4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include "qemu/osdep.h"
16 #include "qapi/error.h"
17 #include <sys/ioctl.h>
18 #include <sys/utsname.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
23 #include "qemu-common.h"
25 #include "sysemu/sysemu.h"
26 #include "sysemu/kvm_int.h"
30 #include "exec/gdbstub.h"
31 #include "qemu/host-utils.h"
32 #include "qemu/config-file.h"
33 #include "qemu/error-report.h"
34 #include "hw/i386/pc.h"
35 #include "hw/i386/apic.h"
36 #include "hw/i386/apic_internal.h"
37 #include "hw/i386/apic-msidef.h"
38 #include "hw/i386/intel_iommu.h"
39 #include "hw/i386/x86-iommu.h"
41 #include "exec/ioport.h"
42 #include "standard-headers/asm-x86/hyperv.h"
43 #include "hw/pci/pci.h"
44 #include "hw/pci/msi.h"
45 #include "migration/migration.h"
46 #include "exec/memattrs.h"
52 #define DPRINTF(fmt, ...) \
53 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
55 #define DPRINTF(fmt, ...) \
59 #define MSR_KVM_WALL_CLOCK 0x11
60 #define MSR_KVM_SYSTEM_TIME 0x12
62 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
63 * 255 kvm_msr_entry structs */
64 #define MSR_BUF_SIZE 4096
67 #define BUS_MCEERR_AR 4
70 #define BUS_MCEERR_AO 5
73 const KVMCapabilityInfo kvm_arch_required_capabilities
[] = {
74 KVM_CAP_INFO(SET_TSS_ADDR
),
75 KVM_CAP_INFO(EXT_CPUID
),
76 KVM_CAP_INFO(MP_STATE
),
80 static bool has_msr_star
;
81 static bool has_msr_hsave_pa
;
82 static bool has_msr_tsc_aux
;
83 static bool has_msr_tsc_adjust
;
84 static bool has_msr_tsc_deadline
;
85 static bool has_msr_feature_control
;
86 static bool has_msr_misc_enable
;
87 static bool has_msr_smbase
;
88 static bool has_msr_bndcfgs
;
89 static int lm_capable_kernel
;
90 static bool has_msr_hv_hypercall
;
91 static bool has_msr_hv_crash
;
92 static bool has_msr_hv_reset
;
93 static bool has_msr_hv_vpindex
;
94 static bool has_msr_hv_runtime
;
95 static bool has_msr_hv_synic
;
96 static bool has_msr_hv_stimer
;
97 static bool has_msr_xss
;
99 static bool has_msr_architectural_pmu
;
100 static uint32_t num_architectural_pmu_counters
;
102 static int has_xsave
;
104 static int has_pit_state2
;
106 static bool has_msr_mcg_ext_ctl
;
108 static struct kvm_cpuid2
*cpuid_cache
;
110 int kvm_has_pit_state2(void)
112 return has_pit_state2
;
115 bool kvm_has_smm(void)
117 return kvm_check_extension(kvm_state
, KVM_CAP_X86_SMM
);
120 bool kvm_allows_irq0_override(void)
122 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
125 static bool kvm_x2apic_api_set_flags(uint64_t flags
)
127 KVMState
*s
= KVM_STATE(current_machine
->accelerator
);
129 return !kvm_vm_enable_cap(s
, KVM_CAP_X2APIC_API
, 0, flags
);
132 #define MEMORIZE(fn) \
134 static typeof(fn) _result; \
135 static bool _memorized; \
144 bool kvm_enable_x2apic(void)
147 kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS
|
148 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK
));
151 static int kvm_get_tsc(CPUState
*cs
)
153 X86CPU
*cpu
= X86_CPU(cs
);
154 CPUX86State
*env
= &cpu
->env
;
156 struct kvm_msrs info
;
157 struct kvm_msr_entry entries
[1];
161 if (env
->tsc_valid
) {
165 msr_data
.info
.nmsrs
= 1;
166 msr_data
.entries
[0].index
= MSR_IA32_TSC
;
167 env
->tsc_valid
= !runstate_is_running();
169 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_MSRS
, &msr_data
);
175 env
->tsc
= msr_data
.entries
[0].data
;
179 static inline void do_kvm_synchronize_tsc(CPUState
*cpu
, void *arg
)
184 void kvm_synchronize_all_tsc(void)
190 run_on_cpu(cpu
, do_kvm_synchronize_tsc
, NULL
);
195 static struct kvm_cpuid2
*try_get_cpuid(KVMState
*s
, int max
)
197 struct kvm_cpuid2
*cpuid
;
200 size
= sizeof(*cpuid
) + max
* sizeof(*cpuid
->entries
);
201 cpuid
= g_malloc0(size
);
203 r
= kvm_ioctl(s
, KVM_GET_SUPPORTED_CPUID
, cpuid
);
204 if (r
== 0 && cpuid
->nent
>= max
) {
212 fprintf(stderr
, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
220 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
223 static struct kvm_cpuid2
*get_supported_cpuid(KVMState
*s
)
225 struct kvm_cpuid2
*cpuid
;
228 if (cpuid_cache
!= NULL
) {
231 while ((cpuid
= try_get_cpuid(s
, max
)) == NULL
) {
238 static const struct kvm_para_features
{
241 } para_features
[] = {
242 { KVM_CAP_CLOCKSOURCE
, KVM_FEATURE_CLOCKSOURCE
},
243 { KVM_CAP_NOP_IO_DELAY
, KVM_FEATURE_NOP_IO_DELAY
},
244 { KVM_CAP_PV_MMU
, KVM_FEATURE_MMU_OP
},
245 { KVM_CAP_ASYNC_PF
, KVM_FEATURE_ASYNC_PF
},
248 static int get_para_features(KVMState
*s
)
252 for (i
= 0; i
< ARRAY_SIZE(para_features
); i
++) {
253 if (kvm_check_extension(s
, para_features
[i
].cap
)) {
254 features
|= (1 << para_features
[i
].feature
);
262 /* Returns the value for a specific register on the cpuid entry
264 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2
*entry
, int reg
)
284 /* Find matching entry for function/index on kvm_cpuid2 struct
286 static struct kvm_cpuid_entry2
*cpuid_find_entry(struct kvm_cpuid2
*cpuid
,
291 for (i
= 0; i
< cpuid
->nent
; ++i
) {
292 if (cpuid
->entries
[i
].function
== function
&&
293 cpuid
->entries
[i
].index
== index
) {
294 return &cpuid
->entries
[i
];
301 uint32_t kvm_arch_get_supported_cpuid(KVMState
*s
, uint32_t function
,
302 uint32_t index
, int reg
)
304 struct kvm_cpuid2
*cpuid
;
306 uint32_t cpuid_1_edx
;
309 cpuid
= get_supported_cpuid(s
);
311 struct kvm_cpuid_entry2
*entry
= cpuid_find_entry(cpuid
, function
, index
);
314 ret
= cpuid_entry_get_reg(entry
, reg
);
317 /* Fixups for the data returned by KVM, below */
319 if (function
== 1 && reg
== R_EDX
) {
320 /* KVM before 2.6.30 misreports the following features */
321 ret
|= CPUID_MTRR
| CPUID_PAT
| CPUID_MCE
| CPUID_MCA
;
322 } else if (function
== 1 && reg
== R_ECX
) {
323 /* We can set the hypervisor flag, even if KVM does not return it on
324 * GET_SUPPORTED_CPUID
326 ret
|= CPUID_EXT_HYPERVISOR
;
327 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
328 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
329 * and the irqchip is in the kernel.
331 if (kvm_irqchip_in_kernel() &&
332 kvm_check_extension(s
, KVM_CAP_TSC_DEADLINE_TIMER
)) {
333 ret
|= CPUID_EXT_TSC_DEADLINE_TIMER
;
336 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
337 * without the in-kernel irqchip
339 if (!kvm_irqchip_in_kernel()) {
340 ret
&= ~CPUID_EXT_X2APIC
;
342 } else if (function
== 6 && reg
== R_EAX
) {
343 ret
|= CPUID_6_EAX_ARAT
; /* safe to allow because of emulated APIC */
344 } else if (function
== 0x80000001 && reg
== R_EDX
) {
345 /* On Intel, kvm returns cpuid according to the Intel spec,
346 * so add missing bits according to the AMD spec:
348 cpuid_1_edx
= kvm_arch_get_supported_cpuid(s
, 1, 0, R_EDX
);
349 ret
|= cpuid_1_edx
& CPUID_EXT2_AMD_ALIASES
;
350 } else if (function
== KVM_CPUID_FEATURES
&& reg
== R_EAX
) {
351 /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
352 * be enabled without the in-kernel irqchip
354 if (!kvm_irqchip_in_kernel()) {
355 ret
&= ~(1U << KVM_FEATURE_PV_UNHALT
);
359 /* fallback for older kernels */
360 if ((function
== KVM_CPUID_FEATURES
) && !found
) {
361 ret
= get_para_features(s
);
367 typedef struct HWPoisonPage
{
369 QLIST_ENTRY(HWPoisonPage
) list
;
372 static QLIST_HEAD(, HWPoisonPage
) hwpoison_page_list
=
373 QLIST_HEAD_INITIALIZER(hwpoison_page_list
);
375 static void kvm_unpoison_all(void *param
)
377 HWPoisonPage
*page
, *next_page
;
379 QLIST_FOREACH_SAFE(page
, &hwpoison_page_list
, list
, next_page
) {
380 QLIST_REMOVE(page
, list
);
381 qemu_ram_remap(page
->ram_addr
, TARGET_PAGE_SIZE
);
386 static void kvm_hwpoison_page_add(ram_addr_t ram_addr
)
390 QLIST_FOREACH(page
, &hwpoison_page_list
, list
) {
391 if (page
->ram_addr
== ram_addr
) {
395 page
= g_new(HWPoisonPage
, 1);
396 page
->ram_addr
= ram_addr
;
397 QLIST_INSERT_HEAD(&hwpoison_page_list
, page
, list
);
400 static int kvm_get_mce_cap_supported(KVMState
*s
, uint64_t *mce_cap
,
405 r
= kvm_check_extension(s
, KVM_CAP_MCE
);
408 return kvm_ioctl(s
, KVM_X86_GET_MCE_CAP_SUPPORTED
, mce_cap
);
413 static void kvm_mce_inject(X86CPU
*cpu
, hwaddr paddr
, int code
)
415 CPUState
*cs
= CPU(cpu
);
416 CPUX86State
*env
= &cpu
->env
;
417 uint64_t status
= MCI_STATUS_VAL
| MCI_STATUS_UC
| MCI_STATUS_EN
|
418 MCI_STATUS_MISCV
| MCI_STATUS_ADDRV
| MCI_STATUS_S
;
419 uint64_t mcg_status
= MCG_STATUS_MCIP
;
422 if (code
== BUS_MCEERR_AR
) {
423 status
|= MCI_STATUS_AR
| 0x134;
424 mcg_status
|= MCG_STATUS_EIPV
;
427 mcg_status
|= MCG_STATUS_RIPV
;
430 flags
= cpu_x86_support_mca_broadcast(env
) ? MCE_INJECT_BROADCAST
: 0;
431 /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
432 * guest kernel back into env->mcg_ext_ctl.
434 cpu_synchronize_state(cs
);
435 if (env
->mcg_ext_ctl
& MCG_EXT_CTL_LMCE_EN
) {
436 mcg_status
|= MCG_STATUS_LMCE
;
440 cpu_x86_inject_mce(NULL
, cpu
, 9, status
, mcg_status
, paddr
,
441 (MCM_ADDR_PHYS
<< 6) | 0xc, flags
);
444 static void hardware_memory_error(void)
446 fprintf(stderr
, "Hardware memory error!\n");
450 int kvm_arch_on_sigbus_vcpu(CPUState
*c
, int code
, void *addr
)
452 X86CPU
*cpu
= X86_CPU(c
);
453 CPUX86State
*env
= &cpu
->env
;
457 if ((env
->mcg_cap
& MCG_SER_P
) && addr
458 && (code
== BUS_MCEERR_AR
|| code
== BUS_MCEERR_AO
)) {
459 ram_addr
= qemu_ram_addr_from_host(addr
);
460 if (ram_addr
== RAM_ADDR_INVALID
||
461 !kvm_physical_memory_addr_from_host(c
->kvm_state
, addr
, &paddr
)) {
462 fprintf(stderr
, "Hardware memory error for memory used by "
463 "QEMU itself instead of guest system!\n");
464 /* Hope we are lucky for AO MCE */
465 if (code
== BUS_MCEERR_AO
) {
468 hardware_memory_error();
471 kvm_hwpoison_page_add(ram_addr
);
472 kvm_mce_inject(cpu
, paddr
, code
);
474 if (code
== BUS_MCEERR_AO
) {
476 } else if (code
== BUS_MCEERR_AR
) {
477 hardware_memory_error();
485 int kvm_arch_on_sigbus(int code
, void *addr
)
487 X86CPU
*cpu
= X86_CPU(first_cpu
);
489 if ((cpu
->env
.mcg_cap
& MCG_SER_P
) && addr
&& code
== BUS_MCEERR_AO
) {
493 /* Hope we are lucky for AO MCE */
494 ram_addr
= qemu_ram_addr_from_host(addr
);
495 if (ram_addr
== RAM_ADDR_INVALID
||
496 !kvm_physical_memory_addr_from_host(first_cpu
->kvm_state
,
498 fprintf(stderr
, "Hardware memory error for memory used by "
499 "QEMU itself instead of guest system!: %p\n", addr
);
502 kvm_hwpoison_page_add(ram_addr
);
503 kvm_mce_inject(X86_CPU(first_cpu
), paddr
, code
);
505 if (code
== BUS_MCEERR_AO
) {
507 } else if (code
== BUS_MCEERR_AR
) {
508 hardware_memory_error();
516 static int kvm_inject_mce_oldstyle(X86CPU
*cpu
)
518 CPUX86State
*env
= &cpu
->env
;
520 if (!kvm_has_vcpu_events() && env
->exception_injected
== EXCP12_MCHK
) {
521 unsigned int bank
, bank_num
= env
->mcg_cap
& 0xff;
522 struct kvm_x86_mce mce
;
524 env
->exception_injected
= -1;
527 * There must be at least one bank in use if an MCE is pending.
528 * Find it and use its values for the event injection.
530 for (bank
= 0; bank
< bank_num
; bank
++) {
531 if (env
->mce_banks
[bank
* 4 + 1] & MCI_STATUS_VAL
) {
535 assert(bank
< bank_num
);
538 mce
.status
= env
->mce_banks
[bank
* 4 + 1];
539 mce
.mcg_status
= env
->mcg_status
;
540 mce
.addr
= env
->mce_banks
[bank
* 4 + 2];
541 mce
.misc
= env
->mce_banks
[bank
* 4 + 3];
543 return kvm_vcpu_ioctl(CPU(cpu
), KVM_X86_SET_MCE
, &mce
);
548 static void cpu_update_state(void *opaque
, int running
, RunState state
)
550 CPUX86State
*env
= opaque
;
553 env
->tsc_valid
= false;
557 unsigned long kvm_arch_vcpu_id(CPUState
*cs
)
559 X86CPU
*cpu
= X86_CPU(cs
);
563 #ifndef KVM_CPUID_SIGNATURE_NEXT
564 #define KVM_CPUID_SIGNATURE_NEXT 0x40000100
567 static bool hyperv_hypercall_available(X86CPU
*cpu
)
569 return cpu
->hyperv_vapic
||
570 (cpu
->hyperv_spinlock_attempts
!= HYPERV_SPINLOCK_NEVER_RETRY
);
573 static bool hyperv_enabled(X86CPU
*cpu
)
575 CPUState
*cs
= CPU(cpu
);
576 return kvm_check_extension(cs
->kvm_state
, KVM_CAP_HYPERV
) > 0 &&
577 (hyperv_hypercall_available(cpu
) ||
579 cpu
->hyperv_relaxed_timing
||
582 cpu
->hyperv_vpindex
||
583 cpu
->hyperv_runtime
||
588 static int kvm_arch_set_tsc_khz(CPUState
*cs
)
590 X86CPU
*cpu
= X86_CPU(cs
);
591 CPUX86State
*env
= &cpu
->env
;
598 r
= kvm_check_extension(cs
->kvm_state
, KVM_CAP_TSC_CONTROL
) ?
