4 * Stolen from linux/src/lib/bitmap.c
6 * Copyright (C) 2010 Corentin Chary
8 * This source code is licensed under the GNU General Public License,
12 #include "qemu/osdep.h"
13 #include "qemu/bitops.h"
14 #include "qemu/bitmap.h"
15 #include "qemu/atomic.h"
18 * bitmaps provide an array of bits, implemented using an
19 * array of unsigned longs. The number of valid bits in a
20 * given bitmap does _not_ need to be an exact multiple of
23 * The possible unused bits in the last, partially used word
24 * of a bitmap are 'don't care'. The implementation makes
25 * no particular effort to keep them zero. It ensures that
26 * their value will not affect the results of any operation.
27 * The bitmap operations that return Boolean (bitmap_empty,
28 * for example) or scalar (bitmap_weight, for example) results
29 * carefully filter out these unused bits from impacting their
32 * These operations actually hold to a slightly stronger rule:
33 * if you don't input any bitmaps to these ops that have some
34 * unused bits set, then they won't output any set unused bits
37 * The byte ordering of bitmaps is more natural on little
38 * endian architectures.
41 int slow_bitmap_empty(const unsigned long *bitmap
, long bits
)
43 long k
, lim
= bits
/BITS_PER_LONG
;
45 for (k
= 0; k
< lim
; ++k
) {
50 if (bits
% BITS_PER_LONG
) {
51 if (bitmap
[k
] & BITMAP_LAST_WORD_MASK(bits
)) {
59 int slow_bitmap_full(const unsigned long *bitmap
, long bits
)
61 long k
, lim
= bits
/BITS_PER_LONG
;
63 for (k
= 0; k
< lim
; ++k
) {
69 if (bits
% BITS_PER_LONG
) {
70 if (~bitmap
[k
] & BITMAP_LAST_WORD_MASK(bits
)) {
78 int slow_bitmap_equal(const unsigned long *bitmap1
,
79 const unsigned long *bitmap2
, long bits
)
81 long k
, lim
= bits
/BITS_PER_LONG
;
83 for (k
= 0; k
< lim
; ++k
) {
84 if (bitmap1
[k
] != bitmap2
[k
]) {
89 if (bits
% BITS_PER_LONG
) {
90 if ((bitmap1
[k
] ^ bitmap2
[k
]) & BITMAP_LAST_WORD_MASK(bits
)) {
98 void slow_bitmap_complement(unsigned long *dst
, const unsigned long *src
,
101 long k
, lim
= bits
/BITS_PER_LONG
;
103 for (k
= 0; k
< lim
; ++k
) {
107 if (bits
% BITS_PER_LONG
) {
108 dst
[k
] = ~src
[k
] & BITMAP_LAST_WORD_MASK(bits
);
112 int slow_bitmap_and(unsigned long *dst
, const unsigned long *bitmap1
,
113 const unsigned long *bitmap2
, long bits
)
116 long nr
= BITS_TO_LONGS(bits
);
117 unsigned long result
= 0;
119 for (k
= 0; k
< nr
; k
++) {
120 result
|= (dst
[k
] = bitmap1
[k
] & bitmap2
[k
]);
125 void slow_bitmap_or(unsigned long *dst
, const unsigned long *bitmap1
,
126 const unsigned long *bitmap2
, long bits
)
129 long nr
= BITS_TO_LONGS(bits
);
131 for (k
= 0; k
< nr
; k
++) {
132 dst
[k
] = bitmap1
[k
] | bitmap2
[k
];
136 void slow_bitmap_xor(unsigned long *dst
, const unsigned long *bitmap1
,
137 const unsigned long *bitmap2
, long bits
)
140 long nr
= BITS_TO_LONGS(bits
);
142 for (k
= 0; k
< nr
; k
++) {
143 dst
[k
] = bitmap1
[k
] ^ bitmap2
[k
];
147 int slow_bitmap_andnot(unsigned long *dst
, const unsigned long *bitmap1
,
148 const unsigned long *bitmap2
, long bits
)
151 long nr
= BITS_TO_LONGS(bits
);
152 unsigned long result
= 0;
154 for (k
= 0; k
< nr
; k
++) {
155 result
|= (dst
[k
] = bitmap1
[k
] & ~bitmap2
[k
]);
160 void bitmap_set(unsigned long *map
, long start
, long nr
)
162 unsigned long *p
= map
+ BIT_WORD(start
);
163 const long size
= start
+ nr
;
164 int bits_to_set
= BITS_PER_LONG
- (start
% BITS_PER_LONG
);
165 unsigned long mask_to_set
= BITMAP_FIRST_WORD_MASK(start
);
167 assert(start
>= 0 && nr
>= 0);
169 while (nr
- bits_to_set
>= 0) {
172 bits_to_set
= BITS_PER_LONG
;
177 mask_to_set
&= BITMAP_LAST_WORD_MASK(size
);
182 void bitmap_set_atomic(unsigned long *map
, long start
, long nr
)
184 unsigned long *p
= map
+ BIT_WORD(start
);
185 const long size
= start
+ nr
;
186 int bits_to_set
= BITS_PER_LONG
- (start
% BITS_PER_LONG
);
187 unsigned long mask_to_set
= BITMAP_FIRST_WORD_MASK(start
);
189 assert(start
>= 0 && nr
>= 0);
192 if (nr
- bits_to_set
> 0) {
193 qatomic_or(p
, mask_to_set
);
195 bits_to_set
= BITS_PER_LONG
;
201 if (bits_to_set
== BITS_PER_LONG
) {
202 while (nr
>= BITS_PER_LONG
) {
211 mask_to_set
&= BITMAP_LAST_WORD_MASK(size
);
212 qatomic_or(p
, mask_to_set
);
214 /* If we avoided the full barrier in qatomic_or(), issue a
215 * barrier to account for the assignments in the while loop.
