hw/block/pflash_cfi01: Extract pflash_cfi01_fill_cfi_table()
[qemu/ar7.git] / hw / block / pflash_cfi01.c
blob779a62f3b0694ad328d186f6124b97dbaa3e64c0
1 /*
2 * CFI parallel flash with Intel command set emulation
4 * Copyright (c) 2006 Thorsten Zitterell
5 * Copyright (c) 2005 Jocelyn Mayer
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
22 * For now, this code can emulate flashes of 1, 2 or 4 bytes width.
23 * Supported commands/modes are:
24 * - flash read
25 * - flash write
26 * - flash ID read
27 * - sector erase
28 * - CFI queries
30 * It does not support timings
31 * It does not support flash interleaving
32 * It does not implement software data protection as found in many real chips
33 * It does not implement erase suspend/resume commands
34 * It does not implement multiple sectors erase
36 * It does not implement much more ...
39 #include "qemu/osdep.h"
40 #include "hw/block/block.h"
41 #include "hw/block/flash.h"
42 #include "hw/qdev-properties.h"
43 #include "hw/qdev-properties-system.h"
44 #include "sysemu/block-backend.h"
45 #include "qapi/error.h"
46 #include "qemu/error-report.h"
47 #include "qemu/bitops.h"
48 #include "qemu/error-report.h"
49 #include "qemu/host-utils.h"
50 #include "qemu/log.h"
51 #include "qemu/module.h"
52 #include "qemu/option.h"
53 #include "hw/sysbus.h"
54 #include "migration/vmstate.h"
55 #include "sysemu/blockdev.h"
56 #include "sysemu/runstate.h"
57 #include "trace.h"
59 /* #define PFLASH_DEBUG */
60 #ifdef PFLASH_DEBUG
61 #define DPRINTF(fmt, ...) \
62 do { \
63 fprintf(stderr, "PFLASH: " fmt , ## __VA_ARGS__); \
64 } while (0)
65 #else
66 #define DPRINTF(fmt, ...) do { } while (0)
67 #endif
69 #define PFLASH_BE 0
70 #define PFLASH_SECURE 1
72 struct PFlashCFI01 {
73 /*< private >*/
74 SysBusDevice parent_obj;
75 /*< public >*/
77 BlockBackend *blk;
78 uint32_t nb_blocs;
79 uint64_t sector_len;
80 uint8_t bank_width;
81 uint8_t device_width; /* If 0, device width not specified. */
82 uint8_t max_device_width; /* max device width in bytes */
83 uint32_t features;
84 uint8_t wcycle; /* if 0, the flash is read normally */
85 int ro;
86 uint8_t cmd;
87 uint8_t status;
88 uint16_t ident0;
89 uint16_t ident1;
90 uint16_t ident2;
91 uint16_t ident3;
92 uint8_t cfi_table[0x52];
93 uint64_t counter;
94 unsigned int writeblock_size;
95 MemoryRegion mem;
96 char *name;
97 void *storage;
98 VMChangeStateEntry *vmstate;
99 bool old_multiple_chip_handling;
102 static int pflash_post_load(void *opaque, int version_id);
104 static const VMStateDescription vmstate_pflash = {
105 .name = "pflash_cfi01",
106 .version_id = 1,
107 .minimum_version_id = 1,
108 .post_load = pflash_post_load,
109 .fields = (VMStateField[]) {
110 VMSTATE_UINT8(wcycle, PFlashCFI01),
111 VMSTATE_UINT8(cmd, PFlashCFI01),
112 VMSTATE_UINT8(status, PFlashCFI01),
113 VMSTATE_UINT64(counter, PFlashCFI01),
114 VMSTATE_END_OF_LIST()
119 * Perform a CFI query based on the bank width of the flash.
120 * If this code is called we know we have a device_width set for
121 * this flash.
123 static uint32_t pflash_cfi_query(PFlashCFI01 *pfl, hwaddr offset)
125 int i;
126 uint32_t resp = 0;
127 hwaddr boff;
130 * Adjust incoming offset to match expected device-width
131 * addressing. CFI query addresses are always specified in terms of
132 * the maximum supported width of the device. This means that x8
133 * devices and x8/x16 devices in x8 mode behave differently. For
134 * devices that are not used at their max width, we will be
135 * provided with addresses that use higher address bits than
136 * expected (based on the max width), so we will shift them lower
137 * so that they will match the addresses used when
138 * device_width==max_device_width.
