numa: Fix QMP command set-numa-node error handling
[qemu/ar7.git] / linux-user / elfload.c
blob10bca65b990745d012e606a0555afe2db1a235ea
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
5 #include <sys/resource.h>
7 #include "qemu.h"
8 #include "disas/disas.h"
9 #include "qemu/path.h"
11 #ifdef _ARCH_PPC64
12 #undef ARCH_DLINFO
13 #undef ELF_PLATFORM
14 #undef ELF_HWCAP
15 #undef ELF_HWCAP2
16 #undef ELF_CLASS
17 #undef ELF_DATA
18 #undef ELF_ARCH
19 #endif
21 #define ELF_OSABI ELFOSABI_SYSV
23 /* from personality.h */
26 * Flags for bug emulation.
28 * These occupy the top three bytes.
30 enum {
31 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
32 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
33 descriptors (signal handling) */
34 MMAP_PAGE_ZERO = 0x0100000,
35 ADDR_COMPAT_LAYOUT = 0x0200000,
36 READ_IMPLIES_EXEC = 0x0400000,
37 ADDR_LIMIT_32BIT = 0x0800000,
38 SHORT_INODE = 0x1000000,
39 WHOLE_SECONDS = 0x2000000,
40 STICKY_TIMEOUTS = 0x4000000,
41 ADDR_LIMIT_3GB = 0x8000000,
45 * Personality types.
47 * These go in the low byte. Avoid using the top bit, it will
48 * conflict with error returns.
50 enum {
51 PER_LINUX = 0x0000,
52 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
53 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
54 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
55 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
56 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
57 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
58 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
59 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
60 PER_BSD = 0x0006,
61 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
62 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
63 PER_LINUX32 = 0x0008,
64 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
65 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
66 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
67 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
68 PER_RISCOS = 0x000c,
69 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
70 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
71 PER_OSF4 = 0x000f, /* OSF/1 v4 */
72 PER_HPUX = 0x0010,
73 PER_MASK = 0x00ff,
77 * Return the base personality without flags.
79 #define personality(pers) (pers & PER_MASK)
81 int info_is_fdpic(struct image_info *info)
83 return info->personality == PER_LINUX_FDPIC;
86 /* this flag is uneffective under linux too, should be deleted */
87 #ifndef MAP_DENYWRITE
88 #define MAP_DENYWRITE 0
89 #endif
91 /* should probably go in elf.h */
92 #ifndef ELIBBAD
93 #define ELIBBAD 80
94 #endif
96 #ifdef TARGET_WORDS_BIGENDIAN
97 #define ELF_DATA ELFDATA2MSB
98 #else
99 #define ELF_DATA ELFDATA2LSB
100 #endif
102 #ifdef TARGET_ABI_MIPSN32
103 typedef abi_ullong target_elf_greg_t;
104 #define tswapreg(ptr) tswap64(ptr)
105 #else
106 typedef abi_ulong target_elf_greg_t;
107 #define tswapreg(ptr) tswapal(ptr)
108 #endif
110 #ifdef USE_UID16
111 typedef abi_ushort target_uid_t;
112 typedef abi_ushort target_gid_t;
113 #else
114 typedef abi_uint target_uid_t;
115 typedef abi_uint target_gid_t;
116 #endif
117 typedef abi_int target_pid_t;
119 #ifdef TARGET_I386
121 #define ELF_PLATFORM get_elf_platform()
123 static const char *get_elf_platform(void)
125 static char elf_platform[] = "i386";
126 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
127 if (family > 6)
128 family = 6;
129 if (family >= 3)
130 elf_platform[1] = '0' + family;
131 return elf_platform;
134 #define ELF_HWCAP get_elf_hwcap()
136 static uint32_t get_elf_hwcap(void)
138 X86CPU *cpu = X86_CPU(thread_cpu);
140 return cpu->env.features[FEAT_1_EDX];
143 #ifdef TARGET_X86_64
144 #define ELF_START_MMAP 0x2aaaaab000ULL
146 #define ELF_CLASS ELFCLASS64
147 #define ELF_ARCH EM_X86_64
149 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
151 regs->rax = 0;
152 regs->rsp = infop->start_stack;
153 regs->rip = infop->entry;
156 #define ELF_NREG 27
157 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
160 * Note that ELF_NREG should be 29 as there should be place for
161 * TRAPNO and ERR "registers" as well but linux doesn't dump
162 * those.
164 * See linux kernel: arch/x86/include/asm/elf.h
166 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
168 (*regs)[0] = env->regs[15];
169 (*regs)[1] = env->regs[14];
170 (*regs)[2] = env->regs[13];
171 (*regs)[3] = env->regs[12];
172 (*regs)[4] = env->regs[R_EBP];
173 (*regs)[5] = env->regs[R_EBX];
174 (*regs)[6] = env->regs[11];
175 (*regs)[7] = env->regs[10];
176 (*regs)[8] = env->regs[9];
177 (*regs)[9] = env->regs[8];
178 (*regs)[10] = env->regs[R_EAX];
179 (*regs)[11] = env->regs[R_ECX];
180 (*regs)[12] = env->regs[R_EDX];
181 (*regs)[13] = env->regs[R_ESI];
182 (*regs)[14] = env->regs[R_EDI];
183 (*regs)[15] = env->regs[R_EAX]; /* XXX */
184 (*regs)[16] = env->eip;
185 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
186 (*regs)[18] = env->eflags;
187 (*regs)[19] = env->regs[R_ESP];
188 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
189 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
190 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
191 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
192 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
193 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
194 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
197 #else
199 #define ELF_START_MMAP 0x80000000
202 * This is used to ensure we don't load something for the wrong architecture.
204 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
207 * These are used to set parameters in the core dumps.
209 #define ELF_CLASS ELFCLASS32
210 #define ELF_ARCH EM_386
212 static inline void init_thread(struct target_pt_regs *regs,
213 struct image_info *infop)
215 regs->esp = infop->start_stack;
216 regs->eip = infop->entry;
218 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
219 starts %edx contains a pointer to a function which might be
220 registered using `atexit'. This provides a mean for the
221 dynamic linker to call DT_FINI functions for shared libraries
222 that have been loaded before the code runs.
224 A value of 0 tells we have no such handler. */
225 regs->edx = 0;
228 #define ELF_NREG 17
229 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
232 * Note that ELF_NREG should be 19 as there should be place for
233 * TRAPNO and ERR "registers" as well but linux doesn't dump
234 * those.
236 * See linux kernel: arch/x86/include/asm/elf.h
238 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
240 (*regs)[0] = env->regs[R_EBX];
241 (*regs)[1] = env->regs[R_ECX];
242 (*regs)[2] = env->regs[R_EDX];
243 (*regs)[3] = env->regs[R_ESI];
244 (*regs)[4] = env->regs[R_EDI];
245 (*regs)[5] = env->regs[R_EBP];
246 (*regs)[6] = env->regs[R_EAX];
247 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
248 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
249 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
250 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
251 (*regs)[11] = env->regs[R_EAX]; /* XXX */
252 (*regs)[12] = env->eip;
253 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
254 (*regs)[14] = env->eflags;
255 (*regs)[15] = env->regs[R_ESP];
256 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
258 #endif
260 #define USE_ELF_CORE_DUMP
261 #define ELF_EXEC_PAGESIZE 4096
263 #endif
265 #ifdef TARGET_ARM
267 #ifndef TARGET_AARCH64
268 /* 32 bit ARM definitions */
270 #define ELF_START_MMAP 0x80000000
272 #define ELF_ARCH EM_ARM
273 #define ELF_CLASS ELFCLASS32
275 static inline void init_thread(struct target_pt_regs *regs,
276 struct image_info *infop)
278 abi_long stack = infop->start_stack;
279 memset(regs, 0, sizeof(*regs));
281 regs->uregs[16] = ARM_CPU_MODE_USR;
282 if (infop->entry & 1) {
283 regs->uregs[16] |= CPSR_T;
285 regs->uregs[15] = infop->entry & 0xfffffffe;
286 regs->uregs[13] = infop->start_stack;
287 /* FIXME - what to for failure of get_user()? */
288 get_user_ual(regs->uregs[2], stack + 8); /* envp */
289 get_user_ual(regs->uregs[1], stack + 4); /* envp */
290 /* XXX: it seems that r0 is zeroed after ! */
291 regs->uregs[0] = 0;
292 /* For uClinux PIC binaries. */
293 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
294 regs->uregs[10] = infop->start_data;
296 /* Support ARM FDPIC. */
297 if (info_is_fdpic(infop)) {
298 /* As described in the ABI document, r7 points to the loadmap info
299 * prepared by the kernel. If an interpreter is needed, r8 points
300 * to the interpreter loadmap and r9 points to the interpreter
301 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
302 * r9 points to the main program PT_DYNAMIC info.
304 regs->uregs[7] = infop->loadmap_addr;
305 if (infop->interpreter_loadmap_addr) {
306 /* Executable is dynamically loaded. */
307 regs->uregs[8] = infop->interpreter_loadmap_addr;
308 regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
309 } else {
310 regs->uregs[8] = 0;
311 regs->uregs[9] = infop->pt_dynamic_addr;
316 #define ELF_NREG 18
317 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
319 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
321 (*regs)[0] = tswapreg(env->regs[0]);
322 (*regs)[1] = tswapreg(env->regs[1]);
323 (*regs)[2] = tswapreg(env->regs[2]);
324 (*regs)[3] = tswapreg(env->regs[3]);
325 (*regs)[4] = tswapreg(env->regs[4]);
326 (*regs)[5] = tswapreg(env->regs[5]);
327 (*regs)[6] = tswapreg(env->regs[6]);
328 (*regs)[7] = tswapreg(env->regs[7]);
329 (*regs)[8] = tswapreg(env->regs[8]);
330 (*regs)[9] = tswapreg(env->regs[9]);
331 (*regs)[10] = tswapreg(env->regs[10]);
332 (*regs)[11] = tswapreg(env->regs[11]);
333 (*regs)[12] = tswapreg(env->regs[12]);
334 (*regs)[13] = tswapreg(env->regs[13]);
335 (*regs)[14] = tswapreg(env->regs[14]);
336 (*regs)[15] = tswapreg(env->regs[15]);
338 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
339 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
342 #define USE_ELF_CORE_DUMP
343 #define ELF_EXEC_PAGESIZE 4096
345 enum
347 ARM_HWCAP_ARM_SWP = 1 << 0,
348 ARM_HWCAP_ARM_HALF = 1 << 1,
349 ARM_HWCAP_ARM_THUMB = 1 << 2,
350 ARM_HWCAP_ARM_26BIT = 1 << 3,
351 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
352 ARM_HWCAP_ARM_FPA = 1 << 5,
353 ARM_HWCAP_ARM_VFP = 1 << 6,
354 ARM_HWCAP_ARM_EDSP = 1 << 7,
355 ARM_HWCAP_ARM_JAVA = 1 << 8,
356 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
357 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
358 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
359 ARM_HWCAP_ARM_NEON = 1 << 12,
360 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
361 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
362 ARM_HWCAP_ARM_TLS = 1 << 15,
363 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
364 ARM_HWCAP_ARM_IDIVA = 1 << 17,
365 ARM_HWCAP_ARM_IDIVT = 1 << 18,
366 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
367 ARM_HWCAP_ARM_LPAE = 1 << 20,
368 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
371 enum {
372 ARM_HWCAP2_ARM_AES = 1 << 0,
373 ARM_HWCAP2_ARM_PMULL = 1 << 1,
374 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
375 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
376 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
379 /* The commpage only exists for 32 bit kernels */
381 /* Return 1 if the proposed guest space is suitable for the guest.
382 * Return 0 if the proposed guest space isn't suitable, but another
383 * address space should be tried.
384 * Return -1 if there is no way the proposed guest space can be
385 * valid regardless of the base.
386 * The guest code may leave a page mapped and populate it if the
387 * address is suitable.
389 static int init_guest_commpage(unsigned long guest_base,
390 unsigned long guest_size)
392 unsigned long real_start, test_page_addr;
394 /* We need to check that we can force a fault on access to the
395 * commpage at 0xffff0fxx
397 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
399 /* If the commpage lies within the already allocated guest space,
400 * then there is no way we can allocate it.
402 * You may be thinking that that this check is redundant because
403 * we already validated the guest size against MAX_RESERVED_VA;
404 * but if qemu_host_page_mask is unusually large, then
405 * test_page_addr may be lower.
