meson: use pkg-config method for libudev
[qemu/ar7.git] / hw / intc / armv7m_nvic.c
blobf63aa2d87138b0b794b7071b4e22bea721649d8b
1 /*
2 * ARM Nested Vectored Interrupt Controller
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GPL.
9 * The ARMv7M System controller is fairly tightly tied in with the
10 * NVIC. Much of that is also implemented here.
13 #include "qemu/osdep.h"
14 #include "qapi/error.h"
15 #include "cpu.h"
16 #include "hw/sysbus.h"
17 #include "migration/vmstate.h"
18 #include "qemu/timer.h"
19 #include "hw/intc/armv7m_nvic.h"
20 #include "hw/irq.h"
21 #include "hw/qdev-properties.h"
22 #include "sysemu/runstate.h"
23 #include "target/arm/cpu.h"
24 #include "exec/exec-all.h"
25 #include "exec/memop.h"
26 #include "qemu/log.h"
27 #include "qemu/module.h"
28 #include "trace.h"
30 /* IRQ number counting:
32 * the num-irq property counts the number of external IRQ lines
34 * NVICState::num_irq counts the total number of exceptions
35 * (external IRQs, the 15 internal exceptions including reset,
36 * and one for the unused exception number 0).
38 * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines.
40 * NVIC_MAX_VECTORS is the highest permitted number of exceptions.
42 * Iterating through all exceptions should typically be done with
43 * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0.
45 * The external qemu_irq lines are the NVIC's external IRQ lines,
46 * so line 0 is exception 16.
48 * In the terminology of the architecture manual, "interrupts" are
49 * a subcategory of exception referring to the external interrupts
50 * (which are exception numbers NVIC_FIRST_IRQ and upward).
51 * For historical reasons QEMU tends to use "interrupt" and
52 * "exception" more or less interchangeably.
54 #define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS
55 #define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ)
57 /* Effective running priority of the CPU when no exception is active
58 * (higher than the highest possible priority value)
60 #define NVIC_NOEXC_PRIO 0x100
61 /* Maximum priority of non-secure exceptions when AIRCR.PRIS is set */
62 #define NVIC_NS_PRIO_LIMIT 0x80
64 static const uint8_t nvic_id[] = {
65 0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1
68 static void signal_sysresetreq(NVICState *s)
70 if (qemu_irq_is_connected(s->sysresetreq)) {
71 qemu_irq_pulse(s->sysresetreq);
72 } else {
74 * Default behaviour if the SoC doesn't need to wire up
75 * SYSRESETREQ (eg to a system reset controller of some kind):
76 * perform a system reset via the usual QEMU API.
78 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
82 static int nvic_pending_prio(NVICState *s)
84 /* return the group priority of the current pending interrupt,
85 * or NVIC_NOEXC_PRIO if no interrupt is pending
87 return s->vectpending_prio;
90 /* Return the value of the ISCR RETTOBASE bit:
91 * 1 if there is exactly one active exception
92 * 0 if there is more than one active exception
93 * UNKNOWN if there are no active exceptions (we choose 1,
94 * which matches the choice Cortex-M3 is documented as making).
96 * NB: some versions of the documentation talk about this
97 * counting "active exceptions other than the one shown by IPSR";
98 * this is only different in the obscure corner case where guest
99 * code has manually deactivated an exception and is about
100 * to fail an exception-return integrity check. The definition
101 * above is the one from the v8M ARM ARM and is also in line
102 * with the behaviour documented for the Cortex-M3.
104 static bool nvic_rettobase(NVICState *s)
106 int irq, nhand = 0;
107 bool check_sec = arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
109 for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) {
110 if (s->vectors[irq].active ||
111 (check_sec && irq < NVIC_INTERNAL_VECTORS &&
112 s->sec_vectors[irq].active)) {
113 nhand++;
114 if (nhand == 2) {
115 return 0;
120 return 1;
123 /* Return the value of the ISCR ISRPENDING bit:
124 * 1 if an external interrupt is pending
125 * 0 if no external interrupt is pending
127 static bool nvic_isrpending(NVICState *s)
129 int irq;
131 /* We can shortcut if the highest priority pending interrupt
132 * happens to be external or if there is nothing pending.
134 if (s->vectpending > NVIC_FIRST_IRQ) {
135 return true;
137 if (s->vectpending == 0) {
138 return false;
141 for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) {
142 if (s->vectors[irq].pending) {
143 return true;
146 return false;
149 static bool exc_is_banked(int exc)
151 /* Return true if this is one of the limited set of exceptions which
152 * are banked (and thus have state in sec_vectors[])
154 return exc == ARMV7M_EXCP_HARD ||
155 exc == ARMV7M_EXCP_MEM ||
156 exc == ARMV7M_EXCP_USAGE ||
157 exc == ARMV7M_EXCP_SVC ||
158 exc == ARMV7M_EXCP_PENDSV ||
159 exc == ARMV7M_EXCP_SYSTICK;
162 /* Return a mask word which clears the subpriority bits from
163 * a priority value for an M-profile exception, leaving only
164 * the group priority.
166 static inline uint32_t nvic_gprio_mask(NVICState *s, bool secure)
168 return ~0U << (s->prigroup[secure] + 1);
171 static bool exc_targets_secure(NVICState *s, int exc)
173 /* Return true if this non-banked exception targets Secure state. */
174 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
175 return false;
178 if (exc >= NVIC_FIRST_IRQ) {
179 return !s->itns[exc];
182 /* Function shouldn't be called for banked exceptions. */
183 assert(!exc_is_banked(exc));
185 switch (exc) {
186 case ARMV7M_EXCP_NMI:
187 case ARMV7M_EXCP_BUS:
188 return !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
189 case ARMV7M_EXCP_SECURE:
190 return true;
191 case ARMV7M_EXCP_DEBUG:
192 /* TODO: controlled by DEMCR.SDME, which we don't yet implement */
193 return false;
194 default:
195 /* reset, and reserved (unused) low exception numbers.
196 * We'll get called by code that loops through all the exception
197 * numbers, but it doesn't matter what we return here as these
198 * non-existent exceptions will never be pended or active.
200 return true;
204 static int exc_group_prio(NVICState *s, int rawprio, bool targets_secure)
206 /* Return the group priority for this exception, given its raw
207 * (group-and-subgroup) priority value and whether it is targeting
208 * secure state or not.
210 if (rawprio < 0) {
211 return rawprio;
213 rawprio &= nvic_gprio_mask(s, targets_secure);
214 /* AIRCR.PRIS causes us to squash all NS priorities into the
215 * lower half of the total range
217 if (!targets_secure &&
218 (s->cpu->env.v7m.aircr & R_V7M_AIRCR_PRIS_MASK)) {
219 rawprio = (rawprio >> 1) + NVIC_NS_PRIO_LIMIT;
221 return rawprio;
224 /* Recompute vectpending and exception_prio for a CPU which implements
225 * the Security extension
227 static void nvic_recompute_state_secure(NVICState *s)
229 int i, bank;
230 int pend_prio = NVIC_NOEXC_PRIO;
231 int active_prio = NVIC_NOEXC_PRIO;
232 int pend_irq = 0;
233 bool pending_is_s_banked = false;
234 int pend_subprio = 0;
236 /* R_CQRV: precedence is by:
237 * - lowest group priority; if both the same then
238 * - lowest subpriority; if both the same then
239 * - lowest exception number; if both the same (ie banked) then
240 * - secure exception takes precedence
241 * Compare pseudocode RawExecutionPriority.
242 * Annoyingly, now we have two prigroup values (for S and NS)
243 * we can't do the loop comparison on raw priority values.
245 for (i = 1; i < s->num_irq; i++) {
246 for (bank = M_REG_S; bank >= M_REG_NS; bank--) {
247 VecInfo *vec;
248 int prio, subprio;
249 bool targets_secure;
251 if (bank == M_REG_S) {
252 if (!exc_is_banked(i)) {
253 continue;
255 vec = &s->sec_vectors[i];
256 targets_secure = true;
257 } else {
258 vec = &s->vectors[i];
259 targets_secure = !exc_is_banked(i) && exc_targets_secure(s, i);
262 prio = exc_group_prio(s, vec->prio, targets_secure);
263 subprio = vec->prio & ~nvic_gprio_mask(s, targets_secure);
264 if (vec->enabled && vec->pending &&
265 ((prio < pend_prio) ||
266 (prio == pend_prio && prio >= 0 && subprio < pend_subprio))) {
267 pend_prio = prio;
268 pend_subprio = subprio;
269 pend_irq = i;
270 pending_is_s_banked = (bank == M_REG_S);
272 if (vec->active && prio < active_prio) {
273 active_prio = prio;
278 s->vectpending_is_s_banked = pending_is_s_banked;
279 s->vectpending = pend_irq;
280 s->vectpending_prio = pend_prio;
281 s->exception_prio = active_prio;
283 trace_nvic_recompute_state_secure(s->vectpending,
284 s->vectpending_is_s_banked,
285 s->vectpending_prio,
286 s->exception_prio);
289 /* Recompute vectpending and exception_prio */
290 static void nvic_recompute_state(NVICState *s)
292 int i;
293 int pend_prio = NVIC_NOEXC_PRIO;
294 int active_prio = NVIC_NOEXC_PRIO;
295 int pend_irq = 0;
297 /* In theory we could write one function that handled both
298 * the "security extension present" and "not present"; however
299 * the security related changes significantly complicate the
300 * recomputation just by themselves and mixing both cases together
301 * would be even worse, so we retain a separate non-secure-only
302 * version for CPUs which don't implement the security extension.
304 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
305 nvic_recompute_state_secure(s);
306 return;
309 for (i = 1; i < s->num_irq; i++) {
310 VecInfo *vec = &s->vectors[i];
312 if (vec->enabled && vec->pending && vec->prio < pend_prio) {
313 pend_prio = vec->prio;
314 pend_irq = i;
316 if (vec->active && vec->prio < active_prio) {
317 active_prio = vec->prio;
321 if (active_prio > 0) {
322 active_prio &= nvic_gprio_mask(s, false);
325 if (pend_prio > 0) {
326 pend_prio &= nvic_gprio_mask(s, false);
329 s->vectpending = pend_irq;
330 s->vectpending_prio = pend_prio;
331 s->exception_prio = active_prio;
333 trace_nvic_recompute_state(s->vectpending,
334 s->vectpending_prio,
335 s->exception_prio);
338 /* Return the current execution priority of the CPU
339 * (equivalent to the pseudocode ExecutionPriority function).
340 * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO.
342 static inline int nvic_exec_prio(NVICState *s)
344 CPUARMState *env = &s->cpu->env;
345 int running = NVIC_NOEXC_PRIO;
347 if (env->v7m.basepri[M_REG_NS] > 0) {
348 running = exc_group_prio(s, env->v7m.basepri[M_REG_NS], M_REG_NS);
351 if (env->v7m.basepri[M_REG_S] > 0) {
352 int basepri = exc_group_prio(s, env->v7m.basepri[M_REG_S], M_REG_S);
353 if (running > basepri) {
354 running = basepri;
358 if (env->v7m.primask[M_REG_NS]) {
359 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
360 if (running > NVIC_NS_PRIO_LIMIT) {
361 running = NVIC_NS_PRIO_LIMIT;
363 } else {
364 running = 0;
368 if (env->v7m.primask[M_REG_S]) {
369 running = 0;
372 if (env->v7m.faultmask[M_REG_NS]) {
373 if (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
374 running = -1;
375 } else {
376 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
377 if (running > NVIC_NS_PRIO_LIMIT) {
378 running = NVIC_NS_PRIO_LIMIT;
380 } else {
381 running = 0;
386 if (env->v7m.faultmask[M_REG_S]) {
387 running = (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) ? -3 : -1;
390 /* consider priority of active handler */
391 return MIN(running, s->exception_prio);
394 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
396 /* Return true if the requested execution priority is negative
397 * for the specified security state, ie that security state
398 * has an active NMI or HardFault or has set its FAULTMASK.