140 boff = offset >> (ctz32(pfl->bank_width) +
141 ctz32(pfl->max_device_width) - ctz32(pfl->device_width));
143 if (boff >= sizeof(pfl->cfi_table)) {
144 return 0;
147 * Now we will construct the CFI response generated by a single
148 * device, then replicate that for all devices that make up the
149 * bus. For wide parts used in x8 mode, CFI query responses
150 * are different than native byte-wide parts.
152 resp = pfl->cfi_table[boff];
153 if (pfl->device_width != pfl->max_device_width) {
154 /* The only case currently supported is x8 mode for a
155 * wider part.
157 if (pfl->device_width != 1 || pfl->bank_width > 4) {
158 DPRINTF("%s: Unsupported device configuration: "
159 "device_width=%d, max_device_width=%d\n",
160 __func__, pfl->device_width,
161 pfl->max_device_width);
162 return 0;
164 /* CFI query data is repeated, rather than zero padded for
165 * wide devices used in x8 mode.
167 for (i = 1; i < pfl->max_device_width; i++) {
168 resp = deposit32(resp, 8 * i, 8, pfl->cfi_table[boff]);
171 /* Replicate responses for each device in bank. */
172 if (pfl->device_width < pfl->bank_width) {
173 for (i = pfl->device_width;
174 i < pfl->bank_width; i += pfl->device_width) {
175 resp = deposit32(resp, 8 * i, 8 * pfl->device_width, resp);
179 return resp;
184 /* Perform a device id query based on the bank width of the flash. */
185 static uint32_t pflash_devid_query(PFlashCFI01 *pfl, hwaddr offset)
187 int i;
188 uint32_t resp;
189 hwaddr boff;
192 * Adjust incoming offset to match expected device-width
193 * addressing. Device ID read addresses are always specified in
194 * terms of the maximum supported width of the device. This means
195 * that x8 devices and x8/x16 devices in x8 mode behave
196 * differently. For devices that are not used at their max width,
197 * we will be provided with addresses that use higher address bits
198 * than expected (based on the max width), so we will shift them
199 * lower so that they will match the addresses used when
200 * device_width==max_device_width.
202 boff = offset >> (ctz32(pfl->bank_width) +
203 ctz32(pfl->max_device_width) - ctz32(pfl->device_width));
206 * Mask off upper bits which may be used in to query block
207 * or sector lock status at other addresses.
208 * Offsets 2/3 are block lock status, is not emulated.
210 switch (boff & 0xFF) {
211 case 0:
212 resp = pfl->ident0;
213 trace_pflash_manufacturer_id(resp);
214 break;
215 case 1:
216 resp = pfl->ident1;
217 trace_pflash_device_id(resp);
218 break;
219 default:
220 trace_pflash_device_info(offset);
221 return 0;
223 /* Replicate responses for each device in bank. */
224 if (pfl->device_width < pfl->bank_width) {
225 for (i = pfl->device_width;
226 i < pfl->bank_width; i += pfl->device_width) {
227 resp = deposit32(resp, 8 * i, 8 * pfl->device_width, resp);
231 return resp;
234 static uint32_t pflash_data_read(PFlashCFI01 *pfl, hwaddr offset,
235 int width, int be)
237 uint8_t *p;
238 uint32_t ret;
240 p = pfl->storage;
241 switch (width) {
242 case 1:
243 ret = p[offset];
244 break;
245 case 2:
246 if (be) {
247 ret = p[offset] << 8;
248 ret |= p[offset + 1];
249 } else {
250 ret = p[offset];
251 ret |= p[offset + 1] << 8;
253 break;
254 case 4:
255 if (be) {
256 ret = p[offset] << 24;
257 ret |= p[offset + 1] << 16;
258 ret |= p[offset + 2] << 8;
259 ret |= p[offset + 3];
260 } else {
261 ret = p[offset];
262 ret |= p[offset + 1] << 8;
263 ret |= p[offset + 2] << 16;
264 ret |= p[offset + 3] << 24;
266 break;
267 default:
268 DPRINTF("BUG in %s\n", __func__);
269 abort();
271 trace_pflash_data_read(offset, width, ret);
272 return ret;
275 static uint32_t pflash_read(PFlashCFI01 *pfl, hwaddr offset,
276 int width, int be)
278 hwaddr boff;
279 uint32_t ret;
281 ret = -1;
282 switch (pfl->cmd) {
283 default:
284 /* This should never happen : reset state & treat it as a read */
285 DPRINTF("%s: unknown command state: %x\n", __func__, pfl->cmd);
286 pfl->wcycle = 0;
288 * The command 0x00 is not assigned by the CFI open standard,
289 * but QEMU historically uses it for the READ_ARRAY command (0xff).
