spapr: Simplify error handling in callers of ppc_set_compat()
[qemu/ar7.git] / hw / ppc / spapr.c
blob0f82e657e32ce85b073eca0ab43428532369f896
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qapi/error.h"
30 #include "qapi/visitor.h"
31 #include "sysemu/sysemu.h"
32 #include "sysemu/hostmem.h"
33 #include "sysemu/numa.h"
34 #include "sysemu/qtest.h"
35 #include "sysemu/reset.h"
36 #include "sysemu/runstate.h"
37 #include "qemu/log.h"
38 #include "hw/fw-path-provider.h"
39 #include "elf.h"
40 #include "net/net.h"
41 #include "sysemu/device_tree.h"
42 #include "sysemu/cpus.h"
43 #include "sysemu/hw_accel.h"
44 #include "kvm_ppc.h"
45 #include "migration/misc.h"
46 #include "migration/qemu-file-types.h"
47 #include "migration/global_state.h"
48 #include "migration/register.h"
49 #include "migration/blocker.h"
50 #include "mmu-hash64.h"
51 #include "mmu-book3s-v3.h"
52 #include "cpu-models.h"
53 #include "hw/core/cpu.h"
55 #include "hw/boards.h"
56 #include "hw/ppc/ppc.h"
57 #include "hw/loader.h"
59 #include "hw/ppc/fdt.h"
60 #include "hw/ppc/spapr.h"
61 #include "hw/ppc/spapr_vio.h"
62 #include "hw/qdev-properties.h"
63 #include "hw/pci-host/spapr.h"
64 #include "hw/pci/msi.h"
66 #include "hw/pci/pci.h"
67 #include "hw/scsi/scsi.h"
68 #include "hw/virtio/virtio-scsi.h"
69 #include "hw/virtio/vhost-scsi-common.h"
71 #include "exec/address-spaces.h"
72 #include "exec/ram_addr.h"
73 #include "hw/usb.h"
74 #include "qemu/config-file.h"
75 #include "qemu/error-report.h"
76 #include "trace.h"
77 #include "hw/nmi.h"
78 #include "hw/intc/intc.h"
80 #include "hw/ppc/spapr_cpu_core.h"
81 #include "hw/mem/memory-device.h"
82 #include "hw/ppc/spapr_tpm_proxy.h"
83 #include "hw/ppc/spapr_nvdimm.h"
84 #include "hw/ppc/spapr_numa.h"
86 #include "monitor/monitor.h"
88 #include <libfdt.h>
90 /* SLOF memory layout:
92 * SLOF raw image loaded at 0, copies its romfs right below the flat
93 * device-tree, then position SLOF itself 31M below that
95 * So we set FW_OVERHEAD to 40MB which should account for all of that
96 * and more
98 * We load our kernel at 4M, leaving space for SLOF initial image
100 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
101 #define FW_MAX_SIZE 0x400000
102 #define FW_FILE_NAME "slof.bin"
103 #define FW_OVERHEAD 0x2800000
104 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
106 #define MIN_RMA_SLOF (128 * MiB)
108 #define PHANDLE_INTC 0x00001111
110 /* These two functions implement the VCPU id numbering: one to compute them
111 * all and one to identify thread 0 of a VCORE. Any change to the first one
112 * is likely to have an impact on the second one, so let's keep them close.
114 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
116 MachineState *ms = MACHINE(spapr);
117 unsigned int smp_threads = ms->smp.threads;
119 assert(spapr->vsmt);
120 return
121 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
123 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
124 PowerPCCPU *cpu)
126 assert(spapr->vsmt);
127 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
130 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
132 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
133 * and newer QEMUs don't even have them. In both cases, we don't want
134 * to send anything on the wire.
136 return false;
139 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
140 .name = "icp/server",
141 .version_id = 1,
142 .minimum_version_id = 1,
143 .needed = pre_2_10_vmstate_dummy_icp_needed,
144 .fields = (VMStateField[]) {
145 VMSTATE_UNUSED(4), /* uint32_t xirr */
146 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
147 VMSTATE_UNUSED(1), /* uint8_t mfrr */
148 VMSTATE_END_OF_LIST()
152 static void pre_2_10_vmstate_register_dummy_icp(int i)
154 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
155 (void *)(uintptr_t) i);
158 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
160 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
161 (void *)(uintptr_t) i);
164 int spapr_max_server_number(SpaprMachineState *spapr)
166 MachineState *ms = MACHINE(spapr);
168 assert(spapr->vsmt);
169 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
172 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
173 int smt_threads)
175 int i, ret = 0;
176 uint32_t servers_prop[smt_threads];
177 uint32_t gservers_prop[smt_threads * 2];
178 int index = spapr_get_vcpu_id(cpu);
180 if (cpu->compat_pvr) {
181 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
182 if (ret < 0) {
183 return ret;
187 /* Build interrupt servers and gservers properties */
188 for (i = 0; i < smt_threads; i++) {
189 servers_prop[i] = cpu_to_be32(index + i);
190 /* Hack, direct the group queues back to cpu 0 */
191 gservers_prop[i*2] = cpu_to_be32(index + i);
192 gservers_prop[i*2 + 1] = 0;
194 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
195 servers_prop, sizeof(servers_prop));
196 if (ret < 0) {
197 return ret;
199 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
200 gservers_prop, sizeof(gservers_prop));
202 return ret;
205 static void spapr_dt_pa_features(SpaprMachineState *spapr,
206 PowerPCCPU *cpu,
207 void *fdt, int offset)
209 uint8_t pa_features_206[] = { 6, 0,
210 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
211 uint8_t pa_features_207[] = { 24, 0,
212 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
213 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
214 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
215 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
216 uint8_t pa_features_300[] = { 66, 0,
217 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
218 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
219 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
220 /* 6: DS207 */
221 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
222 /* 16: Vector */
223 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
224 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
225 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
226 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
227 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
228 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
229 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
230 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
231 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
232 /* 42: PM, 44: PC RA, 46: SC vec'd */
233 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
234 /* 48: SIMD, 50: QP BFP, 52: String */
235 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
236 /* 54: DecFP, 56: DecI, 58: SHA */
237 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
238 /* 60: NM atomic, 62: RNG */
239 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
241 uint8_t *pa_features = NULL;
242 size_t pa_size;
244 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
245 pa_features = pa_features_206;
246 pa_size = sizeof(pa_features_206);
248 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
249 pa_features = pa_features_207;
250 pa_size = sizeof(pa_features_207);
252 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
253 pa_features = pa_features_300;
254 pa_size = sizeof(pa_features_300);
256 if (!pa_features) {
257 return;
260 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
262 * Note: we keep CI large pages off by default because a 64K capable
263 * guest provisioned with large pages might otherwise try to map a qemu
264 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
265 * even if that qemu runs on a 4k host.
266 * We dd this bit back here if we are confident this is not an issue
268 pa_features[3] |= 0x20;
270 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
271 pa_features[24] |= 0x80; /* Transactional memory support */
273 if (spapr->cas_pre_isa3_guest && pa_size > 40) {
274 /* Workaround for broken kernels that attempt (guest) radix
275 * mode when they can't handle it, if they see the radix bit set
276 * in pa-features. So hide it from them. */
277 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
280 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
283 static hwaddr spapr_node0_size(MachineState *machine)
285 if (machine->numa_state->num_nodes) {
286 int i;
287 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
288 if (machine->numa_state->nodes[i].node_mem) {
289 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
290 machine->ram_size);
294 return machine->ram_size;
297 static void add_str(GString *s, const gchar *s1)
299 g_string_append_len(s, s1, strlen(s1) + 1);
302 static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid,
303 hwaddr start, hwaddr size)
305 char mem_name[32];
306 uint64_t mem_reg_property[2];
307 int off;
309 mem_reg_property[0] = cpu_to_be64(start);
310 mem_reg_property[1] = cpu_to_be64(size);
312 sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
313 off = fdt_add_subnode(fdt, 0, mem_name);
314 _FDT(off);
315 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
316 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
317 sizeof(mem_reg_property))));
318 spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid);
319 return off;
322 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
324 MemoryDeviceInfoList *info;
326 for (info = list; info; info = info->next) {
327 MemoryDeviceInfo *value = info->value;
329 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
330 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
332 if (addr >= pcdimm_info->addr &&
333 addr < (pcdimm_info->addr + pcdimm_info->size)) {
334 return pcdimm_info->node;
339 return -1;
342 struct sPAPRDrconfCellV2 {
343 uint32_t seq_lmbs;
344 uint64_t base_addr;
345 uint32_t drc_index;
346 uint32_t aa_index;
347 uint32_t flags;
348 } QEMU_PACKED;
350 typedef struct DrconfCellQueue {
351 struct sPAPRDrconfCellV2 cell;
352 QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
353 } DrconfCellQueue;
355 static DrconfCellQueue *
356 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
357 uint32_t drc_index, uint32_t aa_index,
358 uint32_t flags)
360 DrconfCellQueue *elem;
362 elem = g_malloc0(sizeof(*elem));
363 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
364 elem->cell.base_addr = cpu_to_be64(base_addr);
365 elem->cell.drc_index = cpu_to_be32(drc_index);
366 elem->cell.aa_index = cpu_to_be32(aa_index);
367 elem->cell.flags = cpu_to_be32(flags);
369 return elem;
372 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt,
373 int offset, MemoryDeviceInfoList *dimms)
375 MachineState *machine = MACHINE(spapr);
376 uint8_t *int_buf, *cur_index;
377 int ret;
378 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
379 uint64_t addr, cur_addr, size;
380 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
381 uint64_t mem_end = machine->device_memory->base +
382 memory_region_size(&machine->device_memory->mr);
383 uint32_t node, buf_len, nr_entries = 0;
384 SpaprDrc *drc;
385 DrconfCellQueue *elem, *next;
386 MemoryDeviceInfoList *info;
387 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
388 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
390 /* Entry to cover RAM and the gap area */
391 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
392 SPAPR_LMB_FLAGS_RESERVED |
393 SPAPR_LMB_FLAGS_DRC_INVALID);
394 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
395 nr_entries++;
397 cur_addr = machine->device_memory->base;
398 for (info = dimms; info; info = info->next) {
399 PCDIMMDeviceInfo *di = info->value->u.dimm.data;
401 addr = di->addr;
402 size = di->size;
403 node = di->node;
406 * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
407 * area is marked hotpluggable in the next iteration for the bigger
408 * chunk including the NVDIMM occupied area.
410 if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM)
411 continue;
413 /* Entry for hot-pluggable area */
414 if (cur_addr < addr) {
415 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
416 g_assert(drc);
417 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
418 cur_addr, spapr_drc_index(drc), -1, 0);
419 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
420 nr_entries++;
423 /* Entry for DIMM */
424 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
425 g_assert(drc);
426 elem = spapr_get_drconf_cell(size / lmb_size, addr,
427 spapr_drc_index(drc), node,
428 (SPAPR_LMB_FLAGS_ASSIGNED |
429 SPAPR_LMB_FLAGS_HOTREMOVABLE));
430 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
431 nr_entries++;
432 cur_addr = addr + size;
435 /* Entry for remaining hotpluggable area */
436 if (cur_addr < mem_end) {
437 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
438 g_assert(drc);
439 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
440 cur_addr, spapr_drc_index(drc), -1, 0);
441 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
442 nr_entries++;
445 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
446 int_buf = cur_index = g_malloc0(buf_len);
447 *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
448 cur_index += sizeof(nr_entries);
450 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
451 memcpy(cur_index, &elem->cell, sizeof(elem->cell));
452 cur_index += sizeof(elem->cell);
453 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
454 g_free(elem);
457 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
458 g_free(int_buf);
459 if (ret < 0) {
460 return -1;
462 return 0;
465 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt,
466 int offset, MemoryDeviceInfoList *dimms)
468 MachineState *machine = MACHINE(spapr);
469 int i, ret;
470 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
471 uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
472 uint32_t nr_lmbs = (machine->device_memory->base +
473 memory_region_size(&machine->device_memory->mr)) /
474 lmb_size;
475 uint32_t *int_buf, *cur_index, buf_len;
478 * Allocate enough buffer size to fit in ibm,dynamic-memory
480 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
481 cur_index = int_buf = g_malloc0(buf_len);
482 int_buf[0] = cpu_to_be32(nr_lmbs);
483 cur_index++;
484 for (i = 0; i < nr_lmbs; i++) {
485 uint64_t addr = i * lmb_size;
486 uint32_t *dynamic_memory = cur_index;
488 if (i >= device_lmb_start) {
489 SpaprDrc *drc;
491 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
492 g_assert(drc);
494 dynamic_memory[0] = cpu_to_be32(addr >> 32);
495 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
496 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
497 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
498 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
499 if (memory_region_present(get_system_memory(), addr)) {
500 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
501 } else {
502 dynamic_memory[5] = cpu_to_be32(0);
504 } else {
506 * LMB information for RMA, boot time RAM and gap b/n RAM and
507 * device memory region -- all these are marked as reserved
508 * and as having no valid DRC.
510 dynamic_memory[0] = cpu_to_be32(addr >> 32);
511 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
512 dynamic_memory[2] = cpu_to_be32(0);
513 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
514 dynamic_memory[4] = cpu_to_be32(-1);
515 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
516 SPAPR_LMB_FLAGS_DRC_INVALID);
519 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
521 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
522 g_free(int_buf);
523 if (ret < 0) {
524 return -1;
526 return 0;
530 * Adds ibm,dynamic-reconfiguration-memory node.
531 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
532 * of this device tree node.
