Merge remote-tracking branch 'qemu-project/master'
[qemu/ar7.git] / system / memory.c
blobb9983733f5ad918ae4f42502c33b5a555c491d72
1 /*
2 * Physical memory management
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
12 * Contributions after 2012-01-13 are licensed under the terms of the
13 * GNU GPL, version 2 or (at your option) any later version.
16 #include "qemu/osdep.h"
17 #include "qemu/log.h"
18 #include "qapi/error.h"
19 #include "exec/exec-all.h" /* qemu_sprint_backtrace */
20 #include "exec/memory.h"
21 #include "qapi/visitor.h"
22 #include "qemu/bitops.h"
23 #include "qemu/error-report.h"
24 #include "qemu/main-loop.h"
25 #include "qemu/qemu-print.h"
26 #include "qom/object.h"
27 #include "sysemu/sysemu.h" /* trace_unassigned */
28 #include "trace.h"
30 #include "exec/memory-internal.h"
31 #include "exec/ram_addr.h"
32 #include "sysemu/kvm.h"
33 #include "sysemu/runstate.h"
34 #include "sysemu/tcg.h"
35 #include "qemu/accel.h"
36 #include "hw/boards.h"
37 #include "migration/vmstate.h"
38 #include "exec/address-spaces.h"
40 //#define DEBUG_UNASSIGNED
42 static unsigned memory_region_transaction_depth;
43 static bool memory_region_update_pending;
44 static bool ioeventfd_update_pending;
45 unsigned int global_dirty_tracking;
47 static QTAILQ_HEAD(, MemoryListener) memory_listeners
48 = QTAILQ_HEAD_INITIALIZER(memory_listeners);
50 static QTAILQ_HEAD(, AddressSpace) address_spaces
51 = QTAILQ_HEAD_INITIALIZER(address_spaces);
53 static GHashTable *flat_views;
55 typedef struct AddrRange AddrRange;
58 * Note that signed integers are needed for negative offsetting in aliases
59 * (large MemoryRegion::alias_offset).
61 struct AddrRange {
62 Int128 start;
63 Int128 size;
66 static AddrRange addrrange_make(Int128 start, Int128 size)
68 return (AddrRange) { start, size };
71 static bool addrrange_equal(AddrRange r1, AddrRange r2)
73 return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
76 static Int128 addrrange_end(AddrRange r)
78 return int128_add(r.start, r.size);
81 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
83 int128_addto(&range.start, delta);
84 return range;
87 static bool addrrange_contains(AddrRange range, Int128 addr)
89 return int128_ge(addr, range.start)
90 && int128_lt(addr, addrrange_end(range));
93 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
95 return addrrange_contains(r1, r2.start)
96 || addrrange_contains(r2, r1.start);
99 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
101 Int128 start = int128_max(r1.start, r2.start);
102 Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
103 return addrrange_make(start, int128_sub(end, start));
106 enum ListenerDirection { Forward, Reverse };
108 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \
109 do { \
110 MemoryListener *_listener; \
112 switch (_direction) { \
113 case Forward: \
114 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
115 if (_listener->_callback) { \
116 _listener->_callback(_listener, ##_args); \
119 break; \
120 case Reverse: \
121 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, link) { \
122 if (_listener->_callback) { \
123 _listener->_callback(_listener, ##_args); \
126 break; \
127 default: \
128 abort(); \
130 } while (0)
132 #define MEMORY_LISTENER_CALL(_as, _callback, _direction, _section, _args...) \
133 do { \
134 MemoryListener *_listener; \
136 switch (_direction) { \
137 case Forward: \
138 QTAILQ_FOREACH(_listener, &(_as)->listeners, link_as) { \
139 if (_listener->_callback) { \
140 _listener->_callback(_listener, _section, ##_args); \
143 break; \
144 case Reverse: \
145 QTAILQ_FOREACH_REVERSE(_listener, &(_as)->listeners, link_as) { \
146 if (_listener->_callback) { \
147 _listener->_callback(_listener, _section, ##_args); \
150 break; \
151 default: \
152 abort(); \
154 } while (0)
156 /* No need to ref/unref .mr, the FlatRange keeps it alive. */
157 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...) \
158 do { \
159 MemoryRegionSection mrs = section_from_flat_range(fr, \
160 address_space_to_flatview(as)); \
161 MEMORY_LISTENER_CALL(as, callback, dir, &mrs, ##_args); \
162 } while(0)
164 struct CoalescedMemoryRange {
165 AddrRange addr;
166 QTAILQ_ENTRY(CoalescedMemoryRange) link;
169 struct MemoryRegionIoeventfd {
170 AddrRange addr;
171 bool match_data;
172 uint64_t data;
173 EventNotifier *e;
176 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd *a,
177 MemoryRegionIoeventfd *b)
179 if (int128_lt(a->addr.start, b->addr.start)) {
180 return true;
181 } else if (int128_gt(a->addr.start, b->addr.start)) {
182 return false;
183 } else if (int128_lt(a->addr.size, b->addr.size)) {
184 return true;
185 } else if (int128_gt(a->addr.size, b->addr.size)) {
186 return false;
187 } else if (a->match_data < b->match_data) {
188 return true;
189 } else if (a->match_data > b->match_data) {
190 return false;
191 } else if (a->match_data) {
192 if (a->data < b->data) {
193 return true;
194 } else if (a->data > b->data) {
195 return false;
198 if (a->e < b->e) {
199 return true;
200 } else if (a->e > b->e) {
201 return false;
203 return false;
206 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd *a,
207 MemoryRegionIoeventfd *b)
209 if (int128_eq(a->addr.start, b->addr.start) &&
210 (!int128_nz(a->addr.size) || !int128_nz(b->addr.size) ||
211 (int128_eq(a->addr.size, b->addr.size) &&
212 (a->match_data == b->match_data) &&
213 ((a->match_data && (a->data == b->data)) || !a->match_data) &&
214 (a->e == b->e))))
215 return true;
217 return false;
220 /* Range of memory in the global map. Addresses are absolute. */
221 struct FlatRange {
222 MemoryRegion *mr;
223 hwaddr offset_in_region;
224 AddrRange addr;
225 uint8_t dirty_log_mask;
226 bool romd_mode;
227 bool readonly;
228 bool nonvolatile;
229 bool unmergeable;
232 #define FOR_EACH_FLAT_RANGE(var, view) \
233 for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
235 static inline MemoryRegionSection
236 section_from_flat_range(FlatRange *fr, FlatView *fv)
238 return (MemoryRegionSection) {
239 .mr = fr->mr,
240 .fv = fv,
241 .offset_within_region = fr->offset_in_region,
242 .size = fr->addr.size,
243 .offset_within_address_space = int128_get64(fr->addr.start),
244 .readonly = fr->readonly,
245 .nonvolatile = fr->nonvolatile,
246 .unmergeable = fr->unmergeable,
250 static bool flatrange_equal(FlatRange *a, FlatRange *b)
252 return a->mr == b->mr
253 && addrrange_equal(a->addr, b->addr)
254 && a->offset_in_region == b->offset_in_region
255 && a->romd_mode == b->romd_mode
256 && a->readonly == b->readonly
257 && a->nonvolatile == b->nonvolatile
258 && a->unmergeable == b->unmergeable;
261 static FlatView *flatview_new(MemoryRegion *mr_root)
263 FlatView *view;
265 view = g_new0(FlatView, 1);
266 view->ref = 1;
267 view->root = mr_root;
268 memory_region_ref(mr_root);
269 trace_flatview_new(view, mr_root);
271 return view;
274 /* Insert a range into a given position. Caller is responsible for maintaining
275 * sorting order.
277 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
279 if (view->nr == view->nr_allocated) {
280 view->nr_allocated = MAX(2 * view->nr, 10);
281 view->ranges = g_realloc(view->ranges,
282 view->nr_allocated * sizeof(*view->ranges));
284 memmove(view->ranges + pos + 1, view->ranges + pos,
285 (view->nr - pos) * sizeof(FlatRange));
286 view->ranges[pos] = *range;
287 memory_region_ref(range->mr);
288 ++view->nr;
291 static void flatview_destroy(FlatView *view)
293 int i;
295 trace_flatview_destroy(view, view->root);
296 if (view->dispatch) {
297 address_space_dispatch_free(view->dispatch);
299 for (i = 0; i < view->nr; i++) {
300 memory_region_unref(view->ranges[i].mr);
302 g_free(view->ranges);
303 memory_region_unref(view->root);
304 g_free(view);
307 static bool flatview_ref(FlatView *view)
309 return qatomic_fetch_inc_nonzero(&view->ref) > 0;
312 void flatview_unref(FlatView *view)
314 if (qatomic_fetch_dec(&view->ref) == 1) {
315 trace_flatview_destroy_rcu(view, view->root);
316 assert(view->root);
317 call_rcu(view, flatview_destroy, rcu);
321 static bool can_merge(FlatRange *r1, FlatRange *r2)
323 return int128_eq(addrrange_end(r1->addr), r2->addr.start)
324 && r1->mr == r2->mr
325 && int128_eq(int128_add(int128_make64(r1->offset_in_region),
326 r1->addr.size),
327 int128_make64(r2->offset_in_region))
328 && r1->dirty_log_mask == r2->dirty_log_mask
329 && r1->romd_mode == r2->romd_mode
330 && r1->readonly == r2->readonly
331 && r1->nonvolatile == r2->nonvolatile
332 && !r1->unmergeable && !r2->unmergeable;
335 /* Attempt to simplify a view by merging adjacent ranges */
336 static void flatview_simplify(FlatView *view)
338 unsigned i, j, k;
340 i = 0;
341 while (i < view->nr) {
342 j = i + 1;
343 while (j < view->nr
344 && can_merge(&view->ranges[j-1], &view->ranges[j])) {
345 int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
346 ++j;
348 ++i;
349 for (k = i; k < j; k++) {
350 memory_region_unref(view->ranges[k].mr);
352 memmove(&view->ranges[i], &view->ranges[j],
353 (view->nr - j) * sizeof(view->ranges[j]));
354 view->nr -= j - i;
358 static bool memory_region_big_endian(MemoryRegion *mr)
360 #if TARGET_BIG_ENDIAN
361 return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
362 #else
363 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
364 #endif
367 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, MemOp op)
369 if ((op & MO_BSWAP) != devend_memop(mr->ops->endianness)) {
370 switch (op & MO_SIZE) {
371 case MO_8:
372 break;
373 case MO_16:
374 *data = bswap16(*data);
375 break;
376 case MO_32:
377 *data = bswap32(*data);
378 break;
379 case MO_64:
380 *data = bswap64(*data);
381 break;
382 default:
383 g_assert_not_reached();
388 static inline void memory_region_shift_read_access(uint64_t *value,
389 signed shift,
390 uint64_t mask,
391 uint64_t tmp)
393 if (shift >= 0) {
394 *value |= (tmp & mask) << shift;
395 } else {
396 *value |= (tmp & mask) >> -shift;
400 static inline uint64_t memory_region_shift_write_access(uint64_t *value,
401 signed shift,
402 uint64_t mask)
404 uint64_t tmp;
406 if (shift >= 0) {
407 tmp = (*value >> shift) & mask;
408 } else {
409 tmp = (*value << -shift) & mask;
412 return tmp;
415 static hwaddr memory_region_to_absolute_addr(MemoryRegion *mr, hwaddr offset)
417 MemoryRegion *root;
418 hwaddr abs_addr = offset;
420 abs_addr += mr->addr;
421 for (root = mr; root->container; ) {
422 root = root->container;
423 abs_addr += root->addr;
426 return abs_addr;
429 static int get_cpu_index(void)
431 if (current_cpu) {
432 return current_cpu->cpu_index;
434 return -1;
437 static MemTxResult memory_region_read_accessor(MemoryRegion *mr,
438 hwaddr addr,
439 uint64_t *value,
440 unsigned size,
441 signed shift,
442 uint64_t mask,
443 MemTxAttrs attrs)
445 uint64_t tmp;
447 tmp = mr->ops->read(mr->opaque, addr, size);
448 if (mr->subpage) {
449 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
450 } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_READ)) {
451 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
452 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size,
453 memory_region_name(mr));
455 memory_region_shift_read_access(value, shift, mask, tmp);
456 return MEMTX_OK;
459 static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr,
460 hwaddr addr,
461 uint64_t *value,
462 unsigned size,
463 signed shift,
464 uint64_t mask,
465 MemTxAttrs attrs)
467 uint64_t tmp = 0;
468 MemTxResult r;
470 r = mr->ops->read_with_attrs(mr->opaque, addr, &tmp, size, attrs);
471 if (mr->subpage) {
472 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
473 } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_READ)) {
474 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
475 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size,
476 memory_region_name(mr));
478 memory_region_shift_read_access(value, shift, mask, tmp);
479 return r;
482 static MemTxResult memory_region_write_accessor(MemoryRegion *mr,
483 hwaddr addr,
484 uint64_t *value,
485 unsigned size,
486 signed shift,
487 uint64_t mask,
488 MemTxAttrs attrs)
490 uint64_t tmp = memory_region_shift_write_access(value, shift, mask);
492 if (mr->subpage) {
493 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
494 } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_WRITE)) {
495 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
496 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size,
497 memory_region_name(mr));
499 mr->ops->write(mr->opaque, addr, tmp, size);
500 return MEMTX_OK;
503 static MemTxResult memory_region_write_with_attrs_accessor(MemoryRegion *mr,
504 hwaddr addr,
505 uint64_t *value,
506 unsigned size,
507 signed shift,
508 uint64_t mask,
509 MemTxAttrs attrs)
511 uint64_t tmp = memory_region_shift_write_access(value, shift, mask);
513 if (mr->subpage) {
514 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
515 } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_WRITE)) {
516 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
517 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size,
518 memory_region_name(mr));
520 return mr->ops->write_with_attrs(mr->opaque, addr, tmp, size, attrs);
523 static MemTxResult access_with_adjusted_size(hwaddr addr,
524 uint64_t *value,
525 unsigned size,
526 unsigned access_size_min,
527 unsigned access_size_max,
528 MemTxResult (*access_fn)
529 (MemoryRegion *mr,
530 hwaddr addr,
531 uint64_t *value,
532 unsigned size,
533 signed shift,
534 uint64_t mask,
535 MemTxAttrs attrs),
536 MemoryRegion *mr,
537 MemTxAttrs attrs)
539 uint64_t access_mask;
540 unsigned access_size;
541 unsigned i;
542 MemTxResult r = MEMTX_OK;
543 bool reentrancy_guard_applied = false;
545 if (!access_size_min) {
546 access_size_min = 1;
548 if (!access_size_max) {
549 access_size_max = 4;
552 /* Do not allow more than one simultaneous access to a device's IO Regions */
553 if (mr->dev && !mr->disable_reentrancy_guard &&
554 !mr->ram_device && !mr->ram && !mr->rom_device && !mr->readonly) {
555 if (mr->dev->mem_reentrancy_guard.engaged_in_io) {
556 warn_report_once("Blocked re-entrant IO on MemoryRegion: "
557 "%s at addr: 0x%" HWADDR_PRIX,
558 memory_region_name(mr), addr);
559 return MEMTX_ACCESS_ERROR;
561 mr->dev->mem_reentrancy_guard.engaged_in_io = true;
562 reentrancy_guard_applied = true;
565 /* FIXME: support unaligned access? */
566 access_size = MAX(MIN(size, access_size_max), access_size_min);
567 access_mask = MAKE_64BIT_MASK(0, access_size * 8);
568 if (memory_region_big_endian(mr)) {
569 for (i = 0; i < size; i += access_size) {
570 r |= access_fn(mr, addr + i, value, access_size,
571 (size - access_size - i) * 8, access_mask, attrs);
573 } else {
574 for (i = 0; i < size; i += access_size) {
575 r |= access_fn(mr, addr + i, value, access_size, i * 8,
576 access_mask, attrs);
579 if (mr->dev && reentrancy_guard_applied) {
580 mr->dev->mem_reentrancy_guard.engaged_in_io = false;
582 return r;
585 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
587 AddressSpace *as;
589 while (mr->container) {
590 mr = mr->container;
592 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
593 if (mr == as->root) {
594 return as;
597 return NULL;
600 /* Render a memory region into the global view. Ranges in @view obscure
601 * ranges in @mr.
