qga/command: use QEMU atomic primitives
[qemu/ar7.git] / hw / s390x / sclp.c
blobe741da1141191bb5874c1e29eef6e07bb8aae918
1 /*
2 * SCLP Support
4 * Copyright IBM, Corp. 2012
6 * Authors:
7 * Christian Borntraeger <borntraeger@de.ibm.com>
8 * Heinz Graalfs <graalfs@linux.vnet.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or (at your
11 * option) any later version. See the COPYING file in the top-level directory.
15 #include "qemu/osdep.h"
16 #include "qapi/error.h"
17 #include "cpu.h"
18 #include "sysemu/kvm.h"
19 #include "exec/memory.h"
20 #include "sysemu/sysemu.h"
21 #include "exec/address-spaces.h"
22 #include "hw/boards.h"
23 #include "hw/s390x/sclp.h"
24 #include "hw/s390x/event-facility.h"
25 #include "hw/s390x/s390-pci-bus.h"
27 static inline SCLPDevice *get_sclp_device(void)
29 static SCLPDevice *sclp;
31 if (!sclp) {
32 sclp = SCLP(object_resolve_path_type("", TYPE_SCLP, NULL));
34 return sclp;
37 static void prepare_cpu_entries(SCLPDevice *sclp, CPUEntry *entry, int count)
39 uint8_t features[SCCB_CPU_FEATURE_LEN] = { 0 };
40 int i;
42 s390_get_feat_block(S390_FEAT_TYPE_SCLP_CPU, features);
43 for (i = 0; i < count; i++) {
44 entry[i].address = i;
45 entry[i].type = 0;
46 memcpy(entry[i].features, features, sizeof(entry[i].features));
50 /* Provide information about the configuration, CPUs and storage */
51 static void read_SCP_info(SCLPDevice *sclp, SCCB *sccb)
53 ReadInfo *read_info = (ReadInfo *) sccb;
54 MachineState *machine = MACHINE(qdev_get_machine());
55 sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
56 CPUState *cpu;
57 int cpu_count = 0;
58 int rnsize, rnmax;
59 int slots = MIN(machine->ram_slots, s390_get_memslot_count(kvm_state));
61 CPU_FOREACH(cpu) {
62 cpu_count++;
65 /* CPU information */
66 read_info->entries_cpu = cpu_to_be16(cpu_count);
67 read_info->offset_cpu = cpu_to_be16(offsetof(ReadInfo, entries));
68 read_info->highest_cpu = cpu_to_be16(max_cpus);
70 read_info->ibc_val = cpu_to_be32(s390_get_ibc_val());
72 /* Configuration Characteristic (Extension) */
73 s390_get_feat_block(S390_FEAT_TYPE_SCLP_CONF_CHAR,
74 read_info->conf_char);
75 s390_get_feat_block(S390_FEAT_TYPE_SCLP_CONF_CHAR_EXT,
76 read_info->conf_char_ext);
78 prepare_cpu_entries(sclp, read_info->entries, cpu_count);
80 read_info->facilities = cpu_to_be64(SCLP_HAS_CPU_INFO |
81 SCLP_HAS_PCI_RECONFIG);
83 /* Memory Hotplug is only supported for the ccw machine type */
84 if (mhd) {
85 mhd->standby_subregion_size = MEM_SECTION_SIZE;
86 /* Deduct the memory slot already used for core */
87 if (slots > 0) {
88 while ((mhd->standby_subregion_size * (slots - 1)
89 < mhd->standby_mem_size)) {
90 mhd->standby_subregion_size = mhd->standby_subregion_size << 1;
94 * Initialize mapping of guest standby memory sections indicating which
95 * are and are not online. Assume all standby memory begins offline.