399 * Note that this is not the same as whether the execution
400 * priority is actually negative (for instance AIRCR.PRIS may
401 * mean we don't allow FAULTMASK_NS to actually make the execution
402 * priority negative). Compare pseudocode IsReqExcPriNeg().
404 NVICState *s = opaque;
406 if (s->cpu->env.v7m.faultmask[secure]) {
407 return true;
410 if (secure ? s->sec_vectors[ARMV7M_EXCP_HARD].active :
411 s->vectors[ARMV7M_EXCP_HARD].active) {
412 return true;
415 if (s->vectors[ARMV7M_EXCP_NMI].active &&
416 exc_targets_secure(s, ARMV7M_EXCP_NMI) == secure) {
417 return true;
420 return false;
423 bool armv7m_nvic_can_take_pending_exception(void *opaque)
425 NVICState *s = opaque;
427 return nvic_exec_prio(s) > nvic_pending_prio(s);
430 int armv7m_nvic_raw_execution_priority(void *opaque)
432 NVICState *s = opaque;
434 return s->exception_prio;
437 /* caller must call nvic_irq_update() after this.
438 * secure indicates the bank to use for banked exceptions (we assert if
439 * we are passed secure=true for a non-banked exception).
441 static void set_prio(NVICState *s, unsigned irq, bool secure, uint8_t prio)
443 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
444 assert(irq < s->num_irq);
446 prio &= MAKE_64BIT_MASK(8 - s->num_prio_bits, s->num_prio_bits);
448 if (secure) {
449 assert(exc_is_banked(irq));
450 s->sec_vectors[irq].prio = prio;
451 } else {
452 s->vectors[irq].prio = prio;
455 trace_nvic_set_prio(irq, secure, prio);
458 /* Return the current raw priority register value.
459 * secure indicates the bank to use for banked exceptions (we assert if
460 * we are passed secure=true for a non-banked exception).
462 static int get_prio(NVICState *s, unsigned irq, bool secure)
464 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
465 assert(irq < s->num_irq);
467 if (secure) {
468 assert(exc_is_banked(irq));
469 return s->sec_vectors[irq].prio;
470 } else {
471 return s->vectors[irq].prio;
475 /* Recompute state and assert irq line accordingly.
476 * Must be called after changes to:
477 * vec->active, vec->enabled, vec->pending or vec->prio for any vector
478 * prigroup
480 static void nvic_irq_update(NVICState *s)
482 int lvl;
483 int pend_prio;
485 nvic_recompute_state(s);
486 pend_prio = nvic_pending_prio(s);
488 /* Raise NVIC output if this IRQ would be taken, except that we
489 * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which
490 * will be checked for in arm_v7m_cpu_exec_interrupt()); changes
491 * to those CPU registers don't cause us to recalculate the NVIC
492 * pending info.
494 lvl = (pend_prio < s->exception_prio);
495 trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl);
496 qemu_set_irq(s->excpout, lvl);
500 * armv7m_nvic_clear_pending: mark the specified exception as not pending
501 * @opaque: the NVIC
502 * @irq: the exception number to mark as not pending
503 * @secure: false for non-banked exceptions or for the nonsecure
504 * version of a banked exception, true for the secure version of a banked
505 * exception.
507 * Marks the specified exception as not pending. Note that we will assert()
508 * if @secure is true and @irq does not specify one of the fixed set
509 * of architecturally banked exceptions.
511 static void armv7m_nvic_clear_pending(void *opaque, int irq, bool secure)
513 NVICState *s = (NVICState *)opaque;
514 VecInfo *vec;
516 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
518 if (secure) {
519 assert(exc_is_banked(irq));
520 vec = &s->sec_vectors[irq];
521 } else {
522 vec = &s->vectors[irq];
524 trace_nvic_clear_pending(irq, secure, vec->enabled, vec->prio);
525 if (vec->pending) {
526 vec->pending = 0;
527 nvic_irq_update(s);
531 static void do_armv7m_nvic_set_pending(void *opaque, int irq, bool secure,
532 bool derived)
534 /* Pend an exception, including possibly escalating it to HardFault.
536 * This function handles both "normal" pending of interrupts and
537 * exceptions, and also derived exceptions (ones which occur as
538 * a result of trying to take some other exception).
540 * If derived == true, the caller guarantees that we are part way through
541 * trying to take an exception (but have not yet called
542 * armv7m_nvic_acknowledge_irq() to make it active), and so:
543 * - s->vectpending is the "original exception" we were trying to take
544 * - irq is the "derived exception"
545 * - nvic_exec_prio(s) gives the priority before exception entry
546 * Here we handle the prioritization logic which the pseudocode puts
547 * in the DerivedLateArrival() function.
550 NVICState *s = (NVICState *)opaque;
551 bool banked = exc_is_banked(irq);
552 VecInfo *vec;
553 bool targets_secure;
555 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
556 assert(!secure || banked);
558 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
560 targets_secure = banked ? secure : exc_targets_secure(s, irq);
562 trace_nvic_set_pending(irq, secure, targets_secure,
563 derived, vec->enabled, vec->prio);
565 if (derived) {
566 /* Derived exceptions are always synchronous. */
567 assert(irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV);
569 if (irq == ARMV7M_EXCP_DEBUG &&
570 exc_group_prio(s, vec->prio, secure) >= nvic_exec_prio(s)) {
571 /* DebugMonitorFault, but its priority is lower than the
572 * preempted exception priority: just ignore it.
574 return;
577 if (irq == ARMV7M_EXCP_HARD && vec->prio >= s->vectpending_prio) {
578 /* If this is a terminal exception (one which means we cannot
579 * take the original exception, like a failure to read its
580 * vector table entry), then we must take the derived exception.
581 * If the derived exception can't take priority over the
582 * original exception, then we go into Lockup.
584 * For QEMU, we rely on the fact that a derived exception is
585 * terminal if and only if it's reported to us as HardFault,
586 * which saves having to have an extra argument is_terminal
587 * that we'd only use in one place.
589 cpu_abort(&s->cpu->parent_obj,
590 "Lockup: can't take terminal derived exception "
591 "(original exception priority %d)\n",
592 s->vectpending_prio);
594 /* We now continue with the same code as for a normal pending
595 * exception, which will cause us to pend the derived exception.
596 * We'll then take either the original or the derived exception
597 * based on which is higher priority by the usual mechanism
598 * for selecting the highest priority pending interrupt.
602 if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) {
603 /* If a synchronous exception is pending then it may be
604 * escalated to HardFault if:
605 * * it is equal or lower priority to current execution
606 * * it is disabled
607 * (ie we need to take it immediately but we can't do so).
608 * Asynchronous exceptions (and interrupts) simply remain pending.
610 * For QEMU, we don't have any imprecise (asynchronous) faults,
611 * so we can assume that PREFETCH_ABORT and DATA_ABORT are always
612 * synchronous.
613 * Debug exceptions are awkward because only Debug exceptions
614 * resulting from the BKPT instruction should be escalated,
615 * but we don't currently implement any Debug exceptions other
616 * than those that result from BKPT, so we treat all debug exceptions
617 * as needing escalation.
619 * This all means we can identify whether to escalate based only on
620 * the exception number and don't (yet) need the caller to explicitly
621 * tell us whether this exception is synchronous or not.
623 int running = nvic_exec_prio(s);
624 bool escalate = false;
626 if (exc_group_prio(s, vec->prio, secure) >= running) {
627 trace_nvic_escalate_prio(irq, vec->prio, running);
628 escalate = true;
629 } else if (!vec->enabled) {
630 trace_nvic_escalate_disabled(irq);
631 escalate = true;
634 if (escalate) {
636 /* We need to escalate this exception to a synchronous HardFault.
637 * If BFHFNMINS is set then we escalate to the banked HF for
638 * the target security state of the original exception; otherwise
639 * we take a Secure HardFault.
641 irq = ARMV7M_EXCP_HARD;
642 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
643 (targets_secure ||
644 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) {
645 vec = &s->sec_vectors[irq];
646 } else {
647 vec = &s->vectors[irq];
649 if (running <= vec->prio) {
650 /* We want to escalate to HardFault but we can't take the
651 * synchronous HardFault at this point either. This is a
652 * Lockup condition due to a guest bug. We don't model
653 * Lockup, so report via cpu_abort() instead.
655 cpu_abort(&s->cpu->parent_obj,
656 "Lockup: can't escalate %d to HardFault "
657 "(current priority %d)\n", irq, running);
660 /* HF may be banked but there is only one shared HFSR */
661 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
665 if (!vec->pending) {
666 vec->pending = 1;
667 nvic_irq_update(s);
671 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure)
673 do_armv7m_nvic_set_pending(opaque, irq, secure, false);
676 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure)
678 do_armv7m_nvic_set_pending(opaque, irq, secure, true);
681 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure)
684 * Pend an exception during lazy FP stacking. This differs
685 * from the usual exception pending because the logic for
686 * whether we should escalate depends on the saved context
687 * in the FPCCR register, not on the current state of the CPU/NVIC.
689 NVICState *s = (NVICState *)opaque;
690 bool banked = exc_is_banked(irq);
691 VecInfo *vec;
692 bool targets_secure;
693 bool escalate = false;
695 * We will only look at bits in fpccr if this is a banked exception
696 * (in which case 'secure' tells us whether it is the S or NS version).
697 * All the bits for the non-banked exceptions are in fpccr_s.
699 uint32_t fpccr_s = s->cpu->env.v7m.fpccr[M_REG_S];
700 uint32_t fpccr = s->cpu->env.v7m.fpccr[secure];
702 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
703 assert(!secure || banked);
705 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
707 targets_secure = banked ? secure : exc_targets_secure(s, irq);
709 switch (irq) {
710 case ARMV7M_EXCP_DEBUG:
711 if (!(fpccr_s & R_V7M_FPCCR_MONRDY_MASK)) {
712 /* Ignore DebugMonitor exception */
713 return;
715 break;
716 case ARMV7M_EXCP_MEM:
717 escalate = !(fpccr & R_V7M_FPCCR_MMRDY_MASK);
718 break;
719 case ARMV7M_EXCP_USAGE:
720 escalate = !(fpccr & R_V7M_FPCCR_UFRDY_MASK);
721 break;
722 case ARMV7M_EXCP_BUS:
723 escalate = !(fpccr_s & R_V7M_FPCCR_BFRDY_MASK);
724 break;
725 case ARMV7M_EXCP_SECURE:
726 escalate = !(fpccr_s & R_V7M_FPCCR_SFRDY_MASK);
727 break;
728 default:
729 g_assert_not_reached();
732 if (escalate) {
734 * Escalate to HardFault: faults that initially targeted Secure
735 * continue to do so, even if HF normally targets NonSecure.
737 irq = ARMV7M_EXCP_HARD;
738 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
739 (targets_secure ||
740 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) {
741 vec = &s->sec_vectors[irq];
742 } else {
743 vec = &s->vectors[irq];
747 if (!vec->enabled ||
748 nvic_exec_prio(s) <= exc_group_prio(s, vec->prio, secure)) {
749 if (!(fpccr_s & R_V7M_FPCCR_HFRDY_MASK)) {
751 * We want to escalate to HardFault but the context the
752 * FP state belongs to prevents the exception pre-empting.
754 cpu_abort(&s->cpu->parent_obj,
755 "Lockup: can't escalate to HardFault during "
756 "lazy FP register stacking\n");
760 if (escalate) {
761 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
763 if (!vec->pending) {
764 vec->pending = 1;
766 * We do not call nvic_irq_update(), because we know our caller
767 * is going to handle causing us to take the exception by
768 * raising EXCP_LAZYFP, so raising the IRQ line would be
769 * pointless extra work. We just need to recompute the
770 * priorities so that armv7m_nvic_can_take_pending_exception()
771 * returns the right answer.