603 static void render_memory_region(FlatView *view,
604 MemoryRegion *mr,
605 Int128 base,
606 AddrRange clip,
607 bool readonly,
608 bool nonvolatile,
609 bool unmergeable)
611 MemoryRegion *subregion;
612 unsigned i;
613 hwaddr offset_in_region;
614 Int128 remain;
615 Int128 now;
616 FlatRange fr;
617 AddrRange tmp;
619 if (!mr->enabled) {
620 return;
623 int128_addto(&base, int128_make64(mr->addr));
624 readonly |= mr->readonly;
625 nonvolatile |= mr->nonvolatile;
626 unmergeable |= mr->unmergeable;
628 tmp = addrrange_make(base, mr->size);
630 if (!addrrange_intersects(tmp, clip)) {
631 return;
634 clip = addrrange_intersection(tmp, clip);
636 if (mr->alias) {
637 int128_subfrom(&base, int128_make64(mr->alias->addr));
638 int128_subfrom(&base, int128_make64(mr->alias_offset));
639 render_memory_region(view, mr->alias, base, clip,
640 readonly, nonvolatile, unmergeable);
641 return;
644 /* Render subregions in priority order. */
645 QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
646 render_memory_region(view, subregion, base, clip,
647 readonly, nonvolatile, unmergeable);
650 if (!mr->terminates) {
651 return;
654 offset_in_region = int128_get64(int128_sub(clip.start, base));
655 base = clip.start;
656 remain = clip.size;
658 fr.mr = mr;
659 fr.dirty_log_mask = memory_region_get_dirty_log_mask(mr);
660 fr.romd_mode = mr->romd_mode;
661 fr.readonly = readonly;
662 fr.nonvolatile = nonvolatile;
663 fr.unmergeable = unmergeable;
665 /* Render the region itself into any gaps left by the current view. */
666 for (i = 0; i < view->nr && int128_nz(remain); ++i) {
667 if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
668 continue;
670 if (int128_lt(base, view->ranges[i].addr.start)) {
671 now = int128_min(remain,
672 int128_sub(view->ranges[i].addr.start, base));
673 fr.offset_in_region = offset_in_region;
674 fr.addr = addrrange_make(base, now);
675 flatview_insert(view, i, &fr);
676 ++i;
677 int128_addto(&base, now);
678 offset_in_region += int128_get64(now);
679 int128_subfrom(&remain, now);
681 now = int128_sub(int128_min(int128_add(base, remain),
682 addrrange_end(view->ranges[i].addr)),
683 base);
684 int128_addto(&base, now);
685 offset_in_region += int128_get64(now);
686 int128_subfrom(&remain, now);
688 if (int128_nz(remain)) {
689 fr.offset_in_region = offset_in_region;
690 fr.addr = addrrange_make(base, remain);
691 flatview_insert(view, i, &fr);
695 void flatview_for_each_range(FlatView *fv, flatview_cb cb , void *opaque)
697 FlatRange *fr;
699 assert(fv);
700 assert(cb);
702 FOR_EACH_FLAT_RANGE(fr, fv) {
703 if (cb(fr->addr.start, fr->addr.size, fr->mr,
704 fr->offset_in_region, opaque)) {
705 break;
710 static MemoryRegion *memory_region_get_flatview_root(MemoryRegion *mr)
712 while (mr->enabled) {
713 if (mr->alias) {
714 if (!mr->alias_offset && int128_ge(mr->size, mr->alias->size)) {
715 /* The alias is included in its entirety. Use it as
716 * the "real" root, so that we can share more FlatViews.
718 mr = mr->alias;
719 continue;
721 } else if (!mr->terminates) {
722 unsigned int found = 0;
723 MemoryRegion *child, *next = NULL;
724 QTAILQ_FOREACH(child, &mr->subregions, subregions_link) {
725 if (child->enabled) {
726 if (++found > 1) {
727 next = NULL;
728 break;
730 if (!child->addr && int128_ge(mr->size, child->size)) {
731 /* A child is included in its entirety. If it's the only
732 * enabled one, use it in the hope of finding an alias down the
733 * way. This will also let us share FlatViews.
735 next = child;
739 if (found == 0) {
740 return NULL;
742 if (next) {
743 mr = next;
744 continue;
748 return mr;
751 return NULL;
754 /* Render a memory topology into a list of disjoint absolute ranges. */
755 static FlatView *generate_memory_topology(MemoryRegion *mr)
757 int i;
758 FlatView *view;
760 view = flatview_new(mr);
762 if (mr) {
763 render_memory_region(view, mr, int128_zero(),
764 addrrange_make(int128_zero(), int128_2_64()),
765 false, false, false);
767 flatview_simplify(view);
769 view->dispatch = address_space_dispatch_new(view);
770 for (i = 0; i < view->nr; i++) {
771 MemoryRegionSection mrs =
772 section_from_flat_range(&view->ranges[i], view);
773 flatview_add_to_dispatch(view, &mrs);
775 address_space_dispatch_compact(view->dispatch);
776 g_hash_table_replace(flat_views, mr, view);
778 return view;
781 static void address_space_add_del_ioeventfds(AddressSpace *as,
782 MemoryRegionIoeventfd *fds_new,
783 unsigned fds_new_nb,
784 MemoryRegionIoeventfd *fds_old,
785 unsigned fds_old_nb)
787 unsigned iold, inew;
788 MemoryRegionIoeventfd *fd;
789 MemoryRegionSection section;
791 /* Generate a symmetric difference of the old and new fd sets, adding
792 * and deleting as necessary.
795 iold = inew = 0;
796 while (iold < fds_old_nb || inew < fds_new_nb) {
797 if (iold < fds_old_nb
798 && (inew == fds_new_nb
799 || memory_region_ioeventfd_before(&fds_old[iold],
800 &fds_new[inew]))) {
801 fd = &fds_old[iold];
802 section = (MemoryRegionSection) {
803 .fv = address_space_to_flatview(as),
804 .offset_within_address_space = int128_get64(fd->addr.start),
805 .size = fd->addr.size,
807 MEMORY_LISTENER_CALL(as, eventfd_del, Forward, &section,
808 fd->match_data, fd->data, fd->e);
809 ++iold;
810 } else if (inew < fds_new_nb
811 && (iold == fds_old_nb
812 || memory_region_ioeventfd_before(&fds_new[inew],
813 &fds_old[iold]))) {
814 fd = &fds_new[inew];
815 section = (MemoryRegionSection) {
816 .fv = address_space_to_flatview(as),
817 .offset_within_address_space = int128_get64(fd->addr.start),
818 .size = fd->addr.size,
820 MEMORY_LISTENER_CALL(as, eventfd_add, Reverse, &section,
821 fd->match_data, fd->data, fd->e);
822 ++inew;
823 } else {
824 ++iold;
825 ++inew;
830 FlatView *address_space_get_flatview(AddressSpace *as)
832 FlatView *view;
834 RCU_READ_LOCK_GUARD();
835 do {
836 view = address_space_to_flatview(as);
837 /* If somebody has replaced as->current_map concurrently,
838 * flatview_ref returns false.
840 } while (!flatview_ref(view));
841 return view;
844 static void address_space_update_ioeventfds(AddressSpace *as)
846 FlatView *view;
847 FlatRange *fr;
848 unsigned ioeventfd_nb = 0;
849 unsigned ioeventfd_max;
850 MemoryRegionIoeventfd *ioeventfds;
851 AddrRange tmp;
852 unsigned i;
854 if (!as->ioeventfd_notifiers) {
855 return;
859 * It is likely that the number of ioeventfds hasn't changed much, so use
860 * the previous size as the starting value, with some headroom to avoid
861 * gratuitous reallocations.
863 ioeventfd_max = QEMU_ALIGN_UP(as->ioeventfd_nb, 4);
864 ioeventfds = g_new(MemoryRegionIoeventfd, ioeventfd_max);
866 view = address_space_get_flatview(as);
867 FOR_EACH_FLAT_RANGE(fr, view) {
868 for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
869 tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
870 int128_sub(fr->addr.start,
871 int128_make64(fr->offset_in_region)));
872 if (addrrange_intersects(fr->addr, tmp)) {
873 ++ioeventfd_nb;
874 if (ioeventfd_nb > ioeventfd_max) {
875 ioeventfd_max = MAX(ioeventfd_max * 2, 4);
876 ioeventfds = g_realloc(ioeventfds,
877 ioeventfd_max * sizeof(*ioeventfds));
879 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
880 ioeventfds[ioeventfd_nb-1].addr = tmp;
885 address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
886 as->ioeventfds, as->ioeventfd_nb);
888 g_free(as->ioeventfds);
889 as->ioeventfds = ioeventfds;
890 as->ioeventfd_nb = ioeventfd_nb;
891 flatview_unref(view);
895 * Notify the memory listeners about the coalesced IO change events of
896 * range `cmr'. Only the part that has intersection of the specified
897 * FlatRange will be sent.
899 static void flat_range_coalesced_io_notify(FlatRange *fr, AddressSpace *as,
900 CoalescedMemoryRange *cmr, bool add)
902 AddrRange tmp;
904 tmp = addrrange_shift(cmr->addr,
905 int128_sub(fr->addr.start,
906 int128_make64(fr->offset_in_region)));
907 if (!addrrange_intersects(tmp, fr->addr)) {
908 return;
910 tmp = addrrange_intersection(tmp, fr->addr);
912 if (add) {
913 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, coalesced_io_add,
914 int128_get64(tmp.start),
915 int128_get64(tmp.size));
916 } else {
917 MEMORY_LISTENER_UPDATE_REGION(fr, as, Reverse, coalesced_io_del,
918 int128_get64(tmp.start),
919 int128_get64(tmp.size));
923 static void flat_range_coalesced_io_del(FlatRange *fr, AddressSpace *as)
925 CoalescedMemoryRange *cmr;
927 QTAILQ_FOREACH(cmr, &fr->mr->coalesced, link) {
928 flat_range_coalesced_io_notify(fr, as, cmr, false);
932 static void flat_range_coalesced_io_add(FlatRange *fr, AddressSpace *as)
934 MemoryRegion *mr = fr->mr;
935 CoalescedMemoryRange *cmr;
937 if (QTAILQ_EMPTY(&mr->coalesced)) {
938 return;
941 QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
942 flat_range_coalesced_io_notify(fr, as, cmr, true);
946 static void address_space_update_topology_pass(AddressSpace *as,
947 const FlatView *old_view,
948 const FlatView *new_view,
949 bool adding)
951 unsigned iold, inew;
952 FlatRange *frold, *frnew;
954 /* Generate a symmetric difference of the old and new memory maps.
955 * Kill ranges in the old map, and instantiate ranges in the new map.