97 if (mhd->standby_state_map == 0) {
98 if (mhd->standby_mem_size % mhd->standby_subregion_size) {
99 mhd->standby_state_map = g_malloc0((mhd->standby_mem_size /
100 mhd->standby_subregion_size + 1) *
101 (mhd->standby_subregion_size /
102 MEM_SECTION_SIZE));
103 } else {
104 mhd->standby_state_map = g_malloc0(mhd->standby_mem_size /
105 MEM_SECTION_SIZE);
108 mhd->padded_ram_size = ram_size + mhd->pad_size;
109 mhd->rzm = 1 << mhd->increment_size;
111 read_info->facilities |= cpu_to_be64(SCLP_FC_ASSIGN_ATTACH_READ_STOR);
113 read_info->mha_pow = s390_get_mha_pow();
114 read_info->hmfai = cpu_to_be32(s390_get_hmfai());
116 rnsize = 1 << (sclp->increment_size - 20);
117 if (rnsize <= 128) {
118 read_info->rnsize = rnsize;
119 } else {
120 read_info->rnsize = 0;
121 read_info->rnsize2 = cpu_to_be32(rnsize);
124 rnmax = machine->maxram_size >> sclp->increment_size;
125 if (rnmax < 0x10000) {
126 read_info->rnmax = cpu_to_be16(rnmax);
127 } else {
128 read_info->rnmax = cpu_to_be16(0);
129 read_info->rnmax2 = cpu_to_be64(rnmax);
132 sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION);
135 static void read_storage_element0_info(SCLPDevice *sclp, SCCB *sccb)
137 int i, assigned;
138 int subincrement_id = SCLP_STARTING_SUBINCREMENT_ID;
139 ReadStorageElementInfo *storage_info = (ReadStorageElementInfo *) sccb;
140 sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
142 if (!mhd) {
143 sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
144 return;
147 if ((ram_size >> mhd->increment_size) >= 0x10000) {
148 sccb->h.response_code = cpu_to_be16(SCLP_RC_SCCB_BOUNDARY_VIOLATION);
149 return;
152 /* Return information regarding core memory */
153 storage_info->max_id = cpu_to_be16(mhd->standby_mem_size ? 1 : 0);
154 assigned = ram_size >> mhd->increment_size;
155 storage_info->assigned = cpu_to_be16(assigned);
157 for (i = 0; i < assigned; i++) {
158 storage_info->entries[i] = cpu_to_be32(subincrement_id);
159 subincrement_id += SCLP_INCREMENT_UNIT;
161 sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION);
164 static void read_storage_element1_info(SCLPDevice *sclp, SCCB *sccb)
166 ReadStorageElementInfo *storage_info = (ReadStorageElementInfo *) sccb;
167 sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
169 if (!mhd) {
170 sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
171 return;
174 if ((mhd->standby_mem_size >> mhd->increment_size) >= 0x10000) {
175 sccb->h.response_code = cpu_to_be16(SCLP_RC_SCCB_BOUNDARY_VIOLATION);
176 return;
179 /* Return information regarding standby memory */
180 storage_info->max_id = cpu_to_be16(mhd->standby_mem_size ? 1 : 0);
181 storage_info->assigned = cpu_to_be16(mhd->standby_mem_size >>
182 mhd->increment_size);
183 storage_info->standby = cpu_to_be16(mhd->standby_mem_size >>
184 mhd->increment_size);
185 sccb->h.response_code = cpu_to_be16(SCLP_RC_STANDBY_READ_COMPLETION);
188 static void attach_storage_element(SCLPDevice *sclp, SCCB *sccb,
189 uint16_t element)
191 int i, assigned, subincrement_id;
192 AttachStorageElement *attach_info = (AttachStorageElement *) sccb;
193 sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
195 if (!mhd) {
196 sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
