758 switch (arm_current_el(env)) {
1759 case 1:
1760 if (!arm_is_secure(env)) {
1761 return CP_ACCESS_TRAP;
1763 if (!(env->cp15.scr_el3 & SCR_ST)) {
1764 return CP_ACCESS_TRAP_EL3;
1766 return CP_ACCESS_OK;
1767 case 0:
1768 case 2:
1769 return CP_ACCESS_TRAP;
1770 case 3:
1771 return CP_ACCESS_OK;
1772 default:
1773 g_assert_not_reached();
1777 static uint64_t gt_get_countervalue(CPUARMState *env)
1779 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
1782 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
1784 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
1786 if (gt->ctl & 1) {
1787 /* Timer enabled: calculate and set current ISTATUS, irq, and
1788 * reset timer to when ISTATUS next has to change
1790 uint64_t offset = timeridx == GTIMER_VIRT ?
1791 cpu->env.cp15.cntvoff_el2 : 0;
1792 uint64_t count = gt_get_countervalue(&cpu->env);
1793 /* Note that this must be unsigned 64 bit arithmetic: */
1794 int istatus = count - offset >= gt->cval;
1795 uint64_t nexttick;
1796 int irqstate;
1798 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
1800 irqstate = (istatus && !(gt->ctl & 2));
1801 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1803 if (istatus) {
1804 /* Next transition is when count rolls back over to zero */
1805 nexttick = UINT64_MAX;
1806 } else {
1807 /* Next transition is when we hit cval */
1808 nexttick = gt->cval + offset;
1810 /* Note that the desired next expiry time might be beyond the
1811 * signed-64-bit range of a QEMUTimer -- in this case we just
1812 * set the timer for as far in the future as possible. When the
1813 * timer expires we will reset the timer for any remaining period.
1815 if (nexttick > INT64_MAX / GTIMER_SCALE) {
1816 nexttick = INT64_MAX / GTIMER_SCALE;
1818 timer_mod(cpu->gt_timer[timeridx], nexttick);
1819 trace_arm_gt_recalc(timeridx, irqstate, nexttick);
1820 } else {
1821 /* Timer disabled: ISTATUS and timer output always clear */
1822 gt->ctl &= ~4;
1823 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
1824 timer_del(cpu->gt_timer[timeridx]);
1825 trace_arm_gt_recalc_disabled(timeridx);
1829 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
1830 int timeridx)
1832 ARMCPU *cpu = arm_env_get_cpu(env);
1834 timer_del(cpu->gt_timer[timeridx]);
1837 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1839 return gt_get_countervalue(env);
1842 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1844 return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
1847 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1848 int timeridx,
1849 uint64_t value)
1851 trace_arm_gt_cval_write(timeridx, value);
1852 env->cp15.c14_timer[timeridx].cval = value;
1853 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1856 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
1857 int timeridx)
1859 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1861 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
1862 (gt_get_countervalue(env) - offset));
1865 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1866 int timeridx,
1867 uint64_t value)
1869 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1871 trace_arm_gt_tval_write(timeridx, value);
1872 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
1873 sextract64(value, 0, 32);
1874 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1877 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1878 int timeridx,
1879 uint64_t value)
1881 ARMCPU *cpu = arm_env_get_cpu(env);
1882 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
1884 trace_arm_gt_ctl_write(timeridx, value);
1885 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
1886 if ((oldval ^ value) & 1) {
1887 /* Enable toggled */
1888 gt_recalc_timer(cpu, timeridx);
1889 } else if ((oldval ^ value) & 2) {
1890 /* IMASK toggled: don't need to recalculate,
1891 * just set the interrupt line based on ISTATUS
1893 int irqstate = (oldval & 4) && !(value & 2);
1895 trace_arm_gt_imask_toggle(timeridx, irqstate);
1896 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1900 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1902 gt_timer_reset(env, ri, GTIMER_PHYS);
1905 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1906 uint64_t value)
1908 gt_cval_write(env, ri, GTIMER_PHYS, value);
1911 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1913 return gt_tval_read(env, ri, GTIMER_PHYS);
1916 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1917 uint64_t value)
1919 gt_tval_write(env, ri, GTIMER_PHYS, value);
1922 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1923 uint64_t value)
1925 gt_ctl_write(env, ri, GTIMER_PHYS, value);
1928 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1930 gt_timer_reset(env, ri, GTIMER_VIRT);
1933 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1934 uint64_t value)
1936 gt_cval_write(env, ri, GTIMER_VIRT, value);
1939 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1941 return gt_tval_read(env, ri, GTIMER_VIRT);
1944 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1945 uint64_t value)
1947 gt_tval_write(env, ri, GTIMER_VIRT, value);
1950 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1951 uint64_t value)
1953 gt_ctl_write(env, ri, GTIMER_VIRT, value);
1956 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
1957 uint64_t value)
1959 ARMCPU *cpu = arm_env_get_cpu(env);
1961 trace_arm_gt_cntvoff_write(value);
1962 raw_write(env, ri, value);
1963 gt_recalc_timer(cpu, GTIMER_VIRT);
1966 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1968 gt_timer_reset(env, ri, GTIMER_HYP);
1971 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1972 uint64_t value)
1974 gt_cval_write(env, ri, GTIMER_HYP, value);
1977 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1979 return gt_tval_read(env, ri, GTIMER_HYP);
1982 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1983 uint64_t value)
1985 gt_tval_write(env, ri, GTIMER_HYP, value);
1988 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1989 uint64_t value)
1991 gt_ctl_write(env, ri, GTIMER_HYP, value);
1994 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1996 gt_timer_reset(env, ri, GTIMER_SEC);
1999 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2000 uint64_t value)
2002 gt_cval_write(env, ri, GTIMER_SEC, value);
2005 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2007 return gt_tval_read(env, ri, GTIMER_SEC);
2010 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2011 uint64_t value)
2013 gt_tval_write(env, ri, GTIMER_SEC, value);
2016 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2017 uint64_t value)
2019 gt_ctl_write(env, ri, GTIMER_SEC, value);
2022 void arm_gt_ptimer_cb(void *opaque)
2024 ARMCPU *cpu = opaque;
2026 gt_recalc_timer(cpu, GTIMER_PHYS);
2029 void arm_gt_vtimer_cb(void *opaque)
2031 ARMCPU *cpu = opaque;
2033 gt_recalc_timer(cpu, GTIMER_VIRT);
2036 void arm_gt_htimer_cb(void *opaque)
2038 ARMCPU *cpu = opaque;
2040 gt_recalc_timer(cpu, GTIMER_HYP);
2043 void arm_gt_stimer_cb(void *opaque)
2045 ARMCPU *cpu = opaque;
2047 gt_recalc_timer(cpu, GTIMER_SEC);
2050 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2051 /* Note that CNTFRQ is purely reads-as-written for the benefit
2052 * of software; writing it doesn't actually change the timer frequency.
2053 * Our reset value matches the fixed frequency we implement the timer at.
2055 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
2056 .type = ARM_CP_ALIAS,
2057 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2058 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
2060 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2061 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2062 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2063 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2064 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
2066 /* overall control: mostly access permissions */
2067 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
2068 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
2069 .access = PL1_RW,
2070 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
2071 .resetvalue = 0,
2073 /* per-timer control */
2074 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2075 .secure = ARM_CP_SECSTATE_NS,
2076 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
2077 .accessfn = gt_ptimer_access,
2078 .fieldoffset = offsetoflow32(CPUARMState,
2079 cp15.c14_timer[GTIMER_PHYS].ctl),
2080 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
2082 { .name = "CNTP_CTL_S",
2083 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2084 .secure = ARM_CP_SECSTATE_S,
2085 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
2086 .accessfn = gt_ptimer_access,
2087 .fieldoffset = offsetoflow32(CPUARMState,
2088 cp15.c14_timer[GTIMER_SEC].ctl),
2089 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2091 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
2092 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
2093 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
2094 .accessfn = gt_ptimer_access,
2095 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
2096 .resetvalue = 0,
2097 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
2099 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
2100 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
2101 .accessfn = gt_vtimer_access,
2102 .fieldoffset = offsetoflow32(CPUARMState,
2103 cp15.c14_timer[GTIMER_VIRT].ctl),
2104 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
2106 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
2107 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
2108 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
2109 .accessfn = gt_vtimer_access,
2110 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
2111 .resetvalue = 0,
2112 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
2114 /* TimerValue views: a 32 bit downcounting view of the underlying state */
2115 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2116 .secure = ARM_CP_SECSTATE_NS,
2117 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2118 .accessfn = gt_ptimer_access,
2119 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2121 { .name = "CNTP_TVAL_S",
2122 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2123 .secure = ARM_CP_SECSTATE_S,
2124 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2125 .accessfn = gt_ptimer_access,
2126 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
2128 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2129 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
2130 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2131 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
2132 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2134 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
2135 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2136 .accessfn = gt_vtimer_access,
2137 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2139 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2140 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
2141 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2142 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
2143 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2145 /* The counter itself */
2146 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
2147 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2148 .accessfn = gt_pct_access,
2149 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
2151 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
2152 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
2153 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2154 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
2156 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
2157 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2158 .accessfn = gt_vct_access,
2159 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
2161 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2162 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2163 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2164 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
2166 /* Comparison value, indicating when the timer goes off */
2167 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
2168 .secure = ARM_CP_SECSTATE_NS,
2169 .access = PL1_RW | PL0_R,
2170 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2171 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2172 .accessfn = gt_ptimer_access,
2173 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2175 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
2176 .secure = ARM_CP_SECSTATE_S,
2177 .access = PL1_RW | PL0_R,
2178 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2179 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2180 .accessfn = gt_ptimer_access,
2181 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2183 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2184 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
2185 .access = PL1_RW | PL0_R,
2186 .type = ARM_CP_IO,
2187 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2188 .resetvalue = 0, .accessfn = gt_ptimer_access,
2189 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2191 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
2192 .access = PL1_RW | PL0_R,
2193 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2194 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2195 .accessfn = gt_vtimer_access,
2196 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2198 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2199 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
2200 .access = PL1_RW | PL0_R,
2201 .type = ARM_CP_IO,
2202 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2203 .resetvalue = 0, .accessfn = gt_vtimer_access,
2204 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2206 /* Secure timer -- this is actually restricted to only EL3
2207 * and configurably Secure-EL1 via the accessfn.
2209 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
2210 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
2211 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
2212 .accessfn = gt_stimer_access,
2213 .readfn = gt_sec_tval_read,
2214 .writefn = gt_sec_tval_write,
2215 .resetfn = gt_sec_timer_reset,
2217 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
2218 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
2219 .type = ARM_CP_IO, .access = PL1_RW,
2220 .accessfn = gt_stimer_access,
2221 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
2222 .resetvalue = 0,
2223 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2225 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
2226 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
2227 .type = ARM_CP_IO, .access = PL1_RW,
2228 .accessfn = gt_stimer_access,
2229 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2230 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2232 REGINFO_SENTINEL
2235 #else
2237 /* In user-mode most of the generic timer registers are inaccessible
2238 * however modern kernels (4.12+) allow access to cntvct_el0
2241 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2243 /* Currently we have no support for QEMUTimer in linux-user so we
2244 * can't call gt_get_countervalue(env), instead we directly
2245 * call the lower level functions.
2247 return cpu_get_clock() / GTIMER_SCALE;
2250 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2251 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2252 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2253 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
2254 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2255 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
2257 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2258 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2259 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2260 .readfn = gt_virt_cnt_read,
2262 REGINFO_SENTINEL
2265 #endif
2267 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2269 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2270 raw_write(env, ri, value);
2271 } else if (arm_feature(env, ARM_FEATURE_V7)) {
2272 raw_write(env, ri, value & 0xfffff6ff);
2273 } else {
2274 raw_write(env, ri, value & 0xfffff1ff);
2278 #ifndef CONFIG_USER_ONLY
2279 /* get_phys_addr() isn't present for user-mode-only targets */
2281 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
2282 bool isread)
2284 if (ri->opc2 & 4) {
2285 /* The ATS12NSO* operations must trap to EL3 if executed in
2286 * Secure EL1 (which can only happen if EL3 is AArch64).
2287 * They are simply UNDEF if executed from NS EL1.
2288 * They function normally from EL2 or EL3.
2290 if (arm_current_el(env) == 1) {
2291 if (arm_is_secure_below_el3(env)) {
2292 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
2294 return CP_ACCESS_TRAP_UNCATEGORIZED;
2297 return CP_ACCESS_OK;
2300 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
2301 MMUAccessType access_type, ARMMMUIdx mmu_idx)
2303 hwaddr phys_addr;
2304 target_ulong page_size;
2305 int prot;
2306 bool ret;
2307 uint64_t par64;
2308 bool format64 = false;
2309 MemTxAttrs attrs = {};
2310 ARMMMUFaultInfo fi = {};
2311 ARMCacheAttrs cacheattrs = {};
2313 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
2314 &prot, &page_size, &fi, &cacheattrs);
2316 if (is_a64(env)) {
2317 format64 = true;
2318 } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
2320 * ATS1Cxx:
2321 * * TTBCR.EAE determines whether the result is returned using the
2322 * 32-bit or the 64-bit PAR format
2323 * * Instructions executed in Hyp mode always use the 64bit format
2325 * ATS1S2NSOxx uses the 64bit format if any of the following is true:
2326 * * The Non-secure TTBCR.EAE bit is set to 1
2327 * * The implementation includes EL2, and the value of HCR.VM is 1
2329 * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
2331 * ATS1Hx always uses the 64bit format.
2333 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
2335 if (arm_feature(env, ARM_FEATURE_EL2)) {
2336 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
2337 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
2338 } else {
2339 format64 |= arm_current_el(env) == 2;
2344 if (format64) {
2345 /* Create a 64-bit PAR */
2346 par64 = (1 << 11); /* LPAE bit always set */
2347 if (!ret) {
2348 par64 |= phys_addr & ~0xfffULL;
2349 if (!attrs.secure) {
2350 par64 |= (1 << 9); /* NS */
2352 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
2353 par64 |= cacheattrs.shareability << 7; /* SH */
2354 } else {
2355 uint32_t fsr = arm_fi_to_lfsc(&fi);
2357 par64 |= 1; /* F */
2358 par64 |= (fsr & 0x3f) << 1; /* FS */
2359 if (fi.stage2) {
2360 par64 |= (1 << 9); /* S */
2362 if (fi.s1ptw) {
2363 par64 |= (1 << 8); /* PTW */
2366 } else {
2367 /* fsr is a DFSR/IFSR value for the short descriptor
2368 * translation table format (with WnR always clear).
2369 * Convert it to a 32-bit PAR.
2371 if (!ret) {
2372 /* We do not set any attribute bits in the PAR */
2373 if (page_size == (1 << 24)
2374 && arm_feature(env, ARM_FEATURE_V7)) {
2375 par64 = (phys_addr & 0xff000000) | (1 << 1);
2376 } else {
2377 par64 = phys_addr & 0xfffff000;
2379 if (!attrs.secure) {
2380 par64 |= (1 << 9); /* NS */
2382 } else {
2383 uint32_t fsr = arm_fi_to_sfsc(&fi);
2385 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
2386 ((fsr & 0xf) << 1) | 1;
2389 return par64;
2392 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2394 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2395 uint64_t par64;
2396 ARMMMUIdx mmu_idx;
2397 int el = arm_current_el(env);
2398 bool secure = arm_is_secure_below_el3(env);
2400 switch (ri->opc2 & 6) {
2401 case 0:
2402 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
2403 switch (el) {
2404 case 3:
2405 mmu_idx = ARMMMUIdx_S1E3;
2406 break;
2407 case 2:
2408 mmu_idx = ARMMMUIdx_S1NSE1;
2409 break;
2410 case 1:
2411 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2412 break;
2413 default:
2414 g_assert_not_reached();
2416 break;
2417 case 2:
2418 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
2419 switch (el) {
2420 case 3:
2421 mmu_idx = ARMMMUIdx_S1SE0;
2422 break;
2423 case 2:
2424 mmu_idx = ARMMMUIdx_S1NSE0;
2425 break;
2426 case 1:
2427 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2428 break;
2429 default:
2430 g_assert_not_reached();
2432 break;
2433 case 4:
2434 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
2435 mmu_idx = ARMMMUIdx_S12NSE1;
2436 break;
2437 case 6:
2438 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
2439 mmu_idx = ARMMMUIdx_S12NSE0;
2440 break;
2441 default:
2442 g_assert_not_reached();
2445 par64 = do_ats_write(env, value, access_type, mmu_idx);
2447 A32_BANKED_CURRENT_REG_SET(env, par, par64);
2450 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
2451 uint64_t value)
2453 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2454 uint64_t par64;
2456 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S1E2);
2458 A32_BANKED_CURRENT_REG_SET(env, par, par64);
2461 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
2462 bool isread)
2464 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
2465 return CP_ACCESS_TRAP;
2467 return CP_ACCESS_OK;
2470 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
2471 uint64_t value)
2473 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2474 ARMMMUIdx mmu_idx;
2475 int secure = arm_is_secure_below_el3(env);
2477 switch (ri->opc2 & 6) {
2478 case 0:
2479 switch (ri->opc1) {
2480 case 0: /* AT S1E1R, AT S1E1W */
2481 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2482 break;
2483 case 4: /* AT S1E2R, AT S1E2W */
2484 mmu_idx = ARMMMUIdx_S1E2;
2485 break;
2486 case 6: /* AT S1E3R, AT S1E3W */
2487 mmu_idx = ARMMMUIdx_S1E3;
2488 break;
2489 default:
2490 g_assert_not_reached();
2492 break;
2493 case 2: /* AT S1E0R, AT S1E0W */
2494 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2495 break;
2496 case 4: /* AT S12E1R, AT S12E1W */
2497 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
2498 break;
2499 case 6: /* AT S12E0R, AT S12E0W */
2500 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
2501 break;
2502 default:
2503 g_assert_not_reached();
2506 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
2508 #endif
2510 static const ARMCPRegInfo vapa_cp_reginfo[] = {
2511 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
2512 .access = PL1_RW, .resetvalue = 0,
2513 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
2514 offsetoflow32(CPUARMState, cp15.par_ns) },
2515 .writefn = par_write },
2516 #ifndef CONFIG_USER_ONLY
2517 /* This underdecoding is safe because the reginfo is NO_RAW. */
2518 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
2519 .access = PL1_W, .accessfn = ats_access,
2520 .writefn = ats_write, .type = ARM_CP_NO_RAW },
2521 #endif
2522 REGINFO_SENTINEL
2525 /* Return basic MPU access permission bits. */
2526 static uint32_t simple_mpu_ap_bits(uint32_t val)
2528 uint32_t ret;
2529 uint32_t mask;
2530 int i;
2531 ret = 0;
2532 mask = 3;
2533 for (i = 0; i < 16; i += 2) {
2534 ret |= (val >> i) & mask;
2535 mask <<= 2;
2537 return ret;
2540 /* Pad basic MPU access permission bits to extended format. */
2541 static uint32_t extended_mpu_ap_bits(uint32_t val)
2543 uint32_t ret;
2544 uint32_t mask;
2545 int i;
2546 ret = 0;
2547 mask = 3;
2548 for (i = 0; i < 16; i += 2) {
2549 ret |= (val & mask) << i;
2550 mask <<= 2;
2552 return ret;
2555 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2556 uint64_t value)
2558 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
2561 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2563 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
2566 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2567 uint64_t value)
2569 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
2572 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2574 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
2577 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
2579 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2581 if (!u32p) {
2582 return 0;
2585 u32p += env->pmsav7.rnr[M_REG_NS];
2586 return *u32p;
2589 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
2590 uint64_t value)
2592 ARMCPU *cpu = arm_env_get_cpu(env);
2593 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2595 if (!u32p) {
2596 return;
2599 u32p += env->pmsav7.rnr[M_REG_NS];
2600 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
2601 *u32p = value;
2604 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2605 uint64_t value)
2607 ARMCPU *cpu = arm_env_get_cpu(env);
2608 uint32_t nrgs = cpu->pmsav7_dregion;
2610 if (value >= nrgs) {
2611 qemu_log_mask(LOG_GUEST_ERROR,
2612 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
2613 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
2614 return;
2617 raw_write(env, ri, value);
2620 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
2621 /* Reset for all these registers is handled in arm_cpu_reset(),
2622 * because the PMSAv7 is also used by M-profile CPUs, which do
2623 * not register cpregs but still need the state to be reset.
2625 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
2626 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2627 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
2628 .readfn = pmsav7_read, .writefn = pmsav7_write,
2629 .resetfn = arm_cp_reset_ignore },
2630 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
2631 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2632 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
2633 .readfn = pmsav7_read, .writefn = pmsav7_write,
2634 .resetfn = arm_cp_reset_ignore },
2635 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
2636 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2637 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
2638 .readfn = pmsav7_read, .writefn = pmsav7_write,
2639 .resetfn = arm_cp_reset_ignore },
2640 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
2641 .access = PL1_RW,
2642 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
2643 .writefn = pmsav7_rgnr_write,
2644 .resetfn = arm_cp_reset_ignore },
2645 REGINFO_SENTINEL
2648 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
2649 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2650 .access = PL1_RW, .type = ARM_CP_ALIAS,
2651 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2652 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
2653 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2654 .access = PL1_RW, .type = ARM_CP_ALIAS,
2655 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2656 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
2657 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
2658 .access = PL1_RW,
2659 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2660 .resetvalue = 0, },
2661 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
2662 .access = PL1_RW,
2663 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2664 .resetvalue = 0, },
2665 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
2666 .access = PL1_RW,
2667 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
2668 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
2669 .access = PL1_RW,
2670 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
2671 /* Protection region base and size registers */
2672 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
2673 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2674 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
2675 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
2676 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2677 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
2678 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
2679 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2680 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
2681 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
2682 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2683 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
2684 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
2685 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2686 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
2687 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
2688 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2689 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
2690 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
2691 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2692 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
2693 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
2694 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2695 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
2696 REGINFO_SENTINEL
2699 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
2700 uint64_t value)
2702 TCR *tcr = raw_ptr(env, ri);
2703 int maskshift = extract32(value, 0, 3);
2705 if (!arm_feature(env, ARM_FEATURE_V8)) {
2706 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
2707 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
2708 * using Long-desciptor translation table format */
2709 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
2710 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
2711 /* In an implementation that includes the Security Extensions
2712 * TTBCR has additional fields PD0 [4] and PD1 [5] for
2713 * Short-descriptor translation table format.
2715 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
2716 } else {
2717 value &= TTBCR_N;
2721 /* Update the masks corresponding to the TCR bank being written
2722 * Note that we always calculate mask and base_mask, but
2723 * they are only used for short-descriptor tables (ie if EAE is 0);
2724 * for long-descriptor tables the TCR fields are used differently
2725 * and the mask and base_mask values are meaningless.
2727 tcr->raw_tcr = value;
2728 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
2729 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
2732 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2733 uint64_t value)
2735 ARMCPU *cpu = arm_env_get_cpu(env);
2736 TCR *tcr = raw_ptr(env, ri);
2738 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2739 /* With LPAE the TTBCR could result in a change of ASID
2740 * via the TTBCR.A1 bit, so do a TLB flush.
2742 tlb_flush(CPU(cpu));
2744 /* Preserve the high half of TCR_EL1, set via TTBCR2. */
2745 value = deposit64(tcr->raw_tcr, 0, 32, value);
2746 vmsa_ttbcr_raw_write(env, ri, value);
2749 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2751 TCR *tcr = raw_ptr(env, ri);
2753 /* Reset both the TCR as well as the masks corresponding to the bank of
2754 * the TCR being reset.
2756 tcr->raw_tcr = 0;
2757 tcr->mask = 0;
2758 tcr->base_mask = 0xffffc000u;
2761 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2762 uint64_t value)
2764 ARMCPU *cpu = arm_env_get_cpu(env);
2765 TCR *tcr = raw_ptr(env, ri);
2767 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
2768 tlb_flush(CPU(cpu));
2769 tcr->raw_tcr = value;
2772 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2773 uint64_t value)
2775 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */
2776 if (cpreg_field_is_64bit(ri) &&
2777 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
2778 ARMCPU *cpu = arm_env_get_cpu(env);
2779 tlb_flush(CPU(cpu));
2781 raw_write(env, ri, value);
2784 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2785 uint64_t value)
2787 ARMCPU *cpu = arm_env_get_cpu(env);
2788 CPUState *cs = CPU(cpu);
2790 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */
2791 if (raw_read(env, ri) != value) {
2792 tlb_flush_by_mmuidx(cs,
2793 ARMMMUIdxBit_S12NSE1 |
2794 ARMMMUIdxBit_S12NSE0 |
2795 ARMMMUIdxBit_S2NS);
2796 raw_write(env, ri, value);
2800 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
2801 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2802 .access = PL1_RW, .type = ARM_CP_ALIAS,
2803 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
2804 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
2805 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2806 .access = PL1_RW, .resetvalue = 0,
2807 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
2808 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
2809 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
2810 .access = PL1_RW, .resetvalue = 0,
2811 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
2812 offsetof(CPUARMState, cp15.dfar_ns) } },
2813 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
2814 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
2815 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
2816 .resetvalue = 0, },
2817 REGINFO_SENTINEL
2820 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
2821 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
2822 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
2823 .access = PL1_RW,
2824 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
2825 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
2826 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
2827 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2828 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2829 offsetof(CPUARMState, cp15.ttbr0_ns) } },
2830 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
2831 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
2832 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2833 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2834 offsetof(CPUARMState, cp15.ttbr1_ns) } },
2835 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
2836 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2837 .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
2838 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
2839 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
2840 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2841 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
2842 .raw_writefn = vmsa_ttbcr_raw_write,
2843 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
2844 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
2845 REGINFO_SENTINEL
2848 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
2849 * qemu tlbs nor adjusting cached masks.
2851 static const ARMCPRegInfo ttbcr2_reginfo = {
2852 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
2853 .access = PL1_RW, .type = ARM_CP_ALIAS,
2854 .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
2855 offsetofhigh32(CPUARMState, cp15.tcr_el[1]) },
2858 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
2859 uint64_t value)
2861 env->cp15.c15_ticonfig = value & 0xe7;
2862 /* The OS_TYPE bit in this register changes the reported CPUID! */
2863 env->cp15.c0_cpuid = (value & (1 << 5)) ?
2864 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
2867 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
2868 uint64_t value)
2870 env->cp15.c15_threadid = value & 0xffff;
2873 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
2874 uint64_t value)
2876 /* Wait-for-interrupt (deprecated) */
2877 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
2880 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
2881 uint64_t value)
2883 /* On OMAP there are registers indicating the max/min index of dcache lines
2884 * containing a dirty line; cache flush operations have to reset these.
2886 env->cp15.c15_i_max = 0x000;
2887 env->cp15.c15_i_min = 0xff0;
2890 static const ARMCPRegInfo omap_cp_reginfo[] = {
2891 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
2892 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
2893 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
2894 .resetvalue = 0, },
2895 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2896 .access = PL1_RW, .type = ARM_CP_NOP },
2897 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2898 .access = PL1_RW,
2899 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
2900 .writefn = omap_ticonfig_write },
2901 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
2902 .access = PL1_RW,
2903 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
2904 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
2905 .access = PL1_RW, .resetvalue = 0xff0,
2906 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
2907 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
2908 .access = PL1_RW,
2909 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
2910 .writefn = omap_threadid_write },
2911 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
2912 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2913 .type = ARM_CP_NO_RAW,
2914 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
2915 /* TODO: Peripheral port remap register:
2916 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
2917 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
2918 * when MMU is off.
2920 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
2921 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
2922 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
2923 .writefn = omap_cachemaint_write },
2924 { .name = "C9", .cp = 15, .crn = 9,
2925 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
2926 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
2927 REGINFO_SENTINEL
2930 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2931 uint64_t value)
2933 env->cp15.c15_cpar = value & 0x3fff;
2936 static const ARMCPRegInfo xscale_cp_reginfo[] = {
2937 { .name = "XSCALE_CPAR",
2938 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2939 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
2940 .writefn = xscale_cpar_write, },
2941 { .name = "XSCALE_AUXCR",
2942 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
2943 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
2944 .resetvalue = 0, },
2945 /* XScale specific cache-lockdown: since we have no cache we NOP these
2946 * and hope the guest does not really rely on cache behaviour.
2948 { .name = "XSCALE_LOCK_ICACHE_LINE",
2949 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2950 .access = PL1_W, .type = ARM_CP_NOP },
2951 { .name = "XSCALE_UNLOCK_ICACHE",
2952 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2953 .access = PL1_W, .type = ARM_CP_NOP },
2954 { .name = "XSCALE_DCACHE_LOCK",
2955 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
2956 .access = PL1_RW, .type = ARM_CP_NOP },
2957 { .name = "XSCALE_UNLOCK_DCACHE",
2958 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
2959 .access = PL1_W, .type = ARM_CP_NOP },
2960 REGINFO_SENTINEL
2963 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
2964 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2965 * implementation of this implementation-defined space.
2966 * Ideally this should eventually disappear in favour of actually
2967 * implementing the correct behaviour for all cores.
2969 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
2970 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2971 .access = PL1_RW,
2972 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
2973 .resetvalue = 0 },
2974 REGINFO_SENTINEL
2977 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
2978 /* Cache status: RAZ because we have no cache so it's always clean */
2979 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
2980 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2981 .resetvalue = 0 },
2982 REGINFO_SENTINEL
2985 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
2986 /* We never have a a block transfer operation in progress */
2987 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
2988 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2989 .resetvalue = 0 },
2990 /* The cache ops themselves: these all NOP for QEMU */
2991 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
2992 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2993 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
2994 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2995 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
2996 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2997 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
2998 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2999 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
3000 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3001 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
3002 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3003 REGINFO_SENTINEL
3006 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
3007 /* The cache test-and-clean instructions always return (1 << 30)
3008 * to indicate that there are no dirty cache lines.
3010 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
3011 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3012 .resetvalue = (1 << 30) },
3013 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
3014 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3015 .resetvalue = (1 << 30) },
3016 REGINFO_SENTINEL
3019 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
3020 /* Ignore ReadBuffer accesses */
3021 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
3022 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3023 .access = PL1_RW, .resetvalue = 0,
3024 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
3025 REGINFO_SENTINEL
3028 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3030 ARMCPU *cpu = arm_env_get_cpu(env);
3031 unsigned int cur_el = arm_current_el(env);
3032 bool secure = arm_is_secure(env);
3034 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
3035 return env->cp15.vpidr_el2;
3037 return raw_read(env, ri);
3040 static uint64_t mpidr_read_val(CPUARMState *env)
3042 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
3043 uint64_t mpidr = cpu->mp_affinity;
3045 if (arm_feature(env, ARM_FEATURE_V7MP)) {
3046 mpidr |= (1U << 31);
3047 /* Cores which are uniprocessor (non-coherent)
3048 * but still implement the MP extensions set
3049 * bit 30. (For instance, Cortex-R5).
3051 if (cpu->mp_is_up) {
3052 mpidr |= (1u << 30);
3055 return mpidr;
3058 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3060 unsigned int cur_el = arm_current_el(env);
3061 bool secure = arm_is_secure(env);
3063 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
3064 return env->cp15.vmpidr_el2;
3066 return mpidr_read_val(env);
3069 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
3070 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
3071 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
3072 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
3073 REGINFO_SENTINEL
3076 static const ARMCPRegInfo lpae_cp_reginfo[] = {
3077 /* NOP AMAIR0/1 */
3078 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
3079 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
3080 .access = PL1_RW, .type = ARM_CP_CONST,
3081 .resetvalue = 0 },
3082 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
3083 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
3084 .access = PL1_RW, .type = ARM_CP_CONST,
3085 .resetvalue = 0 },
3086 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
3087 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
3088 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
3089 offsetof(CPUARMState, cp15.par_ns)} },
3090 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
3091 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3092 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3093 offsetof(CPUARMState, cp15.ttbr0_ns) },
3094 .writefn = vmsa_ttbr_write, },
3095 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
3096 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3097 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3098 offsetof(CPUARMState, cp15.ttbr1_ns) },
3099 .writefn = vmsa_ttbr_write, },
3100 REGINFO_SENTINEL
3103 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3105 return vfp_get_fpcr(env);
3108 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3109 uint64_t value)
3111 vfp_set_fpcr(env, value);
3114 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3116 return vfp_get_fpsr(env);
3119 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3120 uint64_t value)
3122 vfp_set_fpsr(env, value);
3125 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
3126 bool isread)
3128 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
3129 return CP_ACCESS_TRAP;
3131 return CP_ACCESS_OK;
3134 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
3135 uint64_t value)
3137 env->daif = value & PSTATE_DAIF;
3140 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
3141 const ARMCPRegInfo *ri,
3142 bool isread)
3144 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
3145 * SCTLR_EL1.UCI is set.
3147 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
3148 return CP_ACCESS_TRAP;
3150 return CP_ACCESS_OK;
3153 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
3154 * Page D4-1736 (DDI0487A.b)
3157 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3158 uint64_t value)
3160 CPUState *cs = ENV_GET_CPU(env);
3161 bool sec = arm_is_secure_below_el3(env);
3163 if (sec) {
3164 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3165 ARMMMUIdxBit_S1SE1 |
3166 ARMMMUIdxBit_S1SE0);
3167 } else {
3168 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3169 ARMMMUIdxBit_S12NSE1 |
3170 ARMMMUIdxBit_S12NSE0);
3174 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3175 uint64_t value)
3177 CPUState *cs = ENV_GET_CPU(env);
3179 if (tlb_force_broadcast(env)) {
3180 tlbi_aa64_vmalle1is_write(env, NULL, value);
3181 return;
3184 if (arm_is_secure_below_el3(env)) {
3185 tlb_flush_by_mmuidx(cs,
3186 ARMMMUIdxBit_S1SE1 |
3187 ARMMMUIdxBit_S1SE0);
3188 } else {
3189 tlb_flush_by_mmuidx(cs,
3190 ARMMMUIdxBit_S12NSE1 |
3191 ARMMMUIdxBit_S12NSE0);
3195 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3196 uint64_t value)
3198 /* Note that the 'ALL' scope must invalidate both stage 1 and
3199 * stage 2 translations, whereas most other scopes only invalidate
3200 * stage 1 translations.
3202 ARMCPU *cpu = arm_env_get_cpu(env);
3203 CPUState *cs = CPU(cpu);
3205 if (arm_is_secure_below_el3(env)) {
3206 tlb_flush_by_mmuidx(cs,
3207 ARMMMUIdxBit_S1SE1 |
3208 ARMMMUIdxBit_S1SE0);
3209 } else {
3210 if (arm_feature(env, ARM_FEATURE_EL2)) {
3211 tlb_flush_by_mmuidx(cs,
3212 ARMMMUIdxBit_S12NSE1 |
3213 ARMMMUIdxBit_S12NSE0 |
3214 ARMMMUIdxBit_S2NS);
3215 } else {
3216 tlb_flush_by_mmuidx(cs,
3217 ARMMMUIdxBit_S12NSE1 |
3218 ARMMMUIdxBit_S12NSE0);
3223 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3224 uint64_t value)
3226 ARMCPU *cpu = arm_env_get_cpu(env);
3227 CPUState *cs = CPU(cpu);
3229 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
3232 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3233 uint64_t value)
3235 ARMCPU *cpu = arm_env_get_cpu(env);
3236 CPUState *cs = CPU(cpu);
3238 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3);
3241 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3242 uint64_t value)
3244 /* Note that the 'ALL' scope must invalidate both stage 1 and
3245 * stage 2 translations, whereas most other scopes only invalidate
3246 * stage 1 translations.
3248 CPUState *cs = ENV_GET_CPU(env);
3249 bool sec = arm_is_secure_below_el3(env);
3250 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
3252 if (sec) {
3253 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3254 ARMMMUIdxBit_S1SE1 |
3255 ARMMMUIdxBit_S1SE0);
3256 } else if (has_el2) {
3257 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3258 ARMMMUIdxBit_S12NSE1 |
3259 ARMMMUIdxBit_S12NSE0 |
3260 ARMMMUIdxBit_S2NS);
3261 } else {
3262 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3263 ARMMMUIdxBit_S12NSE1 |
3264 ARMMMUIdxBit_S12NSE0);
3268 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3269 uint64_t value)
3271 CPUState *cs = ENV_GET_CPU(env);
3273 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
3276 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3277 uint64_t value)
3279 CPUState *cs = ENV_GET_CPU(env);
3281 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3);
3284 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3285 uint64_t value)
3287 /* Invalidate by VA, EL2
3288 * Currently handles both VAE2 and VALE2, since we don't support
3289 * flush-last-level-only.
3291 ARMCPU *cpu = arm_env_get_cpu(env);
3292 CPUState *cs = CPU(cpu);
3293 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3295 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
3298 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3299 uint64_t value)
3301 /* Invalidate by VA, EL3
3302 * Currently handles both VAE3 and VALE3, since we don't support
3303 * flush-last-level-only.
3305 ARMCPU *cpu = arm_env_get_cpu(env);
3306 CPUState *cs = CPU(cpu);
3307 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3309 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3);
3312 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3313 uint64_t value)
3315 ARMCPU *cpu = arm_env_get_cpu(env);
3316 CPUState *cs = CPU(cpu);
3317 bool sec = arm_is_secure_below_el3(env);
3318 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3320 if (sec) {
3321 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3322 ARMMMUIdxBit_S1SE1 |
3323 ARMMMUIdxBit_S1SE0);
3324 } else {
3325 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3326 ARMMMUIdxBit_S12NSE1 |
3327 ARMMMUIdxBit_S12NSE0);
3331 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3332 uint64_t value)
3334 /* Invalidate by VA, EL1&0 (AArch64 version).
3335 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
3336 * since we don't support flush-for-specific-ASID-only or
3337 * flush-last-level-only.
3339 ARMCPU *cpu = arm_env_get_cpu(env);
3340 CPUState *cs = CPU(cpu);
3341 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3343 if (tlb_force_broadcast(env)) {
3344 tlbi_aa64_vae1is_write(env, NULL, value);
3345 return;
3348 if (arm_is_secure_below_el3(env)) {
3349 tlb_flush_page_by_mmuidx(cs, pageaddr,
3350 ARMMMUIdxBit_S1SE1 |
3351 ARMMMUIdxBit_S1SE0);
3352 } else {
3353 tlb_flush_page_by_mmuidx(cs, pageaddr,
3354 ARMMMUIdxBit_S12NSE1 |
3355 ARMMMUIdxBit_S12NSE0);
3359 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3360 uint64_t value)
3362 CPUState *cs = ENV_GET_CPU(env);
3363 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3365 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3366 ARMMMUIdxBit_S1E2);
3369 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3370 uint64_t value)
3372 CPUState *cs = ENV_GET_CPU(env);
3373 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3375 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3376 ARMMMUIdxBit_S1E3);
3379 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3380 uint64_t value)
3382 /* Invalidate by IPA. This has to invalidate any structures that
3383 * contain only stage 2 translation information, but does not need
3384 * to apply to structures that contain combined stage 1 and stage 2
3385 * translation information.
3386 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
3388 ARMCPU *cpu = arm_env_get_cpu(env);
3389 CPUState *cs = CPU(cpu);
3390 uint64_t pageaddr;
3392 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3393 return;
3396 pageaddr = sextract64(value << 12, 0, 48);
3398 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
3401 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3402 uint64_t value)
3404 CPUState *cs = ENV_GET_CPU(env);
3405 uint64_t pageaddr;
3407 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3408 return;
3411 pageaddr = sextract64(value << 12, 0, 48);
3413 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3414 ARMMMUIdxBit_S2NS);
3417 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
3418 bool isread)
3420 /* We don't implement EL2, so the only control on DC ZVA is the
3421 * bit in the SCTLR which can prohibit access for EL0.
3423 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
3424 return CP_ACCESS_TRAP;
3426 return CP_ACCESS_OK;
3429 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
3431 ARMCPU *cpu = arm_env_get_cpu(env);
3432 int dzp_bit = 1 << 4;
3434 /* DZP indicates whether DC ZVA access is allowed */
3435 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
3436 dzp_bit = 0;
3438 return cpu->dcz_blocksize | dzp_bit;
3441 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
3442 bool isread)
3444 if (!(env->pstate & PSTATE_SP)) {
3445 /* Access to SP_EL0 is undefined if it's being used as
3446 * the stack pointer.
3448 return CP_ACCESS_TRAP_UNCATEGORIZED;
3450 return CP_ACCESS_OK;
3453 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
3455 return env->pstate & PSTATE_SP;
3458 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
3460 update_spsel(env, val);
3463 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3464 uint64_t value)
3466 ARMCPU *cpu = arm_env_get_cpu(env);
3468 if (raw_read(env, ri) == value) {
3469 /* Skip the TLB flush if nothing actually changed; Linux likes
3470 * to do a lot of pointless SCTLR writes.
3472 return;
3475 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
3476 /* M bit is RAZ/WI for PMSA with no MPU implemented */
3477 value &= ~SCTLR_M;
3480 raw_write(env, ri, value);
3481 /* ??? Lots of these bits are not implemented. */
3482 /* This may enable/disable the MMU, so do a TLB flush. */
3483 tlb_flush(CPU(cpu));
3486 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
3487 bool isread)
3489 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
3490 return CP_ACCESS_TRAP_FP_EL2;
3492 if (env->cp15.cptr_el[3] & CPTR_TFP) {
3493 return CP_ACCESS_TRAP_FP_EL3;
3495 return CP_ACCESS_OK;
3498 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3499 uint64_t value)
3501 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
3504 static const ARMCPRegInfo v8_cp_reginfo[] = {
3505 /* Minimal set of EL0-visible registers. This will need to be expanded
3506 * significantly for system emulation of AArch64 CPUs.