534 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr,
535 void *fdt)
537 MachineState *machine = MACHINE(spapr);
538 int ret, offset;
539 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
540 uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32),
541 cpu_to_be32(lmb_size & 0xffffffff)};
542 MemoryDeviceInfoList *dimms = NULL;
545 * Don't create the node if there is no device memory
547 if (machine->ram_size == machine->maxram_size) {
548 return 0;
551 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
553 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
554 sizeof(prop_lmb_size));
555 if (ret < 0) {
556 return ret;
559 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
560 if (ret < 0) {
561 return ret;
564 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
565 if (ret < 0) {
566 return ret;
569 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
570 dimms = qmp_memory_device_list();
571 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
572 ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms);
573 } else {
574 ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms);
576 qapi_free_MemoryDeviceInfoList(dimms);
578 if (ret < 0) {
579 return ret;
582 ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset);
584 return ret;
587 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt)
589 MachineState *machine = MACHINE(spapr);
590 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
591 hwaddr mem_start, node_size;
592 int i, nb_nodes = machine->numa_state->num_nodes;
593 NodeInfo *nodes = machine->numa_state->nodes;
595 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
596 if (!nodes[i].node_mem) {
597 continue;
599 if (mem_start >= machine->ram_size) {
600 node_size = 0;
601 } else {
602 node_size = nodes[i].node_mem;
603 if (node_size > machine->ram_size - mem_start) {
604 node_size = machine->ram_size - mem_start;
607 if (!mem_start) {
608 /* spapr_machine_init() checks for rma_size <= node0_size
609 * already */
610 spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size);
611 mem_start += spapr->rma_size;
612 node_size -= spapr->rma_size;
614 for ( ; node_size; ) {
615 hwaddr sizetmp = pow2floor(node_size);
617 /* mem_start != 0 here */
618 if (ctzl(mem_start) < ctzl(sizetmp)) {
619 sizetmp = 1ULL << ctzl(mem_start);
622 spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp);
623 node_size -= sizetmp;
624 mem_start += sizetmp;
628 /* Generate ibm,dynamic-reconfiguration-memory node if required */
629 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) {
630 int ret;
632 g_assert(smc->dr_lmb_enabled);
633 ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt);
634 if (ret) {
635 return ret;
639 return 0;
642 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset,
643 SpaprMachineState *spapr)
645 MachineState *ms = MACHINE(spapr);
646 PowerPCCPU *cpu = POWERPC_CPU(cs);
647 CPUPPCState *env = &cpu->env;
648 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
649 int index = spapr_get_vcpu_id(cpu);
650 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
651 0xffffffff, 0xffffffff};
652 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
653 : SPAPR_TIMEBASE_FREQ;
654 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
655 uint32_t page_sizes_prop[64];
656 size_t page_sizes_prop_size;
657 unsigned int smp_threads = ms->smp.threads;
658 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
659 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
660 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
661 SpaprDrc *drc;
662 int drc_index;
663 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
664 int i;
666 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
667 if (drc) {
668 drc_index = spapr_drc_index(drc);
669 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
672 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
673 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
675 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
676 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
677 env->dcache_line_size)));
678 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
679 env->dcache_line_size)));
680 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
681 env->icache_line_size)));
682 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
683 env->icache_line_size)));
685 if (pcc->l1_dcache_size) {
686 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
687 pcc->l1_dcache_size)));
688 } else {
689 warn_report("Unknown L1 dcache size for cpu");
691 if (pcc->l1_icache_size) {
692 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
693 pcc->l1_icache_size)));
694 } else {
695 warn_report("Unknown L1 icache size for cpu");
698 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
699 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
700 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
701 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
702 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
703 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
705 if (env->spr_cb[SPR_PURR].oea_read) {
706 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
708 if (env->spr_cb[SPR_SPURR].oea_read) {
709 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
712 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
713 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
714 segs, sizeof(segs))));
717 /* Advertise VSX (vector extensions) if available
718 * 1 == VMX / Altivec available
719 * 2 == VSX available
721 * Only CPUs for which we create core types in spapr_cpu_core.c
722 * are possible, and all of those have VMX */
723 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
724 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
725 } else {
726 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
729 /* Advertise DFP (Decimal Floating Point) if available
730 * 0 / no property == no DFP
731 * 1 == DFP available */
732 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
733 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
736 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
737 sizeof(page_sizes_prop));
738 if (page_sizes_prop_size) {
739 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
740 page_sizes_prop, page_sizes_prop_size)));
743 spapr_dt_pa_features(spapr, cpu, fdt, offset);
745 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
746 cs->cpu_index / vcpus_per_socket)));
748 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
749 pft_size_prop, sizeof(pft_size_prop))));
751 if (ms->numa_state->num_nodes > 1) {
752 _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu));
755 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
757 if (pcc->radix_page_info) {
758 for (i = 0; i < pcc->radix_page_info->count; i++) {
759 radix_AP_encodings[i] =
760 cpu_to_be32(pcc->radix_page_info->entries[i]);
762 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
763 radix_AP_encodings,
764 pcc->radix_page_info->count *
765 sizeof(radix_AP_encodings[0]))));
769 * We set this property to let the guest know that it can use the large
770 * decrementer and its width in bits.
772 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
773 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
774 pcc->lrg_decr_bits)));
777 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr)
779 CPUState **rev;
780 CPUState *cs;
781 int n_cpus;
782 int cpus_offset;
783 char *nodename;
784 int i;
786 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
787 _FDT(cpus_offset);
788 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
789 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
792 * We walk the CPUs in reverse order to ensure that CPU DT nodes
793 * created by fdt_add_subnode() end up in the right order in FDT
794 * for the guest kernel the enumerate the CPUs correctly.
796 * The CPU list cannot be traversed in reverse order, so we need
797 * to do extra work.
799 n_cpus = 0;
800 rev = NULL;
801 CPU_FOREACH(cs) {
802 rev = g_renew(CPUState *, rev, n_cpus + 1);
803 rev[n_cpus++] = cs;
806 for (i = n_cpus - 1; i >= 0; i--) {
807 CPUState *cs = rev[i];
808 PowerPCCPU *cpu = POWERPC_CPU(cs);
809 int index = spapr_get_vcpu_id(cpu);
810 DeviceClass *dc = DEVICE_GET_CLASS(cs);
811 int offset;
813 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
814 continue;
817 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
818 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
819 g_free(nodename);
820 _FDT(offset);
821 spapr_dt_cpu(cs, fdt, offset, spapr);
824 g_free(rev);
827 static int spapr_dt_rng(void *fdt)
829 int node;
830 int ret;
832 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
833 if (node <= 0) {
834 return -1;
836 ret = fdt_setprop_string(fdt, node, "device_type",
837 "ibm,platform-facilities");
838 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
839 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
841 node = fdt_add_subnode(fdt, node, "ibm,random-v1");
842 if (node <= 0) {
843 return -1;
845 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
847 return ret ? -1 : 0;
850 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
852 MachineState *ms = MACHINE(spapr);
853 int rtas;
854 GString *hypertas = g_string_sized_new(256);
855 GString *qemu_hypertas = g_string_sized_new(256);
856 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
857 memory_region_size(&MACHINE(spapr)->device_memory->mr);
858 uint32_t lrdr_capacity[] = {
859 cpu_to_be32(max_device_addr >> 32),
860 cpu_to_be32(max_device_addr & 0xffffffff),
861 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32),
862 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff),
863 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
866 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
868 /* hypertas */
869 add_str(hypertas, "hcall-pft");
870 add_str(hypertas, "hcall-term");
871 add_str(hypertas, "hcall-dabr");
872 add_str(hypertas, "hcall-interrupt");
873 add_str(hypertas, "hcall-tce");
874 add_str(hypertas, "hcall-vio");
875 add_str(hypertas, "hcall-splpar");
876 add_str(hypertas, "hcall-join");
877 add_str(hypertas, "hcall-bulk");
878 add_str(hypertas, "hcall-set-mode");
879 add_str(hypertas, "hcall-sprg0");
880 add_str(hypertas, "hcall-copy");
881 add_str(hypertas, "hcall-debug");
882 add_str(hypertas, "hcall-vphn");
883 add_str(qemu_hypertas, "hcall-memop1");
885 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
886 add_str(hypertas, "hcall-multi-tce");
889 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
890 add_str(hypertas, "hcall-hpt-resize");
893 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
894 hypertas->str, hypertas->len));
895 g_string_free(hypertas, TRUE);
896 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
897 qemu_hypertas->str, qemu_hypertas->len));
898 g_string_free(qemu_hypertas, TRUE);
900 spapr_numa_write_rtas_dt(spapr, fdt, rtas);
903 * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
904 * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
906 * The system reset requirements are driven by existing Linux and PowerVM
907 * implementation which (contrary to PAPR) saves r3 in the error log
908 * structure like machine check, so Linux expects to find the saved r3
909 * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
910 * does not look at the error value).
912 * System reset interrupts are not subject to interlock like machine
913 * check, so this memory area could be corrupted if the sreset is
914 * interrupted by a machine check (or vice versa) if it was shared. To
915 * prevent this, system reset uses per-CPU areas for the sreset save
916 * area. A system reset that interrupts a system reset handler could
917 * still overwrite this area, but Linux doesn't try to recover in that
918 * case anyway.
920 * The extra 8 bytes is required because Linux's FWNMI error log check
921 * is off-by-one.
923 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_ERROR_LOG_MAX +
924 ms->smp.max_cpus * sizeof(uint64_t)*2 + sizeof(uint64_t)));
925 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
926 RTAS_ERROR_LOG_MAX));
927 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
928 RTAS_EVENT_SCAN_RATE));
930 g_assert(msi_nonbroken);
931 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
934 * According to PAPR, rtas ibm,os-term does not guarantee a return
935 * back to the guest cpu.
937 * While an additional ibm,extended-os-term property indicates
938 * that rtas call return will always occur. Set this property.
940 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
942 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
943 lrdr_capacity, sizeof(lrdr_capacity)));
945 spapr_dt_rtas_tokens(fdt, rtas);
949 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
950 * and the XIVE features that the guest may request and thus the valid
951 * values for bytes 23..26 of option vector 5:
953 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
954 int chosen)
956 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
958 char val[2 * 4] = {
959 23, 0x00, /* XICS / XIVE mode */
960 24, 0x00, /* Hash/Radix, filled in below. */
961 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
962 26, 0x40, /* Radix options: GTSE == yes. */
965 if (spapr->irq->xics && spapr->irq->xive) {
966 val[1] = SPAPR_OV5_XIVE_BOTH;
967 } else if (spapr->irq->xive) {
968 val[1] = SPAPR_OV5_XIVE_EXPLOIT;
969 } else {
970 assert(spapr->irq->xics);
971 val[1] = SPAPR_OV5_XIVE_LEGACY;
974 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
975 first_ppc_cpu->compat_pvr)) {
977 * If we're in a pre POWER9 compat mode then the guest should
978 * do hash and use the legacy interrupt mode
980 val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
981 val[3] = 0x00; /* Hash */
982 } else if (kvm_enabled()) {
983 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
984 val[3] = 0x80; /* OV5_MMU_BOTH */
985 } else if (kvmppc_has_cap_mmu_radix()) {
986 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
987 } else {
988 val[3] = 0x00; /* Hash */
990 } else {
991 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
992 val[3] = 0xC0;
994 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
995 val, sizeof(val)));
998 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset)
1000 MachineState *machine = MACHINE(spapr);
1001 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1002 int chosen;
1004 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1006 if (reset) {
1007 const char *boot_device = machine->boot_order;
1008 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1009 size_t cb = 0;
1010 char *bootlist = get_boot_devices_list(&cb);
1012 if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1013 _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1014 machine->kernel_cmdline));
1017 if (spapr->initrd_size) {
1018 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1019 spapr->initrd_base));
1020 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1021 spapr->initrd_base + spapr->initrd_size));
1024 if (spapr->kernel_size) {
1025 uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr),
1026 cpu_to_be64(spapr->kernel_size) };
1028 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1029 &kprop, sizeof(kprop)));
1030 if (spapr->kernel_le) {
1031 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1034 if (boot_menu) {
1035 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1037 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1038 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1039 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1041 if (cb && bootlist) {
1042 int i;
1044 for (i = 0; i < cb; i++) {
1045 if (bootlist[i] == '\n') {
1046 bootlist[i] = ' ';
1049 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1052 if (boot_device && strlen(boot_device)) {
1053 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1056 if (!spapr->has_graphics && stdout_path) {
1058 * "linux,stdout-path" and "stdout" properties are
1059 * deprecated by linux kernel. New platforms should only
1060 * use the "stdout-path" property. Set the new property
1061 * and continue using older property to remain compatible
1062 * with the existing firmware.
1064 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1065 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1069 * We can deal with BAR reallocation just fine, advertise it
1070 * to the guest
1072 if (smc->linux_pci_probe) {
1073 _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1076 spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1078 g_free(stdout_path);
1079 g_free(bootlist);
1082 _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5"));
1085 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1087 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1088 * KVM to work under pHyp with some guest co-operation */
1089 int hypervisor;
1090 uint8_t hypercall[16];
1092 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1093 /* indicate KVM hypercall interface */
1094 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1095 if (kvmppc_has_cap_fixup_hcalls()) {
1097 * Older KVM versions with older guest kernels were broken
1098 * with the magic page, don't allow the guest to map it.
1100 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1101 sizeof(hypercall))) {
1102 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1103 hypercall, sizeof(hypercall)));
1108 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
1110 MachineState *machine = MACHINE(spapr);
1111 MachineClass *mc = MACHINE_GET_CLASS(machine);
1112 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1113 int ret;
1114 void *fdt;
1115 SpaprPhbState *phb;
1116 char *buf;
1118 fdt = g_malloc0(space);
1119 _FDT((fdt_create_empty_tree(fdt, space)));
1121 /* Root node */
1122 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1123 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1124 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1126 /* Guest UUID & Name*/
1127 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1128 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1129 if (qemu_uuid_set) {
1130 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1132 g_free(buf);
1134 if (qemu_get_vm_name()) {
1135 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1136 qemu_get_vm_name()));
1139 /* Host Model & Serial Number */
1140 if (spapr->host_model) {
1141 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1142 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1143 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1144 g_free(buf);
1147 if (spapr->host_serial) {
1148 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1149 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1150 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1151 g_free(buf);
1154 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1155 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1157 /* /interrupt controller */
1158 spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1160 ret = spapr_dt_memory(spapr, fdt);
1161 if (ret < 0) {
1162 error_report("couldn't setup memory nodes in fdt");
1163 exit(1);
1166 /* /vdevice */
1167 spapr_dt_vdevice(spapr->vio_bus, fdt);
1169 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1170 ret = spapr_dt_rng(fdt);
1171 if (ret < 0) {
1172 error_report("could not set up rng device in the fdt");
1173 exit(1);
1177 QLIST_FOREACH(phb, &spapr->phbs, list) {
1178 ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1179 if (ret < 0) {
1180 error_report("couldn't setup PCI devices in fdt");
1181 exit(1);
1185 spapr_dt_cpus(fdt, spapr);
1187 if (smc->dr_lmb_enabled) {
1188 _FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1191 if (mc->has_hotpluggable_cpus) {
1192 int offset = fdt_path_offset(fdt, "/cpus");
1193 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1194 if (ret < 0) {
1195 error_report("Couldn't set up CPU DR device tree properties");
1196 exit(1);
1200 /* /event-sources */
1201 spapr_dt_events(spapr, fdt);
1203 /* /rtas */
1204 spapr_dt_rtas(spapr, fdt);
1206 /* /chosen */
1207 spapr_dt_chosen(spapr, fdt, reset);
1209 /* /hypervisor */
1210 if (kvm_enabled()) {
1211 spapr_dt_hypervisor(spapr, fdt);
1214 /* Build memory reserve map */
1215 if (reset) {
1216 if (spapr->kernel_size) {
1217 _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr,
1218 spapr->kernel_size)));
1220 if (spapr->initrd_size) {
1221 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1222 spapr->initrd_size)));
1226 if (smc->dr_phb_enabled) {
1227 ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB);
1228 if (ret < 0) {
1229 error_report("Couldn't set up PHB DR device tree properties");
1230 exit(1);
1234 /* NVDIMM devices */
1235 if (mc->nvdimm_supported) {
1236 spapr_dt_persistent_memory(spapr, fdt);
1239 return fdt;
1242 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1244 SpaprMachineState *spapr = opaque;
1246 return (addr & 0x0fffffff) + spapr->kernel_addr;
1249 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1250 PowerPCCPU *cpu)
1252 CPUPPCState *env = &cpu->env;
1254 /* The TCG path should also be holding the BQL at this point */
1255 g_assert(qemu_mutex_iothread_locked());
1257 if (msr_pr) {
1258 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1259 env->gpr[3] = H_PRIVILEGE;
1260 } else {
1261 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1265 struct LPCRSyncState {
1266 target_ulong value;
1267 target_ulong mask;
1270 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1272 struct LPCRSyncState *s = arg.host_ptr;
1273 PowerPCCPU *cpu = POWERPC_CPU(cs);
1274 CPUPPCState *env = &cpu->env;
1275 target_ulong lpcr;
1277 cpu_synchronize_state(cs);
1278 lpcr = env->spr[SPR_LPCR];
1279 lpcr &= ~s->mask;
1280 lpcr |= s->value;
1281 ppc_store_lpcr(cpu, lpcr);
1284 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1286 CPUState *cs;
1287 struct LPCRSyncState s = {
1288 .value = value,
1289 .mask = mask
1291 CPU_FOREACH(cs) {
1292 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1296 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1298 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1300 /* Copy PATE1:GR into PATE0:HR */
1301 entry->dw0 = spapr->patb_entry & PATE0_HR;
1302 entry->dw1 = spapr->patb_entry;
1305 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1306 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1307 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1308 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1309 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1312 * Get the fd to access the kernel htab, re-opening it if necessary
1314 static int get_htab_fd(SpaprMachineState *spapr)
1316 Error *local_err = NULL;
1318 if (spapr->htab_fd >= 0) {
1319 return spapr->htab_fd;
1322 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1323 if (spapr->htab_fd < 0) {
1324 error_report_err(local_err);
1327 return spapr->htab_fd;
1330 void close_htab_fd(SpaprMachineState *spapr)
1332 if (spapr->htab_fd >= 0) {
1333 close(spapr->htab_fd);
1335 spapr->htab_fd = -1;
1338 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1340 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1342 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1345 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1347 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1349 assert(kvm_enabled());
1351 if (!spapr->htab) {
1352 return 0;
1355 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1358 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1359 hwaddr ptex, int n)
1361 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1362 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1364 if (!spapr->htab) {
1366 * HTAB is controlled by KVM. Fetch into temporary buffer
1368 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1369 kvmppc_read_hptes(hptes, ptex, n);
1370 return hptes;
1374 * HTAB is controlled by QEMU. Just point to the internally
1375 * accessible PTEG.