773 nvic_recompute_state(s);
777 /* Make pending IRQ active. */
778 void armv7m_nvic_acknowledge_irq(void *opaque)
780 NVICState *s = (NVICState *)opaque;
781 CPUARMState *env = &s->cpu->env;
782 const int pending = s->vectpending;
783 const int running = nvic_exec_prio(s);
784 VecInfo *vec;
786 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
788 if (s->vectpending_is_s_banked) {
789 vec = &s->sec_vectors[pending];
790 } else {
791 vec = &s->vectors[pending];
794 assert(vec->enabled);
795 assert(vec->pending);
797 assert(s->vectpending_prio < running);
799 trace_nvic_acknowledge_irq(pending, s->vectpending_prio);
801 vec->active = 1;
802 vec->pending = 0;
804 write_v7m_exception(env, s->vectpending);
806 nvic_irq_update(s);
809 void armv7m_nvic_get_pending_irq_info(void *opaque,
810 int *pirq, bool *ptargets_secure)
812 NVICState *s = (NVICState *)opaque;
813 const int pending = s->vectpending;
814 bool targets_secure;
816 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
818 if (s->vectpending_is_s_banked) {
819 targets_secure = true;
820 } else {
821 targets_secure = !exc_is_banked(pending) &&
822 exc_targets_secure(s, pending);
825 trace_nvic_get_pending_irq_info(pending, targets_secure);
827 *ptargets_secure = targets_secure;
828 *pirq = pending;
831 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure)
833 NVICState *s = (NVICState *)opaque;
834 VecInfo *vec = NULL;
835 int ret = 0;
837 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
839 trace_nvic_complete_irq(irq, secure);
841 if (secure && exc_is_banked(irq)) {
842 vec = &s->sec_vectors[irq];
843 } else {
844 vec = &s->vectors[irq];
848 * Identify illegal exception return cases. We can't immediately
849 * return at this point because we still need to deactivate
850 * (either this exception or NMI/HardFault) first.
852 if (!exc_is_banked(irq) && exc_targets_secure(s, irq) != secure) {
854 * Return from a configurable exception targeting the opposite
855 * security state from the one we're trying to complete it for.
856 * Clear vec because it's not really the VecInfo for this
857 * (irq, secstate) so we mustn't deactivate it.
859 ret = -1;
860 vec = NULL;
861 } else if (!vec->active) {
862 /* Return from an inactive interrupt */
863 ret = -1;
864 } else {
865 /* Legal return, we will return the RETTOBASE bit value to the caller */
866 ret = nvic_rettobase(s);
870 * For negative priorities, v8M will forcibly deactivate the appropriate
871 * NMI or HardFault regardless of what interrupt we're being asked to
872 * deactivate (compare the DeActivate() pseudocode). This is a guard
873 * against software returning from NMI or HardFault with a corrupted
874 * IPSR and leaving the CPU in a negative-priority state.
875 * v7M does not do this, but simply deactivates the requested interrupt.
877 if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
878 switch (armv7m_nvic_raw_execution_priority(s)) {
879 case -1:
880 if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
881 vec = &s->vectors[ARMV7M_EXCP_HARD];
882 } else {
883 vec = &s->sec_vectors[ARMV7M_EXCP_HARD];
885 break;
886 case -2:
887 vec = &s->vectors[ARMV7M_EXCP_NMI];
888 break;
889 case -3:
890 vec = &s->sec_vectors[ARMV7M_EXCP_HARD];
891 break;
892 default:
893 break;
897 if (!vec) {
898 return ret;
901 vec->active = 0;
902 if (vec->level) {
903 /* Re-pend the exception if it's still held high; only
904 * happens for extenal IRQs
906 assert(irq >= NVIC_FIRST_IRQ);
907 vec->pending = 1;
910 nvic_irq_update(s);
912 return ret;
915 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
918 * Return whether an exception is "ready", i.e. it is enabled and is
919 * configured at a priority which would allow it to interrupt the
920 * current execution priority.
922 * irq and secure have the same semantics as for armv7m_nvic_set_pending():
923 * for non-banked exceptions secure is always false; for banked exceptions
924 * it indicates which of the exceptions is required.
926 NVICState *s = (NVICState *)opaque;
927 bool banked = exc_is_banked(irq);
928 VecInfo *vec;
929 int running = nvic_exec_prio(s);
931 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
932 assert(!secure || banked);
935 * HardFault is an odd special case: we always check against -1,
936 * even if we're secure and HardFault has priority -3; we never
937 * need to check for enabled state.
939 if (irq == ARMV7M_EXCP_HARD) {
940 return running > -1;
943 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
945 return vec->enabled &&
946 exc_group_prio(s, vec->prio, secure) < running;
949 /* callback when external interrupt line is changed */
950 static void set_irq_level(void *opaque, int n, int level)
952 NVICState *s = opaque;
953 VecInfo *vec;
955 n += NVIC_FIRST_IRQ;
957 assert(n >= NVIC_FIRST_IRQ && n < s->num_irq);
959 trace_nvic_set_irq_level(n, level);
961 /* The pending status of an external interrupt is
962 * latched on rising edge and exception handler return.
964 * Pulsing the IRQ will always run the handler
965 * once, and the handler will re-run until the
966 * level is low when the handler completes.
968 vec = &s->vectors[n];
969 if (level != vec->level) {
970 vec->level = level;
971 if (level) {
972 armv7m_nvic_set_pending(s, n, false);
977 /* callback when external NMI line is changed */
978 static void nvic_nmi_trigger(void *opaque, int n, int level)
980 NVICState *s = opaque;
982 trace_nvic_set_nmi_level(level);
985 * The architecture doesn't specify whether NMI should share
986 * the normal-interrupt behaviour of being resampled on
987 * exception handler return. We choose not to, so just
988 * set NMI pending here and don't track the current level.
990 if (level) {
991 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
995 static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs)
997 ARMCPU *cpu = s->cpu;
998 uint32_t val;
1000 switch (offset) {
1001 case 4: /* Interrupt Control Type. */
1002 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1003 goto bad_offset;
1005 return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1;
1006 case 0xc: /* CPPWR */
1007 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1008 goto bad_offset;
1010 /* We make the IMPDEF choice that nothing can ever go into a
1011 * non-retentive power state, which allows us to RAZ/WI this.
1013 return 0;
1014 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
1016 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
1017 int i;
1019 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1020 goto bad_offset;
1022 if (!attrs.secure) {
1023 return 0;
1025 val = 0;
1026 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
1027 if (s->itns[startvec + i]) {
1028 val |= (1 << i);
1031 return val;
1033 case 0xcfc:
1034 if (!arm_feature(&cpu->env, ARM_FEATURE_V8_1M)) {
1035 goto bad_offset;
1037 return cpu->revidr;
1038 case 0xd00: /* CPUID Base. */
1039 return cpu->midr;
1040 case 0xd04: /* Interrupt Control State (ICSR) */
1041 /* VECTACTIVE */
1042 val = cpu->env.v7m.exception;
1043 /* VECTPENDING */
1044 val |= (s->vectpending & 0xff) << 12;
1045 /* ISRPENDING - set if any external IRQ is pending */
1046 if (nvic_isrpending(s)) {
1047 val |= (1 << 22);
1049 /* RETTOBASE - set if only one handler is active */
1050 if (nvic_rettobase(s)) {
1051 val |= (1 << 11);
1053 if (attrs.secure) {
1054 /* PENDSTSET */
1055 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].pending) {
1056 val |= (1 << 26);
1058 /* PENDSVSET */
1059 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].pending) {
1060 val |= (1 << 28);
1062 } else {
1063 /* PENDSTSET */
1064 if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) {
1065 val |= (1 << 26);
1067 /* PENDSVSET */
1068 if (s->vectors[ARMV7M_EXCP_PENDSV].pending) {
1069 val |= (1 << 28);
1072 /* NMIPENDSET */
1073 if ((attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))
1074 && s->vectors[ARMV7M_EXCP_NMI].pending) {
1075 val |= (1 << 31);
1077 /* ISRPREEMPT: RES0 when halting debug not implemented */
1078 /* STTNS: RES0 for the Main Extension */
1079 return val;
1080 case 0xd08: /* Vector Table Offset. */
1081 return cpu->env.v7m.vecbase[attrs.secure];
1082 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
1083 val = 0xfa050000 | (s->prigroup[attrs.secure] << 8);
1084 if (attrs.secure) {
1085 /* s->aircr stores PRIS, BFHFNMINS, SYSRESETREQS */
1086 val |= cpu->env.v7m.aircr;
1087 } else {
1088 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1089 /* BFHFNMINS is R/O from NS; other bits are RAZ/WI. If
1090 * security isn't supported then BFHFNMINS is RAO (and
1091 * the bit in env.v7m.aircr is always set).