3508 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
3509 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
3510 .access = PL0_RW, .type = ARM_CP_NZCV },
3511 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
3512 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
3513 .type = ARM_CP_NO_RAW,
3514 .access = PL0_RW, .accessfn = aa64_daif_access,
3515 .fieldoffset = offsetof(CPUARMState, daif),
3516 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
3517 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
3518 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
3519 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
3520 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
3521 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
3522 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
3523 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
3524 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
3525 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
3526 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
3527 .access = PL0_R, .type = ARM_CP_NO_RAW,
3528 .readfn = aa64_dczid_read },
3529 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
3530 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
3531 .access = PL0_W, .type = ARM_CP_DC_ZVA,
3532 #ifndef CONFIG_USER_ONLY
3533 /* Avoid overhead of an access check that always passes in user-mode */
3534 .accessfn = aa64_zva_access,
3535 #endif
3537 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
3538 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
3539 .access = PL1_R, .type = ARM_CP_CURRENTEL },
3540 /* Cache ops: all NOPs since we don't emulate caches */
3541 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
3542 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3543 .access = PL1_W, .type = ARM_CP_NOP },
3544 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
3545 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3546 .access = PL1_W, .type = ARM_CP_NOP },
3547 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
3548 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
3549 .access = PL0_W, .type = ARM_CP_NOP,
3550 .accessfn = aa64_cacheop_access },
3551 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
3552 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3553 .access = PL1_W, .type = ARM_CP_NOP },
3554 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
3555 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3556 .access = PL1_W, .type = ARM_CP_NOP },
3557 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
3558 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
3559 .access = PL0_W, .type = ARM_CP_NOP,
3560 .accessfn = aa64_cacheop_access },
3561 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
3562 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3563 .access = PL1_W, .type = ARM_CP_NOP },
3564 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
3565 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
3566 .access = PL0_W, .type = ARM_CP_NOP,
3567 .accessfn = aa64_cacheop_access },
3568 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
3569 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
3570 .access = PL0_W, .type = ARM_CP_NOP,
3571 .accessfn = aa64_cacheop_access },
3572 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
3573 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3574 .access = PL1_W, .type = ARM_CP_NOP },
3575 /* TLBI operations */
3576 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
3577 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
3578 .access = PL1_W, .type = ARM_CP_NO_RAW,
3579 .writefn = tlbi_aa64_vmalle1is_write },
3580 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
3581 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
3582 .access = PL1_W, .type = ARM_CP_NO_RAW,
3583 .writefn = tlbi_aa64_vae1is_write },
3584 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
3585 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
3586 .access = PL1_W, .type = ARM_CP_NO_RAW,
3587 .writefn = tlbi_aa64_vmalle1is_write },
3588 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
3589 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
3590 .access = PL1_W, .type = ARM_CP_NO_RAW,
3591 .writefn = tlbi_aa64_vae1is_write },
3592 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
3593 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3594 .access = PL1_W, .type = ARM_CP_NO_RAW,
3595 .writefn = tlbi_aa64_vae1is_write },
3596 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
3597 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3598 .access = PL1_W, .type = ARM_CP_NO_RAW,
3599 .writefn = tlbi_aa64_vae1is_write },
3600 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
3601 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
3602 .access = PL1_W, .type = ARM_CP_NO_RAW,
3603 .writefn = tlbi_aa64_vmalle1_write },
3604 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
3605 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
3606 .access = PL1_W, .type = ARM_CP_NO_RAW,
3607 .writefn = tlbi_aa64_vae1_write },
3608 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
3609 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
3610 .access = PL1_W, .type = ARM_CP_NO_RAW,
3611 .writefn = tlbi_aa64_vmalle1_write },
3612 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
3613 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
3614 .access = PL1_W, .type = ARM_CP_NO_RAW,
3615 .writefn = tlbi_aa64_vae1_write },
3616 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
3617 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3618 .access = PL1_W, .type = ARM_CP_NO_RAW,
3619 .writefn = tlbi_aa64_vae1_write },
3620 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
3621 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3622 .access = PL1_W, .type = ARM_CP_NO_RAW,
3623 .writefn = tlbi_aa64_vae1_write },
3624 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
3625 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3626 .access = PL2_W, .type = ARM_CP_NO_RAW,
3627 .writefn = tlbi_aa64_ipas2e1is_write },
3628 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
3629 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3630 .access = PL2_W, .type = ARM_CP_NO_RAW,
3631 .writefn = tlbi_aa64_ipas2e1is_write },
3632 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
3633 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3634 .access = PL2_W, .type = ARM_CP_NO_RAW,
3635 .writefn = tlbi_aa64_alle1is_write },
3636 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
3637 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
3638 .access = PL2_W, .type = ARM_CP_NO_RAW,
3639 .writefn = tlbi_aa64_alle1is_write },
3640 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
3641 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3642 .access = PL2_W, .type = ARM_CP_NO_RAW,
3643 .writefn = tlbi_aa64_ipas2e1_write },
3644 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
3645 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3646 .access = PL2_W, .type = ARM_CP_NO_RAW,
3647 .writefn = tlbi_aa64_ipas2e1_write },
3648 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
3649 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3650 .access = PL2_W, .type = ARM_CP_NO_RAW,
3651 .writefn = tlbi_aa64_alle1_write },
3652 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
3653 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
3654 .access = PL2_W, .type = ARM_CP_NO_RAW,
3655 .writefn = tlbi_aa64_alle1is_write },
3656 #ifndef CONFIG_USER_ONLY
3657 /* 64 bit address translation operations */
3658 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
3659 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
3660 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3661 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
3662 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
3663 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3664 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
3665 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
3666 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3667 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
3668 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
3669 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3670 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
3671 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
3672 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3673 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
3674 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
3675 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3676 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
3677 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
3678 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3679 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
3680 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
3681 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3682 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
3683 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
3684 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
3685 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3686 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
3687 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
3688 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3689 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
3690 .type = ARM_CP_ALIAS,
3691 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
3692 .access = PL1_RW, .resetvalue = 0,
3693 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
3694 .writefn = par_write },
3695 #endif
3696 /* TLB invalidate last level of translation table walk */
3697 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3698 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
3699 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3700 .type = ARM_CP_NO_RAW, .access = PL1_W,
3701 .writefn = tlbimvaa_is_write },
3702 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3703 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
3704 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3705 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
3706 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3707 .type = ARM_CP_NO_RAW, .access = PL2_W,
3708 .writefn = tlbimva_hyp_write },
3709 { .name = "TLBIMVALHIS",
3710 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3711 .type = ARM_CP_NO_RAW, .access = PL2_W,
3712 .writefn = tlbimva_hyp_is_write },
3713 { .name = "TLBIIPAS2",
3714 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3715 .type = ARM_CP_NO_RAW, .access = PL2_W,
3716 .writefn = tlbiipas2_write },
3717 { .name = "TLBIIPAS2IS",
3718 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3719 .type = ARM_CP_NO_RAW, .access = PL2_W,
3720 .writefn = tlbiipas2_is_write },
3721 { .name = "TLBIIPAS2L",
3722 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3723 .type = ARM_CP_NO_RAW, .access = PL2_W,
3724 .writefn = tlbiipas2_write },
3725 { .name = "TLBIIPAS2LIS",
3726 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3727 .type = ARM_CP_NO_RAW, .access = PL2_W,
3728 .writefn = tlbiipas2_is_write },
3729 /* 32 bit cache operations */
3730 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3731 .type = ARM_CP_NOP, .access = PL1_W },
3732 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
3733 .type = ARM_CP_NOP, .access = PL1_W },
3734 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3735 .type = ARM_CP_NOP, .access = PL1_W },
3736 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
3737 .type = ARM_CP_NOP, .access = PL1_W },
3738 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
3739 .type = ARM_CP_NOP, .access = PL1_W },
3740 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
3741 .type = ARM_CP_NOP, .access = PL1_W },
3742 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3743 .type = ARM_CP_NOP, .access = PL1_W },
3744 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3745 .type = ARM_CP_NOP, .access = PL1_W },
3746 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
3747 .type = ARM_CP_NOP, .access = PL1_W },
3748 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3749 .type = ARM_CP_NOP, .access = PL1_W },
3750 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
3751 .type = ARM_CP_NOP, .access = PL1_W },
3752 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
3753 .type = ARM_CP_NOP, .access = PL1_W },
3754 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3755 .type = ARM_CP_NOP, .access = PL1_W },
3756 /* MMU Domain access control / MPU write buffer control */
3757 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
3758 .access = PL1_RW, .resetvalue = 0,
3759 .writefn = dacr_write, .raw_writefn = raw_write,
3760 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
3761 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
3762 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
3763 .type = ARM_CP_ALIAS,
3764 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
3765 .access = PL1_RW,
3766 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
3767 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
3768 .type = ARM_CP_ALIAS,
3769 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
3770 .access = PL1_RW,
3771 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
3772 /* We rely on the access checks not allowing the guest to write to the
3773 * state field when SPSel indicates that it's being used as the stack
3774 * pointer.
3776 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
3777 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
3778 .access = PL1_RW, .accessfn = sp_el0_access,
3779 .type = ARM_CP_ALIAS,
3780 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
3781 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
3782 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
3783 .access = PL2_RW, .type = ARM_CP_ALIAS,
3784 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
3785 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
3786 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
3787 .type = ARM_CP_NO_RAW,
3788 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
3789 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
3790 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
3791 .type = ARM_CP_ALIAS,
3792 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
3793 .access = PL2_RW, .accessfn = fpexc32_access },
3794 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
3795 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
3796 .access = PL2_RW, .resetvalue = 0,
3797 .writefn = dacr_write, .raw_writefn = raw_write,
3798 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
3799 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
3800 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
3801 .access = PL2_RW, .resetvalue = 0,
3802 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
3803 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
3804 .type = ARM_CP_ALIAS,
3805 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
3806 .access = PL2_RW,
3807 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
3808 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
3809 .type = ARM_CP_ALIAS,
3810 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
3811 .access = PL2_RW,
3812 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
3813 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
3814 .type = ARM_CP_ALIAS,
3815 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
3816 .access = PL2_RW,
3817 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
3818 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
3819 .type = ARM_CP_ALIAS,
3820 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
3821 .access = PL2_RW,
3822 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
3823 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
3824 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
3825 .resetvalue = 0,
3826 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
3827 { .name = "SDCR", .type = ARM_CP_ALIAS,
3828 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
3829 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3830 .writefn = sdcr_write,
3831 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
3832 REGINFO_SENTINEL
3835 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
3836 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
3837 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
3838 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3839 .access = PL2_RW,
3840 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3841 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH,
3842 .type = ARM_CP_NO_RAW,
3843 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3844 .access = PL2_RW,
3845 .type = ARM_CP_CONST, .resetvalue = 0 },
3846 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
3847 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
3848 .access = PL2_RW,
3849 .type = ARM_CP_CONST, .resetvalue = 0 },
3850 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3851 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3852 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3853 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3854 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3855 .access = PL2_RW, .type = ARM_CP_CONST,
3856 .resetvalue = 0 },
3857 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3858 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3859 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3860 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3861 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3862 .access = PL2_RW, .type = ARM_CP_CONST,
3863 .resetvalue = 0 },
3864 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
3865 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3866 .access = PL2_RW, .type = ARM_CP_CONST,
3867 .resetvalue = 0 },
3868 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3869 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3870 .access = PL2_RW, .type = ARM_CP_CONST,
3871 .resetvalue = 0 },
3872 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3873 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3874 .access = PL2_RW, .type = ARM_CP_CONST,
3875 .resetvalue = 0 },
3876 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3877 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3878 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3879 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
3880 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3881 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3882 .type = ARM_CP_CONST, .resetvalue = 0 },
3883 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3884 .cp = 15, .opc1 = 6, .crm = 2,
3885 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3886 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
3887 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3888 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3889 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3890 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3891 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3892 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3893 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3894 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3895 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3896 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3897 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3898 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3899 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3900 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3901 .resetvalue = 0 },
3902 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3903 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3904 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3905 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3906 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3907 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3908 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3909 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3910 .resetvalue = 0 },
3911 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3912 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3913 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3914 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3915 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3916 .resetvalue = 0 },
3917 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3918 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3919 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3920 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3921 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3922 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3923 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3924 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3925 .access = PL2_RW, .accessfn = access_tda,
3926 .type = ARM_CP_CONST, .resetvalue = 0 },
3927 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
3928 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3929 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3930 .type = ARM_CP_CONST, .resetvalue = 0 },
3931 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
3932 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
3933 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3934 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
3935 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
3936 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3937 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
3938 .type = ARM_CP_CONST,
3939 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
3940 .access = PL2_RW, .resetvalue = 0 },
3941 REGINFO_SENTINEL
3944 /* Ditto, but for registers which exist in ARMv8 but not v7 */
3945 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = {
3946 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
3947 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
3948 .access = PL2_RW,
3949 .type = ARM_CP_CONST, .resetvalue = 0 },
3950 REGINFO_SENTINEL
3953 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3955 ARMCPU *cpu = arm_env_get_cpu(env);
3956 uint64_t valid_mask = HCR_MASK;
3958 if (arm_feature(env, ARM_FEATURE_EL3)) {
3959 valid_mask &= ~HCR_HCD;
3960 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
3961 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
3962 * However, if we're using the SMC PSCI conduit then QEMU is
3963 * effectively acting like EL3 firmware and so the guest at
3964 * EL2 should retain the ability to prevent EL1 from being
3965 * able to make SMC calls into the ersatz firmware, so in
3966 * that case HCR.TSC should be read/write.
3968 valid_mask &= ~HCR_TSC;
3970 if (cpu_isar_feature(aa64_lor, cpu)) {
3971 valid_mask |= HCR_TLOR;
3974 /* Clear RES0 bits. */
3975 value &= valid_mask;
3977 /* These bits change the MMU setup:
3978 * HCR_VM enables stage 2 translation
3979 * HCR_PTW forbids certain page-table setups
3980 * HCR_DC Disables stage1 and enables stage2 translation
3982 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
3983 tlb_flush(CPU(cpu));
3985 env->cp15.hcr_el2 = value;
3988 * Updates to VI and VF require us to update the status of
3989 * virtual interrupts, which are the logical OR of these bits
3990 * and the state of the input lines from the GIC. (This requires
3991 * that we have the iothread lock, which is done by marking the
3992 * reginfo structs as ARM_CP_IO.)
3993 * Note that if a write to HCR pends a VIRQ or VFIQ it is never
3994 * possible for it to be taken immediately, because VIRQ and
3995 * VFIQ are masked unless running at EL0 or EL1, and HCR
3996 * can only be written at EL2.
3998 g_assert(qemu_mutex_iothread_locked());
3999 arm_cpu_update_virq(cpu);
4000 arm_cpu_update_vfiq(cpu);
4003 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
4004 uint64_t value)
4006 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
4007 value = deposit64(env->cp15.hcr_el2, 32, 32, value);
4008 hcr_write(env, NULL, value);
4011 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
4012 uint64_t value)
4014 /* Handle HCR write, i.e. write to low half of HCR_EL2 */
4015 value = deposit64(env->cp15.hcr_el2, 0, 32, value);
4016 hcr_write(env, NULL, value);
4020 * Return the effective value of HCR_EL2.
4021 * Bits that are not included here:
4022 * RW (read from SCR_EL3.RW as needed)
4024 uint64_t arm_hcr_el2_eff(CPUARMState *env)
4026 uint64_t ret = env->cp15.hcr_el2;
4028 if (arm_is_secure_below_el3(env)) {
4030 * "This register has no effect if EL2 is not enabled in the
4031 * current Security state". This is ARMv8.4-SecEL2 speak for
4032 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
4034 * Prior to that, the language was "In an implementation that
4035 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
4036 * as if this field is 0 for all purposes other than a direct
4037 * read or write access of HCR_EL2". With lots of enumeration
4038 * on a per-field basis. In current QEMU, this is condition
4039 * is arm_is_secure_below_el3.
4041 * Since the v8.4 language applies to the entire register, and
4042 * appears to be backward compatible, use that.
4044 ret = 0;
4045 } else if (ret & HCR_TGE) {
4046 /* These bits are up-to-date as of ARMv8.4. */
4047 if (ret & HCR_E2H) {
4048 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
4049 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
4050 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
4051 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE);
4052 } else {
4053 ret |= HCR_FMO | HCR_IMO | HCR_AMO;
4055 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
4056 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
4057 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
4058 HCR_TLOR);
4061 return ret;
4064 static const ARMCPRegInfo el2_cp_reginfo[] = {
4065 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
4066 .type = ARM_CP_IO,
4067 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4068 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
4069 .writefn = hcr_write },
4070 { .name = "HCR", .state = ARM_CP_STATE_AA32,
4071 .type = ARM_CP_ALIAS | ARM_CP_IO,
4072 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4073 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
4074 .writefn = hcr_writelow },
4075 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
4076 .type = ARM_CP_ALIAS,
4077 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
4078 .access = PL2_RW,
4079 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
4080 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
4081 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
4082 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
4083 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
4084 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
4085 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
4086 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
4087 .type = ARM_CP_ALIAS,
4088 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
4089 .access = PL2_RW,
4090 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
4091 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
4092 .type = ARM_CP_ALIAS,
4093 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
4094 .access = PL2_RW,
4095 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
4096 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
4097 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
4098 .access = PL2_RW, .writefn = vbar_write,
4099 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
4100 .resetvalue = 0 },
4101 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
4102 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
4103 .access = PL3_RW, .type = ARM_CP_ALIAS,
4104 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
4105 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
4106 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
4107 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
4108 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
4109 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
4110 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
4111 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
4112 .resetvalue = 0 },
4113 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
4114 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
4115 .access = PL2_RW, .type = ARM_CP_ALIAS,
4116 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
4117 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
4118 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
4119 .access = PL2_RW, .type = ARM_CP_CONST,
4120 .resetvalue = 0 },
4121 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
4122 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
4123 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
4124 .access = PL2_RW, .type = ARM_CP_CONST,
4125 .resetvalue = 0 },
4126 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
4127 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
4128 .access = PL2_RW, .type = ARM_CP_CONST,
4129 .resetvalue = 0 },
4130 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
4131 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
4132 .access = PL2_RW, .type = ARM_CP_CONST,
4133 .resetvalue = 0 },
4134 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
4135 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
4136 .access = PL2_RW,
4137 /* no .writefn needed as this can't cause an ASID change;
4138 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
4140 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
4141 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
4142 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4143 .type = ARM_CP_ALIAS,
4144 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4145 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
4146 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
4147 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4148 .access = PL2_RW,
4149 /* no .writefn needed as this can't cause an ASID change;
4150 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
4152 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
4153 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
4154 .cp = 15, .opc1 = 6, .crm = 2,
4155 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4156 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4157 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
4158 .writefn = vttbr_write },
4159 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
4160 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
4161 .access = PL2_RW, .writefn = vttbr_write,
4162 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
4163 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
4164 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
4165 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
4166 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
4167 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4168 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
4169 .access = PL2_RW, .resetvalue = 0,
4170 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
4171 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
4172 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
4173 .access = PL2_RW, .resetvalue = 0,
4174 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
4175 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
4176 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4177 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
4178 { .name = "TLBIALLNSNH",
4179 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4180 .type = ARM_CP_NO_RAW, .access = PL2_W,
4181 .writefn = tlbiall_nsnh_write },
4182 { .name = "TLBIALLNSNHIS",
4183 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4184 .type = ARM_CP_NO_RAW, .access = PL2_W,
4185 .writefn = tlbiall_nsnh_is_write },
4186 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
4187 .type = ARM_CP_NO_RAW, .access = PL2_W,
4188 .writefn = tlbiall_hyp_write },
4189 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
4190 .type = ARM_CP_NO_RAW, .access = PL2_W,
4191 .writefn = tlbiall_hyp_is_write },
4192 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
4193 .type = ARM_CP_NO_RAW, .access = PL2_W,
4194 .writefn = tlbimva_hyp_write },
4195 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
4196 .type = ARM_CP_NO_RAW, .access = PL2_W,
4197 .writefn = tlbimva_hyp_is_write },
4198 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
4199 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
4200 .type = ARM_CP_NO_RAW, .access = PL2_W,
4201 .writefn = tlbi_aa64_alle2_write },
4202 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
4203 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
4204 .type = ARM_CP_NO_RAW, .access = PL2_W,
4205 .writefn = tlbi_aa64_vae2_write },
4206 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
4207 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
4208 .access = PL2_W, .type = ARM_CP_NO_RAW,
4209 .writefn = tlbi_aa64_vae2_write },
4210 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
4211 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
4212 .access = PL2_W, .type = ARM_CP_NO_RAW,
4213 .writefn = tlbi_aa64_alle2is_write },
4214 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
4215 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
4216 .type = ARM_CP_NO_RAW, .access = PL2_W,
4217 .writefn = tlbi_aa64_vae2is_write },
4218 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
4219 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
4220 .access = PL2_W, .type = ARM_CP_NO_RAW,
4221 .writefn = tlbi_aa64_vae2is_write },
4222 #ifndef CONFIG_USER_ONLY
4223 /* Unlike the other EL2-related AT operations, these must
4224 * UNDEF from EL3 if EL2 is not implemented, which is why we
4225 * define them here rather than with the rest of the AT ops.
4227 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
4228 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
4229 .access = PL2_W, .accessfn = at_s1e2_access,
4230 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4231 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
4232 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
4233 .access = PL2_W, .accessfn = at_s1e2_access,
4234 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4235 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
4236 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
4237 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
4238 * to behave as if SCR.NS was 1.
4240 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
4241 .access = PL2_W,
4242 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
4243 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
4244 .access = PL2_W,
4245 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
4246 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
4247 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
4248 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
4249 * reset values as IMPDEF. We choose to reset to 3 to comply with
4250 * both ARMv7 and ARMv8.
4252 .access = PL2_RW, .resetvalue = 3,
4253 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
4254 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
4255 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
4256 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
4257 .writefn = gt_cntvoff_write,
4258 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
4259 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
4260 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
4261 .writefn = gt_cntvoff_write,
4262 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
4263 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
4264 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
4265 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
4266 .type = ARM_CP_IO, .access = PL2_RW,
4267 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
4268 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
4269 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
4270 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
4271 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
4272 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
4273 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
4274 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
4275 .resetfn = gt_hyp_timer_reset,
4276 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
4277 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
4278 .type = ARM_CP_IO,
4279 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
4280 .access = PL2_RW,
4281 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
4282 .resetvalue = 0,
4283 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
4284 #endif
4285 /* The only field of MDCR_EL2 that has a defined architectural reset value
4286 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
4287 * don't impelment any PMU event counters, so using zero as a reset
4288 * value for MDCR_EL2 is okay
4290 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
4291 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
4292 .access = PL2_RW, .resetvalue = 0,
4293 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
4294 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
4295 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4296 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4297 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
4298 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
4299 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4300 .access = PL2_RW,
4301 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
4302 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
4303 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
4304 .access = PL2_RW,
4305 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
4306 REGINFO_SENTINEL
4309 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
4310 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
4311 .type = ARM_CP_ALIAS | ARM_CP_IO,
4312 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
4313 .access = PL2_RW,
4314 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
4315 .writefn = hcr_writehigh },
4316 REGINFO_SENTINEL
4319 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
4320 bool isread)
4322 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
4323 * At Secure EL1 it traps to EL3.
4325 if (arm_current_el(env) == 3) {
4326 return CP_ACCESS_OK;
4328 if (arm_is_secure_below_el3(env)) {
4329 return CP_ACCESS_TRAP_EL3;
4331 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
4332 if (isread) {
4333 return CP_ACCESS_OK;
4335 return CP_ACCESS_TRAP_UNCATEGORIZED;
4338 static const ARMCPRegInfo el3_cp_reginfo[] = {
4339 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
4340 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
4341 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
4342 .resetvalue = 0, .writefn = scr_write },
4343 { .name = "SCR", .type = ARM_CP_ALIAS,
4344 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
4345 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4346 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
4347 .writefn = scr_write },
4348 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
4349 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
4350 .access = PL3_RW, .resetvalue = 0,
4351 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
4352 { .name = "SDER",
4353 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
4354 .access = PL3_RW, .resetvalue = 0,
4355 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
4356 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4357 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4358 .writefn = vbar_write, .resetvalue = 0,
4359 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
4360 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
4361 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
4362 .access = PL3_RW, .resetvalue = 0,
4363 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
4364 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
4365 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
4366 .access = PL3_RW,
4367 /* no .writefn needed as this can't cause an ASID change;
4368 * we must provide a .raw_writefn and .resetfn because we handle
4369 * reset and migration for the AArch32 TTBCR(S), which might be
4370 * using mask and base_mask.
4372 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
4373 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
4374 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
4375 .type = ARM_CP_ALIAS,
4376 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
4377 .access = PL3_RW,
4378 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
4379 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
4380 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
4381 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
4382 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
4383 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
4384 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
4385 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
4386 .type = ARM_CP_ALIAS,
4387 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
4388 .access = PL3_RW,
4389 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
4390 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
4391 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
4392 .access = PL3_RW, .writefn = vbar_write,
4393 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
4394 .resetvalue = 0 },
4395 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
4396 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
4397 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
4398 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
4399 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
4400 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
4401 .access = PL3_RW, .resetvalue = 0,
4402 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
4403 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
4404 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
4405 .access = PL3_RW, .type = ARM_CP_CONST,
4406 .resetvalue = 0 },
4407 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
4408 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
4409 .access = PL3_RW, .type = ARM_CP_CONST,
4410 .resetvalue = 0 },
4411 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
4412 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
4413 .access = PL3_RW, .type = ARM_CP_CONST,
4414 .resetvalue = 0 },
4415 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
4416 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
4417 .access = PL3_W, .type = ARM_CP_NO_RAW,
4418 .writefn = tlbi_aa64_alle3is_write },
4419 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
4420 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
4421 .access = PL3_W, .type = ARM_CP_NO_RAW,
4422 .writefn = tlbi_aa64_vae3is_write },
4423 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
4424 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
4425 .access = PL3_W, .type = ARM_CP_NO_RAW,
4426 .writefn = tlbi_aa64_vae3is_write },
4427 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
4428 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
4429 .access = PL3_W, .type = ARM_CP_NO_RAW,
4430 .writefn = tlbi_aa64_alle3_write },
4431 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
4432 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
4433 .access = PL3_W, .type = ARM_CP_NO_RAW,
4434 .writefn = tlbi_aa64_vae3_write },
4435 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
4436 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
4437 .access = PL3_W, .type = ARM_CP_NO_RAW,
4438 .writefn = tlbi_aa64_vae3_write },
4439 REGINFO_SENTINEL
4442 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4443 bool isread)
4445 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
4446 * but the AArch32 CTR has its own reginfo struct)
4448 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
4449 return CP_ACCESS_TRAP;
4451 return CP_ACCESS_OK;
4454 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4455 uint64_t value)
4457 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
4458 * read via a bit in OSLSR_EL1.
4460 int oslock;
4462 if (ri->state == ARM_CP_STATE_AA32) {
4463 oslock = (value == 0xC5ACCE55);
4464 } else {
4465 oslock = value & 1;
4468 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
4471 static const ARMCPRegInfo debug_cp_reginfo[] = {
4472 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
4473 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
4474 * unlike DBGDRAR it is never accessible from EL0.
4475 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
4476 * accessor.
4478 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
4479 .access = PL0_R, .accessfn = access_tdra,
4480 .type = ARM_CP_CONST, .resetvalue = 0 },
4481 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
4482 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
4483 .access = PL1_R, .accessfn = access_tdra,
4484 .type = ARM_CP_CONST, .resetvalue = 0 },
4485 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4486 .access = PL0_R, .accessfn = access_tdra,
4487 .type = ARM_CP_CONST, .resetvalue = 0 },
4488 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
4489 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
4490 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4491 .access = PL1_RW, .accessfn = access_tda,
4492 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
4493 .resetvalue = 0 },
4494 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
4495 * We don't implement the configurable EL0 access.
4497 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
4498 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4499 .type = ARM_CP_ALIAS,
4500 .access = PL1_R, .accessfn = access_tda,
4501 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
4502 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
4503 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
4504 .access = PL1_W, .type = ARM_CP_NO_RAW,
4505 .accessfn = access_tdosa,
4506 .writefn = oslar_write },
4507 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
4508 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
4509 .access = PL1_R, .resetvalue = 10,
4510 .accessfn = access_tdosa,
4511 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
4512 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
4513 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
4514 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
4515 .access = PL1_RW, .accessfn = access_tdosa,
4516 .type = ARM_CP_NOP },
4517 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
4518 * implement vector catch debug events yet.
4520 { .name = "DBGVCR",
4521 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4522 .access = PL1_RW, .accessfn = access_tda,
4523 .type = ARM_CP_NOP },
4524 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
4525 * to save and restore a 32-bit guest's DBGVCR)
4527 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
4528 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
4529 .access = PL2_RW, .accessfn = access_tda,
4530 .type = ARM_CP_NOP },
4531 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
4532 * Channel but Linux may try to access this register. The 32-bit
4533 * alias is DBGDCCINT.
4535 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
4536 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4537 .access = PL1_RW, .accessfn = access_tda,
4538 .type = ARM_CP_NOP },
4539 REGINFO_SENTINEL
4542 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
4543 /* 64 bit access versions of the (dummy) debug registers */
4544 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
4545 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4546 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
4547 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4548 REGINFO_SENTINEL
4551 /* Return the exception level to which exceptions should be taken
4552 * via SVEAccessTrap. If an exception should be routed through
4553 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
4554 * take care of raising that exception.
4555 * C.f. the ARM pseudocode function CheckSVEEnabled.
4557 int sve_exception_el(CPUARMState *env, int el)
4559 #ifndef CONFIG_USER_ONLY
4560 if (el <= 1) {
4561 bool disabled = false;
4563 /* The CPACR.ZEN controls traps to EL1:
4564 * 0, 2 : trap EL0 and EL1 accesses
4565 * 1 : trap only EL0 accesses
4566 * 3 : trap no accesses
4568 if (!extract32(env->cp15.cpacr_el1, 16, 1)) {
4569 disabled = true;
4570 } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) {
4571 disabled = el == 0;
4573 if (disabled) {
4574 /* route_to_el2 */
4575 return (arm_feature(env, ARM_FEATURE_EL2)
4576 && (arm_hcr_el2_eff(env) & HCR_TGE) ? 2 : 1);
4579 /* Check CPACR.FPEN. */
4580 if (!extract32(env->cp15.cpacr_el1, 20, 1)) {
4581 disabled = true;
4582 } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) {
4583 disabled = el == 0;
4585 if (disabled) {
4586 return 0;
4590 /* CPTR_EL2. Since TZ and TFP are positive,
4591 * they will be zero when EL2 is not present.
4593 if (el <= 2 && !arm_is_secure_below_el3(env)) {
4594 if (env->cp15.cptr_el[2] & CPTR_TZ) {
4595 return 2;
4597 if (env->cp15.cptr_el[2] & CPTR_TFP) {
4598 return 0;
4602 /* CPTR_EL3. Since EZ is negative we must check for EL3. */
4603 if (arm_feature(env, ARM_FEATURE_EL3)
4604 && !(env->cp15.cptr_el[3] & CPTR_EZ)) {
4605 return 3;
4607 #endif
4608 return 0;
4612 * Given that SVE is enabled, return the vector length for EL.
4614 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el)
4616 ARMCPU *cpu = arm_env_get_cpu(env);
4617 uint32_t zcr_len = cpu->sve_max_vq - 1;
4619 if (el <= 1) {
4620 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
4622 if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
4623 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
4625 if (el < 3 && arm_feature(env, ARM_FEATURE_EL3)) {
4626 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
4628 return zcr_len;
4631 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4632 uint64_t value)
4634 int cur_el = arm_current_el(env);
4635 int old_len = sve_zcr_len_for_el(env, cur_el);
4636 int new_len;
4638 /* Bits other than [3:0] are RAZ/WI. */
4639 raw_write(env, ri, value & 0xf);
4642 * Because we arrived here, we know both FP and SVE are enabled;
4643 * otherwise we would have trapped access to the ZCR_ELn register.
4645 new_len = sve_zcr_len_for_el(env, cur_el);
4646 if (new_len < old_len) {
4647 aarch64_sve_narrow_vq(env, new_len + 1);
4651 static const ARMCPRegInfo zcr_el1_reginfo = {
4652 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
4653 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
4654 .access = PL1_RW, .type = ARM_CP_SVE,
4655 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
4656 .writefn = zcr_write, .raw_writefn = raw_write
4659 static const ARMCPRegInfo zcr_el2_reginfo = {
4660 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
4661 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
4662 .access = PL2_RW, .type = ARM_CP_SVE,
4663 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
4664 .writefn = zcr_write, .raw_writefn = raw_write
4667 static const ARMCPRegInfo zcr_no_el2_reginfo = {
4668 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
4669 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
4670 .access = PL2_RW, .type = ARM_CP_SVE,
4671 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
4674 static const ARMCPRegInfo zcr_el3_reginfo = {
4675 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
4676 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
4677 .access = PL3_RW, .type = ARM_CP_SVE,
4678 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
4679 .writefn = zcr_write, .raw_writefn = raw_write
4682 void hw_watchpoint_update(ARMCPU *cpu, int n)
4684 CPUARMState *env = &cpu->env;
4685 vaddr len = 0;
4686 vaddr wvr = env->cp15.dbgwvr[n];
4687 uint64_t wcr = env->cp15.dbgwcr[n];
4688 int mask;
4689 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
4691 if (env->cpu_watchpoint[n]) {
4692 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
4693 env->cpu_watchpoint[n] = NULL;
4696 if (!extract64(wcr, 0, 1)) {
4697 /* E bit clear : watchpoint disabled */
4698 return;
4701 switch (extract64(wcr, 3, 2)) {
4702 case 0:
4703 /* LSC 00 is reserved and must behave as if the wp is disabled */
4704 return;
4705 case 1:
4706 flags |= BP_MEM_READ;
4707 break;
4708 case 2:
4709 flags |= BP_MEM_WRITE;
4710 break;
4711 case 3:
4712 flags |= BP_MEM_ACCESS;
4713 break;
4716 /* Attempts to use both MASK and BAS fields simultaneously are
4717 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
4718 * thus generating a watchpoint for every byte in the masked region.
4720 mask = extract64(wcr, 24, 4);
4721 if (mask == 1 || mask == 2) {
4722 /* Reserved values of MASK; we must act as if the mask value was
4723 * some non-reserved value, or as if the watchpoint were disabled.
4724 * We choose the latter.
4726 return;
4727 } else if (mask) {
4728 /* Watchpoint covers an aligned area up to 2GB in size */
4729 len = 1ULL << mask;
4730 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
4731 * whether the watchpoint fires when the unmasked bits match; we opt
4732 * to generate the exceptions.
4734 wvr &= ~(len - 1);
4735 } else {
4736 /* Watchpoint covers bytes defined by the byte address select bits */
4737 int bas = extract64(wcr, 5, 8);
4738 int basstart;
4740 if (bas == 0) {
4741 /* This must act as if the watchpoint is disabled */
4742 return;
4745 if (extract64(wvr, 2, 1)) {
4746 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
4747 * ignored, and BAS[3:0] define which bytes to watch.
4749 bas &= 0xf;
4751 /* The BAS bits are supposed to be programmed to indicate a contiguous
4752 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
4753 * we fire for each byte in the word/doubleword addressed by the WVR.
4754 * We choose to ignore any non-zero bits after the first range of 1s.
4756 basstart = ctz32(bas);
4757 len = cto32(bas >> basstart);
4758 wvr += basstart;
4761 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
4762 &env->cpu_watchpoint[n]);
4765 void hw_watchpoint_update_all(ARMCPU *cpu)
4767 int i;
4768 CPUARMState *env = &cpu->env;
4770 /* Completely clear out existing QEMU watchpoints and our array, to
4771 * avoid possible stale entries following migration load.
4773 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
4774 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
4776 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
4777 hw_watchpoint_update(cpu, i);
4781 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4782 uint64_t value)
4784 ARMCPU *cpu = arm_env_get_cpu(env);
4785 int i = ri->crm;
4787 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
4788 * register reads and behaves as if values written are sign extended.
4789 * Bits [1:0] are RES0.
4791 value = sextract64(value, 0, 49) & ~3ULL;
4793 raw_write(env, ri, value);
4794 hw_watchpoint_update(cpu, i);
4797 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4798 uint64_t value)
4800 ARMCPU *cpu = arm_env_get_cpu(env);
4801 int i = ri->crm;
4803 raw_write(env, ri, value);
4804 hw_watchpoint_update(cpu, i);
4807 void hw_breakpoint_update(ARMCPU *cpu, int n)
4809 CPUARMState *env = &cpu->env;
4810 uint64_t bvr = env->cp15.dbgbvr[n];
4811 uint64_t bcr = env->cp15.dbgbcr[n];
4812 vaddr addr;
4813 int bt;
4814 int flags = BP_CPU;
4816 if (env->cpu_breakpoint[n]) {
4817 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
4818 env->cpu_breakpoint[n] = NULL;
4821 if (!extract64(bcr, 0, 1)) {
4822 /* E bit clear : watchpoint disabled */
4823 return;
4826 bt = extract64(bcr, 20, 4);
4828 switch (bt) {
4829 case 4: /* unlinked address mismatch (reserved if AArch64) */
4830 case 5: /* linked address mismatch (reserved if AArch64) */
4831 qemu_log_mask(LOG_UNIMP,
4832 "arm: address mismatch breakpoint types not implemented\n");
4833 return;
4834 case 0: /* unlinked address match */
4835 case 1: /* linked address match */
4837 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
4838 * we behave as if the register was sign extended. Bits [1:0] are
4839 * RES0. The BAS field is used to allow setting breakpoints on 16
4840 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
4841 * a bp will fire if the addresses covered by the bp and the addresses
4842 * covered by the insn overlap but the insn doesn't start at the
4843 * start of the bp address range. We choose to require the insn and
4844 * the bp to have the same address. The constraints on writing to
4845 * BAS enforced in dbgbcr_write mean we have only four cases:
4846 * 0b0000 => no breakpoint
4847 * 0b0011 => breakpoint on addr
4848 * 0b1100 => breakpoint on addr + 2
4849 * 0b1111 => breakpoint on addr
4850 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
4852 int bas = extract64(bcr, 5, 4);
4853 addr = sextract64(bvr, 0, 49) & ~3ULL;
4854 if (bas == 0) {
4855 return;
4857 if (bas == 0xc) {
4858 addr += 2;
4860 break;
4862 case 2: /* unlinked context ID match */
4863 case 8: /* unlinked VMID match (reserved if no EL2) */
4864 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
4865 qemu_log_mask(LOG_UNIMP,
4866 "arm: unlinked context breakpoint types not implemented\n");
4867 return;
4868 case 9: /* linked VMID match (reserved if no EL2) */
4869 case 11: /* linked context ID and VMID match (reserved if no EL2) */
4870 case 3: /* linked context ID match */
4871 default:
4872 /* We must generate no events for Linked context matches (unless
4873 * they are linked to by some other bp/wp, which is handled in
4874 * updates for the linking bp/wp). We choose to also generate no events
4875 * for reserved values.
4877 return;
4880 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
4883 void hw_breakpoint_update_all(ARMCPU *cpu)
4885 int i;
4886 CPUARMState *env = &cpu->env;
4888 /* Completely clear out existing QEMU breakpoints and our array, to
4889 * avoid possible stale entries following migration load.
4891 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
4892 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
4894 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
4895 hw_breakpoint_update(cpu, i);
4899 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4900 uint64_t value)
4902 ARMCPU *cpu = arm_env_get_cpu(env);
4903 int i = ri->crm;
4905 raw_write(env, ri, value);
4906 hw_breakpoint_update(cpu, i);
4909 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4910 uint64_t value)
4912 ARMCPU *cpu = arm_env_get_cpu(env);
4913 int i = ri->crm;
4915 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
4916 * copy of BAS[0].
4918 value = deposit64(value, 6, 1, extract64(value, 5, 1));
4919 value = deposit64(value, 8, 1, extract64(value, 7, 1));
4921 raw_write(env, ri, value);
4922 hw_breakpoint_update(cpu, i);
4925 static void define_debug_regs(ARMCPU *cpu)
4927 /* Define v7 and v8 architectural debug registers.
4928 * These are just dummy implementations for now.
4930 int i;
4931 int wrps, brps, ctx_cmps;
4932 ARMCPRegInfo dbgdidr = {
4933 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
4934 .access = PL0_R, .accessfn = access_tda,
4935 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
4938 /* Note that all these register fields hold "number of Xs minus 1". */
4939 brps = extract32(cpu->dbgdidr, 24, 4);
4940 wrps = extract32(cpu->dbgdidr, 28, 4);
4941 ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
4943 assert(ctx_cmps <= brps);
4945 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
4946 * of the debug registers such as number of breakpoints;
4947 * check that if they both exist then they agree.
4949 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
4950 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
4951 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
4952 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
4955 define_one_arm_cp_reg(cpu, &dbgdidr);
4956 define_arm_cp_regs(cpu, debug_cp_reginfo);
4958 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
4959 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
4962 for (i = 0; i < brps + 1; i++) {
4963 ARMCPRegInfo dbgregs[] = {
4964 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
4965 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
4966 .access = PL1_RW, .accessfn = access_tda,
4967 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
4968 .writefn = dbgbvr_write, .raw_writefn = raw_write
4970 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
4971 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
4972 .access = PL1_RW, .accessfn = access_tda,
4973 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
4974 .writefn = dbgbcr_write, .raw_writefn = raw_write
4976 REGINFO_SENTINEL
4978 define_arm_cp_regs(cpu, dbgregs);
4981 for (i = 0; i < wrps + 1; i++) {
4982 ARMCPRegInfo dbgregs[] = {
4983 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
4984 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
4985 .access = PL1_RW, .accessfn = access_tda,
4986 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
4987 .writefn = dbgwvr_write, .raw_writefn = raw_write
4989 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
4990 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
4991 .access = PL1_RW, .accessfn = access_tda,
4992 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
4993 .writefn = dbgwcr_write, .raw_writefn = raw_write
4995 REGINFO_SENTINEL
4997 define_arm_cp_regs(cpu, dbgregs);
5001 /* We don't know until after realize whether there's a GICv3
5002 * attached, and that is what registers the gicv3 sysregs.