407 if (test_page_addr >= guest_base
408 && test_page_addr < (guest_base + guest_size)) {
409 return -1;
412 /* Note it needs to be writeable to let us initialise it */
413 real_start = (unsigned long)
414 mmap((void *)test_page_addr, qemu_host_page_size,
415 PROT_READ | PROT_WRITE,
416 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
418 /* If we can't map it then try another address */
419 if (real_start == -1ul) {
420 return 0;
423 if (real_start != test_page_addr) {
424 /* OS didn't put the page where we asked - unmap and reject */
425 munmap((void *)real_start, qemu_host_page_size);
426 return 0;
429 /* Leave the page mapped
430 * Populate it (mmap should have left it all 0'd)
433 /* Kernel helper versions */
434 __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
436 /* Now it's populated make it RO */
437 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
438 perror("Protecting guest commpage");
439 exit(-1);
442 return 1; /* All good */
445 #define ELF_HWCAP get_elf_hwcap()
446 #define ELF_HWCAP2 get_elf_hwcap2()
448 static uint32_t get_elf_hwcap(void)
450 ARMCPU *cpu = ARM_CPU(thread_cpu);
451 uint32_t hwcaps = 0;
453 hwcaps |= ARM_HWCAP_ARM_SWP;
454 hwcaps |= ARM_HWCAP_ARM_HALF;
455 hwcaps |= ARM_HWCAP_ARM_THUMB;
456 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
458 /* probe for the extra features */
459 #define GET_FEATURE(feat, hwcap) \
460 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
461 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
462 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
463 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
464 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
465 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
466 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
467 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
468 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
469 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
470 GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA);
471 GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT);
472 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
473 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
474 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
475 * to our VFP_FP16 feature bit.
477 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
478 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
480 return hwcaps;
483 static uint32_t get_elf_hwcap2(void)
485 ARMCPU *cpu = ARM_CPU(thread_cpu);
486 uint32_t hwcaps = 0;
488 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES);
489 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL);
490 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1);
491 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2);
492 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32);
493 return hwcaps;
496 #undef GET_FEATURE
498 #else
499 /* 64 bit ARM definitions */
500 #define ELF_START_MMAP 0x80000000
502 #define ELF_ARCH EM_AARCH64
503 #define ELF_CLASS ELFCLASS64
504 #define ELF_PLATFORM "aarch64"
506 static inline void init_thread(struct target_pt_regs *regs,
507 struct image_info *infop)
509 abi_long stack = infop->start_stack;
510 memset(regs, 0, sizeof(*regs));
512 regs->pc = infop->entry & ~0x3ULL;
513 regs->sp = stack;
516 #define ELF_NREG 34
517 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
519 static void elf_core_copy_regs(target_elf_gregset_t *regs,
520 const CPUARMState *env)
522 int i;
524 for (i = 0; i < 32; i++) {
525 (*regs)[i] = tswapreg(env->xregs[i]);
527 (*regs)[32] = tswapreg(env->pc);
528 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
531 #define USE_ELF_CORE_DUMP
532 #define ELF_EXEC_PAGESIZE 4096
534 enum {
535 ARM_HWCAP_A64_FP = 1 << 0,
536 ARM_HWCAP_A64_ASIMD = 1 << 1,
537 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
538 ARM_HWCAP_A64_AES = 1 << 3,
539 ARM_HWCAP_A64_PMULL = 1 << 4,
540 ARM_HWCAP_A64_SHA1 = 1 << 5,
541 ARM_HWCAP_A64_SHA2 = 1 << 6,
542 ARM_HWCAP_A64_CRC32 = 1 << 7,
543 ARM_HWCAP_A64_ATOMICS = 1 << 8,
544 ARM_HWCAP_A64_FPHP = 1 << 9,
545 ARM_HWCAP_A64_ASIMDHP = 1 << 10,
546 ARM_HWCAP_A64_CPUID = 1 << 11,
547 ARM_HWCAP_A64_ASIMDRDM = 1 << 12,
548 ARM_HWCAP_A64_JSCVT = 1 << 13,
549 ARM_HWCAP_A64_FCMA = 1 << 14,
550 ARM_HWCAP_A64_LRCPC = 1 << 15,
551 ARM_HWCAP_A64_DCPOP = 1 << 16,
552 ARM_HWCAP_A64_SHA3 = 1 << 17,
553 ARM_HWCAP_A64_SM3 = 1 << 18,
554 ARM_HWCAP_A64_SM4 = 1 << 19,
555 ARM_HWCAP_A64_ASIMDDP = 1 << 20,
556 ARM_HWCAP_A64_SHA512 = 1 << 21,
557 ARM_HWCAP_A64_SVE = 1 << 22,
560 #define ELF_HWCAP get_elf_hwcap()
562 static uint32_t get_elf_hwcap(void)
564 ARMCPU *cpu = ARM_CPU(thread_cpu);
565 uint32_t hwcaps = 0;
567 hwcaps |= ARM_HWCAP_A64_FP;
568 hwcaps |= ARM_HWCAP_A64_ASIMD;
570 /* probe for the extra features */
571 #define GET_FEATURE(feat, hwcap) \
572 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
573 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES);
574 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL);
575 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1);
576 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2);
577 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32);
578 GET_FEATURE(ARM_FEATURE_V8_SHA3, ARM_HWCAP_A64_SHA3);
579 GET_FEATURE(ARM_FEATURE_V8_SM3, ARM_HWCAP_A64_SM3);
580 GET_FEATURE(ARM_FEATURE_V8_SM4, ARM_HWCAP_A64_SM4);
581 GET_FEATURE(ARM_FEATURE_V8_SHA512, ARM_HWCAP_A64_SHA512);
582 GET_FEATURE(ARM_FEATURE_V8_FP16,
583 ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
584 GET_FEATURE(ARM_FEATURE_V8_ATOMICS, ARM_HWCAP_A64_ATOMICS);
585 GET_FEATURE(ARM_FEATURE_V8_RDM, ARM_HWCAP_A64_ASIMDRDM);
586 GET_FEATURE(ARM_FEATURE_V8_DOTPROD, ARM_HWCAP_A64_ASIMDDP);
587 GET_FEATURE(ARM_FEATURE_V8_FCMA, ARM_HWCAP_A64_FCMA);
588 GET_FEATURE(ARM_FEATURE_SVE, ARM_HWCAP_A64_SVE);
589 #undef GET_FEATURE
591 return hwcaps;
594 #endif /* not TARGET_AARCH64 */
595 #endif /* TARGET_ARM */
597 #ifdef TARGET_SPARC
598 #ifdef TARGET_SPARC64
600 #define ELF_START_MMAP 0x80000000
601 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
602 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
603 #ifndef TARGET_ABI32
604 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
605 #else
606 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
607 #endif
609 #define ELF_CLASS ELFCLASS64
610 #define ELF_ARCH EM_SPARCV9
612 #define STACK_BIAS 2047
614 static inline void init_thread(struct target_pt_regs *regs,
615 struct image_info *infop)
617 #ifndef TARGET_ABI32
618 regs->tstate = 0;
619 #endif
620 regs->pc = infop->entry;
621 regs->npc = regs->pc + 4;
622 regs->y = 0;
623 #ifdef TARGET_ABI32
624 regs->u_regs[14] = infop->start_stack - 16 * 4;
625 #else
626 if (personality(infop->personality) == PER_LINUX32)
627 regs->u_regs[14] = infop->start_stack - 16 * 4;
628 else
629 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
630 #endif
633 #else
634 #define ELF_START_MMAP 0x80000000
635 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
636 | HWCAP_SPARC_MULDIV)
638 #define ELF_CLASS ELFCLASS32
639 #define ELF_ARCH EM_SPARC
641 static inline void init_thread(struct target_pt_regs *regs,
642 struct image_info *infop)
644 regs->psr = 0;
645 regs->pc = infop->entry;
646 regs->npc = regs->pc + 4;
647 regs->y = 0;
648 regs->u_regs[14] = infop->start_stack - 16 * 4;
651 #endif
652 #endif
654 #ifdef TARGET_PPC
656 #define ELF_MACHINE PPC_ELF_MACHINE
657 #define ELF_START_MMAP 0x80000000
659 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
661 #define elf_check_arch(x) ( (x) == EM_PPC64 )
663 #define ELF_CLASS ELFCLASS64
665 #else
667 #define ELF_CLASS ELFCLASS32
669 #endif
671 #define ELF_ARCH EM_PPC
673 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
674 See arch/powerpc/include/asm/cputable.h. */
675 enum {
676 QEMU_PPC_FEATURE_32 = 0x80000000,
677 QEMU_PPC_FEATURE_64 = 0x40000000,
678 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
679 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
680 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
681 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
682 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
683 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
684 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
685 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
686 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
687 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
688 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
689 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
690 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
691 QEMU_PPC_FEATURE_CELL = 0x00010000,
692 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
693 QEMU_PPC_FEATURE_SMT = 0x00004000,
694 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
695 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
696 QEMU_PPC_FEATURE_PA6T = 0x00000800,
697 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
698 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
699 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
700 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
701 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
703 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
704 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
706 /* Feature definitions in AT_HWCAP2. */
707 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
708 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
709 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
710 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
711 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
712 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
713 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
716 #define ELF_HWCAP get_elf_hwcap()
718 static uint32_t get_elf_hwcap(void)
720 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
721 uint32_t features = 0;
723 /* We don't have to be terribly complete here; the high points are
724 Altivec/FP/SPE support. Anything else is just a bonus. */
725 #define GET_FEATURE(flag, feature) \
726 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
727 #define GET_FEATURE2(flags, feature) \
728 do { \
729 if ((cpu->env.insns_flags2 & flags) == flags) { \
730 features |= feature; \
732 } while (0)
733 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
734 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
735 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
736 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
737 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
738 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
739 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
740 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
741 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
742 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
743 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
744 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
745 QEMU_PPC_FEATURE_ARCH_2_06);
746 #undef GET_FEATURE
747 #undef GET_FEATURE2
749 return features;
752 #define ELF_HWCAP2 get_elf_hwcap2()
754 static uint32_t get_elf_hwcap2(void)
756 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
757 uint32_t features = 0;
759 #define GET_FEATURE(flag, feature) \
760 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
761 #define GET_FEATURE2(flag, feature) \
762 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
764 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
765 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
766 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
767 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
768 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00);
770 #undef GET_FEATURE
771 #undef GET_FEATURE2
773 return features;
777 * The requirements here are:
778 * - keep the final alignment of sp (sp & 0xf)
779 * - make sure the 32-bit value at the first 16 byte aligned position of
780 * AUXV is greater than 16 for glibc compatibility.
781 * AT_IGNOREPPC is used for that.