957 iold = inew = 0;
958 while (iold < old_view->nr || inew < new_view->nr) {
959 if (iold < old_view->nr) {
960 frold = &old_view->ranges[iold];
961 } else {
962 frold = NULL;
964 if (inew < new_view->nr) {
965 frnew = &new_view->ranges[inew];
966 } else {
967 frnew = NULL;
970 if (frold
971 && (!frnew
972 || int128_lt(frold->addr.start, frnew->addr.start)
973 || (int128_eq(frold->addr.start, frnew->addr.start)
974 && !flatrange_equal(frold, frnew)))) {
975 /* In old but not in new, or in both but attributes changed. */
977 if (!adding) {
978 flat_range_coalesced_io_del(frold, as);
979 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
982 ++iold;
983 } else if (frold && frnew && flatrange_equal(frold, frnew)) {
984 /* In both and unchanged (except logging may have changed) */
986 if (adding) {
987 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
988 if (frnew->dirty_log_mask & ~frold->dirty_log_mask) {
989 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start,
990 frold->dirty_log_mask,
991 frnew->dirty_log_mask);
993 if (frold->dirty_log_mask & ~frnew->dirty_log_mask) {
994 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop,
995 frold->dirty_log_mask,
996 frnew->dirty_log_mask);
1000 ++iold;
1001 ++inew;
1002 } else {
1003 /* In new */
1005 if (adding) {
1006 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
1007 flat_range_coalesced_io_add(frnew, as);
1010 ++inew;
1015 static void flatviews_init(void)
1017 static FlatView *empty_view;
1019 if (flat_views) {
1020 return;
1023 flat_views = g_hash_table_new_full(g_direct_hash, g_direct_equal, NULL,
1024 (GDestroyNotify) flatview_unref);
1025 if (!empty_view) {
1026 empty_view = generate_memory_topology(NULL);
1027 /* We keep it alive forever in the global variable. */
1028 flatview_ref(empty_view);
1029 } else {
1030 g_hash_table_replace(flat_views, NULL, empty_view);
1031 flatview_ref(empty_view);
1035 static void flatviews_reset(void)
1037 AddressSpace *as;
1039 if (flat_views) {
1040 g_hash_table_unref(flat_views);
1041 flat_views = NULL;
1043 flatviews_init();
1045 /* Render unique FVs */
1046 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1047 MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1049 if (g_hash_table_lookup(flat_views, physmr)) {
1050 continue;
1053 generate_memory_topology(physmr);
1057 static void address_space_set_flatview(AddressSpace *as)
1059 FlatView *old_view = address_space_to_flatview(as);
1060 MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1061 FlatView *new_view = g_hash_table_lookup(flat_views, physmr);
1063 assert(new_view);
1065 if (old_view == new_view) {
1066 return;
1069 if (old_view) {
1070 flatview_ref(old_view);
1073 flatview_ref(new_view);
1075 if (!QTAILQ_EMPTY(&as->listeners)) {
1076 FlatView tmpview = { .nr = 0 }, *old_view2 = old_view;
1078 if (!old_view2) {
1079 old_view2 = &tmpview;
1081 address_space_update_topology_pass(as, old_view2, new_view, false);
1082 address_space_update_topology_pass(as, old_view2, new_view, true);
1085 /* Writes are protected by the BQL. */
1086 qatomic_rcu_set(&as->current_map, new_view);
1087 if (old_view) {
1088 flatview_unref(old_view);
1091 /* Note that all the old MemoryRegions are still alive up to this
1092 * point. This relieves most MemoryListeners from the need to
1093 * ref/unref the MemoryRegions they get---unless they use them
1094 * outside the iothread mutex, in which case precise reference
1095 * counting is necessary.
1097 if (old_view) {
1098 flatview_unref(old_view);
1102 static void address_space_update_topology(AddressSpace *as)
1104 MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1106 flatviews_init();
1107 if (!g_hash_table_lookup(flat_views, physmr)) {
1108 generate_memory_topology(physmr);
1110 address_space_set_flatview(as);
1113 void memory_region_transaction_begin(void)
1115 qemu_flush_coalesced_mmio_buffer();
1116 ++memory_region_transaction_depth;
1119 void memory_region_transaction_commit(void)
1121 AddressSpace *as;
1123 assert(memory_region_transaction_depth);
1124 assert(bql_locked());
1126 --memory_region_transaction_depth;
1127 if (!memory_region_transaction_depth) {
1128 if (memory_region_update_pending) {
1129 flatviews_reset();
1131 MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
1133 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1134 address_space_set_flatview(as);
1135 address_space_update_ioeventfds(as);
1137 memory_region_update_pending = false;
1138 ioeventfd_update_pending = false;
1139 MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
1140 } else if (ioeventfd_update_pending) {
1141 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1142 address_space_update_ioeventfds(as);
1144 ioeventfd_update_pending = false;
1149 static void memory_region_destructor_none(MemoryRegion *mr)
1153 static void memory_region_destructor_ram(MemoryRegion *mr)
1155 qemu_ram_free(mr->ram_block);
1158 static bool memory_region_need_escape(char c)
1160 return c == '/' || c == '[' || c == '\\' || c == ']';
1163 static char *memory_region_escape_name(const char *name)
1165 const char *p;
1166 char *escaped, *q;
1167 uint8_t c;
1168 size_t bytes = 0;
1170 for (p = name; *p; p++) {
1171 bytes += memory_region_need_escape(*p) ? 4 : 1;
1173 if (bytes == p - name) {
1174 return g_memdup(name, bytes + 1);
1177 escaped = g_malloc(bytes + 1);
1178 for (p = name, q = escaped; *p; p++) {
1179 c = *p;
1180 if (unlikely(memory_region_need_escape(c))) {
1181 *q++ = '\\';
1182 *q++ = 'x';
1183 *q++ = "0123456789abcdef"[c >> 4];
1184 c = "0123456789abcdef"[c & 15];
1186 *q++ = c;
1188 *q = 0;
1189 return escaped;
1192 static void memory_region_do_init(MemoryRegion *mr,
1193 Object *owner,
1194 const char *name,
1195 uint64_t size)
1197 mr->size = int128_make64(size);
1198 if (size == UINT64_MAX) {
1199 mr->size = int128_2_64();
1201 mr->name = g_strdup(name);
1202 mr->owner = owner;
1203 mr->dev = (DeviceState *) object_dynamic_cast(mr->owner, TYPE_DEVICE);
1204 mr->ram_block = NULL;
1206 if (name) {
1207 char *escaped_name = memory_region_escape_name(name);
1208 char *name_array = g_strdup_printf("%s[*]", escaped_name);
1210 if (!owner) {
1211 owner = container_get(qdev_get_machine(), "/unattached");
1214 object_property_add_child(owner, name_array, OBJECT(mr));
1215 object_unref(OBJECT(mr));
1216 g_free(name_array);
1217 g_free(escaped_name);
1221 void memory_region_init(MemoryRegion *mr,
1222 Object *owner,
1223 const char *name,
1224 uint64_t size)
1226 object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
1227 memory_region_do_init(mr, owner, name, size);
1230 static void memory_region_get_container(Object *obj, Visitor *v,
1231 const char *name, void *opaque,
1232 Error **errp)
1234 MemoryRegion *mr = MEMORY_REGION(obj);
1235 char *path = (char *)"";
1237 if (mr->container) {
1238 path = object_get_canonical_path(OBJECT(mr->container));
1240 visit_type_str(v, name, &path, errp);
1241 if (mr->container) {
1242 g_free(path);
1246 static Object *memory_region_resolve_container(Object *obj, void *opaque,
1247 const char *part)
1249 MemoryRegion *mr = MEMORY_REGION(obj);
1251 return OBJECT(mr->container);
1254 static void memory_region_get_priority(Object *obj, Visitor *v,
1255 const char *name, void *opaque,
1256 Error **errp)
1258 MemoryRegion *mr = MEMORY_REGION(obj);
1259 int32_t value = mr->priority;
1261 visit_type_int32(v, name, &value, errp);
1264 static void memory_region_get_size(Object *obj, Visitor *v, const char *name,
1265 void *opaque, Error **errp)
1267 MemoryRegion *mr = MEMORY_REGION(obj);
1268 uint64_t value = memory_region_size(mr);
1270 visit_type_uint64(v, name, &value, errp);
1273 static void memory_region_initfn(Object *obj)
1275 MemoryRegion *mr = MEMORY_REGION(obj);
1276 ObjectProperty *op;
1278 mr->ops = &unassigned_mem_ops;
1279 mr->enabled = true;
1280 mr->romd_mode = true;
1281 mr->destructor = memory_region_destructor_none;
1282 QTAILQ_INIT(&mr->subregions);
1283 QTAILQ_INIT(&mr->coalesced);
1285 op = object_property_add(OBJECT(mr), "container",
1286 "link<" TYPE_MEMORY_REGION ">",
1287 memory_region_get_container,
1288 NULL, /* memory_region_set_container */
1289 NULL, NULL);
1290 op->resolve = memory_region_resolve_container;
1292 object_property_add_uint64_ptr(OBJECT(mr), "addr",
1293 &mr->addr, OBJ_PROP_FLAG_READ);
1294 object_property_add(OBJECT(mr), "priority", "uint32",
1295 memory_region_get_priority,
1296 NULL, /* memory_region_set_priority */
1297 NULL, NULL);
1298 object_property_add(OBJECT(mr), "size", "uint64",
1299 memory_region_get_size,
1300 NULL, /* memory_region_set_size, */
1301 NULL, NULL);
1304 static int qemu_target_backtrace(target_ulong *array, size_t size)
1306 int n = 0;
1307 if (size >= 2) {
1308 #if defined(TARGET_ARM)
1309 CPUArchState *env = cpu_env(current_cpu);
1310 array[0] = env->regs[15];
1311 array[1] = env->regs[14];
1312 #elif defined(TARGET_MIPS)
1313 CPUArchState *env = cpu_env(current_cpu);
1314 array[0] = env->active_tc.PC;
1315 array[1] = env->active_tc.gpr[31];
1316 #else
1317 array[0] = 0;
1318 array[1] = 0;
1319 #endif
1320 n = 2;
1322 return n;
1325 #include "disas/disas.h"
1326 const char *qemu_sprint_backtrace(char *buffer, size_t length)
1328 char *p = buffer;
1329 if (current_cpu) {
1330 target_ulong caller[2];
1331 const char *symbol;
1332 qemu_target_backtrace(caller, 2);
1333 symbol = lookup_symbol(caller[0]);
1334 p += sprintf(p, "[%s]", symbol);
1335 symbol = lookup_symbol(caller[1]);
1336 p += sprintf(p, "[%s]", symbol);
1337 } else {
1338 p += sprintf(p, "[cpu not running]");
1340 assert((p - buffer) < length);
1341 return buffer;
1344 static void iommu_memory_region_initfn(Object *obj)
1346 MemoryRegion *mr = MEMORY_REGION(obj);
1348 mr->is_iommu = true;
1351 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1352 unsigned size)
1354 if (trace_unassigned) {
1355 char buffer[256];
1356 printf("Unassigned mem read " HWADDR_FMT_plx " %s\n",
1357 addr, qemu_sprint_backtrace(buffer, sizeof(buffer)));
1359 //~ vm_stop(0);
1360 return 0;
1363 static void unassigned_mem_write(void *opaque, hwaddr addr,
1364 uint64_t val, unsigned size)
1366 if (trace_unassigned) {
1367 char buffer[256];
1368 printf("Unassigned mem write " HWADDR_FMT_plx
1369 " = 0x%" PRIx64 " %s\n",
1370 addr, val, qemu_sprint_backtrace(buffer, sizeof(buffer)));
1374 static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
1375 unsigned size, bool is_write,
1376 MemTxAttrs attrs)
1378 return false;
1381 const MemoryRegionOps unassigned_mem_ops = {
1382 .valid.accepts = unassigned_mem_accepts,
1383 .endianness = DEVICE_NATIVE_ENDIAN,
1386 static uint64_t memory_region_ram_device_read(void *opaque,
1387 hwaddr addr, unsigned size)
1389 MemoryRegion *mr = opaque;
1390 uint64_t data = ldn_he_p(mr->ram_block->host + addr, size);
1392 trace_memory_region_ram_device_read(get_cpu_index(), mr, addr, data, size);
1394 return data;
1397 static void memory_region_ram_device_write(void *opaque, hwaddr addr,
1398 uint64_t data, unsigned size)
1400 MemoryRegion *mr = opaque;
1402 trace_memory_region_ram_device_write(get_cpu_index(), mr, addr, data, size);
1404 stn_he_p(mr->ram_block->host + addr, size, data);
1407 static const MemoryRegionOps ram_device_mem_ops = {
1408 .read = memory_region_ram_device_read,
1409 .write = memory_region_ram_device_write,
1410 .endianness = DEVICE_HOST_ENDIAN,
1411 .valid = {
1412 .min_access_size = 1,
1413 .max_access_size = 8,
1414 .unaligned = true,
1416 .impl = {
1417 .min_access_size = 1,
1418 .max_access_size = 8,
1419 .unaligned = true,
1423 bool memory_region_access_valid(MemoryRegion *mr,
1424 hwaddr addr,
1425 unsigned size,
1426 bool is_write,
1427 MemTxAttrs attrs)
1429 if (mr->ops->valid.accepts
1430 && !mr->ops->valid.accepts(mr->opaque, addr, size, is_write, attrs)) {
1431 qemu_log_mask(LOG_GUEST_ERROR, "Invalid %s at addr 0x%" HWADDR_PRIX
1432 ", size %u, region '%s', reason: rejected\n",
1433 is_write ? "write" : "read",
1434 addr, size, memory_region_name(mr));
1435 return false;
1438 if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
1439 qemu_log_mask(LOG_GUEST_ERROR, "Invalid %s at addr 0x%" HWADDR_PRIX
1440 ", size %u, region '%s', reason: unaligned\n",
1441 is_write ? "write" : "read",
1442 addr, size, memory_region_name(mr));
1443 return false;
1446 /* Treat zero as compatibility all valid */
1447 if (!mr->ops->valid.max_access_size) {
1448 return true;
1451 if (size > mr->ops->valid.max_access_size
1452 || size < mr->ops->valid.min_access_size) {
1453 qemu_log_mask(LOG_GUEST_ERROR, "Invalid %s at addr 0x%" HWADDR_PRIX
1454 ", size %u, region '%s', reason: invalid size "
1455 "(min:%u max:%u)\n",
1456 is_write ? "write" : "read",
1457 addr, size, memory_region_name(mr),
1458 mr->ops->valid.min_access_size,
1459 mr->ops->valid.max_access_size);
1460 return false;
1462 return true;
1465 static MemTxResult memory_region_dispatch_read1(MemoryRegion *mr,
1466 hwaddr addr,
1467 uint64_t *pval,
1468 unsigned size,
1469 MemTxAttrs attrs)
1471 *pval = 0;
1473 if (mr->ops->read) {
1474 return access_with_adjusted_size(addr, pval, size,
1475 mr->ops->impl.min_access_size,
1476 mr->ops->impl.max_access_size,
1477 memory_region_read_accessor,
1478 mr, attrs);
1479 } else {
1480 return access_with_adjusted_size(addr, pval, size,
1481 mr->ops->impl.min_access_size,
1482 mr->ops->impl.max_access_size,
1483 memory_region_read_with_attrs_accessor,
1484 mr, attrs);
1488 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1489 hwaddr addr,
1490 uint64_t *pval,
1491 MemOp op,
1492 MemTxAttrs attrs)
1494 unsigned size = memop_size(op);
1495 MemTxResult r;
1497 if (mr->alias) {
1498 return memory_region_dispatch_read(mr->alias,
1499 mr->alias_offset + addr,
1500 pval, op, attrs);
1502 if (!memory_region_access_valid(mr, addr, size, false, attrs)) {
1503 *pval = unassigned_mem_read(mr, addr, size);
1504 return MEMTX_DECODE_ERROR;
1507 r = memory_region_dispatch_read1(mr, addr, pval, size, attrs);
1508 adjust_endianness(mr, pval, op);
1509 return r;
1512 /* Return true if an eventfd was signalled */
1513 static bool memory_region_dispatch_write_eventfds(MemoryRegion *mr,
1514 hwaddr addr,
1515 uint64_t data,
1516 unsigned size,
1517 MemTxAttrs attrs)
1519 MemoryRegionIoeventfd ioeventfd = {
1520 .addr = addrrange_make(int128_make64(addr), int128_make64(size)),
1521 .data = data,
1523 unsigned i;
1525 for (i = 0; i < mr->ioeventfd_nb; i++) {
1526 ioeventfd.match_data = mr->ioeventfds[i].match_data;
1527 ioeventfd.e = mr->ioeventfds[i].e;
1529 if (memory_region_ioeventfd_equal(&ioeventfd, &mr->ioeventfds[i])) {
1530 event_notifier_set(ioeventfd.e);
1531 return true;
1535 return false;
1538 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1539 hwaddr addr,
1540 uint64_t data,
1541 MemOp op,
1542 MemTxAttrs attrs)
1544 unsigned size = memop_size(op);
1546 if (mr->alias) {
1547 return memory_region_dispatch_write(mr->alias,
1548 mr->alias_offset + addr,
1549 data, op, attrs);
1551 if (!memory_region_access_valid(mr, addr, size, true, attrs)) {
1552 unassigned_mem_write(mr, addr, data, size);
1553 return MEMTX_DECODE_ERROR;
1556 adjust_endianness(mr, &data, op);
1559 * FIXME: it's not clear why under KVM the write would be processed
1560 * directly, instead of going through eventfd. This probably should
1561 * test "tcg_enabled() || qtest_enabled()", or should just go away.