291 pfl->cmd = 0x00;
292 /* fall through to read code */
293 case 0x00: /* This model reset value for READ_ARRAY (not CFI compliant) */
294 /* Flash area read */
295 ret = pflash_data_read(pfl, offset, width, be);
296 break;
297 case 0x10: /* Single byte program */
298 case 0x20: /* Block erase */
299 case 0x28: /* Block erase */
300 case 0x40: /* single byte program */
301 case 0x50: /* Clear status register */
302 case 0x60: /* Block /un)lock */
303 case 0x70: /* Status Register */
304 case 0xe8: /* Write block */
306 * Status register read. Return status from each device in
307 * bank.
309 ret = pfl->status;
310 if (pfl->device_width && width > pfl->device_width) {
311 int shift = pfl->device_width * 8;
312 while (shift + pfl->device_width * 8 <= width * 8) {
313 ret |= pfl->status << shift;
314 shift += pfl->device_width * 8;
316 } else if (!pfl->device_width && width > 2) {
318 * Handle 32 bit flash cases where device width is not
319 * set. (Existing behavior before device width added.)
321 ret |= pfl->status << 16;
323 DPRINTF("%s: status %x\n", __func__, ret);
324 break;
325 case 0x90:
326 if (!pfl->device_width) {
327 /* Preserve old behavior if device width not specified */
328 boff = offset & 0xFF;
329 if (pfl->bank_width == 2) {
330 boff = boff >> 1;
331 } else if (pfl->bank_width == 4) {
332 boff = boff >> 2;
335 switch (boff) {
336 case 0:
337 ret = pfl->ident0 << 8 | pfl->ident1;
338 trace_pflash_manufacturer_id(ret);
339 break;
340 case 1:
341 ret = pfl->ident2 << 8 | pfl->ident3;
342 trace_pflash_device_id(ret);
343 break;
344 default:
345 trace_pflash_device_info(boff);
346 ret = 0;
347 break;
349 } else {
351 * If we have a read larger than the bank_width, combine multiple
352 * manufacturer/device ID queries into a single response.
354 int i;
355 for (i = 0; i < width; i += pfl->bank_width) {
356 ret = deposit32(ret, i * 8, pfl->bank_width * 8,
357 pflash_devid_query(pfl,
358 offset + i * pfl->bank_width));
361 break;
362 case 0x98: /* Query mode */
363 if (!pfl->device_width) {
364 /* Preserve old behavior if device width not specified */
365 boff = offset & 0xFF;
366 if (pfl->bank_width == 2) {
367 boff = boff >> 1;
368 } else if (pfl->bank_width == 4) {
369 boff = boff >> 2;
372 if (boff < sizeof(pfl->cfi_table)) {
373 ret = pfl->cfi_table[boff];
374 } else {
375 ret = 0;
377 } else {
379 * If we have a read larger than the bank_width, combine multiple
380 * CFI queries into a single response.
382 int i;
383 for (i = 0; i < width; i += pfl->bank_width) {
384 ret = deposit32(ret, i * 8, pfl->bank_width * 8,
385 pflash_cfi_query(pfl,
386 offset + i * pfl->bank_width));
390 break;
392 trace_pflash_io_read(offset, width, ret, pfl->cmd, pfl->wcycle);
394 return ret;
397 /* update flash content on disk */
398 static void pflash_update(PFlashCFI01 *pfl, int offset,
399 int size)
401 int offset_end;
402 int ret;
403 if (pfl->blk) {
404 offset_end = offset + size;
405 /* widen to sector boundaries */
406 offset = QEMU_ALIGN_DOWN(offset, BDRV_SECTOR_SIZE);
407 offset_end = QEMU_ALIGN_UP(offset_end, BDRV_SECTOR_SIZE);
408 ret = blk_pwrite(pfl->blk, offset, pfl->storage + offset,
409 offset_end - offset, 0);
410 if (ret < 0) {
411 /* TODO set error bit in status */
412 error_report("Could not update PFLASH: %s", strerror(-ret));
417 static inline void pflash_data_write(PFlashCFI01 *pfl, hwaddr offset,
418 uint32_t value, int width, int be)
420 uint8_t *p = pfl->storage;
422 trace_pflash_data_write(offset, width, value, pfl->counter);
423 switch (width) {