1377 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1380 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1381 const ppc_hash_pte64_t *hptes,
1382 hwaddr ptex, int n)
1384 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1386 if (!spapr->htab) {
1387 g_free((void *)hptes);
1390 /* Nothing to do for qemu managed HPT */
1393 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1394 uint64_t pte0, uint64_t pte1)
1396 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1397 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1399 if (!spapr->htab) {
1400 kvmppc_write_hpte(ptex, pte0, pte1);
1401 } else {
1402 if (pte0 & HPTE64_V_VALID) {
1403 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1405 * When setting valid, we write PTE1 first. This ensures
1406 * proper synchronization with the reading code in
1407 * ppc_hash64_pteg_search()
1409 smp_wmb();
1410 stq_p(spapr->htab + offset, pte0);
1411 } else {
1412 stq_p(spapr->htab + offset, pte0);
1414 * When clearing it we set PTE0 first. This ensures proper
1415 * synchronization with the reading code in
1416 * ppc_hash64_pteg_search()
1418 smp_wmb();
1419 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1424 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1425 uint64_t pte1)
1427 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
1428 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1430 if (!spapr->htab) {
1431 /* There should always be a hash table when this is called */
1432 error_report("spapr_hpte_set_c called with no hash table !");
1433 return;
1436 /* The HW performs a non-atomic byte update */
1437 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1440 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1441 uint64_t pte1)
1443 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
1444 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1446 if (!spapr->htab) {
1447 /* There should always be a hash table when this is called */
1448 error_report("spapr_hpte_set_r called with no hash table !");
1449 return;
1452 /* The HW performs a non-atomic byte update */
1453 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1456 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1458 int shift;
1460 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1461 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1462 * that's much more than is needed for Linux guests */
1463 shift = ctz64(pow2ceil(ramsize)) - 7;
1464 shift = MAX(shift, 18); /* Minimum architected size */
1465 shift = MIN(shift, 46); /* Maximum architected size */
1466 return shift;
1469 void spapr_free_hpt(SpaprMachineState *spapr)
1471 g_free(spapr->htab);
1472 spapr->htab = NULL;
1473 spapr->htab_shift = 0;
1474 close_htab_fd(spapr);
1477 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift,
1478 Error **errp)
1480 long rc;
1482 /* Clean up any HPT info from a previous boot */
1483 spapr_free_hpt(spapr);
1485 rc = kvmppc_reset_htab(shift);
1487 if (rc == -EOPNOTSUPP) {
1488 error_setg(errp, "HPT not supported in nested guests");
1489 return;
1492 if (rc < 0) {
1493 /* kernel-side HPT needed, but couldn't allocate one */
1494 error_setg_errno(errp, errno,
1495 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1496 shift);
1497 /* This is almost certainly fatal, but if the caller really
1498 * wants to carry on with shift == 0, it's welcome to try */
1499 } else if (rc > 0) {
1500 /* kernel-side HPT allocated */
1501 if (rc != shift) {
1502 error_setg(errp,
1503 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1504 shift, rc);
1507 spapr->htab_shift = shift;
1508 spapr->htab = NULL;
1509 } else {
1510 /* kernel-side HPT not needed, allocate in userspace instead */
1511 size_t size = 1ULL << shift;
1512 int i;
1514 spapr->htab = qemu_memalign(size, size);
1515 if (!spapr->htab) {
1516 error_setg_errno(errp, errno,
1517 "Could not allocate HPT of order %d", shift);
1518 return;
1521 memset(spapr->htab, 0, size);
1522 spapr->htab_shift = shift;
1524 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1525 DIRTY_HPTE(HPTE(spapr->htab, i));
1528 /* We're setting up a hash table, so that means we're not radix */
1529 spapr->patb_entry = 0;
1530 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1533 void spapr_setup_hpt(SpaprMachineState *spapr)
1535 int hpt_shift;
1537 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
1538 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1539 } else {
1540 uint64_t current_ram_size;
1542 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1543 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1545 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1547 if (kvm_enabled()) {
1548 hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift);
1550 /* Check our RMA fits in the possible VRMA */
1551 if (vrma_limit < spapr->rma_size) {
1552 error_report("Unable to create %" HWADDR_PRIu
1553 "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB",
1554 spapr->rma_size / MiB, vrma_limit / MiB);
1555 exit(EXIT_FAILURE);
1560 static int spapr_reset_drcs(Object *child, void *opaque)
1562 SpaprDrc *drc =
1563 (SpaprDrc *) object_dynamic_cast(child,
1564 TYPE_SPAPR_DR_CONNECTOR);
1566 if (drc) {
1567 spapr_drc_reset(drc);
1570 return 0;
1573 static void spapr_machine_reset(MachineState *machine)
1575 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1576 PowerPCCPU *first_ppc_cpu;
1577 hwaddr fdt_addr;
1578 void *fdt;
1579 int rc;
1581 kvmppc_svm_off(&error_fatal);
1582 spapr_caps_apply(spapr);
1584 first_ppc_cpu = POWERPC_CPU(first_cpu);
1585 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1586 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1587 spapr->max_compat_pvr)) {
1589 * If using KVM with radix mode available, VCPUs can be started
1590 * without a HPT because KVM will start them in radix mode.
1591 * Set the GR bit in PATE so that we know there is no HPT.
1593 spapr->patb_entry = PATE1_GR;
1594 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1595 } else {
1596 spapr_setup_hpt(spapr);
1599 qemu_devices_reset();
1601 spapr_ovec_cleanup(spapr->ov5_cas);
1602 spapr->ov5_cas = spapr_ovec_new();
1604 ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1607 * This is fixing some of the default configuration of the XIVE
1608 * devices. To be called after the reset of the machine devices.
1610 spapr_irq_reset(spapr, &error_fatal);
1613 * There is no CAS under qtest. Simulate one to please the code that
1614 * depends on spapr->ov5_cas. This is especially needed to test device
1615 * unplug, so we do that before resetting the DRCs.
1617 if (qtest_enabled()) {
1618 spapr_ovec_cleanup(spapr->ov5_cas);
1619 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1622 /* DRC reset may cause a device to be unplugged. This will cause troubles
1623 * if this device is used by another device (eg, a running vhost backend
1624 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1625 * situations, we reset DRCs after all devices have been reset.
1627 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1629 spapr_clear_pending_events(spapr);
1632 * We place the device tree and RTAS just below either the top of the RMA,
1633 * or just below 2GB, whichever is lower, so that it can be
1634 * processed with 32-bit real mode code if necessary
1636 fdt_addr = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FDT_MAX_SIZE;
1638 fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
1640 rc = fdt_pack(fdt);
1642 /* Should only fail if we've built a corrupted tree */
1643 assert(rc == 0);
1645 /* Load the fdt */
1646 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1647 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1648 g_free(spapr->fdt_blob);
1649 spapr->fdt_size = fdt_totalsize(fdt);
1650 spapr->fdt_initial_size = spapr->fdt_size;
1651 spapr->fdt_blob = fdt;
1653 /* Set up the entry state */
1654 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, 0, fdt_addr, 0);
1655 first_ppc_cpu->env.gpr[5] = 0;
1657 spapr->fwnmi_system_reset_addr = -1;
1658 spapr->fwnmi_machine_check_addr = -1;
1659 spapr->fwnmi_machine_check_interlock = -1;
1661 /* Signal all vCPUs waiting on this condition */
1662 qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond);
1664 migrate_del_blocker(spapr->fwnmi_migration_blocker);
1667 static void spapr_create_nvram(SpaprMachineState *spapr)
1669 DeviceState *dev = qdev_new("spapr-nvram");
1670 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1672 if (dinfo) {
1673 qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo),
1674 &error_fatal);
1677 qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal);
1679 spapr->nvram = (struct SpaprNvram *)dev;
1682 static void spapr_rtc_create(SpaprMachineState *spapr)
1684 object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc,
1685 sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1686 &error_fatal, NULL);
1687 qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal);
1688 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1689 "date");
1692 /* Returns whether we want to use VGA or not */
1693 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1695 switch (vga_interface_type) {
1696 case VGA_NONE:
1697 return false;
1698 case VGA_DEVICE:
1699 return true;
1700 case VGA_STD:
1701 case VGA_VIRTIO:
1702 case VGA_CIRRUS:
1703 return pci_vga_init(pci_bus) != NULL;
1704 default:
1705 error_setg(errp,
1706 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1707 return false;
1711 static int spapr_pre_load(void *opaque)
1713 int rc;
1715 rc = spapr_caps_pre_load(opaque);
1716 if (rc) {
1717 return rc;
1720 return 0;
1723 static int spapr_post_load(void *opaque, int version_id)
1725 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1726 int err = 0;
1728 err = spapr_caps_post_migration(spapr);
1729 if (err) {
1730 return err;
1734 * In earlier versions, there was no separate qdev for the PAPR
1735 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1736 * So when migrating from those versions, poke the incoming offset
1737 * value into the RTC device
1739 if (version_id < 3) {
1740 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1741 if (err) {
1742 return err;
1746 if (kvm_enabled() && spapr->patb_entry) {
1747 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1748 bool radix = !!(spapr->patb_entry & PATE1_GR);
1749 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1752 * Update LPCR:HR and UPRT as they may not be set properly in
1753 * the stream
1755 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1756 LPCR_HR | LPCR_UPRT);
1758 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1759 if (err) {
1760 error_report("Process table config unsupported by the host");
1761 return -EINVAL;
1765 err = spapr_irq_post_load(spapr, version_id);
1766 if (err) {
1767 return err;
1770 return err;
1773 static int spapr_pre_save(void *opaque)
1775 int rc;
1777 rc = spapr_caps_pre_save(opaque);
1778 if (rc) {
1779 return rc;
1782 return 0;
1785 static bool version_before_3(void *opaque, int version_id)
1787 return version_id < 3;
1790 static bool spapr_pending_events_needed(void *opaque)
1792 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1793 return !QTAILQ_EMPTY(&spapr->pending_events);
1796 static const VMStateDescription vmstate_spapr_event_entry = {
1797 .name = "spapr_event_log_entry",
1798 .version_id = 1,
1799 .minimum_version_id = 1,
1800 .fields = (VMStateField[]) {
1801 VMSTATE_UINT32(summary, SpaprEventLogEntry),
1802 VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1803 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1804 NULL, extended_length),
1805 VMSTATE_END_OF_LIST()
1809 static const VMStateDescription vmstate_spapr_pending_events = {
1810 .name = "spapr_pending_events",
1811 .version_id = 1,
1812 .minimum_version_id = 1,
1813 .needed = spapr_pending_events_needed,
1814 .fields = (VMStateField[]) {
1815 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1816 vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1817 VMSTATE_END_OF_LIST()
1821 static bool spapr_ov5_cas_needed(void *opaque)
1823 SpaprMachineState *spapr = opaque;
1824 SpaprOptionVector *ov5_mask = spapr_ovec_new();
1825 bool cas_needed;
1827 /* Prior to the introduction of SpaprOptionVector, we had two option
1828 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1829 * Both of these options encode machine topology into the device-tree
1830 * in such a way that the now-booted OS should still be able to interact
1831 * appropriately with QEMU regardless of what options were actually
1832 * negotiatied on the source side.
1834 * As such, we can avoid migrating the CAS-negotiated options if these
1835 * are the only options available on the current machine/platform.
1836 * Since these are the only options available for pseries-2.7 and
1837 * earlier, this allows us to maintain old->new/new->old migration
1838 * compatibility.
1840 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1841 * via default pseries-2.8 machines and explicit command-line parameters.
1842 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1843 * of the actual CAS-negotiated values to continue working properly. For
1844 * example, availability of memory unplug depends on knowing whether
1845 * OV5_HP_EVT was negotiated via CAS.
1847 * Thus, for any cases where the set of available CAS-negotiatable
1848 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1849 * include the CAS-negotiated options in the migration stream, unless
1850 * if they affect boot time behaviour only.
