2 * Physical memory management
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
7 * Avi Kivity <avi@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
12 * Contributions after 2012-01-13 are licensed under the terms of the
13 * GNU GPL, version 2 or (at your option) any later version.
16 #include "qemu/osdep.h"
17 #include "qapi/error.h"
18 #include "qemu-common.h"
20 #include "exec/exec-all.h" /* qemu_sprint_backtrace */
21 #include "exec/memory.h"
22 #include "exec/address-spaces.h"
23 #include "qapi/visitor.h"
24 #include "qemu/bitops.h"
25 #include "qemu/error-report.h"
26 #include "qom/object.h"
27 #include "trace-root.h"
29 #include "exec/memory-internal.h"
30 #include "exec/ram_addr.h"
31 #include "sysemu/kvm.h"
32 #include "sysemu/sysemu.h"
33 #include "hw/qdev-properties.h"
34 #include "migration/vmstate.h"
36 //#define DEBUG_UNASSIGNED
38 static unsigned memory_region_transaction_depth
;
39 static bool memory_region_update_pending
;
40 static bool ioeventfd_update_pending
;
41 static bool global_dirty_log
= false;
43 static QTAILQ_HEAD(, MemoryListener
) memory_listeners
44 = QTAILQ_HEAD_INITIALIZER(memory_listeners
);
46 static QTAILQ_HEAD(, AddressSpace
) address_spaces
47 = QTAILQ_HEAD_INITIALIZER(address_spaces
);
49 static GHashTable
*flat_views
;
51 typedef struct AddrRange AddrRange
;
54 * Note that signed integers are needed for negative offsetting in aliases
55 * (large MemoryRegion::alias_offset).
62 static AddrRange
addrrange_make(Int128 start
, Int128 size
)
64 return (AddrRange
) { start
, size
};
67 static bool addrrange_equal(AddrRange r1
, AddrRange r2
)
69 return int128_eq(r1
.start
, r2
.start
) && int128_eq(r1
.size
, r2
.size
);
72 static Int128
addrrange_end(AddrRange r
)
74 return int128_add(r
.start
, r
.size
);
77 static AddrRange
addrrange_shift(AddrRange range
, Int128 delta
)
79 int128_addto(&range
.start
, delta
);
83 static bool addrrange_contains(AddrRange range
, Int128 addr
)
85 return int128_ge(addr
, range
.start
)
86 && int128_lt(addr
, addrrange_end(range
));
89 static bool addrrange_intersects(AddrRange r1
, AddrRange r2
)
91 return addrrange_contains(r1
, r2
.start
)
92 || addrrange_contains(r2
, r1
.start
);
95 static AddrRange
addrrange_intersection(AddrRange r1
, AddrRange r2
)
97 Int128 start
= int128_max(r1
.start
, r2
.start
);
98 Int128 end
= int128_min(addrrange_end(r1
), addrrange_end(r2
));
99 return addrrange_make(start
, int128_sub(end
, start
));
102 enum ListenerDirection
{ Forward
, Reverse
};
104 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \
106 MemoryListener *_listener; \
108 switch (_direction) { \
110 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
111 if (_listener->_callback) { \
112 _listener->_callback(_listener, ##_args); \
117 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, link) { \
118 if (_listener->_callback) { \
119 _listener->_callback(_listener, ##_args); \
128 #define MEMORY_LISTENER_CALL(_as, _callback, _direction, _section, _args...) \
130 MemoryListener *_listener; \
132 switch (_direction) { \
134 QTAILQ_FOREACH(_listener, &(_as)->listeners, link_as) { \
135 if (_listener->_callback) { \
136 _listener->_callback(_listener, _section, ##_args); \
141 QTAILQ_FOREACH_REVERSE(_listener, &(_as)->listeners, link_as) { \
142 if (_listener->_callback) { \
143 _listener->_callback(_listener, _section, ##_args); \
152 /* No need to ref/unref .mr, the FlatRange keeps it alive. */
153 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...) \
155 MemoryRegionSection mrs = section_from_flat_range(fr, \
156 address_space_to_flatview(as)); \
157 MEMORY_LISTENER_CALL(as, callback, dir, &mrs, ##_args); \
160 struct CoalescedMemoryRange
{
162 QTAILQ_ENTRY(CoalescedMemoryRange
) link
;
165 struct MemoryRegionIoeventfd
{
172 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd
*a
,
173 MemoryRegionIoeventfd
*b
)
175 if (int128_lt(a
->addr
.start
, b
->addr
.start
)) {
177 } else if (int128_gt(a
->addr
.start
, b
->addr
.start
)) {
179 } else if (int128_lt(a
->addr
.size
, b
->addr
.size
)) {
181 } else if (int128_gt(a
->addr
.size
, b
->addr
.size
)) {
183 } else if (a
->match_data
< b
->match_data
) {
185 } else if (a
->match_data
> b
->match_data
) {
187 } else if (a
->match_data
) {
188 if (a
->data
< b
->data
) {
190 } else if (a
->data
> b
->data
) {
196 } else if (a
->e
> b
->e
) {
202 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd
*a
,
203 MemoryRegionIoeventfd
*b
)
205 return !memory_region_ioeventfd_before(a
, b
)
206 && !memory_region_ioeventfd_before(b
, a
);
209 /* Range of memory in the global map. Addresses are absolute. */
212 hwaddr offset_in_region
;
214 uint8_t dirty_log_mask
;
218 int has_coalesced_range
;
221 #define FOR_EACH_FLAT_RANGE(var, view) \
222 for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
224 static inline MemoryRegionSection
225 section_from_flat_range(FlatRange
*fr
, FlatView
*fv
)
227 return (MemoryRegionSection
) {
230 .offset_within_region
= fr
->offset_in_region
,
231 .size
= fr
->addr
.size
,
232 .offset_within_address_space
= int128_get64(fr
->addr
.start
),
233 .readonly
= fr
->readonly
,
234 .nonvolatile
= fr
->nonvolatile
,
238 static bool flatrange_equal(FlatRange
*a
, FlatRange
*b
)
240 return a
->mr
== b
->mr
241 && addrrange_equal(a
->addr
, b
->addr
)
242 && a
->offset_in_region
== b
->offset_in_region
243 && a
->romd_mode
== b
->romd_mode
244 && a
->readonly
== b
->readonly
245 && a
->nonvolatile
== b
->nonvolatile
;
248 static FlatView
*flatview_new(MemoryRegion
*mr_root
)
252 view
= g_new0(FlatView
, 1);
254 view
->root
= mr_root
;
255 memory_region_ref(mr_root
);
256 trace_flatview_new(view
, mr_root
);
261 /* Insert a range into a given position. Caller is responsible for maintaining
264 static void flatview_insert(FlatView
*view
, unsigned pos
, FlatRange
*range
)
266 if (view
->nr
== view
->nr_allocated
) {
267 view
->nr_allocated
= MAX(2 * view
->nr
, 10);
268 view
->ranges
= g_realloc(view
->ranges
,
269 view
->nr_allocated
* sizeof(*view
->ranges
));
271 memmove(view
->ranges
+ pos
+ 1, view
->ranges
+ pos
,
272 (view
->nr
- pos
) * sizeof(FlatRange
));
273 view
->ranges
[pos
] = *range
;
274 memory_region_ref(range
->mr
);
278 static void flatview_destroy(FlatView
*view
)
282 trace_flatview_destroy(view
, view
->root
);
283 if (view
->dispatch
) {
284 address_space_dispatch_free(view
->dispatch
);
286 for (i
= 0; i
< view
->nr
; i
++) {
287 memory_region_unref(view
->ranges
[i
].mr
);
289 g_free(view
->ranges
);
290 memory_region_unref(view
->root
);
294 static bool flatview_ref(FlatView
*view
)
296 return atomic_fetch_inc_nonzero(&view
->ref
) > 0;
299 void flatview_unref(FlatView
*view
)
301 if (atomic_fetch_dec(&view
->ref
) == 1) {
302 trace_flatview_destroy_rcu(view
, view
->root
);
304 call_rcu(view
, flatview_destroy
, rcu
);
308 static bool can_merge(FlatRange
*r1
, FlatRange
*r2
)
310 return int128_eq(addrrange_end(r1
->addr
), r2
->addr
.start
)
312 && int128_eq(int128_add(int128_make64(r1
->offset_in_region
),
314 int128_make64(r2
->offset_in_region
))
315 && r1
->dirty_log_mask
== r2
->dirty_log_mask
316 && r1
->romd_mode
== r2
->romd_mode
317 && r1
->readonly
== r2
->readonly
318 && r1
->nonvolatile
== r2
->nonvolatile
;
321 /* Attempt to simplify a view by merging adjacent ranges */
322 static void flatview_simplify(FlatView
*view
)
327 while (i
< view
->nr
) {
330 && can_merge(&view
->ranges
[j
-1], &view
->ranges
[j
])) {
331 int128_addto(&view
->ranges
[i
].addr
.size
, view
->ranges
[j
].addr
.size
);
335 memmove(&view
->ranges
[i
], &view
->ranges
[j
],
336 (view
->nr
- j
) * sizeof(view
->ranges
[j
]));
341 static bool memory_region_big_endian(MemoryRegion
*mr
)
343 #ifdef TARGET_WORDS_BIGENDIAN
344 return mr
->ops
->endianness
!= DEVICE_LITTLE_ENDIAN
;
346 return mr
->ops
->endianness
== DEVICE_BIG_ENDIAN
;
350 static bool memory_region_wrong_endianness(MemoryRegion
*mr
)
352 #ifdef TARGET_WORDS_BIGENDIAN
353 return mr
->ops
->endianness
== DEVICE_LITTLE_ENDIAN
;
355 return mr
->ops
->endianness
== DEVICE_BIG_ENDIAN
;
359 static void adjust_endianness(MemoryRegion
*mr
, uint64_t *data
, unsigned size
)
361 if (memory_region_wrong_endianness(mr
)) {
366 *data
= bswap16(*data
);
369 *data
= bswap32(*data
);
372 *data
= bswap64(*data
);
380 static inline void memory_region_shift_read_access(uint64_t *value
,
386 *value
|= (tmp
& mask
) << shift
;
388 *value
|= (tmp
& mask
) >> -shift
;
392 static inline uint64_t memory_region_shift_write_access(uint64_t *value
,
399 tmp
= (*value
>> shift
) & mask
;
401 tmp
= (*value
<< -shift
) & mask
;
407 static hwaddr
memory_region_to_absolute_addr(MemoryRegion
*mr
, hwaddr offset
)
410 hwaddr abs_addr
= offset
;
412 abs_addr
+= mr
->addr
;
413 for (root
= mr
; root
->container
; ) {
414 root
= root
->container
;
415 abs_addr
+= root
->addr
;
421 static int get_cpu_index(void)
424 return current_cpu
->cpu_index
;
429 static MemTxResult
memory_region_read_accessor(MemoryRegion
*mr
,
439 tmp
= mr
->ops
->read(mr
->opaque
, addr
, size
);
441 trace_memory_region_subpage_read(get_cpu_index(), mr
, addr
, tmp
, size
);
442 } else if (mr
== &io_mem_notdirty
) {
443 /* Accesses to code which has previously been translated into a TB show
444 * up in the MMIO path, as accesses to the io_mem_notdirty
446 trace_memory_region_tb_read(get_cpu_index(), addr
, tmp
, size
);
447 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED
) {
448 hwaddr abs_addr
= memory_region_to_absolute_addr(mr
, addr
);
449 trace_memory_region_ops_read(get_cpu_index(), mr
, abs_addr
, tmp
, size
);
451 memory_region_shift_read_access(value
, shift
, mask
, tmp
);
455 static MemTxResult
memory_region_read_with_attrs_accessor(MemoryRegion
*mr
,
466 r
= mr
->ops
->read_with_attrs(mr
->opaque
, addr
, &tmp
, size
, attrs
);
468 trace_memory_region_subpage_read(get_cpu_index(), mr
, addr
, tmp
, size
);
469 } else if (mr
== &io_mem_notdirty
) {