1093 val |= cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK;
1096 return val;
1097 case 0xd10: /* System Control. */
1098 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1099 goto bad_offset;
1101 return cpu->env.v7m.scr[attrs.secure];
1102 case 0xd14: /* Configuration Control. */
1104 * Non-banked bits: BFHFNMIGN (stored in the NS copy of the register)
1105 * and TRD (stored in the S copy of the register)
1107 val = cpu->env.v7m.ccr[attrs.secure];
1108 val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK;
1109 return val;
1110 case 0xd24: /* System Handler Control and State (SHCSR) */
1111 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1112 goto bad_offset;
1114 val = 0;
1115 if (attrs.secure) {
1116 if (s->sec_vectors[ARMV7M_EXCP_MEM].active) {
1117 val |= (1 << 0);
1119 if (s->sec_vectors[ARMV7M_EXCP_HARD].active) {
1120 val |= (1 << 2);
1122 if (s->sec_vectors[ARMV7M_EXCP_USAGE].active) {
1123 val |= (1 << 3);
1125 if (s->sec_vectors[ARMV7M_EXCP_SVC].active) {
1126 val |= (1 << 7);
1128 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].active) {
1129 val |= (1 << 10);
1131 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].active) {
1132 val |= (1 << 11);
1134 if (s->sec_vectors[ARMV7M_EXCP_USAGE].pending) {
1135 val |= (1 << 12);
1137 if (s->sec_vectors[ARMV7M_EXCP_MEM].pending) {
1138 val |= (1 << 13);
1140 if (s->sec_vectors[ARMV7M_EXCP_SVC].pending) {
1141 val |= (1 << 15);
1143 if (s->sec_vectors[ARMV7M_EXCP_MEM].enabled) {
1144 val |= (1 << 16);
1146 if (s->sec_vectors[ARMV7M_EXCP_USAGE].enabled) {
1147 val |= (1 << 18);
1149 if (s->sec_vectors[ARMV7M_EXCP_HARD].pending) {
1150 val |= (1 << 21);
1152 /* SecureFault is not banked but is always RAZ/WI to NS */
1153 if (s->vectors[ARMV7M_EXCP_SECURE].active) {
1154 val |= (1 << 4);
1156 if (s->vectors[ARMV7M_EXCP_SECURE].enabled) {
1157 val |= (1 << 19);
1159 if (s->vectors[ARMV7M_EXCP_SECURE].pending) {
1160 val |= (1 << 20);
1162 } else {
1163 if (s->vectors[ARMV7M_EXCP_MEM].active) {
1164 val |= (1 << 0);
1166 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1167 /* HARDFAULTACT, HARDFAULTPENDED not present in v7M */
1168 if (s->vectors[ARMV7M_EXCP_HARD].active) {
1169 val |= (1 << 2);
1171 if (s->vectors[ARMV7M_EXCP_HARD].pending) {
1172 val |= (1 << 21);
1175 if (s->vectors[ARMV7M_EXCP_USAGE].active) {
1176 val |= (1 << 3);
1178 if (s->vectors[ARMV7M_EXCP_SVC].active) {
1179 val |= (1 << 7);
1181 if (s->vectors[ARMV7M_EXCP_PENDSV].active) {
1182 val |= (1 << 10);
1184 if (s->vectors[ARMV7M_EXCP_SYSTICK].active) {
1185 val |= (1 << 11);
1187 if (s->vectors[ARMV7M_EXCP_USAGE].pending) {
1188 val |= (1 << 12);
1190 if (s->vectors[ARMV7M_EXCP_MEM].pending) {
1191 val |= (1 << 13);
1193 if (s->vectors[ARMV7M_EXCP_SVC].pending) {
1194 val |= (1 << 15);
1196 if (s->vectors[ARMV7M_EXCP_MEM].enabled) {
1197 val |= (1 << 16);
1199 if (s->vectors[ARMV7M_EXCP_USAGE].enabled) {
1200 val |= (1 << 18);
1203 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1204 if (s->vectors[ARMV7M_EXCP_BUS].active) {
1205 val |= (1 << 1);
1207 if (s->vectors[ARMV7M_EXCP_BUS].pending) {
1208 val |= (1 << 14);
1210 if (s->vectors[ARMV7M_EXCP_BUS].enabled) {
1211 val |= (1 << 17);
1213 if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
1214 s->vectors[ARMV7M_EXCP_NMI].active) {
1215 /* NMIACT is not present in v7M */
1216 val |= (1 << 5);
1220 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
1221 if (s->vectors[ARMV7M_EXCP_DEBUG].active) {
1222 val |= (1 << 8);
1224 return val;
1225 case 0xd2c: /* Hard Fault Status. */
1226 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1227 goto bad_offset;
1229 return cpu->env.v7m.hfsr;
1230 case 0xd30: /* Debug Fault Status. */
1231 return cpu->env.v7m.dfsr;
1232 case 0xd34: /* MMFAR MemManage Fault Address */
1233 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1234 goto bad_offset;
1236 return cpu->env.v7m.mmfar[attrs.secure];
1237 case 0xd38: /* Bus Fault Address. */
1238 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1239 goto bad_offset;
1241 if (!attrs.secure &&
1242 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1243 return 0;
1245 return cpu->env.v7m.bfar;
1246 case 0xd3c: /* Aux Fault Status. */
1247 /* TODO: Implement fault status registers. */
1248 qemu_log_mask(LOG_UNIMP,
1249 "Aux Fault status registers unimplemented\n");
1250 return 0;
1251 case 0xd40: /* PFR0. */
1252 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1253 goto bad_offset;
1255 return cpu->isar.id_pfr0;
1256 case 0xd44: /* PFR1. */
1257 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1258 goto bad_offset;
1260 return cpu->isar.id_pfr1;
1261 case 0xd48: /* DFR0. */
1262 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1263 goto bad_offset;
1265 return cpu->isar.id_dfr0;
1266 case 0xd4c: /* AFR0. */
1267 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1268 goto bad_offset;
1270 return cpu->id_afr0;
1271 case 0xd50: /* MMFR0. */
1272 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1273 goto bad_offset;
1275 return cpu->isar.id_mmfr0;
1276 case 0xd54: /* MMFR1. */
1277 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1278 goto bad_offset;
1280 return cpu->isar.id_mmfr1;
1281 case 0xd58: /* MMFR2. */
1282 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1283 goto bad_offset;
1285 return cpu->isar.id_mmfr2;
1286 case 0xd5c: /* MMFR3. */
1287 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1288 goto bad_offset;
1290 return cpu->isar.id_mmfr3;
1291 case 0xd60: /* ISAR0. */
1292 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1293 goto bad_offset;
1295 return cpu->isar.id_isar0;
1296 case 0xd64: /* ISAR1. */
1297 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1298 goto bad_offset;
1300 return cpu->isar.id_isar1;
1301 case 0xd68: /* ISAR2. */
1302 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1303 goto bad_offset;
1305 return cpu->isar.id_isar2;
1306 case 0xd6c: /* ISAR3. */
1307 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1308 goto bad_offset;
1310 return cpu->isar.id_isar3;
1311 case 0xd70: /* ISAR4. */
1312 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1313 goto bad_offset;
1315 return cpu->isar.id_isar4;
1316 case 0xd74: /* ISAR5. */
1317 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1318 goto bad_offset;
1320 return cpu->isar.id_isar5;
1321 case 0xd78: /* CLIDR */
1322 return cpu->clidr;
1323 case 0xd7c: /* CTR */
1324 return cpu->ctr;
1325 case 0xd80: /* CSSIDR */
1327 int idx = cpu->env.v7m.csselr[attrs.secure] & R_V7M_CSSELR_INDEX_MASK;
1328 return cpu->ccsidr[idx];
1330 case 0xd84: /* CSSELR */
1331 return cpu->env.v7m.csselr[attrs.secure];
1332 case 0xd88: /* CPACR */
1333 if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
1334 return 0;
1336 return cpu->env.v7m.cpacr[attrs.secure];
1337 case 0xd8c: /* NSACR */
1338 if (!attrs.secure || !cpu_isar_feature(aa32_vfp_simd, cpu)) {
1339 return 0;
1341 return cpu->env.v7m.nsacr;
1342 /* TODO: Implement debug registers. */
1343 case 0xd90: /* MPU_TYPE */
1344 /* Unified MPU; if the MPU is not present this value is zero */
1345 return cpu->pmsav7_dregion << 8;
1346 case 0xd94: /* MPU_CTRL */
1347 return cpu->env.v7m.mpu_ctrl[attrs.secure];
1348 case 0xd98: /* MPU_RNR */
1349 return cpu->env.pmsav7.rnr[attrs.secure];
1350 case 0xd9c: /* MPU_RBAR */
1351 case 0xda4: /* MPU_RBAR_A1 */
1352 case 0xdac: /* MPU_RBAR_A2 */
1353 case 0xdb4: /* MPU_RBAR_A3 */
1355 int region = cpu->env.pmsav7.rnr[attrs.secure];
1357 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1358 /* PMSAv8M handling of the aliases is different from v7M:
1359 * aliases A1, A2, A3 override the low two bits of the region
1360 * number in MPU_RNR, and there is no 'region' field in the
1361 * RBAR register.
1363 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1364 if (aliasno) {
1365 region = deposit32(region, 0, 2, aliasno);
1367 if (region >= cpu->pmsav7_dregion) {
1368 return 0;
1370 return cpu->env.pmsav8.rbar[attrs.secure][region];
1373 if (region >= cpu->pmsav7_dregion) {
1374 return 0;
1376 return (cpu->env.pmsav7.drbar[region] & ~0x1f) | (region & 0xf);
1378 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1379 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1380 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1381 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
1383 int region = cpu->env.pmsav7.rnr[attrs.secure];
1385 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1386 /* PMSAv8M handling of the aliases is different from v7M:
1387 * aliases A1, A2, A3 override the low two bits of the region
1388 * number in MPU_RNR.
1390 int aliasno = (offset - 0xda0) / 8; /* 0..3 */
1391 if (aliasno) {
1392 region = deposit32(region, 0, 2, aliasno);
1394 if (region >= cpu->pmsav7_dregion) {
1395 return 0;
1397 return cpu->env.pmsav8.rlar[attrs.secure][region];
1400 if (region >= cpu->pmsav7_dregion) {
1401 return 0;
1403 return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) |
1404 (cpu->env.pmsav7.drsr[region] & 0xffff);
1406 case 0xdc0: /* MPU_MAIR0 */
1407 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1408 goto bad_offset;
1410 return cpu->env.pmsav8.mair0[attrs.secure];
1411 case 0xdc4: /* MPU_MAIR1 */
1412 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1413 goto bad_offset;
1415 return cpu->env.pmsav8.mair1[attrs.secure];
1416 case 0xdd0: /* SAU_CTRL */
1417 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1418 goto bad_offset;
1420 if (!attrs.secure) {
1421 return 0;
1423 return cpu->env.sau.ctrl;
1424 case 0xdd4: /* SAU_TYPE */
1425 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1426 goto bad_offset;
1428 if (!attrs.secure) {
1429 return 0;
1431 return cpu->sau_sregion;
1432 case 0xdd8: /* SAU_RNR */
1433 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1434 goto bad_offset;
1436 if (!attrs.secure) {
1437 return 0;
1439 return cpu->env.sau.rnr;
1440 case 0xddc: /* SAU_RBAR */
1442 int region = cpu->env.sau.rnr;
1444 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1445 goto bad_offset;
1447 if (!attrs.secure) {
1448 return 0;
1450 if (region >= cpu->sau_sregion) {
1451 return 0;
1453 return cpu->env.sau.rbar[region];
1455 case 0xde0: /* SAU_RLAR */
1457 int region = cpu->env.sau.rnr;
1459 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1460 goto bad_offset;
1462 if (!attrs.secure) {
1463 return 0;
1465 if (region >= cpu->sau_sregion) {
1466 return 0;
1468 return cpu->env.sau.rlar[region];
1470 case 0xde4: /* SFSR */
1471 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1472 goto bad_offset;
1474 if (!attrs.secure) {
1475 return 0;
1477 return cpu->env.v7m.sfsr;
1478 case 0xde8: /* SFAR */
1479 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1480 goto bad_offset;
1482 if (!attrs.secure) {
1483 return 0;
1485 return cpu->env.v7m.sfar;
1486 case 0xf04: /* RFSR */
1487 if (!cpu_isar_feature(aa32_ras, cpu)) {
1488 goto bad_offset;
1490 /* We provide minimal-RAS only: RFSR is RAZ/WI */
1491 return 0;
1492 case 0xf34: /* FPCCR */
1493 if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
1494 return 0;
1496 if (attrs.secure) {
1497 return cpu->env.v7m.fpccr[M_REG_S];
1498 } else {
1500 * NS can read LSPEN, CLRONRET and MONRDY. It can read
1501 * BFRDY and HFRDY if AIRCR.BFHFNMINS != 0;
1502 * other non-banked bits RAZ.
1503 * TODO: MONRDY should RAZ/WI if DEMCR.SDME is set.
1505 uint32_t value = cpu->env.v7m.fpccr[M_REG_S];
1506 uint32_t mask = R_V7M_FPCCR_LSPEN_MASK |
1507 R_V7M_FPCCR_CLRONRET_MASK |
1508 R_V7M_FPCCR_MONRDY_MASK;
1510 if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1511 mask |= R_V7M_FPCCR_BFRDY_MASK | R_V7M_FPCCR_HFRDY_MASK;
1514 value &= mask;
1516 value |= cpu->env.v7m.fpccr[M_REG_NS];
1517 return value;
1519 case 0xf38: /* FPCAR */
1520 if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
1521 return 0;
1523 return cpu->env.v7m.fpcar[attrs.secure];
1524 case 0xf3c: /* FPDSCR */
1525 if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
1526 return 0;
1528 return cpu->env.v7m.fpdscr[attrs.secure];
1529 case 0xf40: /* MVFR0 */
1530 return cpu->isar.mvfr0;
1531 case 0xf44: /* MVFR1 */
1532 return cpu->isar.mvfr1;
1533 case 0xf48: /* MVFR2 */
1534 return cpu->isar.mvfr2;
1535 default:
1536 bad_offset:
1537 qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset);
1538 return 0;
1542 static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value,
1543 MemTxAttrs attrs)
1545 ARMCPU *cpu = s->cpu;
1547 switch (offset) {
1548 case 0xc: /* CPPWR */
1549 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1550 goto bad_offset;
1552 /* Make the IMPDEF choice to RAZ/WI this. */
1553 break;
1554 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
1556 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
1557 int i;
1559 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1560 goto bad_offset;
1562 if (!attrs.secure) {
1563 break;
1565 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
1566 s->itns[startvec + i] = (value >> i) & 1;
1568 nvic_irq_update(s);
1569 break;
1571 case 0xd04: /* Interrupt Control State (ICSR) */
1572 if (attrs.secure || cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1573 if (value & (1 << 31)) {
1574 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
1575 } else if (value & (1 << 30) &&
1576 arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1577 /* PENDNMICLR didn't exist in v7M */
1578 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_NMI, false);
1581 if (value & (1 << 28)) {
1582 armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1583 } else if (value & (1 << 27)) {
1584 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1586 if (value & (1 << 26)) {
1587 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1588 } else if (value & (1 << 25)) {
1589 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1591 break;
1592 case 0xd08: /* Vector Table Offset. */
1593 cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80;
1594 break;
1595 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
1596 if ((value >> R_V7M_AIRCR_VECTKEY_SHIFT) == 0x05fa) {
1597 if (value & R_V7M_AIRCR_SYSRESETREQ_MASK) {
1598 if (attrs.secure ||
1599 !(cpu->env.v7m.aircr & R_V7M_AIRCR_SYSRESETREQS_MASK)) {
1600 signal_sysresetreq(s);
1603 if (value & R_V7M_AIRCR_VECTCLRACTIVE_MASK) {
1604 qemu_log_mask(LOG_GUEST_ERROR,
1605 "Setting VECTCLRACTIVE when not in DEBUG mode "
1606 "is UNPREDICTABLE\n");
1608 if (value & R_V7M_AIRCR_VECTRESET_MASK) {
1609 /* NB: this bit is RES0 in v8M */
1610 qemu_log_mask(LOG_GUEST_ERROR,
1611 "Setting VECTRESET when not in DEBUG mode "
1612 "is UNPREDICTABLE\n");
1614 if (arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1615 s->prigroup[attrs.secure] =
1616 extract32(value,
1617 R_V7M_AIRCR_PRIGROUP_SHIFT,
1618 R_V7M_AIRCR_PRIGROUP_LENGTH);
1620 /* AIRCR.IESB is RAZ/WI because we implement only minimal RAS */
1621 if (attrs.secure) {
1622 /* These bits are only writable by secure */
1623 cpu->env.v7m.aircr = value &
1624 (R_V7M_AIRCR_SYSRESETREQS_MASK |
1625 R_V7M_AIRCR_BFHFNMINS_MASK |
1626 R_V7M_AIRCR_PRIS_MASK);
1627 /* BFHFNMINS changes the priority of Secure HardFault, and
1628 * allows a pending Non-secure HardFault to preempt (which
1629 * we implement by marking it enabled).
