e1000: cleanup process_tx_desc
[qemu/ar7.git] / target-arm / helper.c
blob5f639fdeb80122bc891096f609c7de99c7fdcfe9
1 #include "cpu.h"
2 #include "exec/gdbstub.h"
3 #include "helper.h"
4 #include "qemu/host-utils.h"
5 #include "sysemu/sysemu.h"
6 #include "qemu/bitops.h"
8 #ifndef CONFIG_USER_ONLY
9 static inline int get_phys_addr(CPUARMState *env, uint32_t address,
10 int access_type, int is_user,
11 hwaddr *phys_ptr, int *prot,
12 target_ulong *page_size);
13 #endif
15 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
17 int nregs;
19 /* VFP data registers are always little-endian. */
20 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
21 if (reg < nregs) {
22 stfq_le_p(buf, env->vfp.regs[reg]);
23 return 8;
25 if (arm_feature(env, ARM_FEATURE_NEON)) {
26 /* Aliases for Q regs. */
27 nregs += 16;
28 if (reg < nregs) {
29 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
30 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
31 return 16;
34 switch (reg - nregs) {
35 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
36 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
37 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
39 return 0;
42 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
44 int nregs;
46 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
47 if (reg < nregs) {
48 env->vfp.regs[reg] = ldfq_le_p(buf);
49 return 8;
51 if (arm_feature(env, ARM_FEATURE_NEON)) {
52 nregs += 16;
53 if (reg < nregs) {
54 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
55 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
56 return 16;
59 switch (reg - nregs) {
60 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
61 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
62 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
64 return 0;
67 static int raw_read(CPUARMState *env, const ARMCPRegInfo *ri,
68 uint64_t *value)
70 *value = CPREG_FIELD32(env, ri);
71 return 0;
74 static int raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
75 uint64_t value)
77 CPREG_FIELD32(env, ri) = value;
78 return 0;
81 static bool read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
82 uint64_t *v)
84 /* Raw read of a coprocessor register (as needed for migration, etc)
85 * return true on success, false if the read is impossible for some reason.
87 if (ri->type & ARM_CP_CONST) {
88 *v = ri->resetvalue;
89 } else if (ri->raw_readfn) {
90 return (ri->raw_readfn(env, ri, v) == 0);
91 } else if (ri->readfn) {
92 return (ri->readfn(env, ri, v) == 0);
93 } else {
94 if (ri->type & ARM_CP_64BIT) {
95 *v = CPREG_FIELD64(env, ri);
96 } else {
97 *v = CPREG_FIELD32(env, ri);
100 return true;
103 static bool write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
104 int64_t v)
106 /* Raw write of a coprocessor register (as needed for migration, etc).
107 * Return true on success, false if the write is impossible for some reason.
108 * Note that constant registers are treated as write-ignored; the
109 * caller should check for success by whether a readback gives the
110 * value written.
112 if (ri->type & ARM_CP_CONST) {
113 return true;
114 } else if (ri->raw_writefn) {
115 return (ri->raw_writefn(env, ri, v) == 0);
116 } else if (ri->writefn) {
117 return (ri->writefn(env, ri, v) == 0);
118 } else {
119 if (ri->type & ARM_CP_64BIT) {
120 CPREG_FIELD64(env, ri) = v;
121 } else {
122 CPREG_FIELD32(env, ri) = v;
125 return true;
128 bool write_cpustate_to_list(ARMCPU *cpu)
130 /* Write the coprocessor state from cpu->env to the (index,value) list. */
131 int i;
132 bool ok = true;
134 for (i = 0; i < cpu->cpreg_array_len; i++) {
135 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
136 const ARMCPRegInfo *ri;
137 uint64_t v;
138 ri = get_arm_cp_reginfo(cpu, regidx);
139 if (!ri) {
140 ok = false;
141 continue;
143 if (ri->type & ARM_CP_NO_MIGRATE) {
144 continue;
146 if (!read_raw_cp_reg(&cpu->env, ri, &v)) {
147 ok = false;
148 continue;
150 cpu->cpreg_values[i] = v;
152 return ok;
155 bool write_list_to_cpustate(ARMCPU *cpu)
157 int i;
158 bool ok = true;
160 for (i = 0; i < cpu->cpreg_array_len; i++) {
161 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
162 uint64_t v = cpu->cpreg_values[i];
163 uint64_t readback;
164 const ARMCPRegInfo *ri;
166 ri = get_arm_cp_reginfo(cpu, regidx);
167 if (!ri) {
168 ok = false;
169 continue;
171 if (ri->type & ARM_CP_NO_MIGRATE) {
172 continue;
174 /* Write value and confirm it reads back as written
175 * (to catch read-only registers and partially read-only
176 * registers where the incoming migration value doesn't match)
178 if (!write_raw_cp_reg(&cpu->env, ri, v) ||
179 !read_raw_cp_reg(&cpu->env, ri, &readback) ||
180 readback != v) {
181 ok = false;
184 return ok;
187 static void add_cpreg_to_list(gpointer key, gpointer opaque)
189 ARMCPU *cpu = opaque;
190 uint64_t regidx;
191 const ARMCPRegInfo *ri;
193 regidx = *(uint32_t *)key;
194 ri = get_arm_cp_reginfo(cpu, regidx);
196 if (!(ri->type & ARM_CP_NO_MIGRATE)) {
197 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
198 /* The value array need not be initialized at this point */
199 cpu->cpreg_array_len++;
203 static void count_cpreg(gpointer key, gpointer opaque)
205 ARMCPU *cpu = opaque;
206 uint64_t regidx;
207 const ARMCPRegInfo *ri;
209 regidx = *(uint32_t *)key;
210 ri = get_arm_cp_reginfo(cpu, regidx);
212 if (!(ri->type & ARM_CP_NO_MIGRATE)) {
213 cpu->cpreg_array_len++;
217 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
219 uint32_t aidx = *(uint32_t *)a;
220 uint32_t bidx = *(uint32_t *)b;
222 return aidx - bidx;
225 void init_cpreg_list(ARMCPU *cpu)
227 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
228 * Note that we require cpreg_tuples[] to be sorted by key ID.
230 GList *keys;
231 int arraylen;
233 keys = g_hash_table_get_keys(cpu->cp_regs);
234 keys = g_list_sort(keys, cpreg_key_compare);
236 cpu->cpreg_array_len = 0;
238 g_list_foreach(keys, count_cpreg, cpu);
240 arraylen = cpu->cpreg_array_len;
241 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
242 cpu->cpreg_values = g_new(uint64_t, arraylen);
243 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
244 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
245 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
246 cpu->cpreg_array_len = 0;
248 g_list_foreach(keys, add_cpreg_to_list, cpu);
250 assert(cpu->cpreg_array_len == arraylen);
252 g_list_free(keys);
255 static int dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
257 env->cp15.c3 = value;
258 tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
259 return 0;
262 static int fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
264 if (env->cp15.c13_fcse != value) {
265 /* Unlike real hardware the qemu TLB uses virtual addresses,
266 * not modified virtual addresses, so this causes a TLB flush.
268 tlb_flush(env, 1);
269 env->cp15.c13_fcse = value;
271 return 0;
273 static int contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
274 uint64_t value)
276 if (env->cp15.c13_context != value && !arm_feature(env, ARM_FEATURE_MPU)) {
277 /* For VMSA (when not using the LPAE long descriptor page table
278 * format) this register includes the ASID, so do a TLB flush.
279 * For PMSA it is purely a process ID and no action is needed.
281 tlb_flush(env, 1);
283 env->cp15.c13_context = value;
284 return 0;
287 static int tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
288 uint64_t value)
290 /* Invalidate all (TLBIALL) */
291 tlb_flush(env, 1);
292 return 0;
295 static int tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
296 uint64_t value)
298 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
299 tlb_flush_page(env, value & TARGET_PAGE_MASK);
300 return 0;
303 static int tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
304 uint64_t value)
306 /* Invalidate by ASID (TLBIASID) */
307 tlb_flush(env, value == 0);
308 return 0;
311 static int tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
312 uint64_t value)
314 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
315 tlb_flush_page(env, value & TARGET_PAGE_MASK);
316 return 0;
319 static const ARMCPRegInfo cp_reginfo[] = {
320 /* DBGDIDR: just RAZ. In particular this means the "debug architecture
321 * version" bits will read as a reserved value, which should cause
322 * Linux to not try to use the debug hardware.
324 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
325 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
326 /* MMU Domain access control / MPU write buffer control */
327 { .name = "DACR", .cp = 15,
328 .crn = 3, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
329 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c3),
330 .resetvalue = 0, .writefn = dacr_write, .raw_writefn = raw_write, },
331 { .name = "FCSEIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 0,
332 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse),
333 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
334 { .name = "CONTEXTIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 1,
335 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse),
336 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
337 /* ??? This covers not just the impdef TLB lockdown registers but also
338 * some v7VMSA registers relating to TEX remap, so it is overly broad.
340 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = CP_ANY,
341 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
342 /* MMU TLB control. Note that the wildcarding means we cover not just
343 * the unified TLB ops but also the dside/iside/inner-shareable variants.
345 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
346 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
347 .type = ARM_CP_NO_MIGRATE },
348 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
349 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
350 .type = ARM_CP_NO_MIGRATE },
351 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
352 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
353 .type = ARM_CP_NO_MIGRATE },
354 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
355 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
356 .type = ARM_CP_NO_MIGRATE },
357 /* Cache maintenance ops; some of this space may be overridden later. */
358 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
359 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
360 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
361 REGINFO_SENTINEL
364 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
365 /* Not all pre-v6 cores implemented this WFI, so this is slightly
366 * over-broad.
368 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
369 .access = PL1_W, .type = ARM_CP_WFI },
370 REGINFO_SENTINEL
373 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
374 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
375 * is UNPREDICTABLE; we choose to NOP as most implementations do).
377 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
378 .access = PL1_W, .type = ARM_CP_WFI },
379 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
380 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
381 * OMAPCP will override this space.
383 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
384 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
385 .resetvalue = 0 },
386 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
387 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
388 .resetvalue = 0 },
389 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
390 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
391 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
392 .resetvalue = 0 },
393 REGINFO_SENTINEL
396 static int cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
398 if (env->cp15.c1_coproc != value) {
399 env->cp15.c1_coproc = value;
400 /* ??? Is this safe when called from within a TB? */
401 tb_flush(env);
403 return 0;
406 static const ARMCPRegInfo v6_cp_reginfo[] = {
407 /* prefetch by MVA in v6, NOP in v7 */
408 { .name = "MVA_prefetch",
409 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
410 .access = PL1_W, .type = ARM_CP_NOP },
411 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
412 .access = PL0_W, .type = ARM_CP_NOP },
413 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
414 .access = PL0_W, .type = ARM_CP_NOP },
415 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
416 .access = PL0_W, .type = ARM_CP_NOP },
417 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
418 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_insn),
419 .resetvalue = 0, },
420 /* Watchpoint Fault Address Register : should actually only be present
421 * for 1136, 1176, 11MPCore.
423 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
424 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
425 { .name = "CPACR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2,
426 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_coproc),
427 .resetvalue = 0, .writefn = cpacr_write },
428 REGINFO_SENTINEL
432 static int pmreg_read(CPUARMState *env, const ARMCPRegInfo *ri,
433 uint64_t *value)
435 /* Generic performance monitor register read function for where
436 * user access may be allowed by PMUSERENR.
438 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
439 return EXCP_UDEF;
441 *value = CPREG_FIELD32(env, ri);
442 return 0;
445 static int pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
446 uint64_t value)
448 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
449 return EXCP_UDEF;
451 /* only the DP, X, D and E bits are writable */
452 env->cp15.c9_pmcr &= ~0x39;
453 env->cp15.c9_pmcr |= (value & 0x39);
454 return 0;
457 static int pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
458 uint64_t value)
460 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
461 return EXCP_UDEF;
463 value &= (1 << 31);
464 env->cp15.c9_pmcnten |= value;
465 return 0;
468 static int pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
469 uint64_t value)
471 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
472 return EXCP_UDEF;
474 value &= (1 << 31);
475 env->cp15.c9_pmcnten &= ~value;
476 return 0;
479 static int pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
480 uint64_t value)
482 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
483 return EXCP_UDEF;
485 env->cp15.c9_pmovsr &= ~value;
486 return 0;
489 static int pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
490 uint64_t value)
492 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
493 return EXCP_UDEF;
495 env->cp15.c9_pmxevtyper = value & 0xff;
496 return 0;
499 static int pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
500 uint64_t value)
502 env->cp15.c9_pmuserenr = value & 1;
503 return 0;
506 static int pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
507 uint64_t value)
509 /* We have no event counters so only the C bit can be changed */
510 value &= (1 << 31);
511 env->cp15.c9_pminten |= value;
512 return 0;
515 static int pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
516 uint64_t value)
518 value &= (1 << 31);
519 env->cp15.c9_pminten &= ~value;
520 return 0;
523 static int ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri,
524 uint64_t *value)
526 ARMCPU *cpu = arm_env_get_cpu(env);
527 *value = cpu->ccsidr[env->cp15.c0_cssel];
528 return 0;
531 static int csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
532 uint64_t value)
534 env->cp15.c0_cssel = value & 0xf;
535 return 0;
538 static const ARMCPRegInfo v7_cp_reginfo[] = {
539 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
540 * debug components
542 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
543 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
544 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
545 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
546 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
547 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
548 .access = PL1_W, .type = ARM_CP_NOP },
549 /* Performance monitors are implementation defined in v7,
550 * but with an ARM recommended set of registers, which we
551 * follow (although we don't actually implement any counters)
553 * Performance registers fall into three categories:
554 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
555 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
556 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
557 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
558 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
560 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
561 .access = PL0_RW, .resetvalue = 0,
562 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
563 .readfn = pmreg_read, .writefn = pmcntenset_write,
564 .raw_readfn = raw_read, .raw_writefn = raw_write },
565 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
566 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
567 .readfn = pmreg_read, .writefn = pmcntenclr_write,
568 .type = ARM_CP_NO_MIGRATE },
569 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
570 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
571 .readfn = pmreg_read, .writefn = pmovsr_write,
572 .raw_readfn = raw_read, .raw_writefn = raw_write },
573 /* Unimplemented so WI. Strictly speaking write accesses in PL0 should
574 * respect PMUSERENR.