599 kvm_vcpu_ioctl(cs
, KVM_SET_TSC_KHZ
, env
->tsc_khz
) :
602 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
603 * TSC frequency doesn't match the one we want.
605 int cur_freq
= kvm_check_extension(cs
->kvm_state
, KVM_CAP_GET_TSC_KHZ
) ?
606 kvm_vcpu_ioctl(cs
, KVM_GET_TSC_KHZ
) :
608 if (cur_freq
<= 0 || cur_freq
!= env
->tsc_khz
) {
609 error_report("warning: TSC frequency mismatch between "
610 "VM (%" PRId64
" kHz) and host (%d kHz), "
611 "and TSC scaling unavailable",
612 env
->tsc_khz
, cur_freq
);
620 static int hyperv_handle_properties(CPUState
*cs
)
622 X86CPU
*cpu
= X86_CPU(cs
);
623 CPUX86State
*env
= &cpu
->env
;
625 if (cpu
->hyperv_time
&&
626 kvm_check_extension(cs
->kvm_state
, KVM_CAP_HYPERV_TIME
) <= 0) {
627 cpu
->hyperv_time
= false;
630 if (cpu
->hyperv_relaxed_timing
) {
631 env
->features
[FEAT_HYPERV_EAX
] |= HV_X64_MSR_HYPERCALL_AVAILABLE
;
633 if (cpu
->hyperv_vapic
) {
634 env
->features
[FEAT_HYPERV_EAX
] |= HV_X64_MSR_HYPERCALL_AVAILABLE
;
635 env
->features
[FEAT_HYPERV_EAX
] |= HV_X64_MSR_APIC_ACCESS_AVAILABLE
;
637 if (cpu
->hyperv_time
) {
638 env
->features
[FEAT_HYPERV_EAX
] |= HV_X64_MSR_HYPERCALL_AVAILABLE
;
639 env
->features
[FEAT_HYPERV_EAX
] |= HV_X64_MSR_TIME_REF_COUNT_AVAILABLE
;
640 env
->features
[FEAT_HYPERV_EAX
] |= 0x200;
642 if (cpu
->hyperv_crash
&& has_msr_hv_crash
) {
643 env
->features
[FEAT_HYPERV_EDX
] |= HV_X64_GUEST_CRASH_MSR_AVAILABLE
;
645 env
->features
[FEAT_HYPERV_EDX
] |= HV_X64_CPU_DYNAMIC_PARTITIONING_AVAILABLE
;
646 if (cpu
->hyperv_reset
&& has_msr_hv_reset
) {
647 env
->features
[FEAT_HYPERV_EAX
] |= HV_X64_MSR_RESET_AVAILABLE
;
649 if (cpu
->hyperv_vpindex
&& has_msr_hv_vpindex
) {
650 env
->features
[FEAT_HYPERV_EAX
] |= HV_X64_MSR_VP_INDEX_AVAILABLE
;
652 if (cpu
->hyperv_runtime
&& has_msr_hv_runtime
) {
653 env
->features
[FEAT_HYPERV_EAX
] |= HV_X64_MSR_VP_RUNTIME_AVAILABLE
;
655 if (cpu
->hyperv_synic
) {
658 if (!has_msr_hv_synic
||
659 kvm_vcpu_enable_cap(cs
, KVM_CAP_HYPERV_SYNIC
, 0)) {
660 fprintf(stderr
, "Hyper-V SynIC is not supported by kernel\n");
664 env
->features
[FEAT_HYPERV_EAX
] |= HV_X64_MSR_SYNIC_AVAILABLE
;
665 env
->msr_hv_synic_version
= HV_SYNIC_VERSION_1
;
666 for (sint
= 0; sint
< ARRAY_SIZE(env
->msr_hv_synic_sint
); sint
++) {
667 env
->msr_hv_synic_sint
[sint
] = HV_SYNIC_SINT_MASKED
;
670 if (cpu
->hyperv_stimer
) {
671 if (!has_msr_hv_stimer
) {
672 fprintf(stderr
, "Hyper-V timers aren't supported by kernel\n");
675 env
->features
[FEAT_HYPERV_EAX
] |= HV_X64_MSR_SYNTIMER_AVAILABLE
;
680 static Error
*invtsc_mig_blocker
;
682 #define KVM_MAX_CPUID_ENTRIES 100
684 int kvm_arch_init_vcpu(CPUState
*cs
)
687 struct kvm_cpuid2 cpuid
;
688 struct kvm_cpuid_entry2 entries
[KVM_MAX_CPUID_ENTRIES
];
689 } QEMU_PACKED cpuid_data
;
690 X86CPU
*cpu
= X86_CPU(cs
);
691 CPUX86State
*env
= &cpu
->env
;
692 uint32_t limit
, i
, j
, cpuid_i
;
694 struct kvm_cpuid_entry2
*c
;
695 uint32_t signature
[3];
696 int kvm_base
= KVM_CPUID_SIGNATURE
;
699 memset(&cpuid_data
, 0, sizeof(cpuid_data
));
703 /* Paravirtualization CPUIDs */
704 if (hyperv_enabled(cpu
)) {
705 c
= &cpuid_data
.entries
[cpuid_i
++];
706 c
->function
= HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS
;
707 if (!cpu
->hyperv_vendor_id
) {
708 memcpy(signature
, "Microsoft Hv", 12);
710 size_t len
= strlen(cpu
->hyperv_vendor_id
);
713 error_report("hv-vendor-id truncated to 12 characters");
716 memset(signature
, 0, 12);
717 memcpy(signature
, cpu
->hyperv_vendor_id
, len
);
719 c
->eax
= HYPERV_CPUID_MIN
;
720 c
->ebx
= signature
[0];
721 c
->ecx
= signature
[1];
722 c
->edx
= signature
[2];
724 c
= &cpuid_data
.entries
[cpuid_i
++];
725 c
->function
= HYPERV_CPUID_INTERFACE
;
726 memcpy(signature
, "Hv#1\0\0\0\0\0\0\0\0", 12);
727 c
->eax
= signature
[0];
732 c
= &cpuid_data
.entries
[cpuid_i
++];
733 c
->function
= HYPERV_CPUID_VERSION
;
737 c
= &cpuid_data
.entries
[cpuid_i
++];
738 c
->function
= HYPERV_CPUID_FEATURES
;
739 r
= hyperv_handle_properties(cs
);
743 c
->eax
= env
->features
[FEAT_HYPERV_EAX
];
744 c
->ebx
= env
->features
[FEAT_HYPERV_EBX
];
745 c
->edx
= env
->features
[FEAT_HYPERV_EDX
];
747 c
= &cpuid_data
.entries
[cpuid_i
++];
748 c
->function
= HYPERV_CPUID_ENLIGHTMENT_INFO
;
749 if (cpu
->hyperv_relaxed_timing
) {
750 c
->eax
|= HV_X64_RELAXED_TIMING_RECOMMENDED
;
752 if (cpu
->hyperv_vapic
) {
753 c
->eax
|= HV_X64_APIC_ACCESS_RECOMMENDED
;
755 c
->ebx
= cpu
->hyperv_spinlock_attempts
;
757 c
= &cpuid_data
.entries
[cpuid_i
++];
758 c
->function
= HYPERV_CPUID_IMPLEMENT_LIMITS
;
762 kvm_base
= KVM_CPUID_SIGNATURE_NEXT
;
763 has_msr_hv_hypercall
= true;
766 if (cpu
->expose_kvm
) {
767 memcpy(signature
, "KVMKVMKVM\0\0\0", 12);
768 c
= &cpuid_data
.entries
[cpuid_i
++];
769 c
->function
= KVM_CPUID_SIGNATURE
| kvm_base
;
770 c
->eax
= KVM_CPUID_FEATURES
| kvm_base
;
771 c
->ebx
= signature
[0];
772 c
->ecx
= signature
[1];
773 c
->edx
= signature
[2];
775 c
= &cpuid_data
.entries
[cpuid_i
++];
776 c
->function
= KVM_CPUID_FEATURES
| kvm_base
;
777 c
->eax
= env
->features
[FEAT_KVM
];
780 cpu_x86_cpuid(env
, 0, 0, &limit
, &unused
, &unused
, &unused
);
782 for (i
= 0; i
<= limit
; i
++) {
783 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
784 fprintf(stderr
, "unsupported level value: 0x%x\n", limit
);
787 c
= &cpuid_data
.entries
[cpuid_i
++];
791 /* Keep reading function 2 till all the input is received */
795 c
->flags
= KVM_CPUID_FLAG_STATEFUL_FUNC
|
796 KVM_CPUID_FLAG_STATE_READ_NEXT
;
797 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
798 times
= c
->eax
& 0xff;
800 for (j
= 1; j
< times
; ++j
) {
801 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
802 fprintf(stderr
, "cpuid_data is full, no space for "
803 "cpuid(eax:2):eax & 0xf = 0x%x\n", times
);
806 c
= &cpuid_data
.entries
[cpuid_i
++];
808 c
->flags
= KVM_CPUID_FLAG_STATEFUL_FUNC
;
809 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
817 if (i
== 0xd && j
== 64) {
821 c
->flags
= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
823 cpu_x86_cpuid(env
, i
, j
, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
825 if (i
== 4 && c
->eax
== 0) {
828 if (i
== 0xb && !(c
->ecx
& 0xff00)) {
831 if (i
== 0xd && c
->eax
== 0) {
834 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
835 fprintf(stderr
, "cpuid_data is full, no space for "
836 "cpuid(eax:0x%x,ecx:0x%x)\n", i
, j
);
839 c
= &cpuid_data
.entries
[cpuid_i
++];
845 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
853 cpu_x86_cpuid(env
, 0x0a, 0, &ver
, &unused
, &unused
, &unused
);
854 if ((ver
& 0xff) > 0) {
855 has_msr_architectural_pmu
= true;
856 num_architectural_pmu_counters
= (ver
& 0xff00) >> 8;
858 /* Shouldn't be more than 32, since that's the number of bits
859 * available in EBX to tell us _which_ counters are available.
862 if (num_architectural_pmu_counters
> MAX_GP_COUNTERS
) {
863 num_architectural_pmu_counters
= MAX_GP_COUNTERS
;
868 cpu_x86_cpuid(env
, 0x80000000, 0, &limit
, &unused
, &unused
, &unused
);
870 for (i
= 0x80000000; i
<= limit
; i
++) {
871 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
872 fprintf(stderr
, "unsupported xlevel value: 0x%x\n", limit
);
875 c
= &cpuid_data
.entries
[cpuid_i
++];
879 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
882 /* Call Centaur's CPUID instructions they are supported. */
883 if (env
->cpuid_xlevel2
> 0) {
884 cpu_x86_cpuid(env
, 0xC0000000, 0, &limit
, &unused
, &unused
, &unused
);
886 for (i
= 0xC0000000; i
<= limit
; i
++) {
887 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
888 fprintf(stderr
, "unsupported xlevel2 value: 0x%x\n", limit
);
891 c
= &cpuid_data
.entries
[cpuid_i
++];
895 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
899 cpuid_data
.cpuid
.nent
= cpuid_i
;
901 if (((env
->cpuid_version
>> 8)&0xF) >= 6
902 && (env
->features
[FEAT_1_EDX
] & (CPUID_MCE
| CPUID_MCA
)) ==
903 (CPUID_MCE
| CPUID_MCA
)
904 && kvm_check_extension(cs
->kvm_state
, KVM_CAP_MCE
) > 0) {
905 uint64_t mcg_cap
, unsupported_caps
;
909 ret
= kvm_get_mce_cap_supported(cs
->kvm_state
, &mcg_cap
, &banks
);
911 fprintf(stderr
, "kvm_get_mce_cap_supported: %s", strerror(-ret
));
915 if (banks
< (env
->mcg_cap
& MCG_CAP_BANKS_MASK
)) {
916 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
917 (int)(env
->mcg_cap
& MCG_CAP_BANKS_MASK
), banks
);
921 unsupported_caps
= env
->mcg_cap
& ~(mcg_cap
| MCG_CAP_BANKS_MASK
);
922 if (unsupported_caps
) {
923 if (unsupported_caps
& MCG_LMCE_P
) {
924 error_report("kvm: LMCE not supported");
927 error_report("warning: Unsupported MCG_CAP bits: 0x%" PRIx64
,
931 env
->mcg_cap
&= mcg_cap
| MCG_CAP_BANKS_MASK
;
932 ret
= kvm_vcpu_ioctl(cs
, KVM_X86_SETUP_MCE
, &env
->mcg_cap
);
934 fprintf(stderr
, "KVM_X86_SETUP_MCE: %s", strerror(-ret
));
939 qemu_add_vm_change_state_handler(cpu_update_state
, env
);
941 c
= cpuid_find_entry(&cpuid_data
.cpuid
, 1, 0);
943 has_msr_feature_control
= !!(c
->ecx
& CPUID_EXT_VMX
) ||
944 !!(c
->ecx
& CPUID_EXT_SMX
);
947 if (env
->mcg_cap
& MCG_LMCE_P
) {
948 has_msr_mcg_ext_ctl
= has_msr_feature_control
= true;
951 c
= cpuid_find_entry(&cpuid_data
.cpuid
, 0x80000007, 0);
952 if (c
&& (c
->edx
& 1<<8) && invtsc_mig_blocker
== NULL
) {
954 error_setg(&invtsc_mig_blocker
,
955 "State blocked by non-migratable CPU device"
957 migrate_add_blocker(invtsc_mig_blocker
);
959 vmstate_x86_cpu
.unmigratable
= 1;
962 cpuid_data
.cpuid
.padding
= 0;
963 r
= kvm_vcpu_ioctl(cs
, KVM_SET_CPUID2
, &cpuid_data
);
968 r
= kvm_arch_set_tsc_khz(cs
);
973 /* vcpu's TSC frequency is either specified by user, or following
974 * the value used by KVM if the former is not present. In the
975 * latter case, we query it from KVM and record in env->tsc_khz,
976 * so that vcpu's TSC frequency can be migrated later via this field.
979 r
= kvm_check_extension(cs
->kvm_state
, KVM_CAP_GET_TSC_KHZ
) ?