1631 if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1632 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -3;
1633 s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
1634 } else {
1635 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
1636 s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
1639 nvic_irq_update(s);
1641 break;
1642 case 0xd10: /* System Control. */
1643 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1644 goto bad_offset;
1646 /* We don't implement deep-sleep so these bits are RAZ/WI.
1647 * The other bits in the register are banked.
1648 * QEMU's implementation ignores SEVONPEND and SLEEPONEXIT, which
1649 * is architecturally permitted.
1651 value &= ~(R_V7M_SCR_SLEEPDEEP_MASK | R_V7M_SCR_SLEEPDEEPS_MASK);
1652 cpu->env.v7m.scr[attrs.secure] = value;
1653 break;
1654 case 0xd14: /* Configuration Control. */
1656 uint32_t mask;
1658 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1659 goto bad_offset;
1662 /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */
1663 mask = R_V7M_CCR_STKALIGN_MASK |
1664 R_V7M_CCR_BFHFNMIGN_MASK |
1665 R_V7M_CCR_DIV_0_TRP_MASK |
1666 R_V7M_CCR_UNALIGN_TRP_MASK |
1667 R_V7M_CCR_USERSETMPEND_MASK |
1668 R_V7M_CCR_NONBASETHRDENA_MASK;
1669 if (arm_feature(&cpu->env, ARM_FEATURE_V8_1M) && attrs.secure) {
1670 /* TRD is always RAZ/WI from NS */
1671 mask |= R_V7M_CCR_TRD_MASK;
1673 value &= mask;
1675 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1676 /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */
1677 value |= R_V7M_CCR_NONBASETHRDENA_MASK
1678 | R_V7M_CCR_STKALIGN_MASK;
1680 if (attrs.secure) {
1681 /* the BFHFNMIGN bit is not banked; keep that in the NS copy */
1682 cpu->env.v7m.ccr[M_REG_NS] =
1683 (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK)
1684 | (value & R_V7M_CCR_BFHFNMIGN_MASK);
1685 value &= ~R_V7M_CCR_BFHFNMIGN_MASK;
1688 cpu->env.v7m.ccr[attrs.secure] = value;
1689 break;
1691 case 0xd24: /* System Handler Control and State (SHCSR) */
1692 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1693 goto bad_offset;
1695 if (attrs.secure) {
1696 s->sec_vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1697 /* Secure HardFault active bit cannot be written */
1698 s->sec_vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1699 s->sec_vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1700 s->sec_vectors[ARMV7M_EXCP_PENDSV].active =
1701 (value & (1 << 10)) != 0;
1702 s->sec_vectors[ARMV7M_EXCP_SYSTICK].active =
1703 (value & (1 << 11)) != 0;
1704 s->sec_vectors[ARMV7M_EXCP_USAGE].pending =
1705 (value & (1 << 12)) != 0;
1706 s->sec_vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1707 s->sec_vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1708 s->sec_vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1709 s->sec_vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1710 s->sec_vectors[ARMV7M_EXCP_USAGE].enabled =
1711 (value & (1 << 18)) != 0;
1712 s->sec_vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1713 /* SecureFault not banked, but RAZ/WI to NS */
1714 s->vectors[ARMV7M_EXCP_SECURE].active = (value & (1 << 4)) != 0;
1715 s->vectors[ARMV7M_EXCP_SECURE].enabled = (value & (1 << 19)) != 0;
1716 s->vectors[ARMV7M_EXCP_SECURE].pending = (value & (1 << 20)) != 0;
1717 } else {
1718 s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1719 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1720 /* HARDFAULTPENDED is not present in v7M */
1721 s->vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1723 s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1724 s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1725 s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0;
1726 s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0;
1727 s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0;
1728 s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1729 s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1730 s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1731 s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0;
1733 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1734 s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0;
1735 s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0;
1736 s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1738 /* NMIACT can only be written if the write is of a zero, with
1739 * BFHFNMINS 1, and by the CPU in secure state via the NS alias.
1741 if (!attrs.secure && cpu->env.v7m.secure &&
1742 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1743 (value & (1 << 5)) == 0) {
1744 s->vectors[ARMV7M_EXCP_NMI].active = 0;
1746 /* HARDFAULTACT can only be written if the write is of a zero
1747 * to the non-secure HardFault state by the CPU in secure state.
1748 * The only case where we can be targeting the non-secure HF state
1749 * when in secure state is if this is a write via the NS alias
1750 * and BFHFNMINS is 1.
1752 if (!attrs.secure && cpu->env.v7m.secure &&
1753 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1754 (value & (1 << 2)) == 0) {
1755 s->vectors[ARMV7M_EXCP_HARD].active = 0;
1758 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
1759 s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0;
1760 nvic_irq_update(s);
1761 break;
1762 case 0xd2c: /* Hard Fault Status. */
1763 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1764 goto bad_offset;
1766 cpu->env.v7m.hfsr &= ~value; /* W1C */
1767 break;
1768 case 0xd30: /* Debug Fault Status. */
1769 cpu->env.v7m.dfsr &= ~value; /* W1C */
1770 break;
1771 case 0xd34: /* Mem Manage Address. */
1772 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1773 goto bad_offset;
1775 cpu->env.v7m.mmfar[attrs.secure] = value;
1776 return;
1777 case 0xd38: /* Bus Fault Address. */
1778 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1779 goto bad_offset;
1781 if (!attrs.secure &&
1782 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1783 return;
1785 cpu->env.v7m.bfar = value;
1786 return;
1787 case 0xd3c: /* Aux Fault Status. */
1788 qemu_log_mask(LOG_UNIMP,
1789 "NVIC: Aux fault status registers unimplemented\n");
1790 break;
1791 case 0xd84: /* CSSELR */
1792 if (!arm_v7m_csselr_razwi(cpu)) {
1793 cpu->env.v7m.csselr[attrs.secure] = value & R_V7M_CSSELR_INDEX_MASK;
1795 break;
1796 case 0xd88: /* CPACR */
1797 if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1798 /* We implement only the Floating Point extension's CP10/CP11 */
1799 cpu->env.v7m.cpacr[attrs.secure] = value & (0xf << 20);
1801 break;
1802 case 0xd8c: /* NSACR */
1803 if (attrs.secure && cpu_isar_feature(aa32_vfp_simd, cpu)) {
1804 /* We implement only the Floating Point extension's CP10/CP11 */
1805 cpu->env.v7m.nsacr = value & (3 << 10);
1807 break;
1808 case 0xd90: /* MPU_TYPE */
1809 return; /* RO */
1810 case 0xd94: /* MPU_CTRL */
1811 if ((value &
1812 (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK))
1813 == R_V7M_MPU_CTRL_HFNMIENA_MASK) {
1814 qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is "
1815 "UNPREDICTABLE\n");
1817 cpu->env.v7m.mpu_ctrl[attrs.secure]
1818 = value & (R_V7M_MPU_CTRL_ENABLE_MASK |
1819 R_V7M_MPU_CTRL_HFNMIENA_MASK |
1820 R_V7M_MPU_CTRL_PRIVDEFENA_MASK);
1821 tlb_flush(CPU(cpu));
1822 break;
1823 case 0xd98: /* MPU_RNR */
1824 if (value >= cpu->pmsav7_dregion) {
1825 qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %"
1826 PRIu32 "/%" PRIu32 "\n",
1827 value, cpu->pmsav7_dregion);
1828 } else {
1829 cpu->env.pmsav7.rnr[attrs.secure] = value;
1831 break;
1832 case 0xd9c: /* MPU_RBAR */
1833 case 0xda4: /* MPU_RBAR_A1 */
1834 case 0xdac: /* MPU_RBAR_A2 */
1835 case 0xdb4: /* MPU_RBAR_A3 */
1837 int region;
1839 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1840 /* PMSAv8M handling of the aliases is different from v7M:
1841 * aliases A1, A2, A3 override the low two bits of the region
1842 * number in MPU_RNR, and there is no 'region' field in the
1843 * RBAR register.
1845 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1847 region = cpu->env.pmsav7.rnr[attrs.secure];
1848 if (aliasno) {
1849 region = deposit32(region, 0, 2, aliasno);
1851 if (region >= cpu->pmsav7_dregion) {
1852 return;
1854 cpu->env.pmsav8.rbar[attrs.secure][region] = value;
1855 tlb_flush(CPU(cpu));
1856 return;
1859 if (value & (1 << 4)) {
1860 /* VALID bit means use the region number specified in this
1861 * value and also update MPU_RNR.REGION with that value.
1863 region = extract32(value, 0, 4);
1864 if (region >= cpu->pmsav7_dregion) {
1865 qemu_log_mask(LOG_GUEST_ERROR,
1866 "MPU region out of range %u/%" PRIu32 "\n",
1867 region, cpu->pmsav7_dregion);
1868 return;
1870 cpu->env.pmsav7.rnr[attrs.secure] = region;
1871 } else {
1872 region = cpu->env.pmsav7.rnr[attrs.secure];
1875 if (region >= cpu->pmsav7_dregion) {
1876 return;
1879 cpu->env.pmsav7.drbar[region] = value & ~0x1f;
1880 tlb_flush(CPU(cpu));
1881 break;
1883 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1884 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1885 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1886 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
1888 int region = cpu->env.pmsav7.rnr[attrs.secure];
1890 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1891 /* PMSAv8M handling of the aliases is different from v7M:
1892 * aliases A1, A2, A3 override the low two bits of the region
1893 * number in MPU_RNR.