576 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
577 .access = PL0_W, .type = ARM_CP_NOP },
578 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
579 * We choose to RAZ/WI. XXX should respect PMUSERENR.
581 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
582 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
583 /* Unimplemented, RAZ/WI. XXX PMUSERENR */
584 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
585 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
586 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
587 .access = PL0_RW,
588 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
589 .readfn = pmreg_read, .writefn = pmxevtyper_write,
590 .raw_readfn = raw_read, .raw_writefn = raw_write },
591 /* Unimplemented, RAZ/WI. XXX PMUSERENR */
592 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
593 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
594 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
595 .access = PL0_R | PL1_RW,
596 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
597 .resetvalue = 0,
598 .writefn = pmuserenr_write, .raw_writefn = raw_write },
599 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
600 .access = PL1_RW,
601 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
602 .resetvalue = 0,
603 .writefn = pmintenset_write, .raw_writefn = raw_write },
604 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
605 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
606 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
607 .resetvalue = 0, .writefn = pmintenclr_write, },
608 { .name = "SCR", .cp = 15, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0,
609 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_scr),
610 .resetvalue = 0, },
611 { .name = "CCSIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
612 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_MIGRATE },
613 { .name = "CSSELR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
614 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c0_cssel),
615 .writefn = csselr_write, .resetvalue = 0 },
616 /* Auxiliary ID register: this actually has an IMPDEF value but for now
617 * just RAZ for all cores:
619 { .name = "AIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 7,
620 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
621 REGINFO_SENTINEL
624 static int teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
626 value &= 1;
627 env->teecr = value;
628 return 0;
631 static int teehbr_read(CPUARMState *env, const ARMCPRegInfo *ri,
632 uint64_t *value)
634 /* This is a helper function because the user access rights
635 * depend on the value of the TEECR.
637 if (arm_current_pl(env) == 0 && (env->teecr & 1)) {
638 return EXCP_UDEF;
640 *value = env->teehbr;
641 return 0;
644 static int teehbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
645 uint64_t value)
647 if (arm_current_pl(env) == 0 && (env->teecr & 1)) {
648 return EXCP_UDEF;
650 env->teehbr = value;
651 return 0;
654 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
655 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
656 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
657 .resetvalue = 0,
658 .writefn = teecr_write },
659 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
660 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
661 .resetvalue = 0, .raw_readfn = raw_read, .raw_writefn = raw_write,
662 .readfn = teehbr_read, .writefn = teehbr_write },
663 REGINFO_SENTINEL
666 static const ARMCPRegInfo v6k_cp_reginfo[] = {
667 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
668 .access = PL0_RW,
669 .fieldoffset = offsetof(CPUARMState, cp15.c13_tls1),
670 .resetvalue = 0 },
671 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
672 .access = PL0_R|PL1_W,
673 .fieldoffset = offsetof(CPUARMState, cp15.c13_tls2),
674 .resetvalue = 0 },
675 { .name = "TPIDRPRW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 4,
676 .access = PL1_RW,
677 .fieldoffset = offsetof(CPUARMState, cp15.c13_tls3),
678 .resetvalue = 0 },
679 REGINFO_SENTINEL
682 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
683 /* Dummy implementation: RAZ/WI the whole crn=14 space */
684 { .name = "GENERIC_TIMER", .cp = 15, .crn = 14,
685 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
686 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
687 .resetvalue = 0 },
688 REGINFO_SENTINEL
691 static int par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
693 if (arm_feature(env, ARM_FEATURE_LPAE)) {
694 env->cp15.c7_par = value;
695 } else if (arm_feature(env, ARM_FEATURE_V7)) {
696 env->cp15.c7_par = value & 0xfffff6ff;
697 } else {
698 env->cp15.c7_par = value & 0xfffff1ff;
700 return 0;
703 #ifndef CONFIG_USER_ONLY
704 /* get_phys_addr() isn't present for user-mode-only targets */
706 /* Return true if extended addresses are enabled, ie this is an
707 * LPAE implementation and we are using the long-descriptor translation
708 * table format because the TTBCR EAE bit is set.
710 static inline bool extended_addresses_enabled(CPUARMState *env)
712 return arm_feature(env, ARM_FEATURE_LPAE)
713 && (env->cp15.c2_control & (1 << 31));
716 static int ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
718 hwaddr phys_addr;
719 target_ulong page_size;
720 int prot;
721 int ret, is_user = ri->opc2 & 2;
722 int access_type = ri->opc2 & 1;
724 if (ri->opc2 & 4) {
725 /* Other states are only available with TrustZone */
726 return EXCP_UDEF;
728 ret = get_phys_addr(env, value, access_type, is_user,
729 &phys_addr, &prot, &page_size);
730 if (extended_addresses_enabled(env)) {
731 /* ret is a DFSR/IFSR value for the long descriptor
732 * translation table format, but with WnR always clear.
733 * Convert it to a 64-bit PAR.
735 uint64_t par64 = (1 << 11); /* LPAE bit always set */
736 if (ret == 0) {
737 par64 |= phys_addr & ~0xfffULL;
738 /* We don't set the ATTR or SH fields in the PAR. */
739 } else {
740 par64 |= 1; /* F */
741 par64 |= (ret & 0x3f) << 1; /* FS */
742 /* Note that S2WLK and FSTAGE are always zero, because we don't
743 * implement virtualization and therefore there can't be a stage 2
744 * fault.
747 env->cp15.c7_par = par64;
748 env->cp15.c7_par_hi = par64 >> 32;
749 } else {
750 /* ret is a DFSR/IFSR value for the short descriptor
751 * translation table format (with WnR always clear).
752 * Convert it to a 32-bit PAR.
754 if (ret == 0) {
755 /* We do not set any attribute bits in the PAR */
756 if (page_size == (1 << 24)
757 && arm_feature(env, ARM_FEATURE_V7)) {
758 env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1;
759 } else {
760 env->cp15.c7_par = phys_addr & 0xfffff000;
762 } else {
763 env->cp15.c7_par = ((ret & (10 << 1)) >> 5) |
764 ((ret & (12 << 1)) >> 6) |
765 ((ret & 0xf) << 1) | 1;
767 env->cp15.c7_par_hi = 0;
769 return 0;
771 #endif
773 static const ARMCPRegInfo vapa_cp_reginfo[] = {
774 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
775 .access = PL1_RW, .resetvalue = 0,
776 .fieldoffset = offsetof(CPUARMState, cp15.c7_par),
777 .writefn = par_write },
778 #ifndef CONFIG_USER_ONLY
779 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
780 .access = PL1_W, .writefn = ats_write, .type = ARM_CP_NO_MIGRATE },
781 #endif
782 REGINFO_SENTINEL
785 /* Return basic MPU access permission bits. */
786 static uint32_t simple_mpu_ap_bits(uint32_t val)
788 uint32_t ret;
789 uint32_t mask;
790 int i;
791 ret = 0;
792 mask = 3;
793 for (i = 0; i < 16; i += 2) {
794 ret |= (val >> i) & mask;
795 mask <<= 2;
797 return ret;
800 /* Pad basic MPU access permission bits to extended format. */
801 static uint32_t extended_mpu_ap_bits(uint32_t val)
803 uint32_t ret;
804 uint32_t mask;
805 int i;
806 ret = 0;
807 mask = 3;
808 for (i = 0; i < 16; i += 2) {
809 ret |= (val & mask) << i;
810 mask <<= 2;
812 return ret;
815 static int pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
816 uint64_t value)
818 env->cp15.c5_data = extended_mpu_ap_bits(value);
819 return 0;
822 static int pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri,
823 uint64_t *value)
825 *value = simple_mpu_ap_bits(env->cp15.c5_data);
826 return 0;
829 static int pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
830 uint64_t value)
832 env->cp15.c5_insn = extended_mpu_ap_bits(value);
833 return 0;
836 static int pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri,
837 uint64_t *value)
839 *value = simple_mpu_ap_bits(env->cp15.c5_insn);
840 return 0;
843 static int arm946_prbs_read(CPUARMState *env, const ARMCPRegInfo *ri,
844 uint64_t *value)
846 if (ri->crm >= 8) {
847 return EXCP_UDEF;
849 *value = env->cp15.c6_region[ri->crm];
850 return 0;
853 static int arm946_prbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
854 uint64_t value)
856 if (ri->crm >= 8) {
857 return EXCP_UDEF;
859 env->cp15.c6_region[ri->crm] = value;
860 return 0;
863 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
864 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
865 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
866 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0,
867 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
868 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
869 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
870 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0,
871 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
872 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
873 .access = PL1_RW,
874 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
875 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
876 .access = PL1_RW,
877 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
878 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
879 .access = PL1_RW,
880 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
881 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
882 .access = PL1_RW,
883 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
884 /* Protection region base and size registers */
885 { .name = "946_PRBS", .cp = 15, .crn = 6, .crm = CP_ANY, .opc1 = 0,
886 .opc2 = CP_ANY, .access = PL1_RW,
887 .readfn = arm946_prbs_read, .writefn = arm946_prbs_write, },
888 REGINFO_SENTINEL
891 static int vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
892 uint64_t value)
894 if (arm_feature(env, ARM_FEATURE_LPAE)) {
895 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
896 } else {
897 value &= 7;
899 /* Note that we always calculate c2_mask and c2_base_mask, but
900 * they are only used for short-descriptor tables (ie if EAE is 0);
901 * for long-descriptor tables the TTBCR fields are used differently
902 * and the c2_mask and c2_base_mask values are meaningless.
904 env->cp15.c2_control = value;
905 env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> value);
906 env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> value);
907 return 0;
910 static int vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
911 uint64_t value)
913 if (arm_feature(env, ARM_FEATURE_LPAE)) {
914 /* With LPAE the TTBCR could result in a change of ASID
915 * via the TTBCR.A1 bit, so do a TLB flush.
917 tlb_flush(env, 1);
919 return vmsa_ttbcr_raw_write(env, ri, value);
922 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
924 env->cp15.c2_base_mask = 0xffffc000u;
925 env->cp15.c2_control = 0;
926 env->cp15.c2_mask = 0;
929 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
930 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
931 .access = PL1_RW,
932 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
933 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
934 .access = PL1_RW,
935 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
936 { .name = "TTBR0", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
937 .access = PL1_RW,
938 .fieldoffset = offsetof(CPUARMState, cp15.c2_base0), .resetvalue = 0, },
939 { .name = "TTBR1", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
940 .access = PL1_RW,
941 .fieldoffset = offsetof(CPUARMState, cp15.c2_base1), .resetvalue = 0, },
942 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
943 .access = PL1_RW, .writefn = vmsa_ttbcr_write,
944 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
945 .fieldoffset = offsetof(CPUARMState, cp15.c2_control) },
946 { .name = "DFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
947 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_data),
948 .resetvalue = 0, },
949 REGINFO_SENTINEL
952 static int omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
953 uint64_t value)
955 env->cp15.c15_ticonfig = value & 0xe7;
956 /* The OS_TYPE bit in this register changes the reported CPUID! */
957 env->cp15.c0_cpuid = (value & (1 << 5)) ?
958 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
959 return 0;
962 static int omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
963 uint64_t value)
965 env->cp15.c15_threadid = value & 0xffff;
966 return 0;
969 static int omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
970 uint64_t value)
972 /* Wait-for-interrupt (deprecated) */
973 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
974 return 0;
977 static int omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
978 uint64_t value)
980 /* On OMAP there are registers indicating the max/min index of dcache lines
981 * containing a dirty line; cache flush operations have to reset these.
983 env->cp15.c15_i_max = 0x000;
984 env->cp15.c15_i_min = 0xff0;
985 return 0;
988 static const ARMCPRegInfo omap_cp_reginfo[] = {
989 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
990 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
991 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
992 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
993 .access = PL1_RW, .type = ARM_CP_NOP },
994 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
995 .access = PL1_RW,
996 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
997 .writefn = omap_ticonfig_write },
998 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
999 .access = PL1_RW,
1000 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
1001 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
1002 .access = PL1_RW, .resetvalue = 0xff0,
1003 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
1004 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
1005 .access = PL1_RW,
1006 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
1007 .writefn = omap_threadid_write },
1008 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
1009 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
1010 .type = ARM_CP_NO_MIGRATE,
1011 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
1012 /* TODO: Peripheral port remap register:
1013 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
1014 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
1015 * when MMU is off.