1852 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1853 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1854 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1856 /* We need extra information if we have any bits outside the mask
1857 * defined above */
1858 cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
1860 spapr_ovec_cleanup(ov5_mask);
1862 return cas_needed;
1865 static const VMStateDescription vmstate_spapr_ov5_cas = {
1866 .name = "spapr_option_vector_ov5_cas",
1867 .version_id = 1,
1868 .minimum_version_id = 1,
1869 .needed = spapr_ov5_cas_needed,
1870 .fields = (VMStateField[]) {
1871 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1872 vmstate_spapr_ovec, SpaprOptionVector),
1873 VMSTATE_END_OF_LIST()
1877 static bool spapr_patb_entry_needed(void *opaque)
1879 SpaprMachineState *spapr = opaque;
1881 return !!spapr->patb_entry;
1884 static const VMStateDescription vmstate_spapr_patb_entry = {
1885 .name = "spapr_patb_entry",
1886 .version_id = 1,
1887 .minimum_version_id = 1,
1888 .needed = spapr_patb_entry_needed,
1889 .fields = (VMStateField[]) {
1890 VMSTATE_UINT64(patb_entry, SpaprMachineState),
1891 VMSTATE_END_OF_LIST()
1895 static bool spapr_irq_map_needed(void *opaque)
1897 SpaprMachineState *spapr = opaque;
1899 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1902 static const VMStateDescription vmstate_spapr_irq_map = {
1903 .name = "spapr_irq_map",
1904 .version_id = 1,
1905 .minimum_version_id = 1,
1906 .needed = spapr_irq_map_needed,
1907 .fields = (VMStateField[]) {
1908 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
1909 VMSTATE_END_OF_LIST()
1913 static bool spapr_dtb_needed(void *opaque)
1915 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
1917 return smc->update_dt_enabled;
1920 static int spapr_dtb_pre_load(void *opaque)
1922 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1924 g_free(spapr->fdt_blob);
1925 spapr->fdt_blob = NULL;
1926 spapr->fdt_size = 0;
1928 return 0;
1931 static const VMStateDescription vmstate_spapr_dtb = {
1932 .name = "spapr_dtb",
1933 .version_id = 1,
1934 .minimum_version_id = 1,
1935 .needed = spapr_dtb_needed,
1936 .pre_load = spapr_dtb_pre_load,
1937 .fields = (VMStateField[]) {
1938 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
1939 VMSTATE_UINT32(fdt_size, SpaprMachineState),
1940 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
1941 fdt_size),
1942 VMSTATE_END_OF_LIST()
1946 static bool spapr_fwnmi_needed(void *opaque)
1948 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1950 return spapr->fwnmi_machine_check_addr != -1;
1953 static int spapr_fwnmi_pre_save(void *opaque)
1955 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1958 * Check if machine check handling is in progress and print a
1959 * warning message.
1961 if (spapr->fwnmi_machine_check_interlock != -1) {
1962 warn_report("A machine check is being handled during migration. The"
1963 "handler may run and log hardware error on the destination");
1966 return 0;
1969 static const VMStateDescription vmstate_spapr_fwnmi = {
1970 .name = "spapr_fwnmi",
1971 .version_id = 1,
1972 .minimum_version_id = 1,
1973 .needed = spapr_fwnmi_needed,
1974 .pre_save = spapr_fwnmi_pre_save,
1975 .fields = (VMStateField[]) {
1976 VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState),
1977 VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState),
1978 VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState),
1979 VMSTATE_END_OF_LIST()
1983 static const VMStateDescription vmstate_spapr = {
1984 .name = "spapr",
1985 .version_id = 3,
1986 .minimum_version_id = 1,
1987 .pre_load = spapr_pre_load,
1988 .post_load = spapr_post_load,
1989 .pre_save = spapr_pre_save,
1990 .fields = (VMStateField[]) {
1991 /* used to be @next_irq */
1992 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1994 /* RTC offset */
1995 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
1997 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
1998 VMSTATE_END_OF_LIST()
2000 .subsections = (const VMStateDescription*[]) {
2001 &vmstate_spapr_ov5_cas,
2002 &vmstate_spapr_patb_entry,
2003 &vmstate_spapr_pending_events,
2004 &vmstate_spapr_cap_htm,
2005 &vmstate_spapr_cap_vsx,
2006 &vmstate_spapr_cap_dfp,
2007 &vmstate_spapr_cap_cfpc,
2008 &vmstate_spapr_cap_sbbc,
2009 &vmstate_spapr_cap_ibs,
2010 &vmstate_spapr_cap_hpt_maxpagesize,
2011 &vmstate_spapr_irq_map,
2012 &vmstate_spapr_cap_nested_kvm_hv,
2013 &vmstate_spapr_dtb,
2014 &vmstate_spapr_cap_large_decr,
2015 &vmstate_spapr_cap_ccf_assist,
2016 &vmstate_spapr_cap_fwnmi,
2017 &vmstate_spapr_fwnmi,
2018 NULL
2022 static int htab_save_setup(QEMUFile *f, void *opaque)
2024 SpaprMachineState *spapr = opaque;
2026 /* "Iteration" header */
2027 if (!spapr->htab_shift) {
2028 qemu_put_be32(f, -1);
2029 } else {
2030 qemu_put_be32(f, spapr->htab_shift);
2033 if (spapr->htab) {
2034 spapr->htab_save_index = 0;
2035 spapr->htab_first_pass = true;
2036 } else {
2037 if (spapr->htab_shift) {
2038 assert(kvm_enabled());
2043 return 0;
2046 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2047 int chunkstart, int n_valid, int n_invalid)
2049 qemu_put_be32(f, chunkstart);
2050 qemu_put_be16(f, n_valid);
2051 qemu_put_be16(f, n_invalid);
2052 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2053 HASH_PTE_SIZE_64 * n_valid);
2056 static void htab_save_end_marker(QEMUFile *f)
2058 qemu_put_be32(f, 0);
2059 qemu_put_be16(f, 0);
2060 qemu_put_be16(f, 0);
2063 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2064 int64_t max_ns)
2066 bool has_timeout = max_ns != -1;
2067 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2068 int index = spapr->htab_save_index;
2069 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2071 assert(spapr->htab_first_pass);
2073 do {
2074 int chunkstart;
2076 /* Consume invalid HPTEs */
2077 while ((index < htabslots)
2078 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2079 CLEAN_HPTE(HPTE(spapr->htab, index));
2080 index++;
2083 /* Consume valid HPTEs */
2084 chunkstart = index;
2085 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2086 && HPTE_VALID(HPTE(spapr->htab, index))) {
2087 CLEAN_HPTE(HPTE(spapr->htab, index));
2088 index++;
2091 if (index > chunkstart) {
2092 int n_valid = index - chunkstart;
2094 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2096 if (has_timeout &&
2097 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2098 break;
2101 } while ((index < htabslots) && !qemu_file_rate_limit(f));
2103 if (index >= htabslots) {
2104 assert(index == htabslots);
2105 index = 0;
2106 spapr->htab_first_pass = false;
2108 spapr->htab_save_index = index;
2111 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2112 int64_t max_ns)
2114 bool final = max_ns < 0;
2115 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2116 int examined = 0, sent = 0;
2117 int index = spapr->htab_save_index;
2118 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2120 assert(!spapr->htab_first_pass);
2122 do {
2123 int chunkstart, invalidstart;
2125 /* Consume non-dirty HPTEs */
2126 while ((index < htabslots)
2127 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2128 index++;
2129 examined++;
2132 chunkstart = index;
2133 /* Consume valid dirty HPTEs */
2134 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2135 && HPTE_DIRTY(HPTE(spapr->htab, index))
2136 && HPTE_VALID(HPTE(spapr->htab, index))) {
2137 CLEAN_HPTE(HPTE(spapr->htab, index));
2138 index++;
2139 examined++;
2142 invalidstart = index;
2143 /* Consume invalid dirty HPTEs */
2144 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2145 && HPTE_DIRTY(HPTE(spapr->htab, index))
2146 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2147 CLEAN_HPTE(HPTE(spapr->htab, index));
2148 index++;
2149 examined++;
2152 if (index > chunkstart) {
2153 int n_valid = invalidstart - chunkstart;
2154 int n_invalid = index - invalidstart;
2156 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2157 sent += index - chunkstart;
2159 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2160 break;
2164 if (examined >= htabslots) {
2165 break;
2168 if (index >= htabslots) {
2169 assert(index == htabslots);
2170 index = 0;
2172 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2174 if (index >= htabslots) {
2175 assert(index == htabslots);
2176 index = 0;
2179 spapr->htab_save_index = index;
2181 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2184 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2185 #define MAX_KVM_BUF_SIZE 2048
2187 static int htab_save_iterate(QEMUFile *f, void *opaque)
2189 SpaprMachineState *spapr = opaque;
2190 int fd;
2191 int rc = 0;
2193 /* Iteration header */
2194 if (!spapr->htab_shift) {
2195 qemu_put_be32(f, -1);
2196 return 1;
2197 } else {
2198 qemu_put_be32(f, 0);
2201 if (!spapr->htab) {
2202 assert(kvm_enabled());
2204 fd = get_htab_fd(spapr);
2205 if (fd < 0) {
2206 return fd;
2209 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2210 if (rc < 0) {
2211 return rc;
2213 } else if (spapr->htab_first_pass) {
2214 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2215 } else {
2216 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2219 htab_save_end_marker(f);
2221 return rc;
2224 static int htab_save_complete(QEMUFile *f, void *opaque)
2226 SpaprMachineState *spapr = opaque;
2227 int fd;
2229 /* Iteration header */
2230 if (!spapr->htab_shift) {
2231 qemu_put_be32(f, -1);
2232 return 0;
2233 } else {
2234 qemu_put_be32(f, 0);
2237 if (!spapr->htab) {
2238 int rc;
2240 assert(kvm_enabled());
2242 fd = get_htab_fd(spapr);
2243 if (fd < 0) {
2244 return fd;
2247 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2248 if (rc < 0) {
2249 return rc;
2251 } else {
2252 if (spapr->htab_first_pass) {
2253 htab_save_first_pass(f, spapr, -1);
2255 htab_save_later_pass(f, spapr, -1);
2258 /* End marker */
2259 htab_save_end_marker(f);
2261 return 0;
2264 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2266 SpaprMachineState *spapr = opaque;
2267 uint32_t section_hdr;
2268 int fd = -1;
2269 Error *local_err = NULL;
2271 if (version_id < 1 || version_id > 1) {
2272 error_report("htab_load() bad version");
2273 return -EINVAL;
2276 section_hdr = qemu_get_be32(f);
2278 if (section_hdr == -1) {
2279 spapr_free_hpt(spapr);
2280 return 0;
2283 if (section_hdr) {
2284 /* First section gives the htab size */
2285 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2286 if (local_err) {
2287 error_report_err(local_err);
2288 return -EINVAL;
2290 return 0;
2293 if (!spapr->htab) {
2294 assert(kvm_enabled());
2296 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2297 if (fd < 0) {
2298 error_report_err(local_err);
2299 return fd;
2303 while (true) {
2304 uint32_t index;
2305 uint16_t n_valid, n_invalid;
2307 index = qemu_get_be32(f);
2308 n_valid = qemu_get_be16(f);
2309 n_invalid = qemu_get_be16(f);
2311 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2312 /* End of Stream */
2313 break;
2316 if ((index + n_valid + n_invalid) >
2317 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2318 /* Bad index in stream */
2319 error_report(
2320 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2321 index, n_valid, n_invalid, spapr->htab_shift);
2322 return -EINVAL;
2325 if (spapr->htab) {
2326 if (n_valid) {
2327 qemu_get_buffer(f, HPTE(spapr->htab, index),
2328 HASH_PTE_SIZE_64 * n_valid);
2330 if (n_invalid) {
2331 memset(HPTE(spapr->htab, index + n_valid), 0,
2332 HASH_PTE_SIZE_64 * n_invalid);
2334 } else {
2335 int rc;
2337 assert(fd >= 0);
2339 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2340 if (rc < 0) {
2341 return rc;
2346 if (!spapr->htab) {
2347 assert(fd >= 0);
2348 close(fd);
2351 return 0;
2354 static void htab_save_cleanup(void *opaque)
2356 SpaprMachineState *spapr = opaque;
2358 close_htab_fd(spapr);
2361 static SaveVMHandlers savevm_htab_handlers = {
2362 .save_setup = htab_save_setup,
2363 .save_live_iterate = htab_save_iterate,
2364 .save_live_complete_precopy = htab_save_complete,
2365 .save_cleanup = htab_save_cleanup,
2366 .load_state = htab_load,
2369 static void spapr_boot_set(void *opaque, const char *boot_device,
2370 Error **errp)
2372 MachineState *machine = MACHINE(opaque);
2373 machine->boot_order = g_strdup(boot_device);
2376 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2378 MachineState *machine = MACHINE(spapr);
2379 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2380 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2381 int i;
2383 for (i = 0; i < nr_lmbs; i++) {
2384 uint64_t addr;
2386 addr = i * lmb_size + machine->device_memory->base;
2387 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2388 addr / lmb_size);
2393 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2394 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2395 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2397 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2399 int i;
2401 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2402 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2403 " is not aligned to %" PRIu64 " MiB",
2404 machine->ram_size,
2405 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2406 return;
2409 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2410 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2411 " is not aligned to %" PRIu64 " MiB",
2412 machine->ram_size,
2413 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2414 return;
2417 for (i = 0; i < machine->numa_state->num_nodes; i++) {
2418 if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2419 error_setg(errp,
2420 "Node %d memory size 0x%" PRIx64
2421 " is not aligned to %" PRIu64 " MiB",
2422 i, machine->numa_state->nodes[i].node_mem,
2423 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2424 return;
2429 /* find cpu slot in machine->possible_cpus by core_id */
2430 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2432 int index = id / ms->smp.threads;
2434 if (index >= ms->possible_cpus->len) {
2435 return NULL;
2437 if (idx) {
2438 *idx = index;
2440 return &ms->possible_cpus->cpus[index];
2443 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2445 MachineState *ms = MACHINE(spapr);
2446 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2447 Error *local_err = NULL;
2448 bool vsmt_user = !!spapr->vsmt;
2449 int kvm_smt = kvmppc_smt_threads();
2450 int ret;
2451 unsigned int smp_threads = ms->smp.threads;
2453 if (!kvm_enabled() && (smp_threads > 1)) {
2454 error_setg(errp, "TCG cannot support more than 1 thread/core "
2455 "on a pseries machine");
2456 return;
2458 if (!is_power_of_2(smp_threads)) {
2459 error_setg(errp, "Cannot support %d threads/core on a pseries "
2460 "machine because it must be a power of 2", smp_threads);
2461 return;
2464 /* Detemine the VSMT mode to use: */
2465 if (vsmt_user) {
2466 if (spapr->vsmt < smp_threads) {
2467 error_setg(errp, "Cannot support VSMT mode %d"
2468 " because it must be >= threads/core (%d)",
2469 spapr->vsmt, smp_threads);
2470 return;
2472 /* In this case, spapr->vsmt has been set by the command line */
2473 } else if (!smc->smp_threads_vsmt) {
2475 * Default VSMT value is tricky, because we need it to be as
2476 * consistent as possible (for migration), but this requires
2477 * changing it for at least some existing cases. We pick 8 as
2478 * the value that we'd get with KVM on POWER8, the
2479 * overwhelmingly common case in production systems.