424 case 1:
425 p[offset] = value;
426 break;
427 case 2:
428 if (be) {
429 p[offset] = value >> 8;
430 p[offset + 1] = value;
431 } else {
432 p[offset] = value;
433 p[offset + 1] = value >> 8;
435 break;
436 case 4:
437 if (be) {
438 p[offset] = value >> 24;
439 p[offset + 1] = value >> 16;
440 p[offset + 2] = value >> 8;
441 p[offset + 3] = value;
442 } else {
443 p[offset] = value;
444 p[offset + 1] = value >> 8;
445 p[offset + 2] = value >> 16;
446 p[offset + 3] = value >> 24;
448 break;
453 static void pflash_write(PFlashCFI01 *pfl, hwaddr offset,
454 uint32_t value, int width, int be)
456 uint8_t *p;
457 uint8_t cmd;
459 cmd = value;
461 trace_pflash_io_write(offset, width, value, pfl->wcycle);
462 if (!pfl->wcycle) {
463 /* Set the device in I/O access mode */
464 memory_region_rom_device_set_romd(&pfl->mem, false);
467 switch (pfl->wcycle) {
468 case 0:
469 /* read mode */
470 switch (cmd) {
471 case 0x00: /* This model reset value for READ_ARRAY (not CFI) */
472 goto mode_read_array;
473 case 0x10: /* Single Byte Program */
474 case 0x40: /* Single Byte Program */
475 DPRINTF("%s: Single Byte Program\n", __func__);
476 break;
477 case 0x20: /* Block erase */
478 p = pfl->storage;
479 offset &= ~(pfl->sector_len - 1);
481 DPRINTF("%s: block erase at " TARGET_FMT_plx " bytes %x\n",
482 __func__, offset, (unsigned)pfl->sector_len);
484 if (!pfl->ro) {
485 memset(p + offset, 0xff, pfl->sector_len);
486 pflash_update(pfl, offset, pfl->sector_len);
487 } else {
488 pfl->status |= 0x20; /* Block erase error */
490 pfl->status |= 0x80; /* Ready! */
491 break;
492 case 0x50: /* Clear status bits */
493 DPRINTF("%s: Clear status bits\n", __func__);
494 pfl->status = 0x0;
495 goto mode_read_array;
496 case 0x60: /* Block (un)lock */
497 DPRINTF("%s: Block unlock\n", __func__);
498 break;
499 case 0x70: /* Status Register */
500 DPRINTF("%s: Read status register\n", __func__);
501 pfl->cmd = cmd;
502 return;
503 case 0x90: /* Read Device ID */
504 DPRINTF("%s: Read Device information\n", __func__);
505 pfl->cmd = cmd;
506 return;
507 case 0x98: /* CFI query */
508 DPRINTF("%s: CFI query\n", __func__);
509 break;
510 case 0xe8: /* Write to buffer */
511 DPRINTF("%s: Write to buffer\n", __func__);
512 /* FIXME should save @offset, @width for case 1+ */
513 qemu_log_mask(LOG_UNIMP,
514 "%s: Write to buffer emulation is flawed\n",
515 __func__);
516 pfl->status |= 0x80; /* Ready! */
517 break;
518 case 0xf0: /* Probe for AMD flash */
519 DPRINTF("%s: Probe for AMD flash\n", __func__);
520 goto mode_read_array;
521 case 0xff: /* Read Array */
522 DPRINTF("%s: Read array mode\n", __func__);
523 goto mode_read_array;
524 default:
525 goto error_flash;
527 pfl->wcycle++;
528 pfl->cmd = cmd;
529 break;
530 case 1:
531 switch (pfl->cmd) {
532 case 0x10: /* Single Byte Program */
533 case 0x40: /* Single Byte Program */
534 DPRINTF("%s: Single Byte Program\n", __func__);
535 if (!pfl->ro) {
536 pflash_data_write(pfl, offset, value, width, be);
537 pflash_update(pfl, offset, width);
538 } else {
539 pfl->status |= 0x10; /* Programming error */
541 pfl->status |= 0x80; /* Ready! */
542 pfl->wcycle = 0;
543 break;
544 case 0x20: /* Block erase */
545 case 0x28:
546 if (cmd == 0xd0) { /* confirm */
547 pfl->wcycle = 0;
548 pfl->status |= 0x80;
549 } else if (cmd == 0xff) { /* Read Array */
550 goto mode_read_array;
551 } else
552 goto error_flash;
554 break;
555 case 0xe8:
557 * Mask writeblock size based on device width, or bank width if
558 * device width not specified.