1017 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
1018 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
1019 .type = ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE,
1020 .writefn = omap_cachemaint_write },
1021 { .name = "C9", .cp = 15, .crn = 9,
1022 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
1023 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
1024 REGINFO_SENTINEL
1027 static int xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1028 uint64_t value)
1030 value &= 0x3fff;
1031 if (env->cp15.c15_cpar != value) {
1032 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
1033 tb_flush(env);
1034 env->cp15.c15_cpar = value;
1036 return 0;
1039 static const ARMCPRegInfo xscale_cp_reginfo[] = {
1040 { .name = "XSCALE_CPAR",
1041 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
1042 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
1043 .writefn = xscale_cpar_write, },
1044 { .name = "XSCALE_AUXCR",
1045 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
1046 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
1047 .resetvalue = 0, },
1048 REGINFO_SENTINEL
1051 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
1052 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
1053 * implementation of this implementation-defined space.
1054 * Ideally this should eventually disappear in favour of actually
1055 * implementing the correct behaviour for all cores.
1057 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
1058 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
1059 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1060 .resetvalue = 0 },
1061 REGINFO_SENTINEL
1064 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
1065 /* Cache status: RAZ because we have no cache so it's always clean */
1066 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
1067 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1068 .resetvalue = 0 },
1069 REGINFO_SENTINEL
1072 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
1073 /* We never have a a block transfer operation in progress */
1074 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
1075 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1076 .resetvalue = 0 },
1077 /* The cache ops themselves: these all NOP for QEMU */
1078 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
1079 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1080 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
1081 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1082 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
1083 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1084 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
1085 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1086 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
1087 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1088 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
1089 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1090 REGINFO_SENTINEL
1093 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
1094 /* The cache test-and-clean instructions always return (1 << 30)
1095 * to indicate that there are no dirty cache lines.
1097 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
1098 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1099 .resetvalue = (1 << 30) },
1100 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
1101 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1102 .resetvalue = (1 << 30) },
1103 REGINFO_SENTINEL
1106 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
1107 /* Ignore ReadBuffer accesses */
1108 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
1109 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
1110 .access = PL1_RW, .resetvalue = 0,
1111 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE },
1112 REGINFO_SENTINEL
1115 static int mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1116 uint64_t *value)
1118 CPUState *cs = CPU(arm_env_get_cpu(env));
1119 uint32_t mpidr = cs->cpu_index;
1120 /* We don't support setting cluster ID ([8..11])
1121 * so these bits always RAZ.
1123 if (arm_feature(env, ARM_FEATURE_V7MP)) {
1124 mpidr |= (1 << 31);
1125 /* Cores which are uniprocessor (non-coherent)
1126 * but still implement the MP extensions set
1127 * bit 30. (For instance, A9UP.) However we do
1128 * not currently model any of those cores.
1131 *value = mpidr;
1132 return 0;
1135 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
1136 { .name = "MPIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
1137 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_MIGRATE },
1138 REGINFO_SENTINEL
1141 static int par64_read(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value)
1143 *value = ((uint64_t)env->cp15.c7_par_hi << 32) | env->cp15.c7_par;
1144 return 0;
1147 static int par64_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1149 env->cp15.c7_par_hi = value >> 32;
1150 env->cp15.c7_par = value;
1151 return 0;
1154 static void par64_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1156 env->cp15.c7_par_hi = 0;
1157 env->cp15.c7_par = 0;
1160 static int ttbr064_read(CPUARMState *env, const ARMCPRegInfo *ri,
1161 uint64_t *value)
1163 *value = ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0;
1164 return 0;
1167 static int ttbr064_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
1168 uint64_t value)
1170 env->cp15.c2_base0_hi = value >> 32;
1171 env->cp15.c2_base0 = value;
1172 return 0;
1175 static int ttbr064_write(CPUARMState *env, const ARMCPRegInfo *ri,
1176 uint64_t value)
1178 /* Writes to the 64 bit format TTBRs may change the ASID */
1179 tlb_flush(env, 1);
1180 return ttbr064_raw_write(env, ri, value);
1183 static void ttbr064_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1185 env->cp15.c2_base0_hi = 0;
1186 env->cp15.c2_base0 = 0;
1189 static int ttbr164_read(CPUARMState *env, const ARMCPRegInfo *ri,
1190 uint64_t *value)
1192 *value = ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1;
1193 return 0;
1196 static int ttbr164_write(CPUARMState *env, const ARMCPRegInfo *ri,
1197 uint64_t value)
1199 env->cp15.c2_base1_hi = value >> 32;
1200 env->cp15.c2_base1 = value;
1201 return 0;
1204 static void ttbr164_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1206 env->cp15.c2_base1_hi = 0;
1207 env->cp15.c2_base1 = 0;
1210 static const ARMCPRegInfo lpae_cp_reginfo[] = {
1211 /* NOP AMAIR0/1: the override is because these clash with the rather
1212 * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo.
1214 { .name = "AMAIR0", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
1215 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
1216 .resetvalue = 0 },
1217 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
1218 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
1219 .resetvalue = 0 },
1220 /* 64 bit access versions of the (dummy) debug registers */
1221 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
1222 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
1223 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
1224 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
1225 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
1226 .access = PL1_RW, .type = ARM_CP_64BIT,
1227 .readfn = par64_read, .writefn = par64_write, .resetfn = par64_reset },
1228 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
1229 .access = PL1_RW, .type = ARM_CP_64BIT, .readfn = ttbr064_read,
1230 .writefn = ttbr064_write, .raw_writefn = ttbr064_raw_write,
1231 .resetfn = ttbr064_reset },
1232 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
1233 .access = PL1_RW, .type = ARM_CP_64BIT, .readfn = ttbr164_read,
1234 .writefn = ttbr164_write, .resetfn = ttbr164_reset },
1235 REGINFO_SENTINEL
1238 static int sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1240 env->cp15.c1_sys = value;
1241 /* ??? Lots of these bits are not implemented. */
1242 /* This may enable/disable the MMU, so do a TLB flush. */
1243 tlb_flush(env, 1);
1244 return 0;
1247 void register_cp_regs_for_features(ARMCPU *cpu)
1249 /* Register all the coprocessor registers based on feature bits */
1250 CPUARMState *env = &cpu->env;
1251 if (arm_feature(env, ARM_FEATURE_M)) {
1252 /* M profile has no coprocessor registers */
1253 return;
1256 define_arm_cp_regs(cpu, cp_reginfo);
1257 if (arm_feature(env, ARM_FEATURE_V6)) {
1258 /* The ID registers all have impdef reset values */
1259 ARMCPRegInfo v6_idregs[] = {
1260 { .name = "ID_PFR0", .cp = 15, .crn = 0, .crm = 1,
1261 .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST,
1262 .resetvalue = cpu->id_pfr0 },
1263 { .name = "ID_PFR1", .cp = 15, .crn = 0, .crm = 1,
1264 .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST,
1265 .resetvalue = cpu->id_pfr1 },
1266 { .name = "ID_DFR0", .cp = 15, .crn = 0, .crm = 1,
1267 .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST,
1268 .resetvalue = cpu->id_dfr0 },
1269 { .name = "ID_AFR0", .cp = 15, .crn = 0, .crm = 1,
1270 .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST,
1271 .resetvalue = cpu->id_afr0 },
1272 { .name = "ID_MMFR0", .cp = 15, .crn = 0, .crm = 1,
1273 .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST,
1274 .resetvalue = cpu->id_mmfr0 },
1275 { .name = "ID_MMFR1", .cp = 15, .crn = 0, .crm = 1,
1276 .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST,
1277 .resetvalue = cpu->id_mmfr1 },
1278 { .name = "ID_MMFR2", .cp = 15, .crn = 0, .crm = 1,
1279 .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
1280 .resetvalue = cpu->id_mmfr2 },
1281 { .name = "ID_MMFR3", .cp = 15, .crn = 0, .crm = 1,
1282 .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
1283 .resetvalue = cpu->id_mmfr3 },
1284 { .name = "ID_ISAR0", .cp = 15, .crn = 0, .crm = 2,
1285 .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST,
1286 .resetvalue = cpu->id_isar0 },
1287 { .name = "ID_ISAR1", .cp = 15, .crn = 0, .crm = 2,
1288 .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST,
1289 .resetvalue = cpu->id_isar1 },
1290 { .name = "ID_ISAR2", .cp = 15, .crn = 0, .crm = 2,
1291 .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST,
1292 .resetvalue = cpu->id_isar2 },
1293 { .name = "ID_ISAR3", .cp = 15, .crn = 0, .crm = 2,
1294 .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST,
1295 .resetvalue = cpu->id_isar3 },
1296 { .name = "ID_ISAR4", .cp = 15, .crn = 0, .crm = 2,
1297 .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST,
1298 .resetvalue = cpu->id_isar4 },
1299 { .name = "ID_ISAR5", .cp = 15, .crn = 0, .crm = 2,
1300 .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST,
1301 .resetvalue = cpu->id_isar5 },
1302 /* 6..7 are as yet unallocated and must RAZ */
1303 { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2,
1304 .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
1305 .resetvalue = 0 },
1306 { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2,
1307 .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
1308 .resetvalue = 0 },
1309 REGINFO_SENTINEL
1311 define_arm_cp_regs(cpu, v6_idregs);
1312 define_arm_cp_regs(cpu, v6_cp_reginfo);
1313 } else {
1314 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
1316 if (arm_feature(env, ARM_FEATURE_V6K)) {
1317 define_arm_cp_regs(cpu, v6k_cp_reginfo);
1319 if (arm_feature(env, ARM_FEATURE_V7)) {
1320 /* v7 performance monitor control register: same implementor
1321 * field as main ID register, and we implement no event counters.
1323 ARMCPRegInfo pmcr = {
1324 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
1325 .access = PL0_RW, .resetvalue = cpu->midr & 0xff000000,
1326 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
1327 .readfn = pmreg_read, .writefn = pmcr_write,
1328 .raw_readfn = raw_read, .raw_writefn = raw_write,
1330 ARMCPRegInfo clidr = {
1331 .name = "CLIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
1332 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
1334 define_one_arm_cp_reg(cpu, &pmcr);
1335 define_one_arm_cp_reg(cpu, &clidr);
1336 define_arm_cp_regs(cpu, v7_cp_reginfo);
1337 } else {
1338 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
1340 if (arm_feature(env, ARM_FEATURE_MPU)) {
1341 /* These are the MPU registers prior to PMSAv6. Any new
1342 * PMSA core later than the ARM946 will require that we
1343 * implement the PMSAv6 or PMSAv7 registers, which are
1344 * completely different.
1346 assert(!arm_feature(env, ARM_FEATURE_V6));
1347 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
1348 } else {
1349 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
1351 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
1352 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
1354 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1355 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
1357 if (arm_feature(env, ARM_FEATURE_VAPA)) {
1358 define_arm_cp_regs(cpu, vapa_cp_reginfo);
1360 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
1361 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
1363 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
1364 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
1366 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
1367 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
1369 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1370 define_arm_cp_regs(cpu, omap_cp_reginfo);
1372 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
1373 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
1375 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1376 define_arm_cp_regs(cpu, xscale_cp_reginfo);
1378 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
1379 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
1381 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
1382 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
1384 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1385 define_arm_cp_regs(cpu, lpae_cp_reginfo);
1387 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
1388 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
1389 * be read-only (ie write causes UNDEF exception).
1392 ARMCPRegInfo id_cp_reginfo[] = {
1393 /* Note that the MIDR isn't a simple constant register because
1394 * of the TI925 behaviour where writes to another register can
1395 * cause the MIDR value to change.
1397 { .name = "MIDR",
1398 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
1399 .access = PL1_R, .resetvalue = cpu->midr,
1400 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
1401 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid) },
1402 { .name = "CTR",
1403 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
1404 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
1405 { .name = "TCMTR",
1406 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
1407 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1408 { .name = "TLBTR",
1409 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
1410 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1411 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
1412 { .name = "DUMMY",
1413 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
1414 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1415 { .name = "DUMMY",
1416 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
1417 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1418 { .name = "DUMMY",
1419 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
1420 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1421 { .name = "DUMMY",
1422 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
1423 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1424 { .name = "DUMMY",
1425 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
1426 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1427 REGINFO_SENTINEL
1429 ARMCPRegInfo crn0_wi_reginfo = {
1430 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
1431 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
1432 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
1434 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
1435 arm_feature(env, ARM_FEATURE_STRONGARM)) {
1436 ARMCPRegInfo *r;
1437 /* Register the blanket "writes ignored" value first to cover the
1438 * whole space. Then define the specific ID registers, but update
1439 * their access field to allow write access, so that they ignore
1440 * writes rather than causing them to UNDEF.
1442 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
1443 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
1444 r->access = PL1_RW;
1445 define_one_arm_cp_reg(cpu, r);
1447 } else {
1448 /* Just register the standard ID registers (read-only, meaning
1449 * that writes will UNDEF).