980 kvm_vcpu_ioctl(cs
, KVM_GET_TSC_KHZ
) :
988 env
->kvm_xsave_buf
= qemu_memalign(4096, sizeof(struct kvm_xsave
));
990 cpu
->kvm_msr_buf
= g_malloc0(MSR_BUF_SIZE
);
992 if (!(env
->features
[FEAT_8000_0001_EDX
] & CPUID_EXT2_RDTSCP
)) {
993 has_msr_tsc_aux
= false;
999 void kvm_arch_reset_vcpu(X86CPU
*cpu
)
1001 CPUX86State
*env
= &cpu
->env
;
1003 env
->exception_injected
= -1;
1004 env
->interrupt_injected
= -1;
1006 if (kvm_irqchip_in_kernel()) {
1007 env
->mp_state
= cpu_is_bsp(cpu
) ? KVM_MP_STATE_RUNNABLE
:
1008 KVM_MP_STATE_UNINITIALIZED
;
1010 env
->mp_state
= KVM_MP_STATE_RUNNABLE
;
1014 void kvm_arch_do_init_vcpu(X86CPU
*cpu
)
1016 CPUX86State
*env
= &cpu
->env
;
1018 /* APs get directly into wait-for-SIPI state. */
1019 if (env
->mp_state
== KVM_MP_STATE_UNINITIALIZED
) {
1020 env
->mp_state
= KVM_MP_STATE_INIT_RECEIVED
;
1024 static int kvm_get_supported_msrs(KVMState
*s
)
1026 static int kvm_supported_msrs
;
1030 if (kvm_supported_msrs
== 0) {
1031 struct kvm_msr_list msr_list
, *kvm_msr_list
;
1033 kvm_supported_msrs
= -1;
1035 /* Obtain MSR list from KVM. These are the MSRs that we must
1038 ret
= kvm_ioctl(s
, KVM_GET_MSR_INDEX_LIST
, &msr_list
);
1039 if (ret
< 0 && ret
!= -E2BIG
) {
1042 /* Old kernel modules had a bug and could write beyond the provided
1043 memory. Allocate at least a safe amount of 1K. */
1044 kvm_msr_list
= g_malloc0(MAX(1024, sizeof(msr_list
) +
1046 sizeof(msr_list
.indices
[0])));
1048 kvm_msr_list
->nmsrs
= msr_list
.nmsrs
;
1049 ret
= kvm_ioctl(s
, KVM_GET_MSR_INDEX_LIST
, kvm_msr_list
);
1053 for (i
= 0; i
< kvm_msr_list
->nmsrs
; i
++) {
1054 if (kvm_msr_list
->indices
[i
] == MSR_STAR
) {
1055 has_msr_star
= true;
1058 if (kvm_msr_list
->indices
[i
] == MSR_VM_HSAVE_PA
) {
1059 has_msr_hsave_pa
= true;
1062 if (kvm_msr_list
->indices
[i
] == MSR_TSC_AUX
) {
1063 has_msr_tsc_aux
= true;
1066 if (kvm_msr_list
->indices
[i
] == MSR_TSC_ADJUST
) {
1067 has_msr_tsc_adjust
= true;
1070 if (kvm_msr_list
->indices
[i
] == MSR_IA32_TSCDEADLINE
) {
1071 has_msr_tsc_deadline
= true;
1074 if (kvm_msr_list
->indices
[i
] == MSR_IA32_SMBASE
) {
1075 has_msr_smbase
= true;
1078 if (kvm_msr_list
->indices
[i
] == MSR_IA32_MISC_ENABLE
) {
1079 has_msr_misc_enable
= true;
1082 if (kvm_msr_list
->indices
[i
] == MSR_IA32_BNDCFGS
) {
1083 has_msr_bndcfgs
= true;
1086 if (kvm_msr_list
->indices
[i
] == MSR_IA32_XSS
) {
1090 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_CRASH_CTL
) {
1091 has_msr_hv_crash
= true;
1094 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_RESET
) {
1095 has_msr_hv_reset
= true;
1098 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_VP_INDEX
) {
1099 has_msr_hv_vpindex
= true;
1102 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_VP_RUNTIME
) {
1103 has_msr_hv_runtime
= true;
1106 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_SCONTROL
) {
1107 has_msr_hv_synic
= true;
1110 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_STIMER0_CONFIG
) {
1111 has_msr_hv_stimer
= true;
1117 g_free(kvm_msr_list
);
1123 static Notifier smram_machine_done
;
1124 static KVMMemoryListener smram_listener
;
1125 static AddressSpace smram_address_space
;
1126 static MemoryRegion smram_as_root
;
1127 static MemoryRegion smram_as_mem
;
1129 static void register_smram_listener(Notifier
*n
, void *unused
)
1131 MemoryRegion
*smram
=
1132 (MemoryRegion
*) object_resolve_path("/machine/smram", NULL
);
1134 /* Outer container... */
1135 memory_region_init(&smram_as_root
, OBJECT(kvm_state
), "mem-container-smram", ~0ull);
1136 memory_region_set_enabled(&smram_as_root
, true);
1138 /* ... with two regions inside: normal system memory with low
1141 memory_region_init_alias(&smram_as_mem
, OBJECT(kvm_state
), "mem-smram",
1142 get_system_memory(), 0, ~0ull);
1143 memory_region_add_subregion_overlap(&smram_as_root
, 0, &smram_as_mem
, 0);
1144 memory_region_set_enabled(&smram_as_mem
, true);
1147 /* ... SMRAM with higher priority */
1148 memory_region_add_subregion_overlap(&smram_as_root
, 0, smram
, 10);
1149 memory_region_set_enabled(smram
, true);
1152 address_space_init(&smram_address_space
, &smram_as_root
, "KVM-SMRAM");
1153 kvm_memory_listener_register(kvm_state
, &smram_listener
,
1154 &smram_address_space
, 1);
1157 int kvm_arch_init(MachineState
*ms
, KVMState
*s
)
1159 uint64_t identity_base
= 0xfffbc000;
1160 uint64_t shadow_mem
;
1162 struct utsname utsname
;
1164 #ifdef KVM_CAP_XSAVE
1165 has_xsave
= kvm_check_extension(s
, KVM_CAP_XSAVE
);
1169 has_xcrs
= kvm_check_extension(s
, KVM_CAP_XCRS
);
1172 #ifdef KVM_CAP_PIT_STATE2
1173 has_pit_state2
= kvm_check_extension(s
, KVM_CAP_PIT_STATE2
);
1176 ret
= kvm_get_supported_msrs(s
);
1182 lm_capable_kernel
= strcmp(utsname
.machine
, "x86_64") == 0;
1185 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
1186 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
1187 * Since these must be part of guest physical memory, we need to allocate
1188 * them, both by setting their start addresses in the kernel and by
1189 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
1191 * Older KVM versions may not support setting the identity map base. In
1192 * that case we need to stick with the default, i.e. a 256K maximum BIOS
1195 if (kvm_check_extension(s
, KVM_CAP_SET_IDENTITY_MAP_ADDR
)) {
1196 /* Allows up to 16M BIOSes. */
1197 identity_base
= 0xfeffc000;
1199 ret
= kvm_vm_ioctl(s
, KVM_SET_IDENTITY_MAP_ADDR
, &identity_base
);
1205 /* Set TSS base one page after EPT identity map. */
1206 ret
= kvm_vm_ioctl(s
, KVM_SET_TSS_ADDR
, identity_base
+ 0x1000);
1211 /* Tell fw_cfg to notify the BIOS to reserve the range. */
1212 ret
= e820_add_entry(identity_base
, 0x4000, E820_RESERVED
);
1214 fprintf(stderr
, "e820_add_entry() table is full\n");
1217 qemu_register_reset(kvm_unpoison_all
, NULL
);
1219 shadow_mem
= machine_kvm_shadow_mem(ms
);
1220 if (shadow_mem
!= -1) {
1222 ret
= kvm_vm_ioctl(s
, KVM_SET_NR_MMU_PAGES
, shadow_mem
);
1228 if (kvm_check_extension(s
, KVM_CAP_X86_SMM
)) {
1229 smram_machine_done
.notify
= register_smram_listener
;
1230 qemu_add_machine_init_done_notifier(&smram_machine_done
);
1235 static void set_v8086_seg(struct kvm_segment
*lhs
, const SegmentCache
*rhs
)
1237 lhs
->selector
= rhs
->selector
;
1238 lhs
->base
= rhs
->base
;
1239 lhs
->limit
= rhs
->limit
;
1251 static void set_seg(struct kvm_segment
*lhs
, const SegmentCache
*rhs
)
1253 unsigned flags
= rhs
->flags
;
1254 lhs
->selector
= rhs
->selector
;
1255 lhs
->base
= rhs
->base
;
1256 lhs
->limit
= rhs
->limit
;
1257 lhs
->type
= (flags
>> DESC_TYPE_SHIFT
) & 15;
1258 lhs
->present
= (flags
& DESC_P_MASK
) != 0;
1259 lhs
->dpl
= (flags
>> DESC_DPL_SHIFT
) & 3;
1260 lhs
->db
= (flags
>> DESC_B_SHIFT
) & 1;
1261 lhs
->s
= (flags
& DESC_S_MASK
) != 0;
1262 lhs
->l
= (flags
>> DESC_L_SHIFT
) & 1;
1263 lhs
->g
= (flags
& DESC_G_MASK
) != 0;
1264 lhs
->avl
= (flags
& DESC_AVL_MASK
) != 0;
1265 lhs
->unusable
= !lhs
->present
;
1269 static void get_seg(SegmentCache
*lhs
, const struct kvm_segment
*rhs
)
1271 lhs
->selector
= rhs
->selector
;
1272 lhs
->base
= rhs
->base
;
1273 lhs
->limit
= rhs
->limit
;
1274 if (rhs
->unusable
) {
1277 lhs
->flags
= (rhs
->type
<< DESC_TYPE_SHIFT
) |
1278 (rhs
->present
* DESC_P_MASK
) |
1279 (rhs
->dpl
<< DESC_DPL_SHIFT
) |
1280 (rhs
->db
<< DESC_B_SHIFT
) |
1281 (rhs
->s
* DESC_S_MASK
) |
1282 (rhs
->l
<< DESC_L_SHIFT
) |
1283 (rhs
->g
* DESC_G_MASK
) |
1284 (rhs
->avl
* DESC_AVL_MASK
);
1288 static void kvm_getput_reg(__u64
*kvm_reg
, target_ulong
*qemu_reg
, int set
)
1291 *kvm_reg
= *qemu_reg
;
1293 *qemu_reg
= *kvm_reg
;
1297 static int kvm_getput_regs(X86CPU
*cpu
, int set
)
1299 CPUX86State
*env
= &cpu
->env
;
1300 struct kvm_regs regs
;
1304 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_REGS
, ®s
);
1310 kvm_getput_reg(®s
.rax
, &env
->regs
[R_EAX
], set
);
1311 kvm_getput_reg(®s
.rbx
, &env
->regs
[R_EBX
], set
);
1312 kvm_getput_reg(®s
.rcx
, &env
->regs
[R_ECX
], set
);
1313 kvm_getput_reg(®s
.rdx
, &env
->regs
[R_EDX
], set
);
1314 kvm_getput_reg(®s
.rsi
, &env
->regs
[R_ESI
], set
);
1315 kvm_getput_reg(®s
.rdi
, &env
->regs
[R_EDI
], set
);
1316 kvm_getput_reg(®s
.rsp
, &env
->regs
[R_ESP
], set
);
1317 kvm_getput_reg(®s
.rbp
, &env
->regs
[R_EBP
], set
);
1318 #ifdef TARGET_X86_64
1319 kvm_getput_reg(®s
.r8
, &env
->regs
[8], set
);
1320 kvm_getput_reg(®s
.r9
, &env
->regs
[9], set
);
1321 kvm_getput_reg(®s
.r10
, &env
->regs
[10], set
);
1322 kvm_getput_reg(®s
.r11
, &env
->regs
[11], set
);
1323 kvm_getput_reg(®s
.r12
, &env
->regs
[12], set
);
1324 kvm_getput_reg(®s
.r13
, &env
->regs
[13], set
);
1325 kvm_getput_reg(®s
.r14
, &env
->regs
[14], set
);
1326 kvm_getput_reg(®s
.r15
, &env
->regs
[15], set
);
1329 kvm_getput_reg(®s
.rflags
, &env
->eflags
, set
);
1330 kvm_getput_reg(®s
.rip
, &env
->eip
, set
);
1333 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_REGS
, ®s
);
1339 static int kvm_put_fpu(X86CPU
*cpu
)
1341 CPUX86State
*env
= &cpu
->env
;
1345 memset(&fpu
, 0, sizeof fpu
);
1346 fpu
.fsw
= env
->fpus
& ~(7 << 11);
1347 fpu
.fsw
|= (env
->fpstt
& 7) << 11;
1348 fpu
.fcw
= env
->fpuc
;
1349 fpu
.last_opcode
= env
->fpop
;
1350 fpu
.last_ip
= env
->fpip
;
1351 fpu
.last_dp
= env
->fpdp
;
1352 for (i
= 0; i
< 8; ++i
) {
1353 fpu
.ftwx
|= (!env
->fptags
[i
]) << i
;
1355 memcpy(fpu
.fpr
, env
->fpregs
, sizeof env
->fpregs
);
1356 for (i
= 0; i
< CPU_NB_REGS
; i
++) {
1357 stq_p(&fpu
.xmm
[i
][0], env
->xmm_regs
[i
].ZMM_Q(0));
1358 stq_p(&fpu
.xmm
[i
][8], env
->xmm_regs
[i
].ZMM_Q(1));
1360 fpu
.mxcsr
= env
->mxcsr
;
1362 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_FPU
, &fpu
);
1365 #define XSAVE_FCW_FSW 0
1366 #define XSAVE_FTW_FOP 1
1367 #define XSAVE_CWD_RIP 2
1368 #define XSAVE_CWD_RDP 4
1369 #define XSAVE_MXCSR 6
1370 #define XSAVE_ST_SPACE 8
1371 #define XSAVE_XMM_SPACE 40
1372 #define XSAVE_XSTATE_BV 128
1373 #define XSAVE_YMMH_SPACE 144
1374 #define XSAVE_BNDREGS 240
1375 #define XSAVE_BNDCSR 256
1376 #define XSAVE_OPMASK 272
1377 #define XSAVE_ZMM_Hi256 288
1378 #define XSAVE_Hi16_ZMM 416
1379 #define XSAVE_PKRU 672
1381 #define XSAVE_BYTE_OFFSET(word_offset) \
1382 ((word_offset) * sizeof(((struct kvm_xsave *)0)->region[0]))
1384 #define ASSERT_OFFSET(word_offset, field) \
1385 QEMU_BUILD_BUG_ON(XSAVE_BYTE_OFFSET(word_offset) != \
1386 offsetof(X86XSaveArea, field))
1388 ASSERT_OFFSET(XSAVE_FCW_FSW
, legacy
.fcw
);
1389 ASSERT_OFFSET(XSAVE_FTW_FOP
, legacy
.ftw
);
1390 ASSERT_OFFSET(XSAVE_CWD_RIP
, legacy
.fpip
);
1391 ASSERT_OFFSET(XSAVE_CWD_RDP
, legacy
.fpdp
);
1392 ASSERT_OFFSET(XSAVE_MXCSR
, legacy
.mxcsr
);
1393 ASSERT_OFFSET(XSAVE_ST_SPACE
, legacy
.fpregs
);
1394 ASSERT_OFFSET(XSAVE_XMM_SPACE
, legacy
.xmm_regs
);
1395 ASSERT_OFFSET(XSAVE_XSTATE_BV
, header
.xstate_bv
);
1396 ASSERT_OFFSET(XSAVE_YMMH_SPACE
, avx_state
);
1397 ASSERT_OFFSET(XSAVE_BNDREGS
, bndreg_state
);
1398 ASSERT_OFFSET(XSAVE_BNDCSR
, bndcsr_state
);
1399 ASSERT_OFFSET(XSAVE_OPMASK
, opmask_state
);
1400 ASSERT_OFFSET(XSAVE_ZMM_Hi256
, zmm_hi256_state
);
1401 ASSERT_OFFSET(XSAVE_Hi16_ZMM
, hi16_zmm_state
);
1402 ASSERT_OFFSET(XSAVE_PKRU
, pkru_state
);
1404 static int kvm_put_xsave(X86CPU
*cpu
)
1406 CPUX86State
*env
= &cpu
->env
;
1407 X86XSaveArea
*xsave
= env
->kvm_xsave_buf
;
1408 uint16_t cwd
, swd
, twd
;
1412 return kvm_put_fpu(cpu
);
1415 memset(xsave
, 0, sizeof(struct kvm_xsave
));
1417 swd
= env
->fpus
& ~(7 << 11);
1418 swd
|= (env
->fpstt
& 7) << 11;
1420 for (i
= 0; i
< 8; ++i
) {
1421 twd
|= (!env
->fptags
[i
]) << i
;
1423 xsave
->legacy
.fcw
= cwd
;
1424 xsave
->legacy
.fsw
= swd
;
1425 xsave
->legacy
.ftw
= twd
;
1426 xsave
->legacy
.fpop
= env
->fpop
;
1427 xsave