782 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
783 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
785 #define DLINFO_ARCH_ITEMS 5
786 #define ARCH_DLINFO \
787 do { \
788 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
789 /* \
790 * Handle glibc compatibility: these magic entries must \
791 * be at the lowest addresses in the final auxv. \
792 */ \
793 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
794 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
795 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
796 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
797 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
798 } while (0)
800 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
802 _regs->gpr[1] = infop->start_stack;
803 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
804 if (get_ppc64_abi(infop) < 2) {
805 uint64_t val;
806 get_user_u64(val, infop->entry + 8);
807 _regs->gpr[2] = val + infop->load_bias;
808 get_user_u64(val, infop->entry);
809 infop->entry = val + infop->load_bias;
810 } else {
811 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
813 #endif
814 _regs->nip = infop->entry;
817 /* See linux kernel: arch/powerpc/include/asm/elf.h. */
818 #define ELF_NREG 48
819 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
821 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
823 int i;
824 target_ulong ccr = 0;
826 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
827 (*regs)[i] = tswapreg(env->gpr[i]);
830 (*regs)[32] = tswapreg(env->nip);
831 (*regs)[33] = tswapreg(env->msr);
832 (*regs)[35] = tswapreg(env->ctr);
833 (*regs)[36] = tswapreg(env->lr);
834 (*regs)[37] = tswapreg(env->xer);
836 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
837 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
839 (*regs)[38] = tswapreg(ccr);
842 #define USE_ELF_CORE_DUMP
843 #define ELF_EXEC_PAGESIZE 4096
845 #endif
847 #ifdef TARGET_MIPS
849 #define ELF_START_MMAP 0x80000000
851 #ifdef TARGET_MIPS64
852 #define ELF_CLASS ELFCLASS64
853 #else
854 #define ELF_CLASS ELFCLASS32
855 #endif
856 #define ELF_ARCH EM_MIPS
858 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
860 static inline void init_thread(struct target_pt_regs *regs,
861 struct image_info *infop)
863 regs->cp0_status = 2 << CP0St_KSU;
864 regs->cp0_epc = infop->entry;
865 regs->regs[29] = infop->start_stack;
868 /* See linux kernel: arch/mips/include/asm/elf.h. */
869 #define ELF_NREG 45
870 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
872 /* See linux kernel: arch/mips/include/asm/reg.h. */
873 enum {
874 #ifdef TARGET_MIPS64
875 TARGET_EF_R0 = 0,
876 #else
877 TARGET_EF_R0 = 6,
878 #endif
879 TARGET_EF_R26 = TARGET_EF_R0 + 26,
880 TARGET_EF_R27 = TARGET_EF_R0 + 27,
881 TARGET_EF_LO = TARGET_EF_R0 + 32,
882 TARGET_EF_HI = TARGET_EF_R0 + 33,
883 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
884 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
885 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
886 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
889 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
890 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
892 int i;
894 for (i = 0; i < TARGET_EF_R0; i++) {
895 (*regs)[i] = 0;
897 (*regs)[TARGET_EF_R0] = 0;
899 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
900 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
903 (*regs)[TARGET_EF_R26] = 0;
904 (*regs)[TARGET_EF_R27] = 0;
905 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
906 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
907 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
908 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
909 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
910 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
913 #define USE_ELF_CORE_DUMP
914 #define ELF_EXEC_PAGESIZE 4096
916 /* See arch/mips/include/uapi/asm/hwcap.h. */
917 enum {
918 HWCAP_MIPS_R6 = (1 << 0),
919 HWCAP_MIPS_MSA = (1 << 1),
922 #define ELF_HWCAP get_elf_hwcap()
924 static uint32_t get_elf_hwcap(void)
926 MIPSCPU *cpu = MIPS_CPU(thread_cpu);
927 uint32_t hwcaps = 0;
929 #define GET_FEATURE(flag, hwcap) \
930 do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0)
932 GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6);
933 GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA);
935 #undef GET_FEATURE
937 return hwcaps;
940 #endif /* TARGET_MIPS */
942 #ifdef TARGET_MICROBLAZE
944 #define ELF_START_MMAP 0x80000000
946 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
948 #define ELF_CLASS ELFCLASS32
949 #define ELF_ARCH EM_MICROBLAZE
951 static inline void init_thread(struct target_pt_regs *regs,
952 struct image_info *infop)
954 regs->pc = infop->entry;
955 regs->r1 = infop->start_stack;
959 #define ELF_EXEC_PAGESIZE 4096
961 #define USE_ELF_CORE_DUMP
962 #define ELF_NREG 38
963 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
965 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
966 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
968 int i, pos = 0;
970 for (i = 0; i < 32; i++) {
971 (*regs)[pos++] = tswapreg(env->regs[i]);
974 for (i = 0; i < 6; i++) {
975 (*regs)[pos++] = tswapreg(env->sregs[i]);
979 #endif /* TARGET_MICROBLAZE */
981 #ifdef TARGET_NIOS2
983 #define ELF_START_MMAP 0x80000000
985 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
987 #define ELF_CLASS ELFCLASS32
988 #define ELF_ARCH EM_ALTERA_NIOS2
990 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
992 regs->ea = infop->entry;
993 regs->sp = infop->start_stack;
994 regs->estatus = 0x3;
997 #define ELF_EXEC_PAGESIZE 4096
999 #define USE_ELF_CORE_DUMP
1000 #define ELF_NREG 49
1001 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1003 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1004 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1005 const CPUNios2State *env)
1007 int i;
1009 (*regs)[0] = -1;
1010 for (i = 1; i < 8; i++) /* r0-r7 */
1011 (*regs)[i] = tswapreg(env->regs[i + 7]);
1013 for (i = 8; i < 16; i++) /* r8-r15 */
1014 (*regs)[i] = tswapreg(env->regs[i - 8]);
1016 for (i = 16; i < 24; i++) /* r16-r23 */
1017 (*regs)[i] = tswapreg(env->regs[i + 7]);
1018 (*regs)[24] = -1; /* R_ET */
1019 (*regs)[25] = -1; /* R_BT */
1020 (*regs)[26] = tswapreg(env->regs[R_GP]);
1021 (*regs)[27] = tswapreg(env->regs[R_SP]);
1022 (*regs)[28] = tswapreg(env->regs[R_FP]);
1023 (*regs)[29] = tswapreg(env->regs[R_EA]);
1024 (*regs)[30] = -1; /* R_SSTATUS */
1025 (*regs)[31] = tswapreg(env->regs[R_RA]);
1027 (*regs)[32] = tswapreg(env->regs[R_PC]);
1029 (*regs)[33] = -1; /* R_STATUS */
1030 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1032 for (i = 35; i < 49; i++) /* ... */
1033 (*regs)[i] = -1;
1036 #endif /* TARGET_NIOS2 */
1038 #ifdef TARGET_OPENRISC
1040 #define ELF_START_MMAP 0x08000000
1042 #define ELF_ARCH EM_OPENRISC
1043 #define ELF_CLASS ELFCLASS32
1044 #define ELF_DATA ELFDATA2MSB
1046 static inline void init_thread(struct target_pt_regs *regs,
1047 struct image_info *infop)
1049 regs->pc = infop->entry;
1050 regs->gpr[1] = infop->start_stack;
1053 #define USE_ELF_CORE_DUMP
1054 #define ELF_EXEC_PAGESIZE 8192
1056 /* See linux kernel arch/openrisc/include/asm/elf.h. */
1057 #define ELF_NREG 34 /* gprs and pc, sr */
1058 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1060 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1061 const CPUOpenRISCState *env)
1063 int i;
1065 for (i = 0; i < 32; i++) {
1066 (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1068 (*regs)[32] = tswapreg(env->pc);
1069 (*regs)[33] = tswapreg(cpu_get_sr(env));
1071 #define ELF_HWCAP 0
1072 #define ELF_PLATFORM NULL
1074 #endif /* TARGET_OPENRISC */
1076 #ifdef TARGET_SH4
1078 #define ELF_START_MMAP 0x80000000
1080 #define ELF_CLASS ELFCLASS32
1081 #define ELF_ARCH EM_SH
1083 static inline void init_thread(struct target_pt_regs *regs,
1084 struct image_info *infop)
1086 /* Check other registers XXXXX */
1087 regs->pc = infop->entry;
1088 regs->regs[15] = infop->start_stack;
1091 /* See linux kernel: arch/sh/include/asm/elf.h. */
1092 #define ELF_NREG 23
1093 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1095 /* See linux kernel: arch/sh/include/asm/ptrace.h. */
1096 enum {
1097 TARGET_REG_PC = 16,
1098 TARGET_REG_PR = 17,
1099 TARGET_REG_SR = 18,
1100 TARGET_REG_GBR = 19,
1101 TARGET_REG_MACH = 20,
1102 TARGET_REG_MACL = 21,
1103 TARGET_REG_SYSCALL = 22
1106 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1107 const CPUSH4State *env)
1109 int i;
1111 for (i = 0; i < 16; i++) {
1112 (*regs)[i] = tswapreg(env->gregs[i]);
1115 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1116 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1117 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1118 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1119 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1120 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1121 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1124 #define USE_ELF_CORE_DUMP
1125 #define ELF_EXEC_PAGESIZE 4096
1127 enum {
1128 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1129 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1130 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1131 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1132 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1133 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1134 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1135 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1136 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1137 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1140 #define ELF_HWCAP get_elf_hwcap()
1142 static uint32_t get_elf_hwcap(void)
1144 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1145 uint32_t hwcap = 0;
1147 hwcap |= SH_CPU_HAS_FPU;
1149 if (cpu->env.features & SH_FEATURE_SH4A) {
1150 hwcap |= SH_CPU_HAS_LLSC;
1153 return hwcap;
1156 #endif
1158 #ifdef TARGET_CRIS
1160 #define ELF_START_MMAP 0x80000000
1162 #define ELF_CLASS ELFCLASS32
1163 #define ELF_ARCH EM_CRIS
1165 static inline void init_thread(struct target_pt_regs *regs,
1166 struct image_info *infop)
1168 regs->erp = infop->entry;
1171 #define ELF_EXEC_PAGESIZE 8192
1173 #endif
1175 #ifdef TARGET_M68K
1177 #define ELF_START_MMAP 0x80000000
1179 #define ELF_CLASS ELFCLASS32
1180 #define ELF_ARCH EM_68K
1182 /* ??? Does this need to do anything?
1183 #define ELF_PLAT_INIT(_r) */
1185 static inline void init_thread(struct target_pt_regs *regs,
1186 struct image_info *infop)
1188 regs->usp = infop->start_stack;
1189 regs->sr = 0;
1190 regs->pc = infop->entry;
1193 /* See linux kernel: arch/m68k/include/asm/elf.h. */
1194 #define ELF_NREG 20
1195 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1197 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1199 (*regs)[0] = tswapreg(env->dregs[1]);
1200 (*regs)[1] = tswapreg(env->dregs[2]);
1201 (*regs)[2] = tswapreg(env->dregs[3]);
1202 (*regs)[3] = tswapreg(env->dregs[4]);
1203 (*regs)[4] = tswapreg(env->dregs[5]);
1204 (*regs)[5] = tswapreg(env->dregs[6]);
1205 (*regs)[6] = tswapreg(env->dregs[7]);
1206 (*regs)[7] = tswapreg(env->aregs[0]);
1207 (*regs)[8] = tswapreg(env->aregs[1]);
1208 (*regs)[9] = tswapreg(env->aregs[2]);
1209 (*regs)[10] = tswapreg(env->aregs[3]);
1210 (*regs)[11] = tswapreg(env->aregs[4]);
1211 (*regs)[12] = tswapreg(env->aregs[5]);
1212 (*regs)[13] = tswapreg(env->aregs[6]);
1213 (*regs)[14] = tswapreg(env->dregs[0]);
1214 (*regs)[15] = tswapreg(env->aregs[7]);
1215 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1216 (*regs)[17] = tswapreg(env->sr);
1217 (*regs)[18] = tswapreg(env->pc);
1218 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1221 #define USE_ELF_CORE_DUMP
1222 #define ELF_EXEC_PAGESIZE 8192
1224 #endif
1226 #ifdef TARGET_ALPHA
1228 #define ELF_START_MMAP (0x30000000000ULL)
1230 #define ELF_CLASS ELFCLASS64
1231 #define ELF_ARCH EM_ALPHA
1233 static inline void init_thread(struct target_pt_regs *regs,
1234 struct image_info *infop)
1236 regs->pc = infop->entry;
1237 regs->ps = 8;
1238 regs->usp = infop->start_stack;
1241 #define ELF_EXEC_PAGESIZE 8192
1243 #endif /* TARGET_ALPHA */
1245 #ifdef TARGET_S390X
1247 #define ELF_START_MMAP (0x20000000000ULL)
1249 #define ELF_CLASS ELFCLASS64
1250 #define ELF_DATA ELFDATA2MSB
1251 #define ELF_ARCH EM_S390
1253 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1255 regs->psw.addr = infop->entry;
1256 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1257 regs->gprs[15] = infop->start_stack;
1260 #endif /* TARGET_S390X */
1262 #ifdef TARGET_TILEGX
1264 /* 42 bits real used address, a half for user mode */
1265 #define ELF_START_MMAP (0x00000020000000000ULL)
1267 #define elf_check_arch(x) ((x) == EM_TILEGX)
1269 #define ELF_CLASS ELFCLASS64
1270 #define ELF_DATA ELFDATA2LSB
1271 #define ELF_ARCH EM_TILEGX
1273 static inline void init_thread(struct target_pt_regs *regs,
1274 struct image_info *infop)
1276 regs->pc = infop->entry;
1277 regs->sp = infop->start_stack;
1281 #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */
1283 #endif /* TARGET_TILEGX */
1285 #ifdef TARGET_RISCV
1287 #define ELF_START_MMAP 0x80000000
1288 #define ELF_ARCH EM_RISCV
1290 #ifdef TARGET_RISCV32
1291 #define ELF_CLASS ELFCLASS32
1292 #else
1293 #define ELF_CLASS ELFCLASS64
1294 #endif
1296 static inline void init_thread(struct target_pt_regs *regs,
1297 struct image_info *infop)
1299 regs->sepc = infop->entry;
1300 regs->sp = infop->start_stack;
1303 #define ELF_EXEC_PAGESIZE 4096
1305 #endif /* TARGET_RISCV */
1307 #ifdef TARGET_HPPA
1309 #define ELF_START_MMAP 0x80000000
1310 #define ELF_CLASS ELFCLASS32
1311 #define ELF_ARCH EM_PARISC
1312 #define ELF_PLATFORM "PARISC"
1313 #define STACK_GROWS_DOWN 0
1314 #define STACK_ALIGNMENT 64
1316 static inline void init_thread(struct target_pt_regs *regs,
1317 struct image_info *infop)
1319 regs->iaoq[0] = infop->entry;
1320 regs->iaoq[1] = infop->entry + 4;
1321 regs->gr[23] = 0;
1322 regs->gr[24] = infop->arg_start;