1451 define_arm_cp_regs(cpu, id_cp_reginfo);
1455 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
1456 ARMCPRegInfo auxcr = {
1457 .name = "AUXCR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1,
1458 .access = PL1_RW, .type = ARM_CP_CONST,
1459 .resetvalue = cpu->reset_auxcr
1461 define_one_arm_cp_reg(cpu, &auxcr);
1464 /* Generic registers whose values depend on the implementation */
1466 ARMCPRegInfo sctlr = {
1467 .name = "SCTLR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
1468 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_sys),
1469 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
1470 .raw_writefn = raw_write,
1472 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1473 /* Normally we would always end the TB on an SCTLR write, but Linux
1474 * arch/arm/mach-pxa/sleep.S expects two instructions following
1475 * an MMU enable to execute from cache. Imitate this behaviour.
1477 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
1479 define_one_arm_cp_reg(cpu, &sctlr);
1483 ARMCPU *cpu_arm_init(const char *cpu_model)
1485 ARMCPU *cpu;
1486 CPUARMState *env;
1487 ObjectClass *oc;
1489 oc = cpu_class_by_name(TYPE_ARM_CPU, cpu_model);
1490 if (!oc) {
1491 return NULL;
1493 cpu = ARM_CPU(object_new(object_class_get_name(oc)));
1494 env = &cpu->env;
1495 env->cpu_model_str = cpu_model;
1497 /* TODO this should be set centrally, once possible */
1498 object_property_set_bool(OBJECT(cpu), true, "realized", NULL);
1500 return cpu;
1503 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
1505 CPUARMState *env = &cpu->env;
1507 if (arm_feature(env, ARM_FEATURE_NEON)) {
1508 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
1509 51, "arm-neon.xml", 0);
1510 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
1511 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
1512 35, "arm-vfp3.xml", 0);
1513 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
1514 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
1515 19, "arm-vfp.xml", 0);
1519 /* Sort alphabetically by type name, except for "any". */
1520 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
1522 ObjectClass *class_a = (ObjectClass *)a;
1523 ObjectClass *class_b = (ObjectClass *)b;
1524 const char *name_a, *name_b;
1526 name_a = object_class_get_name(class_a);
1527 name_b = object_class_get_name(class_b);
1528 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
1529 return 1;
1530 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
1531 return -1;
1532 } else {
1533 return strcmp(name_a, name_b);
1537 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
1539 ObjectClass *oc = data;
1540 CPUListState *s = user_data;
1541 const char *typename;
1542 char *name;
1544 typename = object_class_get_name(oc);
1545 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
1546 (*s->cpu_fprintf)(s->file, " %s\n",
1547 name);
1548 g_free(name);
1551 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
1553 CPUListState s = {
1554 .file = f,
1555 .cpu_fprintf = cpu_fprintf,
1557 GSList *list;
1559 list = object_class_get_list(TYPE_ARM_CPU, false);
1560 list = g_slist_sort(list, arm_cpu_list_compare);
1561 (*cpu_fprintf)(f, "Available CPUs:\n");
1562 g_slist_foreach(list, arm_cpu_list_entry, &s);
1563 g_slist_free(list);
1566 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
1567 const ARMCPRegInfo *r, void *opaque)
1569 /* Define implementations of coprocessor registers.
1570 * We store these in a hashtable because typically
1571 * there are less than 150 registers in a space which
1572 * is 16*16*16*8*8 = 262144 in size.
1573 * Wildcarding is supported for the crm, opc1 and opc2 fields.
1574 * If a register is defined twice then the second definition is
1575 * used, so this can be used to define some generic registers and
1576 * then override them with implementation specific variations.
1577 * At least one of the original and the second definition should
1578 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
1579 * against accidental use.
1581 int crm, opc1, opc2;
1582 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
1583 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
1584 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
1585 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
1586 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
1587 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
1588 /* 64 bit registers have only CRm and Opc1 fields */
1589 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
1590 /* Check that the register definition has enough info to handle
1591 * reads and writes if they are permitted.
1593 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
1594 if (r->access & PL3_R) {
1595 assert(r->fieldoffset || r->readfn);
1597 if (r->access & PL3_W) {
1598 assert(r->fieldoffset || r->writefn);
1601 /* Bad type field probably means missing sentinel at end of reg list */
1602 assert(cptype_valid(r->type));
1603 for (crm = crmmin; crm <= crmmax; crm++) {
1604 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
1605 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
1606 uint32_t *key = g_new(uint32_t, 1);
1607 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
1608 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
1609 *key = ENCODE_CP_REG(r->cp, is64, r->crn, crm, opc1, opc2);
1610 r2->opaque = opaque;
1611 /* Make sure reginfo passed to helpers for wildcarded regs
1612 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
1614 r2->crm = crm;
1615 r2->opc1 = opc1;
1616 r2->opc2 = opc2;
1617 /* By convention, for wildcarded registers only the first
1618 * entry is used for migration; the others are marked as
1619 * NO_MIGRATE so we don't try to transfer the register
1620 * multiple times. Special registers (ie NOP/WFI) are
1621 * never migratable.
1623 if ((r->type & ARM_CP_SPECIAL) ||
1624 ((r->crm == CP_ANY) && crm != 0) ||
1625 ((r->opc1 == CP_ANY) && opc1 != 0) ||
1626 ((r->opc2 == CP_ANY) && opc2 != 0)) {
1627 r2->type |= ARM_CP_NO_MIGRATE;
1630 /* Overriding of an existing definition must be explicitly
1631 * requested.
1633 if (!(r->type & ARM_CP_OVERRIDE)) {
1634 ARMCPRegInfo *oldreg;
1635 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
1636 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
1637 fprintf(stderr, "Register redefined: cp=%d %d bit "
1638 "crn=%d crm=%d opc1=%d opc2=%d, "
1639 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
1640 r2->crn, r2->crm, r2->opc1, r2->opc2,
1641 oldreg->name, r2->name);
1642 assert(0);
1645 g_hash_table_insert(cpu->cp_regs, key, r2);
1651 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
1652 const ARMCPRegInfo *regs, void *opaque)
1654 /* Define a whole list of registers */
1655 const ARMCPRegInfo *r;
1656 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
1657 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
1661 const ARMCPRegInfo *get_arm_cp_reginfo(ARMCPU *cpu, uint32_t encoded_cp)
1663 return g_hash_table_lookup(cpu->cp_regs, &encoded_cp);
1666 int arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
1667 uint64_t value)
1669 /* Helper coprocessor write function for write-ignore registers */
1670 return 0;
1673 int arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value)
1675 /* Helper coprocessor write function for read-as-zero registers */
1676 *value = 0;
1677 return 0;
1680 static int bad_mode_switch(CPUARMState *env, int mode)
1682 /* Return true if it is not valid for us to switch to
1683 * this CPU mode (ie all the UNPREDICTABLE cases in
1684 * the ARM ARM CPSRWriteByInstr pseudocode).
1686 switch (mode) {
1687 case ARM_CPU_MODE_USR:
1688 case ARM_CPU_MODE_SYS:
1689 case ARM_CPU_MODE_SVC:
1690 case ARM_CPU_MODE_ABT:
1691 case ARM_CPU_MODE_UND:
1692 case ARM_CPU_MODE_IRQ:
1693 case ARM_CPU_MODE_FIQ:
1694 return 0;
1695 default:
1696 return 1;
1700 uint32_t cpsr_read(CPUARMState *env)
1702 int ZF;
1703 ZF = (env->ZF == 0);
1704 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
1705 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1706 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
1707 | ((env->condexec_bits & 0xfc) << 8)
1708 | (env->GE << 16);
1711 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1713 if (mask & CPSR_NZCV) {
1714 env->ZF = (~val) & CPSR_Z;
1715 env->NF = val;
1716 env->CF = (val >> 29) & 1;
1717 env->VF = (val << 3) & 0x80000000;
1719 if (mask & CPSR_Q)
1720 env->QF = ((val & CPSR_Q) != 0);
1721 if (mask & CPSR_T)
1722 env->thumb = ((val & CPSR_T) != 0);
1723 if (mask & CPSR_IT_0_1) {
1724 env->condexec_bits &= ~3;
1725 env->condexec_bits |= (val >> 25) & 3;
1727 if (mask & CPSR_IT_2_7) {
1728 env->condexec_bits &= 3;
1729 env->condexec_bits |= (val >> 8) & 0xfc;
1731 if (mask & CPSR_GE) {
1732 env->GE = (val >> 16) & 0xf;
1735 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
1736 if (bad_mode_switch(env, val & CPSR_M)) {
1737 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
1738 * We choose to ignore the attempt and leave the CPSR M field
1739 * untouched.
1741 mask &= ~CPSR_M;
1742 } else {
1743 switch_mode(env, val & CPSR_M);
1746 mask &= ~CACHED_CPSR_BITS;
1747 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
1750 /* Sign/zero extend */
1751 uint32_t HELPER(sxtb16)(uint32_t x)
1753 uint32_t res;
1754 res = (uint16_t)(int8_t)x;
1755 res |= (uint32_t)(int8_t)(x >> 16) << 16;
1756 return res;
1759 uint32_t HELPER(uxtb16)(uint32_t x)
1761 uint32_t res;
1762 res = (uint16_t)(uint8_t)x;
1763 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
1764 return res;
1767 uint32_t HELPER(clz)(uint32_t x)
1769 return clz32(x);
1772 int32_t HELPER(sdiv)(int32_t num, int32_t den)
1774 if (den == 0)
1775 return 0;
1776 if (num == INT_MIN && den == -1)
1777 return INT_MIN;
1778 return num / den;
1781 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
1783 if (den == 0)
1784 return 0;
1785 return num / den;
1788 uint32_t HELPER(rbit)(uint32_t x)
1790 x = ((x & 0xff000000) >> 24)
1791 | ((x & 0x00ff0000) >> 8)
1792 | ((x & 0x0000ff00) << 8)
1793 | ((x & 0x000000ff) << 24);
1794 x = ((x & 0xf0f0f0f0) >> 4)
1795 | ((x & 0x0f0f0f0f) << 4);
1796 x = ((x & 0x88888888) >> 3)
1797 | ((x & 0x44444444) >> 1)
1798 | ((x & 0x22222222) << 1)
1799 | ((x & 0x11111111) << 3);
1800 return x;
1803 #if defined(CONFIG_USER_ONLY)
1805 void arm_cpu_do_interrupt(CPUState *cs)
1807 ARMCPU *cpu = ARM_CPU(cs);
1808 CPUARMState *env = &cpu->env;
1810 env->exception_index = -1;
1813 int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
1814 int mmu_idx)
1816 if (rw == 2) {
1817 env->exception_index = EXCP_PREFETCH_ABORT;
1818 env->cp15.c6_insn = address;
1819 } else {
1820 env->exception_index = EXCP_DATA_ABORT;
1821 env->cp15.c6_data = address;
1823 return 1;
1826 /* These should probably raise undefined insn exceptions. */
1827 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
1829 cpu_abort(env, "v7m_mrs %d\n", reg);
1832 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
1834 cpu_abort(env, "v7m_mrs %d\n", reg);
1835 return 0;
1838 void switch_mode(CPUARMState *env, int mode)
1840 if (mode != ARM_CPU_MODE_USR)
1841 cpu_abort(env, "Tried to switch out of user mode\n");
1844 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
1846 cpu_abort(env, "banked r13 write\n");
1849 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
1851 cpu_abort(env, "banked r13 read\n");
1852 return 0;
1855 #else
1857 /* Map CPU modes onto saved register banks. */
1858 int bank_number(int mode)
1860 switch (mode) {
1861 case ARM_CPU_MODE_USR:
1862 case ARM_CPU_MODE_SYS:
1863 return 0;
1864 case ARM_CPU_MODE_SVC:
1865 return 1;
1866 case ARM_CPU_MODE_ABT:
1867 return 2;
1868 case ARM_CPU_MODE_UND:
1869 return 3;
1870 case ARM_CPU_MODE_IRQ:
1871 return 4;
1872 case ARM_CPU_MODE_FIQ:
1873 return 5;
1875 hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode);
1878 void switch_mode(CPUARMState *env, int mode)
1880 int old_mode;
1881 int i;
1883 old_mode = env->uncached_cpsr & CPSR_M;
1884 if (mode == old_mode)
1885 return;
1887 if (old_mode == ARM_CPU_MODE_FIQ) {
1888 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