470 /* Accesses to code which has previously been translated into a TB show
471 * up in the MMIO path, as accesses to the io_mem_notdirty
473 trace_memory_region_tb_read(get_cpu_index(), addr
, tmp
, size
);
474 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED
) {
475 hwaddr abs_addr
= memory_region_to_absolute_addr(mr
, addr
);
476 trace_memory_region_ops_read(get_cpu_index(), mr
, abs_addr
, tmp
, size
);
478 memory_region_shift_read_access(value
, shift
, mask
, tmp
);
482 static MemTxResult
memory_region_write_accessor(MemoryRegion
*mr
,
490 uint64_t tmp
= memory_region_shift_write_access(value
, shift
, mask
);
493 trace_memory_region_subpage_write(get_cpu_index(), mr
, addr
, tmp
, size
);
494 } else if (mr
== &io_mem_notdirty
) {
495 /* Accesses to code which has previously been translated into a TB show
496 * up in the MMIO path, as accesses to the io_mem_notdirty
498 trace_memory_region_tb_write(get_cpu_index(), addr
, tmp
, size
);
499 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED
) {
500 hwaddr abs_addr
= memory_region_to_absolute_addr(mr
, addr
);
501 trace_memory_region_ops_write(get_cpu_index(), mr
, abs_addr
, tmp
, size
);
503 mr
->ops
->write(mr
->opaque
, addr
, tmp
, size
);
507 static MemTxResult
memory_region_write_with_attrs_accessor(MemoryRegion
*mr
,
515 uint64_t tmp
= memory_region_shift_write_access(value
, shift
, mask
);
518 trace_memory_region_subpage_write(get_cpu_index(), mr
, addr
, tmp
, size
);
519 } else if (mr
== &io_mem_notdirty
) {
520 /* Accesses to code which has previously been translated into a TB show
521 * up in the MMIO path, as accesses to the io_mem_notdirty
523 trace_memory_region_tb_write(get_cpu_index(), addr
, tmp
, size
);
524 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED
) {
525 hwaddr abs_addr
= memory_region_to_absolute_addr(mr
, addr
);
526 trace_memory_region_ops_write(get_cpu_index(), mr
, abs_addr
, tmp
, size
);
528 return mr
->ops
->write_with_attrs(mr
->opaque
, addr
, tmp
, size
, attrs
);
531 static MemTxResult
access_with_adjusted_size(hwaddr addr
,
534 unsigned access_size_min
,
535 unsigned access_size_max
,
536 MemTxResult (*access_fn
)
547 uint64_t access_mask
;
548 unsigned access_size
;
550 MemTxResult r
= MEMTX_OK
;
552 if (!access_size_min
) {
555 if (!access_size_max
) {
559 /* FIXME: support unaligned access? */
560 access_size
= MAX(MIN(size
, access_size_max
), access_size_min
);
561 access_mask
= MAKE_64BIT_MASK(0, access_size
* 8);
562 if (memory_region_big_endian(mr
)) {
563 for (i
= 0; i
< size
; i
+= access_size
) {
564 r
|= access_fn(mr
, addr
+ i
, value
, access_size
,
565 (size
- access_size
- i
) * 8, access_mask
, attrs
);
568 for (i
= 0; i
< size
; i
+= access_size
) {
569 r
|= access_fn(mr
, addr
+ i
, value
, access_size
, i
* 8,
576 static AddressSpace
*memory_region_to_address_space(MemoryRegion
*mr
)
580 while (mr
->container
) {
583 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
584 if (mr
== as
->root
) {
591 /* Render a memory region into the global view. Ranges in @view obscure
594 static void render_memory_region(FlatView
*view
,
601 MemoryRegion
*subregion
;
603 hwaddr offset_in_region
;
613 int128_addto(&base
, int128_make64(mr
->addr
));
614 readonly
|= mr
->readonly
;
615 nonvolatile
|= mr
->nonvolatile
;
617 tmp
= addrrange_make(base
, mr
->size
);
619 if (!addrrange_intersects(tmp
, clip
)) {
623 clip
= addrrange_intersection(tmp
, clip
);
626 int128_subfrom(&base
, int128_make64(mr
->alias
->addr
));
627 int128_subfrom(&base
, int128_make64(mr
->alias_offset
));
628 render_memory_region(view
, mr
->alias
, base
, clip
,
629 readonly
, nonvolatile
);
633 /* Render subregions in priority order. */
634 QTAILQ_FOREACH(subregion
, &mr
->subregions
, subregions_link
) {
635 render_memory_region(view
, subregion
, base
, clip
,
636 readonly
, nonvolatile
);
639 if (!mr
->terminates
) {
643 offset_in_region
= int128_get64(int128_sub(clip
.start
, base
));
648 fr
.dirty_log_mask
= memory_region_get_dirty_log_mask(mr
);
649 fr
.romd_mode
= mr
->romd_mode
;
650 fr
.readonly
= readonly
;
651 fr
.nonvolatile
= nonvolatile
;
652 fr
.has_coalesced_range
= 0;
654 /* Render the region itself into any gaps left by the current view. */
655 for (i
= 0; i
< view
->nr
&& int128_nz(remain
); ++i
) {
656 if (int128_ge(base
, addrrange_end(view
->ranges
[i
].addr
))) {
659 if (int128_lt(base
, view
->ranges
[i
].addr
.start
)) {
660 now
= int128_min(remain
,
661 int128_sub(view
->ranges
[i
].addr
.start
, base
));
662 fr
.offset_in_region
= offset_in_region
;
663 fr
.addr
= addrrange_make(base
, now
);
664 flatview_insert(view
, i
, &fr
);
666 int128_addto(&base
, now
);
667 offset_in_region
+= int128_get64(now
);
668 int128_subfrom(&remain
, now
);
670 now
= int128_sub(int128_min(int128_add(base
, remain
),
671 addrrange_end(view
->ranges
[i
].addr
)),
673 int128_addto(&base
, now
);
674 offset_in_region
+= int128_get64(now
);
675 int128_subfrom(&remain
, now
);
677 if (int128_nz(remain
)) {
678 fr
.offset_in_region
= offset_in_region
;
679 fr
.addr
= addrrange_make(base
, remain
);
680 flatview_insert(view
, i
, &fr
);
684 static MemoryRegion
*memory_region_get_flatview_root(MemoryRegion
*mr
)
686 while (mr
->enabled
) {
688 if (!mr
->alias_offset
&& int128_ge(mr
->size
, mr
->alias
->size
)) {
689 /* The alias is included in its entirety. Use it as
690 * the "real" root, so that we can share more FlatViews.
695 } else if (!mr
->terminates
) {
696 unsigned int found
= 0;
697 MemoryRegion
*child
, *next
= NULL
;
698 QTAILQ_FOREACH(child
, &mr
->subregions
, subregions_link
) {
699 if (child
->enabled
) {
704 if (!child
->addr
&& int128_ge(mr
->size
, child
->size
)) {
705 /* A child is included in its entirety. If it's the only
706 * enabled one, use it in the hope of finding an alias down the
707 * way. This will also let us share FlatViews.
728 /* Render a memory topology into a list of disjoint absolute ranges. */
729 static FlatView
*generate_memory_topology(MemoryRegion
*mr
)
734 view
= flatview_new(mr
);
737 render_memory_region(view
, mr
, int128_zero(),
738 addrrange_make(int128_zero(), int128_2_64()),
741 flatview_simplify(view
);
743 view
->dispatch
= address_space_dispatch_new(view
);
744 for (i
= 0; i
< view
->nr
; i
++) {
745 MemoryRegionSection mrs
=
746 section_from_flat_range(&view
->ranges
[i
], view
);
747 flatview_add_to_dispatch(view
, &mrs
);
749 address_space_dispatch_compact(view
->dispatch
);
750 g_hash_table_replace(flat_views
, mr
, view
);
755 static void address_space_add_del_ioeventfds(AddressSpace
*as
,
756 MemoryRegionIoeventfd
*fds_new
,
758 MemoryRegionIoeventfd
*fds_old
,
762 MemoryRegionIoeventfd
*fd
;
763 MemoryRegionSection section
;
765 /* Generate a symmetric difference of the old and new fd sets, adding
766 * and deleting as necessary.
770 while (iold
< fds_old_nb
|| inew
< fds_new_nb
) {
771 if (iold
< fds_old_nb
772 && (inew
== fds_new_nb
773 || memory_region_ioeventfd_before(&fds_old
[iold
],
776 section
= (MemoryRegionSection
) {
777 .fv
= address_space_to_flatview(as
),
778 .offset_within_address_space
= int128_get64(fd
->addr
.start
),
779 .size
= fd
->addr
.size
,
781 MEMORY_LISTENER_CALL(as
, eventfd_del
, Forward
, §ion
,
782 fd
->match_data
, fd
->data
, fd
->e
);
784 } else if (inew
< fds_new_nb
785 && (iold
== fds_old_nb
786 || memory_region_ioeventfd_before(&fds_new
[inew
],
789 section
= (MemoryRegionSection
) {
790 .fv
= address_space_to_flatview(as
),
791 .offset_within_address_space
= int128_get64(fd
->addr
.start
),
792 .size
= fd
->addr
.size
,
794 MEMORY_LISTENER_CALL(as
, eventfd_add
, Reverse
, §ion
,
795 fd
->match_data
, fd
->data
, fd
->e
);
804 FlatView
*address_space_get_flatview(AddressSpace
*as
)
810 view
= address_space_to_flatview(as
);
811 /* If somebody has replaced as->current_map concurrently,
812 * flatview_ref returns false.
814 } while (!flatview_ref(view
));
819 static void address_space_update_ioeventfds(AddressSpace
*as
)
823 unsigned ioeventfd_nb
= 0;
824 MemoryRegionIoeventfd
*ioeventfds
= NULL
;
828 view
= address_space_get_flatview(as
);
829 FOR_EACH_FLAT_RANGE(fr
, view
) {
830 for (i
= 0; i
< fr
->mr
->ioeventfd_nb
; ++i
) {
831 tmp
= addrrange_shift(fr
->mr
->ioeventfds
[i
].addr
,
832 int128_sub(fr
->addr
.start
,
833 int128_make64(fr
->offset_in_region
)));
834 if (addrrange_intersects(fr
->addr
, tmp
)) {
836 ioeventfds
= g_realloc(ioeventfds
,
837 ioeventfd_nb
* sizeof(*ioeventfds
));
838 ioeventfds
[ioeventfd_nb
-1] = fr
->mr
->ioeventfds
[i
];
839 ioeventfds
[ioeventfd_nb
-1].addr
= tmp
;
844 address_space_add_del_ioeventfds(as
, ioeventfds
, ioeventfd_nb
,
845 as
->ioeventfds
, as
->ioeventfd_nb
);
847 g_free(as
->ioeventfds
);
848 as
->ioeventfds
= ioeventfds
;
849 as
->ioeventfd_nb
= ioeventfd_nb
;
850 flatview_unref(view
);
853 static void flat_range_coalesced_io_del(FlatRange
*fr
, AddressSpace
*as
)
855 if (!fr
->has_coalesced_range
) {
859 if (--fr
->has_coalesced_range
> 0) {
863 MEMORY_LISTENER_UPDATE_REGION(fr
, as
, Reverse
, coalesced_io_del
,
864 int128_get64(fr
->addr
.start
),
865 int128_get64(fr
->addr
.size
));
868 static void flat_range_coalesced_io_add(FlatRange
*fr
, AddressSpace
*as
)
870 MemoryRegion
*mr
= fr
->mr
;
871 CoalescedMemoryRange
*cmr
;
874 if (QTAILQ_EMPTY(&mr
->coalesced
)) {
878 if (fr
->has_coalesced_range
++) {
882 QTAILQ_FOREACH(cmr
, &mr
->coalesced
, link
) {
883 tmp
= addrrange_shift(cmr
->addr
,
884 int128_sub(fr
->addr
.start
,
885 int128_make64(fr
->offset_in_region
)));
886 if (!addrrange_intersects(tmp
, fr
->addr
)) {
889 tmp
= addrrange_intersection(tmp
, fr
->addr
);
890 MEMORY_LISTENER_UPDATE_REGION(fr
, as
, Forward
, coalesced_io_add
,
891 int128_get64(tmp
.start
),
892 int128_get64(tmp
.size
));
896 static void address_space_update_topology_pass(AddressSpace
*as
,
897 const FlatView
*old_view
,
898 const FlatView
*new_view
,
902 FlatRange
*frold
, *frnew
;
904 /* Generate a symmetric difference of the old and new memory maps.