->legacy
.fpip
= env
->fpip
;
1428 xsave
->legacy
.fpdp
= env
->fpdp
;
1429 memcpy(&xsave
->legacy
.fpregs
, env
->fpregs
,
1430 sizeof env
->fpregs
);
1431 xsave
->legacy
.mxcsr
= env
->mxcsr
;
1432 xsave
->header
.xstate_bv
= env
->xstate_bv
;
1433 memcpy(&xsave
->bndreg_state
.bnd_regs
, env
->bnd_regs
,
1434 sizeof env
->bnd_regs
);
1435 xsave
->bndcsr_state
.bndcsr
= env
->bndcs_regs
;
1436 memcpy(&xsave
->opmask_state
.opmask_regs
, env
->opmask_regs
,
1437 sizeof env
->opmask_regs
);
1439 for (i
= 0; i
< CPU_NB_REGS
; i
++) {
1440 uint8_t *xmm
= xsave
->legacy
.xmm_regs
[i
];
1441 uint8_t *ymmh
= xsave
->avx_state
.ymmh
[i
];
1442 uint8_t *zmmh
= xsave
->zmm_hi256_state
.zmm_hi256
[i
];
1443 stq_p(xmm
, env
->xmm_regs
[i
].ZMM_Q(0));
1444 stq_p(xmm
+8, env
->xmm_regs
[i
].ZMM_Q(1));
1445 stq_p(ymmh
, env
->xmm_regs
[i
].ZMM_Q(2));
1446 stq_p(ymmh
+8, env
->xmm_regs
[i
].ZMM_Q(3));
1447 stq_p(zmmh
, env
->xmm_regs
[i
].ZMM_Q(4));
1448 stq_p(zmmh
+8, env
->xmm_regs
[i
].ZMM_Q(5));
1449 stq_p(zmmh
+16, env
->xmm_regs
[i
].ZMM_Q(6));
1450 stq_p(zmmh
+24, env
->xmm_regs
[i
].ZMM_Q(7));
1453 #ifdef TARGET_X86_64
1454 memcpy(&xsave
->hi16_zmm_state
.hi16_zmm
, &env
->xmm_regs
[16],
1455 16 * sizeof env
->xmm_regs
[16]);
1456 memcpy(&xsave
->pkru_state
, &env
->pkru
, sizeof env
->pkru
);
1458 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_XSAVE
, xsave
);
1461 static int kvm_put_xcrs(X86CPU
*cpu
)
1463 CPUX86State
*env
= &cpu
->env
;
1464 struct kvm_xcrs xcrs
= {};
1472 xcrs
.xcrs
[0].xcr
= 0;
1473 xcrs
.xcrs
[0].value
= env
->xcr0
;
1474 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_XCRS
, &xcrs
);
1477 static int kvm_put_sregs(X86CPU
*cpu
)
1479 CPUX86State
*env
= &cpu
->env
;
1480 struct kvm_sregs sregs
;
1482 memset(sregs
.interrupt_bitmap
, 0, sizeof(sregs
.interrupt_bitmap
));
1483 if (env
->interrupt_injected
>= 0) {
1484 sregs
.interrupt_bitmap
[env
->interrupt_injected
/ 64] |=
1485 (uint64_t)1 << (env
->interrupt_injected
% 64);
1488 if ((env
->eflags
& VM_MASK
)) {
1489 set_v8086_seg(&sregs
.cs
, &env
->segs
[R_CS
]);
1490 set_v8086_seg(&sregs
.ds
, &env
->segs
[R_DS
]);
1491 set_v8086_seg(&sregs
.es
, &env
->segs
[R_ES
]);
1492 set_v8086_seg(&sregs
.fs
, &env
->segs
[R_FS
]);
1493 set_v8086_seg(&sregs
.gs
, &env
->segs
[R_GS
]);
1494 set_v8086_seg(&sregs
.ss
, &env
->segs
[R_SS
]);
1496 set_seg(&sregs
.cs
, &env
->segs
[R_CS
]);
1497 set_seg(&sregs
.ds
, &env
->segs
[R_DS
]);
1498 set_seg(&sregs
.es
, &env
->segs
[R_ES
]);
1499 set_seg(&sregs
.fs
, &env
->segs
[R_FS
]);
1500 set_seg(&sregs
.gs
, &env
->segs
[R_GS
]);
1501 set_seg(&sregs
.ss
, &env
->segs
[R_SS
]);
1504 set_seg(&sregs
.tr
, &env
->tr
);
1505 set_seg(&sregs
.ldt
, &env
->ldt
);
1507 sregs
.idt
.limit
= env
->idt
.limit
;
1508 sregs
.idt
.base
= env
->idt
.base
;
1509 memset(sregs
.idt
.padding
, 0, sizeof sregs
.idt
.padding
);
1510 sregs
.gdt
.limit
= env
->gdt
.limit
;
1511 sregs
.gdt
.base
= env
->gdt
.base
;
1512 memset(sregs
.gdt
.padding
, 0, sizeof sregs
.gdt
.padding
);
1514 sregs
.cr0
= env
->cr
[0];
1515 sregs
.cr2
= env
->cr
[2];
1516 sregs
.cr3
= env
->cr
[3];
1517 sregs
.cr4
= env
->cr
[4];
1519 sregs
.cr8
= cpu_get_apic_tpr(cpu
->apic_state
);
1520 sregs
.apic_base
= cpu_get_apic_base(cpu
->apic_state
);
1522 sregs
.efer
= env
->efer
;
1524 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_SREGS
, &sregs
);
1527 static void kvm_msr_buf_reset(X86CPU
*cpu
)
1529 memset(cpu
->kvm_msr_buf
, 0, MSR_BUF_SIZE
);
1532 static void kvm_msr_entry_add(X86CPU
*cpu
, uint32_t index
, uint64_t value
)
1534 struct kvm_msrs
*msrs
= cpu
->kvm_msr_buf
;
1535 void *limit
= ((void *)msrs
) + MSR_BUF_SIZE
;
1536 struct kvm_msr_entry
*entry
= &msrs
->entries
[msrs
->nmsrs
];
1538 assert((void *)(entry
+ 1) <= limit
);
1540 entry
->index
= index
;
1541 entry
->reserved
= 0;
1542 entry
->data
= value
;
1546 static int kvm_put_one_msr(X86CPU
*cpu
, int index
, uint64_t value
)
1548 kvm_msr_buf_reset(cpu
);
1549 kvm_msr_entry_add(cpu
, index
, value
);
1551 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MSRS
, cpu
->kvm_msr_buf
);
1554 void kvm_put_apicbase(X86CPU
*cpu
, uint64_t value
)
1558 ret
= kvm_put_one_msr(cpu
, MSR_IA32_APICBASE
, value
);
1562 static int kvm_put_tscdeadline_msr(X86CPU
*cpu
)
1564 CPUX86State
*env
= &cpu
->env
;
1567 if (!has_msr_tsc_deadline
) {
1571 ret
= kvm_put_one_msr(cpu
, MSR_IA32_TSCDEADLINE
, env
->tsc_deadline
);
1581 * Provide a separate write service for the feature control MSR in order to
1582 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
1583 * before writing any other state because forcibly leaving nested mode
1584 * invalidates the VCPU state.
1586 static int kvm_put_msr_feature_control(X86CPU
*cpu
)
1590 if (!has_msr_feature_control
) {
1594 ret
= kvm_put_one_msr(cpu
, MSR_IA32_FEATURE_CONTROL
,
1595 cpu
->env
.msr_ia32_feature_control
);
1604 static int kvm_put_msrs(X86CPU
*cpu
, int level
)
1606 CPUX86State
*env
= &cpu
->env
;
1610 kvm_msr_buf_reset(cpu
);
1612 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_CS
, env
->sysenter_cs
);
1613 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_ESP
, env
->sysenter_esp
);
1614 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_EIP
, env
->sysenter_eip
);
1615 kvm_msr_entry_add(cpu
, MSR_PAT
, env
->pat
);
1617 kvm_msr_entry_add(cpu
, MSR_STAR
, env
->star
);
1619 if (has_msr_hsave_pa
) {
1620 kvm_msr_entry_add(cpu
, MSR_VM_HSAVE_PA
, env
->vm_hsave
);
1622 if (has_msr_tsc_aux
) {
1623 kvm_msr_entry_add(cpu
, MSR_TSC_AUX
, env
->tsc_aux
);
1625 if (has_msr_tsc_adjust
) {
1626 kvm_msr_entry_add(cpu
, MSR_TSC_ADJUST
, env
->tsc_adjust
);
1628 if (has_msr_misc_enable
) {
1629 kvm_msr_entry_add(cpu
, MSR_IA32_MISC_ENABLE
,
1630 env
->msr_ia32_misc_enable
);
1632 if (has_msr_smbase
) {
1633 kvm_msr_entry_add(cpu
, MSR_IA32_SMBASE
, env
->smbase
);
1635 if (has_msr_bndcfgs
) {
1636 kvm_msr_entry_add(cpu
, MSR_IA32_BNDCFGS
, env
->msr_bndcfgs
);
1639 kvm_msr_entry_add(cpu
, MSR_IA32_XSS
, env
->xss
);
1641 #ifdef TARGET_X86_64
1642 if (lm_capable_kernel
) {
1643 kvm_msr_entry_add(cpu
, MSR_CSTAR
, env
->cstar
);
1644 kvm_msr_entry_add(cpu
, MSR_KERNELGSBASE
, env
->kernelgsbase
);
1645 kvm_msr_entry_add(cpu
, MSR_FMASK
, env
->fmask
);
1646 kvm_msr_entry_add(cpu
, MSR_LSTAR
, env
->lstar
);
1650 * The following MSRs have side effects on the guest or are too heavy
1651 * for normal writeback. Limit them to reset or full state updates.
1653 if (level
>= KVM_PUT_RESET_STATE
) {
1654 kvm_msr_entry_add(cpu
, MSR_IA32_TSC
, env
->tsc
);
1655 kvm_msr_entry_add(cpu
, MSR_KVM_SYSTEM_TIME
, env
->system_time_msr
);
1656 kvm_msr_entry_add(cpu
, MSR_KVM_WALL_CLOCK
, env
->wall_clock_msr
);
1657 if (env
->features
[FEAT_KVM
] & (1 << KVM_FEATURE_ASYNC_PF
)) {
1658 kvm_msr_entry_add(cpu
, MSR_KVM_ASYNC_PF_EN
, env
->async_pf_en_msr
);
1660 if (env
->features
[FEAT_KVM
] & (1 << KVM_FEATURE_PV_EOI
)) {
1661 kvm_msr_entry_add(cpu
, MSR_KVM_PV_EOI_EN
, env
->pv_eoi_en_msr
);
1663 if (env
->features
[FEAT_KVM
] & (1 << KVM_FEATURE_STEAL_TIME
)) {
1664 kvm_msr_entry_add(cpu
, MSR_KVM_STEAL_TIME
, env
->steal_time_msr
);
1666 if (has_msr_architectural_pmu
) {
1667 /* Stop the counter. */
1668 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_FIXED_CTR_CTRL
, 0);
1669 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_CTRL
, 0);
1671 /* Set the counter values. */
1672 for (i
= 0; i
< MAX_FIXED_COUNTERS
; i
++) {
1673 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_FIXED_CTR0
+ i
,
1674 env
->msr_fixed_counters
[i
]);
1676 for (i
= 0; i
< num_architectural_pmu_counters
; i
++) {
1677 kvm_msr_entry_add(cpu
, MSR_P6_PERFCTR0
+ i
,
1678 env
->msr_gp_counters
[i
]);
1679 kvm_msr_entry_add(cpu
, MSR_P6_EVNTSEL0
+ i
,
1680 env
->msr_gp_evtsel
[i
]);
1682 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_STATUS
,
1683 env
->msr_global_status
);
1684 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_OVF_CTRL
,
1685 env
->msr_global_ovf_ctrl
);
1687 /* Now start the PMU. */
1688 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_FIXED_CTR_CTRL
,
1689 env
->msr_fixed_ctr_ctrl
);
1690 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_CTRL
,
1691 env
->msr_global_ctrl
);
1693 if (has_msr_hv_hypercall
) {
1694 kvm_msr_entry_add(cpu
, HV_X64_MSR_GUEST_OS_ID
,
1695 env
->msr_hv_guest_os_id
);
1696 kvm_msr_entry_add(cpu
, HV_X64_MSR_HYPERCALL
,
1697 env
->msr_hv_hypercall
);
1699 if (cpu
->hyperv_vapic
) {
1700 kvm_msr_entry_add(cpu
, HV_X64_MSR_APIC_ASSIST_PAGE
,
1703 if (cpu
->hyperv_time
) {
1704 kvm_msr_entry_add(cpu
, HV_X64_MSR_REFERENCE_TSC
, env
->msr_hv_tsc
);
1706 if (has_msr_hv_crash
) {
1709 for (j
= 0; j
< HV_X64_MSR_CRASH_PARAMS
; j
++)
1710 kvm_msr_entry_add(cpu
, HV_X64_MSR_CRASH_P0
+ j
,
1711 env
->msr_hv_crash_params
[j
]);
1713 kvm_msr_entry_add(cpu
, HV_X64_MSR_CRASH_CTL
,
1714 HV_X64_MSR_CRASH_CTL_NOTIFY
);
1716 if (has_msr_hv_runtime
) {
1717 kvm_msr_entry_add(cpu
, HV_X64_MSR_VP_RUNTIME
, env
->msr_hv_runtime
);
1719 if (cpu
->hyperv_synic
) {
1722 kvm_msr_entry_add(cpu
, HV_X64_MSR_SCONTROL
,
1723 env
->msr_hv_synic_control
);
1724 kvm_msr_entry_add(cpu
, HV_X64_MSR_SVERSION
,
1725 env
->msr_hv_synic_version
);
1726 kvm_msr_entry_add(cpu
, HV_X64_MSR_SIEFP
,
1727 env
->msr_hv_synic_evt_page
);
1728 kvm_msr_entry_add(cpu
, HV_X64_MSR_SIMP
,
1729 env
->msr_hv_synic_msg_page
);
1731 for (j
= 0; j
< ARRAY_SIZE(env
->msr_hv_synic_sint
); j
++) {
1732 kvm_msr_entry_add(cpu
, HV_X64_MSR_SINT0
+ j
,
1733 env
->msr_hv_synic_sint
[j
]);
1736 if (has_msr_hv_stimer
) {
1739 for (j
= 0; j
< ARRAY_SIZE(env
->msr_hv_stimer_config
); j
++) {
1740 kvm_msr_entry_add(cpu
, HV_X64_MSR_STIMER0_CONFIG
+ j
* 2,
1741 env
->msr_hv_stimer_config
[j
]);
1744 for (j
= 0; j
< ARRAY_SIZE(env
->msr_hv_stimer_count
); j
++) {
1745 kvm_msr_entry_add(cpu
, HV_X64_MSR_STIMER0_COUNT
+ j
* 2,
1746 env
->msr_hv_stimer_count
[j
]);
1749 if (env
->features
[FEAT_1_EDX
] & CPUID_MTRR
) {
1750 uint64_t phys_mask
= MAKE_64BIT_MASK(0, cpu
->phys_bits
);
1752 kvm_msr_entry_add(cpu
, MSR_MTRRdefType
, env
->mtrr_deftype
);
1753 kvm_msr_entry_add(cpu
, MSR_MTRRfix64K_00000
, env
->mtrr_fixed
[0]);
1754 kvm_msr_entry_add(cpu
, MSR_MTRRfix16K_80000
, env
->mtrr_fixed
[1]);
1755 kvm_msr_entry_add(cpu
, MSR_MTRRfix16K_A0000
, env
->mtrr_fixed
[2]);
1756 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_C0000
, env
->mtrr_fixed
[3]);
1757 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_C8000
, env
->mtrr_fixed
[4]);
1758 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_D0000
, env
->mtrr_fixed
[5]);
1759 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_D8000
, env
->mtrr_fixed
[6]);
1760 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_E0000
, env
->mtrr_fixed
[7]);
1761 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_E8000
, env
->mtrr_fixed
[8]);
1762 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_F0000
, env
->mtrr_fixed
[9]);
1763 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_F8000
, env
->mtrr_fixed
[10]);
1764 for (i
= 0; i
< MSR_MTRRcap_VCNT
; i
++) {
1765 /* The CPU GPs if we write to a bit above the physical limit of
1766 * the host CPU (and KVM emulates that)
1768 uint64_t mask
= env
->mtrr_var
[i
].mask
;
1771 kvm_msr_entry_add(cpu
, MSR_MTRRphysBase(i
),
1772 env
->mtrr_var
[i
].base
);
1773 kvm_msr_entry_add(cpu
, MSR_MTRRphysMask(i
), mask
);
1777 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
1778 * kvm_put_msr_feature_control. */
1783 kvm_msr_entry_add(cpu
, MSR_MCG_STATUS
, env
->mcg_status
);
1784 kvm_msr_entry_add(cpu
, MSR_MCG_CTL
, env
->mcg_ctl
);
1785 if (has_msr_mcg_ext_ctl
) {
1786 kvm_msr_entry_add(cpu
, MSR_MCG_EXT_CTL
, env