1895 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1897 region = cpu->env.pmsav7.rnr[attrs.secure];
1898 if (aliasno) {
1899 region = deposit32(region, 0, 2, aliasno);
1901 if (region >= cpu->pmsav7_dregion) {
1902 return;
1904 cpu->env.pmsav8.rlar[attrs.secure][region] = value;
1905 tlb_flush(CPU(cpu));
1906 return;
1909 if (region >= cpu->pmsav7_dregion) {
1910 return;
1913 cpu->env.pmsav7.drsr[region] = value & 0xff3f;
1914 cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f;
1915 tlb_flush(CPU(cpu));
1916 break;
1918 case 0xdc0: /* MPU_MAIR0 */
1919 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1920 goto bad_offset;
1922 if (cpu->pmsav7_dregion) {
1923 /* Register is RES0 if no MPU regions are implemented */
1924 cpu->env.pmsav8.mair0[attrs.secure] = value;
1926 /* We don't need to do anything else because memory attributes
1927 * only affect cacheability, and we don't implement caching.
1929 break;
1930 case 0xdc4: /* MPU_MAIR1 */
1931 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1932 goto bad_offset;
1934 if (cpu->pmsav7_dregion) {
1935 /* Register is RES0 if no MPU regions are implemented */
1936 cpu->env.pmsav8.mair1[attrs.secure] = value;
1938 /* We don't need to do anything else because memory attributes
1939 * only affect cacheability, and we don't implement caching.
1941 break;
1942 case 0xdd0: /* SAU_CTRL */
1943 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1944 goto bad_offset;
1946 if (!attrs.secure) {
1947 return;
1949 cpu->env.sau.ctrl = value & 3;
1950 break;
1951 case 0xdd4: /* SAU_TYPE */
1952 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1953 goto bad_offset;
1955 break;
1956 case 0xdd8: /* SAU_RNR */
1957 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1958 goto bad_offset;
1960 if (!attrs.secure) {
1961 return;
1963 if (value >= cpu->sau_sregion) {
1964 qemu_log_mask(LOG_GUEST_ERROR, "SAU region out of range %"
1965 PRIu32 "/%" PRIu32 "\n",
1966 value, cpu->sau_sregion);
1967 } else {
1968 cpu->env.sau.rnr = value;
1970 break;
1971 case 0xddc: /* SAU_RBAR */
1973 int region = cpu->env.sau.rnr;
1975 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1976 goto bad_offset;
1978 if (!attrs.secure) {
1979 return;
1981 if (region >= cpu->sau_sregion) {
1982 return;
1984 cpu->env.sau.rbar[region] = value & ~0x1f;
1985 tlb_flush(CPU(cpu));
1986 break;
1988 case 0xde0: /* SAU_RLAR */
1990 int region = cpu->env.sau.rnr;
1992 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1993 goto bad_offset;
1995 if (!attrs.secure) {
1996 return;
1998 if (region >= cpu->sau_sregion) {
1999 return;
2001 cpu->env.sau.rlar[region] = value & ~0x1c;
2002 tlb_flush(CPU(cpu));
2003 break;
2005 case 0xde4: /* SFSR */
2006 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
2007 goto bad_offset;
2009 if (!attrs.secure) {
2010 return;
2012 cpu->env.v7m.sfsr &= ~value; /* W1C */
2013 break;
2014 case 0xde8: /* SFAR */
2015 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
2016 goto bad_offset;
2018 if (!attrs.secure) {
2019 return;
2021 cpu->env.v7m.sfsr = value;
2022 break;
2023 case 0xf00: /* Software Triggered Interrupt Register */
2025 int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ;
2027 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
2028 goto bad_offset;
2031 if (excnum < s->num_irq) {
2032 armv7m_nvic_set_pending(s, excnum, false);
2034 break;
2036 case 0xf04: /* RFSR */
2037 if (!cpu_isar_feature(aa32_ras, cpu)) {
2038 goto bad_offset;
2040 /* We provide minimal-RAS only: RFSR is RAZ/WI */
2041 break;
2042 case 0xf34: /* FPCCR */
2043 if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
2044 /* Not all bits here are banked. */
2045 uint32_t fpccr_s;
2047 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
2048 /* Don't allow setting of bits not present in v7M */
2049 value &= (R_V7M_FPCCR_LSPACT_MASK |
2050 R_V7M_FPCCR_USER_MASK |
2051 R_V7M_FPCCR_THREAD_MASK |
2052 R_V7M_FPCCR_HFRDY_MASK |
2053 R_V7M_FPCCR_MMRDY_MASK |
2054 R_V7M_FPCCR_BFRDY_MASK |
2055 R_V7M_FPCCR_MONRDY_MASK |
2056 R_V7M_FPCCR_LSPEN_MASK |
2057 R_V7M_FPCCR_ASPEN_MASK);
2059 value &= ~R_V7M_FPCCR_RES0_MASK;
2061 if (!attrs.secure) {
2062 /* Some non-banked bits are configurably writable by NS */
2063 fpccr_s = cpu->env.v7m.fpccr[M_REG_S];
2064 if (!(fpccr_s & R_V7M_FPCCR_LSPENS_MASK)) {
2065 uint32_t lspen = FIELD_EX32(value, V7M_FPCCR, LSPEN);
2066 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, LSPEN, lspen);
2068 if (!(fpccr_s & R_V7M_FPCCR_CLRONRETS_MASK)) {
2069 uint32_t cor = FIELD_EX32(value, V7M_FPCCR, CLRONRET);
2070 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, CLRONRET, cor);
2072 if ((s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2073 uint32_t hfrdy = FIELD_EX32(value, V7M_FPCCR, HFRDY);
2074 uint32_t bfrdy = FIELD_EX32(value, V7M_FPCCR, BFRDY);
2075 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, HFRDY, hfrdy);
2076 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, BFRDY, bfrdy);
2078 /* TODO MONRDY should RAZ/WI if DEMCR.SDME is set */
2080 uint32_t monrdy = FIELD_EX32(value, V7M_FPCCR, MONRDY);
2081 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, MONRDY, monrdy);
2085 * All other non-banked bits are RAZ/WI from NS; write
2086 * just the banked bits to fpccr[M_REG_NS].
2088 value &= R_V7M_FPCCR_BANKED_MASK;
2089 cpu->env.v7m.fpccr[M_REG_NS] = value;
2090 } else {
2091 fpccr_s = value;
2093 cpu->env.v7m.fpccr[M_REG_S] = fpccr_s;
2095 break;
2096 case 0xf38: /* FPCAR */
2097 if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
2098 value &= ~7;
2099 cpu->env.v7m.fpcar[attrs.secure] = value;
2101 break;
2102 case 0xf3c: /* FPDSCR */
2103 if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
2104 uint32_t mask = FPCR_AHP | FPCR_DN | FPCR_FZ | FPCR_RMODE_MASK;
2105 if (cpu_isar_feature(any_fp16, cpu)) {
2106 mask |= FPCR_FZ16;
2108 value &= mask;
2109 if (cpu_isar_feature(aa32_lob, cpu)) {
2110 value |= 4 << FPCR_LTPSIZE_SHIFT;
2112 cpu->env.v7m.fpdscr[attrs.secure] = value;
2114 break;
2115 case 0xf50: /* ICIALLU */
2116 case 0xf58: /* ICIMVAU */
2117 case 0xf5c: /* DCIMVAC */
2118 case 0xf60: /* DCISW */
2119 case 0xf64: /* DCCMVAU */
2120 case 0xf68: /* DCCMVAC */
2121 case 0xf6c: /* DCCSW */
2122 case 0xf70: /* DCCIMVAC */
2123 case 0xf74: /* DCCISW */
2124 case 0xf78: /* BPIALL */
2125 /* Cache and branch predictor maintenance: for QEMU these always NOP */
2126 break;
2127 default:
2128 bad_offset:
2129 qemu_log_mask(LOG_GUEST_ERROR,
2130 "NVIC: Bad write offset 0x%x\n", offset);
2134 static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs)
2136 /* Return true if unprivileged access to this register is permitted. */
2137 switch (offset) {
2138 case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */
2139 /* For access via STIR_NS it is the NS CCR.USERSETMPEND that
2140 * controls access even though the CPU is in Secure state (I_QDKX).
2142 return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK;
2143 default:
2144 /* All other user accesses cause a BusFault unconditionally */
2145 return false;
2149 static int shpr_bank(NVICState *s, int exc, MemTxAttrs attrs)
2151 /* Behaviour for the SHPR register field for this exception:
2152 * return M_REG_NS to use the nonsecure vector (including for
2153 * non-banked exceptions), M_REG_S for the secure version of
2154 * a banked exception, and -1 if this field should RAZ/WI.
2156 switch (exc) {
2157 case ARMV7M_EXCP_MEM:
2158 case ARMV7M_EXCP_USAGE:
2159 case ARMV7M_EXCP_SVC:
2160 case ARMV7M_EXCP_PENDSV:
2161 case ARMV7M_EXCP_SYSTICK:
2162 /* Banked exceptions */
2163 return attrs.secure;
2164 case ARMV7M_EXCP_BUS:
2165 /* Not banked, RAZ/WI from nonsecure if BFHFNMINS is zero */
2166 if (!attrs.secure &&
2167 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2168 return -1;
2170 return M_REG_NS;
2171 case ARMV7M_EXCP_SECURE:
2172 /* Not banked, RAZ/WI from nonsecure */
2173 if (!attrs.secure) {
2174 return -1;
2176 return M_REG_NS;
2177 case ARMV7M_EXCP_DEBUG:
2178 /* Not banked. TODO should RAZ/WI if DEMCR.SDME is set */
2179 return M_REG_NS;
2180 case 8 ... 10:
2181 case 13:
2182 /* RES0 */
2183 return -1;
2184 default:
2185 /* Not reachable due to decode of SHPR register addresses */
2186 g_assert_not_reached();
2190 static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr,
2191 uint64_t *data, unsigned size,
2192 MemTxAttrs attrs)
2194 NVICState *s = (NVICState *)opaque;
2195 uint32_t offset = addr;
2196 unsigned i, startvec, end;
2197 uint32_t val;
2199 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
2200 /* Generate BusFault for unprivileged accesses */
2201 return MEMTX_ERROR;
2204 switch (offset) {
2205 /* reads of set and clear both return the status */
2206 case 0x100 ... 0x13f: /* NVIC Set enable */
2207 offset += 0x80;
2208 /* fall through */
2209 case 0x180 ... 0x1bf: /* NVIC Clear enable */
2210 val = 0;
2211 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; /* vector # */
2213 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2214 if (s->vectors[startvec + i].enabled &&
2215 (attrs.secure || s->itns[startvec + i])) {
2216 val |= (1 << i);
2219 break;
2220 case 0x200 ... 0x23f: /* NVIC Set pend */
2221 offset += 0x80;
2222 /* fall through */
2223 case 0x280 ... 0x2bf: /* NVIC Clear pend */
2224 val = 0;
2225 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
2226 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2227 if (s->vectors[startvec + i].pending &&
2228 (attrs.secure || s->itns[startvec + i])) {
2229 val |= (1 << i);
2232 break;
2233 case 0x300 ... 0x33f: /* NVIC Active */
2234 val = 0;
2236 if (!arm_feature(&s->cpu->env, ARM_FEATURE_V7)) {
2237 break;
2240 startvec = 8 * (offset - 0x300) + NVIC_FIRST_IRQ; /* vector # */
2242 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2243 if (s->vectors[startvec + i].active &&
2244 (attrs.secure || s->itns[startvec + i])) {
2245 val |= (1 << i);
2248 break;
2249 case 0x400 ... 0x5ef: /* NVIC Priority */
2250 val = 0;
2251 startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */
2253 for (i = 0; i < size && startvec + i < s->num_irq; i++) {
2254 if (attrs.secure || s->itns[startvec + i]) {
2255 val |= s->vectors[startvec + i].prio << (8 * i);
2258 break;
2259 case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */
2260 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2261 val = 0;
2262 break;
2264 /* fall through */
2265 case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */
2266 val = 0;
2267 for (i = 0; i < size; i++) {
2268 unsigned hdlidx = (offset - 0xd14) + i;
2269 int sbank = shpr_bank(s, hdlidx, attrs);
2271 if (sbank < 0) {
2272 continue;
2274 val = deposit32(val, i * 8, 8, get_prio(s, hdlidx, sbank));
2276 break;
2277 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
2278 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2279 val = 0;
2280 break;
2283 * The BFSR bits [15:8] are shared between security states
2284 * and we store them in the NS copy. They are RAZ/WI for
2285 * NS code if AIRCR.BFHFNMINS is 0.