1889 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
1890 } else if (mode == ARM_CPU_MODE_FIQ) {
1891 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
1892 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
1895 i = bank_number(old_mode);
1896 env->banked_r13[i] = env->regs[13];
1897 env->banked_r14[i] = env->regs[14];
1898 env->banked_spsr[i] = env->spsr;
1900 i = bank_number(mode);
1901 env->regs[13] = env->banked_r13[i];
1902 env->regs[14] = env->banked_r14[i];
1903 env->spsr = env->banked_spsr[i];
1906 static void v7m_push(CPUARMState *env, uint32_t val)
1908 env->regs[13] -= 4;
1909 stl_phys(env->regs[13], val);
1912 static uint32_t v7m_pop(CPUARMState *env)
1914 uint32_t val;
1915 val = ldl_phys(env->regs[13]);
1916 env->regs[13] += 4;
1917 return val;
1920 /* Switch to V7M main or process stack pointer. */
1921 static void switch_v7m_sp(CPUARMState *env, int process)
1923 uint32_t tmp;
1924 if (env->v7m.current_sp != process) {
1925 tmp = env->v7m.other_sp;
1926 env->v7m.other_sp = env->regs[13];
1927 env->regs[13] = tmp;
1928 env->v7m.current_sp = process;
1932 static void do_v7m_exception_exit(CPUARMState *env)
1934 uint32_t type;
1935 uint32_t xpsr;
1937 type = env->regs[15];
1938 if (env->v7m.exception != 0)
1939 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
1941 /* Switch to the target stack. */
1942 switch_v7m_sp(env, (type & 4) != 0);
1943 /* Pop registers. */
1944 env->regs[0] = v7m_pop(env);
1945 env->regs[1] = v7m_pop(env);
1946 env->regs[2] = v7m_pop(env);
1947 env->regs[3] = v7m_pop(env);
1948 env->regs[12] = v7m_pop(env);
1949 env->regs[14] = v7m_pop(env);
1950 env->regs[15] = v7m_pop(env);
1951 xpsr = v7m_pop(env);
1952 xpsr_write(env, xpsr, 0xfffffdff);
1953 /* Undo stack alignment. */
1954 if (xpsr & 0x200)
1955 env->regs[13] |= 4;
1956 /* ??? The exception return type specifies Thread/Handler mode. However
1957 this is also implied by the xPSR value. Not sure what to do
1958 if there is a mismatch. */
1959 /* ??? Likewise for mismatches between the CONTROL register and the stack
1960 pointer. */
1963 void arm_v7m_cpu_do_interrupt(CPUState *cs)
1965 ARMCPU *cpu = ARM_CPU(cs);
1966 CPUARMState *env = &cpu->env;
1967 uint32_t xpsr = xpsr_read(env);
1968 uint32_t lr;
1969 uint32_t addr;
1971 lr = 0xfffffff1;
1972 if (env->v7m.current_sp)
1973 lr |= 4;
1974 if (env->v7m.exception == 0)
1975 lr |= 8;
1977 /* For exceptions we just mark as pending on the NVIC, and let that
1978 handle it. */
1979 /* TODO: Need to escalate if the current priority is higher than the
1980 one we're raising. */
1981 switch (env->exception_index) {
1982 case EXCP_UDEF:
1983 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
1984 return;
1985 case EXCP_SWI:
1986 /* The PC already points to the next instruction. */
1987 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
1988 return;
1989 case EXCP_PREFETCH_ABORT:
1990 case EXCP_DATA_ABORT:
1991 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
1992 return;
1993 case EXCP_BKPT:
1994 if (semihosting_enabled) {
1995 int nr;
1996 nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
1997 if (nr == 0xab) {
1998 env->regs[15] += 2;
1999 env->regs[0] = do_arm_semihosting(env);
2000 return;
2003 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
2004 return;
2005 case EXCP_IRQ:
2006 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
2007 break;
2008 case EXCP_EXCEPTION_EXIT:
2009 do_v7m_exception_exit(env);
2010 return;
2011 default:
2012 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
2013 return; /* Never happens. Keep compiler happy. */
2016 /* Align stack pointer. */
2017 /* ??? Should only do this if Configuration Control Register
2018 STACKALIGN bit is set. */
2019 if (env->regs[13] & 4) {
2020 env->regs[13] -= 4;
2021 xpsr |= 0x200;
2023 /* Switch to the handler mode. */
2024 v7m_push(env, xpsr);
2025 v7m_push(env, env->regs[15]);
2026 v7m_push(env, env->regs[14]);
2027 v7m_push(env, env->regs[12]);
2028 v7m_push(env, env->regs[3]);
2029 v7m_push(env, env->regs[2]);
2030 v7m_push(env, env->regs[1]);
2031 v7m_push(env, env->regs[0]);
2032 switch_v7m_sp(env, 0);
2033 /* Clear IT bits */
2034 env->condexec_bits = 0;
2035 env->regs[14] = lr;
2036 addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
2037 env->regs[15] = addr & 0xfffffffe;
2038 env->thumb = addr & 1;
2041 /* Handle a CPU exception. */
2042 void arm_cpu_do_interrupt(CPUState *cs)
2044 ARMCPU *cpu = ARM_CPU(cs);
2045 CPUARMState *env = &cpu->env;
2046 uint32_t addr;
2047 uint32_t mask;
2048 int new_mode;
2049 uint32_t offset;
2051 assert(!IS_M(env));
2053 /* TODO: Vectored interrupt controller. */
2054 switch (env->exception_index) {
2055 case EXCP_UDEF:
2056 new_mode = ARM_CPU_MODE_UND;
2057 addr = 0x04;
2058 mask = CPSR_I;
2059 if (env->thumb)
2060 offset = 2;
2061 else
2062 offset = 4;
2063 break;
2064 case EXCP_SWI:
2065 if (semihosting_enabled) {
2066 /* Check for semihosting interrupt. */
2067 if (env->thumb) {
2068 mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code)
2069 & 0xff;
2070 } else {
2071 mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code)
2072 & 0xffffff;
2074 /* Only intercept calls from privileged modes, to provide some
2075 semblance of security. */
2076 if (((mask == 0x123456 && !env->thumb)
2077 || (mask == 0xab && env->thumb))
2078 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
2079 env->regs[0] = do_arm_semihosting(env);
2080 return;
2083 new_mode = ARM_CPU_MODE_SVC;
2084 addr = 0x08;
2085 mask = CPSR_I;
2086 /* The PC already points to the next instruction. */
2087 offset = 0;
2088 break;
2089 case EXCP_BKPT:
2090 /* See if this is a semihosting syscall. */
2091 if (env->thumb && semihosting_enabled) {
2092 mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
2093 if (mask == 0xab
2094 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
2095 env->regs[15] += 2;
2096 env->regs[0] = do_arm_semihosting(env);
2097 return;
2100 env->cp15.c5_insn = 2;
2101 /* Fall through to prefetch abort. */
2102 case EXCP_PREFETCH_ABORT:
2103 new_mode = ARM_CPU_MODE_ABT;
2104 addr = 0x0c;
2105 mask = CPSR_A | CPSR_I;
2106 offset = 4;
2107 break;
2108 case EXCP_DATA_ABORT:
2109 new_mode = ARM_CPU_MODE_ABT;
2110 addr = 0x10;
2111 mask = CPSR_A | CPSR_I;
2112 offset = 8;
2113 break;
2114 case EXCP_IRQ:
2115 new_mode = ARM_CPU_MODE_IRQ;
2116 addr = 0x18;
2117 /* Disable IRQ and imprecise data aborts. */
2118 mask = CPSR_A | CPSR_I;
2119 offset = 4;
2120 break;
2121 case EXCP_FIQ:
2122 new_mode = ARM_CPU_MODE_FIQ;
2123 addr = 0x1c;
2124 /* Disable FIQ, IRQ and imprecise data aborts. */
2125 mask = CPSR_A | CPSR_I | CPSR_F;
2126 offset = 4;
2127 break;
2128 default:
2129 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
2130 return; /* Never happens. Keep compiler happy. */
2132 /* High vectors. */
2133 if (env->cp15.c1_sys & (1 << 13)) {
2134 addr += 0xffff0000;
2136 switch_mode (env, new_mode);
2137 env->spsr = cpsr_read(env);
2138 /* Clear IT bits. */
2139 env->condexec_bits = 0;
2140 /* Switch to the new mode, and to the correct instruction set. */
2141 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
2142 env->uncached_cpsr |= mask;
2143 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
2144 * and we should just guard the thumb mode on V4 */
2145 if (arm_feature(env, ARM_FEATURE_V4T)) {
2146 env->thumb = (env->cp15.c1_sys & (1 << 30)) != 0;
2148 env->regs[14] = env->regs[15] + offset;
2149 env->regs[15] = addr;
2150 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
2153 /* Check section/page access permissions.
2154 Returns the page protection flags, or zero if the access is not
2155 permitted. */
2156 static inline int check_ap(CPUARMState *env, int ap, int domain_prot,
2157 int access_type, int is_user)
2159 int prot_ro;
2161 if (domain_prot == 3) {
2162 return PAGE_READ | PAGE_WRITE;
2165 if (access_type == 1)
2166 prot_ro = 0;
2167 else
2168 prot_ro = PAGE_READ;
2170 switch (ap) {
2171 case 0:
2172 if (access_type == 1)
2173 return 0;
2174 switch ((env->cp15.c1_sys >> 8) & 3) {
2175 case 1:
2176 return is_user ? 0 : PAGE_READ;
2177 case 2:
2178 return PAGE_READ;
2179 default:
2180 return 0;
2182 case 1:
2183 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
2184 case 2:
2185 if (is_user)
2186 return prot_ro;
2187 else
2188 return PAGE_READ | PAGE_WRITE;
2189 case 3:
2190 return PAGE_READ | PAGE_WRITE;
2191 case 4: /* Reserved. */
2192 return 0;
2193 case 5:
2194 return is_user ? 0 : prot_ro;
2195 case 6:
2196 return prot_ro;
2197 case 7:
2198 if (!arm_feature (env, ARM_FEATURE_V6K))
2199 return 0;
2200 return prot_ro;
2201 default:
2202 abort();
2206 static uint32_t get_level1_table_address(CPUARMState *env, uint32_t address)
2208 uint32_t table;
2210 if (address & env->cp15.c2_mask)
2211 table = env->cp15.c2_base1 & 0xffffc000;
2212 else
2213 table = env->cp15.c2_base0 & env->cp15.c2_base_mask;
2215 table |= (address >> 18) & 0x3ffc;
2216 return table;
2219 static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type,
2220 int is_user, hwaddr *phys_ptr,
2221 int *prot, target_ulong *page_size)
2223 int code;
2224 uint32_t table;
2225 uint32_t desc;
2226 int type;
2227 int ap;
2228 int domain;
2229 int domain_prot;
2230 hwaddr phys_addr;
2232 /* Pagetable walk. */
2233 /* Lookup l1 descriptor. */
2234 table = get_level1_table_address(env, address);
2235 desc = ldl_phys(table);
2236 type = (desc & 3);
2237 domain = (desc >> 5) & 0x0f;
2238 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
2239 if (type == 0) {
2240 /* Section translation fault. */
2241 code = 5;
2242 goto do_fault;
2244 if (domain_prot == 0 || domain_prot == 2) {
2245 if (type == 2)
2246 code = 9; /* Section domain fault. */
2247 else
2248 code = 11; /* Page domain fault. */
2249 goto do_fault;
2251 if (type == 2) {
2252 /* 1Mb section. */
2253 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
2254 ap = (desc >> 10) & 3;
2255 code = 13;
2256 *page_size = 1024 * 1024;
2257 } else {
2258 /* Lookup l2 entry. */
2259 if (type == 1) {
2260 /* Coarse pagetable. */
2261 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
2262 } else {
2263 /* Fine pagetable. */
2264 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
2266 desc = ldl_phys(table);
2267 switch (desc & 3) {
2268 case 0: /* Page translation fault. */
2269 code = 7;
2270 goto do_fault;
2271 case 1: /* 64k page. */
2272 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
2273 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
2274 *page_size = 0x10000;
2275 break;
2276 case 2: /* 4k page. */
2277 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
2278 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
2279 *page_size = 0x1000;
2280 break;
2281 case 3: /* 1k page. */
2282 if (type == 1) {
2283 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
2284 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
2285 } else {
2286 /* Page translation fault. */
2287 code = 7;
2288 goto do_fault;
2290 } else {
2291 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
2293 ap = (desc >> 4) & 3;
2294 *page_size = 0x400;
2295 break;
2296 default:
2297 /* Never happens, but compiler isn't smart enough to tell. */
2298 abort();
2300 code = 15;
2302 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
2303 if (!*prot) {
2304 /* Access permission fault. */
2305 goto do_fault;
2307 *prot |= PAGE_EXEC;
2308 *phys_ptr = phys_addr;
2309 return 0;
2310 do_fault:
2311 return code | (domain << 4);
2314 static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type,
2315 int is_user, hwaddr *phys_ptr,
2316 int *prot, target_ulong *page_size)
2318 int code;
2319 uint32_t table;
2320 uint32_t desc;
2321 uint32_t xn;
2322 uint32_t pxn = 0;
2323 int type;
2324 int ap;
2325 int domain = 0;
2326 int domain_prot;
2327 hwaddr phys_addr;
2329 /* Pagetable walk. */
2330 /* Lookup l1 descriptor. */
2331 table = get_level1_table_address(env, address);
2332 desc = ldl_phys(table);
2333 type = (desc & 3);
2334 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
2335 /* Section translation fault, or attempt to use the encoding
2336 * which is Reserved on implementations without PXN.