->mcg_ext_ctl
);
1788 for (i
= 0; i
< (env
->mcg_cap
& 0xff) * 4; i
++) {
1789 kvm_msr_entry_add(cpu
, MSR_MC0_CTL
+ i
, env
->mce_banks
[i
]);
1793 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MSRS
, cpu
->kvm_msr_buf
);
1798 assert(ret
== cpu
->kvm_msr_buf
->nmsrs
);
1803 static int kvm_get_fpu(X86CPU
*cpu
)
1805 CPUX86State
*env
= &cpu
->env
;
1809 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_FPU
, &fpu
);
1814 env
->fpstt
= (fpu
.fsw
>> 11) & 7;
1815 env
->fpus
= fpu
.fsw
;
1816 env
->fpuc
= fpu
.fcw
;
1817 env
->fpop
= fpu
.last_opcode
;
1818 env
->fpip
= fpu
.last_ip
;
1819 env
->fpdp
= fpu
.last_dp
;
1820 for (i
= 0; i
< 8; ++i
) {
1821 env
->fptags
[i
] = !((fpu
.ftwx
>> i
) & 1);
1823 memcpy(env
->fpregs
, fpu
.fpr
, sizeof env
->fpregs
);
1824 for (i
= 0; i
< CPU_NB_REGS
; i
++) {
1825 env
->xmm_regs
[i
].ZMM_Q(0) = ldq_p(&fpu
.xmm
[i
][0]);
1826 env
->xmm_regs
[i
].ZMM_Q(1) = ldq_p(&fpu
.xmm
[i
][8]);
1828 env
->mxcsr
= fpu
.mxcsr
;
1833 static int kvm_get_xsave(X86CPU
*cpu
)
1835 CPUX86State
*env
= &cpu
->env
;
1836 X86XSaveArea
*xsave
= env
->kvm_xsave_buf
;
1838 uint16_t cwd
, swd
, twd
;
1841 return kvm_get_fpu(cpu
);
1844 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_XSAVE
, xsave
);
1849 cwd
= xsave
->legacy
.fcw
;
1850 swd
= xsave
->legacy
.fsw
;
1851 twd
= xsave
->legacy
.ftw
;
1852 env
->fpop
= xsave
->legacy
.fpop
;
1853 env
->fpstt
= (swd
>> 11) & 7;
1856 for (i
= 0; i
< 8; ++i
) {
1857 env
->fptags
[i
] = !((twd
>> i
) & 1);
1859 env
->fpip
= xsave
->legacy
.fpip
;
1860 env
->fpdp
= xsave
->legacy
.fpdp
;
1861 env
->mxcsr
= xsave
->legacy
.mxcsr
;
1862 memcpy(env
->fpregs
, &xsave
->legacy
.fpregs
,
1863 sizeof env
->fpregs
);
1864 env
->xstate_bv
= xsave
->header
.xstate_bv
;
1865 memcpy(env
->bnd_regs
, &xsave
->bndreg_state
.bnd_regs
,
1866 sizeof env
->bnd_regs
);
1867 env
->bndcs_regs
= xsave
->bndcsr_state
.bndcsr
;
1868 memcpy(env
->opmask_regs
, &xsave
->opmask_state
.opmask_regs
,
1869 sizeof env
->opmask_regs
);
1871 for (i
= 0; i
< CPU_NB_REGS
; i
++) {
1872 uint8_t *xmm
= xsave
->legacy
.xmm_regs
[i
];
1873 uint8_t *ymmh
= xsave
->avx_state
.ymmh
[i
];
1874 uint8_t *zmmh
= xsave
->zmm_hi256_state
.zmm_hi256
[i
];
1875 env
->xmm_regs
[i
].ZMM_Q(0) = ldq_p(xmm
);
1876 env
->xmm_regs
[i
].ZMM_Q(1) = ldq_p(xmm
+8);
1877 env
->xmm_regs
[i
].ZMM_Q(2) = ldq_p(ymmh
);
1878 env
->xmm_regs
[i
].ZMM_Q(3) = ldq_p(ymmh
+8);
1879 env
->xmm_regs
[i
].ZMM_Q(4) = ldq_p(zmmh
);
1880 env
->xmm_regs
[i
].ZMM_Q(5) = ldq_p(zmmh
+8);
1881 env
->xmm_regs
[i
].ZMM_Q(6) = ldq_p(zmmh
+16);
1882 env
->xmm_regs
[i
].ZMM_Q(7) = ldq_p(zmmh
+24);
1885 #ifdef TARGET_X86_64
1886 memcpy(&env
->xmm_regs
[16], &xsave
->hi16_zmm_state
.hi16_zmm
,
1887 16 * sizeof env
->xmm_regs
[16]);
1888 memcpy(&env
->pkru
, &xsave
->pkru_state
, sizeof env
->pkru
);
1893 static int kvm_get_xcrs(X86CPU
*cpu
)
1895 CPUX86State
*env
= &cpu
->env
;
1897 struct kvm_xcrs xcrs
;
1903 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_XCRS
, &xcrs
);
1908 for (i
= 0; i
< xcrs
.nr_xcrs
; i
++) {
1909 /* Only support xcr0 now */
1910 if (xcrs
.xcrs
[i
].xcr
== 0) {
1911 env
->xcr0
= xcrs
.xcrs
[i
].value
;
1918 static int kvm_get_sregs(X86CPU
*cpu
)
1920 CPUX86State
*env
= &cpu
->env
;
1921 struct kvm_sregs sregs
;
1925 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_SREGS
, &sregs
);
1930 /* There can only be one pending IRQ set in the bitmap at a time, so try
1931 to find it and save its number instead (-1 for none). */
1932 env
->interrupt_injected
= -1;
1933 for (i
= 0; i
< ARRAY_SIZE(sregs
.interrupt_bitmap
); i
++) {
1934 if (sregs
.interrupt_bitmap
[i
]) {
1935 bit
= ctz64(sregs
.interrupt_bitmap
[i
]);
1936 env
->interrupt_injected
= i
* 64 + bit
;
1941 get_seg(&env
->segs
[R_CS
], &sregs
.cs
);
1942 get_seg(&env
->segs
[R_DS
], &sregs
.ds
);
1943 get_seg(&env
->segs
[R_ES
], &sregs
.es
);
1944 get_seg(&env
->segs
[R_FS
], &sregs
.fs
);
1945 get_seg(&env
->segs
[R_GS
], &sregs
.gs
);
1946 get_seg(&env
->segs
[R_SS
], &sregs
.ss
);
1948 get_seg(&env
->tr
, &sregs
.tr
);
1949 get_seg(&env
->ldt
, &sregs
.ldt
);
1951 env
->idt
.limit
= sregs
.idt
.limit
;
1952 env
->idt
.base
= sregs
.idt
.base
;
1953 env
->gdt
.limit
= sregs
.gdt
.limit
;
1954 env
->gdt
.base
= sregs
.gdt
.base
;
1956 env
->cr
[0] = sregs
.cr0
;
1957 env
->cr
[2] = sregs
.cr2
;
1958 env
->cr
[3] = sregs
.cr3
;
1959 env
->cr
[4] = sregs
.cr4
;
1961 env
->efer
= sregs
.efer
;
1963 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
1965 #define HFLAG_COPY_MASK \
1966 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1967 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1968 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1969 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1971 hflags
= env
->hflags
& HFLAG_COPY_MASK
;
1972 hflags
|= (env
->segs
[R_SS
].flags
>> DESC_DPL_SHIFT
) & HF_CPL_MASK
;
1973 hflags
|= (env
->cr
[0] & CR0_PE_MASK
) << (HF_PE_SHIFT
- CR0_PE_SHIFT
);
1974 hflags
|= (env
->cr
[0] << (HF_MP_SHIFT
- CR0_MP_SHIFT
)) &
1975 (HF_MP_MASK
| HF_EM_MASK
| HF_TS_MASK
);
1976 hflags
|= (env
->eflags
& (HF_TF_MASK
| HF_VM_MASK
| HF_IOPL_MASK
));
1978 if (env
->cr
[4] & CR4_OSFXSR_MASK
) {
1979 hflags
|= HF_OSFXSR_MASK
;
1982 if (env
->efer
& MSR_EFER_LMA
) {
1983 hflags
|= HF_LMA_MASK
;
1986 if ((hflags
& HF_LMA_MASK
) && (env
->segs
[R_CS
].flags
& DESC_L_MASK
)) {
1987 hflags
|= HF_CS32_MASK
| HF_SS32_MASK
| HF_CS64_MASK
;
1989 hflags
|= (env
->segs
[R_CS
].flags
& DESC_B_MASK
) >>
1990 (DESC_B_SHIFT
- HF_CS32_SHIFT
);
1991 hflags
|= (env
->segs
[R_SS
].flags
& DESC_B_MASK
) >>
1992 (DESC_B_SHIFT
- HF_SS32_SHIFT
);
1993 if (!(env
->cr
[0] & CR0_PE_MASK
) || (env
->eflags
& VM_MASK
) ||
1994 !(hflags
& HF_CS32_MASK
)) {
1995 hflags
|= HF_ADDSEG_MASK
;
1997 hflags
|= ((env
->segs
[R_DS
].base
| env
->segs
[R_ES
].base
|
1998 env
->segs
[R_SS
].base
) != 0) << HF_ADDSEG_SHIFT
;
2001 env
->hflags
= hflags
;
2006 static int kvm_get_msrs(X86CPU
*cpu
)
2008 CPUX86State
*env
= &cpu
->env
;
2009 struct kvm_msr_entry
*msrs
= cpu
->kvm_msr_buf
->entries
;
2011 uint64_t mtrr_top_bits
;
2013 kvm_msr_buf_reset(cpu
);
2015 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_CS
, 0);
2016 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_ESP
, 0);
2017 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_EIP
, 0);
2018 kvm_msr_entry_add(cpu
, MSR_PAT
, 0);
2020 kvm_msr_entry_add(cpu
, MSR_STAR
, 0);
2022 if (has_msr_hsave_pa
) {
2023 kvm_msr_entry_add(cpu
, MSR_VM_HSAVE_PA
, 0);
2025 if (has_msr_tsc_aux
) {
2026 kvm_msr_entry_add(cpu
, MSR_TSC_AUX
, 0);
2028 if (has_msr_tsc_adjust
) {
2029 kvm_msr_entry_add(cpu
, MSR_TSC_ADJUST
, 0);
2031 if (has_msr_tsc_deadline
) {
2032 kvm_msr_entry_add(cpu
, MSR_IA32_TSCDEADLINE
, 0);
2034 if (has_msr_misc_enable
) {
2035 kvm_msr_entry_add(cpu
, MSR_IA32_MISC_ENABLE
, 0);
2037 if (has_msr_smbase
) {
2038 kvm_msr_entry_add(cpu
, MSR_IA32_SMBASE
, 0);
2040 if (has_msr_feature_control
) {
2041 kvm_msr_entry_add(cpu
, MSR_IA32_FEATURE_CONTROL
, 0);
2043 if (has_msr_bndcfgs
) {
2044 kvm_msr_entry_add(cpu
, MSR_IA32_BNDCFGS
, 0);
2047 kvm_msr_entry_add(cpu
, MSR_IA32_XSS
, 0);
2051 if (!env
->tsc_valid
) {
2052 kvm_msr_entry_add(cpu
, MSR_IA32_TSC
, 0);
2053 env
->tsc_valid
= !runstate_is_running();
2056 #ifdef TARGET_X86_64
2057 if (lm_capable_kernel
) {
2058 kvm_msr_entry_add(cpu
, MSR_CSTAR
, 0);
2059 kvm_msr_entry_add(cpu
, MSR_KERNELGSBASE
, 0);
2060 kvm_msr_entry_add(cpu
, MSR_FMASK
, 0);
2061 kvm_msr_entry_add(cpu
, MSR_LSTAR
, 0);
2064 kvm_msr_entry_add(cpu
, MSR_KVM_SYSTEM_TIME
, 0);
2065 kvm_msr_entry_add(cpu
, MSR_KVM_WALL_CLOCK
, 0);
2066 if (env
->features
[FEAT_KVM
] & (1 << KVM_FEATURE_ASYNC_PF
)) {
2067 kvm_msr_entry_add(cpu
, MSR_KVM_ASYNC_PF_EN
, 0);
2069 if (env
->features
[FEAT_KVM
] & (1 << KVM_FEATURE_PV_EOI
)) {
2070 kvm_msr_entry_add(cpu
, MSR_KVM_PV_EOI_EN
, 0);
2072 if (env
->features
[FEAT_KVM
] & (1 << KVM_FEATURE_STEAL_TIME
)) {
2073 kvm_msr_entry_add(cpu
, MSR_KVM_STEAL_TIME
, 0);
2075 if (has_msr_architectural_pmu
) {
2076 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_FIXED_CTR_CTRL
, 0);
2077 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_CTRL
, 0);
2078 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_STATUS
, 0);
2079 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_OVF_CTRL
, 0);
2080 for (i
= 0; i
< MAX_FIXED_COUNTERS
; i
++) {
2081 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_FIXED_CTR0
+ i
, 0);
2083 for (i
= 0; i
< num_architectural_pmu_counters
; i
++) {
2084 kvm_msr_entry_add(cpu
, MSR_P6_PERFCTR0
+ i
, 0);
2085 kvm_msr_entry_add(cpu
, MSR_P6_EVNTSEL0
+ i
, 0);
2090 kvm_msr_entry_add(cpu
, MSR_MCG_STATUS
, 0);
2091 kvm_msr_entry_add(cpu
, MSR_MCG_CTL
, 0);
2092 if (has_msr_mcg_ext_ctl
) {
2093 kvm_msr_entry_add(cpu
, MSR_MCG_EXT_CTL
, 0);
2095 for (i
= 0; i
< (env
->mcg_cap
& 0xff) * 4; i
++) {
2096 kvm_msr_entry_add(cpu
, MSR_MC0_CTL
+ i
, 0);
2100 if (has_msr_hv_hypercall
) {
2101 kvm_msr_entry_add(cpu
, HV_X64_MSR_HYPERCALL
, 0);
2102 kvm_msr_entry_add(cpu
, HV_X64_MSR_GUEST_OS_ID
, 0);
2104 if (cpu
->hyperv_vapic
) {
2105 kvm_msr_entry_add(cpu
, HV_X64_MSR_APIC_ASSIST_PAGE
, 0);
2107 if (cpu
->hyperv_time
) {
2108 kvm_msr_entry_add(cpu
, HV_X64_MSR_REFERENCE_TSC
, 0);
2110 if (has_msr_hv_crash
) {
2113 for (j
= 0; j
< HV_X64_MSR_CRASH_PARAMS
; j
++) {
2114 kvm_msr_entry_add(cpu
, HV_X64_MSR_CRASH_P0
+ j
, 0);
2117 if (has_msr_hv_runtime
) {
2118 kvm_msr_entry_add(cpu
, HV_X64_MSR_VP_RUNTIME
, 0);
2120 if (cpu
->hyperv_synic
) {
2123 kvm_msr_entry_add(cpu
, HV_X64_MSR_SCONTROL
, 0);
2124 kvm_msr_entry_add(cpu
, HV_X64_MSR_SVERSION
, 0);
2125 kvm_msr_entry_add(cpu
, HV_X64_MSR_SIEFP
, 0);
2126 kvm_msr_entry_add(cpu
, HV_X64_MSR_SIMP
, 0);
2127 for (msr
= HV_X64_MSR_SINT0
; msr
<= HV_X64_MSR_SINT15
; msr
++) {
2128 kvm_msr_entry_add(cpu
, msr
, 0);
2131 if (has_msr_hv_stimer
) {
2134 for (msr
= HV_X64_MSR_STIMER0_CONFIG
; msr
<= HV_X64_MSR_STIMER3_COUNT
;
2136 kvm_msr_entry_add(cpu
, msr
, 0);
2139 if (env
->features
[FEAT_1_EDX
] & CPUID_MTRR
) {
2140 kvm_msr_entry_add(cpu
, MSR_MTRRdefType
, 0);
2141 kvm_msr_entry_add(cpu
, MSR_MTRRfix64K_00000
, 0);
2142 kvm_msr_entry_add(cpu
, MSR_MTRRfix16K_80000
, 0);
2143 kvm_msr_entry_add(cpu
, MSR_MTRRfix16K_A0000
, 0);
2144 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_C0000
, 0);
2145 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_C8000
, 0);
2146 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_D0000
, 0);
2147 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_D8000
, 0);
2148 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_E0000
, 0);
2149 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_E8000
, 0);
2150 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_F0000
, 0);
2151 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_F8000
, 0);
2152 for (i
= 0; i
< MSR_MTRRcap_VCNT
; i
++) {
2153 kvm_msr_entry_add(cpu
, MSR_MTRRphysBase(i
), 0);
2154 kvm_msr_entry_add(cpu
, MSR_MTRRphysMask(i
), 0);
2158 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_MSRS
, cpu
->kvm_msr_buf
);
2163 assert(ret
== cpu
->kvm_msr_buf
->nmsrs
);
2165 * MTRR masks: Each mask consists of 5 parts
2166 * a 10..0: must be zero
2168 * c n-1.12: actual mask bits
2169 * d 51..n: reserved must be zero
2170 * e 63.52: reserved must be zero
2172 * 'n' is the number of physical bits supported by the CPU and is
2173 * apparently always <= 52. We know our 'n' but don't know what
2174 * the destinations 'n' is; it might be smaller, in which case
2175 * it masks (c) on loading. It might be larger, in which case
2176 * we fill 'd' so that d..c is consistent irrespetive of the 'n'
2177 * we're migrating to.