5003 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
5004 * at runtime.
5006 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
5008 ARMCPU *cpu = arm_env_get_cpu(env);
5009 uint64_t pfr1 = cpu->id_pfr1;
5011 if (env->gicv3state) {
5012 pfr1 |= 1 << 28;
5014 return pfr1;
5017 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
5019 ARMCPU *cpu = arm_env_get_cpu(env);
5020 uint64_t pfr0 = cpu->isar.id_aa64pfr0;
5022 if (env->gicv3state) {
5023 pfr0 |= 1 << 24;
5025 return pfr0;
5028 /* Shared logic between LORID and the rest of the LOR* registers.
5029 * Secure state has already been delt with.
5031 static CPAccessResult access_lor_ns(CPUARMState *env)
5033 int el = arm_current_el(env);
5035 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
5036 return CP_ACCESS_TRAP_EL2;
5038 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
5039 return CP_ACCESS_TRAP_EL3;
5041 return CP_ACCESS_OK;
5044 static CPAccessResult access_lorid(CPUARMState *env, const ARMCPRegInfo *ri,
5045 bool isread)
5047 if (arm_is_secure_below_el3(env)) {
5048 /* Access ok in secure mode. */
5049 return CP_ACCESS_OK;
5051 return access_lor_ns(env);
5054 static CPAccessResult access_lor_other(CPUARMState *env,
5055 const ARMCPRegInfo *ri, bool isread)
5057 if (arm_is_secure_below_el3(env)) {
5058 /* Access denied in secure mode. */
5059 return CP_ACCESS_TRAP;
5061 return access_lor_ns(env);
5064 void register_cp_regs_for_features(ARMCPU *cpu)
5066 /* Register all the coprocessor registers based on feature bits */
5067 CPUARMState *env = &cpu->env;
5068 if (arm_feature(env, ARM_FEATURE_M)) {
5069 /* M profile has no coprocessor registers */
5070 return;
5073 define_arm_cp_regs(cpu, cp_reginfo);
5074 if (!arm_feature(env, ARM_FEATURE_V8)) {
5075 /* Must go early as it is full of wildcards that may be
5076 * overridden by later definitions.
5078 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
5081 if (arm_feature(env, ARM_FEATURE_V6)) {
5082 /* The ID registers all have impdef reset values */
5083 ARMCPRegInfo v6_idregs[] = {
5084 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
5085 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
5086 .access = PL1_R, .type = ARM_CP_CONST,
5087 .resetvalue = cpu->id_pfr0 },
5088 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
5089 * the value of the GIC field until after we define these regs.
5091 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
5092 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
5093 .access = PL1_R, .type = ARM_CP_NO_RAW,
5094 .readfn = id_pfr1_read,
5095 .writefn = arm_cp_write_ignore },
5096 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
5097 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
5098 .access = PL1_R, .type = ARM_CP_CONST,
5099 .resetvalue = cpu->id_dfr0 },
5100 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
5101 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
5102 .access = PL1_R, .type = ARM_CP_CONST,
5103 .resetvalue = cpu->id_afr0 },
5104 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
5105 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
5106 .access = PL1_R, .type = ARM_CP_CONST,
5107 .resetvalue = cpu->id_mmfr0 },
5108 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
5109 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
5110 .access = PL1_R, .type = ARM_CP_CONST,
5111 .resetvalue = cpu->id_mmfr1 },
5112 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
5113 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
5114 .access = PL1_R, .type = ARM_CP_CONST,
5115 .resetvalue = cpu->id_mmfr2 },
5116 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
5117 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
5118 .access = PL1_R, .type = ARM_CP_CONST,
5119 .resetvalue = cpu->id_mmfr3 },
5120 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
5121 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
5122 .access = PL1_R, .type = ARM_CP_CONST,
5123 .resetvalue = cpu->isar.id_isar0 },
5124 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
5125 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
5126 .access = PL1_R, .type = ARM_CP_CONST,
5127 .resetvalue = cpu->isar.id_isar1 },
5128 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
5129 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
5130 .access = PL1_R, .type = ARM_CP_CONST,
5131 .resetvalue = cpu->isar.id_isar2 },
5132 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
5133 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
5134 .access = PL1_R, .type = ARM_CP_CONST,
5135 .resetvalue = cpu->isar.id_isar3 },
5136 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
5137 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
5138 .access = PL1_R, .type = ARM_CP_CONST,
5139 .resetvalue = cpu->isar.id_isar4 },
5140 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
5141 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
5142 .access = PL1_R, .type = ARM_CP_CONST,
5143 .resetvalue = cpu->isar.id_isar5 },
5144 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
5145 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
5146 .access = PL1_R, .type = ARM_CP_CONST,
5147 .resetvalue = cpu->id_mmfr4 },
5148 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
5149 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
5150 .access = PL1_R, .type = ARM_CP_CONST,
5151 .resetvalue = cpu->isar.id_isar6 },
5152 REGINFO_SENTINEL
5154 define_arm_cp_regs(cpu, v6_idregs);
5155 define_arm_cp_regs(cpu, v6_cp_reginfo);
5156 } else {
5157 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
5159 if (arm_feature(env, ARM_FEATURE_V6K)) {
5160 define_arm_cp_regs(cpu, v6k_cp_reginfo);
5162 if (arm_feature(env, ARM_FEATURE_V7MP) &&
5163 !arm_feature(env, ARM_FEATURE_PMSA)) {
5164 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
5166 if (arm_feature(env, ARM_FEATURE_V7)) {
5167 /* v7 performance monitor control register: same implementor
5168 * field as main ID register, and we implement only the cycle
5169 * count register.
5171 #ifndef CONFIG_USER_ONLY
5172 ARMCPRegInfo pmcr = {
5173 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
5174 .access = PL0_RW,
5175 .type = ARM_CP_IO | ARM_CP_ALIAS,
5176 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
5177 .accessfn = pmreg_access, .writefn = pmcr_write,
5178 .raw_writefn = raw_write,
5180 ARMCPRegInfo pmcr64 = {
5181 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
5182 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
5183 .access = PL0_RW, .accessfn = pmreg_access,
5184 .type = ARM_CP_IO,
5185 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
5186 .resetvalue = cpu->midr & 0xff000000,
5187 .writefn = pmcr_write, .raw_writefn = raw_write,
5189 define_one_arm_cp_reg(cpu, &pmcr);
5190 define_one_arm_cp_reg(cpu, &pmcr64);
5191 #endif
5192 ARMCPRegInfo clidr = {
5193 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
5194 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
5195 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
5197 define_one_arm_cp_reg(cpu, &clidr);
5198 define_arm_cp_regs(cpu, v7_cp_reginfo);
5199 define_debug_regs(cpu);
5200 } else {
5201 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
5203 if (arm_feature(env, ARM_FEATURE_V8)) {
5204 /* AArch64 ID registers, which all have impdef reset values.
5205 * Note that within the ID register ranges the unused slots
5206 * must all RAZ, not UNDEF; future architecture versions may
5207 * define new registers here.
5209 ARMCPRegInfo v8_idregs[] = {
5210 /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't
5211 * know the right value for the GIC field until after we
5212 * define these regs.
5214 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
5215 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
5216 .access = PL1_R, .type = ARM_CP_NO_RAW,
5217 .readfn = id_aa64pfr0_read,
5218 .writefn = arm_cp_write_ignore },
5219 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
5220 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
5221 .access = PL1_R, .type = ARM_CP_CONST,
5222 .resetvalue = cpu->isar.id_aa64pfr1},
5223 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5224 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
5225 .access = PL1_R, .type = ARM_CP_CONST,
5226 .resetvalue = 0 },
5227 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5228 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
5229 .access = PL1_R, .type = ARM_CP_CONST,
5230 .resetvalue = 0 },
5231 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
5232 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
5233 .access = PL1_R, .type = ARM_CP_CONST,
5234 /* At present, only SVEver == 0 is defined anyway. */
5235 .resetvalue = 0 },
5236 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5237 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
5238 .access = PL1_R, .type = ARM_CP_CONST,
5239 .resetvalue = 0 },
5240 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5241 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
5242 .access = PL1_R, .type = ARM_CP_CONST,
5243 .resetvalue = 0 },
5244 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5245 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
5246 .access = PL1_R, .type = ARM_CP_CONST,
5247 .resetvalue = 0 },
5248 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
5249 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
5250 .access = PL1_R, .type = ARM_CP_CONST,
5251 .resetvalue = cpu->id_aa64dfr0 },
5252 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
5253 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
5254 .access = PL1_R, .type = ARM_CP_CONST,
5255 .resetvalue = cpu->id_aa64dfr1 },
5256 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5257 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
5258 .access = PL1_R, .type = ARM_CP_CONST,
5259 .resetvalue = 0 },
5260 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5261 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
5262 .access = PL1_R, .type = ARM_CP_CONST,
5263 .resetvalue = 0 },
5264 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
5265 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
5266 .access = PL1_R, .type = ARM_CP_CONST,
5267 .resetvalue = cpu->id_aa64afr0 },
5268 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
5269 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
5270 .access = PL1_R, .type = ARM_CP_CONST,
5271 .resetvalue = cpu->id_aa64afr1 },
5272 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5273 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
5274 .access = PL1_R, .type = ARM_CP_CONST,
5275 .resetvalue = 0 },
5276 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5277 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
5278 .access = PL1_R, .type = ARM_CP_CONST,
5279 .resetvalue = 0 },
5280 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
5281 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
5282 .access = PL1_R, .type = ARM_CP_CONST,
5283 .resetvalue = cpu->isar.id_aa64isar0 },
5284 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
5285 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
5286 .access = PL1_R, .type = ARM_CP_CONST,
5287 .resetvalue = cpu->isar.id_aa64isar1 },
5288 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5289 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
5290 .access = PL1_R, .type = ARM_CP_CONST,
5291 .resetvalue = 0 },
5292 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5293 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
5294 .access = PL1_R, .type = ARM_CP_CONST,
5295 .resetvalue = 0 },
5296 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5297 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
5298 .access = PL1_R, .type = ARM_CP_CONST,
5299 .resetvalue = 0 },
5300 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5301 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
5302 .access = PL1_R, .type = ARM_CP_CONST,
5303 .resetvalue = 0 },
5304 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5305 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
5306 .access = PL1_R, .type = ARM_CP_CONST,
5307 .resetvalue = 0 },
5308 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5309 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
5310 .access = PL1_R, .type = ARM_CP_CONST,
5311 .resetvalue = 0 },
5312 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
5313 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
5314 .access = PL1_R, .type = ARM_CP_CONST,
5315 .resetvalue = cpu->isar.id_aa64mmfr0 },
5316 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
5317 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
5318 .access = PL1_R, .type = ARM_CP_CONST,
5319 .resetvalue = cpu->isar.id_aa64mmfr1 },
5320 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5321 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
5322 .access = PL1_R, .type = ARM_CP_CONST,
5323 .resetvalue = 0 },
5324 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5325 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
5326 .access = PL1_R, .type = ARM_CP_CONST,
5327 .resetvalue = 0 },
5328 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5329 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
5330 .access = PL1_R, .type = ARM_CP_CONST,
5331 .resetvalue = 0 },
5332 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5333 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
5334 .access = PL1_R, .type = ARM_CP_CONST,
5335 .resetvalue = 0 },
5336 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5337 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
5338 .access = PL1_R, .type = ARM_CP_CONST,
5339 .resetvalue = 0 },
5340 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5341 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
5342 .access = PL1_R, .type = ARM_CP_CONST,
5343 .resetvalue = 0 },
5344 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
5345 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
5346 .access = PL1_R, .type = ARM_CP_CONST,
5347 .resetvalue = cpu->isar.mvfr0 },
5348 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
5349 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
5350 .access = PL1_R, .type = ARM_CP_CONST,
5351 .resetvalue = cpu->isar.mvfr1 },
5352 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
5353 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
5354 .access = PL1_R, .type = ARM_CP_CONST,
5355 .resetvalue = cpu->isar.mvfr2 },
5356 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5357 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
5358 .access = PL1_R, .type = ARM_CP_CONST,
5359 .resetvalue = 0 },
5360 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5361 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
5362 .access = PL1_R, .type = ARM_CP_CONST,
5363 .resetvalue = 0 },
5364 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5365 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
5366 .access = PL1_R, .type = ARM_CP_CONST,
5367 .resetvalue = 0 },
5368 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5369 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
5370 .access = PL1_R, .type = ARM_CP_CONST,
5371 .resetvalue = 0 },
5372 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5373 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
5374 .access = PL1_R, .type = ARM_CP_CONST,
5375 .resetvalue = 0 },
5376 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
5377 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
5378 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5379 .resetvalue = cpu->pmceid0 },
5380 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
5381 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
5382 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5383 .resetvalue = cpu->pmceid0 },
5384 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
5385 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
5386 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5387 .resetvalue = cpu->pmceid1 },
5388 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
5389 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
5390 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5391 .resetvalue = cpu->pmceid1 },
5392 REGINFO_SENTINEL
5394 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
5395 if (!arm_feature(env, ARM_FEATURE_EL3) &&
5396 !arm_feature(env, ARM_FEATURE_EL2)) {
5397 ARMCPRegInfo rvbar = {
5398 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
5399 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
5400 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
5402 define_one_arm_cp_reg(cpu, &rvbar);
5404 define_arm_cp_regs(cpu, v8_idregs);
5405 define_arm_cp_regs(cpu, v8_cp_reginfo);
5407 if (arm_feature(env, ARM_FEATURE_EL2)) {
5408 uint64_t vmpidr_def = mpidr_read_val(env);
5409 ARMCPRegInfo vpidr_regs[] = {
5410 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
5411 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
5412 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5413 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
5414 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
5415 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
5416 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
5417 .access = PL2_RW, .resetvalue = cpu->midr,
5418 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
5419 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
5420 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
5421 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5422 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
5423 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
5424 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
5425 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
5426 .access = PL2_RW,
5427 .resetvalue = vmpidr_def,
5428 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
5429 REGINFO_SENTINEL
5431 define_arm_cp_regs(cpu, vpidr_regs);
5432 define_arm_cp_regs(cpu, el2_cp_reginfo);
5433 if (arm_feature(env, ARM_FEATURE_V8)) {
5434 define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
5436 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
5437 if (!arm_feature(env, ARM_FEATURE_EL3)) {
5438 ARMCPRegInfo rvbar = {
5439 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
5440 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
5441 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
5443 define_one_arm_cp_reg(cpu, &rvbar);
5445 } else {
5446 /* If EL2 is missing but higher ELs are enabled, we need to
5447 * register the no_el2 reginfos.
5449 if (arm_feature(env, ARM_FEATURE_EL3)) {
5450 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
5451 * of MIDR_EL1 and MPIDR_EL1.
5453 ARMCPRegInfo vpidr_regs[] = {
5454 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5455 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
5456 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
5457 .type = ARM_CP_CONST, .resetvalue = cpu->midr,
5458 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
5459 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5460 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
5461 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
5462 .type = ARM_CP_NO_RAW,
5463 .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
5464 REGINFO_SENTINEL
5466 define_arm_cp_regs(cpu, vpidr_regs);
5467 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
5468 if (arm_feature(env, ARM_FEATURE_V8)) {
5469 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo);
5473 if (arm_feature(env, ARM_FEATURE_EL3)) {
5474 define_arm_cp_regs(cpu, el3_cp_reginfo);
5475 ARMCPRegInfo el3_regs[] = {
5476 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
5477 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
5478 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
5479 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
5480 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
5481 .access = PL3_RW,
5482 .raw_writefn = raw_write, .writefn = sctlr_write,
5483 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
5484 .resetvalue = cpu->reset_sctlr },
5485 REGINFO_SENTINEL
5488 define_arm_cp_regs(cpu, el3_regs);
5490 /* The behaviour of NSACR is sufficiently various that we don't
5491 * try to describe it in a single reginfo:
5492 * if EL3 is 64 bit, then trap to EL3 from S EL1,
5493 * reads as constant 0xc00 from NS EL1 and NS EL2
5494 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
5495 * if v7 without EL3, register doesn't exist
5496 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
5498 if (arm_feature(env, ARM_FEATURE_EL3)) {
5499 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5500 ARMCPRegInfo nsacr = {
5501 .name = "NSACR", .type = ARM_CP_CONST,
5502 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
5503 .access = PL1_RW, .accessfn = nsacr_access,
5504 .resetvalue = 0xc00
5506 define_one_arm_cp_reg(cpu, &nsacr);
5507 } else {
5508 ARMCPRegInfo nsacr = {
5509 .name = "NSACR",
5510 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
5511 .access = PL3_RW | PL1_R,
5512 .resetvalue = 0,
5513 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
5515 define_one_arm_cp_reg(cpu, &nsacr);
5517 } else {
5518 if (arm_feature(env, ARM_FEATURE_V8)) {
5519 ARMCPRegInfo nsacr = {
5520 .name = "NSACR", .type = ARM_CP_CONST,
5521 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
5522 .access = PL1_R,
5523 .resetvalue = 0xc00
5525 define_one_arm_cp_reg(cpu, &nsacr);
5529 if (arm_feature(env, ARM_FEATURE_PMSA)) {
5530 if (arm_feature(env, ARM_FEATURE_V6)) {
5531 /* PMSAv6 not implemented */
5532 assert(arm_feature(env, ARM_FEATURE_V7));
5533 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
5534 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
5535 } else {
5536 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
5538 } else {
5539 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
5540 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
5541 /* TTCBR2 is introduced with ARMv8.2-A32HPD. */
5542 if (FIELD_EX32(cpu->id_mmfr4, ID_MMFR4, HPDS) != 0) {
5543 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
5546 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
5547 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
5549 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
5550 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
5552 if (arm_feature(env, ARM_FEATURE_VAPA)) {
5553 define_arm_cp_regs(cpu, vapa_cp_reginfo);
5555 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
5556 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
5558 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
5559 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
5561 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
5562 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
5564 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
5565 define_arm_cp_regs(cpu, omap_cp_reginfo);
5567 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
5568 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
5570 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5571 define_arm_cp_regs(cpu, xscale_cp_reginfo);
5573 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
5574 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
5576 if (arm_feature(env, ARM_FEATURE_LPAE)) {
5577 define_arm_cp_regs(cpu, lpae_cp_reginfo);
5579 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
5580 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
5581 * be read-only (ie write causes UNDEF exception).
5584 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
5585 /* Pre-v8 MIDR space.
5586 * Note that the MIDR isn't a simple constant register because
5587 * of the TI925 behaviour where writes to another register can
5588 * cause the MIDR value to change.
5590 * Unimplemented registers in the c15 0 0 0 space default to
5591 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
5592 * and friends override accordingly.
5594 { .name = "MIDR",
5595 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
5596 .access = PL1_R, .resetvalue = cpu->midr,
5597 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
5598 .readfn = midr_read,
5599 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5600 .type = ARM_CP_OVERRIDE },
5601 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
5602 { .name = "DUMMY",
5603 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
5604 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5605 { .name = "DUMMY",
5606 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
5607 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5608 { .name = "DUMMY",
5609 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
5610 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5611 { .name = "DUMMY",
5612 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
5613 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5614 { .name = "DUMMY",
5615 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
5616 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5617 REGINFO_SENTINEL
5619 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
5620 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
5621 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
5622 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
5623 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5624 .readfn = midr_read },
5625 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
5626 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5627 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5628 .access = PL1_R, .resetvalue = cpu->midr },
5629 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5630 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
5631 .access = PL1_R, .resetvalue = cpu->midr },
5632 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
5633 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
5634 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
5635 REGINFO_SENTINEL
5637 ARMCPRegInfo id_cp_reginfo[] = {
5638 /* These are common to v8 and pre-v8 */
5639 { .name = "CTR",
5640 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
5641 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5642 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
5643 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
5644 .access = PL0_R, .accessfn = ctr_el0_access,
5645 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5646 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
5647 { .name = "TCMTR",
5648 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
5649 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5650 REGINFO_SENTINEL
5652 /* TLBTR is specific to VMSA */
5653 ARMCPRegInfo id_tlbtr_reginfo = {
5654 .name = "TLBTR",
5655 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
5656 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
5658 /* MPUIR is specific to PMSA V6+ */
5659 ARMCPRegInfo id_mpuir_reginfo = {
5660 .name = "MPUIR",
5661 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5662 .access = PL1_R, .type = ARM_CP_CONST,
5663 .resetvalue = cpu->pmsav7_dregion << 8
5665 ARMCPRegInfo crn0_wi_reginfo = {
5666 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
5667 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
5668 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
5670 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
5671 arm_feature(env, ARM_FEATURE_STRONGARM)) {
5672 ARMCPRegInfo *r;
5673 /* Register the blanket "writes ignored" value first to cover the
5674 * whole space. Then update the specific ID registers to allow write
5675 * access, so that they ignore writes rather than causing them to
5676 * UNDEF.
5678 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
5679 for (r = id_pre_v8_midr_cp_reginfo;
5680 r->type != ARM_CP_SENTINEL; r++) {
5681 r->access = PL1_RW;
5683 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
5684 r->access = PL1_RW;
5686 id_mpuir_reginfo.access = PL1_RW;
5687 id_tlbtr_reginfo.access = PL1_RW;
5689 if (arm_feature(env, ARM_FEATURE_V8)) {
5690 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
5691 } else {
5692 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
5694 define_arm_cp_regs(cpu, id_cp_reginfo);
5695 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
5696 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
5697 } else if (arm_feature(env, ARM_FEATURE_V7)) {
5698 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
5702 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
5703 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
5706 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
5707 ARMCPRegInfo auxcr_reginfo[] = {
5708 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
5709 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
5710 .access = PL1_RW, .type = ARM_CP_CONST,
5711 .resetvalue = cpu->reset_auxcr },
5712 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
5713 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
5714 .access = PL2_RW, .type = ARM_CP_CONST,
5715 .resetvalue = 0 },
5716 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
5717 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
5718 .access = PL3_RW, .type = ARM_CP_CONST,
5719 .resetvalue = 0 },
5720 REGINFO_SENTINEL
5722 define_arm_cp_regs(cpu, auxcr_reginfo);
5723 if (arm_feature(env, ARM_FEATURE_V8)) {
5724 /* HACTLR2 maps to ACTLR_EL2[63:32] and is not in ARMv7 */
5725 ARMCPRegInfo hactlr2_reginfo = {
5726 .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
5727 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
5728 .access = PL2_RW, .type = ARM_CP_CONST,
5729 .resetvalue = 0
5731 define_one_arm_cp_reg(cpu, &hactlr2_reginfo);
5735 if (arm_feature(env, ARM_FEATURE_CBAR)) {
5736 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5737 /* 32 bit view is [31:18] 0...0 [43:32]. */
5738 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
5739 | extract64(cpu->reset_cbar, 32, 12);
5740 ARMCPRegInfo cbar_reginfo[] = {
5741 { .name = "CBAR",
5742 .type = ARM_CP_CONST,
5743 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5744 .access = PL1_R, .resetvalue = cpu->reset_cbar },
5745 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
5746 .type = ARM_CP_CONST,
5747 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
5748 .access = PL1_R, .resetvalue = cbar32 },
5749 REGINFO_SENTINEL
5751 /* We don't implement a r/w 64 bit CBAR currently */
5752 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
5753 define_arm_cp_regs(cpu, cbar_reginfo);
5754 } else {
5755 ARMCPRegInfo cbar = {
5756 .name = "CBAR",
5757 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5758 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
5759 .fieldoffset = offsetof(CPUARMState,
5760 cp15.c15_config_base_address)
5762 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
5763 cbar.access = PL1_R;
5764 cbar.fieldoffset = 0;
5765 cbar.type = ARM_CP_CONST;
5767 define_one_arm_cp_reg(cpu, &cbar);
5771 if (arm_feature(env, ARM_FEATURE_VBAR)) {
5772 ARMCPRegInfo vbar_cp_reginfo[] = {
5773 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
5774 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
5775 .access = PL1_RW, .writefn = vbar_write,
5776 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
5777 offsetof(CPUARMState, cp15.vbar_ns) },
5778 .resetvalue = 0 },
5779 REGINFO_SENTINEL
5781 define_arm_cp_regs(cpu, vbar_cp_reginfo);
5784 /* Generic registers whose values depend on the implementation */
5786 ARMCPRegInfo sctlr = {
5787 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
5788 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5789 .access = PL1_RW,
5790 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
5791 offsetof(CPUARMState, cp15.sctlr_ns) },
5792 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
5793 .raw_writefn = raw_write,
5795 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5796 /* Normally we would always end the TB on an SCTLR write, but Linux
5797 * arch/arm/mach-pxa/sleep.S expects two instructions following
5798 * an MMU enable to execute from cache. Imitate this behaviour.
5800 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
5802 define_one_arm_cp_reg(cpu, &sctlr);
5805 if (cpu_isar_feature(aa64_lor, cpu)) {
5807 * A trivial implementation of ARMv8.1-LOR leaves all of these
5808 * registers fixed at 0, which indicates that there are zero
5809 * supported Limited Ordering regions.
5811 static const ARMCPRegInfo lor_reginfo[] = {
5812 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
5813 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
5814 .access = PL1_RW, .accessfn = access_lor_other,
5815 .type = ARM_CP_CONST, .resetvalue = 0 },
5816 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
5817 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
5818 .access = PL1_RW, .accessfn = access_lor_other,
5819 .type = ARM_CP_CONST, .resetvalue = 0 },
5820 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
5821 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
5822 .access = PL1_RW, .accessfn = access_lor_other,
5823 .type = ARM_CP_CONST, .resetvalue = 0 },
5824 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
5825 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
5826 .access = PL1_RW, .accessfn = access_lor_other,
5827 .type = ARM_CP_CONST, .resetvalue = 0 },
5828 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
5829 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
5830 .access = PL1_R, .accessfn = access_lorid,
5831 .type = ARM_CP_CONST, .resetvalue = 0 },
5832 REGINFO_SENTINEL
5834 define_arm_cp_regs(cpu, lor_reginfo);
5837 if (cpu_isar_feature(aa64_sve, cpu)) {
5838 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
5839 if (arm_feature(env, ARM_FEATURE_EL2)) {
5840 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
5841 } else {
5842 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
5844 if (arm_feature(env, ARM_FEATURE_EL3)) {
5845 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
5850 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
5852 CPUState *cs = CPU(cpu);
5853 CPUARMState *env = &cpu->env;
5855 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5856 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
5857 aarch64_fpu_gdb_set_reg,
5858 34, "aarch64-fpu.xml", 0);
5859 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
5860 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5861 51, "arm-neon.xml", 0);
5862 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
5863 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5864 35, "arm-vfp3.xml", 0);
5865 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
5866 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5867 19, "arm-vfp.xml", 0);
5869 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg,
5870 arm_gen_dynamic_xml(cs),
5871 "system-registers.xml", 0);
5874 /* Sort alphabetically by type name, except for "any". */
5875 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
5877 ObjectClass *class_a = (ObjectClass *)a;
5878 ObjectClass *class_b = (ObjectClass *)b;
5879 const char *name_a, *name_b;
5881 name_a = object_class_get_name(class_a);
5882 name_b = object_class_get_name(class_b);
5883 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
5884 return 1;
5885 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
5886 return -1;
5887 } else {
5888 return strcmp(name_a, name_b);
5892 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
5894 ObjectClass *oc = data;
5895 CPUListState *s = user_data;
5896 const char *typename;
5897 char *name;
5899 typename = object_class_get_name(oc);
5900 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
5901 (*s->cpu_fprintf)(s->file, " %s\n",
5902 name);
5903 g_free(name);
5906 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
5908 CPUListState s = {
5909 .file = f,
5910 .cpu_fprintf = cpu_fprintf,
5912 GSList *list;
5914 list = object_class_get_list(TYPE_ARM_CPU, false);
5915 list = g_slist_sort(list, arm_cpu_list_compare);
5916 (*cpu_fprintf)(f, "Available CPUs:\n");
5917 g_slist_foreach(list, arm_cpu_list_entry, &s);
5918 g_slist_free(list);
5921 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
5923 ObjectClass *oc = data;
5924 CpuDefinitionInfoList **cpu_list = user_data;
5925 CpuDefinitionInfoList *entry;
5926 CpuDefinitionInfo *info;
5927 const char *typename;
5929 typename = object_class_get_name(oc);
5930 info = g_malloc0(sizeof(*info));
5931 info->name = g_strndup(typename,
5932 strlen(typename) - strlen("-" TYPE_ARM_CPU));
5933 info->q_typename = g_strdup(typename);
5935 entry = g_malloc0(sizeof(*entry));
5936 entry->value = info;
5937 entry->next = *cpu_list;
5938 *cpu_list = entry;
5941 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
5943 CpuDefinitionInfoList *cpu_list = NULL;
5944 GSList *list;
5946 list = object_class_get_list(TYPE_ARM_CPU, false);
5947 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
5948 g_slist_free(list);
5950 return cpu_list;
5953 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
5954 void *opaque, int state, int secstate,
5955 int crm, int opc1, int opc2,
5956 const char *name)
5958 /* Private utility function for define_one_arm_cp_reg_with_opaque():
5959 * add a single reginfo struct to the hash table.
5961 uint32_t *key = g_new(uint32_t, 1);
5962 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
5963 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
5964 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
5966 r2->name = g_strdup(name);
5967 /* Reset the secure state to the specific incoming state. This is
5968 * necessary as the register may have been defined with both states.
5970 r2->secure = secstate;
5972 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5973 /* Register is banked (using both entries in array).
5974 * Overwriting fieldoffset as the array is only used to define
5975 * banked registers but later only fieldoffset is used.
5977 r2->fieldoffset = r->bank_fieldoffsets[ns];
5980 if (state == ARM_CP_STATE_AA32) {
5981 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5982 /* If the register is banked then we don't need to migrate or
5983 * reset the 32-bit instance in certain cases:
5985 * 1) If the register has both 32-bit and 64-bit instances then we
5986 * can count on the 64-bit instance taking care of the
5987 * non-secure bank.
5988 * 2) If ARMv8 is enabled then we can count on a 64-bit version
5989 * taking care of the secure bank. This requires that separate
5990 * 32 and 64-bit definitions are provided.
5992 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
5993 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
5994 r2->type |= ARM_CP_ALIAS;
5996 } else if ((secstate != r->secure) && !ns) {
5997 /* The register is not banked so we only want to allow migration of
5998 * the non-secure instance.
6000 r2->type |= ARM_CP_ALIAS;
6003 if (r->state == ARM_CP_STATE_BOTH) {
6004 /* We assume it is a cp15 register if the .cp field is left unset.
6006 if (r2->cp == 0) {
6007 r2->cp = 15;
6010 #ifdef HOST_WORDS_BIGENDIAN
6011 if (r2->fieldoffset) {
6012 r2->fieldoffset += sizeof(uint32_t);
6014 #endif
6017 if (state == ARM_CP_STATE_AA64) {
6018 /* To allow abbreviation of ARMCPRegInfo
6019 * definitions, we treat cp == 0 as equivalent to
6020 * the value for "standard guest-visible sysreg".
6021 * STATE_BOTH definitions are also always "standard
6022 * sysreg" in their AArch64 view (the .cp value may
6023 * be non-zero for the benefit of the AArch32 view).
6025 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
6026 r2->cp = CP_REG_ARM64_SYSREG_CP;
6028 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
6029 r2->opc0, opc1, opc2);
6030 } else {
6031 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
6033 if (opaque) {
6034 r2->opaque = opaque;
6036 /* reginfo passed to helpers is correct for the actual access,
6037 * and is never ARM_CP_STATE_BOTH:
6039 r2->state = state;
6040 /* Make sure reginfo passed to helpers for wildcarded regs
6041 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
6043 r2->crm = crm;
6044 r2->opc1 = opc1;
6045 r2->opc2 = opc2;
6046 /* By convention, for wildcarded registers only the first
6047 * entry is used for migration; the others are marked as
6048 * ALIAS so we don't try to transfer the register
6049 * multiple times. Special registers (ie NOP/WFI) are
6050 * never migratable and not even raw-accessible.
6052 if ((r->type & ARM_CP_SPECIAL)) {
6053 r2->type |= ARM_CP_NO_RAW;
6055 if (((r->crm == CP_ANY) && crm != 0) ||
6056 ((r->opc1 == CP_ANY) && opc1 != 0) ||
6057 ((r->opc2 == CP_ANY) && opc2 != 0)) {
6058 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
6061 /* Check that raw accesses are either forbidden or handled. Note that
6062 * we can't assert this earlier because the setup of fieldoffset for
6063 * banked registers has to be done first.
6065 if (!(r2->type & ARM_CP_NO_RAW)) {
6066 assert(!raw_accessors_invalid(r2));
6069 /* Overriding of an existing definition must be explicitly
6070 * requested.
6072 if (!(r->type & ARM_CP_OVERRIDE)) {
6073 ARMCPRegInfo *oldreg;
6074 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
6075 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
6076 fprintf(stderr, "Register redefined: cp=%d %d bit "
6077 "crn=%d crm=%d opc1=%d opc2=%d, "
6078 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
6079 r2->crn, r2->crm, r2->opc1, r2->opc2,
6080 oldreg->name, r2->name);
6081 g_assert_not_reached();
6084 g_hash_table_insert(cpu->cp_regs, key, r2);
6088 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
6089 const ARMCPRegInfo *r, void *opaque)
6091 /* Define implementations of coprocessor registers.
6092 * We store these in a hashtable because typically
6093 * there are less than 150 registers in a space which
6094 * is 16*16*16*8*8 = 262144 in size.
6095 * Wildcarding is supported for the crm, opc1 and opc2 fields.
6096 * If a register is defined twice then the second definition is
6097 * used, so this can be used to define some generic registers and
6098 * then override them with implementation specific variations.
6099 * At least one of the original and the second definition should
6100 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
6101 * against accidental use.
6103 * The state field defines whether the register is to be
6104 * visible in the AArch32 or AArch64 execution state. If the
6105 * state is set to ARM_CP_STATE_BOTH then we synthesise a
6106 * reginfo structure for the AArch32 view, which sees the lower
6107 * 32 bits of the 64 bit register.
6109 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
6110 * be wildcarded. AArch64 registers are always considered to be 64
6111 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
6112 * the register, if any.
6114 int crm, opc1, opc2, state;
6115 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
6116 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
6117 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
6118 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
6119 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
6120 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
6121 /* 64 bit registers have only CRm and Opc1 fields */
6122 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
6123 /* op0 only exists in the AArch64 encodings */
6124 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
6125 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
6126 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
6127 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
6128 * encodes a minimum access level for the register. We roll this
6129 * runtime check into our general permission check code, so check
6130 * here that the reginfo's specified permissions are strict enough
6131 * to encompass the generic architectural permission check.
6133 if (r->state != ARM_CP_STATE_AA32) {
6134 int mask = 0;
6135 switch (r->opc1) {
6136 case 0: case 1: case 2:
6137 /* min_EL EL1 */
6138 mask = PL1_RW;
6139 break;
6140 case 3:
6141 /* min_EL EL0 */
6142 mask = PL0_RW;
6143 break;
6144 case 4:
6145 /* min_EL EL2 */
6146 mask = PL2_RW;
6147 break;
6148 case 5:
6149 /* unallocated encoding, so not possible */
6150 assert(false);
6151 break;
6152 case 6:
6153 /* min_EL EL3 */
6154 mask = PL3_RW;
6155 break;
6156 case 7:
6157 /* min_EL EL1, secure mode only (we don't check the latter) */
6158 mask = PL1_RW;
6159 break;
6160 default:
6161 /* broken reginfo with out-of-range opc1 */
6162 assert(false);
6163 break;
6165 /* assert our permissions are not too lax (stricter is fine) */
6166 assert((r->access & ~mask) == 0);
6169 /* Check that the register definition has enough info to handle
6170 * reads and writes if they are permitted.
6172 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
6173 if (r->access & PL3_R) {
6174 assert((r->fieldoffset ||
6175 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
6176 r->readfn);
6178 if (r->access & PL3_W) {
6179 assert((r->fieldoffset ||
6180 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
6181 r->writefn);
6184 /* Bad type field probably means missing sentinel at end of reg list */
6185 assert(cptype_valid(r->type));
6186 for (crm = crmmin; crm <= crmmax; crm++) {
6187 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
6188 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
6189 for (state = ARM_CP_STATE_AA32;
6190 state <= ARM_CP_STATE_AA64; state++) {
6191 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
6192 continue;
6194 if (state == ARM_CP_STATE_AA32) {
6195 /* Under AArch32 CP registers can be common
6196 * (same for secure and non-secure world) or banked.
6198 char *name;
6200 switch (r->secure) {
6201 case ARM_CP_SECSTATE_S:
6202 case ARM_CP_SECSTATE_NS:
6203 add_cpreg_to_hashtable(cpu, r, opaque, state,
6204 r->secure, crm, opc1, opc2,
6205 r->name);
6206 break;
6207 default:
6208 name = g_strdup_printf("%s_S", r->name);
6209 add_cpreg_to_hashtable(cpu, r, opaque, state,
6210 ARM_CP_SECSTATE_S,
6211 crm, opc1, opc2, name);
6212 g_free(name);
6213 add_cpreg_to_hashtable(cpu, r, opaque, state,
6214 ARM_CP_SECSTATE_NS,
6215 crm, opc1, opc2, r->name);
6216 break;
6218 } else {
6219 /* AArch64 registers get mapped to non-secure instance
6220 * of AArch32 */
6221 add_cpreg_to_hashtable(cpu, r, opaque, state,
6222 ARM_CP_SECSTATE_NS,
6223 crm, opc1, opc2, r->name);
6231 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
6232 const ARMCPRegInfo *regs, void *opaque)
6234 /* Define a whole list of registers */
6235 const ARMCPRegInfo *r;
6236 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
6237 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
6241 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
6243 return g_hash_table_lookup(cpregs, &encoded_cp);
6246 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
6247 uint64_t value)
6249 /* Helper coprocessor write function for write-ignore registers */
6252 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
6254 /* Helper coprocessor write function for read-as-zero registers */
6255 return 0;
6258 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
6260 /* Helper coprocessor reset function for do-nothing-on-reset registers */
6263 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
6265 /* Return true if it is not valid for us to switch to
6266 * this CPU mode (ie all the UNPREDICTABLE cases in
6267 * the ARM ARM CPSRWriteByInstr pseudocode).
6270 /* Changes to or from Hyp via MSR and CPS are illegal. */
6271 if (write_type == CPSRWriteByInstr &&
6272 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
6273 mode == ARM_CPU_MODE_HYP)) {
6274 return 1;
6277 switch (mode) {
6278 case ARM_CPU_MODE_USR:
6279 return 0;
6280 case ARM_CPU_MODE_SYS:
6281 case ARM_CPU_MODE_SVC:
6282 case ARM_CPU_MODE_ABT:
6283 case ARM_CPU_MODE_UND:
6284 case ARM_CPU_MODE_IRQ:
6285 case ARM_CPU_MODE_FIQ:
6286 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
6287 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
6289 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
6290 * and CPS are treated as illegal mode changes.
6292 if (write_type == CPSRWriteByInstr &&
6293 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
6294 (arm_hcr_el2_eff(env) & HCR_TGE)) {
6295 return 1;
6297 return 0;
6298 case ARM_CPU_MODE_HYP:
6299 return !arm_feature(env, ARM_FEATURE_EL2)
6300 || arm_current_el(env) < 2 || arm_is_secure(env);
6301 case ARM_CPU_MODE_MON:
6302 return arm_current_el(env) < 3;
6303 default:
6304 return 1;
6308 uint32_t cpsr_read(CPUARMState *env)
6310 int ZF;
6311 ZF = (env->ZF == 0);
6312 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
6313 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
6314 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
6315 | ((env->condexec_bits & 0xfc) << 8)
6316 | (env->GE << 16) | (env->daif & CPSR_AIF);
6319 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
6320 CPSRWriteType write_type)
6322 uint32_t changed_daif;
6324 if (mask & CPSR_NZCV) {
6325 env->ZF = (~val) & CPSR_Z;
6326 env->NF = val;
6327 env->CF = (val >> 29) & 1;
6328 env->VF = (val << 3) & 0x80000000;
6330 if (mask & CPSR_Q)
6331 env->QF = ((val & CPSR_Q) != 0);
6332 if (mask & CPSR_T)
6333 env->thumb = ((val & CPSR_T) != 0);
6334 if (mask & CPSR_IT_0_1) {
6335 env->condexec_bits &= ~3;
6336 env->condexec_bits |= (val >> 25) & 3;
6338 if (mask & CPSR_IT_2_7) {
6339 env->condexec_bits &= 3;
6340 env->condexec_bits |= (val >> 8) & 0xfc;
6342 if (mask & CPSR_GE) {
6343 env->GE = (val >> 16) & 0xf;
6346 /* In a V7 implementation that includes the security extensions but does
6347 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
6348 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
6349 * bits respectively.
6351 * In a V8 implementation, it is permitted for privileged software to
6352 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
6354 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
6355 arm_feature(env, ARM_FEATURE_EL3) &&
6356 !arm_feature(env, ARM_FEATURE_EL2) &&
6357 !arm_is_secure(env)) {
6359 changed_daif = (env->daif ^ val) & mask;
6361 if (changed_daif & CPSR_A) {
6362 /* Check to see if we are allowed to change the masking of async
6363 * abort exceptions from a non-secure state.
6365 if (!(env->cp15.scr_el3 & SCR_AW)) {
6366 qemu_log_mask(LOG_GUEST_ERROR,
6367 "Ignoring attempt to switch CPSR_A flag from "
6368 "non-secure world with SCR.AW bit clear\n");
6369 mask &= ~CPSR_A;
6373 if (changed_daif & CPSR_F) {
6374 /* Check to see if we are allowed to change the masking of FIQ
6375 * exceptions from a non-secure state.
6377 if (!(env->cp15.scr_el3 & SCR_FW)) {
6378 qemu_log_mask(LOG_GUEST_ERROR,
6379 "Ignoring attempt to switch CPSR_F flag from "
6380 "non-secure world with SCR.FW bit clear\n");
6381 mask &= ~CPSR_F;
6384 /* Check whether non-maskable FIQ (NMFI) support is enabled.