1323 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1324 /* The top-of-stack contains a linkage buffer. */
1325 regs->gr[30] = infop->start_stack + 64;
1326 regs->gr[31] = infop->entry;
1329 #endif /* TARGET_HPPA */
1331 #ifdef TARGET_XTENSA
1333 #define ELF_START_MMAP 0x20000000
1335 #define ELF_CLASS ELFCLASS32
1336 #define ELF_ARCH EM_XTENSA
1338 static inline void init_thread(struct target_pt_regs *regs,
1339 struct image_info *infop)
1341 regs->windowbase = 0;
1342 regs->windowstart = 1;
1343 regs->areg[1] = infop->start_stack;
1344 regs->pc = infop->entry;
1347 /* See linux kernel: arch/xtensa/include/asm/elf.h. */
1348 #define ELF_NREG 128
1349 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1351 enum {
1352 TARGET_REG_PC,
1353 TARGET_REG_PS,
1354 TARGET_REG_LBEG,
1355 TARGET_REG_LEND,
1356 TARGET_REG_LCOUNT,
1357 TARGET_REG_SAR,
1358 TARGET_REG_WINDOWSTART,
1359 TARGET_REG_WINDOWBASE,
1360 TARGET_REG_THREADPTR,
1361 TARGET_REG_AR0 = 64,
1364 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1365 const CPUXtensaState *env)
1367 unsigned i;
1369 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1370 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1371 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1372 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1373 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1374 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1375 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1376 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1377 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1378 xtensa_sync_phys_from_window((CPUXtensaState *)env);
1379 for (i = 0; i < env->config->nareg; ++i) {
1380 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1384 #define USE_ELF_CORE_DUMP
1385 #define ELF_EXEC_PAGESIZE 4096
1387 #endif /* TARGET_XTENSA */
1389 #ifndef ELF_PLATFORM
1390 #define ELF_PLATFORM (NULL)
1391 #endif
1393 #ifndef ELF_MACHINE
1394 #define ELF_MACHINE ELF_ARCH
1395 #endif
1397 #ifndef elf_check_arch
1398 #define elf_check_arch(x) ((x) == ELF_ARCH)
1399 #endif
1401 #ifndef ELF_HWCAP
1402 #define ELF_HWCAP 0
1403 #endif
1405 #ifndef STACK_GROWS_DOWN
1406 #define STACK_GROWS_DOWN 1
1407 #endif
1409 #ifndef STACK_ALIGNMENT
1410 #define STACK_ALIGNMENT 16
1411 #endif
1413 #ifdef TARGET_ABI32
1414 #undef ELF_CLASS
1415 #define ELF_CLASS ELFCLASS32
1416 #undef bswaptls
1417 #define bswaptls(ptr) bswap32s(ptr)
1418 #endif
1420 #include "elf.h"
1422 struct exec
1424 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1425 unsigned int a_text; /* length of text, in bytes */
1426 unsigned int a_data; /* length of data, in bytes */
1427 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1428 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1429 unsigned int a_entry; /* start address */
1430 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1431 unsigned int a_drsize; /* length of relocation info for data, in bytes */
1435 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1436 #define OMAGIC 0407
1437 #define NMAGIC 0410
1438 #define ZMAGIC 0413
1439 #define QMAGIC 0314
1441 /* Necessary parameters */
1442 #define TARGET_ELF_EXEC_PAGESIZE \
1443 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1444 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1445 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
1446 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1447 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1448 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1450 #define DLINFO_ITEMS 15
1452 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1454 memcpy(to, from, n);
1457 #ifdef BSWAP_NEEDED
1458 static void bswap_ehdr(struct elfhdr *ehdr)
1460 bswap16s(&ehdr->e_type); /* Object file type */
1461 bswap16s(&ehdr->e_machine); /* Architecture */
1462 bswap32s(&ehdr->e_version); /* Object file version */
1463 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1464 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1465 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1466 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1467 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1468 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1469 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1470 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1471 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1472 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
1475 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1477 int i;
1478 for (i = 0; i < phnum; ++i, ++phdr) {
1479 bswap32s(&phdr->p_type); /* Segment type */
1480 bswap32s(&phdr->p_flags); /* Segment flags */
1481 bswaptls(&phdr->p_offset); /* Segment file offset */
1482 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1483 bswaptls(&phdr->p_paddr); /* Segment physical address */
1484 bswaptls(&phdr->p_filesz); /* Segment size in file */
1485 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1486 bswaptls(&phdr->p_align); /* Segment alignment */
1490 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1492 int i;
1493 for (i = 0; i < shnum; ++i, ++shdr) {
1494 bswap32s(&shdr->sh_name);
1495 bswap32s(&shdr->sh_type);
1496 bswaptls(&shdr->sh_flags);
1497 bswaptls(&shdr->sh_addr);
1498 bswaptls(&shdr->sh_offset);
1499 bswaptls(&shdr->sh_size);
1500 bswap32s(&shdr->sh_link);
1501 bswap32s(&shdr->sh_info);
1502 bswaptls(&shdr->sh_addralign);
1503 bswaptls(&shdr->sh_entsize);
1507 static void bswap_sym(struct elf_sym *sym)
1509 bswap32s(&sym->st_name);
1510 bswaptls(&sym->st_value);
1511 bswaptls(&sym->st_size);
1512 bswap16s(&sym->st_shndx);
1514 #else
1515 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1516 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1517 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1518 static inline void bswap_sym(struct elf_sym *sym) { }
1519 #endif
1521 #ifdef USE_ELF_CORE_DUMP
1522 static int elf_core_dump(int, const CPUArchState *);
1523 #endif /* USE_ELF_CORE_DUMP */
1524 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1526 /* Verify the portions of EHDR within E_IDENT for the target.
1527 This can be performed before bswapping the entire header. */
1528 static bool elf_check_ident(struct elfhdr *ehdr)
1530 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1531 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1532 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1533 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1534 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1535 && ehdr->e_ident[EI_DATA] == ELF_DATA
1536 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1539 /* Verify the portions of EHDR outside of E_IDENT for the target.
1540 This has to wait until after bswapping the header. */
1541 static bool elf_check_ehdr(struct elfhdr *ehdr)
1543 return (elf_check_arch(ehdr->e_machine)
1544 && ehdr->e_ehsize == sizeof(struct elfhdr)
1545 && ehdr->e_phentsize == sizeof(struct elf_phdr)
1546 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1550 * 'copy_elf_strings()' copies argument/envelope strings from user
1551 * memory to free pages in kernel mem. These are in a format ready
1552 * to be put directly into the top of new user memory.
1555 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1556 abi_ulong p, abi_ulong stack_limit)
1558 char *tmp;
1559 int len, i;
1560 abi_ulong top = p;
1562 if (!p) {
1563 return 0; /* bullet-proofing */
1566 if (STACK_GROWS_DOWN) {
1567 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1568 for (i = argc - 1; i >= 0; --i) {
1569 tmp = argv[i];
1570 if (!tmp) {
1571 fprintf(stderr, "VFS: argc is wrong");
1572 exit(-1);
1574 len = strlen(tmp) + 1;
1575 tmp += len;
1577 if (len > (p - stack_limit)) {
1578 return 0;
1580 while (len) {
1581 int bytes_to_copy = (len > offset) ? offset : len;
1582 tmp -= bytes_to_copy;
1583 p -= bytes_to_copy;
1584 offset -= bytes_to_copy;
1585 len -= bytes_to_copy;
1587 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1589 if (offset == 0) {
1590 memcpy_to_target(p, scratch, top - p);
1591 top = p;
1592 offset = TARGET_PAGE_SIZE;
1596 if (p != top) {
1597 memcpy_to_target(p, scratch + offset, top - p);
1599 } else {
1600 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1601 for (i = 0; i < argc; ++i) {
1602 tmp = argv[i];
1603 if (!tmp) {
1604 fprintf(stderr, "VFS: argc is wrong");
1605 exit(-1);
1607 len = strlen(tmp) + 1;
1608 if (len > (stack_limit - p)) {
1609 return 0;
1611 while (len) {
1612 int bytes_to_copy = (len > remaining) ? remaining : len;
1614 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1616 tmp += bytes_to_copy;
1617 remaining -= bytes_to_copy;
1618 p += bytes_to_copy;
1619 len -= bytes_to_copy;
1621 if (remaining == 0) {
1622 memcpy_to_target(top, scratch, p - top);
1623 top = p;
1624 remaining = TARGET_PAGE_SIZE;
1628 if (p != top) {
1629 memcpy_to_target(top, scratch, p - top);
1633 return p;
1636 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1637 * argument/environment space. Newer kernels (>2.6.33) allow more,
1638 * dependent on stack size, but guarantee at least 32 pages for
1639 * backwards compatibility.
1641 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1643 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1644 struct image_info *info)
1646 abi_ulong size, error, guard;
1648 size = guest_stack_size;
1649 if (size < STACK_LOWER_LIMIT) {
1650 size = STACK_LOWER_LIMIT;
1652 guard = TARGET_PAGE_SIZE;
1653 if (guard < qemu_real_host_page_size) {
1654 guard = qemu_real_host_page_size;
1657 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1658 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1659 if (error == -1) {
1660 perror("mmap stack");
1661 exit(-1);
1664 /* We reserve one extra page at the top of the stack as guard. */
1665 if (STACK_GROWS_DOWN) {
1666 target_mprotect(error, guard, PROT_NONE);
1667 info->stack_limit = error + guard;
1668 return info->stack_limit + size - sizeof(void *);
1669 } else {
1670 target_mprotect(error + size, guard, PROT_NONE);
1671 info->stack_limit = error + size;
1672 return error;
1676 /* Map and zero the bss. We need to explicitly zero any fractional pages
1677 after the data section (i.e. bss). */
1678 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1680 uintptr_t host_start, host_map_start, host_end;
1682 last_bss = TARGET_PAGE_ALIGN(last_bss);
1684 /* ??? There is confusion between qemu_real_host_page_size and
1685 qemu_host_page_size here and elsewhere in target_mmap, which
1686 may lead to the end of the data section mapping from the file
1687 not being mapped. At least there was an explicit test and
1688 comment for that here, suggesting that "the file size must
1689 be known". The comment probably pre-dates the introduction
1690 of the fstat system call in target_mmap which does in fact
1691 find out the size. What isn't clear is if the workaround
1692 here is still actually needed. For now, continue with it,
1693 but merge it with the "normal" mmap that would allocate the bss. */
1695 host_start = (uintptr_t) g2h(elf_bss);
1696 host_end = (uintptr_t) g2h(last_bss);
1697 host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1699 if (host_map_start < host_end) {
1700 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1701 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1702 if (p == MAP_FAILED) {
1703 perror("cannot mmap brk");
1704 exit(-1);
1708 /* Ensure that the bss page(s) are valid */
1709 if ((page_get_flags(last_bss-1) & prot) != prot) {
1710 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1713 if (host_start < host_map_start) {
1714 memset((void *)host_start, 0, host_map_start - host_start);
1718 #ifdef TARGET_ARM
1719 static int elf_is_fdpic(struct elfhdr *exec)
1721 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1723 #else
1724 /* Default implementation, always false. */
1725 static int elf_is_fdpic(struct elfhdr *exec)
1727 return 0;
1729 #endif
1731 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1733 uint16_t n;
1734 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1736 /* elf32_fdpic_loadseg */
1737 n = info->nsegs;
1738 while (n--) {
1739 sp -= 12;
1740 put_user_u32(loadsegs[n].addr, sp+0);
1741 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1742 put_user_u32(loadsegs[n].p_memsz, sp+8);
1745 /* elf32_fdpic_loadmap */
1746 sp -= 4;
1747 put_user_u16(0, sp+0); /* version */
1748 put_user_u16(info->nsegs, sp+2); /* nsegs */
1750 info->personality = PER_LINUX_FDPIC;
1751 info->loadmap_addr = sp;
1753 return sp;
1756 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1757 struct elfhdr *exec,
1758 struct image_info *info,
1759 struct image_info *interp_info)
1761 abi_ulong sp;
1762 abi_ulong u_argc, u_argv, u_envp, u_auxv;
1763 int size;
1764 int i;
1765 abi_ulong u_rand_bytes;
1766 uint8_t k_rand_bytes[16];
1767 abi_ulong u_platform;
1768 const char *k_platform;
1769 const int n = sizeof(elf_addr_t);
1771 sp = p;
1773 /* Needs to be before we load the env/argc/... */
1774 if (elf_is_fdpic(exec)) {
1775 /* Need 4 byte alignment for these structs */
1776 sp &= ~3;
1777 sp = loader_build_fdpic_loadmap(info, sp);
1778 info->other_info = interp_info;
1779 if (interp_info) {
1780 interp_info->other_info = info;
1781 sp = loader_build_fdpic_loadmap(interp_info, sp);
1782 info->interpreter_loadmap_addr = interp_info->loadmap_addr;
1783 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
1784 } else {
1785 info->interpreter_loadmap_addr = 0;
1786 info->interpreter_pt_dynamic_addr = 0;
1790 u_platform = 0;
1791 k_platform = ELF_PLATFORM;
1792 if (k_platform) {
1793 size_t len = strlen(k_platform) + 1;
1794 if (STACK_GROWS_DOWN) {
1795 sp -= (len + n - 1) & ~(n - 1);
1796 u_platform = sp;
1797 /* FIXME - check return value of memcpy_to_target() for failure */
1798 memcpy_to_target(sp, k_platform, len);
1799 } else {
1800 memcpy_to_target(sp, k_platform, len);
1801 u_platform = sp;
1802 sp += len + 1;
1806 /* Provide 16 byte alignment for the PRNG, and basic alignment for
1807 * the argv and envp pointers.