221 void bitmap_clear(unsigned long *map
, long start
, long nr
)
223 unsigned long *p
= map
+ BIT_WORD(start
);
224 const long size
= start
+ nr
;
225 int bits_to_clear
= BITS_PER_LONG
- (start
% BITS_PER_LONG
);
226 unsigned long mask_to_clear
= BITMAP_FIRST_WORD_MASK(start
);
228 assert(start
>= 0 && nr
>= 0);
230 while (nr
- bits_to_clear
>= 0) {
231 *p
&= ~mask_to_clear
;
233 bits_to_clear
= BITS_PER_LONG
;
234 mask_to_clear
= ~0UL;
238 mask_to_clear
&= BITMAP_LAST_WORD_MASK(size
);
239 *p
&= ~mask_to_clear
;
243 bool bitmap_test_and_clear(unsigned long *map
, long start
, long nr
)
245 unsigned long *p
= map
+ BIT_WORD(start
);
246 const long size
= start
+ nr
;
247 int bits_to_clear
= BITS_PER_LONG
- (start
% BITS_PER_LONG
);
248 unsigned long mask_to_clear
= BITMAP_FIRST_WORD_MASK(start
);
251 assert(start
>= 0 && nr
>= 0);
254 if (nr
- bits_to_clear
> 0) {
255 if ((*p
) & mask_to_clear
) {
258 *p
&= ~mask_to_clear
;
260 bits_to_clear
= BITS_PER_LONG
;
265 if (bits_to_clear
== BITS_PER_LONG
) {
266 while (nr
>= BITS_PER_LONG
) {
278 mask_to_clear
&= BITMAP_LAST_WORD_MASK(size
);
279 if ((*p
) & mask_to_clear
) {
282 *p
&= ~mask_to_clear
;
288 bool bitmap_test_and_clear_atomic(unsigned long *map
, long start
, long nr
)
290 unsigned long *p
= map
+ BIT_WORD(start
);
291 const long size
= start
+ nr
;
292 int bits_to_clear
= BITS_PER_LONG
- (start
% BITS_PER_LONG
);
293 unsigned long mask_to_clear
= BITMAP_FIRST_WORD_MASK(start
);
294 unsigned long dirty
= 0;
295 unsigned long old_bits
;
297 assert(start
>= 0 && nr
>= 0);
300 if (nr
- bits_to_clear
> 0) {
301 old_bits
= qatomic_fetch_and(p
, ~mask_to_clear
);
302 dirty
|= old_bits
& mask_to_clear
;
304 bits_to_clear
= BITS_PER_LONG
;
305 mask_to_clear
= ~0UL;
310 if (bits_to_clear
== BITS_PER_LONG
) {
311 while (nr
>= BITS_PER_LONG
) {
313 old_bits
= qatomic_xchg(p
, 0);
323 mask_to_clear
&= BITMAP_LAST_WORD_MASK(size
);
324 old_bits
= qatomic_fetch_and(p
, ~mask_to_clear
);
325 dirty
|= old_bits
& mask_to_clear
;
335 void bitmap_copy_and_clear_atomic(unsigned long *dst
, unsigned long *src
,
339 *dst
= qatomic_xchg(src
, 0);
346 #define ALIGN_MASK(x,mask) (((x)+(mask))&~(mask))
349 * bitmap_find_next_zero_area - find a contiguous aligned zero area
350 * @map: The address to base the search on
351 * @size: The bitmap size in bits
352 * @start: The bitnumber to start searching at
353 * @nr: The number of zeroed bits we're looking for
354 * @align_mask: Alignment mask for zero area
356 * The @align_mask should be one less than a power of 2; the effect is that
357 * the bit offset of all zero areas this function finds is multiples of that
358 * power of 2. A @align_mask of 0 means no alignment is required.