905 * Kill ranges in the old map, and instantiate ranges in the new map.
908 while (iold
< old_view
->nr
|| inew
< new_view
->nr
) {
909 if (iold
< old_view
->nr
) {
910 frold
= &old_view
->ranges
[iold
];
914 if (inew
< new_view
->nr
) {
915 frnew
= &new_view
->ranges
[inew
];
922 || int128_lt(frold
->addr
.start
, frnew
->addr
.start
)
923 || (int128_eq(frold
->addr
.start
, frnew
->addr
.start
)
924 && !flatrange_equal(frold
, frnew
)))) {
925 /* In old but not in new, or in both but attributes changed. */
928 flat_range_coalesced_io_del(frold
, as
);
929 MEMORY_LISTENER_UPDATE_REGION(frold
, as
, Reverse
, region_del
);
933 } else if (frold
&& frnew
&& flatrange_equal(frold
, frnew
)) {
934 /* In both and unchanged (except logging may have changed) */
937 flat_range_coalesced_io_del(frold
, as
);
939 MEMORY_LISTENER_UPDATE_REGION(frnew
, as
, Forward
, region_nop
);
940 if (frnew
->dirty_log_mask
& ~frold
->dirty_log_mask
) {
941 MEMORY_LISTENER_UPDATE_REGION(frnew
, as
, Forward
, log_start
,
942 frold
->dirty_log_mask
,
943 frnew
->dirty_log_mask
);
945 if (frold
->dirty_log_mask
& ~frnew
->dirty_log_mask
) {
946 MEMORY_LISTENER_UPDATE_REGION(frnew
, as
, Reverse
, log_stop
,
947 frold
->dirty_log_mask
,
948 frnew
->dirty_log_mask
);
950 flat_range_coalesced_io_add(frnew
, as
);
959 MEMORY_LISTENER_UPDATE_REGION(frnew
, as
, Forward
, region_add
);
960 flat_range_coalesced_io_add(frnew
, as
);
968 static void flatviews_init(void)
970 static FlatView
*empty_view
;
976 flat_views
= g_hash_table_new_full(g_direct_hash
, g_direct_equal
, NULL
,
977 (GDestroyNotify
) flatview_unref
);
979 empty_view
= generate_memory_topology(NULL
);
980 /* We keep it alive forever in the global variable. */
981 flatview_ref(empty_view
);
983 g_hash_table_replace(flat_views
, NULL
, empty_view
);
984 flatview_ref(empty_view
);
988 static void flatviews_reset(void)
993 g_hash_table_unref(flat_views
);
998 /* Render unique FVs */
999 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
1000 MemoryRegion
*physmr
= memory_region_get_flatview_root(as
->root
);
1002 if (g_hash_table_lookup(flat_views
, physmr
)) {
1006 generate_memory_topology(physmr
);
1010 static void address_space_set_flatview(AddressSpace
*as
)
1012 FlatView
*old_view
= address_space_to_flatview(as
);
1013 MemoryRegion
*physmr
= memory_region_get_flatview_root(as
->root
);
1014 FlatView
*new_view
= g_hash_table_lookup(flat_views
, physmr
);
1018 if (old_view
== new_view
) {
1023 flatview_ref(old_view
);
1026 flatview_ref(new_view
);
1028 if (!QTAILQ_EMPTY(&as
->listeners
)) {
1029 FlatView tmpview
= { .nr
= 0 }, *old_view2
= old_view
;
1032 old_view2
= &tmpview
;
1034 address_space_update_topology_pass(as
, old_view2
, new_view
, false);
1035 address_space_update_topology_pass(as
, old_view2
, new_view
, true);
1038 /* Writes are protected by the BQL. */
1039 atomic_rcu_set(&as
->current_map
, new_view
);
1041 flatview_unref(old_view
);
1044 /* Note that all the old MemoryRegions are still alive up to this
1045 * point. This relieves most MemoryListeners from the need to
1046 * ref/unref the MemoryRegions they get---unless they use them
1047 * outside the iothread mutex, in which case precise reference
1048 * counting is necessary.
1051 flatview_unref(old_view
);
1055 static void address_space_update_topology(AddressSpace
*as
)
1057 MemoryRegion
*physmr
= memory_region_get_flatview_root(as
->root
);
1060 if (!g_hash_table_lookup(flat_views
, physmr
)) {
1061 generate_memory_topology(physmr
);
1063 address_space_set_flatview(as
);
1066 void memory_region_transaction_begin(void)
1068 qemu_flush_coalesced_mmio_buffer();
1069 ++memory_region_transaction_depth
;
1072 void memory_region_transaction_commit(void)
1076 assert(memory_region_transaction_depth
);
1077 assert(qemu_mutex_iothread_locked());
1079 --memory_region_transaction_depth
;
1080 if (!memory_region_transaction_depth
) {
1081 if (memory_region_update_pending
) {
1084 MEMORY_LISTENER_CALL_GLOBAL(begin
, Forward
);
1086 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
1087 address_space_set_flatview(as
);
1088 address_space_update_ioeventfds(as
);
1090 memory_region_update_pending
= false;
1091 ioeventfd_update_pending
= false;
1092 MEMORY_LISTENER_CALL_GLOBAL(commit
, Forward
);
1093 } else if (ioeventfd_update_pending
) {
1094 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
1095 address_space_update_ioeventfds(as
);
1097 ioeventfd_update_pending
= false;
1102 static void memory_region_destructor_none(MemoryRegion
*mr
)
1106 static void memory_region_destructor_ram(MemoryRegion
*mr
)
1108 qemu_ram_free(mr
->ram_block
);
1111 static bool memory_region_need_escape(char c
)
1113 return c
== '/' || c
== '[' || c
== '\\' || c
== ']';
1116 static char *memory_region_escape_name(const char *name
)
1123 for (p
= name
; *p
; p
++) {
1124 bytes
+= memory_region_need_escape(*p
) ? 4 : 1;
1126 if (bytes
== p
- name
) {
1127 return g_memdup(name
, bytes
+ 1);
1130 escaped
= g_malloc(bytes
+ 1);
1131 for (p
= name
, q
= escaped
; *p
; p
++) {
1133 if (unlikely(memory_region_need_escape(c
))) {
1136 *q
++ = "0123456789abcdef"[c
>> 4];
1137 c
= "0123456789abcdef"[c
& 15];
1145 static void memory_region_do_init(MemoryRegion
*mr
,
1150 mr
->size
= int128_make64(size
);
1151 if (size
== UINT64_MAX
) {
1152 mr
->size
= int128_2_64();
1154 mr
->name
= g_strdup(name
);
1156 mr
->ram_block
= NULL
;
1159 char *escaped_name
= memory_region_escape_name(name
);
1160 char *name_array
= g_strdup_printf("%s[*]", escaped_name
);
1163 owner
= container_get(qdev_get_machine(), "/unattached");
1166 object_property_add_child(owner
, name_array
, OBJECT(mr
), &error_abort
);
1167 object_unref(OBJECT(mr
));
1169 g_free(escaped_name
);
1173 void memory_region_init(MemoryRegion
*mr
,
1178 object_initialize(mr
, sizeof(*mr
), TYPE_MEMORY_REGION
);
1179 memory_region_do_init(mr
, owner
, name
, size
);
1182 static void memory_region_get_addr(Object
*obj
, Visitor
*v
, const char *name
,
1183 void *opaque
, Error
**errp
)
1185 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1186 uint64_t value
= mr
->addr
;
1188 visit_type_uint64(v
, name
, &value
, errp
);
1191 static void memory_region_get_container(Object
*obj
, Visitor
*v
,
1192 const char *name
, void *opaque
,
1195 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1196 gchar
*path
= (gchar
*)"";
1198 if (mr
->container
) {
1199 path
= object_get_canonical_path(OBJECT(mr
->container
));
1201 visit_type_str(v
, name
, &path
, errp
);
1202 if (mr
->container
) {
1207 static Object
*memory_region_resolve_container(Object
*obj
, void *opaque
,
1210 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1212 return OBJECT(mr
->container
);
1215 static void memory_region_get_priority(Object
*obj
, Visitor
*v
,
1216 const char *name
, void *opaque
,
1219 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1220 int32_t value
= mr
->priority
;
1222 visit_type_int32(v
, name
, &value
, errp
);
1225 static void memory_region_get_size(Object
*obj
, Visitor
*v
, const char *name
,
1226 void *opaque
, Error
**errp
)
1228 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1229 uint64_t value
= memory_region_size(mr
);
1231 visit_type_uint64(v
, name
, &value
, errp
);
1234 static void memory_region_initfn(Object
*obj
)
1236 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1239 mr
->ops
= &unassigned_mem_ops
;
1241 mr
->romd_mode
= true;
1242 mr
->global_locking
= true;
1243 mr
->destructor
= memory_region_destructor_none
;
1244 QTAILQ_INIT(&mr
->subregions
);
1245 QTAILQ_INIT(&mr
->coalesced
);
1247 op
= object_property_add(OBJECT(mr
), "container",
1248 "link<" TYPE_MEMORY_REGION
">",
1249 memory_region_get_container
,
1250 NULL
, /* memory_region_set_container */
1251 NULL
, NULL
, &error_abort
);
1252 op
->resolve
= memory_region_resolve_container
;
1254 object_property_add(OBJECT(mr
), "addr", "uint64",
1255 memory_region_get_addr
,
1256 NULL
, /* memory_region_set_addr */
1257 NULL
, NULL
, &error_abort
);
1258 object_property_add(OBJECT(mr
), "priority", "uint32",
1259 memory_region_get_priority
,
1260 NULL
, /* memory_region_set_priority */
1261 NULL
, NULL
, &error_abort
);
1262 object_property_add(OBJECT(mr
), "size", "uint64",
1263 memory_region_get_size
,
1264 NULL
, /* memory_region_set_size, */
1265 NULL
, NULL
, &error_abort
);
1268 static int qemu_target_backtrace(target_ulong
*array
, size_t size
)
1272 #if defined(TARGET_ARM)
1273 CPUArchState
*env
= current_cpu
->env_ptr
;
1274 array
[0] = env
->regs
[15];
1275 array
[1] = env
->regs
[14];
1276 #elif defined(TARGET_MIPS)
1277 CPUArchState
*env
= current_cpu
->env_ptr
;
1278 array
[0] = env
->active_tc
.PC
;
1279 array
[1] = env
->active_tc
.gpr
[31];
1289 #include "disas/disas.h"
1290 const char *qemu_sprint_backtrace(char *buffer
, size_t length
)
1294 target_ulong caller
[2];
1296 qemu_target_backtrace(caller
, 2);
1297 symbol
= lookup_symbol(caller
[0]);
1298 p
+= sprintf(p
, "[%s]", symbol
);
1299 symbol
= lookup_symbol(caller
[1]);
1300 p
+= sprintf(p
, "[%s]", symbol
);
1302 p
+= sprintf(p
, "[cpu not running]");
1304 assert((p
- buffer
) < length
);
1308 static void iommu_memory_region_initfn(Object
*obj
)
1310 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1312 mr
->is_iommu
= true;
1315 static uint64_t unassigned_mem_read(void *opaque
, hwaddr addr
,
1318 if (trace_unassigned
) {
1320 fprintf(stderr
, "Unassigned mem read " TARGET_FMT_plx
" %s\n",
1321 addr
, qemu_sprint_backtrace(buffer
, sizeof(buffer
)));
1324 if (current_cpu
!= NULL
) {
1325 bool is_exec
= current_cpu
->mem_io_access_type
== MMU_INST_FETCH
;
1326 cpu_unassigned_access(current_cpu
, addr