6385 * If this bit is set software is not allowed to mask
6386 * FIQs, but is allowed to set CPSR_F to 0.
6388 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
6389 (val & CPSR_F)) {
6390 qemu_log_mask(LOG_GUEST_ERROR,
6391 "Ignoring attempt to enable CPSR_F flag "
6392 "(non-maskable FIQ [NMFI] support enabled)\n");
6393 mask &= ~CPSR_F;
6398 env->daif &= ~(CPSR_AIF & mask);
6399 env->daif |= val & CPSR_AIF & mask;
6401 if (write_type != CPSRWriteRaw &&
6402 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
6403 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
6404 /* Note that we can only get here in USR mode if this is a
6405 * gdb stub write; for this case we follow the architectural
6406 * behaviour for guest writes in USR mode of ignoring an attempt
6407 * to switch mode. (Those are caught by translate.c for writes
6408 * triggered by guest instructions.)
6410 mask &= ~CPSR_M;
6411 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
6412 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
6413 * v7, and has defined behaviour in v8:
6414 * + leave CPSR.M untouched
6415 * + allow changes to the other CPSR fields
6416 * + set PSTATE.IL
6417 * For user changes via the GDB stub, we don't set PSTATE.IL,
6418 * as this would be unnecessarily harsh for a user error.
6420 mask &= ~CPSR_M;
6421 if (write_type != CPSRWriteByGDBStub &&
6422 arm_feature(env, ARM_FEATURE_V8)) {
6423 mask |= CPSR_IL;
6424 val |= CPSR_IL;
6426 qemu_log_mask(LOG_GUEST_ERROR,
6427 "Illegal AArch32 mode switch attempt from %s to %s\n",
6428 aarch32_mode_name(env->uncached_cpsr),
6429 aarch32_mode_name(val));
6430 } else {
6431 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
6432 write_type == CPSRWriteExceptionReturn ?
6433 "Exception return from AArch32" :
6434 "AArch32 mode switch from",
6435 aarch32_mode_name(env->uncached_cpsr),
6436 aarch32_mode_name(val), env->regs[15]);
6437 switch_mode(env, val & CPSR_M);
6440 mask &= ~CACHED_CPSR_BITS;
6441 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
6444 /* Sign/zero extend */
6445 uint32_t HELPER(sxtb16)(uint32_t x)
6447 uint32_t res;
6448 res = (uint16_t)(int8_t)x;
6449 res |= (uint32_t)(int8_t)(x >> 16) << 16;
6450 return res;
6453 uint32_t HELPER(uxtb16)(uint32_t x)
6455 uint32_t res;
6456 res = (uint16_t)(uint8_t)x;
6457 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
6458 return res;
6461 int32_t HELPER(sdiv)(int32_t num, int32_t den)
6463 if (den == 0)
6464 return 0;
6465 if (num == INT_MIN && den == -1)
6466 return INT_MIN;
6467 return num / den;
6470 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
6472 if (den == 0)
6473 return 0;
6474 return num / den;
6477 uint32_t HELPER(rbit)(uint32_t x)
6479 return revbit32(x);
6482 #if defined(CONFIG_USER_ONLY)
6484 /* These should probably raise undefined insn exceptions. */
6485 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
6487 ARMCPU *cpu = arm_env_get_cpu(env);
6489 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
6492 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
6494 ARMCPU *cpu = arm_env_get_cpu(env);
6496 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
6497 return 0;
6500 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
6502 /* translate.c should never generate calls here in user-only mode */
6503 g_assert_not_reached();
6506 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
6508 /* translate.c should never generate calls here in user-only mode */
6509 g_assert_not_reached();
6512 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
6514 /* The TT instructions can be used by unprivileged code, but in
6515 * user-only emulation we don't have the MPU.
6516 * Luckily since we know we are NonSecure unprivileged (and that in
6517 * turn means that the A flag wasn't specified), all the bits in the
6518 * register must be zero:
6519 * IREGION: 0 because IRVALID is 0
6520 * IRVALID: 0 because NS
6521 * S: 0 because NS
6522 * NSRW: 0 because NS
6523 * NSR: 0 because NS
6524 * RW: 0 because unpriv and A flag not set
6525 * R: 0 because unpriv and A flag not set
6526 * SRVALID: 0 because NS
6527 * MRVALID: 0 because unpriv and A flag not set
6528 * SREGION: 0 becaus SRVALID is 0
6529 * MREGION: 0 because MRVALID is 0
6531 return 0;
6534 static void switch_mode(CPUARMState *env, int mode)
6536 ARMCPU *cpu = arm_env_get_cpu(env);
6538 if (mode != ARM_CPU_MODE_USR) {
6539 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
6543 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
6544 uint32_t cur_el, bool secure)
6546 return 1;
6549 void aarch64_sync_64_to_32(CPUARMState *env)
6551 g_assert_not_reached();
6554 #else
6556 static void switch_mode(CPUARMState *env, int mode)
6558 int old_mode;
6559 int i;
6561 old_mode = env->uncached_cpsr & CPSR_M;
6562 if (mode == old_mode)
6563 return;
6565 if (old_mode == ARM_CPU_MODE_FIQ) {
6566 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
6567 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
6568 } else if (mode == ARM_CPU_MODE_FIQ) {
6569 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
6570 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
6573 i = bank_number(old_mode);
6574 env->banked_r13[i] = env->regs[13];
6575 env->banked_spsr[i] = env->spsr;
6577 i = bank_number(mode);
6578 env->regs[13] = env->banked_r13[i];
6579 env->spsr = env->banked_spsr[i];
6581 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
6582 env->regs[14] = env->banked_r14[r14_bank_number(mode)];
6585 /* Physical Interrupt Target EL Lookup Table
6587 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
6589 * The below multi-dimensional table is used for looking up the target
6590 * exception level given numerous condition criteria. Specifically, the
6591 * target EL is based on SCR and HCR routing controls as well as the
6592 * currently executing EL and secure state.
6594 * Dimensions:
6595 * target_el_table[2][2][2][2][2][4]
6596 * | | | | | +--- Current EL
6597 * | | | | +------ Non-secure(0)/Secure(1)
6598 * | | | +--------- HCR mask override
6599 * | | +------------ SCR exec state control
6600 * | +--------------- SCR mask override
6601 * +------------------ 32-bit(0)/64-bit(1) EL3
6603 * The table values are as such:
6604 * 0-3 = EL0-EL3
6605 * -1 = Cannot occur
6607 * The ARM ARM target EL table includes entries indicating that an "exception
6608 * is not taken". The two cases where this is applicable are:
6609 * 1) An exception is taken from EL3 but the SCR does not have the exception
6610 * routed to EL3.
6611 * 2) An exception is taken from EL2 but the HCR does not have the exception
6612 * routed to EL2.
6613 * In these two cases, the below table contain a target of EL1. This value is
6614 * returned as it is expected that the consumer of the table data will check
6615 * for "target EL >= current EL" to ensure the exception is not taken.
6617 * SCR HCR
6618 * 64 EA AMO From
6619 * BIT IRQ IMO Non-secure Secure
6620 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
6622 static const int8_t target_el_table[2][2][2][2][2][4] = {
6623 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
6624 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
6625 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
6626 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
6627 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
6628 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
6629 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
6630 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
6631 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
6632 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
6633 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
6634 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
6635 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
6636 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
6637 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
6638 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
6642 * Determine the target EL for physical exceptions
6644 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
6645 uint32_t cur_el, bool secure)
6647 CPUARMState *env = cs->env_ptr;
6648 bool rw;
6649 bool scr;
6650 bool hcr;
6651 int target_el;
6652 /* Is the highest EL AArch64? */
6653 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
6654 uint64_t hcr_el2;
6656 if (arm_feature(env, ARM_FEATURE_EL3)) {
6657 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
6658 } else {
6659 /* Either EL2 is the highest EL (and so the EL2 register width
6660 * is given by is64); or there is no EL2 or EL3, in which case
6661 * the value of 'rw' does not affect the table lookup anyway.
6663 rw = is64;
6666 hcr_el2 = arm_hcr_el2_eff(env);
6667 switch (excp_idx) {
6668 case EXCP_IRQ:
6669 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
6670 hcr = hcr_el2 & HCR_IMO;
6671 break;
6672 case EXCP_FIQ:
6673 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
6674 hcr = hcr_el2 & HCR_FMO;
6675 break;
6676 default:
6677 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
6678 hcr = hcr_el2 & HCR_AMO;
6679 break;
6682 /* Perform a table-lookup for the target EL given the current state */
6683 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
6685 assert(target_el > 0);
6687 return target_el;
6690 static bool v7m_stack_write(ARMCPU *cpu, uint32_t addr, uint32_t value,
6691 ARMMMUIdx mmu_idx, bool ignfault)
6693 CPUState *cs = CPU(cpu);
6694 CPUARMState *env = &cpu->env;
6695 MemTxAttrs attrs = {};
6696 MemTxResult txres;
6697 target_ulong page_size;
6698 hwaddr physaddr;
6699 int prot;
6700 ARMMMUFaultInfo fi = {};
6701 bool secure = mmu_idx & ARM_MMU_IDX_M_S;
6702 int exc;
6703 bool exc_secure;
6705 if (get_phys_addr(env, addr, MMU_DATA_STORE, mmu_idx, &physaddr,
6706 &attrs, &prot, &page_size, &fi, NULL)) {
6707 /* MPU/SAU lookup failed */
6708 if (fi.type == ARMFault_QEMU_SFault) {
6709 qemu_log_mask(CPU_LOG_INT,
6710 "...SecureFault with SFSR.AUVIOL during stacking\n");
6711 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
6712 env->v7m.sfar = addr;
6713 exc = ARMV7M_EXCP_SECURE;
6714 exc_secure = false;
6715 } else {
6716 qemu_log_mask(CPU_LOG_INT, "...MemManageFault with CFSR.MSTKERR\n");
6717 env->v7m.cfsr[secure] |= R_V7M_CFSR_MSTKERR_MASK;
6718 exc = ARMV7M_EXCP_MEM;
6719 exc_secure = secure;
6721 goto pend_fault;
6723 address_space_stl_le(arm_addressspace(cs, attrs), physaddr, value,
6724 attrs, &txres);
6725 if (txres != MEMTX_OK) {
6726 /* BusFault trying to write the data */
6727 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.STKERR\n");
6728 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_STKERR_MASK;
6729 exc = ARMV7M_EXCP_BUS;
6730 exc_secure = false;
6731 goto pend_fault;
6733 return true;
6735 pend_fault:
6736 /* By pending the exception at this point we are making
6737 * the IMPDEF choice "overridden exceptions pended" (see the
6738 * MergeExcInfo() pseudocode). The other choice would be to not
6739 * pend them now and then make a choice about which to throw away
6740 * later if we have two derived exceptions.
6741 * The only case when we must not pend the exception but instead
6742 * throw it away is if we are doing the push of the callee registers
6743 * and we've already generated a derived exception. Even in this
6744 * case we will still update the fault status registers.
6746 if (!ignfault) {
6747 armv7m_nvic_set_pending_derived(env->nvic, exc, exc_secure);
6749 return false;
6752 static bool v7m_stack_read(ARMCPU *cpu, uint32_t *dest, uint32_t addr,
6753 ARMMMUIdx mmu_idx)
6755 CPUState *cs = CPU(cpu);
6756 CPUARMState *env = &cpu->env;
6757 MemTxAttrs attrs = {};
6758 MemTxResult txres;
6759 target_ulong page_size;
6760 hwaddr physaddr;
6761 int prot;
6762 ARMMMUFaultInfo fi = {};
6763 bool secure = mmu_idx & ARM_MMU_IDX_M_S;
6764 int exc;
6765 bool exc_secure;
6766 uint32_t value;
6768 if (get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &physaddr,
6769 &attrs, &prot, &page_size, &fi, NULL)) {
6770 /* MPU/SAU lookup failed */
6771 if (fi.type == ARMFault_QEMU_SFault) {
6772 qemu_log_mask(CPU_LOG_INT,
6773 "...SecureFault with SFSR.AUVIOL during unstack\n");
6774 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
6775 env->v7m.sfar = addr;
6776 exc = ARMV7M_EXCP_SECURE;
6777 exc_secure = false;
6778 } else {
6779 qemu_log_mask(CPU_LOG_INT,
6780 "...MemManageFault with CFSR.MUNSTKERR\n");
6781 env->v7m.cfsr[secure] |= R_V7M_CFSR_MUNSTKERR_MASK;
6782 exc = ARMV7M_EXCP_MEM;
6783 exc_secure = secure;
6785 goto pend_fault;
6788 value = address_space_ldl(arm_addressspace(cs, attrs), physaddr,
6789 attrs, &txres);
6790 if (txres != MEMTX_OK) {
6791 /* BusFault trying to read the data */
6792 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.UNSTKERR\n");
6793 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_UNSTKERR_MASK;
6794 exc = ARMV7M_EXCP_BUS;
6795 exc_secure = false;
6796 goto pend_fault;
6799 *dest = value;
6800 return true;
6802 pend_fault:
6803 /* By pending the exception at this point we are making
6804 * the IMPDEF choice "overridden exceptions pended" (see the
6805 * MergeExcInfo() pseudocode). The other choice would be to not
6806 * pend them now and then make a choice about which to throw away
6807 * later if we have two derived exceptions.
6809 armv7m_nvic_set_pending(env->nvic, exc, exc_secure);
6810 return false;
6813 /* Write to v7M CONTROL.SPSEL bit for the specified security bank.
6814 * This may change the current stack pointer between Main and Process
6815 * stack pointers if it is done for the CONTROL register for the current
6816 * security state.
6818 static void write_v7m_control_spsel_for_secstate(CPUARMState *env,
6819 bool new_spsel,
6820 bool secstate)
6822 bool old_is_psp = v7m_using_psp(env);
6824 env->v7m.control[secstate] =
6825 deposit32(env->v7m.control[secstate],
6826 R_V7M_CONTROL_SPSEL_SHIFT,
6827 R_V7M_CONTROL_SPSEL_LENGTH, new_spsel);
6829 if (secstate == env->v7m.secure) {
6830 bool new_is_psp = v7m_using_psp(env);
6831 uint32_t tmp;
6833 if (old_is_psp != new_is_psp) {
6834 tmp = env->v7m.other_sp;
6835 env->v7m.other_sp = env->regs[13];
6836 env->regs[13] = tmp;
6841 /* Write to v7M CONTROL.SPSEL bit. This may change the current
6842 * stack pointer between Main and Process stack pointers.
6844 static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel)
6846 write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure);
6849 void write_v7m_exception(CPUARMState *env, uint32_t new_exc)
6851 /* Write a new value to v7m.exception, thus transitioning into or out
6852 * of Handler mode; this may result in a change of active stack pointer.
6854 bool new_is_psp, old_is_psp = v7m_using_psp(env);
6855 uint32_t tmp;
6857 env->v7m.exception = new_exc;
6859 new_is_psp = v7m_using_psp(env);
6861 if (old_is_psp != new_is_psp) {
6862 tmp = env->v7m.other_sp;
6863 env->v7m.other_sp = env->regs[13];
6864 env->regs[13] = tmp;
6868 /* Switch M profile security state between NS and S */
6869 static void switch_v7m_security_state(CPUARMState *env, bool new_secstate)
6871 uint32_t new_ss_msp, new_ss_psp;
6873 if (env->v7m.secure == new_secstate) {
6874 return;
6877 /* All the banked state is accessed by looking at env->v7m.secure
6878 * except for the stack pointer; rearrange the SP appropriately.
6880 new_ss_msp = env->v7m.other_ss_msp;
6881 new_ss_psp = env->v7m.other_ss_psp;
6883 if (v7m_using_psp(env)) {
6884 env->v7m.other_ss_psp = env->regs[13];
6885 env->v7m.other_ss_msp = env->v7m.other_sp;
6886 } else {
6887 env->v7m.other_ss_msp = env->regs[13];
6888 env->v7m.other_ss_psp = env->v7m.other_sp;
6891 env->v7m.secure = new_secstate;
6893 if (v7m_using_psp(env)) {
6894 env->regs[13] = new_ss_psp;
6895 env->v7m.other_sp = new_ss_msp;
6896 } else {
6897 env->regs[13] = new_ss_msp;
6898 env->v7m.other_sp = new_ss_psp;
6902 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
6904 /* Handle v7M BXNS:
6905 * - if the return value is a magic value, do exception return (like BX)
6906 * - otherwise bit 0 of the return value is the target security state
6908 uint32_t min_magic;
6910 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6911 /* Covers FNC_RETURN and EXC_RETURN magic */
6912 min_magic = FNC_RETURN_MIN_MAGIC;
6913 } else {
6914 /* EXC_RETURN magic only */
6915 min_magic = EXC_RETURN_MIN_MAGIC;
6918 if (dest >= min_magic) {
6919 /* This is an exception return magic value; put it where
6920 * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT.
6921 * Note that if we ever add gen_ss_advance() singlestep support to
6922 * M profile this should count as an "instruction execution complete"
6923 * event (compare gen_bx_excret_final_code()).
6925 env->regs[15] = dest & ~1;
6926 env->thumb = dest & 1;
6927 HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT);
6928 /* notreached */
6931 /* translate.c should have made BXNS UNDEF unless we're secure */
6932 assert(env->v7m.secure);
6934 switch_v7m_security_state(env, dest & 1);
6935 env->thumb = 1;
6936 env->regs[15] = dest & ~1;
6939 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
6941 /* Handle v7M BLXNS:
6942 * - bit 0 of the destination address is the target security state
6945 /* At this point regs[15] is the address just after the BLXNS */
6946 uint32_t nextinst = env->regs[15] | 1;
6947 uint32_t sp = env->regs[13] - 8;
6948 uint32_t saved_psr;
6950 /* translate.c will have made BLXNS UNDEF unless we're secure */
6951 assert(env->v7m.secure);
6953 if (dest & 1) {
6954 /* target is Secure, so this is just a normal BLX,
6955 * except that the low bit doesn't indicate Thumb/not.
6957 env->regs[14] = nextinst;
6958 env->thumb = 1;
6959 env->regs[15] = dest & ~1;
6960 return;
6963 /* Target is non-secure: first push a stack frame */
6964 if (!QEMU_IS_ALIGNED(sp, 8)) {
6965 qemu_log_mask(LOG_GUEST_ERROR,
6966 "BLXNS with misaligned SP is UNPREDICTABLE\n");
6969 if (sp < v7m_sp_limit(env)) {
6970 raise_exception(env, EXCP_STKOF, 0, 1);
6973 saved_psr = env->v7m.exception;
6974 if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) {
6975 saved_psr |= XPSR_SFPA;
6978 /* Note that these stores can throw exceptions on MPU faults */
6979 cpu_stl_data(env, sp, nextinst);
6980 cpu_stl_data(env, sp + 4, saved_psr);
6982 env->regs[13] = sp;
6983 env->regs[14] = 0xfeffffff;
6984 if (arm_v7m_is_handler_mode(env)) {
6985 /* Write a dummy value to IPSR, to avoid leaking the current secure
6986 * exception number to non-secure code. This is guaranteed not
6987 * to cause write_v7m_exception() to actually change stacks.
6989 write_v7m_exception(env, 1);
6991 switch_v7m_security_state(env, 0);
6992 env->thumb = 1;
6993 env->regs[15] = dest;
6996 static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode,
6997 bool spsel)
6999 /* Return a pointer to the location where we currently store the
7000 * stack pointer for the requested security state and thread mode.
7001 * This pointer will become invalid if the CPU state is updated
7002 * such that the stack pointers are switched around (eg changing
7003 * the SPSEL control bit).
7004 * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode().
7005 * Unlike that pseudocode, we require the caller to pass us in the
7006 * SPSEL control bit value; this is because we also use this
7007 * function in handling of pushing of the callee-saves registers
7008 * part of the v8M stack frame (pseudocode PushCalleeStack()),
7009 * and in the tailchain codepath the SPSEL bit comes from the exception
7010 * return magic LR value from the previous exception. The pseudocode
7011 * opencodes the stack-selection in PushCalleeStack(), but we prefer
7012 * to make this utility function generic enough to do the job.
7014 bool want_psp = threadmode && spsel;
7016 if (secure == env->v7m.secure) {
7017 if (want_psp == v7m_using_psp(env)) {
7018 return &env->regs[13];
7019 } else {
7020 return &env->v7m.other_sp;
7022 } else {
7023 if (want_psp) {
7024 return &env->v7m.other_ss_psp;
7025 } else {
7026 return &env->v7m.other_ss_msp;
7031 static bool arm_v7m_load_vector(ARMCPU *cpu, int exc, bool targets_secure,
7032 uint32_t *pvec)
7034 CPUState *cs = CPU(cpu);
7035 CPUARMState *env = &cpu->env;
7036 MemTxResult result;
7037 uint32_t addr = env->v7m.vecbase[targets_secure] + exc * 4;
7038 uint32_t vector_entry;
7039 MemTxAttrs attrs = {};
7040 ARMMMUIdx mmu_idx;
7041 bool exc_secure;
7043 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targets_secure, true);
7045 /* We don't do a get_phys_addr() here because the rules for vector
7046 * loads are special: they always use the default memory map, and
7047 * the default memory map permits reads from all addresses.
7048 * Since there's no easy way to pass through to pmsav8_mpu_lookup()
7049 * that we want this special case which would always say "yes",
7050 * we just do the SAU lookup here followed by a direct physical load.
7052 attrs.secure = targets_secure;
7053 attrs.user = false;
7055 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
7056 V8M_SAttributes sattrs = {};
7058 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
7059 if (sattrs.ns) {
7060 attrs.secure = false;
7061 } else if (!targets_secure) {
7062 /* NS access to S memory */
7063 goto load_fail;
7067 vector_entry = address_space_ldl(arm_addressspace(cs, attrs), addr,
7068 attrs, &result);
7069 if (result != MEMTX_OK) {
7070 goto load_fail;
7072 *pvec = vector_entry;
7073 return true;
7075 load_fail:
7076 /* All vector table fetch fails are reported as HardFault, with
7077 * HFSR.VECTTBL and .FORCED set. (FORCED is set because
7078 * technically the underlying exception is a MemManage or BusFault
7079 * that is escalated to HardFault.) This is a terminal exception,
7080 * so we will either take the HardFault immediately or else enter
7081 * lockup (the latter case is handled in armv7m_nvic_set_pending_derived()).
7083 exc_secure = targets_secure ||
7084 !(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
7085 env->v7m.hfsr |= R_V7M_HFSR_VECTTBL_MASK | R_V7M_HFSR_FORCED_MASK;
7086 armv7m_nvic_set_pending_derived(env->nvic, ARMV7M_EXCP_HARD, exc_secure);
7087 return false;
7090 static bool v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain,
7091 bool ignore_faults)
7093 /* For v8M, push the callee-saves register part of the stack frame.
7094 * Compare the v8M pseudocode PushCalleeStack().
7095 * In the tailchaining case this may not be the current stack.
7097 CPUARMState *env = &cpu->env;
7098 uint32_t *frame_sp_p;
7099 uint32_t frameptr;
7100 ARMMMUIdx mmu_idx;
7101 bool stacked_ok;
7102 uint32_t limit;
7103 bool want_psp;
7105 if (dotailchain) {
7106 bool mode = lr & R_V7M_EXCRET_MODE_MASK;
7107 bool priv = !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_NPRIV_MASK) ||
7108 !mode;
7110 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, M_REG_S, priv);
7111 frame_sp_p = get_v7m_sp_ptr(env, M_REG_S, mode,
7112 lr & R_V7M_EXCRET_SPSEL_MASK);
7113 want_psp = mode && (lr & R_V7M_EXCRET_SPSEL_MASK);
7114 if (want_psp) {
7115 limit = env->v7m.psplim[M_REG_S];
7116 } else {
7117 limit = env->v7m.msplim[M_REG_S];
7119 } else {
7120 mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
7121 frame_sp_p = &env->regs[13];
7122 limit = v7m_sp_limit(env);
7125 frameptr = *frame_sp_p - 0x28;
7126 if (frameptr < limit) {
7128 * Stack limit failure: set SP to the limit value, and generate
7129 * STKOF UsageFault. Stack pushes below the limit must not be
7130 * performed. It is IMPDEF whether pushes above the limit are
7131 * performed; we choose not to.
7133 qemu_log_mask(CPU_LOG_INT,
7134 "...STKOF during callee-saves register stacking\n");
7135 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
7136 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
7137 env->v7m.secure);
7138 *frame_sp_p = limit;
7139 return true;
7142 /* Write as much of the stack frame as we can. A write failure may
7143 * cause us to pend a derived exception.
7145 stacked_ok =
7146 v7m_stack_write(cpu, frameptr, 0xfefa125b, mmu_idx, ignore_faults) &&
7147 v7m_stack_write(cpu, frameptr + 0x8, env->regs[4], mmu_idx,
7148 ignore_faults) &&
7149 v7m_stack_write(cpu, frameptr + 0xc, env->regs[5], mmu_idx,
7150 ignore_faults) &&
7151 v7m_stack_write(cpu, frameptr + 0x10, env->regs[6], mmu_idx,
7152 ignore_faults) &&
7153 v7m_stack_write(cpu, frameptr + 0x14, env->regs[7], mmu_idx,
7154 ignore_faults) &&
7155 v7m_stack_write(cpu, frameptr + 0x18, env->regs[8], mmu_idx,
7156 ignore_faults) &&
7157 v7m_stack_write(cpu, frameptr + 0x1c, env->regs[9], mmu_idx,
7158 ignore_faults) &&
7159 v7m_stack_write(cpu, frameptr + 0x20, env->regs[10], mmu_idx,
7160 ignore_faults) &&
7161 v7m_stack_write(cpu, frameptr + 0x24, env->regs[11], mmu_idx,
7162 ignore_faults);
7164 /* Update SP regardless of whether any of the stack accesses failed. */
7165 *frame_sp_p = frameptr;
7167 return !stacked_ok;
7170 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain,
7171 bool ignore_stackfaults)
7173 /* Do the "take the exception" parts of exception entry,
7174 * but not the pushing of state to the stack. This is
7175 * similar to the pseudocode ExceptionTaken() function.
7177 CPUARMState *env = &cpu->env;
7178 uint32_t addr;
7179 bool targets_secure;
7180 int exc;
7181 bool push_failed = false;
7183 armv7m_nvic_get_pending_irq_info(env->nvic, &exc, &targets_secure);
7184 qemu_log_mask(CPU_LOG_INT, "...taking pending %s exception %d\n",
7185 targets_secure ? "secure" : "nonsecure", exc);
7187 if (arm_feature(env, ARM_FEATURE_V8)) {
7188 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
7189 (lr & R_V7M_EXCRET_S_MASK)) {
7190 /* The background code (the owner of the registers in the
7191 * exception frame) is Secure. This means it may either already
7192 * have or now needs to push callee-saves registers.
7194 if (targets_secure) {
7195 if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) {
7196 /* We took an exception from Secure to NonSecure
7197 * (which means the callee-saved registers got stacked)
7198 * and are now tailchaining to a Secure exception.
7199 * Clear DCRS so eventual return from this Secure
7200 * exception unstacks the callee-saved registers.
7202 lr &= ~R_V7M_EXCRET_DCRS_MASK;
7204 } else {
7205 /* We're going to a non-secure exception; push the
7206 * callee-saves registers to the stack now, if they're
7207 * not already saved.
7209 if (lr & R_V7M_EXCRET_DCRS_MASK &&
7210 !(dotailchain && !(lr & R_V7M_EXCRET_ES_MASK))) {
7211 push_failed = v7m_push_callee_stack(cpu, lr, dotailchain,
7212 ignore_stackfaults);
7214 lr |= R_V7M_EXCRET_DCRS_MASK;
7218 lr &= ~R_V7M_EXCRET_ES_MASK;
7219 if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) {
7220 lr |= R_V7M_EXCRET_ES_MASK;
7222 lr &= ~R_V7M_EXCRET_SPSEL_MASK;
7223 if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) {
7224 lr |= R_V7M_EXCRET_SPSEL_MASK;
7227 /* Clear registers if necessary to prevent non-secure exception
7228 * code being able to see register values from secure code.
7229 * Where register values become architecturally UNKNOWN we leave
7230 * them with their previous values.
7232 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
7233 if (!targets_secure) {
7234 /* Always clear the caller-saved registers (they have been
7235 * pushed to the stack earlier in v7m_push_stack()).
7236 * Clear callee-saved registers if the background code is
7237 * Secure (in which case these regs were saved in
7238 * v7m_push_callee_stack()).
7240 int i;
7242 for (i = 0; i < 13; i++) {
7243 /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */
7244 if (i < 4 || i > 11 || (lr & R_V7M_EXCRET_S_MASK)) {
7245 env->regs[i] = 0;
7248 /* Clear EAPSR */
7249 xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT);
7254 if (push_failed && !ignore_stackfaults) {
7255 /* Derived exception on callee-saves register stacking:
7256 * we might now want to take a different exception which
7257 * targets a different security state, so try again from the top.
7259 qemu_log_mask(CPU_LOG_INT,
7260 "...derived exception on callee-saves register stacking");
7261 v7m_exception_taken(cpu, lr, true, true);
7262 return;
7265 if (!arm_v7m_load_vector(cpu, exc, targets_secure, &addr)) {
7266 /* Vector load failed: derived exception */
7267 qemu_log_mask(CPU_LOG_INT, "...derived exception on vector table load");
7268 v7m_exception_taken(cpu, lr, true, true);
7269 return;
7272 /* Now we've done everything that might cause a derived exception
7273 * we can go ahead and activate whichever exception we're going to
7274 * take (which might now be the derived exception).
7276 armv7m_nvic_acknowledge_irq(env->nvic);
7278 /* Switch to target security state -- must do this before writing SPSEL */
7279 switch_v7m_security_state(env, targets_secure);
7280 write_v7m_control_spsel(env, 0);
7281 arm_clear_exclusive(env);
7282 /* Clear IT bits */
7283 env->condexec_bits = 0;
7284 env->regs[14] = lr;
7285 env->regs[15] = addr & 0xfffffffe;
7286 env->thumb = addr & 1;
7289 static bool v7m_push_stack(ARMCPU *cpu)
7291 /* Do the "set up stack frame" part of exception entry,
7292 * similar to pseudocode PushStack().
7293 * Return true if we generate a derived exception (and so
7294 * should ignore further stack faults trying to process
7295 * that derived exception.)
7297 bool stacked_ok;
7298 CPUARMState *env = &cpu->env;
7299 uint32_t xpsr = xpsr_read(env);
7300 uint32_t frameptr = env->regs[13];
7301 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
7303 /* Align stack pointer if the guest wants that */
7304 if ((frameptr & 4) &&
7305 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) {
7306 frameptr -= 4;
7307 xpsr |= XPSR_SPREALIGN;
7310 frameptr -= 0x20;
7312 if (arm_feature(env, ARM_FEATURE_V8)) {
7313 uint32_t limit = v7m_sp_limit(env);
7315 if (frameptr < limit) {
7317 * Stack limit failure: set SP to the limit value, and generate
7318 * STKOF UsageFault. Stack pushes below the limit must not be
7319 * performed. It is IMPDEF whether pushes above the limit are
7320 * performed; we choose not to.
7322 qemu_log_mask(CPU_LOG_INT,
7323 "...STKOF during stacking\n");
7324 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
7325 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
7326 env->v7m.secure);
7327 env->regs[13] = limit;
7328 return true;
7332 /* Write as much of the stack frame as we can. If we fail a stack
7333 * write this will result in a derived exception being pended
7334 * (which may be taken in preference to the one we started with
7335 * if it has higher priority).
7337 stacked_ok =
7338 v7m_stack_write(cpu, frameptr, env->regs[0], mmu_idx, false) &&
7339 v7m_stack_write(cpu, frameptr + 4, env->regs[1], mmu_idx, false) &&
7340 v7m_stack_write(cpu, frameptr + 8, env->regs[2], mmu_idx, false) &&
7341 v7m_stack_write(cpu, frameptr + 12, env->regs[3], mmu_idx, false) &&
7342 v7m_stack_write(cpu, frameptr + 16, env->regs[12], mmu_idx, false) &&
7343 v7m_stack_write(cpu, frameptr + 20, env->regs[14], mmu_idx, false) &&
7344 v7m_stack_write(cpu, frameptr + 24, env->regs[15], mmu_idx, false) &&
7345 v7m_stack_write(cpu, frameptr + 28, xpsr, mmu_idx, false);
7347 /* Update SP regardless of whether any of the stack accesses failed. */
7348 env->regs[13] = frameptr;
7350 return !stacked_ok;
7353 static void do_v7m_exception_exit(ARMCPU *cpu)
7355 CPUARMState *env = &cpu->env;
7356 uint32_t excret;
7357 uint32_t xpsr;
7358 bool ufault = false;
7359 bool sfault = false;
7360 bool return_to_sp_process;
7361 bool return_to_handler;
7362 bool rettobase = false;
7363 bool exc_secure = false;
7364 bool return_to_secure;
7366 /* If we're not in Handler mode then jumps to magic exception-exit
7367 * addresses don't have magic behaviour. However for the v8M
7368 * security extensions the magic secure-function-return has to
7369 * work in thread mode too, so to avoid doing an extra check in
7370 * the generated code we allow exception-exit magic to also cause the
7371 * internal exception and bring us here in thread mode. Correct code
7372 * will never try to do this (the following insn fetch will always
7373 * fault) so we the overhead of having taken an unnecessary exception
7374 * doesn't matter.
7376 if (!arm_v7m_is_handler_mode(env)) {
7377 return;
7380 /* In the spec pseudocode ExceptionReturn() is called directly
7381 * from BXWritePC() and gets the full target PC value including
7382 * bit zero. In QEMU's implementation we treat it as a normal
7383 * jump-to-register (which is then caught later on), and so split
7384 * the target value up between env->regs[15] and env->thumb in
7385 * gen_bx(). Reconstitute it.
7387 excret = env->regs[15];
7388 if (env->thumb) {
7389 excret |= 1;
7392 qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32
7393 " previous exception %d\n",
7394 excret, env->v7m.exception);
7396 if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) {
7397 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception "
7398 "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n",
7399 excret);
7402 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
7403 /* EXC_RETURN.ES validation check (R_SMFL). We must do this before
7404 * we pick which FAULTMASK to clear.
7406 if (!env->v7m.secure &&
7407 ((excret & R_V7M_EXCRET_ES_MASK) ||
7408 !(excret & R_V7M_EXCRET_DCRS_MASK))) {
7409 sfault = 1;
7410 /* For all other purposes, treat ES as 0 (R_HXSR) */
7411 excret &= ~R_V7M_EXCRET_ES_MASK;
7413 exc_secure = excret & R_V7M_EXCRET_ES_MASK;
7416 if (env->v7m.exception != ARMV7M_EXCP_NMI) {
7417 /* Auto-clear FAULTMASK on return from other than NMI.
7418 * If the security extension is implemented then this only
7419 * happens if the raw execution priority is >= 0; the
7420 * value of the ES bit in the exception return value indicates
7421 * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.)
7423 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
7424 if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) {
7425 env->v7m.faultmask[exc_secure] = 0;
7427 } else {
7428 env->v7m.faultmask[M_REG_NS] = 0;
7432 switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception,
7433 exc_secure)) {
7434 case -1:
7435 /* attempt to exit an exception that isn't active */
7436 ufault = true;
7437 break;
7438 case 0:
7439 /* still an irq active now */
7440 break;
7441 case 1:
7442 /* we returned to base exception level, no nesting.
7443 * (In the pseudocode this is written using "NestedActivation != 1"
7444 * where we have 'rettobase == false'.)
7446 rettobase = true;
7447 break;
7448 default:
7449 g_assert_not_reached();
7452 return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK);
7453 return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK;
7454 return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) &&
7455 (excret & R_V7M_EXCRET_S_MASK);
7457 if (arm_feature(env, ARM_FEATURE_V8)) {
7458 if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) {
7459 /* UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP);
7460 * we choose to take the UsageFault.
7462 if ((excret & R_V7M_EXCRET_S_MASK) ||
7463 (excret & R_V7M_EXCRET_ES_MASK) ||
7464 !(excret & R_V7M_EXCRET_DCRS_MASK)) {
7465 ufault = true;
7468 if (excret & R_V7M_EXCRET_RES0_MASK) {
7469 ufault = true;
7471 } else {
7472 /* For v7M we only recognize certain combinations of the low bits */
7473 switch (excret & 0xf) {
7474 case 1: /* Return to Handler */
7475 break;
7476 case 13: /* Return to Thread using Process stack */
7477 case 9: /* Return to Thread using Main stack */
7478 /* We only need to check NONBASETHRDENA for v7M, because in
7479 * v8M this bit does not exist (it is RES1).
7481 if (!rettobase &&
7482 !(env->v7m.ccr[env->v7m.secure] &
7483 R_V7M_CCR_NONBASETHRDENA_MASK)) {
7484 ufault = true;
7486 break;
7487 default:
7488 ufault = true;
7493 * Set CONTROL.SPSEL from excret.SPSEL. Since we're still in
7494 * Handler mode (and will be until we write the new XPSR.Interrupt
7495 * field) this does not switch around the current stack pointer.
7496 * We must do this before we do any kind of tailchaining, including
7497 * for the derived exceptions on integrity check failures, or we will
7498 * give the guest an incorrect EXCRET.SPSEL value on exception entry.
7500 write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure);
7502 if (sfault) {
7503 env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK;
7504 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7505 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
7506 "stackframe: failed EXC_RETURN.ES validity check\n");
7507 v7m_exception_taken(cpu, excret, true, false);
7508 return;
7511 if (ufault) {
7512 /* Bad exception return: instead of popping the exception
7513 * stack, directly take a usage fault on the current stack.
7515 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
7516 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7517 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
7518 "stackframe: failed exception return integrity check\n");
7519 v7m_exception_taken(cpu, excret, true, false);
7520 return;
7524 * Tailchaining: if there is currently a pending exception that
7525 * is high enough priority to preempt execution at the level we're
7526 * about to return to, then just directly take that exception now,
7527 * avoiding an unstack-and-then-stack. Note that now we have
7528 * deactivated the previous exception by calling armv7m_nvic_complete_irq()
7529 * our current execution priority is already the execution priority we are
7530 * returning to -- none of the state we would unstack or set based on
7531 * the EXCRET value affects it.
7533 if (armv7m_nvic_can_take_pending_exception(env->nvic)) {
7534 qemu_log_mask(CPU_LOG_INT, "...tailchaining to pending exception\n");
7535 v7m_exception_taken(cpu, excret, true, false);
7536 return;
7539 switch_v7m_security_state(env, return_to_secure);
7542 /* The stack pointer we should be reading the exception frame from
7543 * depends on bits in the magic exception return type value (and
7544 * for v8M isn't necessarily the stack pointer we will eventually
7545 * end up resuming execution with). Get a pointer to the location
7546 * in the CPU state struct where the SP we need is currently being
7547 * stored; we will use and modify it in place.
7548 * We use this limited C variable scope so we don't accidentally
7549 * use 'frame_sp_p' after we do something that makes it invalid.
7551 uint32_t *frame_sp_p = get_v7m_sp_ptr(env,
7552 return_to_secure,
7553 !return_to_handler,
7554 return_to_sp_process);
7555 uint32_t frameptr = *frame_sp_p;
7556 bool pop_ok = true;
7557 ARMMMUIdx mmu_idx;
7558 bool return_to_priv = return_to_handler ||
7559 !(env->v7m.control[return_to_secure] & R_V7M_CONTROL_NPRIV_MASK);
7561 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, return_to_secure,
7562 return_to_priv);
7564 if (!QEMU_IS_ALIGNED(frameptr, 8) &&
7565 arm_feature(env, ARM_FEATURE_V8)) {
7566 qemu_log_mask(LOG_GUEST_ERROR,
7567 "M profile exception return with non-8-aligned SP "
7568 "for destination state is UNPREDICTABLE\n");
7571 /* Do we need to pop callee-saved registers? */
7572 if (return_to_secure &&
7573 ((excret & R_V7M_EXCRET_ES_MASK) == 0 ||
7574 (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) {
7575 uint32_t expected_sig = 0xfefa125b;
7576 uint32_t actual_sig;
7578 pop_ok = v7m_stack_read(cpu, &actual_sig, frameptr, mmu_idx);
7580 if (pop_ok && expected_sig != actual_sig) {
7581 /* Take a SecureFault on the current stack */
7582 env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK;
7583 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7584 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
7585 "stackframe: failed exception return integrity "
7586 "signature check\n");
7587 v7m_exception_taken(cpu, excret, true, false);
7588 return;
7591 pop_ok = pop_ok &&
7592 v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) &&
7593 v7m_stack_read(cpu, &env->regs[5], frameptr + 0xc, mmu_idx) &&
7594 v7m_stack_read(cpu, &env->regs[6], frameptr + 0x10, mmu_idx) &&
7595 v7m_stack_read(cpu, &env->regs[7], frameptr + 0x14, mmu_idx) &&
7596 v7m_stack_read(cpu, &env->regs[8], frameptr + 0x18, mmu_idx) &&
7597 v7m_stack_read(cpu, &env->regs[9], frameptr + 0x1c, mmu_idx) &&
7598 v7m_stack_read(cpu, &env->regs[10], frameptr + 0x20, mmu_idx) &&
7599 v7m_stack_read(cpu, &env->regs[11], frameptr + 0x24, mmu_idx);
7601 frameptr += 0x28;
7604 /* Pop registers */
7605 pop_ok = pop_ok &&
7606 v7m_stack_read(cpu, &env->regs[0], frameptr, mmu_idx) &&
7607 v7m_stack_read(cpu, &env->regs[1], frameptr + 0x4, mmu_idx) &&
7608 v7m_stack_read(cpu, &env->regs[2], frameptr + 0x8, mmu_idx) &&
7609 v7m_stack_read(cpu, &env->regs[3], frameptr + 0xc, mmu_idx) &&
7610 v7m_stack_read(cpu, &env->regs[12], frameptr + 0x10, mmu_idx) &&
7611 v7m_stack_read(cpu, &env->regs[14], frameptr + 0x14, mmu_idx) &&
7612 v7m_stack_read(cpu, &env->regs[15], frameptr + 0x18, mmu_idx) &&
7613 v7m_stack_read(cpu, &xpsr, frameptr + 0x1c, mmu_idx);
7615 if (!pop_ok) {
7616 /* v7m_stack_read() pended a fault, so take it (as a tail
7617 * chained exception on the same stack frame)
7619 qemu_log_mask(CPU_LOG_INT, "...derived exception on unstacking\n");
7620 v7m_exception_taken(cpu, excret, true, false);
7621 return;
7624 /* Returning from an exception with a PC with bit 0 set is defined
7625 * behaviour on v8M (bit 0 is ignored), but for v7M it was specified
7626 * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore
7627 * the lsbit, and there are several RTOSes out there which incorrectly
7628 * assume the r15 in the stack frame should be a Thumb-style "lsbit
7629 * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but
7630 * complain about the badly behaved guest.