1563 if (!kvm_enabled() &&
1564 memory_region_dispatch_write_eventfds(mr, addr, data, size, attrs)) {
1565 return MEMTX_OK;
1568 if (mr->ops->write) {
1569 return access_with_adjusted_size(addr, &data, size,
1570 mr->ops->impl.min_access_size,
1571 mr->ops->impl.max_access_size,
1572 memory_region_write_accessor, mr,
1573 attrs);
1574 } else {
1575 return
1576 access_with_adjusted_size(addr, &data, size,
1577 mr->ops->impl.min_access_size,
1578 mr->ops->impl.max_access_size,
1579 memory_region_write_with_attrs_accessor,
1580 mr, attrs);
1584 void memory_region_init_io(MemoryRegion *mr,
1585 Object *owner,
1586 const MemoryRegionOps *ops,
1587 void *opaque,
1588 const char *name,
1589 uint64_t size)
1591 memory_region_init(mr, owner, name, size);
1592 mr->ops = ops ? ops : &unassigned_mem_ops;
1593 mr->opaque = opaque;
1594 mr->terminates = true;
1597 bool memory_region_init_ram_nomigrate(MemoryRegion *mr,
1598 Object *owner,
1599 const char *name,
1600 uint64_t size,
1601 Error **errp)
1603 return memory_region_init_ram_flags_nomigrate(mr, owner, name,
1604 size, 0, errp);
1607 bool memory_region_init_ram_flags_nomigrate(MemoryRegion *mr,
1608 Object *owner,
1609 const char *name,
1610 uint64_t size,
1611 uint32_t ram_flags,
1612 Error **errp)
1614 Error *err = NULL;
1615 memory_region_init(mr, owner, name, size);
1616 mr->ram = true;
1617 mr->terminates = true;
1618 mr->destructor = memory_region_destructor_ram;
1619 mr->ram_block = qemu_ram_alloc(size, ram_flags, mr, &err);
1620 if (err) {
1621 mr->size = int128_zero();
1622 object_unparent(OBJECT(mr));
1623 error_propagate(errp, err);
1624 return false;
1626 return true;
1629 bool memory_region_init_resizeable_ram(MemoryRegion *mr,
1630 Object *owner,
1631 const char *name,
1632 uint64_t size,
1633 uint64_t max_size,
1634 void (*resized)(const char*,
1635 uint64_t length,
1636 void *host),
1637 Error **errp)
1639 Error *err = NULL;
1640 memory_region_init(mr, owner, name, size);
1641 mr->ram = true;
1642 mr->terminates = true;
1643 mr->destructor = memory_region_destructor_ram;
1644 mr->ram_block = qemu_ram_alloc_resizeable(size, max_size, resized,
1645 mr, &err);
1646 if (err) {
1647 mr->size = int128_zero();
1648 object_unparent(OBJECT(mr));
1649 error_propagate(errp, err);
1650 return false;
1652 return true;
1655 #ifdef CONFIG_POSIX
1656 bool memory_region_init_ram_from_file(MemoryRegion *mr,
1657 Object *owner,
1658 const char *name,
1659 uint64_t size,
1660 uint64_t align,
1661 uint32_t ram_flags,
1662 const char *path,
1663 ram_addr_t offset,
1664 Error **errp)
1666 Error *err = NULL;
1667 memory_region_init(mr, owner, name, size);
1668 mr->ram = true;
1669 mr->readonly = !!(ram_flags & RAM_READONLY);
1670 mr->terminates = true;
1671 mr->destructor = memory_region_destructor_ram;
1672 mr->align = align;
1673 mr->ram_block = qemu_ram_alloc_from_file(size, mr, ram_flags, path,
1674 offset, &err);
1675 if (err) {
1676 mr->size = int128_zero();
1677 object_unparent(OBJECT(mr));
1678 error_propagate(errp, err);
1679 return false;
1681 return true;
1684 bool memory_region_init_ram_from_fd(MemoryRegion *mr,
1685 Object *owner,
1686 const char *name,
1687 uint64_t size,
1688 uint32_t ram_flags,
1689 int fd,
1690 ram_addr_t offset,
1691 Error **errp)
1693 Error *err = NULL;
1694 memory_region_init(mr, owner, name, size);
1695 mr->ram = true;
1696 mr->readonly = !!(ram_flags & RAM_READONLY);
1697 mr->terminates = true;
1698 mr->destructor = memory_region_destructor_ram;
1699 mr->ram_block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, offset,
1700 &err);
1701 if (err) {
1702 mr->size = int128_zero();
1703 object_unparent(OBJECT(mr));
1704 error_propagate(errp, err);
1705 return false;
1707 return true;
1709 #endif
1711 void memory_region_init_ram_ptr(MemoryRegion *mr,
1712 Object *owner,
1713 const char *name,
1714 uint64_t size,
1715 void *ptr)
1717 memory_region_init(mr, owner, name, size);
1718 mr->ram = true;
1719 mr->terminates = true;
1720 mr->destructor = memory_region_destructor_ram;
1722 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1723 assert(ptr != NULL);
1724 mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_abort);
1727 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1728 Object *owner,
1729 const char *name,
1730 uint64_t size,
1731 void *ptr)
1733 memory_region_init(mr, owner, name, size);
1734 mr->ram = true;
1735 mr->terminates = true;
1736 mr->ram_device = true;
1737 mr->ops = &ram_device_mem_ops;
1738 mr->opaque = mr;
1739 mr->destructor = memory_region_destructor_ram;
1741 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1742 assert(ptr != NULL);
1743 mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_abort);
1746 void memory_region_init_alias(MemoryRegion *mr,
1747 Object *owner,
1748 const char *name,
1749 MemoryRegion *orig,
1750 hwaddr offset,
1751 uint64_t size)
1753 memory_region_init(mr, owner, name, size);
1754 mr->alias = orig;
1755 mr->alias_offset = offset;
1758 bool memory_region_init_rom_nomigrate(MemoryRegion *mr,
1759 Object *owner,
1760 const char *name,
1761 uint64_t size,
1762 Error **errp)
1764 if (!memory_region_init_ram_flags_nomigrate(mr, owner, name,
1765 size, 0, errp)) {
1766 return false;
1768 mr->readonly = true;
1770 return true;
1773 bool memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1774 Object *owner,
1775 const MemoryRegionOps *ops,
1776 void *opaque,
1777 const char *name,
1778 uint64_t size,
1779 Error **errp)
1781 Error *err = NULL;
1782 assert(ops);
1783 memory_region_init(mr, owner, name, size);
1784 mr->ops = ops;
1785 mr->opaque = opaque;
1786 mr->terminates = true;
1787 mr->rom_device = true;
1788 mr->destructor = memory_region_destructor_ram;
1789 mr->ram_block = qemu_ram_alloc(size, 0, mr, &err);
1790 if (err) {
1791 mr->size = int128_zero();
1792 object_unparent(OBJECT(mr));
1793 error_propagate(errp, err);
1794 return false;
1796 return true;
1799 void memory_region_init_iommu(void *_iommu_mr,
1800 size_t instance_size,
1801 const char *mrtypename,
1802 Object *owner,
1803 const char *name,
1804 uint64_t size)
1806 struct IOMMUMemoryRegion *iommu_mr;
1807 struct MemoryRegion *mr;
1809 object_initialize(_iommu_mr, instance_size, mrtypename);
1810 mr = MEMORY_REGION(_iommu_mr);
1811 memory_region_do_init(mr, owner, name, size);
1812 iommu_mr = IOMMU_MEMORY_REGION(mr);
1813 mr->terminates = true; /* then re-forwards */
1814 QLIST_INIT(&iommu_mr->iommu_notify);
1815 iommu_mr->iommu_notify_flags = IOMMU_NOTIFIER_NONE;
1818 static void memory_region_finalize(Object *obj)
1820 MemoryRegion *mr = MEMORY_REGION(obj);
1822 assert(!mr->container);
1824 /* We know the region is not visible in any address space (it
1825 * does not have a container and cannot be a root either because
1826 * it has no references, so we can blindly clear mr->enabled.
1827 * memory_region_set_enabled instead could trigger a transaction
1828 * and cause an infinite loop.
1830 mr->enabled = false;
1831 memory_region_transaction_begin();
1832 while (!QTAILQ_EMPTY(&mr->subregions)) {
1833 MemoryRegion *subregion = QTAILQ_FIRST(&mr->subregions);
1834 memory_region_del_subregion(mr, subregion);
1836 memory_region_transaction_commit();
1838 mr->destructor(mr);
1839 memory_region_clear_coalescing(mr);
1840 g_free((char *)mr->name);
1841 g_free(mr->ioeventfds);
1844 Object *memory_region_owner(MemoryRegion *mr)
1846 Object *obj = OBJECT(mr);
1847 return obj->parent;
1850 void memory_region_ref(MemoryRegion *mr)
1852 /* MMIO callbacks most likely will access data that belongs
1853 * to the owner, hence the need to ref/unref the owner whenever
1854 * the memory region is in use.
1856 * The memory region is a child of its owner. As long as the
1857 * owner doesn't call unparent itself on the memory region,
1858 * ref-ing the owner will also keep the memory region alive.
1859 * Memory regions without an owner are supposed to never go away;
1860 * we do not ref/unref them because it slows down DMA sensibly.