, false, is_exec
, 0, size
);
1331 static void unassigned_mem_write(void *opaque
, hwaddr addr
,
1332 uint64_t val
, unsigned size
)
1334 if (trace_unassigned
) {
1336 fprintf(stderr
, "Unassigned mem write " TARGET_FMT_plx
1337 " = 0x%" PRIx64
" %s\n",
1338 addr
, val
, qemu_sprint_backtrace(buffer
, sizeof(buffer
)));
1340 if (current_cpu
!= NULL
) {
1341 cpu_unassigned_access(current_cpu
, addr
, true, false, 0, size
);
1345 static bool unassigned_mem_accepts(void *opaque
, hwaddr addr
,
1346 unsigned size
, bool is_write
,
1352 const MemoryRegionOps unassigned_mem_ops
= {
1353 .valid
.accepts
= unassigned_mem_accepts
,
1354 .endianness
= DEVICE_NATIVE_ENDIAN
,
1357 static uint64_t memory_region_ram_device_read(void *opaque
,
1358 hwaddr addr
, unsigned size
)
1360 MemoryRegion
*mr
= opaque
;
1361 uint64_t data
= (uint64_t)~0;
1365 data
= *(uint8_t *)(mr
->ram_block
->host
+ addr
);
1368 data
= *(uint16_t *)(mr
->ram_block
->host
+ addr
);
1371 data
= *(uint32_t *)(mr
->ram_block
->host
+ addr
);
1374 data
= *(uint64_t *)(mr
->ram_block
->host
+ addr
);
1378 trace_memory_region_ram_device_read(get_cpu_index(), mr
, addr
, data
, size
);
1383 static void memory_region_ram_device_write(void *opaque
, hwaddr addr
,
1384 uint64_t data
, unsigned size
)
1386 MemoryRegion
*mr
= opaque
;
1388 trace_memory_region_ram_device_write(get_cpu_index(), mr
, addr
, data
, size
);
1392 *(uint8_t *)(mr
->ram_block
->host
+ addr
) = (uint8_t)data
;
1395 *(uint16_t *)(mr
->ram_block
->host
+ addr
) = (uint16_t)data
;
1398 *(uint32_t *)(mr
->ram_block
->host
+ addr
) = (uint32_t)data
;
1401 *(uint64_t *)(mr
->ram_block
->host
+ addr
) = data
;
1406 static const MemoryRegionOps ram_device_mem_ops
= {
1407 .read
= memory_region_ram_device_read
,
1408 .write
= memory_region_ram_device_write
,
1409 .endianness
= DEVICE_HOST_ENDIAN
,
1411 .min_access_size
= 1,
1412 .max_access_size
= 8,
1416 .min_access_size
= 1,
1417 .max_access_size
= 8,
1422 bool memory_region_access_valid(MemoryRegion
*mr
,
1428 int access_size_min
, access_size_max
;
1431 if (!mr
->ops
->valid
.unaligned
&& (addr
& (size
- 1))) {
1432 fprintf(stderr
, "Misaligned i/o to address %08" HWADDR_PRIx
1433 " with size %u for memory region %s\n",
1434 addr
, size
, mr
->name
);
1438 if (!mr
->ops
->valid
.accepts
) {
1442 access_size_min
= mr
->ops
->valid
.min_access_size
;
1443 if (!mr
->ops
->valid
.min_access_size
) {
1444 access_size_min
= 1;
1447 access_size_max
= mr
->ops
->valid
.max_access_size
;
1448 if (!mr
->ops
->valid
.max_access_size
) {
1449 access_size_max
= 4;
1452 access_size
= MAX(MIN(size
, access_size_max
), access_size_min
);
1453 for (i
= 0; i
< size
; i
+= access_size
) {
1454 if (!mr
->ops
->valid
.accepts(mr
->opaque
, addr
+ i
, access_size
,
1463 static MemTxResult
memory_region_dispatch_read1(MemoryRegion
*mr
,
1471 if (mr
->ops
->read
) {
1472 return access_with_adjusted_size(addr
, pval
, size
,
1473 mr
->ops
->impl
.min_access_size
,
1474 mr
->ops
->impl
.max_access_size
,
1475 memory_region_read_accessor
,
1478 return access_with_adjusted_size(addr
, pval
, size
,
1479 mr
->ops
->impl
.min_access_size
,
1480 mr
->ops
->impl
.max_access_size
,
1481 memory_region_read_with_attrs_accessor
,
1486 MemTxResult
memory_region_dispatch_read(MemoryRegion
*mr
,
1494 if (!memory_region_access_valid(mr
, addr
, size
, false, attrs
)) {
1495 *pval
= unassigned_mem_read(mr
, addr
, size
);
1496 return MEMTX_DECODE_ERROR
;
1499 r
= memory_region_dispatch_read1(mr
, addr
, pval
, size
, attrs
);
1500 adjust_endianness(mr
, pval
, size
);
1504 /* Return true if an eventfd was signalled */
1505 static bool memory_region_dispatch_write_eventfds(MemoryRegion
*mr
,
1511 MemoryRegionIoeventfd ioeventfd
= {
1512 .addr
= addrrange_make(int128_make64(addr
), int128_make64(size
)),
1517 for (i
= 0; i
< mr
->ioeventfd_nb
; i
++) {
1518 ioeventfd
.match_data
= mr
->ioeventfds
[i
].match_data
;
1519 ioeventfd
.e
= mr
->ioeventfds
[i
].e
;
1521 if (memory_region_ioeventfd_equal(&ioeventfd
, &mr
->ioeventfds
[i
])) {
1522 event_notifier_set(ioeventfd
.e
);
1530 MemTxResult
memory_region_dispatch_write(MemoryRegion
*mr
,
1536 if (!memory_region_access_valid(mr
, addr
, size
, true, attrs
)) {
1537 unassigned_mem_write(mr
, addr
, data
, size
);
1538 return MEMTX_DECODE_ERROR
;
1541 adjust_endianness(mr
, &data
, size
);
1543 if ((!kvm_eventfds_enabled()) &&
1544 memory_region_dispatch_write_eventfds(mr
, addr
, data
, size
, attrs
)) {
1548 if (mr
->ops
->write
) {
1549 return access_with_adjusted_size(addr
, &data
, size
,
1550 mr
->ops
->impl
.min_access_size
,
1551 mr
->ops
->impl
.max_access_size
,
1552 memory_region_write_accessor
, mr
,
1556 access_with_adjusted_size(addr
, &data
, size
,
1557 mr
->ops
->impl
.min_access_size
,
1558 mr
->ops
->impl
.max_access_size
,
1559 memory_region_write_with_attrs_accessor
,
1564 void memory_region_init_io(MemoryRegion
*mr
,
1566 const MemoryRegionOps
*ops
,
1571 memory_region_init(mr
, owner
, name
, size
);
1572 mr
->ops
= ops
? ops
: &unassigned_mem_ops
;
1573 mr
->opaque
= opaque
;
1574 mr
->terminates
= true;
1577 void memory_region_init_ram_nomigrate(MemoryRegion
*mr
,
1583 memory_region_init_ram_shared_nomigrate(mr
, owner
, name
, size
, false, errp
);
1586 void memory_region_init_ram_shared_nomigrate(MemoryRegion
*mr
,
1594 memory_region_init(mr
, owner
, name
, size
);
1596 mr
->terminates
= true;
1597 mr
->destructor
= memory_region_destructor_ram
;
1598 mr
->ram_block
= qemu_ram_alloc(size
, share
, mr
, &err
);
1599 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1601 mr
->size
= int128_zero();
1602 object_unparent(OBJECT(mr
));
1603 error_propagate(errp
, err
);
1607 void memory_region_init_resizeable_ram(MemoryRegion
*mr
,
1612 void (*resized
)(const char*,
1618 memory_region_init(mr
, owner
, name
, size
);
1620 mr
->terminates
= true;
1621 mr
->destructor
= memory_region_destructor_ram
;
1622 mr
->ram_block
= qemu_ram_alloc_resizeable(size
, max_size
, resized
,
1624 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1626 mr
->size
= int128_zero();
1627 object_unparent(OBJECT(mr
));
1628 error_propagate(errp
, err
);
1633 void memory_region_init_ram_from_file(MemoryRegion
*mr
,
1634 struct Object
*owner
,
1643 memory_region_init(mr
, owner
, name
, size
);
1645 mr
->terminates
= true;
1646 mr
->destructor
= memory_region_destructor_ram
;
1648 mr
->ram_block
= qemu_ram_alloc_from_file(size
, mr
, ram_flags
, path
, &err
);
1649 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1651 mr
->size
= int128_zero();
1652 object_unparent(OBJECT(mr
));
1653 error_propagate(errp
, err
);
1657 void memory_region_init_ram_from_fd(MemoryRegion
*mr
,
1658 struct Object
*owner
,
1666 memory_region_init(mr
, owner
, name
, size
);
1668 mr
->terminates
= true;
1669 mr
->destructor
= memory_region_destructor_ram
;
1670 mr
->ram_block
= qemu_ram_alloc_from_fd(size
, mr
,
1671 share
? RAM_SHARED
: 0,
1673 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1675 mr
->size
= int128_zero();
1676 object_unparent(OBJECT(mr
));
1677 error_propagate(errp
, err
);
1682 void memory_region_init_ram_ptr(MemoryRegion
*mr
,
1688 memory_region_init(mr
, owner
, name
, size
);
1690 mr
->terminates
= true;
1691 mr
->destructor
= memory_region_destructor_ram
;
1692 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1694 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1695 assert(ptr
!= NULL
);
1696 mr
->ram_block
= qemu_ram_alloc_from_ptr(size
, ptr
, mr
, &error_fatal
);
1699 void memory_region_init_ram_device_ptr(MemoryRegion
*mr
,
1705 memory_region_init_ram_ptr(mr
, owner
, name
, size
, ptr
);
1706 mr
->ram_device
= true;
1707 mr
->ops
= &ram_device_mem_ops
;
1711 void memory_region_init_alias(MemoryRegion
*mr
,
1718 memory_region_init(mr
, owner
, name
, size
);
1720 mr
->alias_offset
= offset
;
1723 void memory_region_init_rom_nomigrate(MemoryRegion
*mr
,
1724 struct Object
*owner
,
1730 memory_region_init(mr
, owner
, name
, size
);
1732 mr
->readonly
= true;
1733 mr
->terminates
= true;
1734 mr
->destructor
= memory_region_destructor_ram
;
1735 mr
->ram_block
= qemu_ram_alloc(size
, false, mr
, &err
);
1736 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1738 mr
->size
= int128_zero();
1739 object_unparent(OBJECT(mr
));
1740 error_propagate(errp
, err
);
1744 void memory_region_init_rom_device_nomigrate(MemoryRegion
*mr
,
1746 const MemoryRegionOps
*ops
,
1754 memory_region_init(mr
, owner
, name
, size
);
1756 mr
->opaque
= opaque
;
1757 mr
->terminates
= true;
1758 mr
->rom_device
= true;
1759 mr
->destructor
= memory_region_destructor_ram
;
1760 mr
->ram_block
= qemu_ram_alloc(size
, false, mr
, &err
);
1762 mr
->size
= int128_zero();
1763 object_unparent(OBJECT(mr
));
1764 error_propagate(errp
, err
);
1768 void memory_region_init_iommu(void *_iommu_mr
,
1769 size_t instance_size
,
1770 const char *mrtypename
,
1775 struct IOMMUMemoryRegion
*iommu_mr
;
1776 struct MemoryRegion
*mr
;
1778 object_initialize(_iommu_mr
, instance_size
, mrtypename
);
1779 mr
= MEMORY_REGION(_iommu_mr
);
1780 memory_region_do_init(mr
, owner
, name
, size
);
1781 iommu_mr
= IOMMU_MEMORY_REGION(mr
);
1782 mr
->terminates
= true; /* then re-forwards */
1783 QLIST_INIT(&iommu_mr
->iommu_notify
);
1784 iommu_mr
->iommu_notify_flags
= IOMMU_NOTIFIER_NONE
;
1787 static void memory_region_finalize(Object
*obj
)
1789 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1791 assert(!mr
->container
);
1793 /* We know the region is not visible in any address space (it
1794 * does not have a container and cannot be a root either because
1795 * it has no references, so we can blindly clear mr->enabled.