197 return;
200 if (element != 1) {
201 sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
202 return;
205 assigned = mhd->standby_mem_size >> mhd->increment_size;
206 attach_info->assigned = cpu_to_be16(assigned);
207 subincrement_id = ((ram_size >> mhd->increment_size) << 16)
208 + SCLP_STARTING_SUBINCREMENT_ID;
209 for (i = 0; i < assigned; i++) {
210 attach_info->entries[i] = cpu_to_be32(subincrement_id);
211 subincrement_id += SCLP_INCREMENT_UNIT;
213 sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION);
216 static void assign_storage(SCLPDevice *sclp, SCCB *sccb)
218 MemoryRegion *mr = NULL;
219 uint64_t this_subregion_size;
220 AssignStorage *assign_info = (AssignStorage *) sccb;
221 sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
222 ram_addr_t assign_addr;
223 MemoryRegion *sysmem = get_system_memory();
225 if (!mhd) {
226 sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
227 return;
229 assign_addr = (assign_info->rn - 1) * mhd->rzm;
231 if ((assign_addr % MEM_SECTION_SIZE == 0) &&
232 (assign_addr >= mhd->padded_ram_size)) {
233 /* Re-use existing memory region if found */
234 mr = memory_region_find(sysmem, assign_addr, 1).mr;
235 memory_region_unref(mr);
236 if (!mr) {
238 MemoryRegion *standby_ram = g_new(MemoryRegion, 1);
240 /* offset to align to standby_subregion_size for allocation */
241 ram_addr_t offset = assign_addr -
242 (assign_addr - mhd->padded_ram_size)
243 % mhd->standby_subregion_size;
245 /* strlen("standby.ram") + 4 (Max of KVM_MEMORY_SLOTS) + NULL */
246 char id[16];
247 snprintf(id, 16, "standby.ram%d",
248 (int)((offset - mhd->padded_ram_size) /
249 mhd->standby_subregion_size) + 1);
251 /* Allocate a subregion of the calculated standby_subregion_size */
252 if (offset + mhd->standby_subregion_size >
253 mhd->padded_ram_size + mhd->standby_mem_size) {
254 this_subregion_size = mhd->padded_ram_size +
255 mhd->standby_mem_size - offset;
256 } else {
257 this_subregion_size = mhd->standby_subregion_size;
260 memory_region_init_ram(standby_ram, NULL, id, this_subregion_size,
261 &error_fatal);
262 /* This is a hack to make memory hotunplug work again. Once we have
263 * subdevices, we have to unparent them when unassigning memory,
264 * instead of doing it via the ref count of the MemoryRegion. */
265 object_ref(OBJECT(standby_ram));
266 object_unparent(OBJECT(standby_ram));
267 vmstate_register_ram_global(standby_ram);
268 memory_region_add_subregion(sysmem, offset, standby_ram);
270 /* The specified subregion is no longer in standby */
271 mhd->standby_state_map[(assign_addr - mhd->padded_ram_size)
272 / MEM_SECTION_SIZE] = 1;
274 sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION);
277 static void unassign_storage(SCLPDevice *sclp, SCCB *sccb)
279 MemoryRegion *mr = NULL;
280 AssignStorage *assign_info = (AssignStorage *) sccb;
281 sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
282 ram_addr_t unassign_addr;
283 MemoryRegion *sysmem = get_system_memory();
285 if (!mhd) {
286 sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
287 return;
289 unassign_addr = (assign_info->rn - 1) * mhd->rzm;
291 /* if the addr is a multiple of 256 MB */