1862 if (mr && mr->owner) {
1863 object_ref(mr->owner);
1867 void memory_region_unref(MemoryRegion *mr)
1869 if (mr && mr->owner) {
1870 object_unref(mr->owner);
1874 uint64_t memory_region_size(MemoryRegion *mr)
1876 if (int128_eq(mr->size, int128_2_64())) {
1877 return UINT64_MAX;
1879 return int128_get64(mr->size);
1882 const char *memory_region_name(const MemoryRegion *mr)
1884 if (!mr->name) {
1885 ((MemoryRegion *)mr)->name =
1886 g_strdup(object_get_canonical_path_component(OBJECT(mr)));
1888 return mr->name;
1891 bool memory_region_is_ram_device(MemoryRegion *mr)
1893 return mr->ram_device;
1896 bool memory_region_is_protected(MemoryRegion *mr)
1898 return mr->ram && (mr->ram_block->flags & RAM_PROTECTED);
1901 bool memory_region_has_guest_memfd(MemoryRegion *mr)
1903 return mr->ram_block && mr->ram_block->guest_memfd >= 0;
1906 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr)
1908 uint8_t mask = mr->dirty_log_mask;
1909 RAMBlock *rb = mr->ram_block;
1911 if (global_dirty_tracking && ((rb && qemu_ram_is_migratable(rb)) ||
1912 memory_region_is_iommu(mr))) {
1913 mask |= (1 << DIRTY_MEMORY_MIGRATION);
1916 if (tcg_enabled() && rb) {
1917 /* TCG only cares about dirty memory logging for RAM, not IOMMU. */
1918 mask |= (1 << DIRTY_MEMORY_CODE);
1920 return mask;
1923 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client)
1925 return memory_region_get_dirty_log_mask(mr) & (1 << client);
1928 static int memory_region_update_iommu_notify_flags(IOMMUMemoryRegion *iommu_mr,
1929 Error **errp)
1931 IOMMUNotifierFlag flags = IOMMU_NOTIFIER_NONE;
1932 IOMMUNotifier *iommu_notifier;
1933 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1934 int ret = 0;
1936 IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
1937 flags |= iommu_notifier->notifier_flags;
1940 if (flags != iommu_mr->iommu_notify_flags && imrc->notify_flag_changed) {
1941 ret = imrc->notify_flag_changed(iommu_mr,
1942 iommu_mr->iommu_notify_flags,
1943 flags, errp);
1946 if (!ret) {
1947 iommu_mr->iommu_notify_flags = flags;
1949 return ret;
1952 int memory_region_register_iommu_notifier(MemoryRegion *mr,
1953 IOMMUNotifier *n, Error **errp)
1955 IOMMUMemoryRegion *iommu_mr;
1956 int ret;
1958 if (mr->alias) {
1959 return memory_region_register_iommu_notifier(mr->alias, n, errp);
1962 /* We need to register for at least one bitfield */
1963 iommu_mr = IOMMU_MEMORY_REGION(mr);
1964 assert(n->notifier_flags != IOMMU_NOTIFIER_NONE);
1965 assert(n->start <= n->end);
1966 assert(n->iommu_idx >= 0 &&
1967 n->iommu_idx < memory_region_iommu_num_indexes(iommu_mr));
1969 QLIST_INSERT_HEAD(&iommu_mr->iommu_notify, n, node);
1970 ret = memory_region_update_iommu_notify_flags(iommu_mr, errp);
1971 if (ret) {
1972 QLIST_REMOVE(n, node);
1974 return ret;
1977 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr)
1979 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1981 if (imrc->get_min_page_size) {
1982 return imrc->get_min_page_size(iommu_mr);
1984 return TARGET_PAGE_SIZE;
1987 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
1989 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
1990 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1991 hwaddr addr, granularity;
1992 IOMMUTLBEntry iotlb;
1994 /* If the IOMMU has its own replay callback, override */
1995 if (imrc->replay) {
1996 imrc->replay(iommu_mr, n);
1997 return;
2000 granularity = memory_region_iommu_get_min_page_size(iommu_mr);
2002 for (addr = 0; addr < memory_region_size(mr); addr += granularity) {
2003 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, n->iommu_idx);
2004 if (iotlb.perm != IOMMU_NONE) {
2005 n->notify(n, &iotlb);
2008 /* if (2^64 - MR size) < granularity, it's possible to get an
2009 * infinite loop here. This should catch such a wraparound */
2010 if ((addr + granularity) < addr) {
2011 break;
2016 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
2017 IOMMUNotifier *n)
2019 IOMMUMemoryRegion *iommu_mr;
2021 if (mr->alias) {
2022 memory_region_unregister_iommu_notifier(mr->alias, n);
2023 return;
2025 QLIST_REMOVE(n, node);
2026 iommu_mr = IOMMU_MEMORY_REGION(mr);
2027 memory_region_update_iommu_notify_flags(iommu_mr, NULL);
2030 void memory_region_notify_iommu_one(IOMMUNotifier *notifier,
2031 const IOMMUTLBEvent *event)
2033 const IOMMUTLBEntry *entry = &event->entry;
2034 hwaddr entry_end = entry->iova + entry->addr_mask;
2035 IOMMUTLBEntry tmp = *entry;
2037 if (event->type == IOMMU_NOTIFIER_UNMAP) {
2038 assert(entry->perm == IOMMU_NONE);
2042 * Skip the notification if the notification does not overlap
2043 * with registered range.
2045 if (notifier->start > entry_end || notifier->end < entry->iova) {
2046 return;
2049 if (notifier->notifier_flags & IOMMU_NOTIFIER_DEVIOTLB_UNMAP) {
2050 /* Crop (iova, addr_mask) to range */
2051 tmp.iova = MAX(tmp.iova, notifier->start);
2052 tmp.addr_mask = MIN(entry_end, notifier->end) - tmp.iova;
2053 } else {
2054 assert(entry->iova >= notifier->start && entry_end <= notifier->end);
2057 if (event->type & notifier->notifier_flags) {
2058 notifier->notify(notifier, &tmp);
2062 void memory_region_unmap_iommu_notifier_range(IOMMUNotifier *notifier)
2064 IOMMUTLBEvent event;
2066 event.type = IOMMU_NOTIFIER_UNMAP;
2067 event.entry.target_as = &address_space_memory;
2068 event.entry.iova = notifier->start;
2069 event.entry.perm = IOMMU_NONE;
2070 event.entry.addr_mask = notifier->end - notifier->start;
2072 memory_region_notify_iommu_one(notifier, &event);
2075 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
2076 int iommu_idx,
2077 const IOMMUTLBEvent event)
2079 IOMMUNotifier *iommu_notifier;
2081 assert(memory_region_is_iommu(MEMORY_REGION(iommu_mr)));
2083 IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
2084 if (iommu_notifier->iommu_idx == iommu_idx) {
2085 memory_region_notify_iommu_one(iommu_notifier, &event);
2090 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
2091 enum IOMMUMemoryRegionAttr attr,
2092 void *data)
2094 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2096 if (!imrc->get_attr) {
2097 return -EINVAL;
2100 return imrc->get_attr(iommu_mr, attr, data);
2103 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
2104 MemTxAttrs attrs)
2106 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2108 if (!imrc->attrs_to_index) {
2109 return 0;
2112 return imrc->attrs_to_index(iommu_mr, attrs);
2115 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr)
2117 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2119 if (!imrc->num_indexes) {
2120 return 1;
2123 return imrc->num_indexes(iommu_mr);
2126 RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr)
2128 if (!memory_region_is_ram(mr)) {
2129 return NULL;
2131 return mr->rdm;
2134 void memory_region_set_ram_discard_manager(MemoryRegion *mr,
2135 RamDiscardManager *rdm)
2137 g_assert(memory_region_is_ram(mr));
2138 g_assert(!rdm || !mr->rdm);
2139 mr->rdm = rdm;
2142 uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm,
2143 const MemoryRegion *mr)
2145 RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2147 g_assert(rdmc->get_min_granularity);
2148 return rdmc->get_min_granularity(rdm, mr);
2151 bool ram_discard_manager_is_populated(const RamDiscardManager *rdm,
2152 const MemoryRegionSection *section)
2154 RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2156 g_assert(rdmc->is_populated);
2157 return rdmc->is_populated(rdm, section);
2160 int ram_discard_manager_replay_populated(const RamDiscardManager *rdm,
2161 MemoryRegionSection *section,
2162 ReplayRamPopulate replay_fn,
2163 void *opaque)
2165 RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2167 g_assert(rdmc->replay_populated);
2168 return rdmc->replay_populated(rdm, section, replay_fn, opaque);
2171 void ram_discard_manager_replay_discarded(const RamDiscardManager *rdm,
2172 MemoryRegionSection *section,
2173 ReplayRamDiscard replay_fn,
2174 void *opaque)
2176 RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2178 g_assert(rdmc->replay_discarded);
2179 rdmc->replay_discarded(rdm, section, replay_fn, opaque);
2182 void ram_discard_manager_register_listener(RamDiscardManager *rdm,
2183 RamDiscardListener *rdl,
2184 MemoryRegionSection *section)
2186 RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2188 g_assert(rdmc->register_listener);
2189 rdmc->register_listener(rdm, rdl, section);
2192 void ram_discard_manager_unregister_listener(RamDiscardManager *rdm,
2193 RamDiscardListener *rdl)
2195 RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2197 g_assert(rdmc->unregister_listener);
2198 rdmc->unregister_listener(rdm, rdl);
2201 /* Called with rcu_read_lock held. */
2202 bool memory_get_xlat_addr(IOMMUTLBEntry *iotlb, void **vaddr,
2203 ram_addr_t *ram_addr, bool *read_only,
2204 bool *mr_has_discard_manager, Error **errp)
2206 MemoryRegion *mr;
2207 hwaddr xlat;
2208 hwaddr len = iotlb->addr_mask + 1;
2209 bool writable = iotlb->perm & IOMMU_WO;
2211 if (mr_has_discard_manager) {
2212 *mr_has_discard_manager = false;
2215 * The IOMMU TLB entry we have just covers translation through
2216 * this IOMMU to its immediate target. We need to translate
2217 * it the rest of the way through to memory.
2219 mr = address_space_translate(&address_space_memory, iotlb->translated_addr,
2220 &xlat, &len, writable, MEMTXATTRS_UNSPECIFIED);
2221 if (!memory_region_is_ram(mr)) {
2222 error_setg(errp, "iommu map to non memory area %" HWADDR_PRIx "", xlat);
2223 return false;
2224 } else if (memory_region_has_ram_discard_manager(mr)) {
2225 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(mr);
2226 MemoryRegionSection tmp = {
2227 .mr = mr,
2228 .offset_within_region = xlat,
2229 .size = int128_make64(len),
2231 if (mr_has_discard_manager) {
2232 *mr_has_discard_manager = true;
2235 * Malicious VMs can map memory into the IOMMU, which is expected
2236 * to remain discarded. vfio will pin all pages, populating memory.
2237 * Disallow that. vmstate priorities make sure any RamDiscardManager
2238 * were already restored before IOMMUs are restored.
2240 if (!ram_discard_manager_is_populated(rdm, &tmp)) {
2241 error_setg(errp, "iommu map to discarded memory (e.g., unplugged"
2242 " via virtio-mem): %" HWADDR_PRIx "",
2243 iotlb->translated_addr);
2244 return false;
2249 * Translation truncates length to the IOMMU page size,
2250 * check that it did not truncate too much.
2252 if (len & iotlb->addr_mask) {
2253 error_setg(errp, "iommu has granularity incompatible with target AS");
2254 return false;
2257 if (vaddr) {
2258 *vaddr = memory_region_get_ram_ptr(mr) + xlat;
2261 if (ram_addr) {
2262 *ram_addr = memory_region_get_ram_addr(mr) + xlat;
2265 if (read_only) {
2266 *read_only = !writable || mr->readonly;
2269 return true;
2272 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
2274 uint8_t mask = 1 << client;
2275 uint8_t old_logging;
2277 assert(client == DIRTY_MEMORY_VGA);
2278 old_logging = mr->vga_logging_count;
2279 mr->vga_logging_count += log ? 1 : -1;
2280 if (!!old_logging == !!mr->vga_logging_count) {
2281 return;
2284 memory_region_transaction_begin();
2285 mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
2286 memory_region_update_pending |= mr->enabled;
2287 memory_region_transaction_commit();
2290 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
2291 hwaddr size)
2293 assert(mr->ram_block);
2294 cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr,
2295 size,
2296 memory_region_get_dirty_log_mask(mr));
2300 * If memory region `mr' is NULL, do global sync. Otherwise, sync
2301 * dirty bitmap for the specified memory region.
2303 static void memory_region_sync_dirty_bitmap(MemoryRegion *mr, bool last_stage)
2305 MemoryListener *listener;
2306 AddressSpace *as;
2307 FlatView *view;
2308 FlatRange *fr;
2310 /* If the same address space has multiple log_sync listeners, we
2311 * visit that address space's FlatView multiple times. But because
2312 * log_sync listeners are rare, it's still cheaper than walking each
2313 * address space once.
2315 QTAILQ_FOREACH(listener, &memory_listeners, link) {
2316 if (listener->log_sync) {
2317 as = listener->address_space;
2318 view = address_space_get_flatview(as);
2319 FOR_EACH_FLAT_RANGE(fr, view) {
2320 if (fr->dirty_log_mask && (!mr || fr->mr == mr)) {
2321 MemoryRegionSection mrs = section_from_flat_range(fr, view);
2322 listener->log_sync(listener, &mrs);
2325 flatview_unref(view);
2326 trace_memory_region_sync_dirty(mr ? mr->name : "(all)", listener->name, 0);
2327 } else if (listener->log_sync_global) {
2329 * No matter whether MR is specified, what we can do here
2330 * is to do a global sync, because we are not capable to
2331 * sync in a finer granularity.
2333 listener->log_sync_global(listener, last_stage);
2334 trace_memory_region_sync_dirty(mr ? mr->name : "(all)", listener->name, 1);
2339 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
2340 hwaddr len)
2342 MemoryRegionSection mrs;
2343 MemoryListener *listener;
2344 AddressSpace *as;
2345 FlatView *view;
2346 FlatRange *fr;
2347 hwaddr sec_start, sec_end, sec_size;
2349 QTAILQ_FOREACH(listener, &memory_listeners, link) {
2350 if (!listener->log_clear) {
2351 continue;
2353 as = listener->address_space;
2354 view = address_space_get_flatview(as);
2355 FOR_EACH_FLAT_RANGE(fr, view) {
2356 if (!fr->dirty_log_mask || fr->mr != mr) {
2358 * Clear dirty bitmap operation only applies to those
2359 * regions whose dirty logging is at least enabled
2361 continue;
2364 mrs = section_from_flat_range(fr, view);
2366 sec_start = MAX(mrs.offset_within_region, start);
2367 sec_end = mrs.offset_within_region + int128_get64(mrs.size);
2368 sec_end = MIN(sec_end, start + len);
2370 if (sec_start >= sec_end) {
2372 * If this memory region section has no intersection
2373 * with the requested range, skip.