7632 if (env->regs[15] & 1) {
7633 env->regs[15] &= ~1U;
7634 if (!arm_feature(env, ARM_FEATURE_V8)) {
7635 qemu_log_mask(LOG_GUEST_ERROR,
7636 "M profile return from interrupt with misaligned "
7637 "PC is UNPREDICTABLE on v7M\n");
7641 if (arm_feature(env, ARM_FEATURE_V8)) {
7642 /* For v8M we have to check whether the xPSR exception field
7643 * matches the EXCRET value for return to handler/thread
7644 * before we commit to changing the SP and xPSR.
7646 bool will_be_handler = (xpsr & XPSR_EXCP) != 0;
7647 if (return_to_handler != will_be_handler) {
7648 /* Take an INVPC UsageFault on the current stack.
7649 * By this point we will have switched to the security state
7650 * for the background state, so this UsageFault will target
7651 * that state.
7653 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
7654 env->v7m.secure);
7655 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
7656 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
7657 "stackframe: failed exception return integrity "
7658 "check\n");
7659 v7m_exception_taken(cpu, excret, true, false);
7660 return;
7664 /* Commit to consuming the stack frame */
7665 frameptr += 0x20;
7666 /* Undo stack alignment (the SPREALIGN bit indicates that the original
7667 * pre-exception SP was not 8-aligned and we added a padding word to
7668 * align it, so we undo this by ORing in the bit that increases it
7669 * from the current 8-aligned value to the 8-unaligned value. (Adding 4
7670 * would work too but a logical OR is how the pseudocode specifies it.)
7672 if (xpsr & XPSR_SPREALIGN) {
7673 frameptr |= 4;
7675 *frame_sp_p = frameptr;
7677 /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */
7678 xpsr_write(env, xpsr, ~XPSR_SPREALIGN);
7680 /* The restored xPSR exception field will be zero if we're
7681 * resuming in Thread mode. If that doesn't match what the
7682 * exception return excret specified then this is a UsageFault.
7683 * v7M requires we make this check here; v8M did it earlier.
7685 if (return_to_handler != arm_v7m_is_handler_mode(env)) {
7686 /* Take an INVPC UsageFault by pushing the stack again;
7687 * we know we're v7M so this is never a Secure UsageFault.
7689 bool ignore_stackfaults;
7691 assert(!arm_feature(env, ARM_FEATURE_V8));
7692 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false);
7693 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
7694 ignore_stackfaults = v7m_push_stack(cpu);
7695 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: "
7696 "failed exception return integrity check\n");
7697 v7m_exception_taken(cpu, excret, false, ignore_stackfaults);
7698 return;
7701 /* Otherwise, we have a successful exception exit. */
7702 arm_clear_exclusive(env);
7703 qemu_log_mask(CPU_LOG_INT, "...successful exception return\n");
7706 static bool do_v7m_function_return(ARMCPU *cpu)
7708 /* v8M security extensions magic function return.
7709 * We may either:
7710 * (1) throw an exception (longjump)
7711 * (2) return true if we successfully handled the function return
7712 * (3) return false if we failed a consistency check and have
7713 * pended a UsageFault that needs to be taken now
7715 * At this point the magic return value is split between env->regs[15]
7716 * and env->thumb. We don't bother to reconstitute it because we don't
7717 * need it (all values are handled the same way).
7719 CPUARMState *env = &cpu->env;
7720 uint32_t newpc, newpsr, newpsr_exc;
7722 qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n");
7725 bool threadmode, spsel;
7726 TCGMemOpIdx oi;
7727 ARMMMUIdx mmu_idx;
7728 uint32_t *frame_sp_p;
7729 uint32_t frameptr;
7731 /* Pull the return address and IPSR from the Secure stack */
7732 threadmode = !arm_v7m_is_handler_mode(env);
7733 spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK;
7735 frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel);
7736 frameptr = *frame_sp_p;
7738 /* These loads may throw an exception (for MPU faults). We want to
7739 * do them as secure, so work out what MMU index that is.
7741 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
7742 oi = make_memop_idx(MO_LE, arm_to_core_mmu_idx(mmu_idx));
7743 newpc = helper_le_ldul_mmu(env, frameptr, oi, 0);
7744 newpsr = helper_le_ldul_mmu(env, frameptr + 4, oi, 0);
7746 /* Consistency checks on new IPSR */
7747 newpsr_exc = newpsr & XPSR_EXCP;
7748 if (!((env->v7m.exception == 0 && newpsr_exc == 0) ||
7749 (env->v7m.exception == 1 && newpsr_exc != 0))) {
7750 /* Pend the fault and tell our caller to take it */
7751 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
7752 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
7753 env->v7m.secure);
7754 qemu_log_mask(CPU_LOG_INT,
7755 "...taking INVPC UsageFault: "
7756 "IPSR consistency check failed\n");
7757 return false;
7760 *frame_sp_p = frameptr + 8;
7763 /* This invalidates frame_sp_p */
7764 switch_v7m_security_state(env, true);
7765 env->v7m.exception = newpsr_exc;
7766 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
7767 if (newpsr & XPSR_SFPA) {
7768 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK;
7770 xpsr_write(env, 0, XPSR_IT);
7771 env->thumb = newpc & 1;
7772 env->regs[15] = newpc & ~1;
7774 qemu_log_mask(CPU_LOG_INT, "...function return successful\n");
7775 return true;
7778 static void arm_log_exception(int idx)
7780 if (qemu_loglevel_mask(CPU_LOG_INT)) {
7781 const char *exc = NULL;
7782 static const char * const excnames[] = {
7783 [EXCP_UDEF] = "Undefined Instruction",
7784 [EXCP_SWI] = "SVC",
7785 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
7786 [EXCP_DATA_ABORT] = "Data Abort",
7787 [EXCP_IRQ] = "IRQ",
7788 [EXCP_FIQ] = "FIQ",
7789 [EXCP_BKPT] = "Breakpoint",
7790 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
7791 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
7792 [EXCP_HVC] = "Hypervisor Call",
7793 [EXCP_HYP_TRAP] = "Hypervisor Trap",
7794 [EXCP_SMC] = "Secure Monitor Call",
7795 [EXCP_VIRQ] = "Virtual IRQ",
7796 [EXCP_VFIQ] = "Virtual FIQ",
7797 [EXCP_SEMIHOST] = "Semihosting call",
7798 [EXCP_NOCP] = "v7M NOCP UsageFault",
7799 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
7800 [EXCP_STKOF] = "v8M STKOF UsageFault",
7803 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
7804 exc = excnames[idx];
7806 if (!exc) {
7807 exc = "unknown";
7809 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
7813 static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx,
7814 uint32_t addr, uint16_t *insn)
7816 /* Load a 16-bit portion of a v7M instruction, returning true on success,
7817 * or false on failure (in which case we will have pended the appropriate
7818 * exception).
7819 * We need to do the instruction fetch's MPU and SAU checks
7820 * like this because there is no MMU index that would allow
7821 * doing the load with a single function call. Instead we must
7822 * first check that the security attributes permit the load
7823 * and that they don't mismatch on the two halves of the instruction,
7824 * and then we do the load as a secure load (ie using the security
7825 * attributes of the address, not the CPU, as architecturally required).
7827 CPUState *cs = CPU(cpu);
7828 CPUARMState *env = &cpu->env;
7829 V8M_SAttributes sattrs = {};
7830 MemTxAttrs attrs = {};
7831 ARMMMUFaultInfo fi = {};
7832 MemTxResult txres;
7833 target_ulong page_size;
7834 hwaddr physaddr;
7835 int prot;
7837 v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs);
7838 if (!sattrs.nsc || sattrs.ns) {
7839 /* This must be the second half of the insn, and it straddles a
7840 * region boundary with the second half not being S&NSC.
7842 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
7843 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7844 qemu_log_mask(CPU_LOG_INT,
7845 "...really SecureFault with SFSR.INVEP\n");
7846 return false;
7848 if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx,
7849 &physaddr, &attrs, &prot, &page_size, &fi, NULL)) {
7850 /* the MPU lookup failed */
7851 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
7852 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure);
7853 qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n");
7854 return false;
7856 *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr,
7857 attrs, &txres);
7858 if (txres != MEMTX_OK) {
7859 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
7860 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
7861 qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n");
7862 return false;
7864 return true;
7867 static bool v7m_handle_execute_nsc(ARMCPU *cpu)
7869 /* Check whether this attempt to execute code in a Secure & NS-Callable
7870 * memory region is for an SG instruction; if so, then emulate the
7871 * effect of the SG instruction and return true. Otherwise pend
7872 * the correct kind of exception and return false.
7874 CPUARMState *env = &cpu->env;
7875 ARMMMUIdx mmu_idx;
7876 uint16_t insn;
7878 /* We should never get here unless get_phys_addr_pmsav8() caused
7879 * an exception for NS executing in S&NSC memory.
7881 assert(!env->v7m.secure);
7882 assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
7884 /* We want to do the MPU lookup as secure; work out what mmu_idx that is */
7885 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
7887 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) {
7888 return false;
7891 if (!env->thumb) {
7892 goto gen_invep;
7895 if (insn != 0xe97f) {
7896 /* Not an SG instruction first half (we choose the IMPDEF
7897 * early-SG-check option).
7899 goto gen_invep;
7902 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) {
7903 return false;
7906 if (insn != 0xe97f) {
7907 /* Not an SG instruction second half (yes, both halves of the SG
7908 * insn have the same hex value)
7910 goto gen_invep;
7913 /* OK, we have confirmed that we really have an SG instruction.
7914 * We know we're NS in S memory so don't need to repeat those checks.
7916 qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32
7917 ", executing it\n", env->regs[15]);
7918 env->regs[14] &= ~1;
7919 switch_v7m_security_state(env, true);
7920 xpsr_write(env, 0, XPSR_IT);
7921 env->regs[15] += 4;
7922 return true;
7924 gen_invep:
7925 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
7926 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7927 qemu_log_mask(CPU_LOG_INT,
7928 "...really SecureFault with SFSR.INVEP\n");
7929 return false;
7932 void arm_v7m_cpu_do_interrupt(CPUState *cs)
7934 ARMCPU *cpu = ARM_CPU(cs);
7935 CPUARMState *env = &cpu->env;
7936 uint32_t lr;
7937 bool ignore_stackfaults;
7939 arm_log_exception(cs->exception_index);
7941 /* For exceptions we just mark as pending on the NVIC, and let that
7942 handle it. */
7943 switch (cs->exception_index) {
7944 case EXCP_UDEF:
7945 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7946 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK;
7947 break;
7948 case EXCP_NOCP:
7949 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7950 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK;
7951 break;
7952 case EXCP_INVSTATE:
7953 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7954 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK;
7955 break;
7956 case EXCP_STKOF:
7957 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7958 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
7959 break;
7960 case EXCP_SWI:
7961 /* The PC already points to the next instruction. */
7962 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure);
7963 break;
7964 case EXCP_PREFETCH_ABORT:
7965 case EXCP_DATA_ABORT:
7966 /* Note that for M profile we don't have a guest facing FSR, but
7967 * the env->exception.fsr will be populated by the code that
7968 * raises the fault, in the A profile short-descriptor format.
7970 switch (env->exception.fsr & 0xf) {
7971 case M_FAKE_FSR_NSC_EXEC:
7972 /* Exception generated when we try to execute code at an address
7973 * which is marked as Secure & Non-Secure Callable and the CPU
7974 * is in the Non-Secure state. The only instruction which can
7975 * be executed like this is SG (and that only if both halves of
7976 * the SG instruction have the same security attributes.)
7977 * Everything else must generate an INVEP SecureFault, so we
7978 * emulate the SG instruction here.
7980 if (v7m_handle_execute_nsc(cpu)) {
7981 return;
7983 break;
7984 case M_FAKE_FSR_SFAULT:
7985 /* Various flavours of SecureFault for attempts to execute or
7986 * access data in the wrong security state.
7988 switch (cs->exception_index) {
7989 case EXCP_PREFETCH_ABORT:
7990 if (env->v7m.secure) {
7991 env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK;
7992 qemu_log_mask(CPU_LOG_INT,
7993 "...really SecureFault with SFSR.INVTRAN\n");
7994 } else {
7995 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
7996 qemu_log_mask(CPU_LOG_INT,
7997 "...really SecureFault with SFSR.INVEP\n");
7999 break;
8000 case EXCP_DATA_ABORT:
8001 /* This must be an NS access to S memory */
8002 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK;
8003 qemu_log_mask(CPU_LOG_INT,
8004 "...really SecureFault with SFSR.AUVIOL\n");
8005 break;
8007 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
8008 break;
8009 case 0x8: /* External Abort */
8010 switch (cs->exception_index) {
8011 case EXCP_PREFETCH_ABORT:
8012 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
8013 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n");
8014 break;
8015 case EXCP_DATA_ABORT:
8016 env->v7m.cfsr[M_REG_NS] |=
8017 (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK);
8018 env->v7m.bfar = env->exception.vaddress;
8019 qemu_log_mask(CPU_LOG_INT,
8020 "...with CFSR.PRECISERR and BFAR 0x%x\n",
8021 env->v7m.bfar);
8022 break;
8024 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
8025 break;
8026 default:
8027 /* All other FSR values are either MPU faults or "can't happen
8028 * for M profile" cases.
8030 switch (cs->exception_index) {
8031 case EXCP_PREFETCH_ABORT:
8032 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
8033 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n");
8034 break;
8035 case EXCP_DATA_ABORT:
8036 env->v7m.cfsr[env->v7m.secure] |=
8037 (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK);
8038 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress;
8039 qemu_log_mask(CPU_LOG_INT,
8040 "...with CFSR.DACCVIOL and MMFAR 0x%x\n",
8041 env->v7m.mmfar[env->v7m.secure]);
8042 break;
8044 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM,
8045 env->v7m.secure);
8046 break;
8048 break;
8049 case EXCP_BKPT:
8050 if (semihosting_enabled()) {
8051 int nr;
8052 nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff;
8053 if (nr == 0xab) {
8054 env->regs[15] += 2;
8055 qemu_log_mask(CPU_LOG_INT,
8056 "...handling as semihosting call 0x%x\n",
8057 env->regs[0]);
8058 env->regs[0] = do_arm_semihosting(env);
8059 return;
8062 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false);
8063 break;
8064 case EXCP_IRQ:
8065 break;
8066 case EXCP_EXCEPTION_EXIT:
8067 if (env->regs[15] < EXC_RETURN_MIN_MAGIC) {
8068 /* Must be v8M security extension function return */
8069 assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC);
8070 assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
8071 if (do_v7m_function_return(cpu)) {
8072 return;
8074 } else {
8075 do_v7m_exception_exit(cpu);
8076 return;
8078 break;
8079 default:
8080 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
8081 return; /* Never happens. Keep compiler happy. */
8084 if (arm_feature(env, ARM_FEATURE_V8)) {
8085 lr = R_V7M_EXCRET_RES1_MASK |
8086 R_V7M_EXCRET_DCRS_MASK |
8087 R_V7M_EXCRET_FTYPE_MASK;
8088 /* The S bit indicates whether we should return to Secure
8089 * or NonSecure (ie our current state).
8090 * The ES bit indicates whether we're taking this exception
8091 * to Secure or NonSecure (ie our target state). We set it
8092 * later, in v7m_exception_taken().
8093 * The SPSEL bit is also set in v7m_exception_taken() for v8M.
8094 * This corresponds to the ARM ARM pseudocode for v8M setting
8095 * some LR bits in PushStack() and some in ExceptionTaken();
8096 * the distinction matters for the tailchain cases where we
8097 * can take an exception without pushing the stack.
8099 if (env->v7m.secure) {
8100 lr |= R_V7M_EXCRET_S_MASK;
8102 } else {
8103 lr = R_V7M_EXCRET_RES1_MASK |
8104 R_V7M_EXCRET_S_MASK |
8105 R_V7M_EXCRET_DCRS_MASK |
8106 R_V7M_EXCRET_FTYPE_MASK |
8107 R_V7M_EXCRET_ES_MASK;
8108 if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) {
8109 lr |= R_V7M_EXCRET_SPSEL_MASK;
8112 if (!arm_v7m_is_handler_mode(env)) {
8113 lr |= R_V7M_EXCRET_MODE_MASK;
8116 ignore_stackfaults = v7m_push_stack(cpu);
8117 v7m_exception_taken(cpu, lr, false, ignore_stackfaults);
8120 /* Function used to synchronize QEMU's AArch64 register set with AArch32
8121 * register set. This is necessary when switching between AArch32 and AArch64
8122 * execution state.
8124 void aarch64_sync_32_to_64(CPUARMState *env)
8126 int i;
8127 uint32_t mode = env->uncached_cpsr & CPSR_M;
8129 /* We can blanket copy R[0:7] to X[0:7] */
8130 for (i = 0; i < 8; i++) {
8131 env->xregs[i] = env->regs[i];
8134 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
8135 * Otherwise, they come from the banked user regs.
8137 if (mode == ARM_CPU_MODE_FIQ) {
8138 for (i = 8; i < 13; i++) {
8139 env->xregs[i] = env->usr_regs[i - 8];
8141 } else {
8142 for (i = 8; i < 13; i++) {
8143 env->xregs[i] = env->regs[i];
8147 /* Registers x13-x23 are the various mode SP and FP registers. Registers
8148 * r13 and r14 are only copied if we are in that mode, otherwise we copy
8149 * from the mode banked register.
8151 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
8152 env->xregs[13] = env->regs[13];
8153 env->xregs[14] = env->regs[14];
8154 } else {
8155 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
8156 /* HYP is an exception in that it is copied from r14 */
8157 if (mode == ARM_CPU_MODE_HYP) {
8158 env->xregs[14] = env->regs[14];
8159 } else {
8160 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
8164 if (mode == ARM_CPU_MODE_HYP) {
8165 env->xregs[15] = env->regs[13];
8166 } else {
8167 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
8170 if (mode == ARM_CPU_MODE_IRQ) {
8171 env->xregs[16] = env->regs[14];
8172 env->xregs[17] = env->regs[13];
8173 } else {
8174 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
8175 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
8178 if (mode == ARM_CPU_MODE_SVC) {
8179 env->xregs[18] = env->regs[14];
8180 env->xregs[19] = env->regs[13];
8181 } else {
8182 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
8183 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
8186 if (mode == ARM_CPU_MODE_ABT) {
8187 env->xregs[20] = env->regs[14];
8188 env->xregs[21] = env->regs[13];
8189 } else {
8190 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
8191 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
8194 if (mode == ARM_CPU_MODE_UND) {
8195 env->xregs[22] = env->regs[14];
8196 env->xregs[23] = env->regs[13];
8197 } else {
8198 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
8199 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
8202 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
8203 * mode, then we can copy from r8-r14. Otherwise, we copy from the
8204 * FIQ bank for r8-r14.
8206 if (mode == ARM_CPU_MODE_FIQ) {
8207 for (i = 24; i < 31; i++) {
8208 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
8210 } else {
8211 for (i = 24; i < 29; i++) {
8212 env->xregs[i] = env->fiq_regs[i - 24];
8214 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
8215 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
8218 env->pc = env->regs[15];
8221 /* Function used to synchronize QEMU's AArch32 register set with AArch64
8222 * register set. This is necessary when switching between AArch32 and AArch64
8223 * execution state.
8225 void aarch64_sync_64_to_32(CPUARMState *env)
8227 int i;
8228 uint32_t mode = env->uncached_cpsr & CPSR_M;
8230 /* We can blanket copy X[0:7] to R[0:7] */
8231 for (i = 0; i < 8; i++) {
8232 env->regs[i] = env->xregs[i];
8235 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
8236 * Otherwise, we copy x8-x12 into the banked user regs.
8238 if (mode == ARM_CPU_MODE_FIQ) {
8239 for (i = 8; i < 13; i++) {
8240 env->usr_regs[i - 8] = env->xregs[i];
8242 } else {
8243 for (i = 8; i < 13; i++) {
8244 env->regs[i] = env->xregs[i];
8248 /* Registers r13 & r14 depend on the current mode.
8249 * If we are in a given mode, we copy the corresponding x registers to r13
8250 * and r14. Otherwise, we copy the x register to the banked r13 and r14
8251 * for the mode.
8253 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
8254 env->regs[13] = env->xregs[13];
8255 env->regs[14] = env->xregs[14];
8256 } else {
8257 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
8259 /* HYP is an exception in that it does not have its own banked r14 but
8260 * shares the USR r14
8262 if (mode == ARM_CPU_MODE_HYP) {
8263 env->regs[14] = env->xregs[14];
8264 } else {
8265 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
8269 if (mode == ARM_CPU_MODE_HYP) {
8270 env->regs[13] = env->xregs[15];
8271 } else {
8272 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
8275 if (mode == ARM_CPU_MODE_IRQ) {
8276 env->regs[14] = env->xregs[16];
8277 env->regs[13] = env->xregs[17];
8278 } else {
8279 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
8280 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
8283 if (mode == ARM_CPU_MODE_SVC) {
8284 env->regs[14] = env->xregs[18];
8285 env->regs[13] = env->xregs[19];
8286 } else {
8287 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
8288 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
8291 if (mode == ARM_CPU_MODE_ABT) {
8292 env->regs[14] = env->xregs[20];
8293 env->regs[13] = env->xregs[21];
8294 } else {
8295 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
8296 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
8299 if (mode == ARM_CPU_MODE_UND) {
8300 env->regs[14] = env->xregs[22];
8301 env->regs[13] = env->xregs[23];
8302 } else {
8303 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
8304 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
8307 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
8308 * mode, then we can copy to r8-r14. Otherwise, we copy to the
8309 * FIQ bank for r8-r14.
8311 if (mode == ARM_CPU_MODE_FIQ) {
8312 for (i = 24; i < 31; i++) {
8313 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
8315 } else {
8316 for (i = 24; i < 29; i++) {
8317 env->fiq_regs[i - 24] = env->xregs[i];
8319 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
8320 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
8323 env->regs[15] = env->pc;
8326 static void take_aarch32_exception(CPUARMState *env, int new_mode,
8327 uint32_t mask, uint32_t offset,
8328 uint32_t newpc)
8330 /* Change the CPU state so as to actually take the exception. */
8331 switch_mode(env, new_mode);
8333 * For exceptions taken to AArch32 we must clear the SS bit in both
8334 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
8336 env->uncached_cpsr &= ~PSTATE_SS;
8337 env->spsr = cpsr_read(env);
8338 /* Clear IT bits. */
8339 env->condexec_bits = 0;
8340 /* Switch to the new mode, and to the correct instruction set. */
8341 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
8342 /* Set new mode endianness */
8343 env->uncached_cpsr &= ~CPSR_E;
8344 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
8345 env->uncached_cpsr |= CPSR_E;
8347 /* J and IL must always be cleared for exception entry */
8348 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
8349 env->daif |= mask;
8351 if (new_mode == ARM_CPU_MODE_HYP) {
8352 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
8353 env->elr_el[2] = env->regs[15];
8354 } else {
8356 * this is a lie, as there was no c1_sys on V4T/V5, but who cares
8357 * and we should just guard the thumb mode on V4
8359 if (arm_feature(env, ARM_FEATURE_V4T)) {
8360 env->thumb =
8361 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
8363 env->regs[14] = env->regs[15] + offset;
8365 env->regs[15] = newpc;
8368 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
8371 * Handle exception entry to Hyp mode; this is sufficiently
8372 * different to entry to other AArch32 modes that we handle it
8373 * separately here.
8375 * The vector table entry used is always the 0x14 Hyp mode entry point,
8376 * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp.
8377 * The offset applied to the preferred return address is always zero
8378 * (see DDI0487C.a section G1.12.3).
8379 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
8381 uint32_t addr, mask;
8382 ARMCPU *cpu = ARM_CPU(cs);
8383 CPUARMState *env = &cpu->env;
8385 switch (cs->exception_index) {
8386 case EXCP_UDEF:
8387 addr = 0x04;
8388 break;
8389 case EXCP_SWI:
8390 addr = 0x14;
8391 break;
8392 case EXCP_BKPT:
8393 /* Fall through to prefetch abort. */
8394 case EXCP_PREFETCH_ABORT:
8395 env->cp15.ifar_s = env->exception.vaddress;
8396 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
8397 (uint32_t)env->exception.vaddress);
8398 addr = 0x0c;
8399 break;
8400 case EXCP_DATA_ABORT:
8401 env->cp15.dfar_s = env->exception.vaddress;
8402 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
8403 (uint32_t)env->exception.vaddress);
8404 addr = 0x10;
8405 break;
8406 case EXCP_IRQ:
8407 addr = 0x18;
8408 break;
8409 case EXCP_FIQ:
8410 addr = 0x1c;
8411 break;
8412 case EXCP_HVC:
8413 addr = 0x08;
8414 break;
8415 case EXCP_HYP_TRAP:
8416 addr = 0x14;
8417 default:
8418 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
8421 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
8422 if (!arm_feature(env, ARM_FEATURE_V8)) {
8424 * QEMU syndrome values are v8-style. v7 has the IL bit
8425 * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
8426 * If this is a v7 CPU, squash the IL bit in those cases.
8428 if (cs->exception_index == EXCP_PREFETCH_ABORT ||
8429 (cs->exception_index == EXCP_DATA_ABORT &&
8430 !(env->exception.syndrome & ARM_EL_ISV)) ||
8431 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
8432 env->exception.syndrome &= ~ARM_EL_IL;
8435 env->cp15.esr_el[2] = env->exception.syndrome;
8438 if (arm_current_el(env) != 2 && addr < 0x14) {
8439 addr = 0x14;
8442 mask = 0;
8443 if (!(env->cp15.scr_el3 & SCR_EA)) {
8444 mask |= CPSR_A;
8446 if (!(env->cp15.scr_el3 & SCR_IRQ)) {
8447 mask |= CPSR_I;
8449 if (!(env->cp15.scr_el3 & SCR_FIQ)) {
8450 mask |= CPSR_F;
8453 addr += env->cp15.hvbar;
8455 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
8458 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
8460 ARMCPU *cpu = ARM_CPU(cs);
8461 CPUARMState *env = &cpu->env;
8462 uint32_t addr;
8463 uint32_t mask;
8464 int new_mode;
8465 uint32_t offset;
8466 uint32_t moe;
8468 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
8469 switch (syn_get_ec(env->exception.syndrome)) {
8470 case EC_BREAKPOINT:
8471 case EC_BREAKPOINT_SAME_EL:
8472 moe = 1;
8473 break;
8474 case EC_WATCHPOINT:
8475 case EC_WATCHPOINT_SAME_EL:
8476 moe = 10;
8477 break;
8478 case EC_AA32_BKPT:
8479 moe = 3;
8480 break;
8481 case EC_VECTORCATCH:
8482 moe = 5;
8483 break;
8484 default:
8485 moe = 0;
8486 break;
8489 if (moe) {
8490 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
8493 if (env->exception.target_el == 2) {
8494 arm_cpu_do_interrupt_aarch32_hyp(cs);
8495 return;
8498 switch (cs->exception_index) {
8499 case EXCP_UDEF:
8500 new_mode = ARM_CPU_MODE_UND;
8501 addr = 0x04;
8502 mask = CPSR_I;
8503 if (env->thumb)
8504 offset = 2;
8505 else
8506 offset = 4;
8507 break;
8508 case EXCP_SWI:
8509 new_mode = ARM_CPU_MODE_SVC;
8510 addr = 0x08;
8511 mask = CPSR_I;
8512 /* The PC already points to the next instruction. */
8513 offset = 0;
8514 break;
8515 case EXCP_BKPT:
8516 /* Fall through to prefetch abort. */
8517 case EXCP_PREFETCH_ABORT:
8518 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
8519 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
8520 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
8521 env->exception.fsr, (uint32_t)env->exception.vaddress);
8522 new_mode = ARM_CPU_MODE_ABT;
8523 addr = 0x0c;
8524 mask = CPSR_A | CPSR_I;
8525 offset = 4;
8526 break;
8527 case EXCP_DATA_ABORT:
8528 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
8529 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
8530 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
8531 env->exception.fsr,
8532 (uint32_t)env->exception.vaddress);
8533 new_mode = ARM_CPU_MODE_ABT;
8534 addr = 0x10;
8535 mask = CPSR_A | CPSR_I;
8536 offset = 8;
8537 break;
8538 case EXCP_IRQ:
8539 new_mode = ARM_CPU_MODE_IRQ;
8540 addr = 0x18;
8541 /* Disable IRQ and imprecise data aborts. */
8542 mask = CPSR_A | CPSR_I;
8543 offset = 4;
8544 if (env->cp15.scr_el3 & SCR_IRQ) {
8545 /* IRQ routed to monitor mode */
8546 new_mode = ARM_CPU_MODE_MON;
8547 mask |= CPSR_F;
8549 break;
8550 case EXCP_FIQ:
8551 new_mode = ARM_CPU_MODE_FIQ;
8552 addr = 0x1c;
8553 /* Disable FIQ, IRQ and imprecise data aborts. */
8554 mask = CPSR_A | CPSR_I | CPSR_F;
8555 if (env->cp15.scr_el3 & SCR_FIQ) {
8556 /* FIQ routed to monitor mode */
8557 new_mode = ARM_CPU_MODE_MON;
8559 offset = 4;
8560 break;
8561 case EXCP_VIRQ:
8562 new_mode = ARM_CPU_MODE_IRQ;
8563 addr = 0x18;
8564 /* Disable IRQ and imprecise data aborts. */
8565 mask = CPSR_A | CPSR_I;
8566 offset = 4;
8567 break;
8568 case EXCP_VFIQ:
8569 new_mode = ARM_CPU_MODE_FIQ;
8570 addr = 0x1c;
8571 /* Disable FIQ, IRQ and imprecise data aborts. */
8572 mask = CPSR_A | CPSR_I | CPSR_F;
8573 offset = 4;
8574 break;
8575 case EXCP_SMC:
8576 new_mode = ARM_CPU_MODE_MON;
8577 addr = 0x08;
8578 mask = CPSR_A | CPSR_I | CPSR_F;
8579 offset = 0;
8580 break;
8581 default:
8582 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
8583 return; /* Never happens. Keep compiler happy. */
8586 if (new_mode == ARM_CPU_MODE_MON) {
8587 addr += env->cp15.mvbar;
8588 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
8589 /* High vectors. When enabled, base address cannot be remapped. */
8590 addr += 0xffff0000;
8591 } else {
8592 /* ARM v7 architectures provide a vector base address register to remap
8593 * the interrupt vector table.
8594 * This register is only followed in non-monitor mode, and is banked.
8595 * Note: only bits 31:5 are valid.
8597 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
8600 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
8601 env->cp15.scr_el3 &= ~SCR_NS;
8604 take_aarch32_exception(env, new_mode, mask, offset, addr);
8607 /* Handle exception entry to a target EL which is using AArch64 */
8608 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
8610 ARMCPU *cpu = ARM_CPU(cs);
8611 CPUARMState *env = &cpu->env;
8612 unsigned int new_el = env->exception.target_el;
8613 target_ulong addr = env->cp15.vbar_el[new_el];
8614 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
8615 unsigned int cur_el = arm_current_el(env);
8618 * Note that new_el can never be 0. If cur_el is 0, then
8619 * el0_a64 is is_a64(), else el0_a64 is ignored.
8621 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
8623 if (cur_el < new_el) {
8624 /* Entry vector offset depends on whether the implemented EL
8625 * immediately lower than the target level is using AArch32 or AArch64
8627 bool is_aa64;
8629 switch (new_el) {
8630 case 3:
8631 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
8632 break;
8633 case 2:
8634 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
8635 break;
8636 case 1:
8637 is_aa64 = is_a64(env);
8638 break;
8639 default:
8640 g_assert_not_reached();
8643 if (is_aa64) {
8644 addr += 0x400;
8645 } else {
8646 addr += 0x600;
8648 } else if (pstate_read(env) & PSTATE_SP) {
8649 addr += 0x200;
8652 switch (cs->exception_index) {
8653 case EXCP_PREFETCH_ABORT:
8654 case EXCP_DATA_ABORT:
8655 env->cp15.far_el[new_el] = env->exception.vaddress;
8656 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
8657 env->cp15.far_el[new_el]);
8658 /* fall through */
8659 case EXCP_BKPT:
8660 case EXCP_UDEF:
8661 case EXCP_SWI:
8662 case EXCP_HVC:
8663 case EXCP_HYP_TRAP:
8664 case EXCP_SMC:
8665 if (syn_get_ec(env->exception.syndrome) == EC_ADVSIMDFPACCESSTRAP) {
8667 * QEMU internal FP/SIMD syndromes from AArch32 include the
8668 * TA and coproc fields which are only exposed if the exception
8669 * is taken to AArch32 Hyp mode. Mask them out to get a valid
8670 * AArch64 format syndrome.
8672 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
8674 env->cp15.esr_el[new_el] = env->exception.syndrome;
8675 break;
8676 case EXCP_IRQ:
8677 case EXCP_VIRQ:
8678 addr += 0x80;
8679 break;
8680 case EXCP_FIQ:
8681 case EXCP_VFIQ:
8682 addr += 0x100;
8683 break;
8684 case EXCP_SEMIHOST:
8685 qemu_log_mask(CPU_LOG_INT,
8686 "...handling as semihosting call 0x%" PRIx64 "\n",
8687 env->xregs[0]);
8688 env->xregs[0] = do_arm_semihosting(env);
8689 return;
8690 default:
8691 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
8694 if (is_a64(env)) {
8695 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
8696 aarch64_save_sp(env, arm_current_el(env));
8697 env->elr_el[new_el] = env->pc;
8698 } else {
8699 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
8700 env->elr_el[new_el] = env->regs[15];
8702 aarch64_sync_32_to_64(env);
8704 env->condexec_bits = 0;
8706 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
8707 env->elr_el[new_el]);
8709 pstate_write(env, PSTATE_DAIF | new_mode);
8710 env->aarch64 = 1;
8711 aarch64_restore_sp(env, new_el);
8713 env->pc = addr;
8715 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
8716 new_el, env->pc, pstate_read(env));
8719 static inline bool check_for_semihosting(CPUState *cs)
8721 /* Check whether this exception is a semihosting call; if so
8722 * then handle it and return true; otherwise return false.
8724 ARMCPU *cpu = ARM_CPU(cs);
8725 CPUARMState *env = &cpu->env;
8727 if (is_a64(env)) {
8728 if (cs->exception_index == EXCP_SEMIHOST) {
8729 /* This is always the 64-bit semihosting exception.
8730 * The "is this usermode" and "is semihosting enabled"
8731 * checks have been done at translate time.
8733 qemu_log_mask(CPU_LOG_INT,
8734 "...handling as semihosting call 0x%" PRIx64 "\n",
8735 env->xregs[0]);
8736 env->xregs[0] = do_arm_semihosting(env);
8737 return true;
8739 return false;
8740 } else {
8741 uint32_t imm;
8743 /* Only intercept calls from privileged modes, to provide some
8744 * semblance of security.
8746 if (cs->exception_index != EXCP_SEMIHOST &&
8747 (!semihosting_enabled() ||
8748 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) {
8749 return false;
8752 switch (cs->exception_index) {
8753 case EXCP_SEMIHOST:
8754 /* This is always a semihosting call; the "is this usermode"
8755 * and "is semihosting enabled" checks have been done at
8756 * translate time.
8758 break;
8759 case EXCP_SWI:
8760 /* Check for semihosting interrupt. */
8761 if (env->thumb) {
8762 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env))
8763 & 0xff;
8764 if (imm == 0xab) {
8765 break;
8767 } else {
8768 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env))
8769 & 0xffffff;
8770 if (imm == 0x123456) {
8771 break;
8774 return false;
8775 case EXCP_BKPT:
8776 /* See if this is a semihosting syscall. */
8777 if (env->thumb) {
8778 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env))
8779 & 0xff;
8780 if (imm == 0xab) {
8781 env->regs[15] += 2;
8782 break;
8785 return false;
8786 default:
8787 return false;
8790 qemu_log_mask(CPU_LOG_INT,
8791 "...handling as semihosting call 0x%x\n",
8792 env->regs[0]);
8793 env->regs[0] = do_arm_semihosting(env);
8794 return true;
8798 /* Handle a CPU exception for A and R profile CPUs.
8799 * Do any appropriate logging, handle PSCI calls, and then hand off
8800 * to the AArch64-entry or AArch32-entry function depending on the
8801 * target exception level's register width.
8803 void arm_cpu_do_interrupt(CPUState *cs)
8805 ARMCPU *cpu = ARM_CPU(cs);
8806 CPUARMState *env = &cpu->env;
8807 unsigned int new_el = env->exception.target_el;
8809 assert(!arm_feature(env, ARM_FEATURE_M));
8811 arm_log_exception(cs->exception_index);
8812 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
8813 new_el);
8814 if (qemu_loglevel_mask(CPU_LOG_INT)
8815 && !excp_is_internal(cs->exception_index)) {
8816 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
8817 syn_get_ec(env->exception.syndrome),
8818 env->exception.syndrome);
8821 if (arm_is_psci_call(cpu, cs->exception_index)) {
8822 arm_handle_psci_call(cpu);
8823 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
8824 return;
8827 /* Semihosting semantics depend on the register width of the
8828 * code that caused the exception, not the target exception level,
8829 * so must be handled here.
8831 if (check_for_semihosting(cs)) {
8832 return;
8835 /* Hooks may change global state so BQL should be held, also the
8836 * BQL needs to be held for any modification of
8837 * cs->interrupt_request.
8839 g_assert(qemu_mutex_iothread_locked());
8841 arm_call_pre_el_change_hook(cpu);
8843 assert(!excp_is_internal(cs->exception_index));
8844 if (arm_el_is_aa64(env, new_el)) {
8845 arm_cpu_do_interrupt_aarch64(cs);
8846 } else {
8847 arm_cpu_do_interrupt_aarch32(cs);
8850 arm_call_el_change_hook(cpu);
8852 if (!kvm_enabled()) {
8853 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
8857 /* Return the exception level which controls this address translation regime */
8858 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
8860 switch (mmu_idx) {
8861 case ARMMMUIdx_S2NS:
8862 case ARMMMUIdx_S1E2:
8863 return 2;
8864 case ARMMMUIdx_S1E3:
8865 return 3;
8866 case ARMMMUIdx_S1SE0:
8867 return arm_el_is_aa64(env, 3) ? 1 : 3;
8868 case ARMMMUIdx_S1SE1:
8869 case ARMMMUIdx_S1NSE0:
8870 case ARMMMUIdx_S1NSE1:
8871 case ARMMMUIdx_MPrivNegPri:
8872 case ARMMMUIdx_MUserNegPri:
8873 case ARMMMUIdx_MPriv:
8874 case ARMMMUIdx_MUser:
8875 case ARMMMUIdx_MSPrivNegPri:
8876 case ARMMMUIdx_MSUserNegPri:
8877 case ARMMMUIdx_MSPriv:
8878 case ARMMMUIdx_MSUser:
8879 return 1;
8880 default:
8881 g_assert_not_reached();
8885 /* Return the SCTLR value which controls this address translation regime */
8886 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
8888 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
8891 /* Return true if the specified stage of address translation is disabled */
8892 static inline bool regime_translation_disabled(CPUARMState *env,
8893 ARMMMUIdx mmu_idx)
8895 if (arm_feature(env, ARM_FEATURE_M)) {
8896 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
8897 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
8898 case R_V7M_MPU_CTRL_ENABLE_MASK:
8899 /* Enabled, but not for HardFault and NMI */
8900 return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
8901 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
8902 /* Enabled for all cases */
8903 return false;
8904 case 0:
8905 default:
8906 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
8907 * we warned about that in armv7m_nvic.c when the guest set it.