2180 if (cpu
->fill_mtrr_mask
) {
2181 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS
> 52);
2182 assert(cpu
->phys_bits
<= TARGET_PHYS_ADDR_SPACE_BITS
);
2183 mtrr_top_bits
= MAKE_64BIT_MASK(cpu
->phys_bits
, 52 - cpu
->phys_bits
);
2188 for (i
= 0; i
< ret
; i
++) {
2189 uint32_t index
= msrs
[i
].index
;
2191 case MSR_IA32_SYSENTER_CS
:
2192 env
->sysenter_cs
= msrs
[i
].data
;
2194 case MSR_IA32_SYSENTER_ESP
:
2195 env
->sysenter_esp
= msrs
[i
].data
;
2197 case MSR_IA32_SYSENTER_EIP
:
2198 env
->sysenter_eip
= msrs
[i
].data
;
2201 env
->pat
= msrs
[i
].data
;
2204 env
->star
= msrs
[i
].data
;
2206 #ifdef TARGET_X86_64
2208 env
->cstar
= msrs
[i
].data
;
2210 case MSR_KERNELGSBASE
:
2211 env
->kernelgsbase
= msrs
[i
].data
;
2214 env
->fmask
= msrs
[i
].data
;
2217 env
->lstar
= msrs
[i
].data
;
2221 env
->tsc
= msrs
[i
].data
;
2224 env
->tsc_aux
= msrs
[i
].data
;
2226 case MSR_TSC_ADJUST
:
2227 env
->tsc_adjust
= msrs
[i
].data
;
2229 case MSR_IA32_TSCDEADLINE
:
2230 env
->tsc_deadline
= msrs
[i
].data
;
2232 case MSR_VM_HSAVE_PA
:
2233 env
->vm_hsave
= msrs
[i
].data
;
2235 case MSR_KVM_SYSTEM_TIME
:
2236 env
->system_time_msr
= msrs
[i
].data
;
2238 case MSR_KVM_WALL_CLOCK
:
2239 env
->wall_clock_msr
= msrs
[i
].data
;
2241 case MSR_MCG_STATUS
:
2242 env
->mcg_status
= msrs
[i
].data
;
2245 env
->mcg_ctl
= msrs
[i
].data
;
2247 case MSR_MCG_EXT_CTL
:
2248 env
->mcg_ext_ctl
= msrs
[i
].data
;
2250 case MSR_IA32_MISC_ENABLE
:
2251 env
->msr_ia32_misc_enable
= msrs
[i
].data
;
2253 case MSR_IA32_SMBASE
:
2254 env
->smbase
= msrs
[i
].data
;
2256 case MSR_IA32_FEATURE_CONTROL
:
2257 env
->msr_ia32_feature_control
= msrs
[i
].data
;
2259 case MSR_IA32_BNDCFGS
:
2260 env
->msr_bndcfgs
= msrs
[i
].data
;
2263 env
->xss
= msrs
[i
].data
;
2266 if (msrs
[i
].index
>= MSR_MC0_CTL
&&
2267 msrs
[i
].index
< MSR_MC0_CTL
+ (env
->mcg_cap
& 0xff) * 4) {
2268 env
->mce_banks
[msrs
[i
].index
- MSR_MC0_CTL
] = msrs
[i
].data
;
2271 case MSR_KVM_ASYNC_PF_EN
:
2272 env
->async_pf_en_msr
= msrs
[i
].data
;
2274 case MSR_KVM_PV_EOI_EN
:
2275 env
->pv_eoi_en_msr
= msrs
[i
].data
;
2277 case MSR_KVM_STEAL_TIME
:
2278 env
->steal_time_msr
= msrs
[i
].data
;
2280 case MSR_CORE_PERF_FIXED_CTR_CTRL
:
2281 env
->msr_fixed_ctr_ctrl
= msrs
[i
].data
;
2283 case MSR_CORE_PERF_GLOBAL_CTRL
:
2284 env
->msr_global_ctrl
= msrs
[i
].data
;
2286 case MSR_CORE_PERF_GLOBAL_STATUS
:
2287 env
->msr_global_status
= msrs
[i
].data
;
2289 case MSR_CORE_PERF_GLOBAL_OVF_CTRL
:
2290 env
->msr_global_ovf_ctrl
= msrs
[i
].data
;
2292 case MSR_CORE_PERF_FIXED_CTR0
... MSR_CORE_PERF_FIXED_CTR0
+ MAX_FIXED_COUNTERS
- 1:
2293 env
->msr_fixed_counters
[index
- MSR_CORE_PERF_FIXED_CTR0
] = msrs
[i
].data
;
2295 case MSR_P6_PERFCTR0
... MSR_P6_PERFCTR0
+ MAX_GP_COUNTERS
- 1:
2296 env
->msr_gp_counters
[index
- MSR_P6_PERFCTR0
] = msrs
[i
].data
;
2298 case MSR_P6_EVNTSEL0
... MSR_P6_EVNTSEL0
+ MAX_GP_COUNTERS
- 1:
2299 env
->msr_gp_evtsel
[index
- MSR_P6_EVNTSEL0
] = msrs
[i
].data
;
2301 case HV_X64_MSR_HYPERCALL
:
2302 env
->msr_hv_hypercall
= msrs
[i
].data
;
2304 case HV_X64_MSR_GUEST_OS_ID
:
2305 env
->msr_hv_guest_os_id
= msrs
[i
].data
;
2307 case HV_X64_MSR_APIC_ASSIST_PAGE
:
2308 env
->msr_hv_vapic
= msrs
[i
].data
;
2310 case HV_X64_MSR_REFERENCE_TSC
:
2311 env
->msr_hv_tsc
= msrs
[i
].data
;
2313 case HV_X64_MSR_CRASH_P0
... HV_X64_MSR_CRASH_P4
:
2314 env
->msr_hv_crash_params
[index
- HV_X64_MSR_CRASH_P0
] = msrs
[i
].data
;
2316 case HV_X64_MSR_VP_RUNTIME
:
2317 env
->msr_hv_runtime
= msrs
[i
].data
;
2319 case HV_X64_MSR_SCONTROL
:
2320 env
->msr_hv_synic_control
= msrs
[i
].data
;
2322 case HV_X64_MSR_SVERSION
:
2323 env
->msr_hv_synic_version
= msrs
[i
].data
;
2325 case HV_X64_MSR_SIEFP
:
2326 env
->msr_hv_synic_evt_page
= msrs
[i
].data
;
2328 case HV_X64_MSR_SIMP
:
2329 env
->msr_hv_synic_msg_page
= msrs
[i
].data
;
2331 case HV_X64_MSR_SINT0
... HV_X64_MSR_SINT15
:
2332 env
->msr_hv_synic_sint
[index
- HV_X64_MSR_SINT0
] = msrs
[i
].data
;
2334 case HV_X64_MSR_STIMER0_CONFIG
:
2335 case HV_X64_MSR_STIMER1_CONFIG
:
2336 case HV_X64_MSR_STIMER2_CONFIG
:
2337 case HV_X64_MSR_STIMER3_CONFIG
:
2338 env
->msr_hv_stimer_config
[(index
- HV_X64_MSR_STIMER0_CONFIG
)/2] =
2341 case HV_X64_MSR_STIMER0_COUNT
:
2342 case HV_X64_MSR_STIMER1_COUNT
:
2343 case HV_X64_MSR_STIMER2_COUNT
:
2344 case HV_X64_MSR_STIMER3_COUNT
:
2345 env
->msr_hv_stimer_count
[(index
- HV_X64_MSR_STIMER0_COUNT
)/2] =
2348 case MSR_MTRRdefType
:
2349 env
->mtrr_deftype
= msrs
[i
].data
;
2351 case MSR_MTRRfix64K_00000
:
2352 env
->mtrr_fixed
[0] = msrs
[i
].data
;
2354 case MSR_MTRRfix16K_80000
:
2355 env
->mtrr_fixed
[1] = msrs
[i
].data
;
2357 case MSR_MTRRfix16K_A0000
:
2358 env
->mtrr_fixed
[2] = msrs
[i
].data
;
2360 case MSR_MTRRfix4K_C0000
:
2361 env
->mtrr_fixed
[3] = msrs
[i
].data
;
2363 case MSR_MTRRfix4K_C8000
:
2364 env
->mtrr_fixed
[4] = msrs
[i
].data
;
2366 case MSR_MTRRfix4K_D0000
:
2367 env
->mtrr_fixed
[5] = msrs
[i
].data
;
2369 case MSR_MTRRfix4K_D8000
:
2370 env
->mtrr_fixed
[6] = msrs
[i
].data
;
2372 case MSR_MTRRfix4K_E0000
:
2373 env
->mtrr_fixed
[7] = msrs
[i
].data
;
2375 case MSR_MTRRfix4K_E8000
:
2376 env
->mtrr_fixed
[8] = msrs
[i
].data
;
2378 case MSR_MTRRfix4K_F0000
:
2379 env
->mtrr_fixed
[9] = msrs
[i
].data
;
2381 case MSR_MTRRfix4K_F8000
:
2382 env
->mtrr_fixed
[10] = msrs
[i
].data
;
2384 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT
- 1):
2386 env
->mtrr_var
[MSR_MTRRphysIndex(index
)].mask
= msrs
[i
].data
|
2389 env
->mtrr_var
[MSR_MTRRphysIndex(index
)].base
= msrs
[i
].data
;
2398 static int kvm_put_mp_state(X86CPU
*cpu
)
2400 struct kvm_mp_state mp_state
= { .mp_state
= cpu
->env
.mp_state
};
2402 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MP_STATE
, &mp_state
);
2405 static int kvm_get_mp_state(X86CPU
*cpu
)
2407 CPUState
*cs
= CPU(cpu
);
2408 CPUX86State
*env
= &cpu
->env
;
2409 struct kvm_mp_state mp_state
;
2412 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_MP_STATE
, &mp_state
);
2416 env
->mp_state
= mp_state
.mp_state
;
2417 if (kvm_irqchip_in_kernel()) {
2418 cs
->halted
= (mp_state
.mp_state
== KVM_MP_STATE_HALTED
);
2423 static int kvm_get_apic(X86CPU
*cpu
)
2425 DeviceState
*apic
= cpu
->apic_state
;
2426 struct kvm_lapic_state kapic
;
2429 if (apic
&& kvm_irqchip_in_kernel()) {
2430 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_LAPIC
, &kapic
);
2435 kvm_get_apic_state(apic
, &kapic
);
2440 static int kvm_put_vcpu_events(X86CPU
*cpu
, int level
)
2442 CPUState
*cs
= CPU(cpu
);
2443 CPUX86State
*env
= &cpu
->env
;
2444 struct kvm_vcpu_events events
= {};
2446 if (!kvm_has_vcpu_events()) {
2450 events
.exception
.injected
= (env
->exception_injected
>= 0);
2451 events
.exception
.nr
= env
->exception_injected
;
2452 events
.exception
.has_error_code
= env
->has_error_code
;
2453 events
.exception
.error_code
= env
->error_code
;
2454 events
.exception
.pad
= 0;
2456 events
.interrupt
.injected
= (env
->interrupt_injected
>= 0);
2457 events
.interrupt
.nr
= env
->interrupt_injected
;
2458 events
.interrupt
.soft
= env
->soft_interrupt
;
2460 events
.nmi
.injected
= env
->nmi_injected
;
2461 events
.nmi
.pending
= env
->nmi_pending
;
2462 events
.nmi
.masked
= !!(env
->hflags2
& HF2_NMI_MASK
);
2465 events
.sipi_vector
= env
->sipi_vector
;
2468 if (has_msr_smbase
) {
2469 events
.smi
.smm
= !!(env
->hflags
& HF_SMM_MASK
);
2470 events
.smi
.smm_inside_nmi
= !!(env
->hflags2
& HF2_SMM_INSIDE_NMI_MASK
);
2471 if (kvm_irqchip_in_kernel()) {
2472 /* As soon as these are moved to the kernel, remove them
2473 * from cs->interrupt_request.