1796 * memory_region_set_enabled instead could trigger a transaction
1797 * and cause an infinite loop.
1799 mr
->enabled
= false;
1800 memory_region_transaction_begin();
1801 while (!QTAILQ_EMPTY(&mr
->subregions
)) {
1802 MemoryRegion
*subregion
= QTAILQ_FIRST(&mr
->subregions
);
1803 memory_region_del_subregion(mr
, subregion
);
1805 memory_region_transaction_commit();
1808 memory_region_clear_coalescing(mr
);
1809 g_free((char *)mr
->name
);
1810 g_free(mr
->ioeventfds
);
1813 Object
*memory_region_owner(MemoryRegion
*mr
)
1815 Object
*obj
= OBJECT(mr
);
1819 void memory_region_ref(MemoryRegion
*mr
)
1821 /* MMIO callbacks most likely will access data that belongs
1822 * to the owner, hence the need to ref/unref the owner whenever
1823 * the memory region is in use.
1825 * The memory region is a child of its owner. As long as the
1826 * owner doesn't call unparent itself on the memory region,
1827 * ref-ing the owner will also keep the memory region alive.
1828 * Memory regions without an owner are supposed to never go away;
1829 * we do not ref/unref them because it slows down DMA sensibly.
1831 if (mr
&& mr
->owner
) {
1832 object_ref(mr
->owner
);
1836 void memory_region_unref(MemoryRegion
*mr
)
1838 if (mr
&& mr
->owner
) {
1839 object_unref(mr
->owner
);
1843 uint64_t memory_region_size(MemoryRegion
*mr
)
1845 if (int128_eq(mr
->size
, int128_2_64())) {
1848 return int128_get64(mr
->size
);
1851 const char *memory_region_name(const MemoryRegion
*mr
)
1854 ((MemoryRegion
*)mr
)->name
=
1855 object_get_canonical_path_component(OBJECT(mr
));
1860 bool memory_region_is_ram_device(MemoryRegion
*mr
)
1862 return mr
->ram_device
;
1865 uint8_t memory_region_get_dirty_log_mask(MemoryRegion
*mr
)
1867 uint8_t mask
= mr
->dirty_log_mask
;
1868 if (global_dirty_log
&& mr
->ram_block
) {
1869 mask
|= (1 << DIRTY_MEMORY_MIGRATION
);
1874 bool memory_region_is_logging(MemoryRegion
*mr
, uint8_t client
)
1876 return memory_region_get_dirty_log_mask(mr
) & (1 << client
);
1879 static void memory_region_update_iommu_notify_flags(IOMMUMemoryRegion
*iommu_mr
)
1881 IOMMUNotifierFlag flags
= IOMMU_NOTIFIER_NONE
;
1882 IOMMUNotifier
*iommu_notifier
;
1883 IOMMUMemoryRegionClass
*imrc
= IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr
);
1885 IOMMU_NOTIFIER_FOREACH(iommu_notifier
, iommu_mr
) {
1886 flags
|= iommu_notifier
->notifier_flags
;
1889 if (flags
!= iommu_mr
->iommu_notify_flags
&& imrc
->notify_flag_changed
) {
1890 imrc
->notify_flag_changed(iommu_mr
,
1891 iommu_mr
->iommu_notify_flags
,
1895 iommu_mr
->iommu_notify_flags
= flags
;
1898 void memory_region_register_iommu_notifier(MemoryRegion
*mr
,
1901 IOMMUMemoryRegion
*iommu_mr
;
1904 memory_region_register_iommu_notifier(mr
->alias
, n
);
1908 /* We need to register for at least one bitfield */
1909 iommu_mr
= IOMMU_MEMORY_REGION(mr
);
1910 assert(n
->notifier_flags
!= IOMMU_NOTIFIER_NONE
);
1911 assert(n
->start
<= n
->end
);
1912 assert(n
->iommu_idx
>= 0 &&
1913 n
->iommu_idx
< memory_region_iommu_num_indexes(iommu_mr
));
1915 QLIST_INSERT_HEAD(&iommu_mr
->iommu_notify
, n
, node
);
1916 memory_region_update_iommu_notify_flags(iommu_mr
);
1919 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion
*iommu_mr
)
1921 IOMMUMemoryRegionClass
*imrc
= IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr
);
1923 if (imrc
->get_min_page_size
) {
1924 return imrc
->get_min_page_size(iommu_mr
);
1926 return TARGET_PAGE_SIZE
;
1929 void memory_region_iommu_replay(IOMMUMemoryRegion
*iommu_mr
, IOMMUNotifier
*n
)
1931 MemoryRegion
*mr
= MEMORY_REGION(iommu_mr
);
1932 IOMMUMemoryRegionClass
*imrc
= IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr
);
1933 hwaddr addr
, granularity
;
1934 IOMMUTLBEntry iotlb
;
1936 /* If the IOMMU has its own replay callback, override */
1938 imrc
->replay(iommu_mr
, n
);
1942 granularity
= memory_region_iommu_get_min_page_size(iommu_mr
);
1944 for (addr
= 0; addr
< memory_region_size(mr
); addr
+= granularity
) {
1945 iotlb
= imrc
->translate(iommu_mr
, addr
, IOMMU_NONE
, n
->iommu_idx
);
1946 if (iotlb
.perm
!= IOMMU_NONE
) {
1947 n
->notify(n
, &iotlb
);
1950 /* if (2^64 - MR size) < granularity, it's possible to get an
1951 * infinite loop here. This should catch such a wraparound */
1952 if ((addr
+ granularity
) < addr
) {
1958 void memory_region_iommu_replay_all(IOMMUMemoryRegion
*iommu_mr
)
1960 IOMMUNotifier
*notifier
;
1962 IOMMU_NOTIFIER_FOREACH(notifier
, iommu_mr
) {
1963 memory_region_iommu_replay(iommu_mr
, notifier
);
1967 void memory_region_unregister_iommu_notifier(MemoryRegion
*mr
,
1970 IOMMUMemoryRegion
*iommu_mr
;
1973 memory_region_unregister_iommu_notifier(mr
->alias
, n
);
1976 QLIST_REMOVE(n
, node
);
1977 iommu_mr
= IOMMU_MEMORY_REGION(mr
);
1978 memory_region_update_iommu_notify_flags(iommu_mr
);
1981 void memory_region_notify_one(IOMMUNotifier
*notifier
,
1982 IOMMUTLBEntry
*entry
)
1984 IOMMUNotifierFlag request_flags
;
1987 * Skip the notification if the notification does not overlap
1988 * with registered range.
1990 if (notifier
->start
> entry
->iova
+ entry
->addr_mask
||
1991 notifier
->end
< entry
->iova
) {
1995 if (entry
->perm
& IOMMU_RW
) {
1996 request_flags
= IOMMU_NOTIFIER_MAP
;
1998 request_flags
= IOMMU_NOTIFIER_UNMAP
;
2001 if (notifier
->notifier_flags
& request_flags
) {
2002 notifier
->notify(notifier
, entry
);
2006 void memory_region_notify_iommu(IOMMUMemoryRegion
*iommu_mr
,
2008 IOMMUTLBEntry entry
)
2010 IOMMUNotifier
*iommu_notifier
;
2012 assert(memory_region_is_iommu(MEMORY_REGION(iommu_mr
)));
2014 IOMMU_NOTIFIER_FOREACH(iommu_notifier
, iommu_mr
) {
2015 if (iommu_notifier
->iommu_idx
== iommu_idx
) {
2016 memory_region_notify_one(iommu_notifier
, &entry
);
2021 int memory_region_iommu_get_attr(IOMMUMemoryRegion
*iommu_mr
,
2022 enum IOMMUMemoryRegionAttr attr
,
2025 IOMMUMemoryRegionClass
*imrc
= IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr
);
2027 if (!imrc
->get_attr
) {
2031 return imrc
->get_attr(iommu_mr
, attr
, data
);
2034 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion
*iommu_mr
,
2037 IOMMUMemoryRegionClass
*imrc
= IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr
);
2039 if (!imrc
->attrs_to_index
) {
2043 return imrc
->attrs_to_index(iommu_mr
, attrs
);
2046 int memory_region_iommu_num_indexes(IOMMUMemoryRegion
*iommu_mr
)
2048 IOMMUMemoryRegionClass
*imrc
= IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr
);
2050 if (!imrc
->num_indexes
) {
2054 return imrc
->num_indexes(iommu_mr
);
2057 void memory_region_set_log(MemoryRegion
*mr
, bool log
, unsigned client
)
2059 uint8_t mask
= 1 << client
;
2060 uint8_t old_logging
;
2062 assert(client
== DIRTY_MEMORY_VGA
);
2063 old_logging
= mr
->vga_logging_count
;
2064 mr
->vga_logging_count
+= log
? 1 : -1;
2065 if (!!old_logging
== !!mr
->vga_logging_count
) {
2069 memory_region_transaction_begin();
2070 mr
->dirty_log_mask
= (mr
->dirty_log_mask
& ~mask
) | (log
* mask
);
2071 memory_region_update_pending
|= mr
->enabled
;
2072 memory_region_transaction_commit();
2075 bool memory_region_get_dirty(MemoryRegion
*mr
, hwaddr addr
,
2076 hwaddr size
, unsigned client
)
2078 assert(mr
->ram_block
);
2079 return cpu_physical_memory_get_dirty(memory_region_get_ram_addr(mr
) + addr
,
2083 void memory_region_set_dirty(MemoryRegion
*mr
, hwaddr addr
,
2086 assert(mr
->ram_block
);
2087 cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr
) + addr
,
2089 memory_region_get_dirty_log_mask(mr
));
2092 static void memory_region_sync_dirty_bitmap(MemoryRegion
*mr
)
2094 MemoryListener
*listener
;
2099 /* If the same address space has multiple log_sync listeners, we
2100 * visit that address space's FlatView multiple times. But because
2101 * log_sync listeners are rare, it's still cheaper than walking each
2102 * address space once.