2338 code = 5;
2339 goto do_fault;
2341 if ((type == 1) || !(desc & (1 << 18))) {
2342 /* Page or Section. */
2343 domain = (desc >> 5) & 0x0f;
2345 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
2346 if (domain_prot == 0 || domain_prot == 2) {
2347 if (type != 1) {
2348 code = 9; /* Section domain fault. */
2349 } else {
2350 code = 11; /* Page domain fault. */
2352 goto do_fault;
2354 if (type != 1) {
2355 if (desc & (1 << 18)) {
2356 /* Supersection. */
2357 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
2358 *page_size = 0x1000000;
2359 } else {
2360 /* Section. */
2361 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
2362 *page_size = 0x100000;
2364 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
2365 xn = desc & (1 << 4);
2366 pxn = desc & 1;
2367 code = 13;
2368 } else {
2369 if (arm_feature(env, ARM_FEATURE_PXN)) {
2370 pxn = (desc >> 2) & 1;
2372 /* Lookup l2 entry. */
2373 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
2374 desc = ldl_phys(table);
2375 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
2376 switch (desc & 3) {
2377 case 0: /* Page translation fault. */
2378 code = 7;
2379 goto do_fault;
2380 case 1: /* 64k page. */
2381 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
2382 xn = desc & (1 << 15);
2383 *page_size = 0x10000;
2384 break;
2385 case 2: case 3: /* 4k page. */
2386 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
2387 xn = desc & 1;
2388 *page_size = 0x1000;
2389 break;
2390 default:
2391 /* Never happens, but compiler isn't smart enough to tell. */
2392 abort();
2394 code = 15;
2396 if (domain_prot == 3) {
2397 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2398 } else {
2399 if (pxn && !is_user) {
2400 xn = 1;
2402 if (xn && access_type == 2)
2403 goto do_fault;
2405 /* The simplified model uses AP[0] as an access control bit. */
2406 if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) {
2407 /* Access flag fault. */
2408 code = (code == 15) ? 6 : 3;
2409 goto do_fault;
2411 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
2412 if (!*prot) {
2413 /* Access permission fault. */
2414 goto do_fault;
2416 if (!xn) {
2417 *prot |= PAGE_EXEC;
2420 *phys_ptr = phys_addr;
2421 return 0;
2422 do_fault:
2423 return code | (domain << 4);
2426 /* Fault type for long-descriptor MMU fault reporting; this corresponds
2427 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
2429 typedef enum {
2430 translation_fault = 1,
2431 access_fault = 2,
2432 permission_fault = 3,
2433 } MMUFaultType;
2435 static int get_phys_addr_lpae(CPUARMState *env, uint32_t address,
2436 int access_type, int is_user,
2437 hwaddr *phys_ptr, int *prot,
2438 target_ulong *page_size_ptr)
2440 /* Read an LPAE long-descriptor translation table. */
2441 MMUFaultType fault_type = translation_fault;
2442 uint32_t level = 1;
2443 uint32_t epd;
2444 uint32_t tsz;
2445 uint64_t ttbr;
2446 int ttbr_select;
2447 int n;
2448 hwaddr descaddr;
2449 uint32_t tableattrs;
2450 target_ulong page_size;
2451 uint32_t attrs;
2453 /* Determine whether this address is in the region controlled by
2454 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
2455 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
2456 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
2458 uint32_t t0sz = extract32(env->cp15.c2_control, 0, 3);
2459 uint32_t t1sz = extract32(env->cp15.c2_control, 16, 3);
2460 if (t0sz && !extract32(address, 32 - t0sz, t0sz)) {
2461 /* there is a ttbr0 region and we are in it (high bits all zero) */
2462 ttbr_select = 0;
2463 } else if (t1sz && !extract32(~address, 32 - t1sz, t1sz)) {
2464 /* there is a ttbr1 region and we are in it (high bits all one) */
2465 ttbr_select = 1;
2466 } else if (!t0sz) {
2467 /* ttbr0 region is "everything not in the ttbr1 region" */
2468 ttbr_select = 0;
2469 } else if (!t1sz) {
2470 /* ttbr1 region is "everything not in the ttbr0 region" */
2471 ttbr_select = 1;
2472 } else {
2473 /* in the gap between the two regions, this is a Translation fault */
2474 fault_type = translation_fault;
2475 goto do_fault;
2478 /* Note that QEMU ignores shareability and cacheability attributes,
2479 * so we don't need to do anything with the SH, ORGN, IRGN fields
2480 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
2481 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
2482 * implement any ASID-like capability so we can ignore it (instead
2483 * we will always flush the TLB any time the ASID is changed).
2485 if (ttbr_select == 0) {
2486 ttbr = ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0;
2487 epd = extract32(env->cp15.c2_control, 7, 1);
2488 tsz = t0sz;
2489 } else {
2490 ttbr = ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1;
2491 epd = extract32(env->cp15.c2_control, 23, 1);
2492 tsz = t1sz;
2495 if (epd) {
2496 /* Translation table walk disabled => Translation fault on TLB miss */
2497 goto do_fault;
2500 /* If the region is small enough we will skip straight to a 2nd level
2501 * lookup. This affects the number of bits of the address used in
2502 * combination with the TTBR to find the first descriptor. ('n' here
2503 * matches the usage in the ARM ARM sB3.6.6, where bits [39..n] are
2504 * from the TTBR, [n-1..3] from the vaddr, and [2..0] always zero).
2506 if (tsz > 1) {
2507 level = 2;
2508 n = 14 - tsz;
2509 } else {
2510 n = 5 - tsz;
2513 /* Clear the vaddr bits which aren't part of the within-region address,
2514 * so that we don't have to special case things when calculating the
2515 * first descriptor address.
2517 address &= (0xffffffffU >> tsz);
2519 /* Now we can extract the actual base address from the TTBR */
2520 descaddr = extract64(ttbr, 0, 40);
2521 descaddr &= ~((1ULL << n) - 1);
2523 tableattrs = 0;
2524 for (;;) {
2525 uint64_t descriptor;
2527 descaddr |= ((address >> (9 * (4 - level))) & 0xff8);
2528 descriptor = ldq_phys(descaddr);
2529 if (!(descriptor & 1) ||
2530 (!(descriptor & 2) && (level == 3))) {
2531 /* Invalid, or the Reserved level 3 encoding */
2532 goto do_fault;
2534 descaddr = descriptor & 0xfffffff000ULL;
2536 if ((descriptor & 2) && (level < 3)) {
2537 /* Table entry. The top five bits are attributes which may
2538 * propagate down through lower levels of the table (and
2539 * which are all arranged so that 0 means "no effect", so
2540 * we can gather them up by ORing in the bits at each level).
2542 tableattrs |= extract64(descriptor, 59, 5);
2543 level++;
2544 continue;
2546 /* Block entry at level 1 or 2, or page entry at level 3.
2547 * These are basically the same thing, although the number
2548 * of bits we pull in from the vaddr varies.
2550 page_size = (1 << (39 - (9 * level)));
2551 descaddr |= (address & (page_size - 1));
2552 /* Extract attributes from the descriptor and merge with table attrs */
2553 attrs = extract64(descriptor, 2, 10)
2554 | (extract64(descriptor, 52, 12) << 10);
2555 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
2556 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
2557 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
2558 * means "force PL1 access only", which means forcing AP[1] to 0.
2560 if (extract32(tableattrs, 2, 1)) {
2561 attrs &= ~(1 << 4);
2563 /* Since we're always in the Non-secure state, NSTable is ignored. */
2564 break;
2566 /* Here descaddr is the final physical address, and attributes
2567 * are all in attrs.
2569 fault_type = access_fault;
2570 if ((attrs & (1 << 8)) == 0) {
2571 /* Access flag */
2572 goto do_fault;
2574 fault_type = permission_fault;
2575 if (is_user && !(attrs & (1 << 4))) {
2576 /* Unprivileged access not enabled */
2577 goto do_fault;
2579 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2580 if (attrs & (1 << 12) || (!is_user && (attrs & (1 << 11)))) {
2581 /* XN or PXN */
2582 if (access_type == 2) {
2583 goto do_fault;
2585 *prot &= ~PAGE_EXEC;
2587 if (attrs & (1 << 5)) {
2588 /* Write access forbidden */
2589 if (access_type == 1) {
2590 goto do_fault;
2592 *prot &= ~PAGE_WRITE;
2595 *phys_ptr = descaddr;
2596 *page_size_ptr = page_size;
2597 return 0;
2599 do_fault:
2600 /* Long-descriptor format IFSR/DFSR value */
2601 return (1 << 9) | (fault_type << 2) | level;
2604 static int get_phys_addr_mpu(CPUARMState *env, uint32_t address,
2605 int access_type, int is_user,
2606 hwaddr *phys_ptr, int *prot)
2608 int n;
2609 uint32_t mask;
2610 uint32_t base;
2612 *phys_ptr = address;
2613 for (n = 7; n >= 0; n--) {
2614 base = env->cp15.c6_region[n];
2615 if ((base & 1) == 0)
2616 continue;
2617 mask = 1 << ((base >> 1) & 0x1f);
2618 /* Keep this shift separate from the above to avoid an
2619 (undefined) << 32. */
2620 mask = (mask << 1) - 1;
2621 if (((base ^ address) & ~mask) == 0)
2622 break;
2624 if (n < 0)
2625 return 2;
2627 if (access_type == 2) {
2628 mask = env->cp15.c5_insn;
2629 } else {
2630 mask = env->cp15.c5_data;
2632 mask = (mask >> (n * 4)) & 0xf;
2633 switch (mask) {
2634 case 0:
2635 return 1;
2636 case 1:
2637 if (is_user)
2638 return 1;
2639 *prot = PAGE_READ | PAGE_WRITE;
2640 break;
2641 case 2:
2642 *prot = PAGE_READ;
2643 if (!is_user)
2644 *prot |= PAGE_WRITE;
2645 break;
2646 case 3:
2647 *prot = PAGE_READ | PAGE_WRITE;
2648 break;
2649 case 5:
2650 if (is_user)
2651 return 1;
2652 *prot = PAGE_READ;
2653 break;
2654 case 6:
2655 *prot = PAGE_READ;
2656 break;
2657 default:
2658 /* Bad permission. */
2659 return 1;
2661 *prot |= PAGE_EXEC;
2662 return 0;
2665 /* get_phys_addr - get the physical address for this virtual address
2667 * Find the physical address corresponding to the given virtual address,
2668 * by doing a translation table walk on MMU based systems or using the
2669 * MPU state on MPU based systems.
2671 * Returns 0 if the translation was successful. Otherwise, phys_ptr,
2672 * prot and page_size are not filled in, and the return value provides
2673 * information on why the translation aborted, in the format of a
2674 * DFSR/IFSR fault register, with the following caveats:
2675 * * we honour the short vs long DFSR format differences.
2676 * * the WnR bit is never set (the caller must do this).
2677 * * for MPU based systems we don't bother to return a full FSR format
2678 * value.