2481 spapr->vsmt = MAX(8, smp_threads);
2482 } else {
2483 spapr->vsmt = smp_threads;
2486 /* KVM: If necessary, set the SMT mode: */
2487 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2488 ret = kvmppc_set_smt_threads(spapr->vsmt);
2489 if (ret) {
2490 /* Looks like KVM isn't able to change VSMT mode */
2491 error_setg(&local_err,
2492 "Failed to set KVM's VSMT mode to %d (errno %d)",
2493 spapr->vsmt, ret);
2494 /* We can live with that if the default one is big enough
2495 * for the number of threads, and a submultiple of the one
2496 * we want. In this case we'll waste some vcpu ids, but
2497 * behaviour will be correct */
2498 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2499 warn_report_err(local_err);
2500 } else {
2501 if (!vsmt_user) {
2502 error_append_hint(&local_err,
2503 "On PPC, a VM with %d threads/core"
2504 " on a host with %d threads/core"
2505 " requires the use of VSMT mode %d.\n",
2506 smp_threads, kvm_smt, spapr->vsmt);
2508 kvmppc_error_append_smt_possible_hint(&local_err);
2509 error_propagate(errp, local_err);
2513 /* else TCG: nothing to do currently */
2516 static void spapr_init_cpus(SpaprMachineState *spapr)
2518 MachineState *machine = MACHINE(spapr);
2519 MachineClass *mc = MACHINE_GET_CLASS(machine);
2520 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2521 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2522 const CPUArchIdList *possible_cpus;
2523 unsigned int smp_cpus = machine->smp.cpus;
2524 unsigned int smp_threads = machine->smp.threads;
2525 unsigned int max_cpus = machine->smp.max_cpus;
2526 int boot_cores_nr = smp_cpus / smp_threads;
2527 int i;
2529 possible_cpus = mc->possible_cpu_arch_ids(machine);
2530 if (mc->has_hotpluggable_cpus) {
2531 if (smp_cpus % smp_threads) {
2532 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2533 smp_cpus, smp_threads);
2534 exit(1);
2536 if (max_cpus % smp_threads) {
2537 error_report("max_cpus (%u) must be multiple of threads (%u)",
2538 max_cpus, smp_threads);
2539 exit(1);
2541 } else {
2542 if (max_cpus != smp_cpus) {
2543 error_report("This machine version does not support CPU hotplug");
2544 exit(1);
2546 boot_cores_nr = possible_cpus->len;
2549 if (smc->pre_2_10_has_unused_icps) {
2550 int i;
2552 for (i = 0; i < spapr_max_server_number(spapr); i++) {
2553 /* Dummy entries get deregistered when real ICPState objects
2554 * are registered during CPU core hotplug.
2556 pre_2_10_vmstate_register_dummy_icp(i);
2560 for (i = 0; i < possible_cpus->len; i++) {
2561 int core_id = i * smp_threads;
2563 if (mc->has_hotpluggable_cpus) {
2564 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2565 spapr_vcpu_id(spapr, core_id));
2568 if (i < boot_cores_nr) {
2569 Object *core = object_new(type);
2570 int nr_threads = smp_threads;
2572 /* Handle the partially filled core for older machine types */
2573 if ((i + 1) * smp_threads >= smp_cpus) {
2574 nr_threads = smp_cpus - i * smp_threads;
2577 object_property_set_int(core, "nr-threads", nr_threads,
2578 &error_fatal);
2579 object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id,
2580 &error_fatal);
2581 qdev_realize(DEVICE(core), NULL, &error_fatal);
2583 object_unref(core);
2588 static PCIHostState *spapr_create_default_phb(void)
2590 DeviceState *dev;
2592 dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE);
2593 qdev_prop_set_uint32(dev, "index", 0);
2594 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
2596 return PCI_HOST_BRIDGE(dev);
2599 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp)
2601 MachineState *machine = MACHINE(spapr);
2602 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2603 hwaddr rma_size = machine->ram_size;
2604 hwaddr node0_size = spapr_node0_size(machine);
2606 /* RMA has to fit in the first NUMA node */
2607 rma_size = MIN(rma_size, node0_size);
2610 * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2611 * never exceed that
2613 rma_size = MIN(rma_size, 1 * TiB);
2616 * Clamp the RMA size based on machine type. This is for
2617 * migration compatibility with older qemu versions, which limited
2618 * the RMA size for complicated and mostly bad reasons.
2620 if (smc->rma_limit) {
2621 rma_size = MIN(rma_size, smc->rma_limit);
2624 if (rma_size < MIN_RMA_SLOF) {
2625 error_setg(errp,
2626 "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2627 "ldMiB guest RMA (Real Mode Area memory)",
2628 MIN_RMA_SLOF / MiB);
2629 return 0;
2632 return rma_size;
2635 /* pSeries LPAR / sPAPR hardware init */
2636 static void spapr_machine_init(MachineState *machine)
2638 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2639 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2640 MachineClass *mc = MACHINE_GET_CLASS(machine);
2641 const char *kernel_filename = machine->kernel_filename;
2642 const char *initrd_filename = machine->initrd_filename;
2643 PCIHostState *phb;
2644 int i;
2645 MemoryRegion *sysmem = get_system_memory();
2646 long load_limit, fw_size;
2647 char *filename;
2648 Error *resize_hpt_err = NULL;
2650 msi_nonbroken = true;
2652 QLIST_INIT(&spapr->phbs);
2653 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2655 /* Determine capabilities to run with */
2656 spapr_caps_init(spapr);
2658 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2659 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2661 * If the user explicitly requested a mode we should either
2662 * supply it, or fail completely (which we do below). But if
2663 * it's not set explicitly, we reset our mode to something
2664 * that works
2666 if (resize_hpt_err) {
2667 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2668 error_free(resize_hpt_err);
2669 resize_hpt_err = NULL;
2670 } else {
2671 spapr->resize_hpt = smc->resize_hpt_default;
2675 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2677 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2679 * User requested HPT resize, but this host can't supply it. Bail out
2681 error_report_err(resize_hpt_err);
2682 exit(1);
2684 error_free(resize_hpt_err);
2686 spapr->rma_size = spapr_rma_size(spapr, &error_fatal);
2688 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2689 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2692 * VSMT must be set in order to be able to compute VCPU ids, ie to
2693 * call spapr_max_server_number() or spapr_vcpu_id().
2695 spapr_set_vsmt_mode(spapr, &error_fatal);
2697 /* Set up Interrupt Controller before we create the VCPUs */
2698 spapr_irq_init(spapr, &error_fatal);
2700 /* Set up containers for ibm,client-architecture-support negotiated options
2702 spapr->ov5 = spapr_ovec_new();
2703 spapr->ov5_cas = spapr_ovec_new();
2705 if (smc->dr_lmb_enabled) {
2706 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2707 spapr_validate_node_memory(machine, &error_fatal);
2710 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2712 /* advertise support for dedicated HP event source to guests */
2713 if (spapr->use_hotplug_event_source) {
2714 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2717 /* advertise support for HPT resizing */
2718 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2719 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2722 /* advertise support for ibm,dyamic-memory-v2 */
2723 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2725 /* advertise XIVE on POWER9 machines */
2726 if (spapr->irq->xive) {
2727 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2730 /* init CPUs */
2731 spapr_init_cpus(spapr);
2734 * check we don't have a memory-less/cpu-less NUMA node
2735 * Firmware relies on the existing memory/cpu topology to provide the
2736 * NUMA topology to the kernel.
2737 * And the linux kernel needs to know the NUMA topology at start
2738 * to be able to hotplug CPUs later.
2740 if (machine->numa_state->num_nodes) {
2741 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
2742 /* check for memory-less node */
2743 if (machine->numa_state->nodes[i].node_mem == 0) {
2744 CPUState *cs;
2745 int found = 0;
2746 /* check for cpu-less node */
2747 CPU_FOREACH(cs) {
2748 PowerPCCPU *cpu = POWERPC_CPU(cs);
2749 if (cpu->node_id == i) {
2750 found = 1;
2751 break;
2754 /* memory-less and cpu-less node */
2755 if (!found) {
2756 error_report(
2757 "Memory-less/cpu-less nodes are not supported (node %d)",
2759 exit(1);
2767 * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
2768 * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
2769 * called from vPHB reset handler so we initialize the counter here.
2770 * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
2771 * must be equally distant from any other node.
2772 * The final value of spapr->gpu_numa_id is going to be written to
2773 * max-associativity-domains in spapr_build_fdt().
2775 spapr->gpu_numa_id = MAX(1, machine->numa_state->num_nodes);
2777 /* Init numa_assoc_array */
2778 spapr_numa_associativity_init(spapr, machine);
2780 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2781 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2782 spapr->max_compat_pvr)) {
2783 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300);
2784 /* KVM and TCG always allow GTSE with radix... */
2785 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2787 /* ... but not with hash (currently). */
2789 if (kvm_enabled()) {
2790 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2791 kvmppc_enable_logical_ci_hcalls();
2792 kvmppc_enable_set_mode_hcall();
2794 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2795 kvmppc_enable_clear_ref_mod_hcalls();
2797 /* Enable H_PAGE_INIT */
2798 kvmppc_enable_h_page_init();
2801 /* map RAM */
2802 memory_region_add_subregion(sysmem, 0, machine->ram);
2804 /* always allocate the device memory information */
2805 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2807 /* initialize hotplug memory address space */
2808 if (machine->ram_size < machine->maxram_size) {
2809 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2811 * Limit the number of hotpluggable memory slots to half the number
2812 * slots that KVM supports, leaving the other half for PCI and other
2813 * devices. However ensure that number of slots doesn't drop below 32.
2815 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2816 SPAPR_MAX_RAM_SLOTS;
2818 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2819 max_memslots = SPAPR_MAX_RAM_SLOTS;
2821 if (machine->ram_slots > max_memslots) {
2822 error_report("Specified number of memory slots %"
2823 PRIu64" exceeds max supported %d",
2824 machine->ram_slots, max_memslots);
2825 exit(1);
2828 machine->device_memory->base = ROUND_UP(machine->ram_size,
2829 SPAPR_DEVICE_MEM_ALIGN);
2830 memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2831 "device-memory", device_mem_size);
2832 memory_region_add_subregion(sysmem, machine->device_memory->base,
2833 &machine->device_memory->mr);
2836 if (smc->dr_lmb_enabled) {
2837 spapr_create_lmb_dr_connectors(spapr);
2840 if (spapr_get_cap(spapr, SPAPR_CAP_FWNMI) == SPAPR_CAP_ON) {
2841 /* Create the error string for live migration blocker */
2842 error_setg(&spapr->fwnmi_migration_blocker,
2843 "A machine check is being handled during migration. The handler"
2844 "may run and log hardware error on the destination");
2847 if (mc->nvdimm_supported) {
2848 spapr_create_nvdimm_dr_connectors(spapr);
2851 /* Set up RTAS event infrastructure */
2852 spapr_events_init(spapr);
2854 /* Set up the RTC RTAS interfaces */
2855 spapr_rtc_create(spapr);
2857 /* Set up VIO bus */
2858 spapr->vio_bus = spapr_vio_bus_init();
2860 for (i = 0; i < serial_max_hds(); i++) {
2861 if (serial_hd(i)) {
2862 spapr_vty_create(spapr->vio_bus, serial_hd(i));
2866 /* We always have at least the nvram device on VIO */
2867 spapr_create_nvram(spapr);
2870 * Setup hotplug / dynamic-reconfiguration connectors. top-level
2871 * connectors (described in root DT node's "ibm,drc-types" property)
2872 * are pre-initialized here. additional child connectors (such as
2873 * connectors for a PHBs PCI slots) are added as needed during their
2874 * parent's realization.
2876 if (smc->dr_phb_enabled) {
2877 for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2878 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2882 /* Set up PCI */
2883 spapr_pci_rtas_init();
2885 phb = spapr_create_default_phb();
2887 for (i = 0; i < nb_nics; i++) {
2888 NICInfo *nd = &nd_table[i];
2890 if (!nd->model) {
2891 nd->model = g_strdup("spapr-vlan");
2894 if (g_str_equal(nd->model, "spapr-vlan") ||
2895 g_str_equal(nd->model, "ibmveth")) {
2896 spapr_vlan_create(spapr->vio_bus, nd);
2897 } else {
2898 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2902 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2903 spapr_vscsi_create(spapr->vio_bus);
2906 /* Graphics */
2907 if (spapr_vga_init(phb->bus, &error_fatal)) {
2908 spapr->has_graphics = true;
2909 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2912 if (machine->usb) {
2913 if (smc->use_ohci_by_default) {
2914 pci_create_simple(phb->bus, -1, "pci-ohci");
2915 } else {
2916 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2919 if (spapr->has_graphics) {
2920 USBBus *usb_bus = usb_bus_find(-1);
2922 usb_create_simple(usb_bus, "usb-kbd");
2923 usb_create_simple(usb_bus, "usb-mouse");
2927 if (kernel_filename) {
2928 spapr->kernel_size = load_elf(kernel_filename, NULL,
2929 translate_kernel_address, spapr,
2930 NULL, NULL, NULL, NULL, 1,
2931 PPC_ELF_MACHINE, 0, 0);
2932 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2933 spapr->kernel_size = load_elf(kernel_filename, NULL,
2934 translate_kernel_address, spapr,
2935 NULL, NULL, NULL, NULL, 0,
2936 PPC_ELF_MACHINE, 0, 0);
2937 spapr->kernel_le = spapr->kernel_size > 0;
2939 if (spapr->kernel_size < 0) {
2940 error_report("error loading %s: %s", kernel_filename,
2941 load_elf_strerror(spapr->kernel_size));
2942 exit(1);
2945 /* load initrd */
2946 if (initrd_filename) {
2947 /* Try to locate the initrd in the gap between the kernel
2948 * and the firmware. Add a bit of space just in case
2950 spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size
2951 + 0x1ffff) & ~0xffff;
2952 spapr->initrd_size = load_image_targphys(initrd_filename,
2953 spapr->initrd_base,
2954 load_limit
2955 - spapr->initrd_base);
2956 if (spapr->initrd_size < 0) {
2957 error_report("could not load initial ram disk '%s'",
2958 initrd_filename);
2959 exit(1);
2964 if (bios_name == NULL) {
2965 bios_name = FW_FILE_NAME;
2967 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2968 if (!filename) {
2969 error_report("Could not find LPAR firmware '%s'", bios_name);
2970 exit(1);
2972 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2973 if (fw_size <= 0) {
2974 error_report("Could not load LPAR firmware '%s'", filename);
2975 exit(1);
2977 g_free(filename);
2979 /* FIXME: Should register things through the MachineState's qdev
2980 * interface, this is a legacy from the sPAPREnvironment structure
2981 * which predated MachineState but had a similar function */
2982 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2983 register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
2984 &savevm_htab_handlers, spapr);
2986 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine));
2988 qemu_register_boot_set(spapr_boot_set, spapr);
2991 * Nothing needs to be done to resume a suspended guest because
2992 * suspending does not change the machine state, so no need for
2993 * a ->wakeup method.