2475 events
.smi
.pending
= cs
->interrupt_request
& CPU_INTERRUPT_SMI
;
2476 events
.smi
.latched_init
= cs
->interrupt_request
& CPU_INTERRUPT_INIT
;
2477 cs
->interrupt_request
&= ~(CPU_INTERRUPT_INIT
| CPU_INTERRUPT_SMI
);
2479 /* Keep these in cs->interrupt_request. */
2480 events
.smi
.pending
= 0;
2481 events
.smi
.latched_init
= 0;
2483 events
.flags
|= KVM_VCPUEVENT_VALID_SMM
;
2486 if (level
>= KVM_PUT_RESET_STATE
) {
2488 KVM_VCPUEVENT_VALID_NMI_PENDING
| KVM_VCPUEVENT_VALID_SIPI_VECTOR
;
2491 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_VCPU_EVENTS
, &events
);
2494 static int kvm_get_vcpu_events(X86CPU
*cpu
)
2496 CPUX86State
*env
= &cpu
->env
;
2497 struct kvm_vcpu_events events
;
2500 if (!kvm_has_vcpu_events()) {
2504 memset(&events
, 0, sizeof(events
));
2505 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_VCPU_EVENTS
, &events
);
2509 env
->exception_injected
=
2510 events
.exception
.injected
? events
.exception
.nr
: -1;
2511 env
->has_error_code
= events
.exception
.has_error_code
;
2512 env
->error_code
= events
.exception
.error_code
;
2514 env
->interrupt_injected
=
2515 events
.interrupt
.injected
? events
.interrupt
.nr
: -1;
2516 env
->soft_interrupt
= events
.interrupt
.soft
;
2518 env
->nmi_injected
= events
.nmi
.injected
;
2519 env
->nmi_pending
= events
.nmi
.pending
;
2520 if (events
.nmi
.masked
) {
2521 env
->hflags2
|= HF2_NMI_MASK
;
2523 env
->hflags2
&= ~HF2_NMI_MASK
;
2526 if (events
.flags
& KVM_VCPUEVENT_VALID_SMM
) {
2527 if (events
.smi
.smm
) {
2528 env
->hflags
|= HF_SMM_MASK
;
2530 env
->hflags
&= ~HF_SMM_MASK
;
2532 if (events
.smi
.pending
) {
2533 cpu_interrupt(CPU(cpu
), CPU_INTERRUPT_SMI
);
2535 cpu_reset_interrupt(CPU(cpu
), CPU_INTERRUPT_SMI
);
2537 if (events
.smi
.smm_inside_nmi
) {
2538 env
->hflags2
|= HF2_SMM_INSIDE_NMI_MASK
;
2540 env
->hflags2
&= ~HF2_SMM_INSIDE_NMI_MASK
;
2542 if (events
.smi
.latched_init
) {
2543 cpu_interrupt(CPU(cpu
), CPU_INTERRUPT_INIT
);
2545 cpu_reset_interrupt(CPU(cpu
), CPU_INTERRUPT_INIT
);
2549 env
->sipi_vector
= events
.sipi_vector
;
2554 static int kvm_guest_debug_workarounds(X86CPU
*cpu
)
2556 CPUState
*cs
= CPU(cpu
);
2557 CPUX86State
*env
= &cpu
->env
;
2559 unsigned long reinject_trap
= 0;
2561 if (!kvm_has_vcpu_events()) {
2562 if (env
->exception_injected
== 1) {
2563 reinject_trap
= KVM_GUESTDBG_INJECT_DB
;
2564 } else if (env
->exception_injected
== 3) {
2565 reinject_trap
= KVM_GUESTDBG_INJECT_BP
;
2567 env
->exception_injected
= -1;
2571 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
2572 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
2573 * by updating the debug state once again if single-stepping is on.
2574 * Another reason to call kvm_update_guest_debug here is a pending debug
2575 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
2576 * reinject them via SET_GUEST_DEBUG.
2578 if (reinject_trap
||
2579 (!kvm_has_robust_singlestep() && cs
->singlestep_enabled
)) {
2580 ret
= kvm_update_guest_debug(cs
, reinject_trap
);
2585 static int kvm_put_debugregs(X86CPU
*cpu
)
2587 CPUX86State
*env
= &cpu
->env
;
2588 struct kvm_debugregs dbgregs
;
2591 if (!kvm_has_debugregs()) {
2595 for (i
= 0; i
< 4; i
++) {
2596 dbgregs
.db
[i
] = env
->dr
[i
];
2598 dbgregs
.dr6
= env
->dr
[6];
2599 dbgregs
.dr7
= env
->dr
[7];
2602 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_DEBUGREGS
, &dbgregs
);
2605 static int kvm_get_debugregs(X86CPU
*cpu
)
2607 CPUX86State
*env
= &cpu
->env
;
2608 struct kvm_debugregs dbgregs
;
2611 if (!kvm_has_debugregs()) {
2615 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_DEBUGREGS
, &dbgregs
);
2619 for (i
= 0; i
< 4; i
++) {
2620 env
->dr
[i
] = dbgregs
.db
[i
];
2622 env
->dr
[4] = env
->dr
[6] = dbgregs
.dr6
;
2623 env
->dr
[5] = env
->dr
[7] = dbgregs
.dr7
;
2628 int kvm_arch_put_registers(CPUState
*cpu
, int level
)
2630 X86CPU
*x86_cpu
= X86_CPU(cpu
);
2633 assert(cpu_is_stopped(cpu
) || qemu_cpu_is_self(cpu
));
2635 if (level
>= KVM_PUT_RESET_STATE
) {
2636 ret
= kvm_put_msr_feature_control(x86_cpu
);
2642 if (level
== KVM_PUT_FULL_STATE
) {
2643 /* We don't check for kvm_arch_set_tsc_khz() errors here,
2644 * because TSC frequency mismatch shouldn't abort migration,
2645 * unless the user explicitly asked for a more strict TSC
2646 * setting (e.g. using an explicit "tsc-freq" option).
2648 kvm_arch_set_tsc_khz(cpu
);
2651 ret
= kvm_getput_regs(x86_cpu
, 1);
2655 ret
= kvm_put_xsave(x86_cpu
);
2659 ret
= kvm_put_xcrs(x86_cpu
);
2663 ret
= kvm_put_sregs(x86_cpu
);
2667 /* must be before kvm_put_msrs */
2668 ret
= kvm_inject_mce_oldstyle(x86_cpu
);
2672 ret
= kvm_put_msrs(x86_cpu
, level
);
2676 if (level
>= KVM_PUT_RESET_STATE
) {
2677 ret
= kvm_put_mp_state(x86_cpu
);
2683 ret
= kvm_put_tscdeadline_msr(x86_cpu
);
2688 ret
= kvm_put_vcpu_events(x86_cpu
, level
);
2692 ret
= kvm_put_debugregs(x86_cpu
);
2697 ret
= kvm_guest_debug_workarounds(x86_cpu
);
2704 int kvm_arch_get_registers(CPUState
*cs
)
2706 X86CPU
*cpu
= X86_CPU(cs
);
2709 assert(cpu_is_stopped(cs
) || qemu_cpu_is_self(cs
));
2711 ret
= kvm_getput_regs(cpu
, 0);
2715 ret
= kvm_get_xsave(cpu
);
2719 ret
= kvm_get_xcrs(cpu
);
2723 ret
= kvm_get_sregs(cpu
);
2727 ret
= kvm_get_msrs(cpu
);
2731 ret
= kvm_get_mp_state(cpu
);
2735 ret
= kvm_get_apic(cpu
);
2739 ret
= kvm_get_vcpu_events(cpu
);
2743 ret
= kvm_get_debugregs(cpu
);
2749 cpu_sync_bndcs_hflags(&cpu
->env
);
2753 void kvm_arch_pre_run(CPUState
*cpu
, struct kvm_run
*run
)
2755 X86CPU
*x86_cpu
= X86_CPU(cpu
);
2756 CPUX86State
*env
= &x86_cpu
->env
;
2760 if (cpu
->interrupt_request
& (CPU_INTERRUPT_NMI
| CPU_INTERRUPT_SMI
)) {
2761 if (cpu
->interrupt_request
& CPU_INTERRUPT_NMI
) {
2762 qemu_mutex_lock_iothread();
2763 cpu
->interrupt_request
&= ~CPU_INTERRUPT_NMI
;
2764 qemu_mutex_unlock_iothread();
2765 DPRINTF("injected NMI\n");
2766 ret
= kvm_vcpu_ioctl(cpu
, KVM_NMI
);
2768 fprintf(stderr
, "KVM: injection failed, NMI lost (%s)\n",
2772 if (cpu
->interrupt_request
& CPU_INTERRUPT_SMI
) {
2773 qemu_mutex_lock_iothread();
2774 cpu
->interrupt_request
&= ~CPU_INTERRUPT_SMI
;
2775 qemu_mutex_unlock_iothread();
2776 DPRINTF("injected SMI\n");
2777 ret
= kvm_vcpu_ioctl(cpu
, KVM_SMI
);
2779 fprintf(stderr
, "KVM: injection failed, SMI lost (%s)\n",
2785 if (!kvm_pic_in_kernel()) {
2786 qemu_mutex_lock_iothread();
2789 /* Force the VCPU out of its inner loop to process any INIT requests
2790 * or (for userspace APIC, but it is cheap to combine the checks here)
2791 * pending TPR access reports.
2793 if (cpu
->interrupt_request
& (CPU_INTERRUPT_INIT
| CPU_INTERRUPT_TPR
)) {
2794 if ((cpu
->interrupt_request
& CPU_INTERRUPT_INIT
) &&
2795 !(env
->hflags
& HF_SMM_MASK
)) {
2796 cpu
->exit_request
= 1;
2798 if (cpu
->interrupt_request
& CPU_INTERRUPT_TPR
) {
2799 cpu
->exit_request
= 1;
2803 if (!kvm_pic_in_kernel()) {
2804 /* Try to inject an interrupt if the guest can accept it */
2805 if (run
->ready_for_interrupt_injection
&&
2806 (cpu
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
2807 (env
->eflags
& IF_MASK
)) {
2810 cpu
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
2811 irq
= cpu_get_pic_interrupt(env
);
2813 struct kvm_interrupt intr
;
2816 DPRINTF("injected interrupt %d\n", irq
);
2817 ret
= kvm_vcpu_ioctl(cpu
, KVM_INTERRUPT
, &intr
);
2820 "KVM: injection failed, interrupt lost (%s)\n",
2826 /* If we have an interrupt but the guest is not ready to receive an
2827 * interrupt, request an interrupt window exit. This will
2828 * cause a return to userspace as soon as the guest is ready to
2829 * receive interrupts. */
2830 if ((cpu
->interrupt_request
& CPU_INTERRUPT_HARD
)) {
2831 run
->request_interrupt_window
= 1;
2833 run
->request_interrupt_window
= 0;
2836 DPRINTF("setting tpr\n");
2837 run
->cr8
= cpu_get_apic_tpr(x86_cpu
->apic_state
);
2839 qemu_mutex_unlock_iothread();
2843 MemTxAttrs
kvm_arch_post_run(CPUState
*cpu
, struct kvm_run
*run
)
2845 X86CPU
*x86_cpu
= X86_CPU(cpu
);
2846 CPUX86State
*env
= &x86_cpu
->env
;
2848 if (run
->flags
& KVM_RUN_X86_SMM
) {
2849 env
->hflags
|= HF_SMM_MASK
;
2851 env
->hflags
&= HF_SMM_MASK
;
2854 env
->eflags
|= IF_MASK
;
2856 env
->eflags
&= ~IF_MASK
;
2859 /* We need to protect the apic state against concurrent accesses from
2860 * different threads in case the userspace irqchip is used. */
2861 if (!kvm_irqchip_in_kernel()) {
2862 qemu_mutex_lock_iothread();
2864 cpu_set_apic_tpr(x86_cpu
->apic_state
, run
->cr8
);
2865 cpu_set_apic_base(x86_cpu
->apic_state
, run
->apic_base
);
2866 if (!kvm_irqchip_in_kernel()) {
2867 qemu_mutex_unlock_iothread();
2869 return cpu_get_mem_attrs(env
);
2872 int kvm_arch_process_async_events(CPUState
*cs
)
2874 X86CPU
*cpu
= X86_CPU(cs
);
2875 CPUX86State
*env
= &cpu
->env
;
2877 if (cs
->interrupt_request
& CPU_INTERRUPT_MCE
) {
2878 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
2879 assert(env
->mcg_cap
);
2881 cs
->interrupt_request
&= ~CPU_INTERRUPT_MCE
;
2883 kvm_cpu_synchronize_state(cs
);
2885 if (env
->exception_injected
== EXCP08_DBLE
) {
2886 /* this means triple fault */
2887 qemu_system_reset_request();
2888 cs
->exit_request
= 1;
2891 env
->exception_injected
= EXCP12_MCHK
;
2892 env
->has_error_code
= 0;
2895 if (kvm_irqchip_in_kernel() && env
->mp_state
== KVM_MP_STATE_HALTED
) {
2896 env
->mp_state
= KVM_MP_STATE_RUNNABLE
;
2900 if ((cs
->interrupt_request
& CPU_INTERRUPT_INIT
) &&
2901 !(env
->hflags
& HF_SMM_MASK
)) {
2902 kvm_cpu_synchronize_state(cs
);
2906 if (kvm_irqchip_in_kernel()) {
2910 if (cs
->interrupt_request
& CPU_INTERRUPT_POLL
) {
2911 cs
->interrupt_request
&= ~CPU_INTERRUPT_POLL
;
2912 apic_poll_irq(cpu
->apic_state
);
2914 if (((cs
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
2915 (env
->eflags
& IF_MASK
)) ||
2916 (cs
->interrupt_request
& CPU_INTERRUPT_NMI
)) {
2919 if (cs
->interrupt_request
& CPU_INTERRUPT_SIPI
) {
2920 kvm_cpu_synchronize_state(cs
);
2923 if (cs
->interrupt_request
& CPU_INTERRUPT_TPR
) {
2924 cs
->interrupt_request
&= ~CPU_INTERRUPT_TPR
;
2925 kvm_cpu_synchronize_state(cs
);
2926 apic_handle_tpr_access_report(cpu
->apic_state
, env
->eip
,
2927 env
->tpr_access_type
);
2933 static int kvm_handle_halt(X86CPU
*cpu
)
2935 CPUState
*cs
= CPU(cpu
);
2936 CPUX86State
*env
= &cpu
->env
;
2938 if (!((cs
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
2939 (env
->eflags
& IF_MASK
)) &&
2940 !(cs
->interrupt_request
& CPU_INTERRUPT_NMI
)) {
2948 static int kvm_handle_tpr_access(X86CPU
*cpu
)
2950 CPUState
*cs
= CPU(cpu
);
2951 struct kvm_run
*run
= cs
->kvm_run
;
2953 apic_handle_tpr_access_report(cpu
->apic_state
, run
->tpr_access
.rip
,
2954 run
->tpr_access
.is_write
? TPR_ACCESS_WRITE
2959 int kvm_arch_insert_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
2961 static const uint8_t int3
= 0xcc;
2963 if (cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
, 1, 0) ||
2964 cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&int3
, 1, 1)) {
2970 int kvm_arch_remove_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
2974 if (cpu_memory_rw_debug(cs
, bp
->pc
, &int3
, 1, 0) || int3
!= 0xcc ||
2975 cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
, 1, 1)) {
2987 static int nb_hw_breakpoint
;
2989 static int find_hw_breakpoint(target_ulong addr
, int len
, int type
)
2993 for (n
= 0; n
< nb_hw_breakpoint
; n
++) {
2994 if (hw_breakpoint
[n
].addr
== addr
&& hw_breakpoint
[n
].type
== type
&&
2995 (hw_breakpoint
[n
].len
== len
|| len
== -1)) {
3002 int kvm_arch_insert_hw_breakpoint(target_ulong addr
,
3003 target_ulong len
, int type
)
3006 case GDB_BREAKPOINT_HW
:
3009 case GDB_WATCHPOINT_WRITE
:
3010 case GDB_WATCHPOINT_ACCESS
:
3017 if (addr
& (len
- 1)) {
3029 if (nb_hw_breakpoint
== 4) {
3032 if (find_hw_breakpoint(addr
, len
, type
) >= 0) {
3035 hw_breakpoint
[nb_hw_breakpoint
].addr
= addr
;
3036 hw_breakpoint
[nb_hw_breakpoint
].len
= len
;
3037 hw_breakpoint
[nb_hw_breakpoint
].type
= type
;
3043 int kvm_arch_remove_hw_breakpoint(target_ulong addr
,
3044 target_ulong len
, int type
)
3048 n
= find_hw_breakpoint(addr
, (type
== GDB_BREAKPOINT_HW
) ? 1 : len
, type
);
3053 hw_breakpoint
[n
] = hw_breakpoint
[nb_hw_breakpoint
];
3058 void kvm_arch_remove_all_hw_breakpoints(void)
3060 nb_hw_breakpoint
= 0;
3063 static CPUWatchpoint hw_watchpoint
;
3065 static int kvm_handle_debug(X86CPU
*cpu
,
3066 struct kvm_debug_exit_arch
*arch_info
)
3068 CPUState
*cs
= CPU(cpu
);
3069 CPUX86State
*env
= &cpu
->env
;
3073 if (arch_info
->exception
== 1) {
3074 if (arch_info
->dr6
& (1 << 14)) {
3075 if (cs
->singlestep_enabled
) {
3079 for (n
= 0; n
< 4; n
++) {
3080 if (arch_info
->dr6
& (1 << n
)) {
3081 switch ((arch_info
->dr7
>> (16 + n
*4)) & 0x3) {
3087 cs
->watchpoint_hit
= &hw_watchpoint
;
3088 hw_watchpoint
.vaddr
= hw_breakpoint
[n
].addr
;
3089 hw_watchpoint
.flags
= BP_MEM_WRITE
;
3093 cs
->watchpoint_hit
= &hw_watchpoint
;
3094 hw_watchpoint
.vaddr
= hw_breakpoint
[n
].addr
;
3095 hw_watchpoint
.flags
= BP_MEM_ACCESS
;
3101 } else if (kvm_find_sw_breakpoint(cs
, arch_info
->pc
)) {
3105 cpu_synchronize_state(cs
);
3106 assert(env
->exception_injected
== -1);
3109 env
->exception_injected
= arch_info
->exception
;
3110 env
->has_error_code
= 0;
3116 void kvm_arch_update_guest_debug(CPUState
*cpu
, struct kvm_guest_debug
*dbg
)
3118 const uint8_t type_code
[] = {
3119 [GDB_BREAKPOINT_HW
] = 0x0,
3120 [GDB_WATCHPOINT_WRITE
] = 0x1,
3121 [GDB_WATCHPOINT_ACCESS
] = 0x3
3123 const uint8_t len_code
[] = {
3124 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
3128 if (kvm_sw_breakpoints_active(cpu
)) {
3129 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_SW_BP
;
3131 if (nb_hw_breakpoint
> 0) {
3132 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_HW_BP
;
3133 dbg
->arch
.debugreg
[7] = 0x0600;
3134 for (n
= 0; n
< nb_hw_breakpoint
; n
++) {
3135 dbg
->arch
.debugreg
[n
] = hw_breakpoint
[n
].addr
;
3136 dbg
->arch
.debugreg
[7] |= (2 << (n
* 2)) |
3137 (type_code
[hw_breakpoint
[n
].type
] << (16 + n
*4)) |
3138 ((uint32_t)len_code
[hw_breakpoint
[n
].len
] << (18 + n
*4));
3143 static bool host_supports_vmx(void)
3145 uint32_t ecx
, unused
;
3147 host_cpuid(1, 0, &unused
, &unused
, &ecx
, &unused
);
3148 return ecx
& CPUID_EXT_VMX
;
3151 #define VMX_INVALID_GUEST_STATE 0x80000021
3153 int kvm_arch_handle_exit(CPUState
*cs
, struct kvm_run
*run
)
3155 X86CPU
*cpu
= X86_CPU(cs
);
3159 switch (run
->exit_reason
) {
3161 DPRINTF("handle_hlt\n");
3162 qemu_mutex_lock_iothread();
3163 ret
= kvm_handle_halt(cpu
);
3164 qemu_mutex_unlock_iothread();
3166 case KVM_EXIT_SET_TPR
:
3169 case KVM_EXIT_TPR_ACCESS
:
3170 qemu_mutex_lock_iothread();
3171 ret
= kvm_handle_tpr_access(cpu
);
3172 qemu_mutex_unlock_iothread();
3174 case KVM_EXIT_FAIL_ENTRY
:
3175 code
= run
->fail_entry
.hardware_entry_failure_reason
;
3176 fprintf(stderr
, "KVM: entry failed, hardware error 0x%" PRIx64
"\n",
3178 if (host_supports_vmx() && code
== VMX_INVALID_GUEST_STATE
) {
3180 "\nIf you're running a guest on an Intel machine without "
3181 "unrestricted mode\n"
3182 "support, the failure can be most likely due to the guest "
3183 "entering an invalid\n"
3184 "state for Intel VT. For example, the guest maybe running "
3185 "in big real mode\n"
3186 "which is not supported on less recent Intel processors."