1809 if (STACK_GROWS_DOWN) {
1810 sp = QEMU_ALIGN_DOWN(sp, 16);
1811 } else {
1812 sp = QEMU_ALIGN_UP(sp, 16);
1816 * Generate 16 random bytes for userspace PRNG seeding (not
1817 * cryptically secure but it's not the aim of QEMU).
1819 for (i = 0; i < 16; i++) {
1820 k_rand_bytes[i] = rand();
1822 if (STACK_GROWS_DOWN) {
1823 sp -= 16;
1824 u_rand_bytes = sp;
1825 /* FIXME - check return value of memcpy_to_target() for failure */
1826 memcpy_to_target(sp, k_rand_bytes, 16);
1827 } else {
1828 memcpy_to_target(sp, k_rand_bytes, 16);
1829 u_rand_bytes = sp;
1830 sp += 16;
1833 size = (DLINFO_ITEMS + 1) * 2;
1834 if (k_platform)
1835 size += 2;
1836 #ifdef DLINFO_ARCH_ITEMS
1837 size += DLINFO_ARCH_ITEMS * 2;
1838 #endif
1839 #ifdef ELF_HWCAP2
1840 size += 2;
1841 #endif
1842 info->auxv_len = size * n;
1844 size += envc + argc + 2;
1845 size += 1; /* argc itself */
1846 size *= n;
1848 /* Allocate space and finalize stack alignment for entry now. */
1849 if (STACK_GROWS_DOWN) {
1850 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1851 sp = u_argc;
1852 } else {
1853 u_argc = sp;
1854 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1857 u_argv = u_argc + n;
1858 u_envp = u_argv + (argc + 1) * n;
1859 u_auxv = u_envp + (envc + 1) * n;
1860 info->saved_auxv = u_auxv;
1861 info->arg_start = u_argv;
1862 info->arg_end = u_argv + argc * n;
1864 /* This is correct because Linux defines
1865 * elf_addr_t as Elf32_Off / Elf64_Off
1867 #define NEW_AUX_ENT(id, val) do { \
1868 put_user_ual(id, u_auxv); u_auxv += n; \
1869 put_user_ual(val, u_auxv); u_auxv += n; \
1870 } while(0)
1872 #ifdef ARCH_DLINFO
1874 * ARCH_DLINFO must come first so platform specific code can enforce
1875 * special alignment requirements on the AUXV if necessary (eg. PPC).
1877 ARCH_DLINFO;
1878 #endif
1879 /* There must be exactly DLINFO_ITEMS entries here, or the assert
1880 * on info->auxv_len will trigger.
1882 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
1883 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1884 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1885 if ((info->alignment & ~qemu_host_page_mask) != 0) {
1886 /* Target doesn't support host page size alignment */
1887 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
1888 } else {
1889 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
1890 qemu_host_page_size)));
1892 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
1893 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
1894 NEW_AUX_ENT(AT_ENTRY, info->entry);
1895 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1896 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1897 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1898 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1899 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1900 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
1901 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
1902 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
1904 #ifdef ELF_HWCAP2
1905 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1906 #endif
1908 if (u_platform) {
1909 NEW_AUX_ENT(AT_PLATFORM, u_platform);
1911 NEW_AUX_ENT (AT_NULL, 0);
1912 #undef NEW_AUX_ENT
1914 /* Check that our initial calculation of the auxv length matches how much
1915 * we actually put into it.
1917 assert(info->auxv_len == u_auxv - info->saved_auxv);
1919 put_user_ual(argc, u_argc);
1921 p = info->arg_strings;
1922 for (i = 0; i < argc; ++i) {
1923 put_user_ual(p, u_argv);
1924 u_argv += n;
1925 p += target_strlen(p) + 1;
1927 put_user_ual(0, u_argv);
1929 p = info->env_strings;
1930 for (i = 0; i < envc; ++i) {
1931 put_user_ual(p, u_envp);
1932 u_envp += n;
1933 p += target_strlen(p) + 1;
1935 put_user_ual(0, u_envp);
1937 return sp;
1940 unsigned long init_guest_space(unsigned long host_start,
1941 unsigned long host_size,
1942 unsigned long guest_start,
1943 bool fixed)
1945 unsigned long current_start, aligned_start;
1946 int flags;
1948 assert(host_start || host_size);
1950 /* If just a starting address is given, then just verify that
1951 * address. */
1952 if (host_start && !host_size) {
1953 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
1954 if (init_guest_commpage(host_start, host_size) != 1) {
1955 return (unsigned long)-1;
1957 #endif
1958 return host_start;
1961 /* Setup the initial flags and start address. */
1962 current_start = host_start & qemu_host_page_mask;
1963 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1964 if (fixed) {
1965 flags |= MAP_FIXED;
1968 /* Otherwise, a non-zero size region of memory needs to be mapped
1969 * and validated. */
1971 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
1972 /* On 32-bit ARM, we need to map not just the usable memory, but
1973 * also the commpage. Try to find a suitable place by allocating
1974 * a big chunk for all of it. If host_start, then the naive
1975 * strategy probably does good enough.
1977 if (!host_start) {
1978 unsigned long guest_full_size, host_full_size, real_start;
1980 guest_full_size =
1981 (0xffff0f00 & qemu_host_page_mask) + qemu_host_page_size;
1982 host_full_size = guest_full_size - guest_start;
1983 real_start = (unsigned long)
1984 mmap(NULL, host_full_size, PROT_NONE, flags, -1, 0);
1985 if (real_start == (unsigned long)-1) {
1986 if (host_size < host_full_size - qemu_host_page_size) {
1987 /* We failed to map a continous segment, but we're
1988 * allowed to have a gap between the usable memory and
1989 * the commpage where other things can be mapped.
1990 * This sparseness gives us more flexibility to find
1991 * an address range.
1993 goto naive;
1995 return (unsigned long)-1;
1997 munmap((void *)real_start, host_full_size);
1998 if (real_start & ~qemu_host_page_mask) {
1999 /* The same thing again, but with an extra qemu_host_page_size
2000 * so that we can shift around alignment.
2002 unsigned long real_size = host_full_size + qemu_host_page_size;
2003 real_start = (unsigned long)
2004 mmap(NULL, real_size, PROT_NONE, flags, -1, 0);
2005 if (real_start == (unsigned long)-1) {
2006 if (host_size < host_full_size - qemu_host_page_size) {
2007 goto naive;
2009 return (unsigned long)-1;
2011 munmap((void *)real_start, real_size);
2012 real_start = HOST_PAGE_ALIGN(real_start);
2014 current_start = real_start;
2016 naive:
2017 #endif
2019 while (1) {
2020 unsigned long real_start, real_size, aligned_size;
2021 aligned_size = real_size = host_size;
2023 /* Do not use mmap_find_vma here because that is limited to the
2024 * guest address space. We are going to make the
2025 * guest address space fit whatever we're given.
2027 real_start = (unsigned long)
2028 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
2029 if (real_start == (unsigned long)-1) {
2030 return (unsigned long)-1;
2033 /* Check to see if the address is valid. */
2034 if (host_start && real_start != current_start) {
2035 goto try_again;
2038 /* Ensure the address is properly aligned. */
2039 if (real_start & ~qemu_host_page_mask) {
2040 /* Ideally, we adjust like
2042 * pages: [ ][ ][ ][ ][ ]
2043 * old: [ real ]
2044 * [ aligned ]
2045 * new: [ real ]
2046 * [ aligned ]
2048 * But if there is something else mapped right after it,
2049 * then obviously it won't have room to grow, and the
2050 * kernel will put the new larger real someplace else with
2051 * unknown alignment (if we made it to here, then
2052 * fixed=false). Which is why we grow real by a full page
2053 * size, instead of by part of one; so that even if we get
2054 * moved, we can still guarantee alignment. But this does
2055 * mean that there is a padding of < 1 page both before
2056 * and after the aligned range; the "after" could could
2057 * cause problems for ARM emulation where it could butt in
2058 * to where we need to put the commpage.
2060 munmap((void *)real_start, host_size);
2061 real_size = aligned_size + qemu_host_page_size;
2062 real_start = (unsigned long)
2063 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
2064 if (real_start == (unsigned long)-1) {
2065 return (unsigned long)-1;
2067 aligned_start = HOST_PAGE_ALIGN(real_start);
2068 } else {
2069 aligned_start = real_start;
2072 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2073 /* On 32-bit ARM, we need to also be able to map the commpage. */
2074 int valid = init_guest_commpage(aligned_start - guest_start,
2075 aligned_size + guest_start);
2076 if (valid == -1) {
2077 munmap((void *)real_start, real_size);
2078 return (unsigned long)-1;
2079 } else if (valid == 0) {
2080 goto try_again;
2082 #endif
2084 /* If nothing has said `return -1` or `goto try_again` yet,
2085 * then the address we have is good.
2087 break;
2089 try_again:
2090 /* That address didn't work. Unmap and try a different one.
2091 * The address the host picked because is typically right at
2092 * the top of the host address space and leaves the guest with
2093 * no usable address space. Resort to a linear search. We
2094 * already compensated for mmap_min_addr, so this should not
2095 * happen often. Probably means we got unlucky and host
2096 * address space randomization put a shared library somewhere
2097 * inconvenient.
2099 * This is probably a good strategy if host_start, but is
2100 * probably a bad strategy if not, which means we got here
2101 * because of trouble with ARM commpage setup.
2103 munmap((void *)real_start, real_size);
2104 current_start += qemu_host_page_size;
2105 if (host_start == current_start) {
2106 /* Theoretically possible if host doesn't have any suitably
2107 * aligned areas. Normally the first mmap will fail.
2109 return (unsigned long)-1;
2113 qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size);
2115 return aligned_start;
2118 static void probe_guest_base(const char *image_name,
2119 abi_ulong loaddr, abi_ulong hiaddr)
2121 /* Probe for a suitable guest base address, if the user has not set
2122 * it explicitly, and set guest_base appropriately.
2123 * In case of error we will print a suitable message and exit.
2125 const char *errmsg;
2126 if (!have_guest_base && !reserved_va) {
2127 unsigned long host_start, real_start, host_size;
2129 /* Round addresses to page boundaries. */
2130 loaddr &= qemu_host_page_mask;
2131 hiaddr = HOST_PAGE_ALIGN(hiaddr);
2133 if (loaddr < mmap_min_addr) {
2134 host_start = HOST_PAGE_ALIGN(mmap_min_addr);
2135 } else {
2136 host_start = loaddr;
2137 if (host_start != loaddr) {
2138 errmsg = "Address overflow loading ELF binary";
2139 goto exit_errmsg;
2142 host_size = hiaddr - loaddr;
2144 /* Setup the initial guest memory space with ranges gleaned from
2145 * the ELF image that is being loaded.
2147 real_start = init_guest_space(host_start, host_size, loaddr, false);
2148 if (real_start == (unsigned long)-1) {
2149 errmsg = "Unable to find space for application";
2150 goto exit_errmsg;
2152 guest_base = real_start - loaddr;
2154 qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x"
2155 TARGET_ABI_FMT_lx " to 0x%lx\n",
2156 loaddr, real_start);
2158 return;
2160 exit_errmsg:
2161 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2162 exit(-1);
2166 /* Load an ELF image into the address space.
2168 IMAGE_NAME is the filename of the image, to use in error messages.
2169 IMAGE_FD is the open file descriptor for the image.
2171 BPRM_BUF is a copy of the beginning of the file; this of course
2172 contains the elf file header at offset 0. It is assumed that this
2173 buffer is sufficiently aligned to present no problems to the host
2174 in accessing data at aligned offsets within the buffer.