2680 * @env: CPUARMState
2681 * @address: virtual address to get physical address for
2682 * @access_type: 0 for read, 1 for write, 2 for execute
2683 * @is_user: 0 for privileged access, 1 for user
2684 * @phys_ptr: set to the physical address corresponding to the virtual address
2685 * @prot: set to the permissions for the page containing phys_ptr
2686 * @page_size: set to the size of the page containing phys_ptr
2688 static inline int get_phys_addr(CPUARMState *env, uint32_t address,
2689 int access_type, int is_user,
2690 hwaddr *phys_ptr, int *prot,
2691 target_ulong *page_size)
2693 /* Fast Context Switch Extension. */
2694 if (address < 0x02000000)
2695 address += env->cp15.c13_fcse;
2697 if ((env->cp15.c1_sys & 1) == 0) {
2698 /* MMU/MPU disabled. */
2699 *phys_ptr = address;
2700 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2701 *page_size = TARGET_PAGE_SIZE;
2702 return 0;
2703 } else if (arm_feature(env, ARM_FEATURE_MPU)) {
2704 *page_size = TARGET_PAGE_SIZE;
2705 return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
2706 prot);
2707 } else if (extended_addresses_enabled(env)) {
2708 return get_phys_addr_lpae(env, address, access_type, is_user, phys_ptr,
2709 prot, page_size);
2710 } else if (env->cp15.c1_sys & (1 << 23)) {
2711 return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
2712 prot, page_size);
2713 } else {
2714 return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
2715 prot, page_size);
2719 int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address,
2720 int access_type, int mmu_idx)
2722 hwaddr phys_addr;
2723 target_ulong page_size;
2724 int prot;
2725 int ret, is_user;
2727 is_user = mmu_idx == MMU_USER_IDX;
2728 ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
2729 &page_size);
2730 if (ret == 0) {
2731 /* Map a single [sub]page. */
2732 phys_addr &= ~(hwaddr)0x3ff;
2733 address &= ~(uint32_t)0x3ff;
2734 tlb_set_page (env, address, phys_addr, prot, mmu_idx, page_size);
2735 return 0;
2738 if (access_type == 2) {
2739 env->cp15.c5_insn = ret;
2740 env->cp15.c6_insn = address;
2741 env->exception_index = EXCP_PREFETCH_ABORT;
2742 } else {
2743 env->cp15.c5_data = ret;
2744 if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
2745 env->cp15.c5_data |= (1 << 11);
2746 env->cp15.c6_data = address;
2747 env->exception_index = EXCP_DATA_ABORT;
2749 return 1;
2752 hwaddr cpu_get_phys_page_debug(CPUARMState *env, target_ulong addr)
2754 hwaddr phys_addr;
2755 target_ulong page_size;
2756 int prot;
2757 int ret;
2759 ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot, &page_size);
2761 if (ret != 0)
2762 return -1;
2764 return phys_addr;
2767 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
2769 if ((env->uncached_cpsr & CPSR_M) == mode) {
2770 env->regs[13] = val;
2771 } else {
2772 env->banked_r13[bank_number(mode)] = val;
2776 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
2778 if ((env->uncached_cpsr & CPSR_M) == mode) {
2779 return env->regs[13];
2780 } else {
2781 return env->banked_r13[bank_number(mode)];
2785 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
2787 switch (reg) {
2788 case 0: /* APSR */
2789 return xpsr_read(env) & 0xf8000000;
2790 case 1: /* IAPSR */
2791 return xpsr_read(env) & 0xf80001ff;
2792 case 2: /* EAPSR */
2793 return xpsr_read(env) & 0xff00fc00;
2794 case 3: /* xPSR */
2795 return xpsr_read(env) & 0xff00fdff;
2796 case 5: /* IPSR */
2797 return xpsr_read(env) & 0x000001ff;
2798 case 6: /* EPSR */
2799 return xpsr_read(env) & 0x0700fc00;
2800 case 7: /* IEPSR */
2801 return xpsr_read(env) & 0x0700edff;
2802 case 8: /* MSP */
2803 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
2804 case 9: /* PSP */
2805 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
2806 case 16: /* PRIMASK */
2807 return (env->uncached_cpsr & CPSR_I) != 0;
2808 case 17: /* BASEPRI */
2809 case 18: /* BASEPRI_MAX */
2810 return env->v7m.basepri;
2811 case 19: /* FAULTMASK */
2812 return (env->uncached_cpsr & CPSR_F) != 0;
2813 case 20: /* CONTROL */
2814 return env->v7m.control;
2815 default:
2816 /* ??? For debugging only. */
2817 cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
2818 return 0;
2822 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
2824 switch (reg) {
2825 case 0: /* APSR */
2826 xpsr_write(env, val, 0xf8000000);
2827 break;
2828 case 1: /* IAPSR */
2829 xpsr_write(env, val, 0xf8000000);
2830 break;
2831 case 2: /* EAPSR */
2832 xpsr_write(env, val, 0xfe00fc00);
2833 break;
2834 case 3: /* xPSR */
2835 xpsr_write(env, val, 0xfe00fc00);
2836 break;
2837 case 5: /* IPSR */
2838 /* IPSR bits are readonly. */
2839 break;
2840 case 6: /* EPSR */
2841 xpsr_write(env, val, 0x0600fc00);
2842 break;
2843 case 7: /* IEPSR */
2844 xpsr_write(env, val, 0x0600fc00);
2845 break;
2846 case 8: /* MSP */
2847 if (env->v7m.current_sp)
2848 env->v7m.other_sp = val;
2849 else
2850 env->regs[13] = val;
2851 break;
2852 case 9: /* PSP */
2853 if (env->v7m.current_sp)
2854 env->regs[13] = val;
2855 else
2856 env->v7m.other_sp = val;
2857 break;
2858 case 16: /* PRIMASK */
2859 if (val & 1)
2860 env->uncached_cpsr |= CPSR_I;
2861 else
2862 env->uncached_cpsr &= ~CPSR_I;
2863 break;
2864 case 17: /* BASEPRI */
2865 env->v7m.basepri = val & 0xff;
2866 break;
2867 case 18: /* BASEPRI_MAX */
2868 val &= 0xff;
2869 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
2870 env->v7m.basepri = val;
2871 break;
2872 case 19: /* FAULTMASK */
2873 if (val & 1)
2874 env->uncached_cpsr |= CPSR_F;
2875 else
2876 env->uncached_cpsr &= ~CPSR_F;
2877 break;
2878 case 20: /* CONTROL */
2879 env->v7m.control = val & 3;
2880 switch_v7m_sp(env, (val & 2) != 0);
2881 break;
2882 default:
2883 /* ??? For debugging only. */
2884 cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
2885 return;
2889 #endif
2891 /* Note that signed overflow is undefined in C. The following routines are
2892 careful to use unsigned types where modulo arithmetic is required.
2893 Failure to do so _will_ break on newer gcc. */
2895 /* Signed saturating arithmetic. */
2897 /* Perform 16-bit signed saturating addition. */
2898 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
2900 uint16_t res;
2902 res = a + b;
2903 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
2904 if (a & 0x8000)
2905 res = 0x8000;
2906 else
2907 res = 0x7fff;
2909 return res;
2912 /* Perform 8-bit signed saturating addition. */
2913 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
2915 uint8_t res;
2917 res = a + b;
2918 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
2919 if (a & 0x80)
2920 res = 0x80;
2921 else
2922 res = 0x7f;
2924 return res;
2927 /* Perform 16-bit signed saturating subtraction. */
2928 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
2930 uint16_t res;
2932 res = a - b;
2933 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
2934 if (a & 0x8000)
2935 res = 0x8000;
2936 else
2937 res = 0x7fff;
2939 return res;
2942 /* Perform 8-bit signed saturating subtraction. */
2943 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
2945 uint8_t res;
2947 res = a - b;
2948 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
2949 if (a & 0x80)
2950 res = 0x80;
2951 else
2952 res = 0x7f;
2954 return res;
2957 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
2958 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
2959 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
2960 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
2961 #define PFX q
2963 #include "op_addsub.h"
2965 /* Unsigned saturating arithmetic. */
2966 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
2968 uint16_t res;
2969 res = a + b;
2970 if (res < a)
2971 res = 0xffff;
2972 return res;
2975 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
2977 if (a > b)
2978 return a - b;
2979 else
2980 return 0;
2983 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
2985 uint8_t res;
2986 res = a + b;
2987 if (res < a)
2988 res = 0xff;
2989 return res;
2992 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
2994 if (a > b)
2995 return a - b;
2996 else
2997 return 0;
3000 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
3001 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
3002 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
3003 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
3004 #define PFX uq
3006 #include "op_addsub.h"
3008 /* Signed modulo arithmetic. */
3009 #define SARITH16(a, b, n, op) do { \
3010 int32_t sum; \
3011 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
3012 RESULT(sum, n, 16); \
3013 if (sum >= 0) \
3014 ge |= 3 << (n * 2); \
3015 } while(0)
3017 #define SARITH8(a, b, n, op) do { \
3018 int32_t sum; \
3019 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
3020 RESULT(sum, n, 8); \
3021 if (sum >= 0) \
3022 ge |= 1 << n; \
3023 } while(0)
3026 #define ADD16(a, b, n) SARITH16(a, b, n, +)
3027 #define SUB16(a, b, n) SARITH16(a, b, n, -)
3028 #define ADD8(a, b, n) SARITH8(a, b, n, +)
3029 #define SUB8(a, b, n) SARITH8(a, b, n, -)
3030 #define PFX s
3031 #define ARITH_GE
3033 #include "op_addsub.h"
3035 /* Unsigned modulo arithmetic. */
3036 #define ADD16(a, b, n) do { \
3037 uint32_t sum; \
3038 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
3039 RESULT(sum, n, 16); \
3040 if ((sum >> 16) == 1) \
3041 ge |= 3 << (n * 2); \
3042 } while(0)
3044 #define ADD8(a, b, n) do { \
3045 uint32_t sum; \
3046 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
3047 RESULT(sum, n, 8); \
3048 if ((sum >> 8) == 1) \
3049 ge |= 1 << n; \
3050 } while(0)
3052 #define SUB16(a, b, n) do { \
3053 uint32_t sum; \
3054 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
3055 RESULT(sum, n, 16); \
3056 if ((sum >> 16) == 0) \
3057 ge |= 3 << (n * 2); \
3058 } while(0)
3060 #define SUB8(a, b, n) do { \
3061 uint32_t sum; \
3062 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
3063 RESULT(sum, n, 8); \
3064 if ((sum >> 8) == 0) \
3065 ge |= 1 << n; \
3066 } while(0)
3068 #define PFX u
3069 #define ARITH_GE
3071 #include "op_addsub.h"
3073 /* Halved signed arithmetic. */
3074 #define ADD16(a, b, n) \
3075 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
3076 #define SUB16(a, b, n) \
3077 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
3078 #define ADD8(a, b, n) \
3079 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
3080 #define SUB8(a, b, n) \
3081 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
3082 #define PFX sh
3084 #include "op_addsub.h"
3086 /* Halved unsigned arithmetic. */
3087 #define ADD16(a, b, n) \
3088 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
3089 #define SUB16(a, b, n) \
3090 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
3091 #define ADD8(a, b, n) \
3092 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
3093 #define SUB8(a, b, n) \
3094 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
3095 #define PFX uh
3097 #include "op_addsub.h"
3099 static inline uint8_t do_usad(uint8_t a, uint8_t b)
3101 if (a > b)
3102 return a - b;
3103 else
3104 return b - a;
3107 /* Unsigned sum of absolute byte differences. */
3108 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
3110 uint32_t sum;
3111 sum = do_usad(a, b);
3112 sum += do_usad(a >> 8, b >> 8);
3113 sum += do_usad(a >> 16, b >>16);
3114 sum += do_usad(a >> 24, b >> 24);
3115 return sum;
3118 /* For ARMv6 SEL instruction. */
3119 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
3121 uint32_t mask;
3123 mask = 0;
3124 if (flags & 1)
3125 mask |= 0xff;
3126 if (flags & 2)
3127 mask |= 0xff00;
3128 if (flags & 4)
3129 mask |= 0xff0000;
3130 if (flags & 8)
3131 mask |= 0xff000000;
3132 return (a & mask) | (b & ~mask);
3135 /* VFP support. We follow the convention used for VFP instructions:
3136 Single precision routines have a "s" suffix, double precision a
3137 "d" suffix. */
3139 /* Convert host exception flags to vfp form. */
3140 static inline int vfp_exceptbits_from_host(int host_bits)
3142 int target_bits = 0;
3144 if (host_bits & float_flag_invalid)
3145 target_bits |= 1;
3146 if (host_bits & float_flag_divbyzero)
3147 target_bits |= 2;
3148 if (host_bits & float_flag_overflow)
3149 target_bits |= 4;
3150 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
3151 target_bits |= 8;
3152 if (host_bits & float_flag_inexact)
3153 target_bits |= 0x10;
3154 if (host_bits & float_flag_input_denormal)
3155 target_bits |= 0x80;
3156 return target_bits;
3159 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
3161 int i;
3162 uint32_t fpscr;
3164 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
3165 | (env->vfp.vec_len << 16)
3166 | (env->vfp.vec_stride << 20);
3167 i = get_float_exception_flags(&env->vfp.fp_status);
3168 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
3169 fpscr |= vfp_exceptbits_from_host(i);
3170 return fpscr;
3173 uint32_t vfp_get_fpscr(CPUARMState *env)
3175 return HELPER(vfp_get_fpscr)(env);
3178 /* Convert vfp exception flags to target form. */
3179 static inline int vfp_exceptbits_to_host(int target_bits)
3181 int host_bits = 0;
3183 if (target_bits & 1)
3184 host_bits |= float_flag_invalid;
3185 if (target_bits & 2)
3186 host_bits |= float_flag_divbyzero;
3187 if (target_bits & 4)
3188 host_bits |= float_flag_overflow;
3189 if (target_bits & 8)
3190 host_bits |= float_flag_underflow;
3191 if (target_bits & 0x10)
3192 host_bits |= float_flag_inexact;
3193 if (target_bits & 0x80)
3194 host_bits |= float_flag_input_denormal;
3195 return host_bits;
3198 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
3200 int i;
3201 uint32_t changed;
3203 changed = env->vfp.xregs[ARM_VFP_FPSCR];
3204 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
3205 env->vfp.vec_len = (val >> 16) & 7;
3206 env->vfp.vec_stride = (val >> 20) & 3;
3208 changed ^= val;
3209 if (changed & (3 << 22)) {
3210 i = (val >> 22) & 3;
3211 switch (i) {
3212 case 0:
3213 i = float_round_nearest_even;
3214 break;
3215 case 1:
3216 i = float_round_up;
3217 break;
3218 case 2:
3219 i = float_round_down;
3220 break;
3221 case 3:
3222 i = float_round_to_zero;
3223 break;
3225 set_float_rounding_mode(i, &env->vfp.fp_status);
3227 if (changed & (1 << 24)) {
3228 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
3229 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
3231 if (changed & (1 << 25))
3232 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
3234 i = vfp_exceptbits_to_host(val);
3235 set_float_exception_flags(i, &env->vfp.fp_status);
3236 set_float_exception_flags(0, &env->vfp.standard_fp_status);
3239 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
3241 HELPER(vfp_set_fpscr)(env, val);
3244 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
3246 #define VFP_BINOP(name) \
3247 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
3249 float_status *fpst = fpstp; \
3250 return float32_ ## name(a, b, fpst); \
3252 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
3254 float_status *fpst = fpstp; \
3255 return float64_ ## name(a, b, fpst); \
3257 VFP_BINOP(add)
3258 VFP_BINOP(sub)
3259 VFP_BINOP(mul)
3260 VFP_BINOP(div)
3261 #undef VFP_BINOP
3263 float32 VFP_HELPER(neg, s)(float32 a)
3265 return float32_chs(a);
3268 float64 VFP_HELPER(neg, d)(float64 a)
3270 return float64_chs(a);
3273 float32 VFP_HELPER(abs, s)(float32 a)
3275 return float32_abs(a);
3278 float64 VFP_HELPER(abs, d)(float64 a)
3280 return float64_abs(a);
3283 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
3285 return float32_sqrt(a, &env->vfp.fp_status);
3288 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
3290 return float64_sqrt(a, &env->vfp.fp_status);
3293 /* XXX: check quiet/signaling case */
3294 #define DO_VFP_cmp(p, type) \
3295 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
3297 uint32_t flags; \
3298 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
3299 case 0: flags = 0x6; break; \
3300 case -1: flags = 0x8; break; \
3301 case 1: flags = 0x2; break; \
3302 default: case 2: flags = 0x3; break; \
3304 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
3305 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
3307 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
3309 uint32_t flags; \
3310 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
3311 case 0: flags = 0x6; break; \
3312 case -1: flags = 0x8; break; \
3313 case 1: flags = 0x2; break; \
3314 default: case 2: flags = 0x3; break; \
3316 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
3317 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
3319 DO_VFP_cmp(s, float32)
3320 DO_VFP_cmp(d, float64)
3321 #undef DO_VFP_cmp
3323 /* Integer to float and float to integer conversions */
3325 #define CONV_ITOF(name, fsz, sign) \
3326 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
3328 float_status *fpst = fpstp; \
3329 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
3332 #define CONV_FTOI(name, fsz, sign, round) \
3333 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
3335 float_status *fpst = fpstp; \
3336 if (float##fsz##_is_any_nan(x)) { \
3337 float_raise(float_flag_invalid, fpst); \
3338 return 0; \
3340 return float##fsz##_to_##sign##int32##round(x, fpst); \
3343 #define FLOAT_CONVS(name, p, fsz, sign) \
3344 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
3345 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
3346 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
3348 FLOAT_CONVS(si, s, 32, )
3349 FLOAT_CONVS(si, d, 64, )
3350 FLOAT_CONVS(ui, s, 32, u)
3351 FLOAT_CONVS(ui, d, 64, u)
3353 #undef CONV_ITOF
3354 #undef CONV_FTOI
3355 #undef FLOAT_CONVS
3357 /* floating point conversion */
3358 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
3360 float64 r = float32_to_float64(x, &env->vfp.fp_status);
3361 /* ARM requires that S<->D conversion of any kind of NaN generates
3362 * a quiet NaN by forcing the most significant frac bit to 1.