3191 case KVM_EXIT_EXCEPTION
:
3192 fprintf(stderr
, "KVM: exception %d exit (error code 0x%x)\n",
3193 run
->ex
.exception
, run
->ex
.error_code
);
3196 case KVM_EXIT_DEBUG
:
3197 DPRINTF("kvm_exit_debug\n");
3198 qemu_mutex_lock_iothread();
3199 ret
= kvm_handle_debug(cpu
, &run
->debug
.arch
);
3200 qemu_mutex_unlock_iothread();
3202 case KVM_EXIT_HYPERV
:
3203 ret
= kvm_hv_handle_exit(cpu
, &run
->hyperv
);
3205 case KVM_EXIT_IOAPIC_EOI
:
3206 ioapic_eoi_broadcast(run
->eoi
.vector
);
3210 fprintf(stderr
, "KVM: unknown exit reason %d\n", run
->exit_reason
);
3218 bool kvm_arch_stop_on_emulation_error(CPUState
*cs
)
3220 X86CPU
*cpu
= X86_CPU(cs
);
3221 CPUX86State
*env
= &cpu
->env
;
3223 kvm_cpu_synchronize_state(cs
);
3224 return !(env
->cr
[0] & CR0_PE_MASK
) ||
3225 ((env
->segs
[R_CS
].selector
& 3) != 3);
3228 void kvm_arch_init_irq_routing(KVMState
*s
)
3230 if (!kvm_check_extension(s
, KVM_CAP_IRQ_ROUTING
)) {
3231 /* If kernel can't do irq routing, interrupt source
3232 * override 0->2 cannot be set up as required by HPET.
3233 * So we have to disable it.
3237 /* We know at this point that we're using the in-kernel
3238 * irqchip, so we can use irqfds, and on x86 we know
3239 * we can use msi via irqfd and GSI routing.
3241 kvm_msi_via_irqfd_allowed
= true;
3242 kvm_gsi_routing_allowed
= true;
3244 if (kvm_irqchip_is_split()) {
3247 /* If the ioapic is in QEMU and the lapics are in KVM, reserve
3248 MSI routes for signaling interrupts to the local apics. */
3249 for (i
= 0; i
< IOAPIC_NUM_PINS
; i
++) {
3250 if (kvm_irqchip_add_msi_route(s
, 0, NULL
) < 0) {
3251 error_report("Could not enable split IRQ mode.");
3258 int kvm_arch_irqchip_create(MachineState
*ms
, KVMState
*s
)
3261 if (machine_kernel_irqchip_split(ms
)) {
3262 ret
= kvm_vm_enable_cap(s
, KVM_CAP_SPLIT_IRQCHIP
, 0, 24);
3264 error_report("Could not enable split irqchip mode: %s",
3268 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
3269 kvm_split_irqchip
= true;
3277 /* Classic KVM device assignment interface. Will remain x86 only. */
3278 int kvm_device_pci_assign(KVMState
*s
, PCIHostDeviceAddress
*dev_addr
,
3279 uint32_t flags
, uint32_t *dev_id
)
3281 struct kvm_assigned_pci_dev dev_data
= {
3282 .segnr
= dev_addr
->domain
,
3283 .busnr
= dev_addr
->bus
,
3284 .devfn
= PCI_DEVFN(dev_addr
->slot
, dev_addr
->function
),
3289 dev_data
.assigned_dev_id
=
3290 (dev_addr
->domain
<< 16) | (dev_addr
->bus
<< 8) | dev_data
.devfn
;
3292 ret
= kvm_vm_ioctl(s
, KVM_ASSIGN_PCI_DEVICE
, &dev_data
);
3297 *dev_id
= dev_data
.assigned_dev_id
;
3302 int kvm_device_pci_deassign(KVMState
*s
, uint32_t dev_id
)
3304 struct kvm_assigned_pci_dev dev_data
= {
3305 .assigned_dev_id
= dev_id
,
3308 return kvm_vm_ioctl(s
, KVM_DEASSIGN_PCI_DEVICE
, &dev_data
);
3311 static int kvm_assign_irq_internal(KVMState
*s
, uint32_t dev_id
,
3312 uint32_t irq_type
, uint32_t guest_irq
)
3314 struct kvm_assigned_irq assigned_irq
= {
3315 .assigned_dev_id
= dev_id
,
3316 .guest_irq
= guest_irq
,
3320 if (kvm_check_extension(s
, KVM_CAP_ASSIGN_DEV_IRQ
)) {
3321 return kvm_vm_ioctl(s
, KVM_ASSIGN_DEV_IRQ
, &assigned_irq
);
3323 return kvm_vm_ioctl(s
, KVM_ASSIGN_IRQ
, &assigned_irq
);
3327 int kvm_device_intx_assign(KVMState
*s
, uint32_t dev_id
, bool use_host_msi
,
3330 uint32_t irq_type
= KVM_DEV_IRQ_GUEST_INTX
|
3331 (use_host_msi
? KVM_DEV_IRQ_HOST_MSI
: KVM_DEV_IRQ_HOST_INTX
);
3333 return kvm_assign_irq_internal(s
, dev_id
, irq_type
, guest_irq
);
3336 int kvm_device_intx_set_mask(KVMState
*s
, uint32_t dev_id
, bool masked
)
3338 struct kvm_assigned_pci_dev dev_data
= {
3339 .assigned_dev_id
= dev_id
,
3340 .flags
= masked
? KVM_DEV_ASSIGN_MASK_INTX
: 0,
3343 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_INTX_MASK
, &dev_data
);
3346 static int kvm_deassign_irq_internal(KVMState
*s
, uint32_t dev_id
,
3349 struct kvm_assigned_irq assigned_irq
= {
3350 .assigned_dev_id
= dev_id
,
3354 return kvm_vm_ioctl(s
, KVM_DEASSIGN_DEV_IRQ
, &assigned_irq
);
3357 int kvm_device_intx_deassign(KVMState
*s
, uint32_t dev_id
, bool use_host_msi
)
3359 return kvm_deassign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_GUEST_INTX
|
3360 (use_host_msi
? KVM_DEV_IRQ_HOST_MSI
: KVM_DEV_IRQ_HOST_INTX
));
3363 int kvm_device_msi_assign(KVMState
*s
, uint32_t dev_id
, int virq
)
3365 return kvm_assign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_HOST_MSI
|
3366 KVM_DEV_IRQ_GUEST_MSI
, virq
);
3369 int kvm_device_msi_deassign(KVMState
*s
, uint32_t dev_id
)
3371 return kvm_deassign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_GUEST_MSI
|
3372 KVM_DEV_IRQ_HOST_MSI
);
3375 bool kvm_device_msix_supported(KVMState
*s
)
3377 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
3378 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
3379 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_MSIX_NR
, NULL
) == -EFAULT
;
3382 int kvm_device_msix_init_vectors(KVMState
*s
, uint32_t dev_id
,
3383 uint32_t nr_vectors
)
3385 struct kvm_assigned_msix_nr msix_nr
= {
3386 .assigned_dev_id
= dev_id
,
3387 .entry_nr
= nr_vectors
,
3390 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_MSIX_NR
, &msix_nr
);
3393 int kvm_device_msix_set_vector(KVMState
*s
, uint32_t dev_id
, uint32_t vector
,
3396 struct kvm_assigned_msix_entry msix_entry
= {
3397 .assigned_dev_id
= dev_id
,
3402 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_MSIX_ENTRY
, &msix_entry
);
3405 int kvm_device_msix_assign(KVMState
*s
, uint32_t dev_id
)
3407 return kvm_assign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_HOST_MSIX
|
3408 KVM_DEV_IRQ_GUEST_MSIX
, 0);
3411 int kvm_device_msix_deassign(KVMState
*s
, uint32_t dev_id
)
3413 return kvm_deassign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_GUEST_MSIX
|
3414 KVM_DEV_IRQ_HOST_MSIX
);
3417 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry
*route
,
3418 uint64_t address
, uint32_t data
, PCIDevice
*dev
)
3420 X86IOMMUState
*iommu
= x86_iommu_get_default();
3424 MSIMessage src
, dst
;
3425 X86IOMMUClass
*class = X86_IOMMU_GET_CLASS(iommu
);
3427 src
.address
= route
->u
.msi
.address_hi
;
3428 src
.address
<<= VTD_MSI_ADDR_HI_SHIFT
;
3429 src
.address
|= route
->u
.msi
.address_lo
;
3430 src
.data
= route
->u
.msi
.data
;
3432 ret
= class->int_remap(iommu
, &src
, &dst
, dev
? \
3433 pci_requester_id(dev
) : \
3434 X86_IOMMU_SID_INVALID
);
3436 trace_kvm_x86_fixup_msi_error(route
->gsi
);
3440 route
->u
.msi
.address_hi
= dst
.address
>> VTD_MSI_ADDR_HI_SHIFT
;
3441 route
->u
.msi
.address_lo
= dst
.address
& VTD_MSI_ADDR_LO_MASK
;
3442 route
->u
.msi
.data
= dst
.data
;
3448 typedef struct MSIRouteEntry MSIRouteEntry
;
3450 struct MSIRouteEntry
{
3451 PCIDevice
*dev
; /* Device pointer */
3452 int vector
; /* MSI/MSIX vector index */
3453 int virq
; /* Virtual IRQ index */
3454 QLIST_ENTRY(MSIRouteEntry
) list
;
3457 /* List of used GSI routes */
3458 static QLIST_HEAD(, MSIRouteEntry
) msi_route_list
= \
3459 QLIST_HEAD_INITIALIZER(msi_route_list
);
3461 static void kvm_update_msi_routes_all(void *private, bool global
,
3462 uint32_t index
, uint32_t mask
)
3465 MSIRouteEntry
*entry
;
3467 /* TODO: explicit route update */
3468 QLIST_FOREACH(entry
, &msi_route_list
, list
) {
3470 msg
= pci_get_msi_message(entry
->dev
, entry
->vector
);
3471 kvm_irqchip_update_msi_route(kvm_state
, entry
->virq
,
3474 kvm_irqchip_commit_routes(kvm_state
);
3475 trace_kvm_x86_update_msi_routes(cnt
);
3478 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry
*route
,
3479 int vector
, PCIDevice
*dev
)
3481 static bool notify_list_inited
= false;
3482 MSIRouteEntry
*entry
;
3485 /* These are (possibly) IOAPIC routes only used for split
3486 * kernel irqchip mode, while what we are housekeeping are
3487 * PCI devices only. */
3491 entry
= g_new0(MSIRouteEntry
, 1);
3493 entry
->vector
= vector
;
3494 entry
->virq
= route
->gsi
;
3495 QLIST_INSERT_HEAD(&msi_route_list
, entry
, list
);
3497 trace_kvm_x86_add_msi_route(route
->gsi
);
3499 if (!notify_list_inited
) {
3500 /* For the first time we do add route, add ourselves into
3501 * IOMMU's IEC notify list if needed. */
3502 X86IOMMUState
*iommu
= x86_iommu_get_default();
3504 x86_iommu_iec_register_notifier(iommu
,
3505 kvm_update_msi_routes_all
,
3508 notify_list_inited
= true;
3513 int kvm_arch_release_virq_post(int virq
)
3515 MSIRouteEntry
*entry
, *next
;
3516 QLIST_FOREACH_SAFE(entry
, &msi_route_list
, list
, next
) {
3517 if (entry
->virq
== virq
) {
3518 trace_kvm_x86_remove_msi_route(virq
);
3519 QLIST_REMOVE(entry
, list
);
3526 int kvm_arch_msi_data_to_gsi(uint32_t data
)