8909 return true;
8913 if (mmu_idx == ARMMMUIdx_S2NS) {
8914 /* HCR.DC means HCR.VM behaves as 1 */
8915 return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0;
8918 if (env->cp15.hcr_el2 & HCR_TGE) {
8919 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
8920 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
8921 return true;
8925 if ((env->cp15.hcr_el2 & HCR_DC) &&
8926 (mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1)) {
8927 /* HCR.DC means SCTLR_EL1.M behaves as 0 */
8928 return true;
8931 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
8934 static inline bool regime_translation_big_endian(CPUARMState *env,
8935 ARMMMUIdx mmu_idx)
8937 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
8940 /* Return the TCR controlling this translation regime */
8941 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
8943 if (mmu_idx == ARMMMUIdx_S2NS) {
8944 return &env->cp15.vtcr_el2;
8946 return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
8949 /* Convert a possible stage1+2 MMU index into the appropriate
8950 * stage 1 MMU index
8952 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
8954 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
8955 mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0);
8957 return mmu_idx;
8960 /* Returns TBI0 value for current regime el */
8961 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
8963 TCR *tcr;
8964 uint32_t el;
8966 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
8967 * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
8969 mmu_idx = stage_1_mmu_idx(mmu_idx);
8971 tcr = regime_tcr(env, mmu_idx);
8972 el = regime_el(env, mmu_idx);
8974 if (el > 1) {
8975 return extract64(tcr->raw_tcr, 20, 1);
8976 } else {
8977 return extract64(tcr->raw_tcr, 37, 1);
8981 /* Returns TBI1 value for current regime el */
8982 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
8984 TCR *tcr;
8985 uint32_t el;
8987 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
8988 * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
8990 mmu_idx = stage_1_mmu_idx(mmu_idx);
8992 tcr = regime_tcr(env, mmu_idx);
8993 el = regime_el(env, mmu_idx);
8995 if (el > 1) {
8996 return 0;
8997 } else {
8998 return extract64(tcr->raw_tcr, 38, 1);
9002 /* Return the TTBR associated with this translation regime */
9003 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
9004 int ttbrn)
9006 if (mmu_idx == ARMMMUIdx_S2NS) {
9007 return env->cp15.vttbr_el2;
9009 if (ttbrn == 0) {
9010 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
9011 } else {
9012 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
9016 /* Return true if the translation regime is using LPAE format page tables */
9017 static inline bool regime_using_lpae_format(CPUARMState *env,
9018 ARMMMUIdx mmu_idx)
9020 int el = regime_el(env, mmu_idx);
9021 if (el == 2 || arm_el_is_aa64(env, el)) {
9022 return true;
9024 if (arm_feature(env, ARM_FEATURE_LPAE)
9025 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
9026 return true;
9028 return false;
9031 /* Returns true if the stage 1 translation regime is using LPAE format page
9032 * tables. Used when raising alignment exceptions, whose FSR changes depending
9033 * on whether the long or short descriptor format is in use. */
9034 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
9036 mmu_idx = stage_1_mmu_idx(mmu_idx);
9038 return regime_using_lpae_format(env, mmu_idx);
9041 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
9043 switch (mmu_idx) {
9044 case ARMMMUIdx_S1SE0:
9045 case ARMMMUIdx_S1NSE0:
9046 case ARMMMUIdx_MUser:
9047 case ARMMMUIdx_MSUser:
9048 case ARMMMUIdx_MUserNegPri:
9049 case ARMMMUIdx_MSUserNegPri:
9050 return true;
9051 default:
9052 return false;
9053 case ARMMMUIdx_S12NSE0:
9054 case ARMMMUIdx_S12NSE1:
9055 g_assert_not_reached();
9059 /* Translate section/page access permissions to page
9060 * R/W protection flags
9062 * @env: CPUARMState
9063 * @mmu_idx: MMU index indicating required translation regime
9064 * @ap: The 3-bit access permissions (AP[2:0])
9065 * @domain_prot: The 2-bit domain access permissions
9067 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
9068 int ap, int domain_prot)
9070 bool is_user = regime_is_user(env, mmu_idx);
9072 if (domain_prot == 3) {
9073 return PAGE_READ | PAGE_WRITE;
9076 switch (ap) {
9077 case 0:
9078 if (arm_feature(env, ARM_FEATURE_V7)) {
9079 return 0;
9081 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
9082 case SCTLR_S:
9083 return is_user ? 0 : PAGE_READ;
9084 case SCTLR_R:
9085 return PAGE_READ;
9086 default:
9087 return 0;
9089 case 1:
9090 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
9091 case 2:
9092 if (is_user) {
9093 return PAGE_READ;
9094 } else {
9095 return PAGE_READ | PAGE_WRITE;
9097 case 3:
9098 return PAGE_READ | PAGE_WRITE;
9099 case 4: /* Reserved. */
9100 return 0;
9101 case 5:
9102 return is_user ? 0 : PAGE_READ;
9103 case 6:
9104 return PAGE_READ;
9105 case 7:
9106 if (!arm_feature(env, ARM_FEATURE_V6K)) {
9107 return 0;
9109 return PAGE_READ;
9110 default:
9111 g_assert_not_reached();
9115 /* Translate section/page access permissions to page
9116 * R/W protection flags.
9118 * @ap: The 2-bit simple AP (AP[2:1])
9119 * @is_user: TRUE if accessing from PL0
9121 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
9123 switch (ap) {
9124 case 0:
9125 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
9126 case 1:
9127 return PAGE_READ | PAGE_WRITE;
9128 case 2:
9129 return is_user ? 0 : PAGE_READ;
9130 case 3:
9131 return PAGE_READ;
9132 default:
9133 g_assert_not_reached();
9137 static inline int
9138 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
9140 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
9143 /* Translate S2 section/page access permissions to protection flags
9145 * @env: CPUARMState
9146 * @s2ap: The 2-bit stage2 access permissions (S2AP)
9147 * @xn: XN (execute-never) bit
9149 static int get_S2prot(CPUARMState *env, int s2ap, int xn)
9151 int prot = 0;
9153 if (s2ap & 1) {
9154 prot |= PAGE_READ;
9156 if (s2ap & 2) {
9157 prot |= PAGE_WRITE;
9159 if (!xn) {
9160 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
9161 prot |= PAGE_EXEC;
9164 return prot;
9167 /* Translate section/page access permissions to protection flags
9169 * @env: CPUARMState
9170 * @mmu_idx: MMU index indicating required translation regime
9171 * @is_aa64: TRUE if AArch64
9172 * @ap: The 2-bit simple AP (AP[2:1])
9173 * @ns: NS (non-secure) bit
9174 * @xn: XN (execute-never) bit
9175 * @pxn: PXN (privileged execute-never) bit
9177 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
9178 int ap, int ns, int xn, int pxn)
9180 bool is_user = regime_is_user(env, mmu_idx);
9181 int prot_rw, user_rw;
9182 bool have_wxn;
9183 int wxn = 0;
9185 assert(mmu_idx != ARMMMUIdx_S2NS);
9187 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
9188 if (is_user) {
9189 prot_rw = user_rw;
9190 } else {
9191 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
9194 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
9195 return prot_rw;
9198 /* TODO have_wxn should be replaced with
9199 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
9200 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
9201 * compatible processors have EL2, which is required for [U]WXN.
9203 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
9205 if (have_wxn) {
9206 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
9209 if (is_aa64) {
9210 switch (regime_el(env, mmu_idx)) {
9211 case 1:
9212 if (!is_user) {
9213 xn = pxn || (user_rw & PAGE_WRITE);
9215 break;
9216 case 2:
9217 case 3:
9218 break;
9220 } else if (arm_feature(env, ARM_FEATURE_V7)) {
9221 switch (regime_el(env, mmu_idx)) {
9222 case 1:
9223 case 3:
9224 if (is_user) {
9225 xn = xn || !(user_rw & PAGE_READ);
9226 } else {
9227 int uwxn = 0;
9228 if (have_wxn) {
9229 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
9231 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
9232 (uwxn && (user_rw & PAGE_WRITE));
9234 break;
9235 case 2:
9236 break;
9238 } else {
9239 xn = wxn = 0;
9242 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
9243 return prot_rw;
9245 return prot_rw | PAGE_EXEC;
9248 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
9249 uint32_t *table, uint32_t address)
9251 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
9252 TCR *tcr = regime_tcr(env, mmu_idx);
9254 if (address & tcr->mask) {
9255 if (tcr->raw_tcr & TTBCR_PD1) {
9256 /* Translation table walk disabled for TTBR1 */
9257 return false;
9259 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
9260 } else {
9261 if (tcr->raw_tcr & TTBCR_PD0) {
9262 /* Translation table walk disabled for TTBR0 */
9263 return false;
9265 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
9267 *table |= (address >> 18) & 0x3ffc;
9268 return true;
9271 /* Translate a S1 pagetable walk through S2 if needed. */
9272 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
9273 hwaddr addr, MemTxAttrs txattrs,
9274 ARMMMUFaultInfo *fi)
9276 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
9277 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
9278 target_ulong s2size;
9279 hwaddr s2pa;
9280 int s2prot;
9281 int ret;
9282 ARMCacheAttrs cacheattrs = {};
9283 ARMCacheAttrs *pcacheattrs = NULL;
9285 if (env->cp15.hcr_el2 & HCR_PTW) {
9287 * PTW means we must fault if this S1 walk touches S2 Device
9288 * memory; otherwise we don't care about the attributes and can
9289 * save the S2 translation the effort of computing them.
9291 pcacheattrs = &cacheattrs;
9294 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
9295 &txattrs, &s2prot, &s2size, fi, pcacheattrs);
9296 if (ret) {
9297 assert(fi->type != ARMFault_None);
9298 fi->s2addr = addr;
9299 fi->stage2 = true;
9300 fi->s1ptw = true;
9301 return ~0;
9303 if (pcacheattrs && (pcacheattrs->attrs & 0xf0) == 0) {
9304 /* Access was to Device memory: generate Permission fault */
9305 fi->type = ARMFault_Permission;
9306 fi->s2addr = addr;
9307 fi->stage2 = true;
9308 fi->s1ptw = true;
9309 return ~0;
9311 addr = s2pa;
9313 return addr;
9316 /* All loads done in the course of a page table walk go through here. */
9317 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
9318 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
9320 ARMCPU *cpu = ARM_CPU(cs);
9321 CPUARMState *env = &cpu->env;
9322 MemTxAttrs attrs = {};
9323 MemTxResult result = MEMTX_OK;
9324 AddressSpace *as;
9325 uint32_t data;
9327 attrs.secure = is_secure;
9328 as = arm_addressspace(cs, attrs);
9329 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
9330 if (fi->s1ptw) {
9331 return 0;
9333 if (regime_translation_big_endian(env, mmu_idx)) {
9334 data = address_space_ldl_be(as, addr, attrs, &result);
9335 } else {
9336 data = address_space_ldl_le(as, addr, attrs, &result);
9338 if (result == MEMTX_OK) {
9339 return data;
9341 fi->type = ARMFault_SyncExternalOnWalk;
9342 fi->ea = arm_extabort_type(result);
9343 return 0;
9346 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
9347 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
9349 ARMCPU *cpu = ARM_CPU(cs);
9350 CPUARMState *env = &cpu->env;
9351 MemTxAttrs attrs = {};
9352 MemTxResult result = MEMTX_OK;
9353 AddressSpace *as;
9354 uint64_t data;
9356 attrs.secure = is_secure;
9357 as = arm_addressspace(cs, attrs);
9358 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
9359 if (fi->s1ptw) {
9360 return 0;
9362 if (regime_translation_big_endian(env, mmu_idx)) {
9363 data = address_space_ldq_be(as, addr, attrs, &result);
9364 } else {
9365 data = address_space_ldq_le(as, addr, attrs, &result);
9367 if (result == MEMTX_OK) {
9368 return data;
9370 fi->type = ARMFault_SyncExternalOnWalk;
9371 fi->ea = arm_extabort_type(result);
9372 return 0;
9375 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
9376 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9377 hwaddr *phys_ptr, int *prot,
9378 target_ulong *page_size,
9379 ARMMMUFaultInfo *fi)
9381 CPUState *cs = CPU(arm_env_get_cpu(env));
9382 int level = 1;
9383 uint32_t table;
9384 uint32_t desc;
9385 int type;
9386 int ap;
9387 int domain = 0;
9388 int domain_prot;
9389 hwaddr phys_addr;
9390 uint32_t dacr;
9392 /* Pagetable walk. */
9393 /* Lookup l1 descriptor. */
9394 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
9395 /* Section translation fault if page walk is disabled by PD0 or PD1 */
9396 fi->type = ARMFault_Translation;
9397 goto do_fault;
9399 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
9400 mmu_idx, fi);
9401 if (fi->type != ARMFault_None) {
9402 goto do_fault;
9404 type = (desc & 3);
9405 domain = (desc >> 5) & 0x0f;
9406 if (regime_el(env, mmu_idx) == 1) {
9407 dacr = env->cp15.dacr_ns;
9408 } else {
9409 dacr = env->cp15.dacr_s;
9411 domain_prot = (dacr >> (domain * 2)) & 3;
9412 if (type == 0) {
9413 /* Section translation fault. */
9414 fi->type = ARMFault_Translation;
9415 goto do_fault;
9417 if (type != 2) {
9418 level = 2;
9420 if (domain_prot == 0 || domain_prot == 2) {
9421 fi->type = ARMFault_Domain;
9422 goto do_fault;
9424 if (type == 2) {
9425 /* 1Mb section. */
9426 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
9427 ap = (desc >> 10) & 3;
9428 *page_size = 1024 * 1024;
9429 } else {
9430 /* Lookup l2 entry. */
9431 if (type == 1) {
9432 /* Coarse pagetable. */
9433 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
9434 } else {
9435 /* Fine pagetable. */
9436 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
9438 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
9439 mmu_idx, fi);
9440 if (fi->type != ARMFault_None) {
9441 goto do_fault;
9443 switch (desc & 3) {
9444 case 0: /* Page translation fault. */
9445 fi->type = ARMFault_Translation;
9446 goto do_fault;
9447 case 1: /* 64k page. */
9448 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
9449 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
9450 *page_size = 0x10000;
9451 break;
9452 case 2: /* 4k page. */
9453 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
9454 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
9455 *page_size = 0x1000;
9456 break;
9457 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
9458 if (type == 1) {
9459 /* ARMv6/XScale extended small page format */
9460 if (arm_feature(env, ARM_FEATURE_XSCALE)
9461 || arm_feature(env, ARM_FEATURE_V6)) {
9462 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
9463 *page_size = 0x1000;
9464 } else {
9465 /* UNPREDICTABLE in ARMv5; we choose to take a
9466 * page translation fault.
9468 fi->type = ARMFault_Translation;
9469 goto do_fault;
9471 } else {
9472 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
9473 *page_size = 0x400;
9475 ap = (desc >> 4) & 3;
9476 break;
9477 default:
9478 /* Never happens, but compiler isn't smart enough to tell. */
9479 abort();
9482 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
9483 *prot |= *prot ? PAGE_EXEC : 0;
9484 if (!(*prot & (1 << access_type))) {
9485 /* Access permission fault. */
9486 fi->type = ARMFault_Permission;
9487 goto do_fault;
9489 *phys_ptr = phys_addr;
9490 return false;
9491 do_fault:
9492 fi->domain = domain;
9493 fi->level = level;
9494 return true;
9497 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
9498 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9499 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
9500 target_ulong *page_size, ARMMMUFaultInfo *fi)
9502 CPUState *cs = CPU(arm_env_get_cpu(env));
9503 int level = 1;
9504 uint32_t table;
9505 uint32_t desc;
9506 uint32_t xn;
9507 uint32_t pxn = 0;
9508 int type;
9509 int ap;
9510 int domain = 0;
9511 int domain_prot;
9512 hwaddr phys_addr;
9513 uint32_t dacr;
9514 bool ns;
9516 /* Pagetable walk. */
9517 /* Lookup l1 descriptor. */
9518 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
9519 /* Section translation fault if page walk is disabled by PD0 or PD1 */
9520 fi->type = ARMFault_Translation;
9521 goto do_fault;
9523 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
9524 mmu_idx, fi);
9525 if (fi->type != ARMFault_None) {
9526 goto do_fault;
9528 type = (desc & 3);
9529 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
9530 /* Section translation fault, or attempt to use the encoding
9531 * which is Reserved on implementations without PXN.
9533 fi->type = ARMFault_Translation;
9534 goto do_fault;
9536 if ((type == 1) || !(desc & (1 << 18))) {
9537 /* Page or Section. */
9538 domain = (desc >> 5) & 0x0f;
9540 if (regime_el(env, mmu_idx) == 1) {
9541 dacr = env->cp15.dacr_ns;
9542 } else {
9543 dacr = env->cp15.dacr_s;
9545 if (type == 1) {
9546 level = 2;
9548 domain_prot = (dacr >> (domain * 2)) & 3;
9549 if (domain_prot == 0 || domain_prot == 2) {
9550 /* Section or Page domain fault */
9551 fi->type = ARMFault_Domain;
9552 goto do_fault;
9554 if (type != 1) {
9555 if (desc & (1 << 18)) {
9556 /* Supersection. */
9557 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
9558 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
9559 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
9560 *page_size = 0x1000000;
9561 } else {
9562 /* Section. */
9563 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
9564 *page_size = 0x100000;
9566 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
9567 xn = desc & (1 << 4);
9568 pxn = desc & 1;
9569 ns = extract32(desc, 19, 1);
9570 } else {
9571 if (arm_feature(env, ARM_FEATURE_PXN)) {
9572 pxn = (desc >> 2) & 1;
9574 ns = extract32(desc, 3, 1);
9575 /* Lookup l2 entry. */
9576 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
9577 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
9578 mmu_idx, fi);
9579 if (fi->type != ARMFault_None) {
9580 goto do_fault;
9582 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
9583 switch (desc & 3) {
9584 case 0: /* Page translation fault. */
9585 fi->type = ARMFault_Translation;
9586 goto do_fault;
9587 case 1: /* 64k page. */
9588 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
9589 xn = desc & (1 << 15);
9590 *page_size = 0x10000;
9591 break;
9592 case 2: case 3: /* 4k page. */
9593 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
9594 xn = desc & 1;
9595 *page_size = 0x1000;
9596 break;
9597 default:
9598 /* Never happens, but compiler isn't smart enough to tell. */
9599 abort();
9602 if (domain_prot == 3) {
9603 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
9604 } else {
9605 if (pxn && !regime_is_user(env, mmu_idx)) {
9606 xn = 1;
9608 if (xn && access_type == MMU_INST_FETCH) {
9609 fi->type = ARMFault_Permission;
9610 goto do_fault;
9613 if (arm_feature(env, ARM_FEATURE_V6K) &&
9614 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
9615 /* The simplified model uses AP[0] as an access control bit. */
9616 if ((ap & 1) == 0) {
9617 /* Access flag fault. */
9618 fi->type = ARMFault_AccessFlag;
9619 goto do_fault;
9621 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
9622 } else {
9623 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
9625 if (*prot && !xn) {
9626 *prot |= PAGE_EXEC;
9628 if (!(*prot & (1 << access_type))) {
9629 /* Access permission fault. */
9630 fi->type = ARMFault_Permission;
9631 goto do_fault;
9634 if (ns) {
9635 /* The NS bit will (as required by the architecture) have no effect if
9636 * the CPU doesn't support TZ or this is a non-secure translation
9637 * regime, because the attribute will already be non-secure.
9639 attrs->secure = false;
9641 *phys_ptr = phys_addr;
9642 return false;
9643 do_fault:
9644 fi->domain = domain;
9645 fi->level = level;
9646 return true;
9650 * check_s2_mmu_setup
9651 * @cpu: ARMCPU
9652 * @is_aa64: True if the translation regime is in AArch64 state
9653 * @startlevel: Suggested starting level
9654 * @inputsize: Bitsize of IPAs
9655 * @stride: Page-table stride (See the ARM ARM)
9657 * Returns true if the suggested S2 translation parameters are OK and
9658 * false otherwise.
9660 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
9661 int inputsize, int stride)
9663 const int grainsize = stride + 3;
9664 int startsizecheck;
9666 /* Negative levels are never allowed. */
9667 if (level < 0) {
9668 return false;
9671 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
9672 if (startsizecheck < 1 || startsizecheck > stride + 4) {
9673 return false;
9676 if (is_aa64) {
9677 CPUARMState *env = &cpu->env;
9678 unsigned int pamax = arm_pamax(cpu);
9680 switch (stride) {
9681 case 13: /* 64KB Pages. */
9682 if (level == 0 || (level == 1 && pamax <= 42)) {
9683 return false;
9685 break;
9686 case 11: /* 16KB Pages. */
9687 if (level == 0 || (level == 1 && pamax <= 40)) {
9688 return false;
9690 break;
9691 case 9: /* 4KB Pages. */
9692 if (level == 0 && pamax <= 42) {
9693 return false;
9695 break;
9696 default:
9697 g_assert_not_reached();
9700 /* Inputsize checks. */
9701 if (inputsize > pamax &&
9702 (arm_el_is_aa64(env, 1) || inputsize > 40)) {
9703 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
9704 return false;
9706 } else {
9707 /* AArch32 only supports 4KB pages. Assert on that. */
9708 assert(stride == 9);
9710 if (level == 0) {
9711 return false;
9714 return true;
9717 /* Translate from the 4-bit stage 2 representation of
9718 * memory attributes (without cache-allocation hints) to
9719 * the 8-bit representation of the stage 1 MAIR registers
9720 * (which includes allocation hints).
9722 * ref: shared/translation/attrs/S2AttrDecode()
9723 * .../S2ConvertAttrsHints()
9725 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
9727 uint8_t hiattr = extract32(s2attrs, 2, 2);
9728 uint8_t loattr = extract32(s2attrs, 0, 2);
9729 uint8_t hihint = 0, lohint = 0;
9731 if (hiattr != 0) { /* normal memory */
9732 if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */
9733 hiattr = loattr = 1; /* non-cacheable */
9734 } else {
9735 if (hiattr != 1) { /* Write-through or write-back */
9736 hihint = 3; /* RW allocate */
9738 if (loattr != 1) { /* Write-through or write-back */
9739 lohint = 3; /* RW allocate */
9744 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
9747 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
9748 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9749 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
9750 target_ulong *page_size_ptr,
9751 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
9753 ARMCPU *cpu = arm_env_get_cpu(env);
9754 CPUState *cs = CPU(cpu);
9755 /* Read an LPAE long-descriptor translation table. */
9756 ARMFaultType fault_type = ARMFault_Translation;
9757 uint32_t level;
9758 uint32_t epd = 0;
9759 int32_t t0sz, t1sz;
9760 uint32_t tg;
9761 uint64_t ttbr;
9762 int ttbr_select;
9763 hwaddr descaddr, indexmask, indexmask_grainsize;
9764 uint32_t tableattrs;
9765 target_ulong page_size;
9766 uint32_t attrs;
9767 int32_t stride = 9;
9768 int32_t addrsize;
9769 int inputsize;
9770 int32_t tbi = 0;
9771 TCR *tcr = regime_tcr(env, mmu_idx);
9772 int ap, ns, xn, pxn;
9773 uint32_t el = regime_el(env, mmu_idx);
9774 bool ttbr1_valid = true;
9775 uint64_t descaddrmask;
9776 bool aarch64 = arm_el_is_aa64(env, el);
9777 bool hpd = false;
9779 /* TODO:
9780 * This code does not handle the different format TCR for VTCR_EL2.
9781 * This code also does not support shareability levels.
9782 * Attribute and permission bit handling should also be checked when adding
9783 * support for those page table walks.
9785 if (aarch64) {
9786 level = 0;
9787 addrsize = 64;
9788 if (el > 1) {
9789 if (mmu_idx != ARMMMUIdx_S2NS) {
9790 tbi = extract64(tcr->raw_tcr, 20, 1);
9792 } else {
9793 if (extract64(address, 55, 1)) {
9794 tbi = extract64(tcr->raw_tcr, 38, 1);
9795 } else {
9796 tbi = extract64(tcr->raw_tcr, 37, 1);
9799 tbi *= 8;
9801 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
9802 * invalid.
9804 if (el > 1) {
9805 ttbr1_valid = false;
9807 } else {
9808 level = 1;
9809 addrsize = 32;
9810 /* There is no TTBR1 for EL2 */
9811 if (el == 2) {
9812 ttbr1_valid = false;
9816 /* Determine whether this address is in the region controlled by
9817 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
9818 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
9819 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
9821 if (aarch64) {
9822 /* AArch64 translation. */
9823 t0sz = extract32(tcr->raw_tcr, 0, 6);
9824 t0sz = MIN(t0sz, 39);
9825 t0sz = MAX(t0sz, 16);
9826 } else if (mmu_idx != ARMMMUIdx_S2NS) {
9827 /* AArch32 stage 1 translation. */
9828 t0sz = extract32(tcr->raw_tcr, 0, 3);
9829 } else {
9830 /* AArch32 stage 2 translation. */
9831 bool sext = extract32(tcr->raw_tcr, 4, 1);
9832 bool sign = extract32(tcr->raw_tcr, 3, 1);
9833 /* Address size is 40-bit for a stage 2 translation,
9834 * and t0sz can be negative (from -8 to 7),
9835 * so we need to adjust it to use the TTBR selecting logic below.
9837 addrsize = 40;
9838 t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8;
9840 /* If the sign-extend bit is not the same as t0sz[3], the result
9841 * is unpredictable. Flag this as a guest error. */
9842 if (sign != sext) {
9843 qemu_log_mask(LOG_GUEST_ERROR,
9844 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
9847 t1sz = extract32(tcr->raw_tcr, 16, 6);
9848 if (aarch64) {
9849 t1sz = MIN(t1sz, 39);
9850 t1sz = MAX(t1sz, 16);
9852 if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) {
9853 /* there is a ttbr0 region and we are in it (high bits all zero) */
9854 ttbr_select = 0;
9855 } else if (ttbr1_valid && t1sz &&
9856 !extract64(~address, addrsize - t1sz, t1sz - tbi)) {
9857 /* there is a ttbr1 region and we are in it (high bits all one) */
9858 ttbr_select = 1;
9859 } else if (!t0sz) {
9860 /* ttbr0 region is "everything not in the ttbr1 region" */
9861 ttbr_select = 0;
9862 } else if (!t1sz && ttbr1_valid) {
9863 /* ttbr1 region is "everything not in the ttbr0 region" */
9864 ttbr_select = 1;
9865 } else {
9866 /* in the gap between the two regions, this is a Translation fault */
9867 fault_type = ARMFault_Translation;
9868 goto do_fault;
9871 /* Note that QEMU ignores shareability and cacheability attributes,
9872 * so we don't need to do anything with the SH, ORGN, IRGN fields
9873 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
9874 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
9875 * implement any ASID-like capability so we can ignore it (instead
9876 * we will always flush the TLB any time the ASID is changed).
9878 if (ttbr_select == 0) {
9879 ttbr = regime_ttbr(env, mmu_idx, 0);
9880 if (el < 2) {
9881 epd = extract32(tcr->raw_tcr, 7, 1);
9883 inputsize = addrsize - t0sz;
9885 tg = extract32(tcr->raw_tcr, 14, 2);
9886 if (tg == 1) { /* 64KB pages */
9887 stride = 13;
9889 if (tg == 2) { /* 16KB pages */
9890 stride = 11;
9892 if (aarch64 && el > 1) {
9893 hpd = extract64(tcr->raw_tcr, 24, 1);
9894 } else {
9895 hpd = extract64(tcr->raw_tcr, 41, 1);
9897 if (!aarch64) {
9898 /* For aarch32, hpd0 is not enabled without t2e as well. */
9899 hpd &= extract64(tcr->raw_tcr, 6, 1);
9901 } else {
9902 /* We should only be here if TTBR1 is valid */
9903 assert(ttbr1_valid);
9905 ttbr = regime_ttbr(env, mmu_idx, 1);
9906 epd = extract32(tcr->raw_tcr, 23, 1);
9907 inputsize = addrsize - t1sz;
9909 tg = extract32(tcr->raw_tcr, 30, 2);
9910 if (tg == 3) { /* 64KB pages */
9911 stride = 13;
9913 if (tg == 1) { /* 16KB pages */
9914 stride = 11;
9916 hpd = extract64(tcr->raw_tcr, 42, 1);
9917 if (!aarch64) {
9918 /* For aarch32, hpd1 is not enabled without t2e as well. */
9919 hpd &= extract64(tcr->raw_tcr, 6, 1);
9923 /* Here we should have set up all the parameters for the translation:
9924 * inputsize, ttbr, epd, stride, tbi
9927 if (epd) {
9928 /* Translation table walk disabled => Translation fault on TLB miss
9929 * Note: This is always 0 on 64-bit EL2 and EL3.
9931 goto do_fault;
9934 if (mmu_idx != ARMMMUIdx_S2NS) {
9935 /* The starting level depends on the virtual address size (which can
9936 * be up to 48 bits) and the translation granule size. It indicates
9937 * the number of strides (stride bits at a time) needed to
9938 * consume the bits of the input address. In the pseudocode this is:
9939 * level = 4 - RoundUp((inputsize - grainsize) / stride)
9940 * where their 'inputsize' is our 'inputsize', 'grainsize' is
9941 * our 'stride + 3' and 'stride' is our 'stride'.
9942 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
9943 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
9944 * = 4 - (inputsize - 4) / stride;
9946 level = 4 - (inputsize - 4) / stride;
9947 } else {
9948 /* For stage 2 translations the starting level is specified by the
9949 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
9951 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
9952 uint32_t startlevel;
9953 bool ok;
9955 if (!aarch64 || stride == 9) {
9956 /* AArch32 or 4KB pages */
9957 startlevel = 2 - sl0;
9958 } else {
9959 /* 16KB or 64KB pages */
9960 startlevel = 3 - sl0;
9963 /* Check that the starting level is valid. */
9964 ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
9965 inputsize, stride);
9966 if (!ok) {
9967 fault_type = ARMFault_Translation;
9968 goto do_fault;
9970 level = startlevel;
9973 indexmask_grainsize = (1ULL << (stride + 3)) - 1;
9974 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
9976 /* Now we can extract the actual base address from the TTBR */
9977 descaddr = extract64(ttbr, 0, 48);
9978 descaddr &= ~indexmask;
9980 /* The address field in the descriptor goes up to bit 39 for ARMv7
9981 * but up to bit 47 for ARMv8, but we use the descaddrmask
9982 * up to bit 39 for AArch32, because we don't need other bits in that case
9983 * to construct next descriptor address (anyway they should be all zeroes).
9985 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
9986 ~indexmask_grainsize;
9988 /* Secure accesses start with the page table in secure memory and
9989 * can be downgraded to non-secure at any step. Non-secure accesses
9990 * remain non-secure. We implement this by just ORing in the NSTable/NS
9991 * bits at each step.
9993 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
9994 for (;;) {
9995 uint64_t descriptor;
9996 bool nstable;
9998 descaddr |= (address >> (stride * (4 - level))) & indexmask;
9999 descaddr &= ~7ULL;
10000 nstable = extract32(tableattrs, 4, 1);
10001 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
10002 if (fi->type != ARMFault_None) {
10003 goto do_fault;
10006 if (!(descriptor & 1) ||
10007 (!(descriptor & 2) && (level == 3))) {
10008 /* Invalid, or the Reserved level 3 encoding */
10009 goto do_fault;
10011 descaddr = descriptor & descaddrmask;
10013 if ((descriptor & 2) && (level < 3)) {
10014 /* Table entry. The top five bits are attributes which may
10015 * propagate down through lower levels of the table (and
10016 * which are all arranged so that 0 means "no effect", so
10017 * we can gather them up by ORing in the bits at each level).
10019 tableattrs |= extract64(descriptor, 59, 5);
10020 level++;
10021 indexmask = indexmask_grainsize;
10022 continue;
10024 /* Block entry at level 1 or 2, or page entry at level 3.
10025 * These are basically the same thing, although the number
10026 * of bits we pull in from the vaddr varies.
10028 page_size = (1ULL << ((stride * (4 - level)) + 3));
10029 descaddr |= (address & (page_size - 1));
10030 /* Extract attributes from the descriptor */
10031 attrs = extract64(descriptor, 2, 10)
10032 | (extract64(descriptor, 52, 12) << 10);
10034 if (mmu_idx == ARMMMUIdx_S2NS) {
10035 /* Stage 2 table descriptors do not include any attribute fields */
10036 break;
10038 /* Merge in attributes from table descriptors */
10039 attrs |= nstable << 3; /* NS */
10040 if (hpd) {
10041 /* HPD disables all the table attributes except NSTable. */
10042 break;
10044 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
10045 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
10046 * means "force PL1 access only", which means forcing AP[1] to 0.
10048 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */
10049 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */
10050 break;
10052 /* Here descaddr is the final physical address, and attributes
10053 * are all in attrs.
10055 fault_type = ARMFault_AccessFlag;
10056 if ((attrs & (1 << 8)) == 0) {
10057 /* Access flag */
10058 goto do_fault;
10061 ap = extract32(attrs, 4, 2);
10062 xn = extract32(attrs, 12, 1);
10064 if (mmu_idx == ARMMMUIdx_S2NS) {
10065 ns = true;
10066 *prot = get_S2prot(env, ap, xn);
10067 } else {
10068 ns = extract32(attrs, 3, 1);
10069 pxn = extract32(attrs, 11, 1);
10070 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
10073 fault_type = ARMFault_Permission;
10074 if (!(*prot & (1 << access_type))) {
10075 goto do_fault;
10078 if (ns) {
10079 /* The NS bit will (as required by the architecture) have no effect if
10080 * the CPU doesn't support TZ or this is a non-secure translation
10081 * regime, because the attribute will already be non-secure.
10083 txattrs->secure = false;
10086 if (cacheattrs != NULL) {
10087 if (mmu_idx == ARMMMUIdx_S2NS) {
10088 cacheattrs->attrs = convert_stage2_attrs(env,
10089 extract32(attrs, 0, 4));
10090 } else {
10091 /* Index into MAIR registers for cache attributes */
10092 uint8_t attrindx = extract32(attrs, 0, 3);
10093 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
10094 assert(attrindx <= 7);
10095 cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
10097 cacheattrs->shareability = extract32(attrs, 6, 2);
10100 *phys_ptr = descaddr;
10101 *page_size_ptr = page_size;
10102 return false;
10104 do_fault:
10105 fi->type = fault_type;
10106 fi->level = level;
10107 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
10108 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
10109 return true;
10112 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
10113 ARMMMUIdx mmu_idx,
10114 int32_t address, int *prot)
10116 if (!arm_feature(env, ARM_FEATURE_M)) {
10117 *prot = PAGE_READ | PAGE_WRITE;
10118 switch (address) {
10119 case 0xF0000000 ... 0xFFFFFFFF:
10120 if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
10121 /* hivecs execing is ok */
10122 *prot |= PAGE_EXEC;
10124 break;
10125 case 0x00000000 ... 0x7FFFFFFF:
10126 *prot |= PAGE_EXEC;
10127 break;
10129 } else {
10130 /* Default system address map for M profile cores.
10131 * The architecture specifies which regions are execute-never;
10132 * at the MPU level no other checks are defined.
10134 switch (address) {
10135 case 0x00000000 ... 0x1fffffff: /* ROM */
10136 case 0x20000000 ... 0x3fffffff: /* SRAM */
10137 case 0x60000000 ... 0x7fffffff: /* RAM */
10138 case 0x80000000 ... 0x9fffffff: /* RAM */
10139 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10140 break;
10141 case 0x40000000 ... 0x5fffffff: /* Peripheral */
10142 case 0xa0000000 ... 0xbfffffff: /* Device */
10143 case 0xc0000000 ... 0xdfffffff: /* Device */
10144 case 0xe0000000 ... 0xffffffff: /* System */
10145 *prot = PAGE_READ | PAGE_WRITE;
10146 break;
10147 default:
10148 g_assert_not_reached();
10153 static bool pmsav7_use_background_region(ARMCPU *cpu,
10154 ARMMMUIdx mmu_idx, bool is_user)
10156 /* Return true if we should use the default memory map as a
10157 * "background" region if there are no hits against any MPU regions.
10159 CPUARMState *env = &cpu->env;
10161 if (is_user) {
10162 return false;
10165 if (arm_feature(env, ARM_FEATURE_M)) {
10166 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
10167 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
10168 } else {
10169 return regime_sctlr(env, mmu_idx) & SCTLR_BR;
10173 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
10175 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
10176 return arm_feature(env, ARM_FEATURE_M) &&
10177 extract32(address, 20, 12) == 0xe00;
10180 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
10182 /* True if address is in the M profile system region
10183 * 0xe0000000 - 0xffffffff
10185 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
10188 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
10189 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10190 hwaddr *phys_ptr, int *prot,
10191 target_ulong *page_size,
10192 ARMMMUFaultInfo *fi)
10194 ARMCPU *cpu = arm_env_get_cpu(env);
10195 int n;
10196 bool is_user = regime_is_user(env, mmu_idx);
10198 *phys_ptr = address;
10199 *page_size = TARGET_PAGE_SIZE;
10200 *prot = 0;
10202 if (regime_translation_disabled(env, mmu_idx) ||
10203 m_is_ppb_region(env, address)) {
10204 /* MPU disabled or M profile PPB access: use default memory map.
10205 * The other case which uses the default memory map in the
10206 * v7M ARM ARM pseudocode is exception vector reads from the vector
10207 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
10208 * which always does a direct read using address_space_ldl(), rather
10209 * than going via this function, so we don't need to check that here.
10211 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
10212 } else { /* MPU enabled */
10213 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
10214 /* region search */
10215 uint32_t base = env->pmsav7.drbar[n];
10216 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
10217 uint32_t rmask;
10218 bool srdis = false;
10220 if (!(env->pmsav7.drsr[n] & 0x1)) {
10221 continue;
10224 if (!rsize) {
10225 qemu_log_mask(LOG_GUEST_ERROR,
10226 "DRSR[%d]: Rsize field cannot be 0\n", n);
10227 continue;
10229 rsize++;
10230 rmask = (1ull << rsize) - 1;
10232 if (base & rmask) {
10233 qemu_log_mask(LOG_GUEST_ERROR,
10234 "DRBAR[%d]: 0x%" PRIx32 " misaligned "
10235 "to DRSR region size, mask = 0x%" PRIx32 "\n",
10236 n, base, rmask);
10237 continue;
10240 if (address < base || address > base + rmask) {
10242 * Address not in this region. We must check whether the
10243 * region covers addresses in the same page as our address.
10244 * In that case we must not report a size that covers the
10245 * whole page for a subsequent hit against a different MPU
10246 * region or the background region, because it would result in
10247 * incorrect TLB hits for subsequent accesses to addresses that
10248 * are in this MPU region.
10250 if (ranges_overlap(base, rmask,
10251 address & TARGET_PAGE_MASK,
10252 TARGET_PAGE_SIZE)) {
10253 *page_size = 1;
10255 continue;
10258 /* Region matched */
10260 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
10261 int i, snd;
10262 uint32_t srdis_mask;
10264 rsize -= 3; /* sub region size (power of 2) */
10265 snd = ((address - base) >> rsize) & 0x7;
10266 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
10268 srdis_mask = srdis ? 0x3 : 0x0;
10269 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
10270 /* This will check in groups of 2, 4 and then 8, whether
10271 * the subregion bits are consistent. rsize is incremented
10272 * back up to give the region size, considering consistent
10273 * adjacent subregions as one region. Stop testing if rsize
10274 * is already big enough for an entire QEMU page.
10276 int snd_rounded = snd & ~(i - 1);
10277 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
10278 snd_rounded + 8, i);
10279 if (srdis_mask ^ srdis_multi) {
10280 break;
10282 srdis_mask = (srdis_mask << i) | srdis_mask;
10283 rsize++;
10286 if (srdis) {
10287 continue;
10289 if (rsize < TARGET_PAGE_BITS) {
10290 *page_size = 1 << rsize;
10292 break;
10295 if (n == -1) { /* no hits */
10296 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
10297 /* background fault */
10298 fi->type = ARMFault_Background;
10299 return true;
10301 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
10302 } else { /* a MPU hit! */
10303 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
10304 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
10306 if (m_is_system_region(env, address)) {
10307 /* System space is always execute never */
10308 xn = 1;
10311 if (is_user) { /* User mode AP bit decoding */
10312 switch (ap) {
10313 case 0:
10314 case 1:
10315 case 5:
10316 break; /* no access */
10317 case 3:
10318 *prot |= PAGE_WRITE;
10319 /* fall through */
10320 case 2:
10321 case 6:
10322 *prot |= PAGE_READ | PAGE_EXEC;
10323 break;
10324 case 7:
10325 /* for v7M, same as 6; for R profile a reserved value */
10326 if (arm_feature(env, ARM_FEATURE_M)) {
10327 *prot |= PAGE_READ | PAGE_EXEC;
10328 break;
10330 /* fall through */
10331 default:
10332 qemu_log_mask(LOG_GUEST_ERROR,
10333 "DRACR[%d]: Bad value for AP bits: 0x%"
10334 PRIx32 "\n", n, ap);
10336 } else { /* Priv. mode AP bits decoding */
10337 switch (ap) {
10338 case 0:
10339 break; /* no access */
10340 case 1:
10341 case 2:
10342 case 3:
10343 *prot |= PAGE_WRITE;
10344 /* fall through */
10345 case 5:
10346 case 6:
10347 *prot |= PAGE_READ | PAGE_EXEC;
10348 break;
10349 case 7:
10350 /* for v7M, same as 6; for R profile a reserved value */
10351 if (arm_feature(env, ARM_FEATURE_M)) {
10352 *prot |= PAGE_READ | PAGE_EXEC;
10353 break;
10355 /* fall through */
10356 default:
10357 qemu_log_mask(LOG_GUEST_ERROR,
10358 "DRACR[%d]: Bad value for AP bits: 0x%"
10359 PRIx32 "\n", n, ap);
10363 /* execute never */
10364 if (xn) {
10365 *prot &= ~PAGE_EXEC;
10370 fi->type = ARMFault_Permission;
10371 fi->level = 1;
10372 return !(*prot & (1 << access_type));
10375 static bool v8m_is_sau_exempt(CPUARMState *env,
10376 uint32_t address, MMUAccessType access_type)
10378 /* The architecture specifies that certain address ranges are
10379 * exempt from v8M SAU/IDAU checks.
10381 return
10382 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
10383 (address >= 0xe0000000 && address <= 0xe0002fff) ||
10384 (address >= 0xe000e000 && address <= 0xe000efff) ||
10385 (address >= 0xe002e000 && address <= 0xe002efff) ||
10386 (address >= 0xe0040000 && address <= 0xe0041fff) ||
10387 (address >= 0xe00ff000 && address <= 0xe00fffff);
10390 static void v8m_security_lookup(CPUARMState *env, uint32_t address,
10391 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10392 V8M_SAttributes *sattrs)
10394 /* Look up the security attributes for this address. Compare the
10395 * pseudocode SecurityCheck() function.
10396 * We assume the caller has zero-initialized *sattrs.