560 /* FIXME check @offset, @width */
561 if (pfl->device_width) {
562 value = extract32(value, 0, pfl->device_width * 8);
563 } else {
564 value = extract32(value, 0, pfl->bank_width * 8);
566 DPRINTF("%s: block write of %x bytes\n", __func__, value);
567 pfl->counter = value;
568 pfl->wcycle++;
569 break;
570 case 0x60:
571 if (cmd == 0xd0) {
572 pfl->wcycle = 0;
573 pfl->status |= 0x80;
574 } else if (cmd == 0x01) {
575 pfl->wcycle = 0;
576 pfl->status |= 0x80;
577 } else if (cmd == 0xff) { /* Read Array */
578 goto mode_read_array;
579 } else {
580 DPRINTF("%s: Unknown (un)locking command\n", __func__);
581 goto mode_read_array;
583 break;
584 case 0x98:
585 if (cmd == 0xff) { /* Read Array */
586 goto mode_read_array;
587 } else {
588 DPRINTF("%s: leaving query mode\n", __func__);
590 break;
591 default:
592 goto error_flash;
594 break;
595 case 2:
596 switch (pfl->cmd) {
597 case 0xe8: /* Block write */
598 /* FIXME check @offset, @width */
599 if (!pfl->ro) {
601 * FIXME writing straight to memory is *wrong*. We
602 * should write to a buffer, and flush it to memory
603 * only on confirm command (see below).
605 pflash_data_write(pfl, offset, value, width, be);
606 } else {
607 pfl->status |= 0x10; /* Programming error */
610 pfl->status |= 0x80;
612 if (!pfl->counter) {
613 hwaddr mask = pfl->writeblock_size - 1;
614 mask = ~mask;
616 DPRINTF("%s: block write finished\n", __func__);
617 pfl->wcycle++;
618 if (!pfl->ro) {
619 /* Flush the entire write buffer onto backing storage. */
620 /* FIXME premature! */
621 pflash_update(pfl, offset & mask, pfl->writeblock_size);
622 } else {
623 pfl->status |= 0x10; /* Programming error */
627 pfl->counter--;
628 break;
629 default:
630 goto error_flash;
632 break;
633 case 3: /* Confirm mode */
634 switch (pfl->cmd) {
635 case 0xe8: /* Block write */
636 if (cmd == 0xd0) {
637 /* FIXME this is where we should write out the buffer */
638 pfl->wcycle = 0;
639 pfl->status |= 0x80;
640 } else {
641 qemu_log_mask(LOG_UNIMP,
642 "%s: Aborting write to buffer not implemented,"
643 " the data is already written to storage!\n"
644 "Flash device reset into READ mode.\n",
645 __func__);
646 goto mode_read_array;
648 break;
649 default:
650 goto error_flash;
652 break;
653 default:
654 /* Should never happen */
655 DPRINTF("%s: invalid write state\n", __func__);
656 goto mode_read_array;
658 return;
660 error_flash:
661 qemu_log_mask(LOG_UNIMP, "%s: Unimplemented flash cmd sequence "
662 "(offset " TARGET_FMT_plx ", wcycle 0x%x cmd 0x%x value 0x%x)"
663 "\n", __func__, offset, pfl->wcycle, pfl->cmd, value);
665 mode_read_array:
666 trace_pflash_reset();
667 memory_region_rom_device_set_romd(&pfl->mem, true);
668 pfl->wcycle = 0;
669 pfl->cmd = 0x00; /* This model reset value for READ_ARRAY (not CFI) */
673 static MemTxResult pflash_mem_read_with_attrs(void *opaque, hwaddr addr, uint64_t *value,
674 unsigned len, MemTxAttrs attrs)
676 PFlashCFI01 *pfl = opaque;
677 bool be = !!(pfl->features & (1 << PFLASH_BE));
679 if ((pfl->features & (1 << PFLASH_SECURE)) && !attrs.secure) {
680 *value = pflash_data_read(opaque, addr, len, be);
681 } else {
682 *value = pflash_read(opaque, addr, len, be);
684 return MEMTX_OK;
687 static MemTxResult pflash_mem_write_with_attrs(void *opaque, hwaddr addr, uint64_t value,
688 unsigned len, MemTxAttrs attrs)
690 PFlashCFI01 *pfl = opaque;
691 bool be = !!(pfl->features & (1 << PFLASH_BE));
693 if ((pfl->features & (1 << PFLASH_SECURE)) && !attrs.secure) {
694 return MEMTX_ERROR;
695 } else {
696 pflash_write(opaque, addr, value, len, be);
697 return MEMTX_OK;
701 static const MemoryRegionOps pflash_cfi01_ops = {
702 .read_with_attrs = pflash_mem_read_with_attrs,
703 .write_with_attrs = pflash_mem_write_with_attrs,
704 .endianness = DEVICE_NATIVE_ENDIAN,
707 static void pflash_cfi01_fill_cfi_table(PFlashCFI01 *pfl)
709 uint64_t blocks_per_device, sector_len_per_device, device_len;
710 int num_devices;
713 * These are only used to expose the parameters of each device
714 * in the cfi_table[].
