target-i386: Simplify listflags() function
[qemu/ar7.git] / target-arm / cpu64.c
blob823c739f08ef00346a2c7c34e8317b8178d8d395
1 /*
2 * QEMU AArch64 CPU
4 * Copyright (c) 2013 Linaro Ltd
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
21 #include "cpu.h"
22 #include "qemu-common.h"
23 #if !defined(CONFIG_USER_ONLY)
24 #include "hw/loader.h"
25 #endif
26 #include "hw/arm/arm.h"
27 #include "sysemu/sysemu.h"
28 #include "sysemu/kvm.h"
30 static inline void set_feature(CPUARMState *env, int feature)
32 env->features |= 1ULL << feature;
35 static inline void unset_feature(CPUARMState *env, int feature)
37 env->features &= ~(1ULL << feature);
40 #ifndef CONFIG_USER_ONLY
41 static uint64_t a57_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
43 /* Number of processors is in [25:24]; otherwise we RAZ */
44 return (smp_cpus - 1) << 24;
46 #endif
48 static const ARMCPRegInfo cortexa57_cp_reginfo[] = {
49 #ifndef CONFIG_USER_ONLY
50 { .name = "L2CTLR_EL1", .state = ARM_CP_STATE_AA64,
51 .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 2,
52 .access = PL1_RW, .readfn = a57_l2ctlr_read,
53 .writefn = arm_cp_write_ignore },
54 { .name = "L2CTLR",
55 .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 2,
56 .access = PL1_RW, .readfn = a57_l2ctlr_read,
57 .writefn = arm_cp_write_ignore },
58 #endif
59 { .name = "L2ECTLR_EL1", .state = ARM_CP_STATE_AA64,
60 .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 3,
61 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
62 { .name = "L2ECTLR",
63 .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 3,
64 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
65 { .name = "L2ACTLR", .state = ARM_CP_STATE_BOTH,
66 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 0, .opc2 = 0,
67 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
68 { .name = "CPUACTLR_EL1", .state = ARM_CP_STATE_AA64,
69 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 0,
70 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
71 { .name = "CPUACTLR",
72 .cp = 15, .opc1 = 0, .crm = 15,
73 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
74 { .name = "CPUECTLR_EL1", .state = ARM_CP_STATE_AA64,
75 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 1,
76 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
77 { .name = "CPUECTLR",
78 .cp = 15, .opc1 = 1, .crm = 15,
79 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
80 { .name = "CPUMERRSR_EL1", .state = ARM_CP_STATE_AA64,
81 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 2,
82 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
83 { .name = "CPUMERRSR",
84 .cp = 15, .opc1 = 2, .crm = 15,
85 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
86 { .name = "L2MERRSR_EL1", .state = ARM_CP_STATE_AA64,
87 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 3,
88 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
89 { .name = "L2MERRSR",
90 .cp = 15, .opc1 = 3, .crm = 15,
91 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
92 REGINFO_SENTINEL
95 static void aarch64_a57_initfn(Object *obj)
97 ARMCPU *cpu = ARM_CPU(obj);
99 set_feature(&cpu->env, ARM_FEATURE_V8);
100 set_feature(&cpu->env, ARM_FEATURE_VFP4);
101 set_feature(&cpu->env, ARM_FEATURE_NEON);
102 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
103 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
104 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
105 set_feature(&cpu->env, ARM_FEATURE_V8_AES);
106 set_feature(&cpu->env, ARM_FEATURE_V8_SHA1);
107 set_feature(&cpu->env, ARM_FEATURE_V8_SHA256);
108 set_feature(&cpu->env, ARM_FEATURE_V8_PMULL);
109 set_feature(&cpu->env, ARM_FEATURE_CRC);
110 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A57;
111 cpu->midr = 0x411fd070;
112 cpu->reset_fpsid = 0x41034070;
113 cpu->mvfr0 = 0x10110222;
114 cpu->mvfr1 = 0x12111111;
115 cpu->mvfr2 = 0x00000043;
116 cpu->ctr = 0x8444c004;
117 cpu->reset_sctlr = 0x00c50838;
118 cpu->id_pfr0 = 0x00000131;
119 cpu->id_pfr1 = 0x00011011;
120 cpu->id_dfr0 = 0x03010066;
121 cpu->id_afr0 = 0x00000000;
122 cpu->id_mmfr0 = 0x10101105;
123 cpu->id_mmfr1 = 0x40000000;
124 cpu->id_mmfr2 = 0x01260000;
125 cpu->id_mmfr3 = 0x02102211;
126 cpu->id_isar0 = 0x02101110;
127 cpu->id_isar1 = 0x13112111;
128 cpu->id_isar2 = 0x21232042;
129 cpu->id_isar3 = 0x01112131;
130 cpu->id_isar4 = 0x00011142;
131 cpu->id_isar5 = 0x00011121;
132 cpu->id_aa64pfr0 = 0x00002222;
133 cpu->id_aa64dfr0 = 0x10305106;