2995 qemu_register_wakeup_support();
2997 if (kvm_enabled()) {
2998 /* to stop and start vmclock */
2999 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3000 &spapr->tb);
3002 kvmppc_spapr_enable_inkernel_multitce();
3005 qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond);
3008 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3010 if (!vm_type) {
3011 return 0;
3014 if (!strcmp(vm_type, "HV")) {
3015 return 1;
3018 if (!strcmp(vm_type, "PR")) {
3019 return 2;
3022 error_report("Unknown kvm-type specified '%s'", vm_type);
3023 exit(1);
3027 * Implementation of an interface to adjust firmware path
3028 * for the bootindex property handling.
3030 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3031 DeviceState *dev)
3033 #define CAST(type, obj, name) \
3034 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3035 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
3036 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3037 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3039 if (d) {
3040 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3041 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3042 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3044 if (spapr) {
3046 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3047 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3048 * 0x8000 | (target << 8) | (bus << 5) | lun
3049 * (see the "Logical unit addressing format" table in SAM5)
3051 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3052 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3053 (uint64_t)id << 48);
3054 } else if (virtio) {
3056 * We use SRP luns of the form 01000000 | (target << 8) | lun
3057 * in the top 32 bits of the 64-bit LUN
3058 * Note: the quote above is from SLOF and it is wrong,
3059 * the actual binding is:
3060 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3062 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3063 if (d->lun >= 256) {
3064 /* Use the LUN "flat space addressing method" */
3065 id |= 0x4000;
3067 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3068 (uint64_t)id << 32);
3069 } else if (usb) {
3071 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3072 * in the top 32 bits of the 64-bit LUN
3074 unsigned usb_port = atoi(usb->port->path);
3075 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3076 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3077 (uint64_t)id << 32);
3082 * SLOF probes the USB devices, and if it recognizes that the device is a
3083 * storage device, it changes its name to "storage" instead of "usb-host",
3084 * and additionally adds a child node for the SCSI LUN, so the correct
3085 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3087 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3088 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3089 if (usb_host_dev_is_scsi_storage(usbdev)) {
3090 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3094 if (phb) {
3095 /* Replace "pci" with "pci@800000020000000" */
3096 return g_strdup_printf("pci@%"PRIX64, phb->buid);
3099 if (vsc) {
3100 /* Same logic as virtio above */
3101 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3102 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3105 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3106 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3107 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3108 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3111 return NULL;
3114 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3116 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3118 return g_strdup(spapr->kvm_type);
3121 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3123 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3125 g_free(spapr->kvm_type);
3126 spapr->kvm_type = g_strdup(value);
3129 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3131 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3133 return spapr->use_hotplug_event_source;
3136 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3137 Error **errp)
3139 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3141 spapr->use_hotplug_event_source = value;
3144 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3146 return true;
3149 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3151 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3153 switch (spapr->resize_hpt) {
3154 case SPAPR_RESIZE_HPT_DEFAULT:
3155 return g_strdup("default");
3156 case SPAPR_RESIZE_HPT_DISABLED:
3157 return g_strdup("disabled");
3158 case SPAPR_RESIZE_HPT_ENABLED:
3159 return g_strdup("enabled");
3160 case SPAPR_RESIZE_HPT_REQUIRED:
3161 return g_strdup("required");
3163 g_assert_not_reached();
3166 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3168 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3170 if (strcmp(value, "default") == 0) {
3171 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3172 } else if (strcmp(value, "disabled") == 0) {
3173 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3174 } else if (strcmp(value, "enabled") == 0) {
3175 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3176 } else if (strcmp(value, "required") == 0) {
3177 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3178 } else {
3179 error_setg(errp, "Bad value for \"resize-hpt\" property");
3183 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3185 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3187 if (spapr->irq == &spapr_irq_xics_legacy) {
3188 return g_strdup("legacy");
3189 } else if (spapr->irq == &spapr_irq_xics) {
3190 return g_strdup("xics");
3191 } else if (spapr->irq == &spapr_irq_xive) {
3192 return g_strdup("xive");
3193 } else if (spapr->irq == &spapr_irq_dual) {
3194 return g_strdup("dual");
3196 g_assert_not_reached();
3199 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3201 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3203 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3204 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3205 return;
3208 /* The legacy IRQ backend can not be set */
3209 if (strcmp(value, "xics") == 0) {
3210 spapr->irq = &spapr_irq_xics;
3211 } else if (strcmp(value, "xive") == 0) {
3212 spapr->irq = &spapr_irq_xive;
3213 } else if (strcmp(value, "dual") == 0) {
3214 spapr->irq = &spapr_irq_dual;
3215 } else {
3216 error_setg(errp, "Bad value for \"ic-mode\" property");
3220 static char *spapr_get_host_model(Object *obj, Error **errp)
3222 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3224 return g_strdup(spapr->host_model);
3227 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3229 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3231 g_free(spapr->host_model);
3232 spapr->host_model = g_strdup(value);
3235 static char *spapr_get_host_serial(Object *obj, Error **errp)
3237 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3239 return g_strdup(spapr->host_serial);
3242 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3244 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3246 g_free(spapr->host_serial);
3247 spapr->host_serial = g_strdup(value);
3250 static void spapr_instance_init(Object *obj)
3252 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3253 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3255 spapr->htab_fd = -1;
3256 spapr->use_hotplug_event_source = true;
3257 object_property_add_str(obj, "kvm-type",
3258 spapr_get_kvm_type, spapr_set_kvm_type);
3259 object_property_set_description(obj, "kvm-type",
3260 "Specifies the KVM virtualization mode (HV, PR)");
3261 object_property_add_bool(obj, "modern-hotplug-events",
3262 spapr_get_modern_hotplug_events,
3263 spapr_set_modern_hotplug_events);
3264 object_property_set_description(obj, "modern-hotplug-events",
3265 "Use dedicated hotplug event mechanism in"
3266 " place of standard EPOW events when possible"
3267 " (required for memory hot-unplug support)");
3268 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3269 "Maximum permitted CPU compatibility mode");
3271 object_property_add_str(obj, "resize-hpt",
3272 spapr_get_resize_hpt, spapr_set_resize_hpt);
3273 object_property_set_description(obj, "resize-hpt",
3274 "Resizing of the Hash Page Table (enabled, disabled, required)");
3275 object_property_add_uint32_ptr(obj, "vsmt",
3276 &spapr->vsmt, OBJ_PROP_FLAG_READWRITE);
3277 object_property_set_description(obj, "vsmt",
3278 "Virtual SMT: KVM behaves as if this were"
3279 " the host's SMT mode");
3281 object_property_add_bool(obj, "vfio-no-msix-emulation",
3282 spapr_get_msix_emulation, NULL);
3284 object_property_add_uint64_ptr(obj, "kernel-addr",
3285 &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE);
3286 object_property_set_description(obj, "kernel-addr",
3287 stringify(KERNEL_LOAD_ADDR)
3288 " for -kernel is the default");
3289 spapr->kernel_addr = KERNEL_LOAD_ADDR;
3290 /* The machine class defines the default interrupt controller mode */
3291 spapr->irq = smc->irq;
3292 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3293 spapr_set_ic_mode);
3294 object_property_set_description(obj, "ic-mode",
3295 "Specifies the interrupt controller mode (xics, xive, dual)");
3297 object_property_add_str(obj, "host-model",
3298 spapr_get_host_model, spapr_set_host_model);
3299 object_property_set_description(obj, "host-model",
3300 "Host model to advertise in guest device tree");
3301 object_property_add_str(obj, "host-serial",
3302 spapr_get_host_serial, spapr_set_host_serial);
3303 object_property_set_description(obj, "host-serial",
3304 "Host serial number to advertise in guest device tree");
3307 static void spapr_machine_finalizefn(Object *obj)
3309 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3311 g_free(spapr->kvm_type);
3314 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3316 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3317 PowerPCCPU *cpu = POWERPC_CPU(cs);
3318 CPUPPCState *env = &cpu->env;
3320 cpu_synchronize_state(cs);
3321 /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
3322 if (spapr->fwnmi_system_reset_addr != -1) {
3323 uint64_t rtas_addr, addr;
3325 /* get rtas addr from fdt */
3326 rtas_addr = spapr_get_rtas_addr();
3327 if (!rtas_addr) {
3328 qemu_system_guest_panicked(NULL);
3329 return;
3332 addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2;
3333 stq_be_phys(&address_space_memory, addr, env->gpr[3]);
3334 stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0);
3335 env->gpr[3] = addr;
3337 ppc_cpu_do_system_reset(cs);
3338 if (spapr->fwnmi_system_reset_addr != -1) {
3339 env->nip = spapr->fwnmi_system_reset_addr;
3343 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3345 CPUState *cs;
3347 CPU_FOREACH(cs) {
3348 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3352 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3353 void *fdt, int *fdt_start_offset, Error **errp)
3355 uint64_t addr;
3356 uint32_t node;
3358 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3359 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3360 &error_abort);
3361 *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr,
3362 SPAPR_MEMORY_BLOCK_SIZE);
3363 return 0;
3366 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3367 bool dedicated_hp_event_source, Error **errp)
3369 SpaprDrc *drc;
3370 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3371 int i;
3372 uint64_t addr = addr_start;
3373 bool hotplugged = spapr_drc_hotplugged(dev);
3374 Error *local_err = NULL;
3376 for (i = 0; i < nr_lmbs; i++) {
3377 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3378 addr / SPAPR_MEMORY_BLOCK_SIZE);
3379 g_assert(drc);
3381 spapr_drc_attach(drc, dev, &local_err);
3382 if (local_err) {
3383 while (addr > addr_start) {
3384 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3385 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3386 addr / SPAPR_MEMORY_BLOCK_SIZE);
3387 spapr_drc_detach(drc);
3389 error_propagate(errp, local_err);
3390 return;
3392 if (!hotplugged) {
3393 spapr_drc_reset(drc);
3395 addr += SPAPR_MEMORY_BLOCK_SIZE;
3397 /* send hotplug notification to the
3398 * guest only in case of hotplugged memory
3400 if (hotplugged) {
3401 if (dedicated_hp_event_source) {
3402 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3403 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3404 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3405 nr_lmbs,
3406 spapr_drc_index(drc));
3407 } else {
3408 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3409 nr_lmbs);
3414 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3415 Error **errp)
3417 Error *local_err = NULL;
3418 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3419 PCDIMMDevice *dimm = PC_DIMM(dev);
3420 uint64_t size, addr, slot;
3421 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3423 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3425 pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3426 if (local_err) {
3427 goto out;
3430 if (!is_nvdimm) {
3431 addr = object_property_get_uint(OBJECT(dimm),
3432 PC_DIMM_ADDR_PROP, &local_err);
3433 if (local_err) {
3434 goto out_unplug;
3436 spapr_add_lmbs(dev, addr, size,
3437 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3438 &local_err);
3439 } else {
3440 slot = object_property_get_uint(OBJECT(dimm),
3441 PC_DIMM_SLOT_PROP, &local_err);
3442 if (local_err) {
3443 goto out_unplug;
3445 spapr_add_nvdimm(dev, slot, &local_err);
3448 if (local_err) {
3449 goto out_unplug;
3452 return;
3454 out_unplug:
3455 pc_dimm_unplug(dimm, MACHINE(ms));
3456 out:
3457 error_propagate(errp, local_err);
3460 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3461 Error **errp)
3463 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3464 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3465 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3466 PCDIMMDevice *dimm = PC_DIMM(dev);
3467 Error *local_err = NULL;
3468 uint64_t size;
3469 Object *memdev;
3470 hwaddr pagesize;
3472 if (!smc->dr_lmb_enabled) {
3473 error_setg(errp, "Memory hotplug not supported for this machine");
3474 return;
3477 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3478 if (local_err) {
3479 error_propagate(errp, local_err);
3480 return;
3483 if (is_nvdimm) {
3484 spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, &local_err);
3485 if (local_err) {
3486 error_propagate(errp, local_err);
3487 return;
3489 } else if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3490 error_setg(errp, "Hotplugged memory size must be a multiple of "
3491 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3492 return;
3495 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3496 &error_abort);
3497 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3498 spapr_check_pagesize(spapr, pagesize, &local_err);
3499 if (local_err) {
3500 error_propagate(errp, local_err);
3501 return;
3504 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3507 struct SpaprDimmState {
3508 PCDIMMDevice *dimm;
3509 uint32_t nr_lmbs;
3510 QTAILQ_ENTRY(SpaprDimmState) next;
3513 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3514 PCDIMMDevice *dimm)
3516 SpaprDimmState *dimm_state = NULL;
3518 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3519 if (dimm_state->dimm == dimm) {
3520 break;
3523 return dimm_state;
3526 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3527 uint32_t nr_lmbs,
3528 PCDIMMDevice *dimm)
3530 SpaprDimmState *ds = NULL;
3533 * If this request is for a DIMM whose removal had failed earlier
3534 * (due to guest's refusal to remove the LMBs), we would have this
3535 * dimm already in the pending_dimm_unplugs list. In that
3536 * case don't add again.
3538 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3539 if (!ds) {
3540 ds = g_malloc0(sizeof(SpaprDimmState));
3541 ds->nr_lmbs = nr_lmbs;
3542 ds->dimm = dimm;
3543 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3545 return ds;
3548 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3549 SpaprDimmState *dimm_state)
3551 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3552 g_free(dimm_state);
3555 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3556 PCDIMMDevice *dimm)
3558 SpaprDrc *drc;
3559 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3560 &error_abort);
3561 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3562 uint32_t avail_lmbs = 0;
3563 uint64_t addr_start, addr;
3564 int i;
3566 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3567 &error_abort);
3569 addr = addr_start;
3570 for (i = 0; i < nr_lmbs; i++) {
3571 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3572 addr / SPAPR_MEMORY_BLOCK_SIZE);
3573 g_assert(drc);
3574 if (drc->dev) {
3575 avail_lmbs++;
3577 addr += SPAPR_MEMORY_BLOCK_SIZE;
3580 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3583 /* Callback to be called during DRC release. */
3584 void spapr_lmb_release(DeviceState *dev)
3586 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3587 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3588 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3590 /* This information will get lost if a migration occurs
3591 * during the unplug process. In this case recover it. */
3592 if (ds == NULL) {
3593 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3594 g_assert(ds);
3595 /* The DRC being examined by the caller at least must be counted */
3596 g_assert(ds->nr_lmbs);
3599 if (--ds->nr_lmbs) {
3600 return;
3604 * Now that all the LMBs have been removed by the guest, call the
3605 * unplug handler chain. This can never fail.
3607 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3608 object_unparent(OBJECT(dev));
3611 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3613 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3614 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3616 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3617 qdev_unrealize(dev);
3618 spapr_pending_dimm_unplugs_remove(spapr, ds);
3621 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3622 DeviceState *dev, Error **errp)
3624 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3625 Error *local_err = NULL;
3626 PCDIMMDevice *dimm = PC_DIMM(dev);
3627 uint32_t nr_lmbs;
3628 uint64_t size, addr_start, addr;
3629 int i;
3630 SpaprDrc *drc;
3632 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
3633 error_setg(errp, "nvdimm device hot unplug is not supported yet.");
3634 return;
3637 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3638 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3640 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3641 &local_err);
3642 if (local_err) {
3643 error_propagate(errp, local_err);
3644 return;
3648 * An existing pending dimm state for this DIMM means that there is an
3649 * unplug operation in progress, waiting for the spapr_lmb_release
3650 * callback to complete the job (BQL can't cover that far). In this case,
3651 * bail out to avoid detaching DRCs that were already released.