716 num_devices = pfl->device_width ? (pfl->bank_width / pfl->device_width) : 1;
717 if (pfl->old_multiple_chip_handling) {
718 blocks_per_device = pfl->nb_blocs / num_devices;
719 sector_len_per_device = pfl->sector_len;
720 } else {
721 blocks_per_device = pfl->nb_blocs;
722 sector_len_per_device = pfl->sector_len / num_devices;
724 device_len = sector_len_per_device * blocks_per_device;
726 /* Hardcoded CFI table */
727 /* Standard "QRY" string */
728 pfl->cfi_table[0x10] = 'Q';
729 pfl->cfi_table[0x11] = 'R';
730 pfl->cfi_table[0x12] = 'Y';
731 /* Command set (Intel) */
732 pfl->cfi_table[0x13] = 0x01;
733 pfl->cfi_table[0x14] = 0x00;
734 /* Primary extended table address (none) */
735 pfl->cfi_table[0x15] = 0x31;
736 pfl->cfi_table[0x16] = 0x00;
737 /* Alternate command set (none) */
738 pfl->cfi_table[0x17] = 0x00;
739 pfl->cfi_table[0x18] = 0x00;
740 /* Alternate extended table (none) */
741 pfl->cfi_table[0x19] = 0x00;
742 pfl->cfi_table[0x1A] = 0x00;
743 /* Vcc min */
744 pfl->cfi_table[0x1B] = 0x45;
745 /* Vcc max */
746 pfl->cfi_table[0x1C] = 0x55;
747 /* Vpp min (no Vpp pin) */
748 pfl->cfi_table[0x1D] = 0x00;
749 /* Vpp max (no Vpp pin) */
750 pfl->cfi_table[0x1E] = 0x00;
751 /* Reserved */
752 pfl->cfi_table[0x1F] = 0x07;
753 /* Timeout for min size buffer write */
754 pfl->cfi_table[0x20] = 0x07;
755 /* Typical timeout for block erase */
756 pfl->cfi_table[0x21] = 0x0a;
757 /* Typical timeout for full chip erase (4096 ms) */
758 pfl->cfi_table[0x22] = 0x00;
759 /* Reserved */
760 pfl->cfi_table[0x23] = 0x04;
761 /* Max timeout for buffer write */
762 pfl->cfi_table[0x24] = 0x04;
763 /* Max timeout for block erase */
764 pfl->cfi_table[0x25] = 0x04;
765 /* Max timeout for chip erase */
766 pfl->cfi_table[0x26] = 0x00;
767 /* Device size */
768 pfl->cfi_table[0x27] = ctz32(device_len); /* + 1; */
769 /* Flash device interface (8 & 16 bits) */
770 pfl->cfi_table[0x28] = 0x02;
771 pfl->cfi_table[0x29] = 0x00;
772 /* Max number of bytes in multi-bytes write */
773 if (pfl->bank_width == 1) {
774 pfl->cfi_table[0x2A] = 0x08;
775 } else {
776 pfl->cfi_table[0x2A] = 0x0B;
778 pfl->writeblock_size = 1 << pfl->cfi_table[0x2A];
779 if (!pfl->old_multiple_chip_handling && num_devices > 1) {
780 pfl->writeblock_size *= num_devices;
783 pfl->cfi_table[0x2B] = 0x00;
784 /* Number of erase block regions (uniform) */
785 pfl->cfi_table[0x2C] = 0x01;
786 /* Erase block region 1 */
787 pfl->cfi_table[0x2D] = blocks_per_device - 1;
788 pfl->cfi_table[0x2E] = (blocks_per_device - 1) >> 8;
789 pfl->cfi_table[0x2F] = sector_len_per_device >> 8;
790 pfl->cfi_table[0x30] = sector_len_per_device >> 16;
792 /* Extended */
793 pfl->cfi_table[0x31] = 'P';
794 pfl->cfi_table[0x32] = 'R';
795 pfl->cfi_table[0x33] = 'I';
797 pfl->cfi_table[0x34] = '1';
798 pfl->cfi_table[0x35] = '0';
800 pfl->cfi_table[0x36] = 0x00;
801 pfl->cfi_table[0x37] = 0x00;
802 pfl->cfi_table[0x38] = 0x00;
803 pfl->cfi_table[0x39] = 0x00;
805 pfl->cfi_table[0x3a] = 0x00;
807 pfl->cfi_table[0x3b] = 0x00;
808 pfl->cfi_table[0x3c] = 0x00;
810 pfl->cfi_table[0x3f] = 0x01; /* Number of protection fields */
813 static void pflash_cfi01_realize(DeviceState *dev, Error **errp)
815 ERRP_GUARD();
816 PFlashCFI01 *pfl = PFLASH_CFI01(dev);
817 uint64_t total_len;
818 int ret;
820 if (pfl->sector_len == 0) {
821 error_setg(errp, "attribute \"sector-length\" not specified or zero.");