2176 On return: INFO values will be filled in, as necessary or available. */
2178 static void load_elf_image(const char *image_name, int image_fd,
2179 struct image_info *info, char **pinterp_name,
2180 char bprm_buf[BPRM_BUF_SIZE])
2182 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2183 struct elf_phdr *phdr;
2184 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2185 int i, retval;
2186 const char *errmsg;
2188 /* First of all, some simple consistency checks */
2189 errmsg = "Invalid ELF image for this architecture";
2190 if (!elf_check_ident(ehdr)) {
2191 goto exit_errmsg;
2193 bswap_ehdr(ehdr);
2194 if (!elf_check_ehdr(ehdr)) {
2195 goto exit_errmsg;
2198 i = ehdr->e_phnum * sizeof(struct elf_phdr);
2199 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2200 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2201 } else {
2202 phdr = (struct elf_phdr *) alloca(i);
2203 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2204 if (retval != i) {
2205 goto exit_read;
2208 bswap_phdr(phdr, ehdr->e_phnum);
2210 info->nsegs = 0;
2211 info->pt_dynamic_addr = 0;
2213 mmap_lock();
2215 /* Find the maximum size of the image and allocate an appropriate
2216 amount of memory to handle that. */
2217 loaddr = -1, hiaddr = 0;
2218 info->alignment = 0;
2219 for (i = 0; i < ehdr->e_phnum; ++i) {
2220 if (phdr[i].p_type == PT_LOAD) {
2221 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
2222 if (a < loaddr) {
2223 loaddr = a;
2225 a = phdr[i].p_vaddr + phdr[i].p_memsz;
2226 if (a > hiaddr) {
2227 hiaddr = a;
2229 ++info->nsegs;
2230 info->alignment |= phdr[i].p_align;
2234 load_addr = loaddr;
2235 if (ehdr->e_type == ET_DYN) {
2236 /* The image indicates that it can be loaded anywhere. Find a
2237 location that can hold the memory space required. If the
2238 image is pre-linked, LOADDR will be non-zero. Since we do
2239 not supply MAP_FIXED here we'll use that address if and
2240 only if it remains available. */
2241 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2242 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
2243 -1, 0);
2244 if (load_addr == -1) {
2245 goto exit_perror;
2247 } else if (pinterp_name != NULL) {
2248 /* This is the main executable. Make sure that the low
2249 address does not conflict with MMAP_MIN_ADDR or the
2250 QEMU application itself. */
2251 probe_guest_base(image_name, loaddr, hiaddr);
2253 load_bias = load_addr - loaddr;
2255 if (elf_is_fdpic(ehdr)) {
2256 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2257 g_malloc(sizeof(*loadsegs) * info->nsegs);
2259 for (i = 0; i < ehdr->e_phnum; ++i) {
2260 switch (phdr[i].p_type) {
2261 case PT_DYNAMIC:
2262 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2263 break;
2264 case PT_LOAD:
2265 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2266 loadsegs->p_vaddr = phdr[i].p_vaddr;
2267 loadsegs->p_memsz = phdr[i].p_memsz;
2268 ++loadsegs;
2269 break;
2274 info->load_bias = load_bias;
2275 info->load_addr = load_addr;
2276 info->entry = ehdr->e_entry + load_bias;
2277 info->start_code = -1;
2278 info->end_code = 0;
2279 info->start_data = -1;
2280 info->end_data = 0;
2281 info->brk = 0;
2282 info->elf_flags = ehdr->e_flags;
2284 for (i = 0; i < ehdr->e_phnum; i++) {
2285 struct elf_phdr *eppnt = phdr + i;
2286 if (eppnt->p_type == PT_LOAD) {
2287 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
2288 int elf_prot = 0;
2290 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
2291 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2292 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
2294 vaddr = load_bias + eppnt->p_vaddr;
2295 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2296 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2297 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
2299 error = target_mmap(vaddr_ps, vaddr_len,
2300 elf_prot, MAP_PRIVATE | MAP_FIXED,
2301 image_fd, eppnt->p_offset - vaddr_po);
2302 if (error == -1) {
2303 goto exit_perror;
2306 vaddr_ef = vaddr + eppnt->p_filesz;
2307 vaddr_em = vaddr + eppnt->p_memsz;
2309 /* If the load segment requests extra zeros (e.g. bss), map it. */
2310 if (vaddr_ef < vaddr_em) {
2311 zero_bss(vaddr_ef, vaddr_em, elf_prot);
2314 /* Find the full program boundaries. */
2315 if (elf_prot & PROT_EXEC) {
2316 if (vaddr < info->start_code) {
2317 info->start_code = vaddr;
2319 if (vaddr_ef > info->end_code) {
2320 info->end_code = vaddr_ef;
2323 if (elf_prot & PROT_WRITE) {
2324 if (vaddr < info->start_data) {
2325 info->start_data = vaddr;
2327 if (vaddr_ef > info->end_data) {
2328 info->end_data = vaddr_ef;
2330 if (vaddr_em > info->brk) {
2331 info->brk = vaddr_em;
2334 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2335 char *interp_name;
2337 if (*pinterp_name) {
2338 errmsg = "Multiple PT_INTERP entries";
2339 goto exit_errmsg;
2341 interp_name = malloc(eppnt->p_filesz);
2342 if (!interp_name) {
2343 goto exit_perror;
2346 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2347 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2348 eppnt->p_filesz);
2349 } else {
2350 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2351 eppnt->p_offset);
2352 if (retval != eppnt->p_filesz) {
2353 goto exit_perror;
2356 if (interp_name[eppnt->p_filesz - 1] != 0) {
2357 errmsg = "Invalid PT_INTERP entry";
2358 goto exit_errmsg;
2360 *pinterp_name = interp_name;
2364 if (info->end_data == 0) {
2365 info->start_data = info->end_code;
2366 info->end_data = info->end_code;
2367 info->brk = info->end_code;
2370 if (qemu_log_enabled()) {
2371 load_symbols(ehdr, image_fd, load_bias);
2374 mmap_unlock();
2376 close(image_fd);
2377 return;
2379 exit_read:
2380 if (retval >= 0) {
2381 errmsg = "Incomplete read of file header";
2382 goto exit_errmsg;
2384 exit_perror:
2385 errmsg = strerror(errno);
2386 exit_errmsg:
2387 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2388 exit(-1);
2391 static void load_elf_interp(const char *filename, struct image_info *info,
2392 char bprm_buf[BPRM_BUF_SIZE])
2394 int fd, retval;
2396 fd = open(path(filename), O_RDONLY);
2397 if (fd < 0) {
2398 goto exit_perror;
2401 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2402 if (retval < 0) {
2403 goto exit_perror;
2405 if (retval < BPRM_BUF_SIZE) {
2406 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2409 load_elf_image(filename, fd, info, NULL, bprm_buf);
2410 return;
2412 exit_perror:
2413 fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2414 exit(-1);
2417 static int symfind(const void *s0, const void *s1)
2419 target_ulong addr = *(target_ulong *)s0;
2420 struct elf_sym *sym = (struct elf_sym *)s1;
2421 int result = 0;
2422 if (addr < sym->st_value) {
2423 result = -1;
2424 } else if (addr >= sym->st_value + sym->st_size) {
2425 result = 1;
2427 return result;
2430 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2432 #if ELF_CLASS == ELFCLASS32
2433 struct elf_sym *syms = s->disas_symtab.elf32;
2434 #else
2435 struct elf_sym *syms = s->disas_symtab.elf64;
2436 #endif
2438 // binary search
2439 struct elf_sym *sym;
2441 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2442 if (sym != NULL) {
2443 return s->disas_strtab + sym->st_name;
2446 return "";
2449 /* FIXME: This should use elf_ops.h */
2450 static int symcmp(const void *s0, const void *s1)
2452 struct elf_sym *sym0 = (struct elf_sym *)s0;
2453 struct elf_sym *sym1 = (struct elf_sym *)s1;
2454 return (sym0->st_value < sym1->st_value)
2455 ? -1
2456 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2459 /* Best attempt to load symbols from this ELF object. */
2460 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2462 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2463 uint64_t segsz;
2464 struct elf_shdr *shdr;
2465 char *strings = NULL;
2466 struct syminfo *s = NULL;
2467 struct elf_sym *new_syms, *syms = NULL;
2469 shnum = hdr->e_shnum;
2470 i = shnum * sizeof(struct elf_shdr);
2471 shdr = (struct elf_shdr *)alloca(i);
2472 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2473 return;
2476 bswap_shdr(shdr, shnum);
2477 for (i = 0; i < shnum; ++i) {
2478 if (shdr[i].sh_type == SHT_SYMTAB) {
2479 sym_idx = i;
2480 str_idx = shdr[i].sh_link;
2481 goto found;
2485 /* There will be no symbol table if the file was stripped. */
2486 return;
2488 found:
2489 /* Now know where the strtab and symtab are. Snarf them. */
2490 s = g_try_new(struct syminfo, 1);
2491 if (!s) {
2492 goto give_up;
2495 segsz = shdr[str_idx].sh_size;
2496 s->disas_strtab = strings = g_try_malloc(segsz);
2497 if (!strings ||
2498 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
2499 goto give_up;
2502 segsz = shdr[sym_idx].sh_size;
2503 syms = g_try_malloc(segsz);
2504 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
2505 goto give_up;
2508 if (segsz / sizeof(struct elf_sym) > INT_MAX) {
2509 /* Implausibly large symbol table: give up rather than ploughing
2510 * on with the number of symbols calculation overflowing
2512 goto give_up;
2514 nsyms = segsz / sizeof(struct elf_sym);
2515 for (i = 0; i < nsyms; ) {
2516 bswap_sym(syms + i);
2517 /* Throw away entries which we do not need. */
2518 if (syms[i].st_shndx == SHN_UNDEF
2519 || syms[i].st_shndx >= SHN_LORESERVE
2520 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2521 if (i < --nsyms) {
2522 syms[i] = syms[nsyms];
2524 } else {
2525 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2526 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
2527 syms[i].st_value &= ~(target_ulong)1;
2528 #endif
2529 syms[i].st_value += load_bias;
2530 i++;
2534 /* No "useful" symbol. */
2535 if (nsyms == 0) {
2536 goto give_up;
2539 /* Attempt to free the storage associated with the local symbols
2540 that we threw away. Whether or not this has any effect on the
2541 memory allocation depends on the malloc implementation and how
2542 many symbols we managed to discard. */
2543 new_syms = g_try_renew(struct elf_sym, syms, nsyms);
2544 if (new_syms == NULL) {
2545 goto give_up;
2547 syms = new_syms;
2549 qsort(syms, nsyms, sizeof(*syms), symcmp);
2551 s->disas_num_syms = nsyms;
2552 #if ELF_CLASS == ELFCLASS32
2553 s->disas_symtab.elf32 = syms;
2554 #else
2555 s->disas_symtab.elf64 = syms;
2556 #endif
2557 s->lookup_symbol = lookup_symbolxx;
2558 s->next = syminfos;
2559 syminfos = s;
2561 return;
2563 give_up:
2564 g_free(s);
2565 g_free(strings);
2566 g_free(syms);
2569 uint32_t get_elf_eflags(int fd)
2571 struct elfhdr ehdr;
2572 off_t offset;
2573 int ret;
2575 /* Read ELF header */
2576 offset = lseek(fd, 0, SEEK_SET);
2577 if (offset == (off_t) -1) {
2578 return 0;
2580 ret = read(fd, &ehdr, sizeof(ehdr));
2581 if (ret < sizeof(ehdr)) {
2582 return 0;
2584 offset = lseek(fd, offset, SEEK_SET);
2585 if (offset == (off_t) -1) {
2586 return 0;
2589 /* Check ELF signature */
2590 if (!elf_check_ident(&ehdr)) {
2591 return 0;
2594 /* check header */
2595 bswap_ehdr(&ehdr);
2596 if (!elf_check_ehdr(&ehdr)) {
2597 return 0;
2600 /* return architecture id */
2601 return ehdr.e_flags;
2604 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
2606 struct image_info interp_info;
2607 struct elfhdr elf_ex;
2608 char *elf_interpreter = NULL;
2609 char *scratch;
2611 info->start_mmap = (abi_ulong)ELF_START_MMAP;
2613 load_elf_image(bprm->filename, bprm->fd, info,
2614 &elf_interpreter, bprm->buf);
2616 /* ??? We need a copy of the elf header for passing to create_elf_tables.
2617 If we do nothing, we'll have overwritten this when we re-use bprm->buf
2618 when we load the interpreter. */
2619 elf_ex = *(struct elfhdr *)bprm->buf;
2621 /* Do this so that we can load the interpreter, if need be. We will
2622 change some of these later */
2623 bprm->p = setup_arg_pages(bprm, info);
2625 scratch = g_new0(char, TARGET_PAGE_SIZE);
2626 if (STACK_GROWS_DOWN) {
2627 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2628 bprm->p, info->stack_limit);
2629 info->file_string = bprm->p;
2630 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2631 bprm->p, info->stack_limit);
2632 info->env_strings = bprm->p;
2633 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2634 bprm->p, info->stack_limit);
2635 info->arg_strings = bprm->p;
2636 } else {
2637 info->arg_strings = bprm->p;
2638 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2639 bprm->p, info->stack_limit);
2640 info->env_strings = bprm->p;
2641 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2642 bprm->p, info->stack_limit);
2643 info->file_string = bprm->p;
2644 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2645 bprm->p, info->stack_limit);
2648 g_free(scratch);
2650 if (!bprm->p) {
2651 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2652 exit(-1);
2655 if (elf_interpreter) {
2656 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
2658 /* If the program interpreter is one of these two, then assume
2659 an iBCS2 image. Otherwise assume a native linux image. */
2661 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2662 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2663 info->personality = PER_SVR4;
2665 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
2666 and some applications "depend" upon this behavior. Since
2667 we do not have the power to recompile these, we emulate
2668 the SVr4 behavior. Sigh. */
2669 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2670 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2674 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2675 info, (elf_interpreter ? &interp_info : NULL));
2676 info->start_stack = bprm->p;
2678 /* If we have an interpreter, set that as the program's entry point.