134 cpu->id_aa64isar0 = 0x00011120;
135 cpu->id_aa64mmfr0 = 0x00001124;
136 cpu->dbgdidr = 0x3516d000;
137 cpu->clidr = 0x0a200023;
138 cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
139 cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
140 cpu->ccsidr[2] = 0x70ffe07a; /* 2048KB L2 cache */
141 cpu->dcz_blocksize = 4; /* 64 bytes */
142 define_arm_cp_regs(cpu, cortexa57_cp_reginfo);
145 #ifdef CONFIG_USER_ONLY
146 static void aarch64_any_initfn(Object *obj)
148 ARMCPU *cpu = ARM_CPU(obj);
150 set_feature(&cpu->env, ARM_FEATURE_V8);
151 set_feature(&cpu->env, ARM_FEATURE_VFP4);
152 set_feature(&cpu->env, ARM_FEATURE_NEON);
153 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
154 set_feature(&cpu->env, ARM_FEATURE_V8_AES);
155 set_feature(&cpu->env, ARM_FEATURE_V8_SHA1);
156 set_feature(&cpu->env, ARM_FEATURE_V8_SHA256);
157 set_feature(&cpu->env, ARM_FEATURE_V8_PMULL);
158 set_feature(&cpu->env, ARM_FEATURE_CRC);
159 cpu->ctr = 0x80038003; /* 32 byte I and D cacheline size, VIPT icache */
160 cpu->dcz_blocksize = 7; /* 512 bytes */
162 #endif
164 typedef struct ARMCPUInfo {
165 const char *name;
166 void (*initfn)(Object *obj);
167 void (*class_init)(ObjectClass *oc, void *data);
168 } ARMCPUInfo;
170 static const ARMCPUInfo aarch64_cpus[] = {
171 { .name = "cortex-a57", .initfn = aarch64_a57_initfn },
172 #ifdef CONFIG_USER_ONLY
173 { .name = "any", .initfn = aarch64_any_initfn },
174 #endif
175 { .name = NULL }
178 static bool aarch64_cpu_get_aarch64(Object *obj, Error **errp)
180 ARMCPU *cpu = ARM_CPU(obj);
182 return arm_feature(&cpu->env, ARM_FEATURE_AARCH64);
185 static void aarch64_cpu_set_aarch64(Object *obj, bool value, Error **errp)
187 ARMCPU *cpu = ARM_CPU(obj);
189 /* At this time, this property is only allowed if KVM is enabled. This
190 * restriction allows us to avoid fixing up functionality that assumes a
191 * uniform execution state like do_interrupt.
193 if (!kvm_enabled()) {
194 error_setg(errp, "'aarch64' feature cannot be disabled "
195 "unless KVM is enabled");
196 return;
199 if (value == false) {
200 unset_feature(&cpu->env, ARM_FEATURE_AARCH64);
201 } else {
202 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
206 static void aarch64_cpu_initfn(Object *obj)
208 object_property_add_bool(obj, "aarch64", aarch64_cpu_get_aarch64,
209 aarch64_cpu_set_aarch64, NULL);
210 object_property_set_description(obj, "aarch64",
211 "Set on/off to enable/disable aarch64 "
212 "execution state ",
213 NULL);
216 static void aarch64_cpu_finalizefn(Object *obj)
220 static void aarch64_cpu_set_pc(CPUState *cs, vaddr value)
222 ARMCPU *cpu = ARM_CPU(cs);
223 /* It's OK to look at env for the current mode here, because it's
224 * never possible for an AArch64 TB to chain to an AArch32 TB.
225 * (Otherwise we would need to use synchronize_from_tb instead.)
227 if (is_a64(&cpu->env)) {
228 cpu->env.pc = value;
229 } else {
230 cpu->env.regs[15] = value;
234 static void aarch64_cpu_class_init(ObjectClass *oc, void *data)
236 CPUClass *cc = CPU_CLASS(oc);
238 #if !defined(CONFIG_USER_ONLY)
239 cc->do_interrupt = aarch64_cpu_do_interrupt;
240 #endif
241 cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
242 cc->set_pc = aarch64_cpu_set_pc;
243 cc->gdb_read_register = aarch64_cpu_gdb_read_register;
244 cc->gdb_write_register = aarch64_cpu_gdb_write_register;
245 cc->gdb_num_core_regs = 34;
246 cc->gdb_core_xml_file = "aarch64-core.xml";
249 static void aarch64_cpu_register(const ARMCPUInfo *info)
251 TypeInfo type_info = {
252 .parent = TYPE_AARCH64_CPU,
253 .instance_size = sizeof(ARMCPU),
254 .instance_init = info->initfn,
255 .class_size = sizeof(ARMCPUClass),
256 .class_init = info->class_init,
259 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
260 type_register(&type_info);
261 g_free((void *)type_info.name);
264 static const TypeInfo aarch64_cpu_type_info = {
265 .name = TYPE_AARCH64_CPU,
266 .parent = TYPE_ARM_CPU,
267 .instance_size = sizeof(ARMCPU),
268 .instance_init = aarch64_cpu_initfn,
269 .instance_finalize = aarch64_cpu_finalizefn,
270 .abstract = true,
271 .class_size = sizeof(AArch64CPUClass),
272 .class_init = aarch64_cpu_class_init,
275 static void aarch64_cpu_register_types(void)
277 const ARMCPUInfo *info = aarch64_cpus;
279 type_register_static(&aarch64_cpu_type_info);
281 while (info->name) {
282 aarch64_cpu_register(info);
283 info++;
287 type_init(aarch64_cpu_register_types)