822 return;
824 if (pfl->nb_blocs == 0) {
825 error_setg(errp, "attribute \"num-blocks\" not specified or zero.");
826 return;
828 if (pfl->name == NULL) {
829 error_setg(errp, "attribute \"name\" not specified.");
830 return;
833 total_len = pfl->sector_len * pfl->nb_blocs;
835 memory_region_init_rom_device(
836 &pfl->mem, OBJECT(dev),
837 &pflash_cfi01_ops,
838 pfl,
839 pfl->name, total_len, errp);
840 if (*errp) {
841 return;
844 pfl->storage = memory_region_get_ram_ptr(&pfl->mem);
845 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &pfl->mem);
847 if (pfl->blk) {
848 uint64_t perm;
849 pfl->ro = !blk_supports_write_perm(pfl->blk);
850 perm = BLK_PERM_CONSISTENT_READ | (pfl->ro ? 0 : BLK_PERM_WRITE);
851 ret = blk_set_perm(pfl->blk, perm, BLK_PERM_ALL, errp);
852 if (ret < 0) {
853 return;
855 } else {
856 pfl->ro = 0;
859 if (pfl->blk) {
860 if (!blk_check_size_and_read_all(pfl->blk, pfl->storage, total_len,
861 errp)) {
862 vmstate_unregister_ram(&pfl->mem, DEVICE(pfl));
863 return;
868 * Default to devices being used at their maximum device width. This was
869 * assumed before the device_width support was added.
871 if (!pfl->max_device_width) {
872 pfl->max_device_width = pfl->device_width;
875 pfl->wcycle = 0;
877 * The command 0x00 is not assigned by the CFI open standard,
878 * but QEMU historically uses it for the READ_ARRAY command (0xff).
880 pfl->cmd = 0x00;
881 pfl->status = 0x80; /* WSM ready */
882 pflash_cfi01_fill_cfi_table(pfl);
885 static void pflash_cfi01_system_reset(DeviceState *dev)
887 PFlashCFI01 *pfl = PFLASH_CFI01(dev);
890 * The command 0x00 is not assigned by the CFI open standard,
891 * but QEMU historically uses it for the READ_ARRAY command (0xff).
893 pfl->cmd = 0x00;
894 pfl->wcycle = 0;
895 memory_region_rom_device_set_romd(&pfl->mem, true);
897 * The WSM ready timer occurs at most 150ns after system reset.
898 * This model deliberately ignores this delay.
900 pfl->status = 0x80;
903 static Property pflash_cfi01_properties[] = {
904 DEFINE_PROP_DRIVE("drive", PFlashCFI01, blk),
905 /* num-blocks is the number of blocks actually visible to the guest,
906 * ie the total size of the device divided by the sector length.
907 * If we're emulating flash devices wired in parallel the actual
908 * number of blocks per indvidual device will differ.
910 DEFINE_PROP_UINT32("num-blocks", PFlashCFI01, nb_blocs, 0),
911 DEFINE_PROP_UINT64("sector-length", PFlashCFI01, sector_len, 0),
912 /* width here is the overall width of this QEMU device in bytes.
913 * The QEMU device may be emulating a number of flash devices
914 * wired up in parallel; the width of each individual flash
915 * device should be specified via device-width. If the individual
916 * devices have a maximum width which is greater than the width
917 * they are being used for, this maximum width should be set via
918 * max-device-width (which otherwise defaults to device-width).
919 * So for instance a 32-bit wide QEMU flash device made from four
920 * 16-bit flash devices used in 8-bit wide mode would be configured
921 * with width = 4, device-width = 1, max-device-width = 2.
923 * If device-width is not specified we default to backwards
924 * compatible behaviour which is a bad emulation of two
925 * 16 bit devices making up a 32 bit wide QEMU device. This
926 * is deprecated for new uses of this device.