2104 QTAILQ_FOREACH(listener
, &memory_listeners
, link
) {
2105 if (!listener
->log_sync
) {
2108 as
= listener
->address_space
;
2109 view
= address_space_get_flatview(as
);
2110 FOR_EACH_FLAT_RANGE(fr
, view
) {
2111 if (fr
->dirty_log_mask
&& (!mr
|| fr
->mr
== mr
)) {
2112 MemoryRegionSection mrs
= section_from_flat_range(fr
, view
);
2113 listener
->log_sync(listener
, &mrs
);
2116 flatview_unref(view
);
2120 DirtyBitmapSnapshot
*memory_region_snapshot_and_clear_dirty(MemoryRegion
*mr
,
2125 assert(mr
->ram_block
);
2126 memory_region_sync_dirty_bitmap(mr
);
2127 return cpu_physical_memory_snapshot_and_clear_dirty(
2128 memory_region_get_ram_addr(mr
) + addr
, size
, client
);
2131 bool memory_region_snapshot_get_dirty(MemoryRegion
*mr
, DirtyBitmapSnapshot
*snap
,
2132 hwaddr addr
, hwaddr size
)
2134 assert(mr
->ram_block
);
2135 return cpu_physical_memory_snapshot_get_dirty(snap
,
2136 memory_region_get_ram_addr(mr
) + addr
, size
);
2139 void memory_region_set_readonly(MemoryRegion
*mr
, bool readonly
)
2141 if (mr
->readonly
!= readonly
) {
2142 memory_region_transaction_begin();
2143 mr
->readonly
= readonly
;
2144 memory_region_update_pending
|= mr
->enabled
;
2145 memory_region_transaction_commit();
2149 void memory_region_set_nonvolatile(MemoryRegion
*mr
, bool nonvolatile
)
2151 if (mr
->nonvolatile
!= nonvolatile
) {
2152 memory_region_transaction_begin();
2153 mr
->nonvolatile
= nonvolatile
;
2154 memory_region_update_pending
|= mr
->enabled
;
2155 memory_region_transaction_commit();
2159 void memory_region_rom_device_set_romd(MemoryRegion
*mr
, bool romd_mode
)
2161 if (mr
->romd_mode
!= romd_mode
) {
2162 memory_region_transaction_begin();
2163 mr
->romd_mode
= romd_mode
;
2164 memory_region_update_pending
|= mr
->enabled
;
2165 memory_region_transaction_commit();
2169 void memory_region_reset_dirty(MemoryRegion
*mr
, hwaddr addr
,
2170 hwaddr size
, unsigned client
)
2172 assert(mr
->ram_block
);
2173 cpu_physical_memory_test_and_clear_dirty(
2174 memory_region_get_ram_addr(mr
) + addr
, size
, client
);
2177 int memory_region_get_fd(MemoryRegion
*mr
)
2185 fd
= mr
->ram_block
->fd
;
2191 void *memory_region_get_ram_ptr(MemoryRegion
*mr
)
2194 uint64_t offset
= 0;
2198 offset
+= mr
->alias_offset
;
2201 assert(mr
->ram_block
);
2202 ptr
= qemu_map_ram_ptr(mr
->ram_block
, offset
);
2208 MemoryRegion
*memory_region_from_host(void *ptr
, ram_addr_t
*offset
)
2212 block
= qemu_ram_block_from_host(ptr
, false, offset
);
2220 ram_addr_t
memory_region_get_ram_addr(MemoryRegion
*mr
)
2222 return mr
->ram_block
? mr
->ram_block
->offset
: RAM_ADDR_INVALID
;
2225 void memory_region_ram_resize(MemoryRegion
*mr
, ram_addr_t newsize
, Error
**errp
)
2227 assert(mr
->ram_block
);
2229 qemu_ram_resize(mr
->ram_block
, newsize
, errp
);
2232 static void memory_region_update_coalesced_range_as(MemoryRegion
*mr
, AddressSpace
*as
)
2237 view
= address_space_get_flatview(as
);
2238 FOR_EACH_FLAT_RANGE(fr
, view
) {
2240 flat_range_coalesced_io_del(fr
, as
);
2241 flat_range_coalesced_io_add(fr
, as
);
2244 flatview_unref(view
);
2247 static void memory_region_update_coalesced_range(MemoryRegion
*mr
)
2251 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
2252 memory_region_update_coalesced_range_as(mr
, as
);
2256 void memory_region_set_coalescing(MemoryRegion
*mr
)
2258 memory_region_clear_coalescing(mr
);
2259 memory_region_add_coalescing(mr
, 0, int128_get64(mr
->size
));
2262 void memory_region_add_coalescing(MemoryRegion
*mr
,
2266 CoalescedMemoryRange
*cmr
= g_malloc(sizeof(*cmr
));
2268 cmr
->addr
= addrrange_make(int128_make64(offset
), int128_make64(size
));
2269 QTAILQ_INSERT_TAIL(&mr
->coalesced
, cmr
, link
);
2270 memory_region_update_coalesced_range(mr
);
2271 memory_region_set_flush_coalesced(mr
);
2274 void memory_region_clear_coalescing(MemoryRegion
*mr
)
2276 CoalescedMemoryRange
*cmr
;
2277 bool updated
= false;
2279 qemu_flush_coalesced_mmio_buffer();
2280 mr
->flush_coalesced_mmio
= false;
2282 while (!QTAILQ_EMPTY(&mr
->coalesced
)) {
2283 cmr
= QTAILQ_FIRST(&mr
->coalesced
);
2284 QTAILQ_REMOVE(&mr
->coalesced
, cmr
, link
);
2290 memory_region_update_coalesced_range(mr
);
2294 void memory_region_set_flush_coalesced(MemoryRegion
*mr
)
2296 mr
->flush_coalesced_mmio
= true;
2299 void memory_region_clear_flush_coalesced(MemoryRegion
*mr
)
2301 qemu_flush_coalesced_mmio_buffer();
2302 if (QTAILQ_EMPTY(&mr
->coalesced
)) {
2303 mr
->flush_coalesced_mmio
= false;
2307 void memory_region_clear_global_locking(MemoryRegion
*mr
)
2309 mr
->global_locking
= false;
2312 static bool userspace_eventfd_warning
;
2314 void memory_region_add_eventfd(MemoryRegion
*mr
,
2321 MemoryRegionIoeventfd mrfd
= {
2322 .addr
.start
= int128_make64(addr
),
2323 .addr
.size
= int128_make64(size
),
2324 .match_data
= match_data
,
2330 if (kvm_enabled() && (!(kvm_eventfds_enabled() ||
2331 userspace_eventfd_warning
))) {
2332 userspace_eventfd_warning
= true;
2333 error_report("Using eventfd without MMIO binding in KVM. "
2334 "Suboptimal performance expected");
2338 adjust_endianness(mr
, &mrfd
.data
, size
);
2340 memory_region_transaction_begin();
2341 for (i
= 0; i
< mr
->ioeventfd_nb
; ++i
) {
2342 if (memory_region_ioeventfd_before(&mrfd
, &mr
->ioeventfds
[i
])) {
2347 mr
->ioeventfds
= g_realloc(mr
->ioeventfds
,
2348 sizeof(*mr
->ioeventfds
) * mr
->ioeventfd_nb
);
2349 memmove(&mr
->ioeventfds
[i
+1], &mr
->ioeventfds
[i
],
2350 sizeof(*mr
->ioeventfds
) * (mr
->ioeventfd_nb
-1 - i
));
2351 mr
->ioeventfds
[i
] = mrfd
;
2352 ioeventfd_update_pending
|= mr
->enabled
;
2353 memory_region_transaction_commit();
2356 void memory_region_del_eventfd(MemoryRegion
*mr
,
2363 MemoryRegionIoeventfd mrfd
= {
2364 .addr
.start
= int128_make64(addr
),
2365 .addr
.size
= int128_make64(size
),
2366 .match_data
= match_data
,
2373 adjust_endianness(mr
, &mrfd
.data
, size
);
2375 memory_region_transaction_begin();
2376 for (i
= 0; i
< mr
->ioeventfd_nb
; ++i
) {
2377 if (memory_region_ioeventfd_equal(&mrfd
, &mr
->ioeventfds
[i
])) {
2381 assert(i
!= mr
->ioeventfd_nb
);
2382 memmove(&mr
->ioeventfds
[i
], &mr
->ioeventfds
[i
+1],
2383 sizeof(*mr
->ioeventfds
) * (mr
->ioeventfd_nb
- (i
+1)));
2385 mr
->ioeventfds
= g_realloc(mr
->ioeventfds
,
2386 sizeof(*mr
->ioeventfds
)*mr
->ioeventfd_nb
+ 1);
2387 ioeventfd_update_pending
|= mr
->enabled
;
2388 memory_region_transaction_commit();
2391 static void memory_region_update_container_subregions(MemoryRegion
*subregion
)
2393 MemoryRegion
*mr
= subregion
->container
;
2394 MemoryRegion
*other
;
2396 memory_region_transaction_begin();
2398 memory_region_ref(subregion
);
2399 QTAILQ_FOREACH(other
, &mr
->subregions
, subregions_link
) {
2400 if (subregion
->priority
>= other
->priority
) {
2401 QTAILQ_INSERT_BEFORE(other
, subregion
, subregions_link
);
2405 QTAILQ_INSERT_TAIL(&mr
->subregions
, subregion
, subregions_link
);
2407 memory_region_update_pending
|= mr
->enabled
&& subregion
->enabled
;
2408 memory_region_transaction_commit();
2411 static void memory_region_add_subregion_common(MemoryRegion
*mr
,
2413 MemoryRegion
*subregion
)
2415 assert(!subregion
->container
);
2416 subregion
->container
= mr
;
2417 subregion
->addr
= offset
;
2418 memory_region_update_container_subregions(subregion
);
2421 void memory_region_add_subregion(MemoryRegion
*mr
,
2423 MemoryRegion
*subregion
)
2425 subregion
->priority
= 0;
2426 memory_region_add_subregion_common(mr
, offset
, subregion
);
2429 void memory_region_add_subregion_overlap(MemoryRegion
*mr
,
2431 MemoryRegion
*subregion
,
2434 subregion
->priority
= priority
;
2435 memory_region_add_subregion_common(mr
, offset
, subregion
);
2438 void memory_region_del_subregion(MemoryRegion
*mr
,
2439 MemoryRegion
*subregion
)
2441 memory_region_transaction_begin();
2442 assert(subregion
->container
== mr
);
2443 subregion
->container
= NULL
;
2444 QTAILQ_REMOVE(&mr
->subregions
, subregion
, subregions_link
);
2445 memory_region_unref(subregion
);
2446 memory_region_update_pending
|= mr
->enabled
&& subregion
->enabled
;
2447 memory_region_transaction_commit();
2450 void memory_region_set_enabled(MemoryRegion
*mr
, bool enabled
)
2452 if (enabled
== mr
->enabled
) {
2455 memory_region_transaction_begin();
2456 mr
->enabled
= enabled
;
2457 memory_region_update_pending
= true;
2458 memory_region_transaction_commit();
2461 void memory_region_set_size(MemoryRegion
*mr
, uint64_t size
)
2463 Int128 s
= int128_make64(size
);
2465 if (size
== UINT64_MAX
) {
2468 if (int128_eq(s
, mr
->size
)) {
2471 memory_region_transaction_begin();
2473 memory_region_update_pending
= true;
2474 memory_region_transaction_commit();
2477 static void memory_region_readd_subregion(MemoryRegion
*mr
)
2479 MemoryRegion
*container
= mr
->container
;
2482 memory_region_transaction_begin();
2483 memory_region_ref(mr
);
2484 memory_region_del_subregion(container
, mr
);
2485 mr
->container
= container
;
2486 memory_region_update_container_subregions(mr
);
2487 memory_region_unref(mr
);
2488 memory_region_transaction_commit();
2492 void memory_region_set_address(MemoryRegion
*mr
, hwaddr addr
)
2494 if (addr
!= mr
->addr
) {
2496 memory_region_readd_subregion(mr
);
2500 void memory_region_set_alias_offset(MemoryRegion
*mr
, hwaddr offset
)
2504 if (offset
== mr
->alias_offset
) {
2508 memory_region_transaction_begin();
2509 mr
->alias_offset
= offset
;
2510 memory_region_update_pending
|= mr
->enabled
;
2511 memory_region_transaction_commit();
2514 uint64_t memory_region_get_alignment(const MemoryRegion
*mr
)
2519 static int cmp_flatrange_addr(const void *addr_
, const void *fr_
)
2521 const AddrRange
*addr
= addr_
;
2522 const FlatRange
*fr
= fr_
;
2524 if (int128_le(addrrange_end(*addr
), fr
->addr
.start
)) {
2526 } else if (int128_ge(addr
->start
, addrrange_end(fr
->addr
))) {
2532 static FlatRange
*flatview_lookup(FlatView
*view
, AddrRange addr
)
2534 return bsearch(&addr
, view
->ranges
, view
->nr
,
2535 sizeof(FlatRange
), cmp_flatrange_addr
);
2538 bool memory_region_is_mapped(MemoryRegion
*mr
)
2540 return mr
->container
? true : false;
2543 /* Same as memory_region_find, but it does not add a reference to the
2544 * returned region. It must be called from an RCU critical section.