2679 Copy the load_bias as well, to help PPC64 interpret the entry
2680 point as a function descriptor. Do this after creating elf tables
2681 so that we copy the original program entry point into the AUXV. */
2682 if (elf_interpreter) {
2683 info->load_bias = interp_info.load_bias;
2684 info->entry = interp_info.entry;
2685 free(elf_interpreter);
2688 #ifdef USE_ELF_CORE_DUMP
2689 bprm->core_dump = &elf_core_dump;
2690 #endif
2692 return 0;
2695 #ifdef USE_ELF_CORE_DUMP
2697 * Definitions to generate Intel SVR4-like core files.
2698 * These mostly have the same names as the SVR4 types with "target_elf_"
2699 * tacked on the front to prevent clashes with linux definitions,
2700 * and the typedef forms have been avoided. This is mostly like
2701 * the SVR4 structure, but more Linuxy, with things that Linux does
2702 * not support and which gdb doesn't really use excluded.
2704 * Fields we don't dump (their contents is zero) in linux-user qemu
2705 * are marked with XXX.
2707 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2709 * Porting ELF coredump for target is (quite) simple process. First you
2710 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2711 * the target resides):
2713 * #define USE_ELF_CORE_DUMP
2715 * Next you define type of register set used for dumping. ELF specification
2716 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2718 * typedef <target_regtype> target_elf_greg_t;
2719 * #define ELF_NREG <number of registers>
2720 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2722 * Last step is to implement target specific function that copies registers
2723 * from given cpu into just specified register set. Prototype is:
2725 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2726 * const CPUArchState *env);
2728 * Parameters:
2729 * regs - copy register values into here (allocated and zeroed by caller)
2730 * env - copy registers from here
2732 * Example for ARM target is provided in this file.
2735 /* An ELF note in memory */
2736 struct memelfnote {
2737 const char *name;
2738 size_t namesz;
2739 size_t namesz_rounded;
2740 int type;
2741 size_t datasz;
2742 size_t datasz_rounded;
2743 void *data;
2744 size_t notesz;
2747 struct target_elf_siginfo {
2748 abi_int si_signo; /* signal number */
2749 abi_int si_code; /* extra code */
2750 abi_int si_errno; /* errno */
2753 struct target_elf_prstatus {
2754 struct target_elf_siginfo pr_info; /* Info associated with signal */
2755 abi_short pr_cursig; /* Current signal */
2756 abi_ulong pr_sigpend; /* XXX */
2757 abi_ulong pr_sighold; /* XXX */
2758 target_pid_t pr_pid;
2759 target_pid_t pr_ppid;
2760 target_pid_t pr_pgrp;
2761 target_pid_t pr_sid;
2762 struct target_timeval pr_utime; /* XXX User time */
2763 struct target_timeval pr_stime; /* XXX System time */
2764 struct target_timeval pr_cutime; /* XXX Cumulative user time */
2765 struct target_timeval pr_cstime; /* XXX Cumulative system time */
2766 target_elf_gregset_t pr_reg; /* GP registers */
2767 abi_int pr_fpvalid; /* XXX */
2770 #define ELF_PRARGSZ (80) /* Number of chars for args */
2772 struct target_elf_prpsinfo {
2773 char pr_state; /* numeric process state */
2774 char pr_sname; /* char for pr_state */
2775 char pr_zomb; /* zombie */
2776 char pr_nice; /* nice val */
2777 abi_ulong pr_flag; /* flags */
2778 target_uid_t pr_uid;
2779 target_gid_t pr_gid;
2780 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
2781 /* Lots missing */
2782 char pr_fname[16]; /* filename of executable */
2783 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2786 /* Here is the structure in which status of each thread is captured. */
2787 struct elf_thread_status {
2788 QTAILQ_ENTRY(elf_thread_status) ets_link;
2789 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
2790 #if 0
2791 elf_fpregset_t fpu; /* NT_PRFPREG */
2792 struct task_struct *thread;
2793 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
2794 #endif
2795 struct memelfnote notes[1];
2796 int num_notes;
2799 struct elf_note_info {
2800 struct memelfnote *notes;
2801 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
2802 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
2804 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
2805 #if 0
2807 * Current version of ELF coredump doesn't support
2808 * dumping fp regs etc.
2810 elf_fpregset_t *fpu;
2811 elf_fpxregset_t *xfpu;
2812 int thread_status_size;
2813 #endif
2814 int notes_size;
2815 int numnote;
2818 struct vm_area_struct {
2819 target_ulong vma_start; /* start vaddr of memory region */
2820 target_ulong vma_end; /* end vaddr of memory region */
2821 abi_ulong vma_flags; /* protection etc. flags for the region */
2822 QTAILQ_ENTRY(vm_area_struct) vma_link;
2825 struct mm_struct {
2826 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
2827 int mm_count; /* number of mappings */
2830 static struct mm_struct *vma_init(void);
2831 static void vma_delete(struct mm_struct *);
2832 static int vma_add_mapping(struct mm_struct *, target_ulong,
2833 target_ulong, abi_ulong);
2834 static int vma_get_mapping_count(const struct mm_struct *);
2835 static struct vm_area_struct *vma_first(const struct mm_struct *);
2836 static struct vm_area_struct *vma_next(struct vm_area_struct *);
2837 static abi_ulong vma_dump_size(const struct vm_area_struct *);
2838 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2839 unsigned long flags);
2841 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2842 static void fill_note(struct memelfnote *, const char *, int,
2843 unsigned int, void *);
2844 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2845 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
2846 static void fill_auxv_note(struct memelfnote *, const TaskState *);
2847 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2848 static size_t note_size(const struct memelfnote *);
2849 static void free_note_info(struct elf_note_info *);
2850 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2851 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
2852 static int core_dump_filename(const TaskState *, char *, size_t);
2854 static int dump_write(int, const void *, size_t);
2855 static int write_note(struct memelfnote *, int);
2856 static int write_note_info(struct elf_note_info *, int);
2858 #ifdef BSWAP_NEEDED
2859 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
2861 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2862 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2863 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
2864 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
2865 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2866 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
2867 prstatus->pr_pid = tswap32(prstatus->pr_pid);
2868 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2869 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2870 prstatus->pr_sid = tswap32(prstatus->pr_sid);
2871 /* cpu times are not filled, so we skip them */
2872 /* regs should be in correct format already */
2873 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2876 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
2878 psinfo->pr_flag = tswapal(psinfo->pr_flag);
2879 psinfo->pr_uid = tswap16(psinfo->pr_uid);
2880 psinfo->pr_gid = tswap16(psinfo->pr_gid);
2881 psinfo->pr_pid = tswap32(psinfo->pr_pid);
2882 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2883 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2884 psinfo->pr_sid = tswap32(psinfo->pr_sid);
2887 static void bswap_note(struct elf_note *en)
2889 bswap32s(&en->n_namesz);
2890 bswap32s(&en->n_descsz);
2891 bswap32s(&en->n_type);
2893 #else
2894 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2895 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2896 static inline void bswap_note(struct elf_note *en) { }
2897 #endif /* BSWAP_NEEDED */
2900 * Minimal support for linux memory regions. These are needed
2901 * when we are finding out what memory exactly belongs to
2902 * emulated process. No locks needed here, as long as
2903 * thread that received the signal is stopped.
2906 static struct mm_struct *vma_init(void)
2908 struct mm_struct *mm;
2910 if ((mm = g_malloc(sizeof (*mm))) == NULL)
2911 return (NULL);
2913 mm->mm_count = 0;
2914 QTAILQ_INIT(&mm->mm_mmap);
2916 return (mm);
2919 static void vma_delete(struct mm_struct *mm)
2921 struct vm_area_struct *vma;
2923 while ((vma = vma_first(mm)) != NULL) {
2924 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
2925 g_free(vma);
2927 g_free(mm);
2930 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
2931 target_ulong end, abi_ulong flags)
2933 struct vm_area_struct *vma;
2935 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
2936 return (-1);
2938 vma->vma_start = start;
2939 vma->vma_end = end;
2940 vma->vma_flags = flags;
2942 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
2943 mm->mm_count++;
2945 return (0);
2948 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2950 return (QTAILQ_FIRST(&mm->mm_mmap));
2953 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2955 return (QTAILQ_NEXT(vma, vma_link));
2958 static int vma_get_mapping_count(const struct mm_struct *mm)
2960 return (mm->mm_count);
2964 * Calculate file (dump) size of given memory region.
2966 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2968 /* if we cannot even read the first page, skip it */
2969 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2970 return (0);
2973 * Usually we don't dump executable pages as they contain
2974 * non-writable code that debugger can read directly from
2975 * target library etc. However, thread stacks are marked
2976 * also executable so we read in first page of given region
2977 * and check whether it contains elf header. If there is
2978 * no elf header, we dump it.
2980 if (vma->vma_flags & PROT_EXEC) {
2981 char page[TARGET_PAGE_SIZE];
2983 copy_from_user(page, vma->vma_start, sizeof (page));
2984 if ((page[EI_MAG0] == ELFMAG0) &&
2985 (page[EI_MAG1] == ELFMAG1) &&
2986 (page[EI_MAG2] == ELFMAG2) &&
2987 (page[EI_MAG3] == ELFMAG3)) {
2989 * Mappings are possibly from ELF binary. Don't dump
2990 * them.
2992 return (0);
2996 return (vma->vma_end - vma->vma_start);
2999 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3000 unsigned long flags)
3002 struct mm_struct *mm = (struct mm_struct *)priv;
3004 vma_add_mapping(mm, start, end, flags);
3005 return (0);
3008 static void fill_note(struct memelfnote *note, const char *name, int type,
3009 unsigned int sz, void *data)
3011 unsigned int namesz;
3013 namesz = strlen(name) + 1;
3014 note->name = name;
3015 note->namesz = namesz;
3016 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3017 note->type = type;
3018 note->datasz = sz;
3019 note->datasz_rounded = roundup(sz, sizeof (int32_t));
3021 note->data = data;
3024 * We calculate rounded up note size here as specified by
3025 * ELF document.
3027 note->notesz = sizeof (struct elf_note) +
3028 note->namesz_rounded + note->datasz_rounded;
3031 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
3032 uint32_t flags)
3034 (void) memset(elf, 0, sizeof(*elf));
3036 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3037 elf->e_ident[EI_CLASS] = ELF_CLASS;
3038 elf->e_ident[EI_DATA] = ELF_DATA;
3039 elf->e_ident[EI_VERSION] = EV_CURRENT;
3040 elf->e_ident[EI_OSABI] = ELF_OSABI;
3042 elf->e_type = ET_CORE;
3043 elf->e_machine = machine;
3044 elf->e_version = EV_CURRENT;
3045 elf->e_phoff = sizeof(struct elfhdr);
3046 elf->e_flags = flags;
3047 elf->e_ehsize = sizeof(struct elfhdr);
3048 elf->e_phentsize = sizeof(struct elf_phdr);
3049 elf->e_phnum = segs;
3051 bswap_ehdr(elf);
3054 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3056 phdr->p_type = PT_NOTE;
3057 phdr->p_offset = offset;
3058 phdr->p_vaddr = 0;
3059 phdr->p_paddr = 0;
3060 phdr->p_filesz = sz;
3061 phdr->p_memsz = 0;
3062 phdr->p_flags = 0;
3063 phdr->p_align = 0;
3065 bswap_phdr(phdr, 1);
3068 static size_t note_size(const struct memelfnote *note)
3070 return (note->notesz);
3073 static void fill_prstatus(struct target_elf_prstatus *prstatus,
3074 const TaskState *ts, int signr)
3076 (void) memset(prstatus, 0, sizeof (*prstatus));
3077 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3078 prstatus->pr_pid = ts->ts_tid;
3079 prstatus->pr_ppid = getppid();
3080 prstatus->pr_pgrp = getpgrp();
3081 prstatus->pr_sid = getsid(0);
3083 bswap_prstatus(prstatus);
3086 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
3088 char *base_filename;
3089 unsigned int i, len;
3091 (void) memset(psinfo, 0, sizeof (*psinfo));
3093 len = ts->info->arg_end - ts->info->arg_start;
3094 if (len >= ELF_PRARGSZ)
3095 len = ELF_PRARGSZ - 1;
3096 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
3097 return -EFAULT;
3098 for (i = 0; i < len; i++)
3099 if (psinfo->pr_psargs[i] == 0)
3100 psinfo->pr_psargs[i] = ' ';
3101 psinfo->pr_psargs[len] = 0;
3103 psinfo->pr_pid = getpid();
3104 psinfo->pr_ppid = getppid();
3105 psinfo->pr_pgrp = getpgrp();
3106 psinfo->pr_sid = getsid(0);
3107 psinfo->pr_uid = getuid();
3108 psinfo->pr_gid = getgid();
3110 base_filename = g_path_get_basename(ts->bprm->filename);
3112 * Using strncpy here is fine: at max-length,
3113 * this field is not NUL-terminated.