2375 continue;
2378 /* Valid case; shrink the section if needed */
2379 mrs.offset_within_address_space +=
2380 sec_start - mrs.offset_within_region;
2381 mrs.offset_within_region = sec_start;
2382 sec_size = sec_end - sec_start;
2383 mrs.size = int128_make64(sec_size);
2384 listener->log_clear(listener, &mrs);
2386 flatview_unref(view);
2390 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
2391 hwaddr addr,
2392 hwaddr size,
2393 unsigned client)
2395 DirtyBitmapSnapshot *snapshot;
2396 assert(mr->ram_block);
2397 memory_region_sync_dirty_bitmap(mr, false);
2398 snapshot = cpu_physical_memory_snapshot_and_clear_dirty(mr, addr, size, client);
2399 memory_global_after_dirty_log_sync();
2400 return snapshot;
2403 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, DirtyBitmapSnapshot *snap,
2404 hwaddr addr, hwaddr size)
2406 assert(mr->ram_block);
2407 return cpu_physical_memory_snapshot_get_dirty(snap,
2408 memory_region_get_ram_addr(mr) + addr, size);
2411 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
2413 if (mr->readonly != readonly) {
2414 memory_region_transaction_begin();
2415 mr->readonly = readonly;
2416 memory_region_update_pending |= mr->enabled;
2417 memory_region_transaction_commit();
2421 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile)
2423 if (mr->nonvolatile != nonvolatile) {
2424 memory_region_transaction_begin();
2425 mr->nonvolatile = nonvolatile;
2426 memory_region_update_pending |= mr->enabled;
2427 memory_region_transaction_commit();
2431 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
2433 if (mr->romd_mode != romd_mode) {
2434 memory_region_transaction_begin();
2435 mr->romd_mode = romd_mode;
2436 memory_region_update_pending |= mr->enabled;
2437 memory_region_transaction_commit();
2441 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
2442 hwaddr size, unsigned client)
2444 assert(mr->ram_block);
2445 cpu_physical_memory_test_and_clear_dirty(
2446 memory_region_get_ram_addr(mr) + addr, size, client);
2449 int memory_region_get_fd(MemoryRegion *mr)
2451 RCU_READ_LOCK_GUARD();
2452 while (mr->alias) {
2453 mr = mr->alias;
2455 return mr->ram_block->fd;
2458 void *memory_region_get_ram_ptr(MemoryRegion *mr)
2460 uint64_t offset = 0;
2462 RCU_READ_LOCK_GUARD();
2463 while (mr->alias) {
2464 offset += mr->alias_offset;
2465 mr = mr->alias;
2467 assert(mr->ram_block);
2468 return qemu_map_ram_ptr(mr->ram_block, offset);
2471 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset)
2473 RAMBlock *block;
2475 block = qemu_ram_block_from_host(ptr, false, offset);
2476 if (!block) {
2477 return NULL;
2480 return block->mr;
2483 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
2485 return mr->ram_block ? mr->ram_block->offset : RAM_ADDR_INVALID;
2488 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, Error **errp)
2490 assert(mr->ram_block);
2492 qemu_ram_resize(mr->ram_block, newsize, errp);
2495 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size)
2497 if (mr->ram_block) {
2498 qemu_ram_msync(mr->ram_block, addr, size);
2502 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size)
2505 * Might be extended case needed to cover
2506 * different types of memory regions
2508 if (mr->dirty_log_mask) {
2509 memory_region_msync(mr, addr, size);
2514 * Call proper memory listeners about the change on the newly
2515 * added/removed CoalescedMemoryRange.
2517 static void memory_region_update_coalesced_range(MemoryRegion *mr,
2518 CoalescedMemoryRange *cmr,
2519 bool add)
2521 AddressSpace *as;
2522 FlatView *view;
2523 FlatRange *fr;
2525 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2526 view = address_space_get_flatview(as);
2527 FOR_EACH_FLAT_RANGE(fr, view) {
2528 if (fr->mr == mr) {
2529 flat_range_coalesced_io_notify(fr, as, cmr, add);
2532 flatview_unref(view);
2536 void memory_region_set_coalescing(MemoryRegion *mr)
2538 memory_region_clear_coalescing(mr);
2539 memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
2542 void memory_region_add_coalescing(MemoryRegion *mr,
2543 hwaddr offset,
2544 uint64_t size)
2546 CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
2548 cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
2549 QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
2550 memory_region_update_coalesced_range(mr, cmr, true);
2551 memory_region_set_flush_coalesced(mr);
2554 void memory_region_clear_coalescing(MemoryRegion *mr)
2556 CoalescedMemoryRange *cmr;
2558 if (QTAILQ_EMPTY(&mr->coalesced)) {
2559 return;
2562 qemu_flush_coalesced_mmio_buffer();
2563 mr->flush_coalesced_mmio = false;
2565 while (!QTAILQ_EMPTY(&mr->coalesced)) {
2566 cmr = QTAILQ_FIRST(&mr->coalesced);
2567 QTAILQ_REMOVE(&mr->coalesced, cmr, link);
2568 memory_region_update_coalesced_range(mr, cmr, false);
2569 g_free(cmr);
2573 void memory_region_set_flush_coalesced(MemoryRegion *mr)
2575 mr->flush_coalesced_mmio = true;
2578 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
2580 qemu_flush_coalesced_mmio_buffer();
2581 if (QTAILQ_EMPTY(&mr->coalesced)) {
2582 mr->flush_coalesced_mmio = false;
2586 void memory_region_add_eventfd(MemoryRegion *mr,
2587 hwaddr addr,
2588 unsigned size,
2589 bool match_data,
2590 uint64_t data,
2591 EventNotifier *e)
2593 MemoryRegionIoeventfd mrfd = {
2594 .addr.start = int128_make64(addr),
2595 .addr.size = int128_make64(size),
2596 .match_data = match_data,
2597 .data = data,
2598 .e = e,
2600 unsigned i;
2602 if (size) {
2603 adjust_endianness(mr, &mrfd.data, size_memop(size) | MO_TE);
2605 memory_region_transaction_begin();
2606 for (i = 0; i < mr->ioeventfd_nb; ++i) {
2607 if (memory_region_ioeventfd_before(&mrfd, &mr->ioeventfds[i])) {
2608 break;
2611 ++mr->ioeventfd_nb;
2612 mr->ioeventfds = g_realloc(mr->ioeventfds,
2613 sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
2614 memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
2615 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
2616 mr->ioeventfds[i] = mrfd;
2617 ioeventfd_update_pending |= mr->enabled;
2618 memory_region_transaction_commit();
2621 void memory_region_del_eventfd(MemoryRegion *mr,
2622 hwaddr addr,
2623 unsigned size,
2624 bool match_data,
2625 uint64_t data,
2626 EventNotifier *e)
2628 MemoryRegionIoeventfd mrfd = {
2629 .addr.start = int128_make64(addr),
2630 .addr.size = int128_make64(size),
2631 .match_data = match_data,
2632 .data = data,
2633 .e = e,
2635 unsigned i;
2637 if (size) {
2638 adjust_endianness(mr, &mrfd.data, size_memop(size) | MO_TE);
2640 memory_region_transaction_begin();
2641 for (i = 0; i < mr->ioeventfd_nb; ++i) {
2642 if (memory_region_ioeventfd_equal(&mrfd, &mr->ioeventfds[i])) {
2643 break;
2646 assert(i != mr->ioeventfd_nb);
2647 memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
2648 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
2649 --mr->ioeventfd_nb;
2650 mr->ioeventfds = g_realloc(mr->ioeventfds,
2651 sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
2652 ioeventfd_update_pending |= mr->enabled;
2653 memory_region_transaction_commit();
2656 static void memory_region_update_container_subregions(MemoryRegion *subregion)
2658 MemoryRegion *mr = subregion->container;
2659 MemoryRegion *other;
2661 memory_region_transaction_begin();
2663 memory_region_ref(subregion);
2664 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
2665 if (subregion->priority >= other->priority) {
2666 QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
2667 goto done;
2670 QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
2671 done:
2672 memory_region_update_pending |= mr->enabled && subregion->enabled;
2673 memory_region_transaction_commit();
2676 static void memory_region_add_subregion_common(MemoryRegion *mr,
2677 hwaddr offset,
2678 MemoryRegion *subregion)
2680 MemoryRegion *alias;
2682 assert(!subregion->container);
2683 subregion->container = mr;
2684 for (alias = subregion->alias; alias; alias = alias->alias) {
2685 alias->mapped_via_alias++;
2687 subregion->addr = offset;
2688 memory_region_update_container_subregions(subregion);
2691 void memory_region_add_subregion(MemoryRegion *mr,
2692 hwaddr offset,
2693 MemoryRegion *subregion)
2695 subregion->priority = 0;
2696 memory_region_add_subregion_common(mr, offset, subregion);
2699 void memory_region_add_subregion_overlap(MemoryRegion *mr,
2700 hwaddr offset,
2701 MemoryRegion *subregion,
2702 int priority)
2704 subregion->priority = priority;
2705 memory_region_add_subregion_common(mr, offset, subregion);
2708 void memory_region_del_subregion(MemoryRegion *mr,
2709 MemoryRegion *subregion)
2711 MemoryRegion *alias;
2713 memory_region_transaction_begin();
2714 assert(subregion->container == mr);
2715 subregion->container = NULL;
2716 for (alias = subregion->alias; alias; alias = alias->alias) {
2717 alias->mapped_via_alias--;
2718 assert(alias->mapped_via_alias >= 0);
2720 QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
2721 memory_region_unref(subregion);
2722 memory_region_update_pending |= mr->enabled && subregion->enabled;
2723 memory_region_transaction_commit();
2726 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
2728 if (enabled == mr->enabled) {
2729 return;
2731 memory_region_transaction_begin();
2732 mr->enabled = enabled;
2733 memory_region_update_pending = true;
2734 memory_region_transaction_commit();
2737 void memory_region_set_size(MemoryRegion *mr, uint64_t size)
2739 Int128 s = int128_make64(size);
2741 if (size == UINT64_MAX) {
2742 s = int128_2_64();
2744 if (int128_eq(s, mr->size)) {
2745 return;
2747 memory_region_transaction_begin();
2748 mr->size = s;
2749 memory_region_update_pending = true;
2750 memory_region_transaction_commit();
2753 static void memory_region_readd_subregion(MemoryRegion *mr)
2755 MemoryRegion *container = mr->container;
2757 if (container) {
2758 memory_region_transaction_begin();
2759 memory_region_ref(mr);
2760 memory_region_del_subregion(container, mr);
2761 memory_region_add_subregion_common(container, mr->addr, mr);
2762 memory_region_unref(mr);
2763 memory_region_transaction_commit();
2767 void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
2769 if (addr != mr->addr) {
2770 mr->addr = addr;
2771 memory_region_readd_subregion(mr);
2775 void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
2777 assert(mr->alias);
2779 if (offset == mr->alias_offset) {
2780 return;
2783 memory_region_transaction_begin();
2784 mr->alias_offset = offset;
2785 memory_region_update_pending |= mr->enabled;
2786 memory_region_transaction_commit();
2789 void memory_region_set_unmergeable(MemoryRegion *mr, bool unmergeable)
2791 if (unmergeable == mr->unmergeable) {
2792 return;
2795 memory_region_transaction_begin();
2796 mr->unmergeable = unmergeable;
2797 memory_region_update_pending |= mr->enabled;
2798 memory_region_transaction_commit();
2801 uint64_t memory_region_get_alignment(const MemoryRegion *mr)
2803 return mr->align;
2806 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
2808 const AddrRange *addr = addr_;
2809 const FlatRange *fr = fr_;
2811 if (int128_le(addrrange_end(*addr), fr->addr.start)) {
2812 return -1;
2813 } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
2814 return 1;
2816 return 0;
2819 static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
2821 return bsearch(&addr, view->ranges, view->nr,
2822 sizeof(FlatRange), cmp_flatrange_addr);
2825 bool memory_region_is_mapped(MemoryRegion *mr)
2827 return !!mr->container || mr->mapped_via_alias;
2830 /* Same as memory_region_find, but it does not add a reference to the
2831 * returned region. It must be called from an RCU critical section.
2833 static MemoryRegionSection memory_region_find_rcu(MemoryRegion *mr,
2834 hwaddr addr, uint64_t size)
2836 MemoryRegionSection ret = { .mr = NULL };
2837 MemoryRegion *root;
2838 AddressSpace *as;
2839 AddrRange range;
2840 FlatView *view;
2841 FlatRange *fr;
2843 addr += mr->addr;
2844 for (root = mr; root->container; ) {
2845 root = root->container;
2846 addr += root->addr;
2849 as = memory_region_to_address_space(root);
2850 if (!as) {
2851 return ret;
2853 range = addrrange_make(int128_make64(addr), int128_make64(size));
2855 view = address_space_to_flatview(as);
2856 fr = flatview_lookup(view, range);
2857 if (!fr) {
2858 return ret;
2861 while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
2862 --fr;
2865 ret.mr = fr->mr;
2866 ret.fv = view;
2867 range = addrrange_intersection(range, fr->addr);
2868 ret.offset_within_region = fr->offset_in_region;
2869 ret.offset_within_region += int128_get64(int128_sub(range.start,
2870 fr->addr.start));
2871 ret.size = range.size;
2872 ret.offset_within_address_space = int128_get64(range.start);
2873 ret.readonly = fr->readonly;
2874 ret.nonvolatile = fr->nonvolatile;
2875 return ret;
2878 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2879 hwaddr addr, uint64_t size)
2881 MemoryRegionSection ret;
2882 RCU_READ_LOCK_GUARD();
2883 ret = memory_region_find_rcu(mr, addr, size);
2884 if (ret.mr) {
2885 memory_region_ref(ret.mr);
2887 return ret;
2890 MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s)
2892 MemoryRegionSection *tmp = g_new(MemoryRegionSection, 1);
2894 *tmp = *s;
2895 if (tmp->mr) {
2896 memory_region_ref(tmp->mr);
2898 if (tmp->fv) {
2899 bool ret = flatview_ref(tmp->fv);
2901 g_assert(ret);
2903 return tmp;
2906 void memory_region_section_free_copy(MemoryRegionSection *s)
2908 if (s->fv) {
2909 flatview_unref(s->fv);
2911 if (s->mr) {
2912 memory_region_unref(s->mr);
2914 g_free(s);
2917 bool memory_region_present(MemoryRegion *container, hwaddr addr)
2919 MemoryRegion *mr;
2921 RCU_READ_LOCK_GUARD();
2922 mr = memory_region_find_rcu(container, addr, 1).mr;
2923 return mr && mr != container;
2926 void memory_global_dirty_log_sync(bool last_stage)
2928 memory_region_sync_dirty_bitmap(NULL, last_stage);
2931 void memory_global_after_dirty_log_sync(void)
2933 MEMORY_LISTENER_CALL_GLOBAL(log_global_after_sync, Forward);
2937 * Dirty track stop flags that are postponed due to VM being stopped. Should
2938 * only be used within vmstate_change hook.