10398 ARMCPU *cpu = arm_env_get_cpu(env);
10399 int r;
10400 bool idau_exempt = false, idau_ns = true, idau_nsc = true;
10401 int idau_region = IREGION_NOTVALID;
10402 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
10403 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
10405 if (cpu->idau) {
10406 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
10407 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
10409 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
10410 &idau_nsc);
10413 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
10414 /* 0xf0000000..0xffffffff is always S for insn fetches */
10415 return;
10418 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
10419 sattrs->ns = !regime_is_secure(env, mmu_idx);
10420 return;
10423 if (idau_region != IREGION_NOTVALID) {
10424 sattrs->irvalid = true;
10425 sattrs->iregion = idau_region;
10428 switch (env->sau.ctrl & 3) {
10429 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
10430 break;
10431 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
10432 sattrs->ns = true;
10433 break;
10434 default: /* SAU.ENABLE == 1 */
10435 for (r = 0; r < cpu->sau_sregion; r++) {
10436 if (env->sau.rlar[r] & 1) {
10437 uint32_t base = env->sau.rbar[r] & ~0x1f;
10438 uint32_t limit = env->sau.rlar[r] | 0x1f;
10440 if (base <= address && limit >= address) {
10441 if (base > addr_page_base || limit < addr_page_limit) {
10442 sattrs->subpage = true;
10444 if (sattrs->srvalid) {
10445 /* If we hit in more than one region then we must report
10446 * as Secure, not NS-Callable, with no valid region
10447 * number info.
10449 sattrs->ns = false;
10450 sattrs->nsc = false;
10451 sattrs->sregion = 0;
10452 sattrs->srvalid = false;
10453 break;
10454 } else {
10455 if (env->sau.rlar[r] & 2) {
10456 sattrs->nsc = true;
10457 } else {
10458 sattrs->ns = true;
10460 sattrs->srvalid = true;
10461 sattrs->sregion = r;
10463 } else {
10465 * Address not in this region. We must check whether the
10466 * region covers addresses in the same page as our address.
10467 * In that case we must not report a size that covers the
10468 * whole page for a subsequent hit against a different MPU
10469 * region or the background region, because it would result
10470 * in incorrect TLB hits for subsequent accesses to
10471 * addresses that are in this MPU region.
10473 if (limit >= base &&
10474 ranges_overlap(base, limit - base + 1,
10475 addr_page_base,
10476 TARGET_PAGE_SIZE)) {
10477 sattrs->subpage = true;
10483 /* The IDAU will override the SAU lookup results if it specifies
10484 * higher security than the SAU does.
10486 if (!idau_ns) {
10487 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
10488 sattrs->ns = false;
10489 sattrs->nsc = idau_nsc;
10492 break;
10496 static bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
10497 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10498 hwaddr *phys_ptr, MemTxAttrs *txattrs,
10499 int *prot, bool *is_subpage,
10500 ARMMMUFaultInfo *fi, uint32_t *mregion)
10502 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
10503 * that a full phys-to-virt translation does).
10504 * mregion is (if not NULL) set to the region number which matched,
10505 * or -1 if no region number is returned (MPU off, address did not
10506 * hit a region, address hit in multiple regions).
10507 * We set is_subpage to true if the region hit doesn't cover the
10508 * entire TARGET_PAGE the address is within.
10510 ARMCPU *cpu = arm_env_get_cpu(env);
10511 bool is_user = regime_is_user(env, mmu_idx);
10512 uint32_t secure = regime_is_secure(env, mmu_idx);
10513 int n;
10514 int matchregion = -1;
10515 bool hit = false;
10516 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
10517 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
10519 *is_subpage = false;
10520 *phys_ptr = address;
10521 *prot = 0;
10522 if (mregion) {
10523 *mregion = -1;
10526 /* Unlike the ARM ARM pseudocode, we don't need to check whether this
10527 * was an exception vector read from the vector table (which is always
10528 * done using the default system address map), because those accesses
10529 * are done in arm_v7m_load_vector(), which always does a direct
10530 * read using address_space_ldl(), rather than going via this function.
10532 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
10533 hit = true;
10534 } else if (m_is_ppb_region(env, address)) {
10535 hit = true;
10536 } else if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
10537 hit = true;
10538 } else {
10539 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
10540 /* region search */
10541 /* Note that the base address is bits [31:5] from the register
10542 * with bits [4:0] all zeroes, but the limit address is bits
10543 * [31:5] from the register with bits [4:0] all ones.
10545 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
10546 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
10548 if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
10549 /* Region disabled */
10550 continue;
10553 if (address < base || address > limit) {
10555 * Address not in this region. We must check whether the
10556 * region covers addresses in the same page as our address.
10557 * In that case we must not report a size that covers the
10558 * whole page for a subsequent hit against a different MPU
10559 * region or the background region, because it would result in
10560 * incorrect TLB hits for subsequent accesses to addresses that
10561 * are in this MPU region.
10563 if (limit >= base &&
10564 ranges_overlap(base, limit - base + 1,
10565 addr_page_base,
10566 TARGET_PAGE_SIZE)) {
10567 *is_subpage = true;
10569 continue;
10572 if (base > addr_page_base || limit < addr_page_limit) {
10573 *is_subpage = true;
10576 if (hit) {
10577 /* Multiple regions match -- always a failure (unlike
10578 * PMSAv7 where highest-numbered-region wins)
10580 fi->type = ARMFault_Permission;
10581 fi->level = 1;
10582 return true;
10585 matchregion = n;
10586 hit = true;
10590 if (!hit) {
10591 /* background fault */
10592 fi->type = ARMFault_Background;
10593 return true;
10596 if (matchregion == -1) {
10597 /* hit using the background region */
10598 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
10599 } else {
10600 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
10601 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
10603 if (m_is_system_region(env, address)) {
10604 /* System space is always execute never */
10605 xn = 1;
10608 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
10609 if (*prot && !xn) {
10610 *prot |= PAGE_EXEC;
10612 /* We don't need to look the attribute up in the MAIR0/MAIR1
10613 * registers because that only tells us about cacheability.
10615 if (mregion) {
10616 *mregion = matchregion;
10620 fi->type = ARMFault_Permission;
10621 fi->level = 1;
10622 return !(*prot & (1 << access_type));
10626 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
10627 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10628 hwaddr *phys_ptr, MemTxAttrs *txattrs,
10629 int *prot, target_ulong *page_size,
10630 ARMMMUFaultInfo *fi)
10632 uint32_t secure = regime_is_secure(env, mmu_idx);
10633 V8M_SAttributes sattrs = {};
10634 bool ret;
10635 bool mpu_is_subpage;
10637 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
10638 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
10639 if (access_type == MMU_INST_FETCH) {
10640 /* Instruction fetches always use the MMU bank and the
10641 * transaction attribute determined by the fetch address,
10642 * regardless of CPU state. This is painful for QEMU
10643 * to handle, because it would mean we need to encode
10644 * into the mmu_idx not just the (user, negpri) information
10645 * for the current security state but also that for the
10646 * other security state, which would balloon the number
10647 * of mmu_idx values needed alarmingly.
10648 * Fortunately we can avoid this because it's not actually
10649 * possible to arbitrarily execute code from memory with
10650 * the wrong security attribute: it will always generate
10651 * an exception of some kind or another, apart from the
10652 * special case of an NS CPU executing an SG instruction
10653 * in S&NSC memory. So we always just fail the translation
10654 * here and sort things out in the exception handler
10655 * (including possibly emulating an SG instruction).
10657 if (sattrs.ns != !secure) {
10658 if (sattrs.nsc) {
10659 fi->type = ARMFault_QEMU_NSCExec;
10660 } else {
10661 fi->type = ARMFault_QEMU_SFault;
10663 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
10664 *phys_ptr = address;
10665 *prot = 0;
10666 return true;
10668 } else {
10669 /* For data accesses we always use the MMU bank indicated
10670 * by the current CPU state, but the security attributes
10671 * might downgrade a secure access to nonsecure.
10673 if (sattrs.ns) {
10674 txattrs->secure = false;
10675 } else if (!secure) {
10676 /* NS access to S memory must fault.
10677 * Architecturally we should first check whether the
10678 * MPU information for this address indicates that we
10679 * are doing an unaligned access to Device memory, which
10680 * should generate a UsageFault instead. QEMU does not
10681 * currently check for that kind of unaligned access though.
10682 * If we added it we would need to do so as a special case
10683 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
10685 fi->type = ARMFault_QEMU_SFault;
10686 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
10687 *phys_ptr = address;
10688 *prot = 0;
10689 return true;
10694 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
10695 txattrs, prot, &mpu_is_subpage, fi, NULL);
10696 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
10697 return ret;
10700 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
10701 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10702 hwaddr *phys_ptr, int *prot,
10703 ARMMMUFaultInfo *fi)
10705 int n;
10706 uint32_t mask;
10707 uint32_t base;
10708 bool is_user = regime_is_user(env, mmu_idx);
10710 if (regime_translation_disabled(env, mmu_idx)) {
10711 /* MPU disabled. */
10712 *phys_ptr = address;
10713 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10714 return false;
10717 *phys_ptr = address;
10718 for (n = 7; n >= 0; n--) {
10719 base = env->cp15.c6_region[n];
10720 if ((base & 1) == 0) {
10721 continue;
10723 mask = 1 << ((base >> 1) & 0x1f);
10724 /* Keep this shift separate from the above to avoid an
10725 (undefined) << 32. */
10726 mask = (mask << 1) - 1;
10727 if (((base ^ address) & ~mask) == 0) {
10728 break;
10731 if (n < 0) {
10732 fi->type = ARMFault_Background;
10733 return true;
10736 if (access_type == MMU_INST_FETCH) {
10737 mask = env->cp15.pmsav5_insn_ap;
10738 } else {
10739 mask = env->cp15.pmsav5_data_ap;
10741 mask = (mask >> (n * 4)) & 0xf;
10742 switch (mask) {
10743 case 0:
10744 fi->type = ARMFault_Permission;
10745 fi->level = 1;
10746 return true;
10747 case 1:
10748 if (is_user) {
10749 fi->type = ARMFault_Permission;
10750 fi->level = 1;
10751 return true;
10753 *prot = PAGE_READ | PAGE_WRITE;
10754 break;
10755 case 2:
10756 *prot = PAGE_READ;
10757 if (!is_user) {
10758 *prot |= PAGE_WRITE;
10760 break;
10761 case 3:
10762 *prot = PAGE_READ | PAGE_WRITE;
10763 break;
10764 case 5:
10765 if (is_user) {
10766 fi->type = ARMFault_Permission;
10767 fi->level = 1;
10768 return true;
10770 *prot = PAGE_READ;
10771 break;
10772 case 6:
10773 *prot = PAGE_READ;
10774 break;
10775 default:
10776 /* Bad permission. */
10777 fi->type = ARMFault_Permission;
10778 fi->level = 1;
10779 return true;
10781 *prot |= PAGE_EXEC;
10782 return false;
10785 /* Combine either inner or outer cacheability attributes for normal
10786 * memory, according to table D4-42 and pseudocode procedure
10787 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
10789 * NB: only stage 1 includes allocation hints (RW bits), leading to
10790 * some asymmetry.
10792 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
10794 if (s1 == 4 || s2 == 4) {
10795 /* non-cacheable has precedence */
10796 return 4;
10797 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
10798 /* stage 1 write-through takes precedence */
10799 return s1;
10800 } else if (extract32(s2, 2, 2) == 2) {
10801 /* stage 2 write-through takes precedence, but the allocation hint
10802 * is still taken from stage 1
10804 return (2 << 2) | extract32(s1, 0, 2);
10805 } else { /* write-back */
10806 return s1;
10810 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
10811 * and CombineS1S2Desc()
10813 * @s1: Attributes from stage 1 walk
10814 * @s2: Attributes from stage 2 walk
10816 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
10818 uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4);
10819 uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4);
10820 ARMCacheAttrs ret;
10822 /* Combine shareability attributes (table D4-43) */
10823 if (s1.shareability == 2 || s2.shareability == 2) {
10824 /* if either are outer-shareable, the result is outer-shareable */
10825 ret.shareability = 2;
10826 } else if (s1.shareability == 3 || s2.shareability == 3) {
10827 /* if either are inner-shareable, the result is inner-shareable */
10828 ret.shareability = 3;
10829 } else {
10830 /* both non-shareable */
10831 ret.shareability = 0;
10834 /* Combine memory type and cacheability attributes */
10835 if (s1hi == 0 || s2hi == 0) {
10836 /* Device has precedence over normal */
10837 if (s1lo == 0 || s2lo == 0) {
10838 /* nGnRnE has precedence over anything */
10839 ret.attrs = 0;
10840 } else if (s1lo == 4 || s2lo == 4) {
10841 /* non-Reordering has precedence over Reordering */
10842 ret.attrs = 4; /* nGnRE */
10843 } else if (s1lo == 8 || s2lo == 8) {
10844 /* non-Gathering has precedence over Gathering */
10845 ret.attrs = 8; /* nGRE */
10846 } else {
10847 ret.attrs = 0xc; /* GRE */
10850 /* Any location for which the resultant memory type is any
10851 * type of Device memory is always treated as Outer Shareable.
10853 ret.shareability = 2;
10854 } else { /* Normal memory */
10855 /* Outer/inner cacheability combine independently */
10856 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
10857 | combine_cacheattr_nibble(s1lo, s2lo);
10859 if (ret.attrs == 0x44) {
10860 /* Any location for which the resultant memory type is Normal
10861 * Inner Non-cacheable, Outer Non-cacheable is always treated
10862 * as Outer Shareable.
10864 ret.shareability = 2;
10868 return ret;
10872 /* get_phys_addr - get the physical address for this virtual address
10874 * Find the physical address corresponding to the given virtual address,
10875 * by doing a translation table walk on MMU based systems or using the
10876 * MPU state on MPU based systems.
10878 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
10879 * prot and page_size may not be filled in, and the populated fsr value provides
10880 * information on why the translation aborted, in the format of a
10881 * DFSR/IFSR fault register, with the following caveats:
10882 * * we honour the short vs long DFSR format differences.
10883 * * the WnR bit is never set (the caller must do this).
10884 * * for PSMAv5 based systems we don't bother to return a full FSR format
10885 * value.
10887 * @env: CPUARMState
10888 * @address: virtual address to get physical address for
10889 * @access_type: 0 for read, 1 for write, 2 for execute
10890 * @mmu_idx: MMU index indicating required translation regime
10891 * @phys_ptr: set to the physical address corresponding to the virtual address
10892 * @attrs: set to the memory transaction attributes to use
10893 * @prot: set to the permissions for the page containing phys_ptr
10894 * @page_size: set to the size of the page containing phys_ptr
10895 * @fi: set to fault info if the translation fails
10896 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
10898 static bool get_phys_addr(CPUARMState *env, target_ulong address,
10899 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10900 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
10901 target_ulong *page_size,
10902 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
10904 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
10905 /* Call ourselves recursively to do the stage 1 and then stage 2
10906 * translations.
10908 if (arm_feature(env, ARM_FEATURE_EL2)) {
10909 hwaddr ipa;
10910 int s2_prot;
10911 int ret;
10912 ARMCacheAttrs cacheattrs2 = {};
10914 ret = get_phys_addr(env, address, access_type,
10915 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
10916 prot, page_size, fi, cacheattrs);
10918 /* If S1 fails or S2 is disabled, return early. */
10919 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
10920 *phys_ptr = ipa;
10921 return ret;
10924 /* S1 is done. Now do S2 translation. */
10925 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
10926 phys_ptr, attrs, &s2_prot,
10927 page_size, fi,
10928 cacheattrs != NULL ? &cacheattrs2 : NULL);
10929 fi->s2addr = ipa;
10930 /* Combine the S1 and S2 perms. */
10931 *prot &= s2_prot;
10933 /* Combine the S1 and S2 cache attributes, if needed */
10934 if (!ret && cacheattrs != NULL) {
10935 if (env->cp15.hcr_el2 & HCR_DC) {
10937 * HCR.DC forces the first stage attributes to
10938 * Normal Non-Shareable,
10939 * Inner Write-Back Read-Allocate Write-Allocate,
10940 * Outer Write-Back Read-Allocate Write-Allocate.
10942 cacheattrs->attrs = 0xff;
10943 cacheattrs->shareability = 0;
10945 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
10948 return ret;
10949 } else {
10951 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
10953 mmu_idx = stage_1_mmu_idx(mmu_idx);
10957 /* The page table entries may downgrade secure to non-secure, but
10958 * cannot upgrade an non-secure translation regime's attributes
10959 * to secure.
10961 attrs->secure = regime_is_secure(env, mmu_idx);
10962 attrs->user = regime_is_user(env, mmu_idx);
10964 /* Fast Context Switch Extension. This doesn't exist at all in v8.
10965 * In v7 and earlier it affects all stage 1 translations.
10967 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
10968 && !arm_feature(env, ARM_FEATURE_V8)) {
10969 if (regime_el(env, mmu_idx) == 3) {
10970 address += env->cp15.fcseidr_s;
10971 } else {
10972 address += env->cp15.fcseidr_ns;
10976 if (arm_feature(env, ARM_FEATURE_PMSA)) {
10977 bool ret;
10978 *page_size = TARGET_PAGE_SIZE;
10980 if (arm_feature(env, ARM_FEATURE_V8)) {
10981 /* PMSAv8 */
10982 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
10983 phys_ptr, attrs, prot, page_size, fi);
10984 } else if (arm_feature(env, ARM_FEATURE_V7)) {
10985 /* PMSAv7 */
10986 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
10987 phys_ptr, prot, page_size, fi);
10988 } else {
10989 /* Pre-v7 MPU */
10990 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
10991 phys_ptr, prot, fi);
10993 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
10994 " mmu_idx %u -> %s (prot %c%c%c)\n",
10995 access_type == MMU_DATA_LOAD ? "reading" :
10996 (access_type == MMU_DATA_STORE ? "writing" : "execute"),
10997 (uint32_t)address, mmu_idx,
10998 ret ? "Miss" : "Hit",
10999 *prot & PAGE_READ ? 'r' : '-',
11000 *prot & PAGE_WRITE ? 'w' : '-',
11001 *prot & PAGE_EXEC ? 'x' : '-');
11003 return ret;
11006 /* Definitely a real MMU, not an MPU */
11008 if (regime_translation_disabled(env, mmu_idx)) {
11009 /* MMU disabled. */
11010 *phys_ptr = address;
11011 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11012 *page_size = TARGET_PAGE_SIZE;
11013 return 0;
11016 if (regime_using_lpae_format(env, mmu_idx)) {
11017 return get_phys_addr_lpae(env, address, access_type, mmu_idx,
11018 phys_ptr, attrs, prot, page_size,
11019 fi, cacheattrs);
11020 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
11021 return get_phys_addr_v6(env, address, access_type, mmu_idx,
11022 phys_ptr, attrs, prot, page_size, fi);
11023 } else {
11024 return get_phys_addr_v5(env, address, access_type, mmu_idx,
11025 phys_ptr, prot, page_size, fi);
11029 /* Walk the page table and (if the mapping exists) add the page
11030 * to the TLB. Return false on success, or true on failure. Populate
11031 * fsr with ARM DFSR/IFSR fault register format value on failure.
11033 bool arm_tlb_fill(CPUState *cs, vaddr address,
11034 MMUAccessType access_type, int mmu_idx,
11035 ARMMMUFaultInfo *fi)
11037 ARMCPU *cpu = ARM_CPU(cs);
11038 CPUARMState *env = &cpu->env;
11039 hwaddr phys_addr;
11040 target_ulong page_size;
11041 int prot;
11042 int ret;
11043 MemTxAttrs attrs = {};
11045 ret = get_phys_addr(env, address, access_type,
11046 core_to_arm_mmu_idx(env, mmu_idx), &phys_addr,
11047 &attrs, &prot, &page_size, fi, NULL);
11048 if (!ret) {
11050 * Map a single [sub]page. Regions smaller than our declared
11051 * target page size are handled specially, so for those we
11052 * pass in the exact addresses.
11054 if (page_size >= TARGET_PAGE_SIZE) {
11055 phys_addr &= TARGET_PAGE_MASK;
11056 address &= TARGET_PAGE_MASK;
11058 tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
11059 prot, mmu_idx, page_size);
11060 return 0;
11063 return ret;
11066 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
11067 MemTxAttrs *attrs)
11069 ARMCPU *cpu = ARM_CPU(cs);
11070 CPUARMState *env = &cpu->env;
11071 hwaddr phys_addr;
11072 target_ulong page_size;
11073 int prot;
11074 bool ret;
11075 ARMMMUFaultInfo fi = {};
11076 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
11078 *attrs = (MemTxAttrs) {};
11080 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
11081 attrs, &prot, &page_size, &fi, NULL);
11083 if (ret) {
11084 return -1;
11086 return phys_addr;
11089 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
11091 uint32_t mask;
11092 unsigned el = arm_current_el(env);
11094 /* First handle registers which unprivileged can read */
11096 switch (reg) {
11097 case 0 ... 7: /* xPSR sub-fields */
11098 mask = 0;
11099 if ((reg & 1) && el) {
11100 mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */
11102 if (!(reg & 4)) {
11103 mask |= XPSR_NZCV | XPSR_Q; /* APSR */
11105 /* EPSR reads as zero */
11106 return xpsr_read(env) & mask;
11107 break;
11108 case 20: /* CONTROL */
11109 return env->v7m.control[env->v7m.secure];
11110 case 0x94: /* CONTROL_NS */
11111 /* We have to handle this here because unprivileged Secure code
11112 * can read the NS CONTROL register.
11114 if (!env->v7m.secure) {
11115 return 0;
11117 return env->v7m.control[M_REG_NS];
11120 if (el == 0) {
11121 return 0; /* unprivileged reads others as zero */
11124 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
11125 switch (reg) {
11126 case 0x88: /* MSP_NS */
11127 if (!env->v7m.secure) {
11128 return 0;
11130 return env->v7m.other_ss_msp;
11131 case 0x89: /* PSP_NS */
11132 if (!env->v7m.secure) {
11133 return 0;
11135 return env->v7m.other_ss_psp;
11136 case 0x8a: /* MSPLIM_NS */
11137 if (!env->v7m.secure) {
11138 return 0;
11140 return env->v7m.msplim[M_REG_NS];
11141 case 0x8b: /* PSPLIM_NS */
11142 if (!env->v7m.secure) {
11143 return 0;
11145 return env->v7m.psplim[M_REG_NS];
11146 case 0x90: /* PRIMASK_NS */
11147 if (!env->v7m.secure) {
11148 return 0;
11150 return env->v7m.primask[M_REG_NS];
11151 case 0x91: /* BASEPRI_NS */
11152 if (!env->v7m.secure) {
11153 return 0;
11155 return env->v7m.basepri[M_REG_NS];
11156 case 0x93: /* FAULTMASK_NS */
11157 if (!env->v7m.secure) {
11158 return 0;
11160 return env->v7m.faultmask[M_REG_NS];
11161 case 0x98: /* SP_NS */
11163 /* This gives the non-secure SP selected based on whether we're
11164 * currently in handler mode or not, using the NS CONTROL.SPSEL.
11166 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
11168 if (!env->v7m.secure) {
11169 return 0;
11171 if (!arm_v7m_is_handler_mode(env) && spsel) {
11172 return env->v7m.other_ss_psp;
11173 } else {
11174 return env->v7m.other_ss_msp;
11177 default:
11178 break;
11182 switch (reg) {
11183 case 8: /* MSP */
11184 return v7m_using_psp(env) ? env->v7m.other_sp : env->regs[13];
11185 case 9: /* PSP */
11186 return v7m_using_psp(env) ? env->regs[13] : env->v7m.other_sp;
11187 case 10: /* MSPLIM */
11188 if (!arm_feature(env, ARM_FEATURE_V8)) {
11189 goto bad_reg;
11191 return env->v7m.msplim[env->v7m.secure];
11192 case 11: /* PSPLIM */
11193 if (!arm_feature(env, ARM_FEATURE_V8)) {
11194 goto bad_reg;
11196 return env->v7m.psplim[env->v7m.secure];
11197 case 16: /* PRIMASK */
11198 return env->v7m.primask[env->v7m.secure];
11199 case 17: /* BASEPRI */
11200 case 18: /* BASEPRI_MAX */
11201 return env->v7m.basepri[env->v7m.secure];
11202 case 19: /* FAULTMASK */
11203 return env->v7m.faultmask[env->v7m.secure];
11204 default:
11205 bad_reg:
11206 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special"
11207 " register %d\n", reg);
11208 return 0;
11212 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
11214 /* We're passed bits [11..0] of the instruction; extract
11215 * SYSm and the mask bits.
11216 * Invalid combinations of SYSm and mask are UNPREDICTABLE;
11217 * we choose to treat them as if the mask bits were valid.
11218 * NB that the pseudocode 'mask' variable is bits [11..10],
11219 * whereas ours is [11..8].
11221 uint32_t mask = extract32(maskreg, 8, 4);
11222 uint32_t reg = extract32(maskreg, 0, 8);
11224 if (arm_current_el(env) == 0 && reg > 7) {
11225 /* only xPSR sub-fields may be written by unprivileged */
11226 return;
11229 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
11230 switch (reg) {
11231 case 0x88: /* MSP_NS */
11232 if (!env->v7m.secure) {
11233 return;
11235 env->v7m.other_ss_msp = val;
11236 return;
11237 case 0x89: /* PSP_NS */
11238 if (!env->v7m.secure) {
11239 return;
11241 env->v7m.other_ss_psp = val;
11242 return;
11243 case 0x8a: /* MSPLIM_NS */
11244 if (!env->v7m.secure) {
11245 return;
11247 env->v7m.msplim[M_REG_NS] = val & ~7;
11248 return;
11249 case 0x8b: /* PSPLIM_NS */
11250 if (!env->v7m.secure) {
11251 return;
11253 env->v7m.psplim[M_REG_NS] = val & ~7;
11254 return;
11255 case 0x90: /* PRIMASK_NS */
11256 if (!env->v7m.secure) {
11257 return;
11259 env->v7m.primask[M_REG_NS] = val & 1;
11260 return;
11261 case 0x91: /* BASEPRI_NS */
11262 if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) {
11263 return;
11265 env->v7m.basepri[M_REG_NS] = val & 0xff;
11266 return;
11267 case 0x93: /* FAULTMASK_NS */
11268 if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) {
11269 return;
11271 env->v7m.faultmask[M_REG_NS] = val & 1;
11272 return;
11273 case 0x94: /* CONTROL_NS */
11274 if (!env->v7m.secure) {
11275 return;
11277 write_v7m_control_spsel_for_secstate(env,
11278 val & R_V7M_CONTROL_SPSEL_MASK,
11279 M_REG_NS);
11280 if (arm_feature(env, ARM_FEATURE_M_MAIN)) {
11281 env->v7m.control[M_REG_NS] &= ~R_V7M_CONTROL_NPRIV_MASK;
11282 env->v7m.control[M_REG_NS] |= val & R_V7M_CONTROL_NPRIV_MASK;
11284 return;
11285 case 0x98: /* SP_NS */
11287 /* This gives the non-secure SP selected based on whether we're
11288 * currently in handler mode or not, using the NS CONTROL.SPSEL.
11290 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
11291 bool is_psp = !arm_v7m_is_handler_mode(env) && spsel;
11292 uint32_t limit;
11294 if (!env->v7m.secure) {
11295 return;
11298 limit = is_psp ? env->v7m.psplim[false] : env->v7m.msplim[false];
11300 if (val < limit) {
11301 CPUState *cs = CPU(arm_env_get_cpu(env));
11303 cpu_restore_state(cs, GETPC(), true);
11304 raise_exception(env, EXCP_STKOF, 0, 1);
11307 if (is_psp) {
11308 env->v7m.other_ss_psp = val;
11309 } else {
11310 env->v7m.other_ss_msp = val;
11312 return;
11314 default:
11315 break;
11319 switch (reg) {
11320 case 0 ... 7: /* xPSR sub-fields */
11321 /* only APSR is actually writable */
11322 if (!(reg & 4)) {
11323 uint32_t apsrmask = 0;
11325 if (mask & 8) {
11326 apsrmask |= XPSR_NZCV | XPSR_Q;
11328 if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
11329 apsrmask |= XPSR_GE;
11331 xpsr_write(env, val, apsrmask);
11333 break;
11334 case 8: /* MSP */
11335 if (v7m_using_psp(env)) {
11336 env->v7m.other_sp = val;
11337 } else {
11338 env->regs[13] = val;
11340 break;
11341 case 9: /* PSP */
11342 if (v7m_using_psp(env)) {
11343 env->regs[13] = val;
11344 } else {
11345 env->v7m.other_sp = val;
11347 break;
11348 case 10: /* MSPLIM */
11349 if (!arm_feature(env, ARM_FEATURE_V8)) {
11350 goto bad_reg;
11352 env->v7m.msplim[env->v7m.secure] = val & ~7;
11353 break;
11354 case 11: /* PSPLIM */
11355 if (!arm_feature(env, ARM_FEATURE_V8)) {
11356 goto bad_reg;
11358 env->v7m.psplim[env->v7m.secure] = val & ~7;
11359 break;
11360 case 16: /* PRIMASK */
11361 env->v7m.primask[env->v7m.secure] = val & 1;
11362 break;
11363 case 17: /* BASEPRI */
11364 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
11365 goto bad_reg;
11367 env->v7m.basepri[env->v7m.secure] = val & 0xff;
11368 break;
11369 case 18: /* BASEPRI_MAX */
11370 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
11371 goto bad_reg;
11373 val &= 0xff;
11374 if (val != 0 && (val < env->v7m.basepri[env->v7m.secure]
11375 || env->v7m.basepri[env->v7m.secure] == 0)) {
11376 env->v7m.basepri[env->v7m.secure] = val;
11378 break;
11379 case 19: /* FAULTMASK */
11380 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
11381 goto bad_reg;
11383 env->v7m.faultmask[env->v7m.secure] = val & 1;
11384 break;
11385 case 20: /* CONTROL */
11386 /* Writing to the SPSEL bit only has an effect if we are in
11387 * thread mode; other bits can be updated by any privileged code.
11388 * write_v7m_control_spsel() deals with updating the SPSEL bit in
11389 * env->v7m.control, so we only need update the others.
11390 * For v7M, we must just ignore explicit writes to SPSEL in handler
11391 * mode; for v8M the write is permitted but will have no effect.
11393 if (arm_feature(env, ARM_FEATURE_V8) ||
11394 !arm_v7m_is_handler_mode(env)) {
11395 write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0);
11397 if (arm_feature(env, ARM_FEATURE_M_MAIN)) {
11398 env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK;
11399 env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK;
11401 break;
11402 default:
11403 bad_reg:
11404 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special"
11405 " register %d\n", reg);
11406 return;
11410 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
11412 /* Implement the TT instruction. op is bits [7:6] of the insn. */
11413 bool forceunpriv = op & 1;
11414 bool alt = op & 2;
11415 V8M_SAttributes sattrs = {};
11416 uint32_t tt_resp;
11417 bool r, rw, nsr, nsrw, mrvalid;
11418 int prot;
11419 ARMMMUFaultInfo fi = {};
11420 MemTxAttrs attrs = {};
11421 hwaddr phys_addr;
11422 ARMMMUIdx mmu_idx;
11423 uint32_t mregion;
11424 bool targetpriv;
11425 bool targetsec = env->v7m.secure;
11426 bool is_subpage;
11428 /* Work out what the security state and privilege level we're
11429 * interested in is...
11431 if (alt) {
11432 targetsec = !targetsec;
11435 if (forceunpriv) {
11436 targetpriv = false;
11437 } else {
11438 targetpriv = arm_v7m_is_handler_mode(env) ||
11439 !(env->v7m.control[targetsec] & R_V7M_CONTROL_NPRIV_MASK);
11442 /* ...and then figure out which MMU index this is */
11443 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targetsec, targetpriv);
11445 /* We know that the MPU and SAU don't care about the access type
11446 * for our purposes beyond that we don't want to claim to be
11447 * an insn fetch, so we arbitrarily call this a read.
11450 /* MPU region info only available for privileged or if
11451 * inspecting the other MPU state.
11453 if (arm_current_el(env) != 0 || alt) {
11454 /* We can ignore the return value as prot is always set */
11455 pmsav8_mpu_lookup(env, addr, MMU_DATA_LOAD, mmu_idx,
11456 &phys_addr, &attrs, &prot, &is_subpage,
11457 &fi, &mregion);
11458 if (mregion == -1) {
11459 mrvalid = false;
11460 mregion = 0;
11461 } else {
11462 mrvalid = true;
11464 r = prot & PAGE_READ;
11465 rw = prot & PAGE_WRITE;
11466 } else {
11467 r = false;
11468 rw = false;
11469 mrvalid = false;
11470 mregion = 0;
11473 if (env->v7m.secure) {
11474 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
11475 nsr = sattrs.ns && r;
11476 nsrw = sattrs.ns && rw;
11477 } else {
11478 sattrs.ns = true;
11479 nsr = false;
11480 nsrw = false;
11483 tt_resp = (sattrs.iregion << 24) |
11484 (sattrs.irvalid << 23) |
11485 ((!sattrs.ns) << 22) |
11486 (nsrw << 21) |
11487 (nsr << 20) |
11488 (rw << 19) |
11489 (r << 18) |
11490 (sattrs.srvalid << 17) |
11491 (mrvalid << 16) |
11492 (sattrs.sregion << 8) |
11493 mregion;
11495 return tt_resp;
11498 #endif
11500 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
11502 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
11503 * Note that we do not implement the (architecturally mandated)
11504 * alignment fault for attempts to use this on Device memory
11505 * (which matches the usual QEMU behaviour of not implementing either
11506 * alignment faults or any memory attribute handling).
11509 ARMCPU *cpu = arm_env_get_cpu(env);
11510 uint64_t blocklen = 4 << cpu->dcz_blocksize;
11511 uint64_t vaddr = vaddr_in & ~(blocklen - 1);
11513 #ifndef CONFIG_USER_ONLY
11515 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
11516 * the block size so we might have to do more than one TLB lookup.
11517 * We know that in fact for any v8 CPU the page size is at least 4K
11518 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
11519 * 1K as an artefact of legacy v5 subpage support being present in the
11520 * same QEMU executable.
11522 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
11523 void *hostaddr[maxidx];
11524 int try, i;
11525 unsigned mmu_idx = cpu_mmu_index(env, false);
11526 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
11528 for (try = 0; try < 2; try++) {
11530 for (i = 0; i < maxidx; i++) {
11531 hostaddr[i] = tlb_vaddr_to_host(env,
11532 vaddr + TARGET_PAGE_SIZE * i,
11533 1, mmu_idx);
11534 if (!hostaddr[i]) {
11535 break;
11538 if (i == maxidx) {
11539 /* If it's all in the TLB it's fair game for just writing to;
11540 * we know we don't need to update dirty status, etc.
11542 for (i = 0; i < maxidx - 1; i++) {
11543 memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
11545 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
11546 return;
11548 /* OK, try a store and see if we can populate the tlb. This
11549 * might cause an exception if the memory isn't writable,
11550 * in which case we will longjmp out of here. We must for
11551 * this purpose use the actual register value passed to us
11552 * so that we get the fault address right.
11554 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC());
11555 /* Now we can populate the other TLB entries, if any */
11556 for (i = 0; i < maxidx; i++) {
11557 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
11558 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
11559 helper_ret_stb_mmu(env, va, 0, oi, GETPC());
11564 /* Slow path (probably attempt to do this to an I/O device or
11565 * similar, or clearing of a block of code we have translations
11566 * cached for). Just do a series of byte writes as the architecture
11567 * demands. It's not worth trying to use a cpu_physical_memory_map(),
11568 * memset(), unmap() sequence here because:
11569 * + we'd need to account for the blocksize being larger than a page
11570 * + the direct-RAM access case is almost always going to be dealt
11571 * with in the fastpath code above, so there's no speed benefit
11572 * + we would have to deal with the map returning NULL because the
11573 * bounce buffer was in use
11575 for (i = 0; i < blocklen; i++) {
11576 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC());
11579 #else
11580 memset(g2h(vaddr), 0, blocklen);
11581 #endif
11584 /* Note that signed overflow is undefined in C. The following routines are
11585 careful to use unsigned types where modulo arithmetic is required.
11586 Failure to do so _will_ break on newer gcc. */
11588 /* Signed saturating arithmetic. */
11590 /* Perform 16-bit signed saturating addition. */
11591 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
11593 uint16_t res;
11595 res = a + b;
11596 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
11597 if (a & 0x8000)
11598 res = 0x8000;
11599 else
11600 res = 0x7fff;
11602 return res;
11605 /* Perform 8-bit signed saturating addition. */
11606 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
11608 uint8_t res;
11610 res = a + b;
11611 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
11612 if (a & 0x80)
11613 res = 0x80;
11614 else
11615 res = 0x7f;
11617 return res;
11620 /* Perform 16-bit signed saturating subtraction. */
11621 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
11623 uint16_t res;
11625 res = a - b;
11626 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
11627 if (a & 0x8000)
11628 res = 0x8000;
11629 else
11630 res = 0x7fff;
11632 return res;
11635 /* Perform 8-bit signed saturating subtraction. */
11636 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
11638 uint8_t res;
11640 res = a - b;
11641 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
11642 if (a & 0x80)
11643 res = 0x80;
11644 else
11645 res = 0x7f;
11647 return res;
11650 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
11651 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
11652 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
11653 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
11654 #define PFX q
11656 #include "op_addsub.h"
11658 /* Unsigned saturating arithmetic. */
11659 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
11661 uint16_t res;
11662 res = a + b;
11663 if (res < a)
11664 res = 0xffff;
11665 return res;
11668 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
11670 if (a > b)
11671 return a - b;
11672 else
11673 return 0;
11676 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
11678 uint8_t res;
11679 res = a + b;
11680 if (res < a)
11681 res = 0xff;
11682 return res;
11685 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
11687 if (a > b)
11688 return a - b;
11689 else
11690 return 0;
11693 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
11694 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
11695 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
11696 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
11697 #define PFX uq
11699 #include "op_addsub.h"
11701 /* Signed modulo arithmetic. */
11702 #define SARITH16(a, b, n, op) do { \
11703 int32_t sum; \
11704 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
11705 RESULT(sum, n, 16); \
11706 if (sum >= 0) \
11707 ge |= 3 << (n * 2); \
11708 } while(0)
11710 #define SARITH8(a, b, n, op) do { \
11711 int32_t sum; \
11712 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
11713 RESULT(sum, n, 8); \
11714 if (sum >= 0) \
11715 ge |= 1 << n; \
11716 } while(0)
11719 #define ADD16(a, b, n) SARITH16(a, b, n, +)
11720 #define SUB16(a, b, n) SARITH16(a, b, n, -)
11721 #define ADD8(a, b, n) SARITH8(a, b, n, +)
11722 #define SUB8(a, b, n) SARITH8(a, b, n, -)
11723 #define PFX s
11724 #define ARITH_GE
11726 #include "op_addsub.h"
11728 /* Unsigned modulo arithmetic. */
11729 #define ADD16(a, b, n) do { \
11730 uint32_t sum; \
11731 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
11732 RESULT(sum, n, 16); \
11733 if ((sum >> 16) == 1) \
11734 ge |= 3 << (n * 2); \
11735 } while(0)
11737 #define ADD8(a, b, n) do { \
11738 uint32_t sum; \
11739 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
11740 RESULT(sum, n, 8); \
11741 if ((sum >> 8) == 1) \
11742 ge |= 1 << n; \
11743 } while(0)
11745 #define SUB16(a, b, n) do { \
11746 uint32_t sum; \
11747 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
11748 RESULT(sum, n, 16); \
11749 if ((sum >> 16) == 0) \
11750 ge |= 3 << (n * 2); \
11751 } while(0)
11753 #define SUB8(a, b, n) do { \
11754 uint32_t sum; \
11755 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
11756 RESULT(sum, n, 8); \
11757 if ((sum >> 8) == 0) \
11758 ge |= 1 << n; \
11759 } while(0)
11761 #define PFX u
11762 #define ARITH_GE
11764 #include "op_addsub.h"
11766 /* Halved signed arithmetic. */
11767 #define ADD16(a, b, n) \
11768 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
11769 #define SUB16(a, b, n) \
11770 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
11771 #define ADD8(a, b, n) \
11772 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
11773 #define SUB8(a, b, n) \
11774 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
11775 #define PFX sh
11777 #include "op_addsub.h"
11779 /* Halved unsigned arithmetic. */
11780 #define ADD16(a, b, n) \
11781 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11782 #define SUB16(a, b, n) \
11783 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11784 #define ADD8(a, b, n) \
11785 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11786 #define SUB8(a, b, n) \
11787 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11788 #define PFX uh
11790 #include "op_addsub.h"
11792 static inline uint8_t do_usad(uint8_t a, uint8_t b)
11794 if (a > b)
11795 return a - b;
11796 else
11797 return b - a;
11800 /* Unsigned sum of absolute byte differences. */
11801 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
11803 uint32_t sum;
11804 sum = do_usad(a, b);
11805 sum += do_usad(a >> 8, b >> 8);
11806 sum += do_usad(a >> 16, b >>16);
11807 sum += do_usad(a >> 24, b >> 24);
11808 return sum;
11811 /* For ARMv6 SEL instruction. */
11812 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
11814 uint32_t mask;
11816 mask = 0;
11817 if (flags & 1)
11818 mask |= 0xff;
11819 if (flags & 2)
11820 mask |= 0xff00;
11821 if (flags & 4)
11822 mask |= 0xff0000;
11823 if (flags & 8)
11824 mask |= 0xff000000;
11825 return (a & mask) | (b & ~mask);
11828 /* VFP support. We follow the convention used for VFP instructions:
11829 Single precision routines have a "s" suffix, double precision a
11830 "d" suffix. */
11832 /* Convert host exception flags to vfp form. */
11833 static inline int vfp_exceptbits_from_host(int host_bits)
11835 int target_bits = 0;
11837 if (host_bits & float_flag_invalid)
11838 target_bits |= 1;
11839 if (host_bits & float_flag_divbyzero)
11840 target_bits |= 2;
11841 if (host_bits & float_flag_overflow)
11842 target_bits |= 4;
11843 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
11844 target_bits |= 8;
11845 if (host_bits & float_flag_inexact)
11846 target_bits |= 0x10;
11847 if (host_bits & float_flag_input_denormal)
11848 target_bits |= 0x80;
11849 return target_bits;
11852 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
11854 int i;
11855 uint32_t fpscr;
11857 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
11858 | (env->vfp.vec_len << 16)
11859 | (env->vfp.vec_stride << 20);
11861 i = get_float_exception_flags(&env->vfp.fp_status);
11862 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
11863 /* FZ16 does not generate an input denormal exception. */
11864 i |= (get_float_exception_flags(&env->vfp.fp_status_f16)
11865 & ~float_flag_input_denormal);
11867 fpscr |= vfp_exceptbits_from_host(i);
11868 return fpscr;
11871 uint32_t vfp_get_fpscr(CPUARMState *env)
11873 return HELPER(vfp_get_fpscr)(env);
11876 /* Convert vfp exception flags to target form. */
11877 static inline int vfp_exceptbits_to_host(int target_bits)
11879 int host_bits = 0;
11881 if (target_bits & 1)
11882 host_bits |= float_flag_invalid;
11883 if (target_bits & 2)
11884 host_bits |= float_flag_divbyzero;
11885 if (target_bits & 4)
11886 host_bits |= float_flag_overflow;
11887 if (target_bits & 8)
11888 host_bits |= float_flag_underflow;
11889 if (target_bits & 0x10)
11890 host_bits |= float_flag_inexact;
11891 if (target_bits & 0x80)
11892 host_bits |= float_flag_input_denormal;
11893 return host_bits;
11896 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
11898 int i;
11899 uint32_t changed;
11901 /* When ARMv8.2-FP16 is not supported, FZ16 is RES0. */
11902 if (!cpu_isar_feature(aa64_fp16, arm_env_get_cpu(env))) {
11903 val &= ~FPCR_FZ16;
11906 changed = env->vfp.xregs[ARM_VFP_FPSCR];
11907 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
11908 env->vfp.vec_len = (val >> 16) & 7;
11909 env->vfp.vec_stride = (val >> 20) & 3;
11911 changed ^= val;
11912 if (changed & (3 << 22)) {
11913 i = (val >> 22) & 3;
11914 switch (i) {
11915 case FPROUNDING_TIEEVEN:
11916 i = float_round_nearest_even;
11917 break;
11918 case FPROUNDING_POSINF:
11919 i = float_round_up;
11920 break;
11921 case FPROUNDING_NEGINF:
11922 i = float_round_down;
11923 break;
11924 case FPROUNDING_ZERO:
11925 i = float_round_to_zero;
11926 break;
11928 set_float_rounding_mode(i, &env->vfp.fp_status);
11929 set_float_rounding_mode(i, &env->vfp.fp_status_f16);
11931 if (changed & FPCR_FZ16) {
11932 bool ftz_enabled = val & FPCR_FZ16;
11933 set_flush_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
11934 set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
11936 if (changed & FPCR_FZ) {
11937 bool ftz_enabled = val & FPCR_FZ;
11938 set_flush_to_zero(ftz_enabled, &env->vfp.fp_status);
11939 set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status);
11941 if (changed & FPCR_DN) {
11942 bool dnan_enabled = val & FPCR_DN;
11943 set_default_nan_mode(dnan_enabled, &env->vfp.fp_status);
11944 set_default_nan_mode(dnan_enabled, &env->vfp.fp_status_f16);
11947 /* The exception flags are ORed together when we read fpscr so we
11948 * only need to preserve the current state in one of our
11949 * float_status values.