2287 val = s->cpu->env.v7m.cfsr[attrs.secure];
2288 if (!attrs.secure &&
2289 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2290 val &= ~R_V7M_CFSR_BFSR_MASK;
2291 } else {
2292 val |= s->cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK;
2294 val = extract32(val, (offset - 0xd28) * 8, size * 8);
2295 break;
2296 case 0xfe0 ... 0xfff: /* ID. */
2297 if (offset & 3) {
2298 val = 0;
2299 } else {
2300 val = nvic_id[(offset - 0xfe0) >> 2];
2302 break;
2303 default:
2304 if (size == 4) {
2305 val = nvic_readl(s, offset, attrs);
2306 } else {
2307 qemu_log_mask(LOG_GUEST_ERROR,
2308 "NVIC: Bad read of size %d at offset 0x%x\n",
2309 size, offset);
2310 val = 0;
2314 trace_nvic_sysreg_read(addr, val, size);
2315 *data = val;
2316 return MEMTX_OK;
2319 static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr,
2320 uint64_t value, unsigned size,
2321 MemTxAttrs attrs)
2323 NVICState *s = (NVICState *)opaque;
2324 uint32_t offset = addr;
2325 unsigned i, startvec, end;
2326 unsigned setval = 0;
2328 trace_nvic_sysreg_write(addr, value, size);
2330 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
2331 /* Generate BusFault for unprivileged accesses */
2332 return MEMTX_ERROR;
2335 switch (offset) {
2336 case 0x100 ... 0x13f: /* NVIC Set enable */
2337 offset += 0x80;
2338 setval = 1;
2339 /* fall through */
2340 case 0x180 ... 0x1bf: /* NVIC Clear enable */
2341 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ;
2343 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2344 if (value & (1 << i) &&
2345 (attrs.secure || s->itns[startvec + i])) {
2346 s->vectors[startvec + i].enabled = setval;
2349 nvic_irq_update(s);
2350 goto exit_ok;
2351 case 0x200 ... 0x23f: /* NVIC Set pend */
2352 /* the special logic in armv7m_nvic_set_pending()
2353 * is not needed since IRQs are never escalated
2355 offset += 0x80;
2356 setval = 1;
2357 /* fall through */
2358 case 0x280 ... 0x2bf: /* NVIC Clear pend */
2359 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
2361 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2362 if (value & (1 << i) &&
2363 (attrs.secure || s->itns[startvec + i])) {
2364 s->vectors[startvec + i].pending = setval;
2367 nvic_irq_update(s);
2368 goto exit_ok;
2369 case 0x300 ... 0x33f: /* NVIC Active */
2370 goto exit_ok; /* R/O */
2371 case 0x400 ... 0x5ef: /* NVIC Priority */
2372 startvec = (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */
2374 for (i = 0; i < size && startvec + i < s->num_irq; i++) {
2375 if (attrs.secure || s->itns[startvec + i]) {
2376 set_prio(s, startvec + i, false, (value >> (i * 8)) & 0xff);
2379 nvic_irq_update(s);
2380 goto exit_ok;
2381 case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */
2382 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2383 goto exit_ok;
2385 /* fall through */
2386 case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */
2387 for (i = 0; i < size; i++) {
2388 unsigned hdlidx = (offset - 0xd14) + i;
2389 int newprio = extract32(value, i * 8, 8);
2390 int sbank = shpr_bank(s, hdlidx, attrs);
2392 if (sbank < 0) {
2393 continue;
2395 set_prio(s, hdlidx, sbank, newprio);
2397 nvic_irq_update(s);
2398 goto exit_ok;
2399 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
2400 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2401 goto exit_ok;
2403 /* All bits are W1C, so construct 32 bit value with 0s in
2404 * the parts not written by the access size
2406 value <<= ((offset - 0xd28) * 8);
2408 if (!attrs.secure &&
2409 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2410 /* BFSR bits are RAZ/WI for NS if BFHFNMINS is set */
2411 value &= ~R_V7M_CFSR_BFSR_MASK;
2414 s->cpu->env.v7m.cfsr[attrs.secure] &= ~value;
2415 if (attrs.secure) {
2416 /* The BFSR bits [15:8] are shared between security states
2417 * and we store them in the NS copy.
2419 s->cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK);
2421 goto exit_ok;
2423 if (size == 4) {
2424 nvic_writel(s, offset, value, attrs);
2425 goto exit_ok;
2427 qemu_log_mask(LOG_GUEST_ERROR,
2428 "NVIC: Bad write of size %d at offset 0x%x\n", size, offset);
2429 /* This is UNPREDICTABLE; treat as RAZ/WI */
2431 exit_ok:
2432 /* Ensure any changes made are reflected in the cached hflags. */
2433 arm_rebuild_hflags(&s->cpu->env);
2434 return MEMTX_OK;
2437 static const MemoryRegionOps nvic_sysreg_ops = {
2438 .read_with_attrs = nvic_sysreg_read,
2439 .write_with_attrs = nvic_sysreg_write,
2440 .endianness = DEVICE_NATIVE_ENDIAN,
2443 static MemTxResult nvic_sysreg_ns_write(void *opaque, hwaddr addr,
2444 uint64_t value, unsigned size,
2445 MemTxAttrs attrs)
2447 MemoryRegion *mr = opaque;
2449 if (attrs.secure) {
2450 /* S accesses to the alias act like NS accesses to the real region */
2451 attrs.secure = 0;
2452 return memory_region_dispatch_write(mr, addr, value,
2453 size_memop(size) | MO_TE, attrs);
2454 } else {
2455 /* NS attrs are RAZ/WI for privileged, and BusFault for user */
2456 if (attrs.user) {
2457 return MEMTX_ERROR;
2459 return MEMTX_OK;
2463 static MemTxResult nvic_sysreg_ns_read(void *opaque, hwaddr addr,
2464 uint64_t *data, unsigned size,
2465 MemTxAttrs attrs)
2467 MemoryRegion *mr = opaque;
2469 if (attrs.secure) {
2470 /* S accesses to the alias act like NS accesses to the real region */
2471 attrs.secure = 0;
2472 return memory_region_dispatch_read(mr, addr, data,
2473 size_memop(size) | MO_TE, attrs);
2474 } else {
2475 /* NS attrs are RAZ/WI for privileged, and BusFault for user */
2476 if (attrs.user) {
2477 return MEMTX_ERROR;
2479 *data = 0;
2480 return MEMTX_OK;
2484 static const MemoryRegionOps nvic_sysreg_ns_ops = {
2485 .read_with_attrs = nvic_sysreg_ns_read,
2486 .write_with_attrs = nvic_sysreg_ns_write,
2487 .endianness = DEVICE_NATIVE_ENDIAN,
2490 static MemTxResult nvic_systick_write(void *opaque, hwaddr addr,
2491 uint64_t value, unsigned size,
2492 MemTxAttrs attrs)
2494 NVICState *s = opaque;
2495 MemoryRegion *mr;
2497 /* Direct the access to the correct systick */
2498 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
2499 return memory_region_dispatch_write(mr, addr, value,
2500 size_memop(size) | MO_TE, attrs);
2503 static MemTxResult nvic_systick_read(void *opaque, hwaddr addr,
2504 uint64_t *data, unsigned size,
2505 MemTxAttrs attrs)
2507 NVICState *s = opaque;
2508 MemoryRegion *mr;
2510 /* Direct the access to the correct systick */
2511 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
2512 return memory_region_dispatch_read(mr, addr, data, size_memop(size) | MO_TE,
2513 attrs);
2516 static const MemoryRegionOps nvic_systick_ops = {
2517 .read_with_attrs = nvic_systick_read,
2518 .write_with_attrs = nvic_systick_write,
2519 .endianness = DEVICE_NATIVE_ENDIAN,
2523 static MemTxResult ras_read(void *opaque, hwaddr addr,
2524 uint64_t *data, unsigned size,
2525 MemTxAttrs attrs)
2527 if (attrs.user) {
2528 return MEMTX_ERROR;
2531 switch (addr) {
2532 case 0xe10: /* ERRIIDR */
2533 /* architect field = Arm; product/variant/revision 0 */
2534 *data = 0x43b;
2535 break;
2536 case 0xfc8: /* ERRDEVID */
2537 /* Minimal RAS: we implement 0 error record indexes */
2538 *data = 0;
2539 break;
2540 default:
2541 qemu_log_mask(LOG_UNIMP, "Read RAS register offset 0x%x\n",
2542 (uint32_t)addr);
2543 *data = 0;
2544 break;
2546 return MEMTX_OK;
2549 static MemTxResult ras_write(void *opaque, hwaddr addr,
2550 uint64_t value, unsigned size,
2551 MemTxAttrs attrs)
2553 if (attrs.user) {
2554 return MEMTX_ERROR;
2557 switch (addr) {
2558 default:
2559 qemu_log_mask(LOG_UNIMP, "Write to RAS register offset 0x%x\n",
2560 (uint32_t)addr);
2561 break;
2563 return MEMTX_OK;
2566 static const MemoryRegionOps ras_ops = {
2567 .read_with_attrs = ras_read,
2568 .write_with_attrs = ras_write,
2569 .endianness = DEVICE_NATIVE_ENDIAN,
2573 * Unassigned portions of the PPB space are RAZ/WI for privileged
2574 * accesses, and fault for non-privileged accesses.
2576 static MemTxResult ppb_default_read(void *opaque, hwaddr addr,
2577 uint64_t *data, unsigned size,
2578 MemTxAttrs attrs)
2580 qemu_log_mask(LOG_UNIMP, "Read of unassigned area of PPB: offset 0x%x\n",
2581 (uint32_t)addr);
2582 if (attrs.user) {
2583 return MEMTX_ERROR;
2585 *data = 0;
2586 return MEMTX_OK;
2589 static MemTxResult ppb_default_write(void *opaque, hwaddr addr,
2590 uint64_t value, unsigned size,
2591 MemTxAttrs attrs)
2593 qemu_log_mask(LOG_UNIMP, "Write of unassigned area of PPB: offset 0x%x\n",
2594 (uint32_t)addr);
2595 if (attrs.user) {
2596 return MEMTX_ERROR;
2598 return MEMTX_OK;
2601 static const MemoryRegionOps ppb_default_ops = {
2602 .read_with_attrs = ppb_default_read,
2603 .write_with_attrs = ppb_default_write,
2604 .endianness = DEVICE_NATIVE_ENDIAN,
2605 .valid.min_access_size = 1,
2606 .valid.max_access_size = 8,
2609 static int nvic_post_load(void *opaque, int version_id)
2611 NVICState *s = opaque;
2612 unsigned i;
2613 int resetprio;
2615 /* Check for out of range priority settings */
2616 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
2618 if (s->vectors[ARMV7M_EXCP_RESET].prio != resetprio ||
2619 s->vectors[ARMV7M_EXCP_NMI].prio != -2 ||
2620 s->vectors[ARMV7M_EXCP_HARD].prio != -1) {
2621 return 1;
2623 for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) {
2624 if (s->vectors[i].prio & ~0xff) {
2625 return 1;
2629 nvic_recompute_state(s);
2631 return 0;
2634 static const VMStateDescription vmstate_VecInfo = {
2635 .name = "armv7m_nvic_info",
2636 .version_id = 1,
2637 .minimum_version_id = 1,
2638 .fields = (VMStateField[]) {
2639 VMSTATE_INT16(prio, VecInfo),
2640 VMSTATE_UINT8(enabled, VecInfo),
2641 VMSTATE_UINT8(pending, VecInfo),
2642 VMSTATE_UINT8(active, VecInfo),
2643 VMSTATE_UINT8(level, VecInfo),
2644 VMSTATE_END_OF_LIST()
2648 static bool nvic_security_needed(void *opaque)
2650 NVICState *s = opaque;
2652 return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
2655 static int nvic_security_post_load(void *opaque, int version_id)
2657 NVICState *s = opaque;
2658 int i;
2660 /* Check for out of range priority settings */
2661 if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1
2662 && s->sec_vectors[ARMV7M_EXCP_HARD].prio != -3) {
2663 /* We can't cross-check against AIRCR.BFHFNMINS as we don't know
2664 * if the CPU state has been migrated yet; a mismatch won't
2665 * cause the emulation to blow up, though.