3653 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3654 error_setg(errp, "Memory unplug already in progress for device %s",
3655 dev->id);
3656 return;
3659 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3661 addr = addr_start;
3662 for (i = 0; i < nr_lmbs; i++) {
3663 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3664 addr / SPAPR_MEMORY_BLOCK_SIZE);
3665 g_assert(drc);
3667 spapr_drc_detach(drc);
3668 addr += SPAPR_MEMORY_BLOCK_SIZE;
3671 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3672 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3673 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3674 nr_lmbs, spapr_drc_index(drc));
3677 /* Callback to be called during DRC release. */
3678 void spapr_core_release(DeviceState *dev)
3680 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3682 /* Call the unplug handler chain. This can never fail. */
3683 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3684 object_unparent(OBJECT(dev));
3687 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3689 MachineState *ms = MACHINE(hotplug_dev);
3690 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3691 CPUCore *cc = CPU_CORE(dev);
3692 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3694 if (smc->pre_2_10_has_unused_icps) {
3695 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3696 int i;
3698 for (i = 0; i < cc->nr_threads; i++) {
3699 CPUState *cs = CPU(sc->threads[i]);
3701 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3705 assert(core_slot);
3706 core_slot->cpu = NULL;
3707 qdev_unrealize(dev);
3710 static
3711 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3712 Error **errp)
3714 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3715 int index;
3716 SpaprDrc *drc;
3717 CPUCore *cc = CPU_CORE(dev);
3719 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3720 error_setg(errp, "Unable to find CPU core with core-id: %d",
3721 cc->core_id);
3722 return;
3724 if (index == 0) {
3725 error_setg(errp, "Boot CPU core may not be unplugged");
3726 return;
3729 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3730 spapr_vcpu_id(spapr, cc->core_id));
3731 g_assert(drc);
3733 if (!spapr_drc_unplug_requested(drc)) {
3734 spapr_drc_detach(drc);
3735 spapr_hotplug_req_remove_by_index(drc);
3739 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3740 void *fdt, int *fdt_start_offset, Error **errp)
3742 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3743 CPUState *cs = CPU(core->threads[0]);
3744 PowerPCCPU *cpu = POWERPC_CPU(cs);
3745 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3746 int id = spapr_get_vcpu_id(cpu);
3747 char *nodename;
3748 int offset;
3750 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3751 offset = fdt_add_subnode(fdt, 0, nodename);
3752 g_free(nodename);
3754 spapr_dt_cpu(cs, fdt, offset, spapr);
3756 *fdt_start_offset = offset;
3757 return 0;
3760 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3761 Error **errp)
3763 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3764 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3765 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3766 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3767 CPUCore *cc = CPU_CORE(dev);
3768 CPUState *cs;
3769 SpaprDrc *drc;
3770 Error *local_err = NULL;
3771 CPUArchId *core_slot;
3772 int index;
3773 bool hotplugged = spapr_drc_hotplugged(dev);
3774 int i;
3776 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3777 if (!core_slot) {
3778 error_setg(errp, "Unable to find CPU core with core-id: %d",
3779 cc->core_id);
3780 return;
3782 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3783 spapr_vcpu_id(spapr, cc->core_id));
3785 g_assert(drc || !mc->has_hotpluggable_cpus);
3787 if (drc) {
3788 spapr_drc_attach(drc, dev, &local_err);
3789 if (local_err) {
3790 error_propagate(errp, local_err);
3791 return;
3794 if (hotplugged) {
3796 * Send hotplug notification interrupt to the guest only
3797 * in case of hotplugged CPUs.
3799 spapr_hotplug_req_add_by_index(drc);
3800 } else {
3801 spapr_drc_reset(drc);
3805 core_slot->cpu = OBJECT(dev);
3807 if (smc->pre_2_10_has_unused_icps) {
3808 for (i = 0; i < cc->nr_threads; i++) {
3809 cs = CPU(core->threads[i]);
3810 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3815 * Set compatibility mode to match the boot CPU, which was either set
3816 * by the machine reset code or by CAS.
3818 if (hotplugged) {
3819 for (i = 0; i < cc->nr_threads; i++) {
3820 if (ppc_set_compat(core->threads[i],
3821 POWERPC_CPU(first_cpu)->compat_pvr,
3822 errp) < 0) {
3823 return;
3829 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3830 Error **errp)
3832 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3833 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3834 CPUCore *cc = CPU_CORE(dev);
3835 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3836 const char *type = object_get_typename(OBJECT(dev));
3837 CPUArchId *core_slot;
3838 int index;
3839 unsigned int smp_threads = machine->smp.threads;
3841 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3842 error_setg(errp, "CPU hotplug not supported for this machine");
3843 return;
3846 if (strcmp(base_core_type, type)) {
3847 error_setg(errp, "CPU core type should be %s", base_core_type);
3848 return;
3851 if (cc->core_id % smp_threads) {
3852 error_setg(errp, "invalid core id %d", cc->core_id);
3853 return;
3857 * In general we should have homogeneous threads-per-core, but old
3858 * (pre hotplug support) machine types allow the last core to have
3859 * reduced threads as a compatibility hack for when we allowed
3860 * total vcpus not a multiple of threads-per-core.
3862 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3863 error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads,
3864 smp_threads);
3865 return;
3868 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3869 if (!core_slot) {
3870 error_setg(errp, "core id %d out of range", cc->core_id);
3871 return;
3874 if (core_slot->cpu) {
3875 error_setg(errp, "core %d already populated", cc->core_id);
3876 return;
3879 numa_cpu_pre_plug(core_slot, dev, errp);
3882 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3883 void *fdt, int *fdt_start_offset, Error **errp)
3885 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3886 int intc_phandle;
3888 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3889 if (intc_phandle <= 0) {
3890 return -1;
3893 if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
3894 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
3895 return -1;
3898 /* generally SLOF creates these, for hotplug it's up to QEMU */
3899 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
3901 return 0;
3904 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3905 Error **errp)
3907 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3908 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3909 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3910 const unsigned windows_supported = spapr_phb_windows_supported(sphb);
3912 if (dev->hotplugged && !smc->dr_phb_enabled) {
3913 error_setg(errp, "PHB hotplug not supported for this machine");
3914 return;
3917 if (sphb->index == (uint32_t)-1) {
3918 error_setg(errp, "\"index\" for PAPR PHB is mandatory");
3919 return;
3923 * This will check that sphb->index doesn't exceed the maximum number of
3924 * PHBs for the current machine type.
3926 smc->phb_placement(spapr, sphb->index,
3927 &sphb->buid, &sphb->io_win_addr,
3928 &sphb->mem_win_addr, &sphb->mem64_win_addr,
3929 windows_supported, sphb->dma_liobn,
3930 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
3931 errp);
3934 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3935 Error **errp)
3937 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3938 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3939 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3940 SpaprDrc *drc;
3941 bool hotplugged = spapr_drc_hotplugged(dev);
3942 Error *local_err = NULL;
3944 if (!smc->dr_phb_enabled) {
3945 return;
3948 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3949 /* hotplug hooks should check it's enabled before getting this far */
3950 assert(drc);
3952 spapr_drc_attach(drc, dev, &local_err);
3953 if (local_err) {
3954 error_propagate(errp, local_err);
3955 return;
3958 if (hotplugged) {
3959 spapr_hotplug_req_add_by_index(drc);
3960 } else {
3961 spapr_drc_reset(drc);
3965 void spapr_phb_release(DeviceState *dev)
3967 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3969 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3970 object_unparent(OBJECT(dev));
3973 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3975 qdev_unrealize(dev);
3978 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
3979 DeviceState *dev, Error **errp)
3981 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3982 SpaprDrc *drc;
3984 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3985 assert(drc);
3987 if (!spapr_drc_unplug_requested(drc)) {
3988 spapr_drc_detach(drc);
3989 spapr_hotplug_req_remove_by_index(drc);
3993 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3994 Error **errp)
3996 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3997 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
3999 if (spapr->tpm_proxy != NULL) {
4000 error_setg(errp, "Only one TPM proxy can be specified for this machine");
4001 return;
4004 spapr->tpm_proxy = tpm_proxy;
4007 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4009 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4011 qdev_unrealize(dev);
4012 object_unparent(OBJECT(dev));
4013 spapr->tpm_proxy = NULL;
4016 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4017 DeviceState *dev, Error **errp)
4019 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4020 spapr_memory_plug(hotplug_dev, dev, errp);
4021 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4022 spapr_core_plug(hotplug_dev, dev, errp);
4023 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4024 spapr_phb_plug(hotplug_dev, dev, errp);
4025 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4026 spapr_tpm_proxy_plug(hotplug_dev, dev, errp);
4030 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4031 DeviceState *dev, Error **errp)
4033 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4034 spapr_memory_unplug(hotplug_dev, dev);
4035 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4036 spapr_core_unplug(hotplug_dev, dev);
4037 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4038 spapr_phb_unplug(hotplug_dev, dev);
4039 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4040 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4044 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4045 DeviceState *dev, Error **errp)
4047 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4048 MachineClass *mc = MACHINE_GET_CLASS(sms);
4049 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4051 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4052 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
4053 spapr_memory_unplug_request(hotplug_dev, dev, errp);
4054 } else {
4055 /* NOTE: this means there is a window after guest reset, prior to
4056 * CAS negotiation, where unplug requests will fail due to the
4057 * capability not being detected yet. This is a bit different than
4058 * the case with PCI unplug, where the events will be queued and
4059 * eventually handled by the guest after boot
4061 error_setg(errp, "Memory hot unplug not supported for this guest");
4063 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4064 if (!mc->has_hotpluggable_cpus) {
4065 error_setg(errp, "CPU hot unplug not supported on this machine");
4066 return;
4068 spapr_core_unplug_request(hotplug_dev, dev, errp);
4069 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4070 if (!smc->dr_phb_enabled) {
4071 error_setg(errp, "PHB hot unplug not supported on this machine");
4072 return;
4074 spapr_phb_unplug_request(hotplug_dev, dev, errp);
4075 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4076 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4080 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4081 DeviceState *dev, Error **errp)
4083 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4084 spapr_memory_pre_plug(hotplug_dev, dev, errp);
4085 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4086 spapr_core_pre_plug(hotplug_dev, dev, errp);
4087 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4088 spapr_phb_pre_plug(hotplug_dev, dev, errp);
4092 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4093 DeviceState *dev)
4095 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4096 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4097 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4098 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4099 return HOTPLUG_HANDLER(machine);
4101 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4102 PCIDevice *pcidev = PCI_DEVICE(dev);
4103 PCIBus *root = pci_device_root_bus(pcidev);
4104 SpaprPhbState *phb =
4105 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4106 TYPE_SPAPR_PCI_HOST_BRIDGE);
4108 if (phb) {
4109 return HOTPLUG_HANDLER(phb);
4112 return NULL;
4115 static CpuInstanceProperties
4116 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4118 CPUArchId *core_slot;
4119 MachineClass *mc = MACHINE_GET_CLASS(machine);
4121 /* make sure possible_cpu are intialized */
4122 mc->possible_cpu_arch_ids(machine);
4123 /* get CPU core slot containing thread that matches cpu_index */
4124 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4125 assert(core_slot);
4126 return core_slot->props;
4129 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4131 return idx / ms->smp.cores % ms->numa_state->num_nodes;
4134 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4136 int i;
4137 unsigned int smp_threads = machine->smp.threads;
4138 unsigned int smp_cpus = machine->smp.cpus;
4139 const char *core_type;
4140 int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4141 MachineClass *mc = MACHINE_GET_CLASS(machine);
4143 if (!mc->has_hotpluggable_cpus) {
4144 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4146 if (machine->possible_cpus) {
4147 assert(machine->possible_cpus->len == spapr_max_cores);
4148 return machine->possible_cpus;
4151 core_type = spapr_get_cpu_core_type(machine->cpu_type);
4152 if (!core_type) {
4153 error_report("Unable to find sPAPR CPU Core definition");
4154 exit(1);
4157 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4158 sizeof(CPUArchId) * spapr_max_cores);
4159 machine->possible_cpus->len = spapr_max_cores;
4160 for (i = 0; i < machine->possible_cpus->len; i++) {
4161 int core_id = i * smp_threads;
4163 machine->possible_cpus->cpus[i].type = core_type;
4164 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4165 machine->possible_cpus->cpus[i].arch_id = core_id;
4166 machine->possible_cpus->cpus[i].props.has_core_id = true;
4167 machine->possible_cpus->cpus[i].props.core_id = core_id;
4169 return machine->possible_cpus;
4172 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4173 uint64_t *buid, hwaddr *pio,
4174 hwaddr *mmio32, hwaddr *mmio64,
4175 unsigned n_dma, uint32_t *liobns,
4176 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4179 * New-style PHB window placement.
4181 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4182 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4183 * windows.
4185 * Some guest kernels can't work with MMIO windows above 1<<46
4186 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4188 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4189 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
4190 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
4191 * 1TiB 64-bit MMIO windows for each PHB.
4193 const uint64_t base_buid = 0x800000020000000ULL;
4194 int i;
4196 /* Sanity check natural alignments */
4197 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4198 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4199 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4200 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4201 /* Sanity check bounds */
4202 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4203 SPAPR_PCI_MEM32_WIN_SIZE);
4204 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4205 SPAPR_PCI_MEM64_WIN_SIZE);
4207 if (index >= SPAPR_MAX_PHBS) {
4208 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4209 SPAPR_MAX_PHBS - 1);
4210 return;
4213 *buid = base_buid + index;
4214 for (i = 0; i < n_dma; ++i) {
4215 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4218 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4219 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4220 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4222 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4223 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4226 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4228 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4230 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4233 static void spapr_ics_resend(XICSFabric *dev)
4235 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4237 ics_resend(spapr->ics);
4240 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4242 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4244 return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4247 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4248 Monitor *mon)
4250 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4252 spapr_irq_print_info(spapr, mon);
4253 monitor_printf(mon, "irqchip: %s\n",
4254 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4258 * This is a XIVE only operation
4260 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
4261 uint8_t nvt_blk, uint32_t nvt_idx,
4262 bool cam_ignore, uint8_t priority,
4263 uint32_t logic_serv, XiveTCTXMatch *match)
4265 SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
4266 XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
4267 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
4268 int count;
4270 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
4271 priority, logic_serv, match);
4272 if (count < 0) {
4273 return count;
4277 * When we implement the save and restore of the thread interrupt
4278 * contexts in the enter/exit CPU handlers of the machine and the
4279 * escalations in QEMU, we should be able to handle non dispatched
4280 * vCPUs.
4282 * Until this is done, the sPAPR machine should find at least one
4283 * matching context always.