3115 (void) strncpy(psinfo->pr_fname, base_filename,
3116 sizeof(psinfo->pr_fname));
3118 g_free(base_filename);
3119 bswap_psinfo(psinfo);
3120 return (0);
3123 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3125 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3126 elf_addr_t orig_auxv = auxv;
3127 void *ptr;
3128 int len = ts->info->auxv_len;
3131 * Auxiliary vector is stored in target process stack. It contains
3132 * {type, value} pairs that we need to dump into note. This is not
3133 * strictly necessary but we do it here for sake of completeness.
3136 /* read in whole auxv vector and copy it to memelfnote */
3137 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3138 if (ptr != NULL) {
3139 fill_note(note, "CORE", NT_AUXV, len, ptr);
3140 unlock_user(ptr, auxv, len);
3145 * Constructs name of coredump file. We have following convention
3146 * for the name:
3147 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3149 * Returns 0 in case of success, -1 otherwise (errno is set).
3151 static int core_dump_filename(const TaskState *ts, char *buf,
3152 size_t bufsize)
3154 char timestamp[64];
3155 char *base_filename = NULL;
3156 struct timeval tv;
3157 struct tm tm;
3159 assert(bufsize >= PATH_MAX);
3161 if (gettimeofday(&tv, NULL) < 0) {
3162 (void) fprintf(stderr, "unable to get current timestamp: %s",
3163 strerror(errno));
3164 return (-1);
3167 base_filename = g_path_get_basename(ts->bprm->filename);
3168 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
3169 localtime_r(&tv.tv_sec, &tm));
3170 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
3171 base_filename, timestamp, (int)getpid());
3172 g_free(base_filename);
3174 return (0);
3177 static int dump_write(int fd, const void *ptr, size_t size)
3179 const char *bufp = (const char *)ptr;
3180 ssize_t bytes_written, bytes_left;
3181 struct rlimit dumpsize;
3182 off_t pos;
3184 bytes_written = 0;
3185 getrlimit(RLIMIT_CORE, &dumpsize);
3186 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3187 if (errno == ESPIPE) { /* not a seekable stream */
3188 bytes_left = size;
3189 } else {
3190 return pos;
3192 } else {
3193 if (dumpsize.rlim_cur <= pos) {
3194 return -1;
3195 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3196 bytes_left = size;
3197 } else {
3198 size_t limit_left=dumpsize.rlim_cur - pos;
3199 bytes_left = limit_left >= size ? size : limit_left ;
3204 * In normal conditions, single write(2) should do but
3205 * in case of socket etc. this mechanism is more portable.
3207 do {
3208 bytes_written = write(fd, bufp, bytes_left);
3209 if (bytes_written < 0) {
3210 if (errno == EINTR)
3211 continue;
3212 return (-1);
3213 } else if (bytes_written == 0) { /* eof */
3214 return (-1);
3216 bufp += bytes_written;
3217 bytes_left -= bytes_written;
3218 } while (bytes_left > 0);
3220 return (0);
3223 static int write_note(struct memelfnote *men, int fd)
3225 struct elf_note en;
3227 en.n_namesz = men->namesz;
3228 en.n_type = men->type;
3229 en.n_descsz = men->datasz;
3231 bswap_note(&en);
3233 if (dump_write(fd, &en, sizeof(en)) != 0)
3234 return (-1);
3235 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3236 return (-1);
3237 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
3238 return (-1);
3240 return (0);
3243 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
3245 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3246 TaskState *ts = (TaskState *)cpu->opaque;
3247 struct elf_thread_status *ets;
3249 ets = g_malloc0(sizeof (*ets));
3250 ets->num_notes = 1; /* only prstatus is dumped */
3251 fill_prstatus(&ets->prstatus, ts, 0);
3252 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3253 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
3254 &ets->prstatus);
3256 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
3258 info->notes_size += note_size(&ets->notes[0]);
3261 static void init_note_info(struct elf_note_info *info)
3263 /* Initialize the elf_note_info structure so that it is at
3264 * least safe to call free_note_info() on it. Must be
3265 * called before calling fill_note_info().
3267 memset(info, 0, sizeof (*info));
3268 QTAILQ_INIT(&info->thread_list);
3271 static int fill_note_info(struct elf_note_info *info,
3272 long signr, const CPUArchState *env)
3274 #define NUMNOTES 3
3275 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3276 TaskState *ts = (TaskState *)cpu->opaque;
3277 int i;
3279 info->notes = g_new0(struct memelfnote, NUMNOTES);
3280 if (info->notes == NULL)
3281 return (-ENOMEM);
3282 info->prstatus = g_malloc0(sizeof (*info->prstatus));
3283 if (info->prstatus == NULL)
3284 return (-ENOMEM);
3285 info->psinfo = g_malloc0(sizeof (*info->psinfo));
3286 if (info->prstatus == NULL)
3287 return (-ENOMEM);
3290 * First fill in status (and registers) of current thread
3291 * including process info & aux vector.
3293 fill_prstatus(info->prstatus, ts, signr);
3294 elf_core_copy_regs(&info->prstatus->pr_reg, env);
3295 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
3296 sizeof (*info->prstatus), info->prstatus);
3297 fill_psinfo(info->psinfo, ts);
3298 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3299 sizeof (*info->psinfo), info->psinfo);
3300 fill_auxv_note(&info->notes[2], ts);
3301 info->numnote = 3;
3303 info->notes_size = 0;
3304 for (i = 0; i < info->numnote; i++)
3305 info->notes_size += note_size(&info->notes[i]);
3307 /* read and fill status of all threads */
3308 cpu_list_lock();
3309 CPU_FOREACH(cpu) {
3310 if (cpu == thread_cpu) {
3311 continue;
3313 fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
3315 cpu_list_unlock();
3317 return (0);
3320 static void free_note_info(struct elf_note_info *info)
3322 struct elf_thread_status *ets;
3324 while (!QTAILQ_EMPTY(&info->thread_list)) {
3325 ets = QTAILQ_FIRST(&info->thread_list);
3326 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3327 g_free(ets);
3330 g_free(info->prstatus);
3331 g_free(info->psinfo);
3332 g_free(info->notes);
3335 static int write_note_info(struct elf_note_info *info, int fd)
3337 struct elf_thread_status *ets;
3338 int i, error = 0;
3340 /* write prstatus, psinfo and auxv for current thread */
3341 for (i = 0; i < info->numnote; i++)
3342 if ((error = write_note(&info->notes[i], fd)) != 0)
3343 return (error);
3345 /* write prstatus for each thread */
3346 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
3347 if ((error = write_note(&ets->notes[0], fd)) != 0)
3348 return (error);
3351 return (0);
3355 * Write out ELF coredump.
3357 * See documentation of ELF object file format in:
3358 * http://www.caldera.com/developers/devspecs/gabi41.pdf
3360 * Coredump format in linux is following:
3362 * 0 +----------------------+ \
3363 * | ELF header | ET_CORE |
3364 * +----------------------+ |
3365 * | ELF program headers | |--- headers
3366 * | - NOTE section | |
3367 * | - PT_LOAD sections | |
3368 * +----------------------+ /
3369 * | NOTEs: |
3370 * | - NT_PRSTATUS |
3371 * | - NT_PRSINFO |
3372 * | - NT_AUXV |
3373 * +----------------------+ <-- aligned to target page
3374 * | Process memory dump |
3375 * : :
3376 * . .
3377 * : :
3378 * | |
3379 * +----------------------+
3381 * NT_PRSTATUS -> struct elf_prstatus (per thread)
3382 * NT_PRSINFO -> struct elf_prpsinfo
3383 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3385 * Format follows System V format as close as possible. Current
3386 * version limitations are as follows:
3387 * - no floating point registers are dumped
3389 * Function returns 0 in case of success, negative errno otherwise.
3391 * TODO: make this work also during runtime: it should be
3392 * possible to force coredump from running process and then
3393 * continue processing. For example qemu could set up SIGUSR2
3394 * handler (provided that target process haven't registered
3395 * handler for that) that does the dump when signal is received.
3397 static int elf_core_dump(int signr, const CPUArchState *env)
3399 const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3400 const TaskState *ts = (const TaskState *)cpu->opaque;
3401 struct vm_area_struct *vma = NULL;
3402 char corefile[PATH_MAX];
3403 struct elf_note_info info;
3404 struct elfhdr elf;
3405 struct elf_phdr phdr;
3406 struct rlimit dumpsize;
3407 struct mm_struct *mm = NULL;
3408 off_t offset = 0, data_offset = 0;
3409 int segs = 0;
3410 int fd = -1;
3412 init_note_info(&info);
3414 errno = 0;
3415 getrlimit(RLIMIT_CORE, &dumpsize);
3416 if (dumpsize.rlim_cur == 0)
3417 return 0;
3419 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3420 return (-errno);
3422 if ((fd = open(corefile, O_WRONLY | O_CREAT,
3423 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
3424 return (-errno);
3427 * Walk through target process memory mappings and
3428 * set up structure containing this information. After
3429 * this point vma_xxx functions can be used.
3431 if ((mm = vma_init()) == NULL)
3432 goto out;
3434 walk_memory_regions(mm, vma_walker);
3435 segs = vma_get_mapping_count(mm);
3438 * Construct valid coredump ELF header. We also
3439 * add one more segment for notes.
3441 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3442 if (dump_write(fd, &elf, sizeof (elf)) != 0)
3443 goto out;
3445 /* fill in the in-memory version of notes */
3446 if (fill_note_info(&info, signr, env) < 0)
3447 goto out;
3449 offset += sizeof (elf); /* elf header */
3450 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
3452 /* write out notes program header */
3453 fill_elf_note_phdr(&phdr, info.notes_size, offset);
3455 offset += info.notes_size;
3456 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3457 goto out;
3460 * ELF specification wants data to start at page boundary so
3461 * we align it here.
3463 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
3466 * Write program headers for memory regions mapped in
3467 * the target process.
3469 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3470 (void) memset(&phdr, 0, sizeof (phdr));
3472 phdr.p_type = PT_LOAD;
3473 phdr.p_offset = offset;
3474 phdr.p_vaddr = vma->vma_start;
3475 phdr.p_paddr = 0;
3476 phdr.p_filesz = vma_dump_size(vma);
3477 offset += phdr.p_filesz;
3478 phdr.p_memsz = vma->vma_end - vma->vma_start;
3479 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3480 if (vma->vma_flags & PROT_WRITE)
3481 phdr.p_flags |= PF_W;
3482 if (vma->vma_flags & PROT_EXEC)
3483 phdr.p_flags |= PF_X;
3484 phdr.p_align = ELF_EXEC_PAGESIZE;
3486 bswap_phdr(&phdr, 1);
3487 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3488 goto out;
3493 * Next we write notes just after program headers. No
3494 * alignment needed here.
3496 if (write_note_info(&info, fd) < 0)
3497 goto out;
3499 /* align data to page boundary */
3500 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3501 goto out;
3504 * Finally we can dump process memory into corefile as well.
3506 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3507 abi_ulong addr;
3508 abi_ulong end;
3510 end = vma->vma_start + vma_dump_size(vma);
3512 for (addr = vma->vma_start; addr < end;
3513 addr += TARGET_PAGE_SIZE) {
3514 char page[TARGET_PAGE_SIZE];
3515 int error;
3518 * Read in page from target process memory and
3519 * write it to coredump file.
3521 error = copy_from_user(page, addr, sizeof (page));
3522 if (error != 0) {
3523 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
3524 addr);
3525 errno = -error;
3526 goto out;
3528 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3529 goto out;
3533 out:
3534 free_note_info(&info);
3535 if (mm != NULL)
3536 vma_delete(mm);
3537 (void) close(fd);
3539 if (errno != 0)
3540 return (-errno);
3541 return (0);
3543 #endif /* USE_ELF_CORE_DUMP */
3545 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3547 init_thread(regs, infop);