2667 return 1;
2669 for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) {
2670 if (s->sec_vectors[i].prio & ~0xff) {
2671 return 1;
2674 return 0;
2677 static const VMStateDescription vmstate_nvic_security = {
2678 .name = "armv7m_nvic/m-security",
2679 .version_id = 1,
2680 .minimum_version_id = 1,
2681 .needed = nvic_security_needed,
2682 .post_load = &nvic_security_post_load,
2683 .fields = (VMStateField[]) {
2684 VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1,
2685 vmstate_VecInfo, VecInfo),
2686 VMSTATE_UINT32(prigroup[M_REG_S], NVICState),
2687 VMSTATE_BOOL_ARRAY(itns, NVICState, NVIC_MAX_VECTORS),
2688 VMSTATE_END_OF_LIST()
2692 static const VMStateDescription vmstate_nvic = {
2693 .name = "armv7m_nvic",
2694 .version_id = 4,
2695 .minimum_version_id = 4,
2696 .post_load = &nvic_post_load,
2697 .fields = (VMStateField[]) {
2698 VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1,
2699 vmstate_VecInfo, VecInfo),
2700 VMSTATE_UINT32(prigroup[M_REG_NS], NVICState),
2701 VMSTATE_END_OF_LIST()
2703 .subsections = (const VMStateDescription*[]) {
2704 &vmstate_nvic_security,
2705 NULL
2709 static Property props_nvic[] = {
2710 /* Number of external IRQ lines (so excluding the 16 internal exceptions) */
2711 DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64),
2712 DEFINE_PROP_END_OF_LIST()
2715 static void armv7m_nvic_reset(DeviceState *dev)
2717 int resetprio;
2718 NVICState *s = NVIC(dev);
2720 memset(s->vectors, 0, sizeof(s->vectors));
2721 memset(s->sec_vectors, 0, sizeof(s->sec_vectors));
2722 s->prigroup[M_REG_NS] = 0;
2723 s->prigroup[M_REG_S] = 0;
2725 s->vectors[ARMV7M_EXCP_NMI].enabled = 1;
2726 /* MEM, BUS, and USAGE are enabled through
2727 * the System Handler Control register
2729 s->vectors[ARMV7M_EXCP_SVC].enabled = 1;
2730 s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2731 s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2733 /* DebugMonitor is enabled via DEMCR.MON_EN */
2734 s->vectors[ARMV7M_EXCP_DEBUG].enabled = 0;
2736 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
2737 s->vectors[ARMV7M_EXCP_RESET].prio = resetprio;
2738 s->vectors[ARMV7M_EXCP_NMI].prio = -2;
2739 s->vectors[ARMV7M_EXCP_HARD].prio = -1;
2741 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2742 s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1;
2743 s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1;
2744 s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2745 s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2747 /* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */
2748 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
2749 /* If AIRCR.BFHFNMINS is 0 then NS HF is (effectively) disabled */
2750 s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
2751 } else {
2752 s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
2755 /* Strictly speaking the reset handler should be enabled.
2756 * However, we don't simulate soft resets through the NVIC,
2757 * and the reset vector should never be pended.
2758 * So we leave it disabled to catch logic errors.
2761 s->exception_prio = NVIC_NOEXC_PRIO;
2762 s->vectpending = 0;
2763 s->vectpending_is_s_banked = false;
2764 s->vectpending_prio = NVIC_NOEXC_PRIO;
2766 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2767 memset(s->itns, 0, sizeof(s->itns));
2768 } else {
2769 /* This state is constant and not guest accessible in a non-security
2770 * NVIC; we set the bits to true to avoid having to do a feature
2771 * bit check in the NVIC enable/pend/etc register accessors.
2773 int i;
2775 for (i = NVIC_FIRST_IRQ; i < ARRAY_SIZE(s->itns); i++) {
2776 s->itns[i] = true;
2781 * We updated state that affects the CPU's MMUidx and thus its hflags;
2782 * and we can't guarantee that we run before the CPU reset function.
2784 arm_rebuild_hflags(&s->cpu->env);
2787 static void nvic_systick_trigger(void *opaque, int n, int level)
2789 NVICState *s = opaque;
2791 if (level) {
2792 /* SysTick just asked us to pend its exception.
2793 * (This is different from an external interrupt line's
2794 * behaviour.)
2795 * n == 0 : NonSecure systick
2796 * n == 1 : Secure systick
2798 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, n);
2802 static void armv7m_nvic_realize(DeviceState *dev, Error **errp)
2804 NVICState *s = NVIC(dev);
2806 /* The armv7m container object will have set our CPU pointer */
2807 if (!s->cpu || !arm_feature(&s->cpu->env, ARM_FEATURE_M)) {
2808 error_setg(errp, "The NVIC can only be used with a Cortex-M CPU");
2809 return;
2812 if (s->num_irq > NVIC_MAX_IRQ) {
2813 error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq);
2814 return;
2817 qdev_init_gpio_in(dev, set_irq_level, s->num_irq);
2819 /* include space for internal exception vectors */
2820 s->num_irq += NVIC_FIRST_IRQ;
2822 s->num_prio_bits = arm_feature(&s->cpu->env, ARM_FEATURE_V7) ? 8 : 2;
2824 if (!sysbus_realize(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), errp)) {
2825 return;
2827 sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), 0,
2828 qdev_get_gpio_in_named(dev, "systick-trigger",
2829 M_REG_NS));
2831 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2832 /* We couldn't init the secure systick device in instance_init
2833 * as we didn't know then if the CPU had the security extensions;
2834 * so we have to do it here.
2836 object_initialize_child(OBJECT(dev), "systick-reg-s",
2837 &s->systick[M_REG_S], TYPE_SYSTICK);
2839 if (!sysbus_realize(SYS_BUS_DEVICE(&s->systick[M_REG_S]), errp)) {
2840 return;
2842 sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_S]), 0,
2843 qdev_get_gpio_in_named(dev, "systick-trigger",
2844 M_REG_S));
2848 * This device provides a single sysbus memory region which
2849 * represents the whole of the "System PPB" space. This is the
2850 * range from 0xe0000000 to 0xe00fffff and includes the NVIC,
2851 * the System Control Space (system registers), the systick timer,
2852 * and for CPUs with the Security extension an NS banked version
2853 * of all of these.
2855 * The default behaviour for unimplemented registers/ranges
2856 * (for instance the Data Watchpoint and Trace unit at 0xe0001000)
2857 * is to RAZ/WI for privileged access and BusFault for non-privileged
2858 * access.
2860 * The NVIC and System Control Space (SCS) starts at 0xe000e000
2861 * and looks like this:
2862 * 0x004 - ICTR
2863 * 0x010 - 0xff - systick
2864 * 0x100..0x7ec - NVIC
2865 * 0x7f0..0xcff - Reserved
2866 * 0xd00..0xd3c - SCS registers
2867 * 0xd40..0xeff - Reserved or Not implemented
2868 * 0xf00 - STIR
2870 * Some registers within this space are banked between security states.
2871 * In v8M there is a second range 0xe002e000..0xe002efff which is the
2872 * NonSecure alias SCS; secure accesses to this behave like NS accesses
2873 * to the main SCS range, and non-secure accesses (including when
2874 * the security extension is not implemented) are RAZ/WI.
2875 * Note that both the main SCS range and the alias range are defined
2876 * to be exempt from memory attribution (R_BLJT) and so the memory
2877 * transaction attribute always matches the current CPU security
2878 * state (attrs.secure == env->v7m.secure). In the nvic_sysreg_ns_ops
2879 * wrappers we change attrs.secure to indicate the NS access; so
2880 * generally code determining which banked register to use should
2881 * use attrs.secure; code determining actual behaviour of the system
2882 * should use env->v7m.secure.
2884 * The container covers the whole PPB space. Within it the priority
2885 * of overlapping regions is:
2886 * - default region (for RAZ/WI and BusFault) : -1
2887 * - system register regions : 0
2888 * - systick : 1
2889 * This is because the systick device is a small block of registers
2890 * in the middle of the other system control registers.
2892 memory_region_init(&s->container, OBJECT(s), "nvic", 0x100000);
2893 memory_region_init_io(&s->defaultmem, OBJECT(s), &ppb_default_ops, s,
2894 "nvic-default", 0x100000);
2895 memory_region_add_subregion_overlap(&s->container, 0, &s->defaultmem, -1);
2896 memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s,
2897 "nvic_sysregs", 0x1000);
2898 memory_region_add_subregion(&s->container, 0xe000, &s->sysregmem);
2900 memory_region_init_io(&s->systickmem, OBJECT(s),
2901 &nvic_systick_ops, s,
2902 "nvic_systick", 0xe0);
2904 memory_region_add_subregion_overlap(&s->container, 0xe010,
2905 &s->systickmem, 1);
2907 if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
2908 memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s),
2909 &nvic_sysreg_ns_ops, &s->sysregmem,
2910 "nvic_sysregs_ns", 0x1000);
2911 memory_region_add_subregion(&s->container, 0x2e000, &s->sysreg_ns_mem);
2912 memory_region_init_io(&s->systick_ns_mem, OBJECT(s),
2913 &nvic_sysreg_ns_ops, &s->systickmem,
2914 "nvic_systick_ns", 0xe0);
2915 memory_region_add_subregion_overlap(&s->container, 0x2e010,
2916 &s->systick_ns_mem, 1);
2919 if (cpu_isar_feature(aa32_ras, s->cpu)) {
2920 memory_region_init_io(&s->ras_mem, OBJECT(s),
2921 &ras_ops, s, "nvic_ras", 0x1000);
2922 memory_region_add_subregion(&s->container, 0x5000, &s->ras_mem);
2925 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->container);
2928 static void armv7m_nvic_instance_init(Object *obj)
2930 /* We have a different default value for the num-irq property
2931 * than our superclass. This function runs after qdev init
2932 * has set the defaults from the Property array and before
2933 * any user-specified property setting, so just modify the
2934 * value in the GICState struct.
2936 DeviceState *dev = DEVICE(obj);
2937 NVICState *nvic = NVIC(obj);
2938 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2940 object_initialize_child(obj, "systick-reg-ns", &nvic->systick[M_REG_NS],
2941 TYPE_SYSTICK);
2942 /* We can't initialize the secure systick here, as we don't know
2943 * yet if we need it.
2946 sysbus_init_irq(sbd, &nvic->excpout);
2947 qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1);
2948 qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger",
2949 M_REG_NUM_BANKS);
2950 qdev_init_gpio_in_named(dev, nvic_nmi_trigger, "NMI", 1);
2953 static void armv7m_nvic_class_init(ObjectClass *klass, void *data)
2955 DeviceClass *dc = DEVICE_CLASS(klass);
2957 dc->vmsd = &vmstate_nvic;
2958 device_class_set_props(dc, props_nvic);
2959 dc->reset = armv7m_nvic_reset;
2960 dc->realize = armv7m_nvic_realize;
2963 static const TypeInfo armv7m_nvic_info = {
2964 .name = TYPE_NVIC,
2965 .parent = TYPE_SYS_BUS_DEVICE,
2966 .instance_init = armv7m_nvic_instance_init,
2967 .instance_size = sizeof(NVICState),
2968 .class_init = armv7m_nvic_class_init,
2969 .class_size = sizeof(SysBusDeviceClass),
2972 static void armv7m_nvic_register_types(void)
2974 type_register_static(&armv7m_nvic_info);
2977 type_init(armv7m_nvic_register_types)