292 if ((unassign_addr % MEM_SECTION_SIZE == 0) &&
293 (unassign_addr >= mhd->padded_ram_size)) {
294 mhd->standby_state_map[(unassign_addr -
295 mhd->padded_ram_size) / MEM_SECTION_SIZE] = 0;
297 /* find the specified memory region and destroy it */
298 mr = memory_region_find(sysmem, unassign_addr, 1).mr;
299 memory_region_unref(mr);
300 if (mr) {
301 int i;
302 int is_removable = 1;
303 ram_addr_t map_offset = (unassign_addr - mhd->padded_ram_size -
304 (unassign_addr - mhd->padded_ram_size)
305 % mhd->standby_subregion_size);
306 /* Mark all affected subregions as 'standby' once again */
307 for (i = 0;
308 i < (mhd->standby_subregion_size / MEM_SECTION_SIZE);
309 i++) {
311 if (mhd->standby_state_map[i + map_offset / MEM_SECTION_SIZE]) {
312 is_removable = 0;
313 break;
316 if (is_removable) {
317 memory_region_del_subregion(sysmem, mr);
318 object_unref(OBJECT(mr));
322 sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION);
325 /* Provide information about the CPU */
326 static void sclp_read_cpu_info(SCLPDevice *sclp, SCCB *sccb)
328 ReadCpuInfo *cpu_info = (ReadCpuInfo *) sccb;
329 CPUState *cpu;
330 int cpu_count = 0;
332 CPU_FOREACH(cpu) {
333 cpu_count++;
336 cpu_info->nr_configured = cpu_to_be16(cpu_count);
337 cpu_info->offset_configured = cpu_to_be16(offsetof(ReadCpuInfo, entries));
338 cpu_info->nr_standby = cpu_to_be16(0);
340 /* The standby offset is 16-byte for each CPU */
341 cpu_info->offset_standby = cpu_to_be16(cpu_info->offset_configured
342 + cpu_info->nr_configured*sizeof(CPUEntry));
344 prepare_cpu_entries(sclp, cpu_info->entries, cpu_count);
346 sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION);
349 static void sclp_execute(SCLPDevice *sclp, SCCB *sccb, uint32_t code)
351 SCLPDeviceClass *sclp_c = SCLP_GET_CLASS(sclp);
352 SCLPEventFacility *ef = sclp->event_facility;
353 SCLPEventFacilityClass *efc = EVENT_FACILITY_GET_CLASS(ef);
355 switch (code & SCLP_CMD_CODE_MASK) {
356 case SCLP_CMDW_READ_SCP_INFO:
357 case SCLP_CMDW_READ_SCP_INFO_FORCED:
358 sclp_c->read_SCP_info(sclp, sccb);
359 break;
360 case SCLP_CMDW_READ_CPU_INFO:
361 sclp_c->read_cpu_info(sclp, sccb);
362 break;
363 case SCLP_READ_STORAGE_ELEMENT_INFO:
364 if (code & 0xff00) {
365 sclp_c->read_storage_element1_info(sclp, sccb);
366 } else {
367 sclp_c->read_storage_element0_info(sclp, sccb);
369 break;
370 case SCLP_ATTACH_STORAGE_ELEMENT:
371 sclp_c->attach_storage_element(sclp, sccb, (code & 0xff00) >> 8);
372 break;
373 case SCLP_ASSIGN_STORAGE:
374 sclp_c->assign_storage(sclp, sccb);
375 break;
376 case SCLP_UNASSIGN_STORAGE:
377 sclp_c->unassign_storage(sclp, sccb);
378 break;
379 case SCLP_CMDW_CONFIGURE_PCI:
380 s390_pci_sclp_configure(sccb);
381 break;
382 case SCLP_CMDW_DECONFIGURE_PCI:
383 s390_pci_sclp_deconfigure(sccb);
384 break;
385 default:
386 efc->command_handler(ef, sccb, code);
387 break;
391 int sclp_service_call(CPUS390XState *env, uint64_t sccb, uint32_t code)
393 SCLPDevice *sclp = get_sclp_device();
394 SCLPDeviceClass *sclp_c = SCLP_GET_CLASS(sclp);
395 int r = 0;
396 SCCB work_sccb;
398 hwaddr sccb_len = sizeof(SCCB);
400 /* first some basic checks on program checks */
401 if (env->psw.mask & PSW_MASK_PSTATE) {