3364 return float64_maybe_silence_nan(r);
3367 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
3369 float32 r = float64_to_float32(x, &env->vfp.fp_status);
3370 /* ARM requires that S<->D conversion of any kind of NaN generates
3371 * a quiet NaN by forcing the most significant frac bit to 1.
3373 return float32_maybe_silence_nan(r);
3376 /* VFP3 fixed point conversion. */
3377 #define VFP_CONV_FIX(name, p, fsz, itype, sign) \
3378 float##fsz HELPER(vfp_##name##to##p)(uint##fsz##_t x, uint32_t shift, \
3379 void *fpstp) \
3381 float_status *fpst = fpstp; \
3382 float##fsz tmp; \
3383 tmp = sign##int32_to_##float##fsz((itype##_t)x, fpst); \
3384 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
3386 uint##fsz##_t HELPER(vfp_to##name##p)(float##fsz x, uint32_t shift, \
3387 void *fpstp) \
3389 float_status *fpst = fpstp; \
3390 float##fsz tmp; \
3391 if (float##fsz##_is_any_nan(x)) { \
3392 float_raise(float_flag_invalid, fpst); \
3393 return 0; \
3395 tmp = float##fsz##_scalbn(x, shift, fpst); \
3396 return float##fsz##_to_##itype##_round_to_zero(tmp, fpst); \
3399 VFP_CONV_FIX(sh, d, 64, int16, )
3400 VFP_CONV_FIX(sl, d, 64, int32, )
3401 VFP_CONV_FIX(uh, d, 64, uint16, u)
3402 VFP_CONV_FIX(ul, d, 64, uint32, u)
3403 VFP_CONV_FIX(sh, s, 32, int16, )
3404 VFP_CONV_FIX(sl, s, 32, int32, )
3405 VFP_CONV_FIX(uh, s, 32, uint16, u)
3406 VFP_CONV_FIX(ul, s, 32, uint32, u)
3407 #undef VFP_CONV_FIX
3409 /* Half precision conversions. */
3410 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
3412 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
3413 float32 r = float16_to_float32(make_float16(a), ieee, s);
3414 if (ieee) {
3415 return float32_maybe_silence_nan(r);
3417 return r;
3420 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
3422 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
3423 float16 r = float32_to_float16(a, ieee, s);
3424 if (ieee) {
3425 r = float16_maybe_silence_nan(r);
3427 return float16_val(r);
3430 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
3432 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
3435 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
3437 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
3440 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
3442 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
3445 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
3447 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
3450 #define float32_two make_float32(0x40000000)
3451 #define float32_three make_float32(0x40400000)
3452 #define float32_one_point_five make_float32(0x3fc00000)
3454 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
3456 float_status *s = &env->vfp.standard_fp_status;
3457 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
3458 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
3459 if (!(float32_is_zero(a) || float32_is_zero(b))) {
3460 float_raise(float_flag_input_denormal, s);
3462 return float32_two;
3464 return float32_sub(float32_two, float32_mul(a, b, s), s);
3467 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
3469 float_status *s = &env->vfp.standard_fp_status;
3470 float32 product;
3471 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
3472 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
3473 if (!(float32_is_zero(a) || float32_is_zero(b))) {
3474 float_raise(float_flag_input_denormal, s);
3476 return float32_one_point_five;
3478 product = float32_mul(a, b, s);
3479 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
3482 /* NEON helpers. */
3484 /* Constants 256 and 512 are used in some helpers; we avoid relying on
3485 * int->float conversions at run-time. */
3486 #define float64_256 make_float64(0x4070000000000000LL)
3487 #define float64_512 make_float64(0x4080000000000000LL)
3489 /* The algorithm that must be used to calculate the estimate
3490 * is specified by the ARM ARM.
3492 static float64 recip_estimate(float64 a, CPUARMState *env)
3494 /* These calculations mustn't set any fp exception flags,
3495 * so we use a local copy of the fp_status.
3497 float_status dummy_status = env->vfp.standard_fp_status;
3498 float_status *s = &dummy_status;
3499 /* q = (int)(a * 512.0) */
3500 float64 q = float64_mul(float64_512, a, s);
3501 int64_t q_int = float64_to_int64_round_to_zero(q, s);
3503 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
3504 q = int64_to_float64(q_int, s);
3505 q = float64_add(q, float64_half, s);
3506 q = float64_div(q, float64_512, s);
3507 q = float64_div(float64_one, q, s);
3509 /* s = (int)(256.0 * r + 0.5) */
3510 q = float64_mul(q, float64_256, s);
3511 q = float64_add(q, float64_half, s);
3512 q_int = float64_to_int64_round_to_zero(q, s);
3514 /* return (double)s / 256.0 */
3515 return float64_div(int64_to_float64(q_int, s), float64_256, s);
3518 float32 HELPER(recpe_f32)(float32 a, CPUARMState *env)
3520 float_status *s = &env->vfp.standard_fp_status;
3521 float64 f64;
3522 uint32_t val32 = float32_val(a);
3524 int result_exp;
3525 int a_exp = (val32 & 0x7f800000) >> 23;
3526 int sign = val32 & 0x80000000;
3528 if (float32_is_any_nan(a)) {
3529 if (float32_is_signaling_nan(a)) {
3530 float_raise(float_flag_invalid, s);
3532 return float32_default_nan;
3533 } else if (float32_is_infinity(a)) {
3534 return float32_set_sign(float32_zero, float32_is_neg(a));
3535 } else if (float32_is_zero_or_denormal(a)) {
3536 if (!float32_is_zero(a)) {
3537 float_raise(float_flag_input_denormal, s);
3539 float_raise(float_flag_divbyzero, s);
3540 return float32_set_sign(float32_infinity, float32_is_neg(a));
3541 } else if (a_exp >= 253) {
3542 float_raise(float_flag_underflow, s);
3543 return float32_set_sign(float32_zero, float32_is_neg(a));
3546 f64 = make_float64((0x3feULL << 52)
3547 | ((int64_t)(val32 & 0x7fffff) << 29));
3549 result_exp = 253 - a_exp;
3551 f64 = recip_estimate(f64, env);
3553 val32 = sign
3554 | ((result_exp & 0xff) << 23)
3555 | ((float64_val(f64) >> 29) & 0x7fffff);
3556 return make_float32(val32);
3559 /* The algorithm that must be used to calculate the estimate
3560 * is specified by the ARM ARM.
3562 static float64 recip_sqrt_estimate(float64 a, CPUARMState *env)
3564 /* These calculations mustn't set any fp exception flags,
3565 * so we use a local copy of the fp_status.
3567 float_status dummy_status = env->vfp.standard_fp_status;
3568 float_status *s = &dummy_status;
3569 float64 q;
3570 int64_t q_int;
3572 if (float64_lt(a, float64_half, s)) {
3573 /* range 0.25 <= a < 0.5 */
3575 /* a in units of 1/512 rounded down */
3576 /* q0 = (int)(a * 512.0); */
3577 q = float64_mul(float64_512, a, s);
3578 q_int = float64_to_int64_round_to_zero(q, s);
3580 /* reciprocal root r */
3581 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
3582 q = int64_to_float64(q_int, s);
3583 q = float64_add(q, float64_half, s);
3584 q = float64_div(q, float64_512, s);
3585 q = float64_sqrt(q, s);
3586 q = float64_div(float64_one, q, s);
3587 } else {
3588 /* range 0.5 <= a < 1.0 */
3590 /* a in units of 1/256 rounded down */
3591 /* q1 = (int)(a * 256.0); */
3592 q = float64_mul(float64_256, a, s);
3593 int64_t q_int = float64_to_int64_round_to_zero(q, s);
3595 /* reciprocal root r */
3596 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
3597 q = int64_to_float64(q_int, s);
3598 q = float64_add(q, float64_half, s);
3599 q = float64_div(q, float64_256, s);
3600 q = float64_sqrt(q, s);
3601 q = float64_div(float64_one, q, s);
3603 /* r in units of 1/256 rounded to nearest */
3604 /* s = (int)(256.0 * r + 0.5); */
3606 q = float64_mul(q, float64_256,s );
3607 q = float64_add(q, float64_half, s);
3608 q_int = float64_to_int64_round_to_zero(q, s);
3610 /* return (double)s / 256.0;*/
3611 return float64_div(int64_to_float64(q_int, s), float64_256, s);
3614 float32 HELPER(rsqrte_f32)(float32 a, CPUARMState *env)
3616 float_status *s = &env->vfp.standard_fp_status;
3617 int result_exp;
3618 float64 f64;
3619 uint32_t val;
3620 uint64_t val64;
3622 val = float32_val(a);
3624 if (float32_is_any_nan(a)) {
3625 if (float32_is_signaling_nan(a)) {
3626 float_raise(float_flag_invalid, s);
3628 return float32_default_nan;
3629 } else if (float32_is_zero_or_denormal(a)) {
3630 if (!float32_is_zero(a)) {
3631 float_raise(float_flag_input_denormal, s);
3633 float_raise(float_flag_divbyzero, s);
3634 return float32_set_sign(float32_infinity, float32_is_neg(a));
3635 } else if (float32_is_neg(a)) {
3636 float_raise(float_flag_invalid, s);
3637 return float32_default_nan;
3638 } else if (float32_is_infinity(a)) {
3639 return float32_zero;
3642 /* Normalize to a double-precision value between 0.25 and 1.0,
3643 * preserving the parity of the exponent. */
3644 if ((val & 0x800000) == 0) {
3645 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
3646 | (0x3feULL << 52)
3647 | ((uint64_t)(val & 0x7fffff) << 29));
3648 } else {
3649 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
3650 | (0x3fdULL << 52)
3651 | ((uint64_t)(val & 0x7fffff) << 29));
3654 result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2;
3656 f64 = recip_sqrt_estimate(f64, env);
3658 val64 = float64_val(f64);
3660 val = ((result_exp & 0xff) << 23)
3661 | ((val64 >> 29) & 0x7fffff);
3662 return make_float32(val);
3665 uint32_t HELPER(recpe_u32)(uint32_t a, CPUARMState *env)
3667 float64 f64;
3669 if ((a & 0x80000000) == 0) {
3670 return 0xffffffff;
3673 f64 = make_float64((0x3feULL << 52)
3674 | ((int64_t)(a & 0x7fffffff) << 21));
3676 f64 = recip_estimate (f64, env);
3678 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
3681 uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUARMState *env)
3683 float64 f64;
3685 if ((a & 0xc0000000) == 0) {
3686 return 0xffffffff;
3689 if (a & 0x80000000) {
3690 f64 = make_float64((0x3feULL << 52)
3691 | ((uint64_t)(a & 0x7fffffff) << 21));
3692 } else { /* bits 31-30 == '01' */
3693 f64 = make_float64((0x3fdULL << 52)
3694 | ((uint64_t)(a & 0x3fffffff) << 22));
3697 f64 = recip_sqrt_estimate(f64, env);
3699 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
3702 /* VFPv4 fused multiply-accumulate */
3703 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
3705 float_status *fpst = fpstp;
3706 return float32_muladd(a, b, c, 0, fpst);
3709 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
3711 float_status *fpst = fpstp;
3712 return float64_muladd(a, b, c, 0, fpst);