11951 i = vfp_exceptbits_to_host(val);
11952 set_float_exception_flags(i, &env->vfp.fp_status);
11953 set_float_exception_flags(0, &env->vfp.fp_status_f16);
11954 set_float_exception_flags(0, &env->vfp.standard_fp_status);
11957 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
11959 HELPER(vfp_set_fpscr)(env, val);
11962 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
11964 #define VFP_BINOP(name) \
11965 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
11967 float_status *fpst = fpstp; \
11968 return float32_ ## name(a, b, fpst); \
11970 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
11972 float_status *fpst = fpstp; \
11973 return float64_ ## name(a, b, fpst); \
11975 VFP_BINOP(add)
11976 VFP_BINOP(sub)
11977 VFP_BINOP(mul)
11978 VFP_BINOP(div)
11979 VFP_BINOP(min)
11980 VFP_BINOP(max)
11981 VFP_BINOP(minnum)
11982 VFP_BINOP(maxnum)
11983 #undef VFP_BINOP
11985 float32 VFP_HELPER(neg, s)(float32 a)
11987 return float32_chs(a);
11990 float64 VFP_HELPER(neg, d)(float64 a)
11992 return float64_chs(a);
11995 float32 VFP_HELPER(abs, s)(float32 a)
11997 return float32_abs(a);
12000 float64 VFP_HELPER(abs, d)(float64 a)
12002 return float64_abs(a);
12005 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
12007 return float32_sqrt(a, &env->vfp.fp_status);
12010 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
12012 return float64_sqrt(a, &env->vfp.fp_status);
12015 /* XXX: check quiet/signaling case */
12016 #define DO_VFP_cmp(p, type) \
12017 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
12019 uint32_t flags; \
12020 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
12021 case 0: flags = 0x6; break; \
12022 case -1: flags = 0x8; break; \
12023 case 1: flags = 0x2; break; \
12024 default: case 2: flags = 0x3; break; \
12026 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
12027 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
12029 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
12031 uint32_t flags; \
12032 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
12033 case 0: flags = 0x6; break; \
12034 case -1: flags = 0x8; break; \
12035 case 1: flags = 0x2; break; \
12036 default: case 2: flags = 0x3; break; \
12038 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
12039 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
12041 DO_VFP_cmp(s, float32)
12042 DO_VFP_cmp(d, float64)
12043 #undef DO_VFP_cmp
12045 /* Integer to float and float to integer conversions */
12047 #define CONV_ITOF(name, ftype, fsz, sign) \
12048 ftype HELPER(name)(uint32_t x, void *fpstp) \
12050 float_status *fpst = fpstp; \
12051 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
12054 #define CONV_FTOI(name, ftype, fsz, sign, round) \
12055 sign##int32_t HELPER(name)(ftype x, void *fpstp) \
12057 float_status *fpst = fpstp; \
12058 if (float##fsz##_is_any_nan(x)) { \
12059 float_raise(float_flag_invalid, fpst); \
12060 return 0; \
12062 return float##fsz##_to_##sign##int32##round(x, fpst); \
12065 #define FLOAT_CONVS(name, p, ftype, fsz, sign) \
12066 CONV_ITOF(vfp_##name##to##p, ftype, fsz, sign) \
12067 CONV_FTOI(vfp_to##name##p, ftype, fsz, sign, ) \
12068 CONV_FTOI(vfp_to##name##z##p, ftype, fsz, sign, _round_to_zero)
12070 FLOAT_CONVS(si, h, uint32_t, 16, )
12071 FLOAT_CONVS(si, s, float32, 32, )
12072 FLOAT_CONVS(si, d, float64, 64, )
12073 FLOAT_CONVS(ui, h, uint32_t, 16, u)
12074 FLOAT_CONVS(ui, s, float32, 32, u)
12075 FLOAT_CONVS(ui, d, float64, 64, u)
12077 #undef CONV_ITOF
12078 #undef CONV_FTOI
12079 #undef FLOAT_CONVS
12081 /* floating point conversion */
12082 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
12084 return float32_to_float64(x, &env->vfp.fp_status);
12087 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
12089 return float64_to_float32(x, &env->vfp.fp_status);
12092 /* VFP3 fixed point conversion. */
12093 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
12094 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
12095 void *fpstp) \
12096 { return itype##_to_##float##fsz##_scalbn(x, -shift, fpstp); }
12098 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ROUND, suff) \
12099 uint##isz##_t HELPER(vfp_to##name##p##suff)(float##fsz x, uint32_t shift, \
12100 void *fpst) \
12102 if (unlikely(float##fsz##_is_any_nan(x))) { \
12103 float_raise(float_flag_invalid, fpst); \
12104 return 0; \
12106 return float##fsz##_to_##itype##_scalbn(x, ROUND, shift, fpst); \
12109 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
12110 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
12111 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, \
12112 float_round_to_zero, _round_to_zero) \
12113 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, \
12114 get_float_rounding_mode(fpst), )
12116 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
12117 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
12118 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, \
12119 get_float_rounding_mode(fpst), )
12121 VFP_CONV_FIX(sh, d, 64, 64, int16)
12122 VFP_CONV_FIX(sl, d, 64, 64, int32)
12123 VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
12124 VFP_CONV_FIX(uh, d, 64, 64, uint16)
12125 VFP_CONV_FIX(ul, d, 64, 64, uint32)
12126 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
12127 VFP_CONV_FIX(sh, s, 32, 32, int16)
12128 VFP_CONV_FIX(sl, s, 32, 32, int32)
12129 VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
12130 VFP_CONV_FIX(uh, s, 32, 32, uint16)
12131 VFP_CONV_FIX(ul, s, 32, 32, uint32)
12132 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
12134 #undef VFP_CONV_FIX
12135 #undef VFP_CONV_FIX_FLOAT
12136 #undef VFP_CONV_FLOAT_FIX_ROUND
12137 #undef VFP_CONV_FIX_A64
12139 uint32_t HELPER(vfp_sltoh)(uint32_t x, uint32_t shift, void *fpst)
12141 return int32_to_float16_scalbn(x, -shift, fpst);
12144 uint32_t HELPER(vfp_ultoh)(uint32_t x, uint32_t shift, void *fpst)
12146 return uint32_to_float16_scalbn(x, -shift, fpst);
12149 uint32_t HELPER(vfp_sqtoh)(uint64_t x, uint32_t shift, void *fpst)
12151 return int64_to_float16_scalbn(x, -shift, fpst);
12154 uint32_t HELPER(vfp_uqtoh)(uint64_t x, uint32_t shift, void *fpst)
12156 return uint64_to_float16_scalbn(x, -shift, fpst);
12159 uint32_t HELPER(vfp_toshh)(uint32_t x, uint32_t shift, void *fpst)
12161 if (unlikely(float16_is_any_nan(x))) {
12162 float_raise(float_flag_invalid, fpst);
12163 return 0;
12165 return float16_to_int16_scalbn(x, get_float_rounding_mode(fpst),
12166 shift, fpst);
12169 uint32_t HELPER(vfp_touhh)(uint32_t x, uint32_t shift, void *fpst)
12171 if (unlikely(float16_is_any_nan(x))) {
12172 float_raise(float_flag_invalid, fpst);
12173 return 0;
12175 return float16_to_uint16_scalbn(x, get_float_rounding_mode(fpst),
12176 shift, fpst);
12179 uint32_t HELPER(vfp_toslh)(uint32_t x, uint32_t shift, void *fpst)
12181 if (unlikely(float16_is_any_nan(x))) {
12182 float_raise(float_flag_invalid, fpst);
12183 return 0;
12185 return float16_to_int32_scalbn(x, get_float_rounding_mode(fpst),
12186 shift, fpst);
12189 uint32_t HELPER(vfp_toulh)(uint32_t x, uint32_t shift, void *fpst)
12191 if (unlikely(float16_is_any_nan(x))) {
12192 float_raise(float_flag_invalid, fpst);
12193 return 0;
12195 return float16_to_uint32_scalbn(x, get_float_rounding_mode(fpst),
12196 shift, fpst);
12199 uint64_t HELPER(vfp_tosqh)(uint32_t x, uint32_t shift, void *fpst)
12201 if (unlikely(float16_is_any_nan(x))) {
12202 float_raise(float_flag_invalid, fpst);
12203 return 0;
12205 return float16_to_int64_scalbn(x, get_float_rounding_mode(fpst),
12206 shift, fpst);
12209 uint64_t HELPER(vfp_touqh)(uint32_t x, uint32_t shift, void *fpst)
12211 if (unlikely(float16_is_any_nan(x))) {
12212 float_raise(float_flag_invalid, fpst);
12213 return 0;
12215 return float16_to_uint64_scalbn(x, get_float_rounding_mode(fpst),
12216 shift, fpst);
12219 /* Set the current fp rounding mode and return the old one.
12220 * The argument is a softfloat float_round_ value.
12222 uint32_t HELPER(set_rmode)(uint32_t rmode, void *fpstp)
12224 float_status *fp_status = fpstp;
12226 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
12227 set_float_rounding_mode(rmode, fp_status);
12229 return prev_rmode;
12232 /* Set the current fp rounding mode in the standard fp status and return
12233 * the old one. This is for NEON instructions that need to change the
12234 * rounding mode but wish to use the standard FPSCR values for everything
12235 * else. Always set the rounding mode back to the correct value after
12236 * modifying it.
12237 * The argument is a softfloat float_round_ value.
12239 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
12241 float_status *fp_status = &env->vfp.standard_fp_status;
12243 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
12244 set_float_rounding_mode(rmode, fp_status);
12246 return prev_rmode;
12249 /* Half precision conversions. */
12250 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, void *fpstp, uint32_t ahp_mode)
12252 /* Squash FZ16 to 0 for the duration of conversion. In this case,
12253 * it would affect flushing input denormals.
12255 float_status *fpst = fpstp;
12256 flag save = get_flush_inputs_to_zero(fpst);
12257 set_flush_inputs_to_zero(false, fpst);
12258 float32 r = float16_to_float32(a, !ahp_mode, fpst);
12259 set_flush_inputs_to_zero(save, fpst);
12260 return r;
12263 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, void *fpstp, uint32_t ahp_mode)
12265 /* Squash FZ16 to 0 for the duration of conversion. In this case,
12266 * it would affect flushing output denormals.
12268 float_status *fpst = fpstp;
12269 flag save = get_flush_to_zero(fpst);
12270 set_flush_to_zero(false, fpst);
12271 float16 r = float32_to_float16(a, !ahp_mode, fpst);
12272 set_flush_to_zero(save, fpst);
12273 return r;
12276 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, void *fpstp, uint32_t ahp_mode)
12278 /* Squash FZ16 to 0 for the duration of conversion. In this case,
12279 * it would affect flushing input denormals.
12281 float_status *fpst = fpstp;
12282 flag save = get_flush_inputs_to_zero(fpst);
12283 set_flush_inputs_to_zero(false, fpst);
12284 float64 r = float16_to_float64(a, !ahp_mode, fpst);
12285 set_flush_inputs_to_zero(save, fpst);
12286 return r;
12289 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, void *fpstp, uint32_t ahp_mode)
12291 /* Squash FZ16 to 0 for the duration of conversion. In this case,
12292 * it would affect flushing output denormals.
12294 float_status *fpst = fpstp;
12295 flag save = get_flush_to_zero(fpst);
12296 set_flush_to_zero(false, fpst);
12297 float16 r = float64_to_float16(a, !ahp_mode, fpst);
12298 set_flush_to_zero(save, fpst);
12299 return r;
12302 #define float32_two make_float32(0x40000000)
12303 #define float32_three make_float32(0x40400000)
12304 #define float32_one_point_five make_float32(0x3fc00000)
12306 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
12308 float_status *s = &env->vfp.standard_fp_status;
12309 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
12310 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
12311 if (!(float32_is_zero(a) || float32_is_zero(b))) {
12312 float_raise(float_flag_input_denormal, s);
12314 return float32_two;
12316 return float32_sub(float32_two, float32_mul(a, b, s), s);
12319 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
12321 float_status *s = &env->vfp.standard_fp_status;
12322 float32 product;
12323 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
12324 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
12325 if (!(float32_is_zero(a) || float32_is_zero(b))) {
12326 float_raise(float_flag_input_denormal, s);
12328 return float32_one_point_five;
12330 product = float32_mul(a, b, s);
12331 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
12334 /* NEON helpers. */
12336 /* Constants 256 and 512 are used in some helpers; we avoid relying on
12337 * int->float conversions at run-time. */
12338 #define float64_256 make_float64(0x4070000000000000LL)
12339 #define float64_512 make_float64(0x4080000000000000LL)
12340 #define float16_maxnorm make_float16(0x7bff)
12341 #define float32_maxnorm make_float32(0x7f7fffff)
12342 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
12344 /* Reciprocal functions
12346 * The algorithm that must be used to calculate the estimate
12347 * is specified by the ARM ARM, see FPRecipEstimate()/RecipEstimate
12350 /* See RecipEstimate()
12352 * input is a 9 bit fixed point number
12353 * input range 256 .. 511 for a number from 0.5 <= x < 1.0.
12354 * result range 256 .. 511 for a number from 1.0 to 511/256.
12357 static int recip_estimate(int input)
12359 int a, b, r;
12360 assert(256 <= input && input < 512);
12361 a = (input * 2) + 1;
12362 b = (1 << 19) / a;
12363 r = (b + 1) >> 1;
12364 assert(256 <= r && r < 512);
12365 return r;
12369 * Common wrapper to call recip_estimate
12371 * The parameters are exponent and 64 bit fraction (without implicit
12372 * bit) where the binary point is nominally at bit 52. Returns a
12373 * float64 which can then be rounded to the appropriate size by the
12374 * callee.
12377 static uint64_t call_recip_estimate(int *exp, int exp_off, uint64_t frac)
12379 uint32_t scaled, estimate;
12380 uint64_t result_frac;
12381 int result_exp;
12383 /* Handle sub-normals */
12384 if (*exp == 0) {
12385 if (extract64(frac, 51, 1) == 0) {
12386 *exp = -1;
12387 frac <<= 2;
12388 } else {
12389 frac <<= 1;
12393 /* scaled = UInt('1':fraction<51:44>) */
12394 scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
12395 estimate = recip_estimate(scaled);
12397 result_exp = exp_off - *exp;
12398 result_frac = deposit64(0, 44, 8, estimate);
12399 if (result_exp == 0) {
12400 result_frac = deposit64(result_frac >> 1, 51, 1, 1);
12401 } else if (result_exp == -1) {
12402 result_frac = deposit64(result_frac >> 2, 50, 2, 1);
12403 result_exp = 0;
12406 *exp = result_exp;
12408 return result_frac;
12411 static bool round_to_inf(float_status *fpst, bool sign_bit)
12413 switch (fpst->float_rounding_mode) {
12414 case float_round_nearest_even: /* Round to Nearest */
12415 return true;
12416 case float_round_up: /* Round to +Inf */
12417 return !sign_bit;
12418 case float_round_down: /* Round to -Inf */
12419 return sign_bit;
12420 case float_round_to_zero: /* Round to Zero */
12421 return false;
12424 g_assert_not_reached();
12427 uint32_t HELPER(recpe_f16)(uint32_t input, void *fpstp)
12429 float_status *fpst = fpstp;
12430 float16 f16 = float16_squash_input_denormal(input, fpst);
12431 uint32_t f16_val = float16_val(f16);
12432 uint32_t f16_sign = float16_is_neg(f16);
12433 int f16_exp = extract32(f16_val, 10, 5);
12434 uint32_t f16_frac = extract32(f16_val, 0, 10);
12435 uint64_t f64_frac;
12437 if (float16_is_any_nan(f16)) {
12438 float16 nan = f16;
12439 if (float16_is_signaling_nan(f16, fpst)) {
12440 float_raise(float_flag_invalid, fpst);
12441 nan = float16_silence_nan(f16, fpst);
12443 if (fpst->default_nan_mode) {
12444 nan = float16_default_nan(fpst);
12446 return nan;
12447 } else if (float16_is_infinity(f16)) {
12448 return float16_set_sign(float16_zero, float16_is_neg(f16));
12449 } else if (float16_is_zero(f16)) {
12450 float_raise(float_flag_divbyzero, fpst);
12451 return float16_set_sign(float16_infinity, float16_is_neg(f16));
12452 } else if (float16_abs(f16) < (1 << 8)) {
12453 /* Abs(value) < 2.0^-16 */
12454 float_raise(float_flag_overflow | float_flag_inexact, fpst);
12455 if (round_to_inf(fpst, f16_sign)) {
12456 return float16_set_sign(float16_infinity, f16_sign);
12457 } else {
12458 return float16_set_sign(float16_maxnorm, f16_sign);
12460 } else if (f16_exp >= 29 && fpst->flush_to_zero) {
12461 float_raise(float_flag_underflow, fpst);
12462 return float16_set_sign(float16_zero, float16_is_neg(f16));
12465 f64_frac = call_recip_estimate(&f16_exp, 29,
12466 ((uint64_t) f16_frac) << (52 - 10));
12468 /* result = sign : result_exp<4:0> : fraction<51:42> */
12469 f16_val = deposit32(0, 15, 1, f16_sign);
12470 f16_val = deposit32(f16_val, 10, 5, f16_exp);
12471 f16_val = deposit32(f16_val, 0, 10, extract64(f64_frac, 52 - 10, 10));
12472 return make_float16(f16_val);
12475 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
12477 float_status *fpst = fpstp;
12478 float32 f32 = float32_squash_input_denormal(input, fpst);
12479 uint32_t f32_val = float32_val(f32);
12480 bool f32_sign = float32_is_neg(f32);
12481 int f32_exp = extract32(f32_val, 23, 8);
12482 uint32_t f32_frac = extract32(f32_val, 0, 23);
12483 uint64_t f64_frac;
12485 if (float32_is_any_nan(f32)) {
12486 float32 nan = f32;
12487 if (float32_is_signaling_nan(f32, fpst)) {
12488 float_raise(float_flag_invalid, fpst);
12489 nan = float32_silence_nan(f32, fpst);
12491 if (fpst->default_nan_mode) {
12492 nan = float32_default_nan(fpst);
12494 return nan;
12495 } else if (float32_is_infinity(f32)) {
12496 return float32_set_sign(float32_zero, float32_is_neg(f32));
12497 } else if (float32_is_zero(f32)) {
12498 float_raise(float_flag_divbyzero, fpst);
12499 return float32_set_sign(float32_infinity, float32_is_neg(f32));
12500 } else if (float32_abs(f32) < (1ULL << 21)) {
12501 /* Abs(value) < 2.0^-128 */
12502 float_raise(float_flag_overflow | float_flag_inexact, fpst);
12503 if (round_to_inf(fpst, f32_sign)) {
12504 return float32_set_sign(float32_infinity, f32_sign);
12505 } else {
12506 return float32_set_sign(float32_maxnorm, f32_sign);
12508 } else if (f32_exp >= 253 && fpst->flush_to_zero) {
12509 float_raise(float_flag_underflow, fpst);
12510 return float32_set_sign(float32_zero, float32_is_neg(f32));
12513 f64_frac = call_recip_estimate(&f32_exp, 253,
12514 ((uint64_t) f32_frac) << (52 - 23));
12516 /* result = sign : result_exp<7:0> : fraction<51:29> */
12517 f32_val = deposit32(0, 31, 1, f32_sign);
12518 f32_val = deposit32(f32_val, 23, 8, f32_exp);
12519 f32_val = deposit32(f32_val, 0, 23, extract64(f64_frac, 52 - 23, 23));
12520 return make_float32(f32_val);
12523 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
12525 float_status *fpst = fpstp;
12526 float64 f64 = float64_squash_input_denormal(input, fpst);
12527 uint64_t f64_val = float64_val(f64);
12528 bool f64_sign = float64_is_neg(f64);
12529 int f64_exp = extract64(f64_val, 52, 11);
12530 uint64_t f64_frac = extract64(f64_val, 0, 52);
12532 /* Deal with any special cases */
12533 if (float64_is_any_nan(f64)) {
12534 float64 nan = f64;
12535 if (float64_is_signaling_nan(f64, fpst)) {
12536 float_raise(float_flag_invalid, fpst);
12537 nan = float64_silence_nan(f64, fpst);
12539 if (fpst->default_nan_mode) {
12540 nan = float64_default_nan(fpst);
12542 return nan;
12543 } else if (float64_is_infinity(f64)) {
12544 return float64_set_sign(float64_zero, float64_is_neg(f64));
12545 } else if (float64_is_zero(f64)) {
12546 float_raise(float_flag_divbyzero, fpst);
12547 return float64_set_sign(float64_infinity, float64_is_neg(f64));
12548 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
12549 /* Abs(value) < 2.0^-1024 */
12550 float_raise(float_flag_overflow | float_flag_inexact, fpst);
12551 if (round_to_inf(fpst, f64_sign)) {
12552 return float64_set_sign(float64_infinity, f64_sign);
12553 } else {
12554 return float64_set_sign(float64_maxnorm, f64_sign);
12556 } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
12557 float_raise(float_flag_underflow, fpst);
12558 return float64_set_sign(float64_zero, float64_is_neg(f64));
12561 f64_frac = call_recip_estimate(&f64_exp, 2045, f64_frac);
12563 /* result = sign : result_exp<10:0> : fraction<51:0>; */
12564 f64_val = deposit64(0, 63, 1, f64_sign);
12565 f64_val = deposit64(f64_val, 52, 11, f64_exp);
12566 f64_val = deposit64(f64_val, 0, 52, f64_frac);
12567 return make_float64(f64_val);
12570 /* The algorithm that must be used to calculate the estimate
12571 * is specified by the ARM ARM.
12574 static int do_recip_sqrt_estimate(int a)
12576 int b, estimate;
12578 assert(128 <= a && a < 512);
12579 if (a < 256) {
12580 a = a * 2 + 1;
12581 } else {
12582 a = (a >> 1) << 1;
12583 a = (a + 1) * 2;
12585 b = 512;
12586 while (a * (b + 1) * (b + 1) < (1 << 28)) {
12587 b += 1;
12589 estimate = (b + 1) / 2;
12590 assert(256 <= estimate && estimate < 512);
12592 return estimate;
12596 static uint64_t recip_sqrt_estimate(int *exp , int exp_off, uint64_t frac)
12598 int estimate;
12599 uint32_t scaled;
12601 if (*exp == 0) {
12602 while (extract64(frac, 51, 1) == 0) {
12603 frac = frac << 1;
12604 *exp -= 1;
12606 frac = extract64(frac, 0, 51) << 1;
12609 if (*exp & 1) {
12610 /* scaled = UInt('01':fraction<51:45>) */
12611 scaled = deposit32(1 << 7, 0, 7, extract64(frac, 45, 7));
12612 } else {
12613 /* scaled = UInt('1':fraction<51:44>) */
12614 scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
12616 estimate = do_recip_sqrt_estimate(scaled);
12618 *exp = (exp_off - *exp) / 2;
12619 return extract64(estimate, 0, 8) << 44;
12622 uint32_t HELPER(rsqrte_f16)(uint32_t input, void *fpstp)
12624 float_status *s = fpstp;
12625 float16 f16 = float16_squash_input_denormal(input, s);
12626 uint16_t val = float16_val(f16);
12627 bool f16_sign = float16_is_neg(f16);
12628 int f16_exp = extract32(val, 10, 5);
12629 uint16_t f16_frac = extract32(val, 0, 10);
12630 uint64_t f64_frac;
12632 if (float16_is_any_nan(f16)) {
12633 float16 nan = f16;
12634 if (float16_is_signaling_nan(f16, s)) {
12635 float_raise(float_flag_invalid, s);
12636 nan = float16_silence_nan(f16, s);
12638 if (s->default_nan_mode) {
12639 nan = float16_default_nan(s);
12641 return nan;
12642 } else if (float16_is_zero(f16)) {
12643 float_raise(float_flag_divbyzero, s);
12644 return float16_set_sign(float16_infinity, f16_sign);
12645 } else if (f16_sign) {
12646 float_raise(float_flag_invalid, s);
12647 return float16_default_nan(s);
12648 } else if (float16_is_infinity(f16)) {
12649 return float16_zero;
12652 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
12653 * preserving the parity of the exponent. */
12655 f64_frac = ((uint64_t) f16_frac) << (52 - 10);
12657 f64_frac = recip_sqrt_estimate(&f16_exp, 44, f64_frac);
12659 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(2) */
12660 val = deposit32(0, 15, 1, f16_sign);
12661 val = deposit32(val, 10, 5, f16_exp);
12662 val = deposit32(val, 2, 8, extract64(f64_frac, 52 - 8, 8));
12663 return make_float16(val);
12666 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
12668 float_status *s = fpstp;
12669 float32 f32 = float32_squash_input_denormal(input, s);
12670 uint32_t val = float32_val(f32);
12671 uint32_t f32_sign = float32_is_neg(f32);
12672 int f32_exp = extract32(val, 23, 8);
12673 uint32_t f32_frac = extract32(val, 0, 23);
12674 uint64_t f64_frac;
12676 if (float32_is_any_nan(f32)) {
12677 float32 nan = f32;
12678 if (float32_is_signaling_nan(f32, s)) {
12679 float_raise(float_flag_invalid, s);
12680 nan = float32_silence_nan(f32, s);
12682 if (s->default_nan_mode) {
12683 nan = float32_default_nan(s);
12685 return nan;
12686 } else if (float32_is_zero(f32)) {
12687 float_raise(float_flag_divbyzero, s);
12688 return float32_set_sign(float32_infinity, float32_is_neg(f32));
12689 } else if (float32_is_neg(f32)) {
12690 float_raise(float_flag_invalid, s);
12691 return float32_default_nan(s);
12692 } else if (float32_is_infinity(f32)) {
12693 return float32_zero;
12696 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
12697 * preserving the parity of the exponent. */
12699 f64_frac = ((uint64_t) f32_frac) << 29;
12701 f64_frac = recip_sqrt_estimate(&f32_exp, 380, f64_frac);
12703 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(15) */
12704 val = deposit32(0, 31, 1, f32_sign);
12705 val = deposit32(val, 23, 8, f32_exp);
12706 val = deposit32(val, 15, 8, extract64(f64_frac, 52 - 8, 8));
12707 return make_float32(val);
12710 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
12712 float_status *s = fpstp;
12713 float64 f64 = float64_squash_input_denormal(input, s);
12714 uint64_t val = float64_val(f64);
12715 bool f64_sign = float64_is_neg(f64);
12716 int f64_exp = extract64(val, 52, 11);
12717 uint64_t f64_frac = extract64(val, 0, 52);
12719 if (float64_is_any_nan(f64)) {
12720 float64 nan = f64;
12721 if (float64_is_signaling_nan(f64, s)) {
12722 float_raise(float_flag_invalid, s);
12723 nan = float64_silence_nan(f64, s);
12725 if (s->default_nan_mode) {
12726 nan = float64_default_nan(s);
12728 return nan;
12729 } else if (float64_is_zero(f64)) {
12730 float_raise(float_flag_divbyzero, s);
12731 return float64_set_sign(float64_infinity, float64_is_neg(f64));
12732 } else if (float64_is_neg(f64)) {
12733 float_raise(float_flag_invalid, s);
12734 return float64_default_nan(s);
12735 } else if (float64_is_infinity(f64)) {
12736 return float64_zero;
12739 f64_frac = recip_sqrt_estimate(&f64_exp, 3068, f64_frac);
12741 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(44) */
12742 val = deposit64(0, 61, 1, f64_sign);
12743 val = deposit64(val, 52, 11, f64_exp);
12744 val = deposit64(val, 44, 8, extract64(f64_frac, 52 - 8, 8));
12745 return make_float64(val);
12748 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
12750 /* float_status *s = fpstp; */
12751 int input, estimate;
12753 if ((a & 0x80000000) == 0) {
12754 return 0xffffffff;
12757 input = extract32(a, 23, 9);
12758 estimate = recip_estimate(input);
12760 return deposit32(0, (32 - 9), 9, estimate);
12763 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
12765 int estimate;
12767 if ((a & 0xc0000000) == 0) {
12768 return 0xffffffff;
12771 estimate = do_recip_sqrt_estimate(extract32(a, 23, 9));
12773 return deposit32(0, 23, 9, estimate);
12776 /* VFPv4 fused multiply-accumulate */
12777 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
12779 float_status *fpst = fpstp;
12780 return float32_muladd(a, b, c, 0, fpst);
12783 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
12785 float_status *fpst = fpstp;
12786 return float64_muladd(a, b, c, 0, fpst);
12789 /* ARMv8 round to integral */
12790 float32 HELPER(rints_exact)(float32 x, void *fp_status)
12792 return float32_round_to_int(x, fp_status);
12795 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
12797 return float64_round_to_int(x, fp_status);
12800 float32 HELPER(rints)(float32 x, void *fp_status)
12802 int old_flags = get_float_exception_flags(fp_status), new_flags;
12803 float32 ret;
12805 ret = float32_round_to_int(x, fp_status);
12807 /* Suppress any inexact exceptions the conversion produced */
12808 if (!(old_flags & float_flag_inexact)) {
12809 new_flags = get_float_exception_flags(fp_status);
12810 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
12813 return ret;
12816 float64 HELPER(rintd)(float64 x, void *fp_status)
12818 int old_flags = get_float_exception_flags(fp_status), new_flags;
12819 float64 ret;
12821 ret = float64_round_to_int(x, fp_status);
12823 new_flags = get_float_exception_flags(fp_status);
12825 /* Suppress any inexact exceptions the conversion produced */
12826 if (!(old_flags & float_flag_inexact)) {
12827 new_flags = get_float_exception_flags(fp_status);
12828 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
12831 return ret;
12834 /* Convert ARM rounding mode to softfloat */
12835 int arm_rmode_to_sf(int rmode)
12837 switch (rmode) {
12838 case FPROUNDING_TIEAWAY:
12839 rmode = float_round_ties_away;
12840 break;
12841 case FPROUNDING_ODD:
12842 /* FIXME: add support for TIEAWAY and ODD */
12843 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
12844 rmode);
12845 /* fall through for now */
12846 case FPROUNDING_TIEEVEN:
12847 default:
12848 rmode = float_round_nearest_even;
12849 break;
12850 case FPROUNDING_POSINF:
12851 rmode = float_round_up;
12852 break;
12853 case FPROUNDING_NEGINF:
12854 rmode = float_round_down;
12855 break;
12856 case FPROUNDING_ZERO:
12857 rmode = float_round_to_zero;
12858 break;
12860 return rmode;
12863 /* CRC helpers.
12864 * The upper bytes of val (above the number specified by 'bytes') must have
12865 * been zeroed out by the caller.
12867 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
12869 uint8_t buf[4];
12871 stl_le_p(buf, val);
12873 /* zlib crc32 converts the accumulator and output to one's complement. */
12874 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
12877 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
12879 uint8_t buf[4];
12881 stl_le_p(buf, val);
12883 /* Linux crc32c converts the output to one's complement. */
12884 return crc32c(acc, buf, bytes) ^ 0xffffffff;
12887 /* Return the exception level to which FP-disabled exceptions should
12888 * be taken, or 0 if FP is enabled.
12890 int fp_exception_el(CPUARMState *env, int cur_el)
12892 #ifndef CONFIG_USER_ONLY
12893 int fpen;
12895 /* CPACR and the CPTR registers don't exist before v6, so FP is
12896 * always accessible
12898 if (!arm_feature(env, ARM_FEATURE_V6)) {
12899 return 0;
12902 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
12903 * 0, 2 : trap EL0 and EL1/PL1 accesses
12904 * 1 : trap only EL0 accesses
12905 * 3 : trap no accesses
12907 fpen = extract32(env->cp15.cpacr_el1, 20, 2);
12908 switch (fpen) {
12909 case 0:
12910 case 2:
12911 if (cur_el == 0 || cur_el == 1) {
12912 /* Trap to PL1, which might be EL1 or EL3 */
12913 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
12914 return 3;
12916 return 1;
12918 if (cur_el == 3 && !is_a64(env)) {
12919 /* Secure PL1 running at EL3 */
12920 return 3;
12922 break;
12923 case 1:
12924 if (cur_el == 0) {
12925 return 1;
12927 break;
12928 case 3:
12929 break;
12932 /* For the CPTR registers we don't need to guard with an ARM_FEATURE
12933 * check because zero bits in the registers mean "don't trap".
12936 /* CPTR_EL2 : present in v7VE or v8 */
12937 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
12938 && !arm_is_secure_below_el3(env)) {
12939 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
12940 return 2;
12943 /* CPTR_EL3 : present in v8 */
12944 if (extract32(env->cp15.cptr_el[3], 10, 1)) {
12945 /* Trap all FP ops to EL3 */
12946 return 3;
12948 #endif
12949 return 0;
12952 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
12953 target_ulong *cs_base, uint32_t *pflags)
12955 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
12956 int current_el = arm_current_el(env);
12957 int fp_el = fp_exception_el(env, current_el);
12958 uint32_t flags = 0;
12960 if (is_a64(env)) {
12961 ARMCPU *cpu = arm_env_get_cpu(env);
12963 *pc = env->pc;
12964 flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1);
12965 /* Get control bits for tagged addresses */
12966 flags = FIELD_DP32(flags, TBFLAG_A64, TBI0,
12967 arm_regime_tbi0(env, mmu_idx));
12968 flags = FIELD_DP32(flags, TBFLAG_A64, TBI1,
12969 arm_regime_tbi1(env, mmu_idx));
12971 if (cpu_isar_feature(aa64_sve, cpu)) {
12972 int sve_el = sve_exception_el(env, current_el);
12973 uint32_t zcr_len;
12975 /* If SVE is disabled, but FP is enabled,
12976 * then the effective len is 0.
12978 if (sve_el != 0 && fp_el == 0) {
12979 zcr_len = 0;
12980 } else {
12981 zcr_len = sve_zcr_len_for_el(env, current_el);
12983 flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el);
12984 flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len);
12986 } else {
12987 *pc = env->regs[15];
12988 flags = FIELD_DP32(flags, TBFLAG_A32, THUMB, env->thumb);
12989 flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN, env->vfp.vec_len);
12990 flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE, env->vfp.vec_stride);
12991 flags = FIELD_DP32(flags, TBFLAG_A32, CONDEXEC, env->condexec_bits);
12992 flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, arm_sctlr_b(env));
12993 flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env));
12994 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
12995 || arm_el_is_aa64(env, 1)) {
12996 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
12998 flags = FIELD_DP32(flags, TBFLAG_A32, XSCALE_CPAR, env->cp15.c15_cpar);
13001 flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX, arm_to_core_mmu_idx(mmu_idx));
13003 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
13004 * states defined in the ARM ARM for software singlestep:
13005 * SS_ACTIVE PSTATE.SS State
13006 * 0 x Inactive (the TB flag for SS is always 0)
13007 * 1 0 Active-pending
13008 * 1 1 Active-not-pending
13010 if (arm_singlestep_active(env)) {
13011 flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1);
13012 if (is_a64(env)) {
13013 if (env->pstate & PSTATE_SS) {
13014 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1);
13016 } else {
13017 if (env->uncached_cpsr & PSTATE_SS) {
13018 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1);
13022 if (arm_cpu_data_is_big_endian(env)) {
13023 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1);
13025 flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el);
13027 if (arm_v7m_is_handler_mode(env)) {
13028 flags = FIELD_DP32(flags, TBFLAG_A32, HANDLER, 1);
13031 /* v8M always applies stack limit checks unless CCR.STKOFHFNMIGN is
13032 * suppressing them because the requested execution priority is less than 0.
13034 if (arm_feature(env, ARM_FEATURE_V8) &&
13035 arm_feature(env, ARM_FEATURE_M) &&
13036 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
13037 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
13038 flags = FIELD_DP32(flags, TBFLAG_A32, STACKCHECK, 1);
13041 *pflags = flags;
13042 *cs_base = 0;
13045 #ifdef TARGET_AARCH64
13047 * The manual says that when SVE is enabled and VQ is widened the
13048 * implementation is allowed to zero the previously inaccessible
13049 * portion of the registers. The corollary to that is that when
13050 * SVE is enabled and VQ is narrowed we are also allowed to zero
13051 * the now inaccessible portion of the registers.
13053 * The intent of this is that no predicate bit beyond VQ is ever set.
13054 * Which means that some operations on predicate registers themselves
13055 * may operate on full uint64_t or even unrolled across the maximum
13056 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
13057 * may well be cheaper than conditionals to restrict the operation
13058 * to the relevant portion of a uint16_t[16].
13060 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
13062 int i, j;
13063 uint64_t pmask;
13065 assert(vq >= 1 && vq <= ARM_MAX_VQ);
13066 assert(vq <= arm_env_get_cpu(env)->sve_max_vq);
13068 /* Zap the high bits of the zregs. */
13069 for (i = 0; i < 32; i++) {
13070 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
13073 /* Zap the high bits of the pregs and ffr. */
13074 pmask = 0;
13075 if (vq & 3) {
13076 pmask = ~(-1ULL << (16 * (vq & 3)));
13078 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
13079 for (i = 0; i < 17; ++i) {
13080 env->vfp.pregs[i].p[j] &= pmask;
13082 pmask = 0;
13087 * Notice a change in SVE vector size when changing EL.
13089 void aarch64_sve_change_el(CPUARMState *env, int old_el,
13090 int new_el, bool el0_a64)
13092 ARMCPU *cpu = arm_env_get_cpu(env);
13093 int old_len, new_len;
13094 bool old_a64, new_a64;
13096 /* Nothing to do if no SVE. */
13097 if (!cpu_isar_feature(aa64_sve, cpu)) {
13098 return;
13101 /* Nothing to do if FP is disabled in either EL. */
13102 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
13103 return;
13107 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
13108 * at ELx, or not available because the EL is in AArch32 state, then
13109 * for all purposes other than a direct read, the ZCR_ELx.LEN field
13110 * has an effective value of 0".
13112 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
13113 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
13114 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that
13115 * we already have the correct register contents when encountering the
13116 * vq0->vq0 transition between EL0->EL1.
13118 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
13119 old_len = (old_a64 && !sve_exception_el(env, old_el)
13120 ? sve_zcr_len_for_el(env, old_el) : 0);
13121 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
13122 new_len = (new_a64 && !sve_exception_el(env, new_el)
13123 ? sve_zcr_len_for_el(env, new_el) : 0);
13125 /* When changing vector length, clear inaccessible state. */
13126 if (new_len < old_len) {
13127 aarch64_sve_narrow_vq(env, new_len + 1);
13130 #endif