402 r = -PGM_PRIVILEGED;
403 goto out;
405 if (cpu_physical_memory_is_io(sccb)) {
406 r = -PGM_ADDRESSING;
407 goto out;
409 if ((sccb & ~0x1fffUL) == 0 || (sccb & ~0x1fffUL) == env->psa
410 || (sccb & ~0x7ffffff8UL) != 0) {
411 r = -PGM_SPECIFICATION;
412 goto out;
416 * we want to work on a private copy of the sccb, to prevent guests
417 * from playing dirty tricks by modifying the memory content after
418 * the host has checked the values
420 cpu_physical_memory_read(sccb, &work_sccb, sccb_len);
422 /* Valid sccb sizes */
423 if (be16_to_cpu(work_sccb.h.length) < sizeof(SCCBHeader) ||
424 be16_to_cpu(work_sccb.h.length) > SCCB_SIZE) {
425 r = -PGM_SPECIFICATION;
426 goto out;
429 sclp_c->execute(sclp, &work_sccb, code);
431 cpu_physical_memory_write(sccb, &work_sccb,
432 be16_to_cpu(work_sccb.h.length));
434 sclp_c->service_interrupt(sclp, sccb);
436 out:
437 return r;
440 static void service_interrupt(SCLPDevice *sclp, uint32_t sccb)
442 SCLPEventFacility *ef = sclp->event_facility;
443 SCLPEventFacilityClass *efc = EVENT_FACILITY_GET_CLASS(ef);
445 uint32_t param = sccb & ~3;
447 /* Indicate whether an event is still pending */
448 param |= efc->event_pending(ef) ? 1 : 0;
450 if (!param) {
451 /* No need to send an interrupt, there's nothing to be notified about */
452 return;
454 s390_sclp_extint(param);
457 void sclp_service_interrupt(uint32_t sccb)
459 SCLPDevice *sclp = get_sclp_device();
460 SCLPDeviceClass *sclp_c = SCLP_GET_CLASS(sclp);
462 sclp_c->service_interrupt(sclp, sccb);
465 /* qemu object creation and initialization functions */
467 void s390_sclp_init(void)
469 Object *new = object_new(TYPE_SCLP);
471 object_property_add_child(qdev_get_machine(), TYPE_SCLP, new,
472 NULL);
473 object_unref(OBJECT(new));
474 qdev_init_nofail(DEVICE(new));
477 static void sclp_realize(DeviceState *dev, Error **errp)
479 MachineState *machine = MACHINE(qdev_get_machine());
480 SCLPDevice *sclp = SCLP(dev);
481 Error *err = NULL;
482 uint64_t hw_limit;
483 int ret;
485 object_property_set_bool(OBJECT(sclp->event_facility), true, "realized",
486 &err);
487 if (err) {
488 goto out;
491 * qdev_device_add searches the sysbus for TYPE_SCLP_EVENTS_BUS. As long
492 * as we can't find a fitting bus via the qom tree, we have to add the
493 * event facility to the sysbus, so e.g. a sclp console can be created.
495 qdev_set_parent_bus(DEVICE(sclp->event_facility), sysbus_get_default());
497 ret = s390_set_memory_limit(machine->maxram_size, &hw_limit);
498 if (ret == -E2BIG) {
499 error_setg(&err, "qemu: host supports a maximum of %" PRIu64 " GB",
500 hw_limit >> 30);
501 } else if (ret) {
502 error_setg(&err, "qemu: setting the guest size failed");
505 out:
506 error_propagate(errp, err);
509 static void sclp_memory_init(SCLPDevice *sclp)
511 MachineState *machine = MACHINE(qdev_get_machine());
512 ram_addr_t initial_mem = machine->ram_size;
513 ram_addr_t max_mem = machine->maxram_size;
514 ram_addr_t standby_mem = max_mem - initial_mem;
515 ram_addr_t pad_mem = 0;
516 int increment_size = 20;
518 /* The storage increment size is a multiple of 1M and is a power of 2.
519 * The number of storage increments must be MAX_STORAGE_INCREMENTS or fewer.