2940 static unsigned int postponed_stop_flags;
2941 static VMChangeStateEntry *vmstate_change;
2942 static void memory_global_dirty_log_stop_postponed_run(void);
2944 static bool memory_global_dirty_log_do_start(Error **errp)
2946 MemoryListener *listener;
2948 QTAILQ_FOREACH(listener, &memory_listeners, link) {
2949 if (listener->log_global_start) {
2950 if (!listener->log_global_start(listener, errp)) {
2951 goto err;
2955 return true;
2957 err:
2958 while ((listener = QTAILQ_PREV(listener, link)) != NULL) {
2959 if (listener->log_global_stop) {
2960 listener->log_global_stop(listener);
2964 return false;
2967 bool memory_global_dirty_log_start(unsigned int flags, Error **errp)
2969 unsigned int old_flags;
2971 assert(flags && !(flags & (~GLOBAL_DIRTY_MASK)));
2973 if (vmstate_change) {
2974 /* If there is postponed stop(), operate on it first */
2975 postponed_stop_flags &= ~flags;
2976 memory_global_dirty_log_stop_postponed_run();
2979 flags &= ~global_dirty_tracking;
2980 if (!flags) {
2981 return true;
2984 old_flags = global_dirty_tracking;
2985 global_dirty_tracking |= flags;
2986 trace_global_dirty_changed(global_dirty_tracking);
2988 if (!old_flags) {
2989 if (!memory_global_dirty_log_do_start(errp)) {
2990 global_dirty_tracking &= ~flags;
2991 trace_global_dirty_changed(global_dirty_tracking);
2992 return false;
2995 memory_region_transaction_begin();
2996 memory_region_update_pending = true;
2997 memory_region_transaction_commit();
2999 return true;
3002 static void memory_global_dirty_log_do_stop(unsigned int flags)
3004 assert(flags && !(flags & (~GLOBAL_DIRTY_MASK)));
3005 assert((global_dirty_tracking & flags) == flags);
3006 global_dirty_tracking &= ~flags;
3008 trace_global_dirty_changed(global_dirty_tracking);
3010 if (!global_dirty_tracking) {
3011 memory_region_transaction_begin();
3012 memory_region_update_pending = true;
3013 memory_region_transaction_commit();
3014 MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
3019 * Execute the postponed dirty log stop operations if there is, then reset
3020 * everything (including the flags and the vmstate change hook).
3022 static void memory_global_dirty_log_stop_postponed_run(void)
3024 /* This must be called with the vmstate handler registered */
3025 assert(vmstate_change);
3027 /* Note: postponed_stop_flags can be cleared in log start routine */
3028 if (postponed_stop_flags) {
3029 memory_global_dirty_log_do_stop(postponed_stop_flags);
3030 postponed_stop_flags = 0;
3033 qemu_del_vm_change_state_handler(vmstate_change);
3034 vmstate_change = NULL;
3037 static void memory_vm_change_state_handler(void *opaque, bool running,
3038 RunState state)
3040 if (running) {
3041 memory_global_dirty_log_stop_postponed_run();
3045 void memory_global_dirty_log_stop(unsigned int flags)
3047 if (!runstate_is_running()) {
3048 /* Postpone the dirty log stop, e.g., to when VM starts again */
3049 if (vmstate_change) {
3050 /* Batch with previous postponed flags */
3051 postponed_stop_flags |= flags;
3052 } else {
3053 postponed_stop_flags = flags;
3054 vmstate_change = qemu_add_vm_change_state_handler(
3055 memory_vm_change_state_handler, NULL);
3057 return;
3060 memory_global_dirty_log_do_stop(flags);
3063 static void listener_add_address_space(MemoryListener *listener,
3064 AddressSpace *as)
3066 FlatView *view;
3067 FlatRange *fr;
3069 if (listener->begin) {
3070 listener->begin(listener);
3072 if (global_dirty_tracking) {
3074 * Currently only VFIO can fail log_global_start(), and it's not
3075 * yet allowed to hotplug any PCI device during migration. So this
3076 * should never fail when invoked, guard it with error_abort. If
3077 * it can start to fail in the future, we need to be able to fail
3078 * the whole listener_add_address_space() and its callers.
3080 if (listener->log_global_start) {
3081 listener->log_global_start(listener, &error_abort);
3085 view = address_space_get_flatview(as);
3086 FOR_EACH_FLAT_RANGE(fr, view) {
3087 MemoryRegionSection section = section_from_flat_range(fr, view);
3089 if (listener->region_add) {
3090 listener->region_add(listener, &section);
3092 if (fr->dirty_log_mask && listener->log_start) {
3093 listener->log_start(listener, &section, 0, fr->dirty_log_mask);
3096 if (listener->commit) {
3097 listener->commit(listener);
3099 flatview_unref(view);
3102 static void listener_del_address_space(MemoryListener *listener,
3103 AddressSpace *as)
3105 FlatView *view;
3106 FlatRange *fr;
3108 if (listener->begin) {
3109 listener->begin(listener);
3111 view = address_space_get_flatview(as);
3112 FOR_EACH_FLAT_RANGE(fr, view) {
3113 MemoryRegionSection section = section_from_flat_range(fr, view);
3115 if (fr->dirty_log_mask && listener->log_stop) {
3116 listener->log_stop(listener, &section, fr->dirty_log_mask, 0);
3118 if (listener->region_del) {
3119 listener->region_del(listener, &section);
3122 if (listener->commit) {
3123 listener->commit(listener);
3125 flatview_unref(view);
3128 void memory_listener_register(MemoryListener *listener, AddressSpace *as)
3130 MemoryListener *other = NULL;
3132 /* Only one of them can be defined for a listener */
3133 assert(!(listener->log_sync && listener->log_sync_global));
3135 listener->address_space = as;
3136 if (QTAILQ_EMPTY(&memory_listeners)
3137 || listener->priority >= QTAILQ_LAST(&memory_listeners)->priority) {
3138 QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
3139 } else {
3140 QTAILQ_FOREACH(other, &memory_listeners, link) {
3141 if (listener->priority < other->priority) {
3142 break;
3145 QTAILQ_INSERT_BEFORE(other, listener, link);
3148 if (QTAILQ_EMPTY(&as->listeners)
3149 || listener->priority >= QTAILQ_LAST(&as->listeners)->priority) {
3150 QTAILQ_INSERT_TAIL(&as->listeners, listener, link_as);
3151 } else {
3152 QTAILQ_FOREACH(other, &as->listeners, link_as) {
3153 if (listener->priority < other->priority) {
3154 break;
3157 QTAILQ_INSERT_BEFORE(other, listener, link_as);
3160 listener_add_address_space(listener, as);
3162 if (listener->eventfd_add || listener->eventfd_del) {
3163 as->ioeventfd_notifiers++;
3167 void memory_listener_unregister(MemoryListener *listener)
3169 if (!listener->address_space) {
3170 return;
3173 if (listener->eventfd_add || listener->eventfd_del) {
3174 listener->address_space->ioeventfd_notifiers--;
3177 listener_del_address_space(listener, listener->address_space);
3178 QTAILQ_REMOVE(&memory_listeners, listener, link);
3179 QTAILQ_REMOVE(&listener->address_space->listeners, listener, link_as);
3180 listener->address_space = NULL;
3183 void address_space_remove_listeners(AddressSpace *as)
3185 while (!QTAILQ_EMPTY(&as->listeners)) {
3186 memory_listener_unregister(QTAILQ_FIRST(&as->listeners));
3190 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
3192 memory_region_ref(root);
3193 as->root = root;
3194 as->current_map = NULL;
3195 as->ioeventfd_nb = 0;
3196 as->ioeventfds = NULL;
3197 QTAILQ_INIT(&as->listeners);
3198 QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
3199 as->bounce.in_use = false;
3200 qemu_mutex_init(&as->map_client_list_lock);
3201 QLIST_INIT(&as->map_client_list);
3202 as->name = g_strdup(name ? name : "anonymous");
3203 address_space_update_topology(as);
3204 address_space_update_ioeventfds(as);
3207 static void do_address_space_destroy(AddressSpace *as)
3209 assert(!qatomic_read(&as->bounce.in_use));
3210 assert(QLIST_EMPTY(&as->map_client_list));
3211 qemu_mutex_destroy(&as->map_client_list_lock);
3213 assert(QTAILQ_EMPTY(&as->listeners));
3215 flatview_unref(as->current_map);
3216 g_free(as->name);
3217 g_free(as->ioeventfds);
3218 memory_region_unref(as->root);
3221 void address_space_destroy(AddressSpace *as)
3223 MemoryRegion *root = as->root;
3225 /* Flush out anything from MemoryListeners listening in on this */
3226 memory_region_transaction_begin();
3227 as->root = NULL;
3228 memory_region_transaction_commit();
3229 QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
3231 /* At this point, as->dispatch and as->current_map are dummy
3232 * entries that the guest should never use. Wait for the old
3233 * values to expire before freeing the data.
3235 as->root = root;
3236 call_rcu(as, do_address_space_destroy, rcu);
3239 static const char *memory_region_type(MemoryRegion *mr)
3241 if (mr->alias) {
3242 return memory_region_type(mr->alias);
3244 if (memory_region_is_ram_device(mr)) {
3245 return "ramd";
3246 } else if (memory_region_is_romd(mr)) {
3247 return "romd";
3248 } else if (memory_region_is_rom(mr)) {
3249 return "rom";
3250 } else if (memory_region_is_ram(mr)) {
3251 return "ram";
3252 } else {
3253 return "i/o";
3257 typedef struct MemoryRegionList MemoryRegionList;
3259 struct MemoryRegionList {
3260 const MemoryRegion *mr;
3261 QTAILQ_ENTRY(MemoryRegionList) mrqueue;
3264 typedef QTAILQ_HEAD(, MemoryRegionList) MemoryRegionListHead;
3266 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3267 int128_sub((size), int128_one())) : 0)
3268 #define MTREE_INDENT " "
3270 static void mtree_expand_owner(const char *label, Object *obj)
3272 DeviceState *dev = (DeviceState *) object_dynamic_cast(obj, TYPE_DEVICE);
3274 qemu_printf(" %s:{%s", label, dev ? "dev" : "obj");
3275 if (dev && dev->id) {
3276 qemu_printf(" id=%s", dev->id);
3277 } else {
3278 char *canonical_path = object_get_canonical_path(obj);
3279 if (canonical_path) {
3280 qemu_printf(" path=%s", canonical_path);
3281 g_free(canonical_path);
3282 } else {
3283 qemu_printf(" type=%s", object_get_typename(obj));
3286 qemu_printf("}");
3289 static void mtree_print_mr_owner(const MemoryRegion *mr)
3291 Object *owner = mr->owner;
3292 Object *parent = memory_region_owner((MemoryRegion *)mr);
3294 if (!owner && !parent) {
3295 qemu_printf(" orphan");
3296 return;
3298 if (owner) {
3299 mtree_expand_owner("owner", owner);
3301 if (parent && parent != owner) {
3302 mtree_expand_owner("parent", parent);
3306 static void mtree_print_mr(const MemoryRegion *mr, unsigned int level,
3307 hwaddr base,
3308 MemoryRegionListHead *alias_print_queue,
3309 bool owner, bool display_disabled)
3311 MemoryRegionList *new_ml, *ml, *next_ml;
3312 MemoryRegionListHead submr_print_queue;
3313 const MemoryRegion *submr;
3314 unsigned int i;
3315 hwaddr cur_start, cur_end;
3317 if (!mr) {
3318 return;
3321 cur_start = base + mr->addr;
3322 cur_end = cur_start + MR_SIZE(mr->size);
3325 * Try to detect overflow of memory region. This should never
3326 * happen normally. When it happens, we dump something to warn the
3327 * user who is observing this.