4285 if (count == 0) {
4286 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
4287 nvt_blk, nvt_idx);
4290 return count;
4293 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4295 return cpu->vcpu_id;
4298 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4300 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4301 MachineState *ms = MACHINE(spapr);
4302 int vcpu_id;
4304 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4306 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4307 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4308 error_append_hint(errp, "Adjust the number of cpus to %d "
4309 "or try to raise the number of threads per core\n",
4310 vcpu_id * ms->smp.threads / spapr->vsmt);
4311 return;
4314 cpu->vcpu_id = vcpu_id;
4317 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4319 CPUState *cs;
4321 CPU_FOREACH(cs) {
4322 PowerPCCPU *cpu = POWERPC_CPU(cs);
4324 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4325 return cpu;
4329 return NULL;
4332 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4334 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4336 /* These are only called by TCG, KVM maintains dispatch state */
4338 spapr_cpu->prod = false;
4339 if (spapr_cpu->vpa_addr) {
4340 CPUState *cs = CPU(cpu);
4341 uint32_t dispatch;
4343 dispatch = ldl_be_phys(cs->as,
4344 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4345 dispatch++;
4346 if ((dispatch & 1) != 0) {
4347 qemu_log_mask(LOG_GUEST_ERROR,
4348 "VPA: incorrect dispatch counter value for "
4349 "dispatched partition %u, correcting.\n", dispatch);
4350 dispatch++;
4352 stl_be_phys(cs->as,
4353 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4357 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4359 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4361 if (spapr_cpu->vpa_addr) {
4362 CPUState *cs = CPU(cpu);
4363 uint32_t dispatch;
4365 dispatch = ldl_be_phys(cs->as,
4366 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4367 dispatch++;
4368 if ((dispatch & 1) != 1) {
4369 qemu_log_mask(LOG_GUEST_ERROR,
4370 "VPA: incorrect dispatch counter value for "
4371 "preempted partition %u, correcting.\n", dispatch);
4372 dispatch++;
4374 stl_be_phys(cs->as,
4375 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4379 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4381 MachineClass *mc = MACHINE_CLASS(oc);
4382 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4383 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4384 NMIClass *nc = NMI_CLASS(oc);
4385 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4386 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4387 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4388 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4389 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
4391 mc->desc = "pSeries Logical Partition (PAPR compliant)";
4392 mc->ignore_boot_device_suffixes = true;
4395 * We set up the default / latest behaviour here. The class_init
4396 * functions for the specific versioned machine types can override
4397 * these details for backwards compatibility
4399 mc->init = spapr_machine_init;
4400 mc->reset = spapr_machine_reset;
4401 mc->block_default_type = IF_SCSI;
4402 mc->max_cpus = 1024;
4403 mc->no_parallel = 1;
4404 mc->default_boot_order = "";
4405 mc->default_ram_size = 512 * MiB;
4406 mc->default_ram_id = "ppc_spapr.ram";
4407 mc->default_display = "std";
4408 mc->kvm_type = spapr_kvm_type;
4409 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4410 mc->pci_allow_0_address = true;
4411 assert(!mc->get_hotplug_handler);
4412 mc->get_hotplug_handler = spapr_get_hotplug_handler;
4413 hc->pre_plug = spapr_machine_device_pre_plug;
4414 hc->plug = spapr_machine_device_plug;
4415 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4416 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4417 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4418 hc->unplug_request = spapr_machine_device_unplug_request;
4419 hc->unplug = spapr_machine_device_unplug;
4421 smc->dr_lmb_enabled = true;
4422 smc->update_dt_enabled = true;
4423 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4424 mc->has_hotpluggable_cpus = true;
4425 mc->nvdimm_supported = true;
4426 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4427 fwc->get_dev_path = spapr_get_fw_dev_path;
4428 nc->nmi_monitor_handler = spapr_nmi;
4429 smc->phb_placement = spapr_phb_placement;
4430 vhc->hypercall = emulate_spapr_hypercall;
4431 vhc->hpt_mask = spapr_hpt_mask;
4432 vhc->map_hptes = spapr_map_hptes;
4433 vhc->unmap_hptes = spapr_unmap_hptes;
4434 vhc->hpte_set_c = spapr_hpte_set_c;
4435 vhc->hpte_set_r = spapr_hpte_set_r;
4436 vhc->get_pate = spapr_get_pate;
4437 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4438 vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4439 vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4440 xic->ics_get = spapr_ics_get;
4441 xic->ics_resend = spapr_ics_resend;
4442 xic->icp_get = spapr_icp_get;
4443 ispc->print_info = spapr_pic_print_info;
4444 /* Force NUMA node memory size to be a multiple of
4445 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4446 * in which LMBs are represented and hot-added
4448 mc->numa_mem_align_shift = 28;
4449 mc->auto_enable_numa = true;
4451 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4452 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4453 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4454 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4455 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4456 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4457 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4458 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4459 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4460 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
4461 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON;
4462 spapr_caps_add_properties(smc);
4463 smc->irq = &spapr_irq_dual;
4464 smc->dr_phb_enabled = true;
4465 smc->linux_pci_probe = true;
4466 smc->smp_threads_vsmt = true;
4467 smc->nr_xirqs = SPAPR_NR_XIRQS;
4468 xfc->match_nvt = spapr_match_nvt;
4471 static const TypeInfo spapr_machine_info = {
4472 .name = TYPE_SPAPR_MACHINE,
4473 .parent = TYPE_MACHINE,
4474 .abstract = true,
4475 .instance_size = sizeof(SpaprMachineState),
4476 .instance_init = spapr_instance_init,
4477 .instance_finalize = spapr_machine_finalizefn,
4478 .class_size = sizeof(SpaprMachineClass),
4479 .class_init = spapr_machine_class_init,
4480 .interfaces = (InterfaceInfo[]) {
4481 { TYPE_FW_PATH_PROVIDER },
4482 { TYPE_NMI },
4483 { TYPE_HOTPLUG_HANDLER },
4484 { TYPE_PPC_VIRTUAL_HYPERVISOR },
4485 { TYPE_XICS_FABRIC },
4486 { TYPE_INTERRUPT_STATS_PROVIDER },
4487 { TYPE_XIVE_FABRIC },
4492 static void spapr_machine_latest_class_options(MachineClass *mc)
4494 mc->alias = "pseries";
4495 mc->is_default = true;
4498 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4499 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4500 void *data) \
4502 MachineClass *mc = MACHINE_CLASS(oc); \
4503 spapr_machine_##suffix##_class_options(mc); \
4504 if (latest) { \
4505 spapr_machine_latest_class_options(mc); \
4508 static const TypeInfo spapr_machine_##suffix##_info = { \
4509 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4510 .parent = TYPE_SPAPR_MACHINE, \
4511 .class_init = spapr_machine_##suffix##_class_init, \
4512 }; \
4513 static void spapr_machine_register_##suffix(void) \
4515 type_register(&spapr_machine_##suffix##_info); \
4517 type_init(spapr_machine_register_##suffix)
4520 * pseries-5.2
4522 static void spapr_machine_5_2_class_options(MachineClass *mc)
4524 /* Defaults for the latest behaviour inherited from the base class */
4527 DEFINE_SPAPR_MACHINE(5_2, "5.2", true);
4530 * pseries-5.1
4532 static void spapr_machine_5_1_class_options(MachineClass *mc)
4534 spapr_machine_5_2_class_options(mc);
4535 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
4538 DEFINE_SPAPR_MACHINE(5_1, "5.1", false);
4541 * pseries-5.0
4543 static void spapr_machine_5_0_class_options(MachineClass *mc)
4545 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4546 static GlobalProperty compat[] = {
4547 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" },
4550 spapr_machine_5_1_class_options(mc);
4551 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
4552 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4553 mc->numa_mem_supported = true;
4554 smc->pre_5_1_assoc_refpoints = true;
4557 DEFINE_SPAPR_MACHINE(5_0, "5.0", false);
4560 * pseries-4.2
4562 static void spapr_machine_4_2_class_options(MachineClass *mc)
4564 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4566 spapr_machine_5_0_class_options(mc);
4567 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
4568 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4569 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF;
4570 smc->rma_limit = 16 * GiB;
4571 mc->nvdimm_supported = false;
4574 DEFINE_SPAPR_MACHINE(4_2, "4.2", false);
4577 * pseries-4.1
4579 static void spapr_machine_4_1_class_options(MachineClass *mc)
4581 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4582 static GlobalProperty compat[] = {
4583 /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4584 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4587 spapr_machine_4_2_class_options(mc);
4588 smc->linux_pci_probe = false;
4589 smc->smp_threads_vsmt = false;
4590 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4591 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4594 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4597 * pseries-4.0
4599 static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4600 uint64_t *buid, hwaddr *pio,
4601 hwaddr *mmio32, hwaddr *mmio64,
4602 unsigned n_dma, uint32_t *liobns,
4603 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4605 spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns,
4606 nv2gpa, nv2atsd, errp);
4607 *nv2gpa = 0;
4608 *nv2atsd = 0;
4611 static void spapr_machine_4_0_class_options(MachineClass *mc)
4613 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4615 spapr_machine_4_1_class_options(mc);
4616 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4617 smc->phb_placement = phb_placement_4_0;
4618 smc->irq = &spapr_irq_xics;
4619 smc->pre_4_1_migration = true;
4622 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4625 * pseries-3.1
4627 static void spapr_machine_3_1_class_options(MachineClass *mc)
4629 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4631 spapr_machine_4_0_class_options(mc);
4632 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4634 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4635 smc->update_dt_enabled = false;
4636 smc->dr_phb_enabled = false;
4637 smc->broken_host_serial_model = true;
4638 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4639 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4640 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4641 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4644 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4647 * pseries-3.0
4650 static void spapr_machine_3_0_class_options(MachineClass *mc)
4652 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4654 spapr_machine_3_1_class_options(mc);
4655 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4657 smc->legacy_irq_allocation = true;
4658 smc->nr_xirqs = 0x400;
4659 smc->irq = &spapr_irq_xics_legacy;
4662 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4665 * pseries-2.12
4667 static void spapr_machine_2_12_class_options(MachineClass *mc)
4669 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4670 static GlobalProperty compat[] = {
4671 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4672 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4675 spapr_machine_3_0_class_options(mc);
4676 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4677 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4679 /* We depend on kvm_enabled() to choose a default value for the
4680 * hpt-max-page-size capability. Of course we can't do it here
4681 * because this is too early and the HW accelerator isn't initialzed
4682 * yet. Postpone this to machine init (see default_caps_with_cpu()).
4684 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4687 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4689 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4691 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4693 spapr_machine_2_12_class_options(mc);
4694 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4695 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4696 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4699 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4702 * pseries-2.11
4705 static void spapr_machine_2_11_class_options(MachineClass *mc)
4707 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4709 spapr_machine_2_12_class_options(mc);
4710 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4711 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4714 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4717 * pseries-2.10
4720 static void spapr_machine_2_10_class_options(MachineClass *mc)
4722 spapr_machine_2_11_class_options(mc);
4723 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4726 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4729 * pseries-2.9
4732 static void spapr_machine_2_9_class_options(MachineClass *mc)
4734 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4735 static GlobalProperty compat[] = {
4736 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4739 spapr_machine_2_10_class_options(mc);
4740 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4741 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4742 smc->pre_2_10_has_unused_icps = true;
4743 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4746 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4749 * pseries-2.8
4752 static void spapr_machine_2_8_class_options(MachineClass *mc)
4754 static GlobalProperty compat[] = {
4755 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4758 spapr_machine_2_9_class_options(mc);
4759 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4760 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4761 mc->numa_mem_align_shift = 23;
4764 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4767 * pseries-2.7
4770 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4771 uint64_t *buid, hwaddr *pio,
4772 hwaddr *mmio32, hwaddr *mmio64,
4773 unsigned n_dma, uint32_t *liobns,
4774 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4776 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4777 const uint64_t base_buid = 0x800000020000000ULL;
4778 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4779 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4780 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4781 const uint32_t max_index = 255;
4782 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4784 uint64_t ram_top = MACHINE(spapr)->ram_size;
4785 hwaddr phb0_base, phb_base;
4786 int i;
4788 /* Do we have device memory? */
4789 if (MACHINE(spapr)->maxram_size > ram_top) {
4790 /* Can't just use maxram_size, because there may be an
4791 * alignment gap between normal and device memory regions
4793 ram_top = MACHINE(spapr)->device_memory->base +
4794 memory_region_size(&MACHINE(spapr)->device_memory->mr);
4797 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4799 if (index > max_index) {
4800 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4801 max_index);
4802 return;
4805 *buid = base_buid + index;
4806 for (i = 0; i < n_dma; ++i) {
4807 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4810 phb_base = phb0_base + index * phb_spacing;
4811 *pio = phb_base + pio_offset;
4812 *mmio32 = phb_base + mmio_offset;
4814 * We don't set the 64-bit MMIO window, relying on the PHB's
4815 * fallback behaviour of automatically splitting a large "32-bit"
4816 * window into contiguous 32-bit and 64-bit windows
4819 *nv2gpa = 0;
4820 *nv2atsd = 0;
4823 static void spapr_machine_2_7_class_options(MachineClass *mc)
4825 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4826 static GlobalProperty compat[] = {
4827 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4828 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4829 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4830 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4833 spapr_machine_2_8_class_options(mc);
4834 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4835 mc->default_machine_opts = "modern-hotplug-events=off";
4836 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4837 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4838 smc->phb_placement = phb_placement_2_7;
4841 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4844 * pseries-2.6
4847 static void spapr_machine_2_6_class_options(MachineClass *mc)
4849 static GlobalProperty compat[] = {
4850 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4853 spapr_machine_2_7_class_options(mc);
4854 mc->has_hotpluggable_cpus = false;
4855 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4856 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4859 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4862 * pseries-2.5
4865 static void spapr_machine_2_5_class_options(MachineClass *mc)
4867 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4868 static GlobalProperty compat[] = {
4869 { "spapr-vlan", "use-rx-buffer-pools", "off" },
4872 spapr_machine_2_6_class_options(mc);
4873 smc->use_ohci_by_default = true;
4874 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4875 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4878 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4881 * pseries-2.4
4884 static void spapr_machine_2_4_class_options(MachineClass *mc)
4886 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4888 spapr_machine_2_5_class_options(mc);
4889 smc->dr_lmb_enabled = false;
4890 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4893 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4896 * pseries-2.3
4899 static void spapr_machine_2_3_class_options(MachineClass *mc)
4901 static GlobalProperty compat[] = {
4902 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4904 spapr_machine_2_4_class_options(mc);
4905 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4906 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4908 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4911 * pseries-2.2
4914 static void spapr_machine_2_2_class_options(MachineClass *mc)
4916 static GlobalProperty compat[] = {
4917 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4920 spapr_machine_2_3_class_options(mc);
4921 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4922 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4923 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4925 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4928 * pseries-2.1
4931 static void spapr_machine_2_1_class_options(MachineClass *mc)
4933 spapr_machine_2_2_class_options(mc);
4934 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4936 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4938 static void spapr_machine_register_types(void)
4940 type_register_static(&spapr_machine_info);
4943 type_init(spapr_machine_register_types)