2546 static MemoryRegionSection
memory_region_find_rcu(MemoryRegion
*mr
,
2547 hwaddr addr
, uint64_t size
)
2549 MemoryRegionSection ret
= { .mr
= NULL
};
2557 for (root
= mr
; root
->container
; ) {
2558 root
= root
->container
;
2562 as
= memory_region_to_address_space(root
);
2566 range
= addrrange_make(int128_make64(addr
), int128_make64(size
));
2568 view
= address_space_to_flatview(as
);
2569 fr
= flatview_lookup(view
, range
);
2574 while (fr
> view
->ranges
&& addrrange_intersects(fr
[-1].addr
, range
)) {
2580 range
= addrrange_intersection(range
, fr
->addr
);
2581 ret
.offset_within_region
= fr
->offset_in_region
;
2582 ret
.offset_within_region
+= int128_get64(int128_sub(range
.start
,
2584 ret
.size
= range
.size
;
2585 ret
.offset_within_address_space
= int128_get64(range
.start
);
2586 ret
.readonly
= fr
->readonly
;
2587 ret
.nonvolatile
= fr
->nonvolatile
;
2591 MemoryRegionSection
memory_region_find(MemoryRegion
*mr
,
2592 hwaddr addr
, uint64_t size
)
2594 MemoryRegionSection ret
;
2596 ret
= memory_region_find_rcu(mr
, addr
, size
);
2598 memory_region_ref(ret
.mr
);
2604 bool memory_region_present(MemoryRegion
*container
, hwaddr addr
)
2609 mr
= memory_region_find_rcu(container
, addr
, 1).mr
;
2611 return mr
&& mr
!= container
;
2614 void memory_global_dirty_log_sync(void)
2616 memory_region_sync_dirty_bitmap(NULL
);
2619 static VMChangeStateEntry
*vmstate_change
;
2621 void memory_global_dirty_log_start(void)
2623 if (vmstate_change
) {
2624 qemu_del_vm_change_state_handler(vmstate_change
);
2625 vmstate_change
= NULL
;
2628 global_dirty_log
= true;
2630 MEMORY_LISTENER_CALL_GLOBAL(log_global_start
, Forward
);
2632 /* Refresh DIRTY_LOG_MIGRATION bit. */
2633 memory_region_transaction_begin();
2634 memory_region_update_pending
= true;
2635 memory_region_transaction_commit();
2638 static void memory_global_dirty_log_do_stop(void)
2640 global_dirty_log
= false;
2642 /* Refresh DIRTY_LOG_MIGRATION bit. */
2643 memory_region_transaction_begin();
2644 memory_region_update_pending
= true;
2645 memory_region_transaction_commit();
2647 MEMORY_LISTENER_CALL_GLOBAL(log_global_stop
, Reverse
);
2650 static void memory_vm_change_state_handler(void *opaque
, int running
,
2654 memory_global_dirty_log_do_stop();
2656 if (vmstate_change
) {
2657 qemu_del_vm_change_state_handler(vmstate_change
);
2658 vmstate_change
= NULL
;
2663 void memory_global_dirty_log_stop(void)
2665 if (!runstate_is_running()) {
2666 if (vmstate_change
) {
2669 vmstate_change
= qemu_add_vm_change_state_handler(
2670 memory_vm_change_state_handler
, NULL
);
2674 memory_global_dirty_log_do_stop();
2677 static void listener_add_address_space(MemoryListener
*listener
,
2683 if (listener
->begin
) {
2684 listener
->begin(listener
);
2686 if (global_dirty_log
) {
2687 if (listener
->log_global_start
) {
2688 listener
->log_global_start(listener
);
2692 view
= address_space_get_flatview(as
);
2693 FOR_EACH_FLAT_RANGE(fr
, view
) {
2694 MemoryRegionSection section
= section_from_flat_range(fr
, view
);
2696 if (listener
->region_add
) {
2697 listener
->region_add(listener
, §ion
);
2699 if (fr
->dirty_log_mask
&& listener
->log_start
) {
2700 listener
->log_start(listener
, §ion
, 0, fr
->dirty_log_mask
);
2703 if (listener
->commit
) {
2704 listener
->commit(listener
);
2706 flatview_unref(view
);
2709 static void listener_del_address_space(MemoryListener
*listener
,
2715 if (listener
->begin
) {
2716 listener
->begin(listener
);
2718 view
= address_space_get_flatview(as
);
2719 FOR_EACH_FLAT_RANGE(fr
, view
) {
2720 MemoryRegionSection section
= section_from_flat_range(fr
, view
);
2722 if (fr
->dirty_log_mask
&& listener
->log_stop
) {
2723 listener
->log_stop(listener
, §ion
, fr
->dirty_log_mask
, 0);
2725 if (listener
->region_del
) {
2726 listener
->region_del(listener
, §ion
);
2729 if (listener
->commit
) {
2730 listener
->commit(listener
);
2732 flatview_unref(view
);
2735 void memory_listener_register(MemoryListener
*listener
, AddressSpace
*as
)
2737 MemoryListener
*other
= NULL
;
2739 listener
->address_space
= as
;
2740 if (QTAILQ_EMPTY(&memory_listeners
)
2741 || listener
->priority
>= QTAILQ_LAST(&memory_listeners
)->priority
) {
2742 QTAILQ_INSERT_TAIL(&memory_listeners
, listener
, link
);
2744 QTAILQ_FOREACH(other
, &memory_listeners
, link
) {
2745 if (listener
->priority
< other
->priority
) {
2749 QTAILQ_INSERT_BEFORE(other
, listener
, link
);
2752 if (QTAILQ_EMPTY(&as
->listeners
)
2753 || listener
->priority
>= QTAILQ_LAST(&as
->listeners
)->priority
) {
2754 QTAILQ_INSERT_TAIL(&as
->listeners
, listener
, link_as
);
2756 QTAILQ_FOREACH(other
, &as
->listeners
, link_as
) {
2757 if (listener
->priority
< other
->priority
) {
2761 QTAILQ_INSERT_BEFORE(other
, listener
, link_as
);
2764 listener_add_address_space(listener
, as
);
2767 void memory_listener_unregister(MemoryListener
*listener
)
2769 if (!listener
->address_space
) {
2773 listener_del_address_space(listener
, listener
->address_space
);
2774 QTAILQ_REMOVE(&memory_listeners
, listener
, link
);
2775 QTAILQ_REMOVE(&listener
->address_space
->listeners
, listener
, link_as
);
2776 listener
->address_space
= NULL
;
2779 void address_space_init(AddressSpace
*as
, MemoryRegion
*root
, const char *name
)
2781 memory_region_ref(root
);
2783 as
->current_map
= NULL
;
2784 as
->ioeventfd_nb
= 0;
2785 as
->ioeventfds
= NULL
;
2786 QTAILQ_INIT(&as
->listeners
);
2787 QTAILQ_INSERT_TAIL(&address_spaces
, as
, address_spaces_link
);
2788 as
->name
= g_strdup(name
? name
: "anonymous");
2789 address_space_update_topology(as
);
2790 address_space_update_ioeventfds(as
);
2793 static void do_address_space_destroy(AddressSpace
*as
)
2795 assert(QTAILQ_EMPTY(&as
->listeners
));
2797 flatview_unref(as
->current_map
);
2799 g_free(as
->ioeventfds
);
2800 memory_region_unref(as
->root
);
2803 void address_space_destroy(AddressSpace
*as
)
2805 MemoryRegion
*root
= as
->root
;
2807 /* Flush out anything from MemoryListeners listening in on this */
2808 memory_region_transaction_begin();
2810 memory_region_transaction_commit();
2811 QTAILQ_REMOVE(&address_spaces
, as
, address_spaces_link
);
2813 /* At this point, as->dispatch and as->current_map are dummy
2814 * entries that the guest should never use. Wait for the old
2815 * values to expire before freeing the data.
2818 call_rcu(as
, do_address_space_destroy
, rcu
);
2821 static const char *memory_region_type(MemoryRegion
*mr
)
2823 if (memory_region_is_ram_device(mr
)) {
2825 } else if (memory_region_is_romd(mr
)) {
2827 } else if (memory_region_is_rom(mr
)) {
2829 } else if (memory_region_is_ram(mr
)) {
2836 typedef struct MemoryRegionList MemoryRegionList
;
2838 struct MemoryRegionList
{
2839 const MemoryRegion
*mr
;
2840 QTAILQ_ENTRY(MemoryRegionList
) mrqueue
;
2843 typedef QTAILQ_HEAD(, MemoryRegionList
) MemoryRegionListHead
;
2845 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
2846 int128_sub((size), int128_one())) : 0)
2847 #define MTREE_INDENT " "
2849 static void mtree_expand_owner(fprintf_function mon_printf
, void *f
,
2850 const char *label
, Object
*obj
)
2852 DeviceState
*dev
= (DeviceState
*) object_dynamic_cast(obj
, TYPE_DEVICE
);
2854 mon_printf(f
, " %s:{%s", label
, dev
? "dev" : "obj");
2855 if (dev
&& dev
->id
) {
2856 mon_printf(f
, " id=%s", dev
->id
);
2858 gchar
*canonical_path
= object_get_canonical_path(obj
);
2859 if (canonical_path
) {
2860 mon_printf(f
, " path=%s", canonical_path
);
2861 g_free(canonical_path
);
2863 mon_printf(f
, " type=%s", object_get_typename(obj
));
2869 static void mtree_print_mr_owner(fprintf_function mon_printf
, void *f
,
2870 const MemoryRegion
*mr
)
2872 Object
*owner
= mr
->owner
;
2873 Object
*parent
= memory_region_owner((MemoryRegion
*)mr
);
2875 if (!owner
&& !parent
) {
2876 mon_printf(f
, " orphan");
2880 mtree_expand_owner(mon_printf
, f
, "owner", owner
);
2882 if (parent
&& parent
!= owner
) {
2883 mtree_expand_owner(mon_printf
, f
, "parent", parent
);
2887 static void mtree_print_mr(fprintf_function mon_printf
, void *f
,
2888 const MemoryRegion
*mr
, unsigned int level
,
2890 MemoryRegionListHead
*alias_print_queue
,
2893 MemoryRegionList
*new_ml
, *ml
, *next_ml
;
2894 MemoryRegionListHead submr_print_queue
;
2895 const MemoryRegion
*submr
;
2897 hwaddr cur_start
, cur_end
;
2903 for (i
= 0; i
< level
; i
++) {
2904 mon_printf(f
, MTREE_INDENT
);
2907 cur_start
= base
+ mr
->addr
;
2908 cur_end
= cur_start
+ MR_SIZE(mr
->size
);
2911 * Try to detect overflow of memory region. This should never
2912 * happen normally. When it happens, we dump something to warn the
2913 * user who is observing this.