928 DEFINE_PROP_UINT8("width", PFlashCFI01, bank_width, 0),
929 DEFINE_PROP_UINT8("device-width", PFlashCFI01, device_width, 0),
930 DEFINE_PROP_UINT8("max-device-width", PFlashCFI01, max_device_width, 0),
931 DEFINE_PROP_BIT("big-endian", PFlashCFI01, features, PFLASH_BE, 0),
932 DEFINE_PROP_BIT("secure", PFlashCFI01, features, PFLASH_SECURE, 0),
933 DEFINE_PROP_UINT16("id0", PFlashCFI01, ident0, 0),
934 DEFINE_PROP_UINT16("id1", PFlashCFI01, ident1, 0),
935 DEFINE_PROP_UINT16("id2", PFlashCFI01, ident2, 0),
936 DEFINE_PROP_UINT16("id3", PFlashCFI01, ident3, 0),
937 DEFINE_PROP_STRING("name", PFlashCFI01, name),
938 DEFINE_PROP_BOOL("old-multiple-chip-handling", PFlashCFI01,
939 old_multiple_chip_handling, false),
940 DEFINE_PROP_END_OF_LIST(),
943 static void pflash_cfi01_class_init(ObjectClass *klass, void *data)
945 DeviceClass *dc = DEVICE_CLASS(klass);
947 dc->reset = pflash_cfi01_system_reset;
948 dc->realize = pflash_cfi01_realize;
949 device_class_set_props(dc, pflash_cfi01_properties);
950 dc->vmsd = &vmstate_pflash;
951 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
955 static const TypeInfo pflash_cfi01_info = {
956 .name = TYPE_PFLASH_CFI01,
957 .parent = TYPE_SYS_BUS_DEVICE,
958 .instance_size = sizeof(PFlashCFI01),
959 .class_init = pflash_cfi01_class_init,
962 static void pflash_cfi01_register_types(void)
964 type_register_static(&pflash_cfi01_info);
967 type_init(pflash_cfi01_register_types)
969 PFlashCFI01 *pflash_cfi01_register(hwaddr base,
970 const char *name,
971 hwaddr size,
972 BlockBackend *blk,
973 uint32_t sector_len,
974 int bank_width,
975 uint16_t id0, uint16_t id1,
976 uint16_t id2, uint16_t id3,
977 int be)
979 DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
981 if (blk) {
982 qdev_prop_set_drive(dev, "drive", blk);
984 assert(QEMU_IS_ALIGNED(size, sector_len));
985 qdev_prop_set_uint32(dev, "num-blocks", size / sector_len);
986 qdev_prop_set_uint64(dev, "sector-length", sector_len);
987 qdev_prop_set_uint8(dev, "width", bank_width);
988 qdev_prop_set_bit(dev, "big-endian", !!be);
989 qdev_prop_set_uint16(dev, "id0", id0);
990 qdev_prop_set_uint16(dev, "id1", id1);
991 qdev_prop_set_uint16(dev, "id2", id2);
992 qdev_prop_set_uint16(dev, "id3", id3);
993 qdev_prop_set_string(dev, "name", name);
994 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
996 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
997 return PFLASH_CFI01(dev);
1000 BlockBackend *pflash_cfi01_get_blk(PFlashCFI01 *fl)
1002 return fl->blk;
1005 MemoryRegion *pflash_cfi01_get_memory(PFlashCFI01 *fl)
1007 return &fl->mem;
1011 * Handle -drive if=pflash for machines that use properties.
1012 * If @dinfo is null, do nothing.
1013 * Else if @fl's property "drive" is already set, fatal error.
1014 * Else set it to the BlockBackend with @dinfo.
1016 void pflash_cfi01_legacy_drive(PFlashCFI01 *fl, DriveInfo *dinfo)
1018 Location loc;
1020 if (!dinfo) {
1021 return;
1024 loc_push_none(&loc);
1025 qemu_opts_loc_restore(dinfo->opts);
1026 if (fl->blk) {
1027 error_report("clashes with -machine");
1028 exit(1);
1030 qdev_prop_set_drive_err(DEVICE(fl), "drive", blk_by_legacy_dinfo(dinfo),
1031 &error_fatal);
1032 loc_pop(&loc);
1035 static void postload_update_cb(void *opaque, bool running, RunState state)
1037 PFlashCFI01 *pfl = opaque;
1039 /* This is called after bdrv_invalidate_cache_all. */
1040 qemu_del_vm_change_state_handler(pfl->vmstate);
1041 pfl->vmstate = NULL;
1043 DPRINTF("%s: updating bdrv for %s\n", __func__, pfl->name);
1044 pflash_update(pfl, 0, pfl->sector_len * pfl->nb_blocs);
1047 static int pflash_post_load(void *opaque, int version_id)
1049 PFlashCFI01 *pfl = opaque;
1051 if (!pfl->ro) {
1052 pfl->vmstate = qemu_add_vm_change_state_handler(postload_update_cb,
1053 pfl);
1055 return 0;