360 unsigned long bitmap_find_next_zero_area(unsigned long *map
,
364 unsigned long align_mask
)
366 unsigned long index
, end
, i
;
368 index
= find_next_zero_bit(map
, size
, start
);
370 /* Align allocation */
371 index
= ALIGN_MASK(index
, align_mask
);
377 i
= find_next_bit(map
, end
, index
);
385 int slow_bitmap_intersects(const unsigned long *bitmap1
,
386 const unsigned long *bitmap2
, long bits
)
388 long k
, lim
= bits
/BITS_PER_LONG
;
390 for (k
= 0; k
< lim
; ++k
) {
391 if (bitmap1
[k
] & bitmap2
[k
]) {
396 if (bits
% BITS_PER_LONG
) {
397 if ((bitmap1
[k
] & bitmap2
[k
]) & BITMAP_LAST_WORD_MASK(bits
)) {
404 long slow_bitmap_count_one(const unsigned long *bitmap
, long nbits
)
406 long k
, lim
= nbits
/ BITS_PER_LONG
, result
= 0;
408 for (k
= 0; k
< lim
; k
++) {
409 result
+= ctpopl(bitmap
[k
]);
412 if (nbits
% BITS_PER_LONG
) {
413 result
+= ctpopl(bitmap
[k
] & BITMAP_LAST_WORD_MASK(nbits
));
419 static void bitmap_to_from_le(unsigned long *dst
,
420 const unsigned long *src
, long nbits
)
422 long len
= BITS_TO_LONGS(nbits
);
427 for (index
= 0; index
< len
; index
++) {
428 # if HOST_LONG_BITS == 64
429 dst
[index
] = bswap64(src
[index
]);
431 dst
[index
] = bswap32(src
[index
]);
435 memcpy(dst
, src
, len
* sizeof(unsigned long));
439 void bitmap_from_le(unsigned long *dst
, const unsigned long *src
,
442 bitmap_to_from_le(dst
, src
, nbits
);
445 void bitmap_to_le(unsigned long *dst
, const unsigned long *src
,
448 bitmap_to_from_le(dst
, src
, nbits
);
452 * Copy "src" bitmap with a positive offset and put it into the "dst"
453 * bitmap. The caller needs to make sure the bitmap size of "src"
454 * is bigger than (shift + nbits).
456 void bitmap_copy_with_src_offset(unsigned long *dst
, const unsigned long *src
,
457 unsigned long shift
, unsigned long nbits
)
459 unsigned long left_mask
, right_mask
, last_mask
;
461 /* Proper shift src pointer to the first word to copy from */
462 src
+= BIT_WORD(shift
);
463 shift
%= BITS_PER_LONG
;
467 bitmap_copy(dst
, src
, nbits
);
471 right_mask
= (1ul << shift
) - 1;
472 left_mask
= ~right_mask
;
474 while (nbits
>= BITS_PER_LONG
) {
475 *dst
= (*src
& left_mask
) >> shift
;
476 *dst
|= (src
[1] & right_mask
) << (BITS_PER_LONG
- shift
);
479 nbits
-= BITS_PER_LONG
;
482 if (nbits
> BITS_PER_LONG
- shift
) {
483 *dst
= (*src
& left_mask
) >> shift
;
484 nbits
-= BITS_PER_LONG
- shift
;
485 last_mask
= (1ul << nbits
) - 1;
486 *dst
|= (src
[1] & last_mask
) << (BITS_PER_LONG
- shift
);
488 last_mask
= (1ul << nbits
) - 1;
489 *dst
= (*src
>> shift
) & last_mask
;
494 * Copy "src" bitmap into the "dst" bitmap with an offset in the
495 * "dst". The caller needs to make sure the bitmap size of "dst" is
496 * bigger than (shift + nbits).
498 void bitmap_copy_with_dst_offset(unsigned long *dst
, const unsigned long *src
,
499 unsigned long shift
, unsigned long nbits
)
501 unsigned long left_mask
, right_mask
, last_mask
;
503 /* Proper shift dst pointer to the first word to copy from */
504 dst
+= BIT_WORD(shift
);
505 shift
%= BITS_PER_LONG
;
509 bitmap_copy(dst
, src
, nbits
);
513 right_mask
= (1ul << (BITS_PER_LONG
- shift
)) - 1;
514 left_mask
= ~right_mask
;
516 *dst
&= (1ul << shift
) - 1;
517 while (nbits
>= BITS_PER_LONG
) {
518 *dst
|= (*src
& right_mask
) << shift
;
519 dst
[1] = (*src
& left_mask
) >> (BITS_PER_LONG
- shift
);
522 nbits
-= BITS_PER_LONG
;
525 if (nbits
> BITS_PER_LONG
- shift
) {
526 *dst
|= (*src
& right_mask
) << shift
;
527 nbits
-= BITS_PER_LONG
- shift
;
528 last_mask
= ((1ul << nbits
) - 1) << (BITS_PER_LONG
- shift
);
529 dst
[1] = (*src
& last_mask
) >> (BITS_PER_LONG
- shift
);
531 last_mask
= (1ul << nbits
) - 1;
532 *dst
|= (*src
& last_mask
) << shift
;