2915 if (cur_start
< base
|| cur_end
< cur_start
) {
2916 mon_printf(f
, "[DETECTED OVERFLOW!] ");
2920 MemoryRegionList
*ml
;
2923 /* check if the alias is already in the queue */
2924 QTAILQ_FOREACH(ml
, alias_print_queue
, mrqueue
) {
2925 if (ml
->mr
== mr
->alias
) {
2931 ml
= g_new(MemoryRegionList
, 1);
2933 QTAILQ_INSERT_TAIL(alias_print_queue
, ml
, mrqueue
);
2935 mon_printf(f
, TARGET_FMT_plx
"-" TARGET_FMT_plx
2936 " (prio %d, %s%s): alias %s @%s " TARGET_FMT_plx
2937 "-" TARGET_FMT_plx
"%s",
2940 mr
->nonvolatile
? "nv-" : "",
2941 memory_region_type((MemoryRegion
*)mr
),
2942 memory_region_name(mr
),
2943 memory_region_name(mr
->alias
),
2945 mr
->alias_offset
+ MR_SIZE(mr
->size
),
2946 mr
->enabled
? "" : " [disabled]");
2948 mtree_print_mr_owner(mon_printf
, f
, mr
);
2952 TARGET_FMT_plx
"-" TARGET_FMT_plx
" (prio %d, %s%s): %s%s",
2955 mr
->nonvolatile
? "nv-" : "",
2956 memory_region_type((MemoryRegion
*)mr
),
2957 memory_region_name(mr
),
2958 mr
->enabled
? "" : " [disabled]");
2960 mtree_print_mr_owner(mon_printf
, f
, mr
);
2963 mon_printf(f
, "\n");
2965 QTAILQ_INIT(&submr_print_queue
);
2967 QTAILQ_FOREACH(submr
, &mr
->subregions
, subregions_link
) {
2968 new_ml
= g_new(MemoryRegionList
, 1);
2970 QTAILQ_FOREACH(ml
, &submr_print_queue
, mrqueue
) {
2971 if (new_ml
->mr
->addr
< ml
->mr
->addr
||
2972 (new_ml
->mr
->addr
== ml
->mr
->addr
&&
2973 new_ml
->mr
->priority
> ml
->mr
->priority
)) {
2974 QTAILQ_INSERT_BEFORE(ml
, new_ml
, mrqueue
);
2980 QTAILQ_INSERT_TAIL(&submr_print_queue
, new_ml
, mrqueue
);
2984 QTAILQ_FOREACH(ml
, &submr_print_queue
, mrqueue
) {
2985 mtree_print_mr(mon_printf
, f
, ml
->mr
, level
+ 1, cur_start
,
2986 alias_print_queue
, owner
);
2989 QTAILQ_FOREACH_SAFE(ml
, &submr_print_queue
, mrqueue
, next_ml
) {
2994 struct FlatViewInfo
{
2995 fprintf_function mon_printf
;
3002 static void mtree_print_flatview(gpointer key
, gpointer value
,
3005 FlatView
*view
= key
;
3006 GArray
*fv_address_spaces
= value
;
3007 struct FlatViewInfo
*fvi
= user_data
;
3008 fprintf_function p
= fvi
->mon_printf
;
3010 FlatRange
*range
= &view
->ranges
[0];
3016 p(f
, "FlatView #%d\n", fvi
->counter
);
3019 for (i
= 0; i
< fv_address_spaces
->len
; ++i
) {
3020 as
= g_array_index(fv_address_spaces
, AddressSpace
*, i
);
3021 p(f
, " AS \"%s\", root: %s", as
->name
, memory_region_name(as
->root
));
3022 if (as
->root
->alias
) {
3023 p(f
, ", alias %s", memory_region_name(as
->root
->alias
));
3028 p(f
, " Root memory region: %s\n",
3029 view
->root
? memory_region_name(view
->root
) : "(none)");
3032 p(f
, MTREE_INDENT
"No rendered FlatView\n\n");
3038 if (range
->offset_in_region
) {
3039 p(f
, MTREE_INDENT TARGET_FMT_plx
"-"
3040 TARGET_FMT_plx
" (prio %d, %s%s): %s @" TARGET_FMT_plx
,
3041 int128_get64(range
->addr
.start
),
3042 int128_get64(range
->addr
.start
) + MR_SIZE(range
->addr
.size
),
3044 range
->nonvolatile
? "nv-" : "",
3045 range
->readonly
? "rom" : memory_region_type(mr
),
3046 memory_region_name(mr
),
3047 range
->offset_in_region
);
3049 p(f
, MTREE_INDENT TARGET_FMT_plx
"-"
3050 TARGET_FMT_plx
" (prio %d, %s%s): %s",
3051 int128_get64(range
->addr
.start
),
3052 int128_get64(range
->addr
.start
) + MR_SIZE(range
->addr
.size
),
3054 range
->nonvolatile
? "nv-" : "",
3055 range
->readonly
? "rom" : memory_region_type(mr
),
3056 memory_region_name(mr
));
3059 mtree_print_mr_owner(p
, f
, mr
);
3065 #if !defined(CONFIG_USER_ONLY)
3066 if (fvi
->dispatch_tree
&& view
->root
) {
3067 mtree_print_dispatch(p
, f
, view
->dispatch
, view
->root
);
3074 static gboolean
mtree_info_flatview_free(gpointer key
, gpointer value
,
3077 FlatView
*view
= key
;
3078 GArray
*fv_address_spaces
= value
;
3080 g_array_unref(fv_address_spaces
);
3081 flatview_unref(view
);
3086 void mtree_info(fprintf_function mon_printf
, void *f
, bool flatview
,
3087 bool dispatch_tree
, bool owner
)
3089 MemoryRegionListHead ml_head
;
3090 MemoryRegionList
*ml
, *ml2
;
3095 struct FlatViewInfo fvi
= {
3096 .mon_printf
= mon_printf
,
3099 .dispatch_tree
= dispatch_tree
,
3102 GArray
*fv_address_spaces
;
3103 GHashTable
*views
= g_hash_table_new(g_direct_hash
, g_direct_equal
);
3105 /* Gather all FVs in one table */
3106 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
3107 view
= address_space_get_flatview(as
);
3109 fv_address_spaces
= g_hash_table_lookup(views
, view
);
3110 if (!fv_address_spaces
) {
3111 fv_address_spaces
= g_array_new(false, false, sizeof(as
));
3112 g_hash_table_insert(views
, view
, fv_address_spaces
);
3115 g_array_append_val(fv_address_spaces
, as
);
3119 g_hash_table_foreach(views
, mtree_print_flatview
, &fvi
);
3122 g_hash_table_foreach_remove(views
, mtree_info_flatview_free
, 0);
3123 g_hash_table_unref(views
);
3128 QTAILQ_INIT(&ml_head
);
3130 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
3131 mon_printf(f
, "address-space: %s\n", as
->name
);
3132 mtree_print_mr(mon_printf
, f
, as
->root
, 1, 0, &ml_head
, owner
);
3133 mon_printf(f
, "\n");
3136 /* print aliased regions */
3137 QTAILQ_FOREACH(ml
, &ml_head
, mrqueue
) {
3138 mon_printf(f
, "memory-region: %s\n", memory_region_name(ml
->mr
));
3139 mtree_print_mr(mon_printf
, f
, ml
->mr
, 1, 0, &ml_head
, owner
);
3140 mon_printf(f
, "\n");
3143 QTAILQ_FOREACH_SAFE(ml
, &ml_head
, mrqueue
, ml2
) {
3148 void memory_region_init_ram(MemoryRegion
*mr
,
3149 struct Object
*owner
,
3154 DeviceState
*owner_dev
;
3157 memory_region_init_ram_nomigrate(mr
, owner
, name
, size
, &err
);
3159 error_propagate(errp
, err
);
3162 /* This will assert if owner is neither NULL nor a DeviceState.
3163 * We only want the owner here for the purposes of defining a
3164 * unique name for migration. TODO: Ideally we should implement
3165 * a naming scheme for Objects which are not DeviceStates, in
3166 * which case we can relax this restriction.
3168 owner_dev
= DEVICE(owner
);
3169 vmstate_register_ram(mr
, owner_dev
);
3172 void memory_region_init_rom(MemoryRegion
*mr
,
3173 struct Object
*owner
,
3178 DeviceState
*owner_dev
;
3181 memory_region_init_rom_nomigrate(mr
, owner
, name
, size
, &err
);
3183 error_propagate(errp
, err
);
3186 /* This will assert if owner is neither NULL nor a DeviceState.
3187 * We only want the owner here for the purposes of defining a
3188 * unique name for migration. TODO: Ideally we should implement
3189 * a naming scheme for Objects which are not DeviceStates, in
3190 * which case we can relax this restriction.
3192 owner_dev
= DEVICE(owner
);
3193 vmstate_register_ram(mr
, owner_dev
);
3196 void memory_region_init_rom_device(MemoryRegion
*mr
,
3197 struct Object
*owner
,
3198 const MemoryRegionOps
*ops
,
3204 DeviceState
*owner_dev
;
3207 memory_region_init_rom_device_nomigrate(mr
, owner
, ops
, opaque
,
3210 error_propagate(errp
, err
);
3213 /* This will assert if owner is neither NULL nor a DeviceState.
3214 * We only want the owner here for the purposes of defining a
3215 * unique name for migration. TODO: Ideally we should implement
3216 * a naming scheme for Objects which are not DeviceStates, in
3217 * which case we can relax this restriction.
3219 owner_dev
= DEVICE(owner
);
3220 vmstate_register_ram(mr
, owner_dev
);
3223 static const TypeInfo memory_region_info
= {
3224 .parent
= TYPE_OBJECT
,
3225 .name
= TYPE_MEMORY_REGION
,
3226 .instance_size
= sizeof(MemoryRegion
),
3227 .instance_init
= memory_region_initfn
,
3228 .instance_finalize
= memory_region_finalize
,
3231 static const TypeInfo iommu_memory_region_info
= {
3232 .parent
= TYPE_MEMORY_REGION
,
3233 .name
= TYPE_IOMMU_MEMORY_REGION
,
3234 .class_size
= sizeof(IOMMUMemoryRegionClass
),
3235 .instance_size
= sizeof(IOMMUMemoryRegion
),
3236 .instance_init
= iommu_memory_region_initfn
,
3240 static void memory_register_types(void)
3242 type_register_static(&memory_region_info
);
3243 type_register_static(&iommu_memory_region_info
);
3246 type_init(memory_register_types
)