520 * The variable 'increment_size' is an exponent of 2 that can be
521 * used to calculate the size (in bytes) of an increment. */
522 while ((initial_mem >> increment_size) > MAX_STORAGE_INCREMENTS) {
523 increment_size++;
525 if (machine->ram_slots) {
526 while ((standby_mem >> increment_size) > MAX_STORAGE_INCREMENTS) {
527 increment_size++;
530 sclp->increment_size = increment_size;
532 /* The core and standby memory areas need to be aligned with
533 * the increment size. In effect, this can cause the
534 * user-specified memory size to be rounded down to align
535 * with the nearest increment boundary. */
536 initial_mem = initial_mem >> increment_size << increment_size;
537 standby_mem = standby_mem >> increment_size << increment_size;
539 /* If the size of ram is not on a MEM_SECTION_SIZE boundary,
540 calculate the pad size necessary to force this boundary. */
541 if (machine->ram_slots && standby_mem) {
542 sclpMemoryHotplugDev *mhd = init_sclp_memory_hotplug_dev();
544 if (initial_mem % MEM_SECTION_SIZE) {
545 pad_mem = MEM_SECTION_SIZE - initial_mem % MEM_SECTION_SIZE;
547 mhd->increment_size = increment_size;
548 mhd->pad_size = pad_mem;
549 mhd->standby_mem_size = standby_mem;
551 machine->ram_size = initial_mem;
552 machine->maxram_size = initial_mem + pad_mem + standby_mem;
553 /* let's propagate the changed ram size into the global variable. */
554 ram_size = initial_mem;
557 static void sclp_init(Object *obj)
559 SCLPDevice *sclp = SCLP(obj);
560 Object *new;
562 new = object_new(TYPE_SCLP_EVENT_FACILITY);
563 object_property_add_child(obj, TYPE_SCLP_EVENT_FACILITY, new, NULL);
564 object_unref(new);
565 sclp->event_facility = EVENT_FACILITY(new);
567 sclp_memory_init(sclp);
570 static void sclp_class_init(ObjectClass *oc, void *data)
572 SCLPDeviceClass *sc = SCLP_CLASS(oc);
573 DeviceClass *dc = DEVICE_CLASS(oc);
575 dc->desc = "SCLP (Service-Call Logical Processor)";
576 dc->realize = sclp_realize;
577 dc->hotpluggable = false;
578 set_bit(DEVICE_CATEGORY_MISC, dc->categories);
580 sc->read_SCP_info = read_SCP_info;
581 sc->read_storage_element0_info = read_storage_element0_info;
582 sc->read_storage_element1_info = read_storage_element1_info;
583 sc->attach_storage_element = attach_storage_element;
584 sc->assign_storage = assign_storage;
585 sc->unassign_storage = unassign_storage;
586 sc->read_cpu_info = sclp_read_cpu_info;
587 sc->execute = sclp_execute;
588 sc->service_interrupt = service_interrupt;
591 static TypeInfo sclp_info = {
592 .name = TYPE_SCLP,
593 .parent = TYPE_DEVICE,
594 .instance_init = sclp_init,
595 .instance_size = sizeof(SCLPDevice),
596 .class_init = sclp_class_init,
597 .class_size = sizeof(SCLPDeviceClass),
600 sclpMemoryHotplugDev *init_sclp_memory_hotplug_dev(void)
602 DeviceState *dev;
603 dev = qdev_create(NULL, TYPE_SCLP_MEMORY_HOTPLUG_DEV);
604 object_property_add_child(qdev_get_machine(),
605 TYPE_SCLP_MEMORY_HOTPLUG_DEV,
606 OBJECT(dev), NULL);
607 qdev_init_nofail(dev);
608 return SCLP_MEMORY_HOTPLUG_DEV(object_resolve_path(
609 TYPE_SCLP_MEMORY_HOTPLUG_DEV, NULL));
612 sclpMemoryHotplugDev *get_sclp_memory_hotplug_dev(void)
614 return SCLP_MEMORY_HOTPLUG_DEV(object_resolve_path(
615 TYPE_SCLP_MEMORY_HOTPLUG_DEV, NULL));
618 static void sclp_memory_hotplug_dev_class_init(ObjectClass *klass,
619 void *data)
621 DeviceClass *dc = DEVICE_CLASS(klass);
623 set_bit(DEVICE_CATEGORY_MISC, dc->categories);
626 static TypeInfo sclp_memory_hotplug_dev_info = {
627 .name = TYPE_SCLP_MEMORY_HOTPLUG_DEV,
628 .parent = TYPE_SYS_BUS_DEVICE,
629 .instance_size = sizeof(sclpMemoryHotplugDev),
630 .class_init = sclp_memory_hotplug_dev_class_init,
633 static void register_types(void)
635 type_register_static(&sclp_memory_hotplug_dev_info);
636 type_register_static(&sclp_info);
638 type_init(register_types);