3329 if (cur_start < base || cur_end < cur_start) {
3330 qemu_printf("[DETECTED OVERFLOW!] ");
3333 if (mr->alias) {
3334 bool found = false;
3336 /* check if the alias is already in the queue */
3337 QTAILQ_FOREACH(ml, alias_print_queue, mrqueue) {
3338 if (ml->mr == mr->alias) {
3339 found = true;
3343 if (!found) {
3344 ml = g_new(MemoryRegionList, 1);
3345 ml->mr = mr->alias;
3346 QTAILQ_INSERT_TAIL(alias_print_queue, ml, mrqueue);
3348 if (mr->enabled || display_disabled) {
3349 for (i = 0; i < level; i++) {
3350 qemu_printf(MTREE_INDENT);
3352 qemu_printf(HWADDR_FMT_plx "-" HWADDR_FMT_plx
3353 " (prio %d, %s%s): alias %s @%s " HWADDR_FMT_plx
3354 "-" HWADDR_FMT_plx "%s",
3355 cur_start, cur_end,
3356 mr->priority,
3357 mr->nonvolatile ? "nv-" : "",
3358 memory_region_type((MemoryRegion *)mr),
3359 memory_region_name(mr),
3360 memory_region_name(mr->alias),
3361 mr->alias_offset,
3362 mr->alias_offset + MR_SIZE(mr->size),
3363 mr->enabled ? "" : " [disabled]");
3364 if (owner) {
3365 mtree_print_mr_owner(mr);
3367 qemu_printf("\n");
3369 } else {
3370 if (mr->enabled || display_disabled) {
3371 for (i = 0; i < level; i++) {
3372 qemu_printf(MTREE_INDENT);
3374 qemu_printf(HWADDR_FMT_plx "-" HWADDR_FMT_plx
3375 " (prio %d, %s%s): %s%s",
3376 cur_start, cur_end,
3377 mr->priority,
3378 mr->nonvolatile ? "nv-" : "",
3379 memory_region_type((MemoryRegion *)mr),
3380 memory_region_name(mr),
3381 mr->enabled ? "" : " [disabled]");
3382 if (owner) {
3383 mtree_print_mr_owner(mr);
3385 qemu_printf("\n");
3389 QTAILQ_INIT(&submr_print_queue);
3391 QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
3392 new_ml = g_new(MemoryRegionList, 1);
3393 new_ml->mr = submr;
3394 QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
3395 if (new_ml->mr->addr < ml->mr->addr ||
3396 (new_ml->mr->addr == ml->mr->addr &&
3397 new_ml->mr->priority > ml->mr->priority)) {
3398 QTAILQ_INSERT_BEFORE(ml, new_ml, mrqueue);
3399 new_ml = NULL;
3400 break;
3403 if (new_ml) {
3404 QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, mrqueue);
3408 QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
3409 mtree_print_mr(ml->mr, level + 1, cur_start,
3410 alias_print_queue, owner, display_disabled);
3413 QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, mrqueue, next_ml) {
3414 g_free(ml);
3418 struct FlatViewInfo {
3419 int counter;
3420 bool dispatch_tree;
3421 bool owner;
3422 AccelClass *ac;
3425 static void mtree_print_flatview(gpointer key, gpointer value,
3426 gpointer user_data)
3428 FlatView *view = key;
3429 GArray *fv_address_spaces = value;
3430 struct FlatViewInfo *fvi = user_data;
3431 FlatRange *range = &view->ranges[0];
3432 MemoryRegion *mr;
3433 int n = view->nr;
3434 int i;
3435 AddressSpace *as;
3437 qemu_printf("FlatView #%d\n", fvi->counter);
3438 ++fvi->counter;
3440 for (i = 0; i < fv_address_spaces->len; ++i) {
3441 as = g_array_index(fv_address_spaces, AddressSpace*, i);
3442 qemu_printf(" AS \"%s\", root: %s",
3443 as->name, memory_region_name(as->root));
3444 if (as->root->alias) {
3445 qemu_printf(", alias %s", memory_region_name(as->root->alias));
3447 qemu_printf("\n");
3450 qemu_printf(" Root memory region: %s\n",
3451 view->root ? memory_region_name(view->root) : "(none)");
3453 if (n <= 0) {
3454 qemu_printf(MTREE_INDENT "No rendered FlatView\n\n");
3455 return;
3458 while (n--) {
3459 mr = range->mr;
3460 if (range->offset_in_region) {
3461 qemu_printf(MTREE_INDENT HWADDR_FMT_plx "-" HWADDR_FMT_plx
3462 " (prio %d, %s%s): %s @" HWADDR_FMT_plx,
3463 int128_get64(range->addr.start),
3464 int128_get64(range->addr.start)
3465 + MR_SIZE(range->addr.size),
3466 mr->priority,
3467 range->nonvolatile ? "nv-" : "",
3468 range->readonly ? "rom" : memory_region_type(mr),
3469 memory_region_name(mr),
3470 range->offset_in_region);
3471 } else {
3472 qemu_printf(MTREE_INDENT HWADDR_FMT_plx "-" HWADDR_FMT_plx
3473 " (prio %d, %s%s): %s",
3474 int128_get64(range->addr.start),
3475 int128_get64(range->addr.start)
3476 + MR_SIZE(range->addr.size),
3477 mr->priority,
3478 range->nonvolatile ? "nv-" : "",
3479 range->readonly ? "rom" : memory_region_type(mr),
3480 memory_region_name(mr));
3482 if (fvi->owner) {
3483 mtree_print_mr_owner(mr);
3486 if (fvi->ac) {
3487 for (i = 0; i < fv_address_spaces->len; ++i) {
3488 as = g_array_index(fv_address_spaces, AddressSpace*, i);
3489 if (fvi->ac->has_memory(current_machine, as,
3490 int128_get64(range->addr.start),
3491 MR_SIZE(range->addr.size) + 1)) {
3492 qemu_printf(" %s", fvi->ac->name);
3496 qemu_printf("\n");
3497 range++;
3500 #if !defined(CONFIG_USER_ONLY)
3501 if (fvi->dispatch_tree && view->root) {
3502 mtree_print_dispatch(view->dispatch, view->root);
3504 #endif
3506 qemu_printf("\n");
3509 static gboolean mtree_info_flatview_free(gpointer key, gpointer value,
3510 gpointer user_data)
3512 FlatView *view = key;
3513 GArray *fv_address_spaces = value;
3515 g_array_unref(fv_address_spaces);
3516 flatview_unref(view);
3518 return true;
3521 static void mtree_info_flatview(bool dispatch_tree, bool owner)
3523 struct FlatViewInfo fvi = {
3524 .counter = 0,
3525 .dispatch_tree = dispatch_tree,
3526 .owner = owner,
3528 AddressSpace *as;
3529 FlatView *view;
3530 GArray *fv_address_spaces;
3531 GHashTable *views = g_hash_table_new(g_direct_hash, g_direct_equal);
3532 AccelClass *ac = ACCEL_GET_CLASS(current_accel());
3534 if (ac->has_memory) {
3535 fvi.ac = ac;
3538 /* Gather all FVs in one table */
3539 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
3540 view = address_space_get_flatview(as);
3542 fv_address_spaces = g_hash_table_lookup(views, view);
3543 if (!fv_address_spaces) {
3544 fv_address_spaces = g_array_new(false, false, sizeof(as));
3545 g_hash_table_insert(views, view, fv_address_spaces);
3548 g_array_append_val(fv_address_spaces, as);
3551 /* Print */
3552 g_hash_table_foreach(views, mtree_print_flatview, &fvi);
3554 /* Free */
3555 g_hash_table_foreach_remove(views, mtree_info_flatview_free, 0);
3556 g_hash_table_unref(views);
3559 struct AddressSpaceInfo {
3560 MemoryRegionListHead *ml_head;
3561 bool owner;
3562 bool disabled;
3565 /* Returns negative value if a < b; zero if a = b; positive value if a > b. */
3566 static gint address_space_compare_name(gconstpointer a, gconstpointer b)
3568 const AddressSpace *as_a = a;
3569 const AddressSpace *as_b = b;
3571 return g_strcmp0(as_a->name, as_b->name);
3574 static void mtree_print_as_name(gpointer data, gpointer user_data)
3576 AddressSpace *as = data;
3578 qemu_printf("address-space: %s\n", as->name);
3581 static void mtree_print_as(gpointer key, gpointer value, gpointer user_data)
3583 MemoryRegion *mr = key;
3584 GSList *as_same_root_mr_list = value;
3585 struct AddressSpaceInfo *asi = user_data;
3587 g_slist_foreach(as_same_root_mr_list, mtree_print_as_name, NULL);
3588 mtree_print_mr(mr, 1, 0, asi->ml_head, asi->owner, asi->disabled);
3589 qemu_printf("\n");
3592 static gboolean mtree_info_as_free(gpointer key, gpointer value,
3593 gpointer user_data)
3595 GSList *as_same_root_mr_list = value;
3597 g_slist_free(as_same_root_mr_list);
3599 return true;
3602 static void mtree_info_as(bool dispatch_tree, bool owner, bool disabled)
3604 MemoryRegionListHead ml_head;
3605 MemoryRegionList *ml, *ml2;
3606 AddressSpace *as;
3607 GHashTable *views = g_hash_table_new(g_direct_hash, g_direct_equal);
3608 GSList *as_same_root_mr_list;
3609 struct AddressSpaceInfo asi = {
3610 .ml_head = &ml_head,
3611 .owner = owner,
3612 .disabled = disabled,
3615 QTAILQ_INIT(&ml_head);
3617 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
3618 /* Create hashtable, key=AS root MR, value = list of AS */
3619 as_same_root_mr_list = g_hash_table_lookup(views, as->root);
3620 as_same_root_mr_list = g_slist_insert_sorted(as_same_root_mr_list, as,
3621 address_space_compare_name);
3622 g_hash_table_insert(views, as->root, as_same_root_mr_list);
3625 /* print address spaces */
3626 g_hash_table_foreach(views, mtree_print_as, &asi);
3627 g_hash_table_foreach_remove(views, mtree_info_as_free, 0);
3628 g_hash_table_unref(views);
3630 /* print aliased regions */
3631 QTAILQ_FOREACH(ml, &ml_head, mrqueue) {
3632 qemu_printf("memory-region: %s\n", memory_region_name(ml->mr));
3633 mtree_print_mr(ml->mr, 1, 0, &ml_head, owner, disabled);
3634 qemu_printf("\n");
3637 QTAILQ_FOREACH_SAFE(ml, &ml_head, mrqueue, ml2) {
3638 g_free(ml);
3642 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled)
3644 if (flatview) {
3645 mtree_info_flatview(dispatch_tree, owner);
3646 } else {
3647 mtree_info_as(dispatch_tree, owner, disabled);
3651 bool memory_region_init_ram(MemoryRegion *mr,
3652 Object *owner,
3653 const char *name,
3654 uint64_t size,
3655 Error **errp)
3657 DeviceState *owner_dev;
3659 if (!memory_region_init_ram_nomigrate(mr, owner, name, size, errp)) {
3660 return false;
3662 /* This will assert if owner is neither NULL nor a DeviceState.
3663 * We only want the owner here for the purposes of defining a
3664 * unique name for migration. TODO: Ideally we should implement
3665 * a naming scheme for Objects which are not DeviceStates, in
3666 * which case we can relax this restriction.
3668 owner_dev = DEVICE(owner);
3669 vmstate_register_ram(mr, owner_dev);
3671 return true;
3674 bool memory_region_init_ram_guest_memfd(MemoryRegion *mr,
3675 Object *owner,
3676 const char *name,
3677 uint64_t size,
3678 Error **errp)
3680 DeviceState *owner_dev;
3682 if (!memory_region_init_ram_flags_nomigrate(mr, owner, name, size,
3683 RAM_GUEST_MEMFD, errp)) {
3684 return false;
3686 /* This will assert if owner is neither NULL nor a DeviceState.
3687 * We only want the owner here for the purposes of defining a
3688 * unique name for migration. TODO: Ideally we should implement
3689 * a naming scheme for Objects which are not DeviceStates, in
3690 * which case we can relax this restriction.
3692 owner_dev = DEVICE(owner);
3693 vmstate_register_ram(mr, owner_dev);
3695 return true;
3698 bool memory_region_init_rom(MemoryRegion *mr,
3699 Object *owner,
3700 const char *name,
3701 uint64_t size,
3702 Error **errp)
3704 DeviceState *owner_dev;
3706 if (!memory_region_init_rom_nomigrate(mr, owner, name, size, errp)) {
3707 return false;
3709 /* This will assert if owner is neither NULL nor a DeviceState.
3710 * We only want the owner here for the purposes of defining a
3711 * unique name for migration. TODO: Ideally we should implement
3712 * a naming scheme for Objects which are not DeviceStates, in
3713 * which case we can relax this restriction.
3715 owner_dev = DEVICE(owner);
3716 vmstate_register_ram(mr, owner_dev);
3718 return true;
3721 bool memory_region_init_rom_device(MemoryRegion *mr,
3722 Object *owner,
3723 const MemoryRegionOps *ops,
3724 void *opaque,
3725 const char *name,
3726 uint64_t size,
3727 Error **errp)
3729 DeviceState *owner_dev;
3731 if (!memory_region_init_rom_device_nomigrate(mr, owner, ops, opaque,
3732 name, size, errp)) {
3733 return false;
3735 /* This will assert if owner is neither NULL nor a DeviceState.
3736 * We only want the owner here for the purposes of defining a
3737 * unique name for migration. TODO: Ideally we should implement
3738 * a naming scheme for Objects which are not DeviceStates, in
3739 * which case we can relax this restriction.
3741 owner_dev = DEVICE(owner);
3742 vmstate_register_ram(mr, owner_dev);
3744 return true;
3748 * Support system builds with CONFIG_FUZZ using a weak symbol and a stub for
3749 * the fuzz_dma_read_cb callback
3751 #ifdef CONFIG_FUZZ
3752 void __attribute__((weak)) fuzz_dma_read_cb(size_t addr,
3753 size_t len,
3754 MemoryRegion *mr)
3757 #endif
3759 static const TypeInfo memory_region_info = {
3760 .parent = TYPE_OBJECT,
3761 .name = TYPE_MEMORY_REGION,
3762 .class_size = sizeof(MemoryRegionClass),
3763 .instance_size = sizeof(MemoryRegion),
3764 .instance_init = memory_region_initfn,
3765 .instance_finalize = memory_region_finalize,
3768 static const TypeInfo iommu_memory_region_info = {
3769 .parent = TYPE_MEMORY_REGION,
3770 .name = TYPE_IOMMU_MEMORY_REGION,
3771 .class_size = sizeof(IOMMUMemoryRegionClass),
3772 .instance_size = sizeof(IOMMUMemoryRegion),
3773 .instance_init = iommu_memory_region_initfn,
3774 .abstract = true,
3777 static const TypeInfo ram_discard_manager_info = {
3778 .parent = TYPE_INTERFACE,
3779 .name = TYPE_RAM_DISCARD_MANAGER,
3780 .class_size = sizeof(RamDiscardManagerClass),
3783 static void memory_register_types(void)
3785 type_register_static(&memory_region_info);
3786 type_register_static(&iommu_memory_region_info);
3787 type_register_static(&ram_discard_manager_info);
3790 type_init(memory_register_types)