usb-ehci: Add support for registering companion controllers
[qemu/ar7.git] / hw / usb-ehci.c
blobec68c299fe069ddf595a6963e008a295a37bb416
1 /*
2 * QEMU USB EHCI Emulation
4 * Copyright(c) 2008 Emutex Ltd. (address@hidden)
6 * EHCI project was started by Mark Burkley, with contributions by
7 * Niels de Vos. David S. Ahern continued working on it. Kevin Wolf,
8 * Jan Kiszka and Vincent Palatin contributed bugfixes.
11 * This library is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public
13 * License as published by the Free Software Foundation; either
14 * version 2 of the License, or(at your option) any later version.
16 * This library is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, see <http://www.gnu.org/licenses/>.
25 #include "hw.h"
26 #include "qemu-timer.h"
27 #include "usb.h"
28 #include "pci.h"
29 #include "monitor.h"
30 #include "trace.h"
32 #define EHCI_DEBUG 0
34 #if EHCI_DEBUG
35 #define DPRINTF printf
36 #else
37 #define DPRINTF(...)
38 #endif
40 /* internal processing - reset HC to try and recover */
41 #define USB_RET_PROCERR (-99)
43 #define MMIO_SIZE 0x1000
45 /* Capability Registers Base Address - section 2.2 */
46 #define CAPREGBASE 0x0000
47 #define CAPLENGTH CAPREGBASE + 0x0000 // 1-byte, 0x0001 reserved
48 #define HCIVERSION CAPREGBASE + 0x0002 // 2-bytes, i/f version #
49 #define HCSPARAMS CAPREGBASE + 0x0004 // 4-bytes, structural params
50 #define HCCPARAMS CAPREGBASE + 0x0008 // 4-bytes, capability params
51 #define EECP HCCPARAMS + 1
52 #define HCSPPORTROUTE1 CAPREGBASE + 0x000c
53 #define HCSPPORTROUTE2 CAPREGBASE + 0x0010
55 #define OPREGBASE 0x0020 // Operational Registers Base Address
57 #define USBCMD OPREGBASE + 0x0000
58 #define USBCMD_RUNSTOP (1 << 0) // run / Stop
59 #define USBCMD_HCRESET (1 << 1) // HC Reset
60 #define USBCMD_FLS (3 << 2) // Frame List Size
61 #define USBCMD_FLS_SH 2 // Frame List Size Shift
62 #define USBCMD_PSE (1 << 4) // Periodic Schedule Enable
63 #define USBCMD_ASE (1 << 5) // Asynch Schedule Enable
64 #define USBCMD_IAAD (1 << 6) // Int Asynch Advance Doorbell
65 #define USBCMD_LHCR (1 << 7) // Light Host Controller Reset
66 #define USBCMD_ASPMC (3 << 8) // Async Sched Park Mode Count
67 #define USBCMD_ASPME (1 << 11) // Async Sched Park Mode Enable
68 #define USBCMD_ITC (0x7f << 16) // Int Threshold Control
69 #define USBCMD_ITC_SH 16 // Int Threshold Control Shift
71 #define USBSTS OPREGBASE + 0x0004
72 #define USBSTS_RO_MASK 0x0000003f
73 #define USBSTS_INT (1 << 0) // USB Interrupt
74 #define USBSTS_ERRINT (1 << 1) // Error Interrupt
75 #define USBSTS_PCD (1 << 2) // Port Change Detect
76 #define USBSTS_FLR (1 << 3) // Frame List Rollover
77 #define USBSTS_HSE (1 << 4) // Host System Error
78 #define USBSTS_IAA (1 << 5) // Interrupt on Async Advance
79 #define USBSTS_HALT (1 << 12) // HC Halted
80 #define USBSTS_REC (1 << 13) // Reclamation
81 #define USBSTS_PSS (1 << 14) // Periodic Schedule Status
82 #define USBSTS_ASS (1 << 15) // Asynchronous Schedule Status
85 * Interrupt enable bits correspond to the interrupt active bits in USBSTS
86 * so no need to redefine here.
88 #define USBINTR OPREGBASE + 0x0008
89 #define USBINTR_MASK 0x0000003f
91 #define FRINDEX OPREGBASE + 0x000c
92 #define CTRLDSSEGMENT OPREGBASE + 0x0010
93 #define PERIODICLISTBASE OPREGBASE + 0x0014
94 #define ASYNCLISTADDR OPREGBASE + 0x0018
95 #define ASYNCLISTADDR_MASK 0xffffffe0
97 #define CONFIGFLAG OPREGBASE + 0x0040
99 #define PORTSC (OPREGBASE + 0x0044)
100 #define PORTSC_BEGIN PORTSC
101 #define PORTSC_END (PORTSC + 4 * NB_PORTS)
103 * Bits that are reserved or are read-only are masked out of values
104 * written to us by software
106 #define PORTSC_RO_MASK 0x007001c0
107 #define PORTSC_RWC_MASK 0x0000002a
108 #define PORTSC_WKOC_E (1 << 22) // Wake on Over Current Enable
109 #define PORTSC_WKDS_E (1 << 21) // Wake on Disconnect Enable
110 #define PORTSC_WKCN_E (1 << 20) // Wake on Connect Enable
111 #define PORTSC_PTC (15 << 16) // Port Test Control
112 #define PORTSC_PTC_SH 16 // Port Test Control shift
113 #define PORTSC_PIC (3 << 14) // Port Indicator Control
114 #define PORTSC_PIC_SH 14 // Port Indicator Control Shift
115 #define PORTSC_POWNER (1 << 13) // Port Owner
116 #define PORTSC_PPOWER (1 << 12) // Port Power
117 #define PORTSC_LINESTAT (3 << 10) // Port Line Status
118 #define PORTSC_LINESTAT_SH 10 // Port Line Status Shift
119 #define PORTSC_PRESET (1 << 8) // Port Reset
120 #define PORTSC_SUSPEND (1 << 7) // Port Suspend
121 #define PORTSC_FPRES (1 << 6) // Force Port Resume
122 #define PORTSC_OCC (1 << 5) // Over Current Change
123 #define PORTSC_OCA (1 << 4) // Over Current Active
124 #define PORTSC_PEDC (1 << 3) // Port Enable/Disable Change
125 #define PORTSC_PED (1 << 2) // Port Enable/Disable
126 #define PORTSC_CSC (1 << 1) // Connect Status Change
127 #define PORTSC_CONNECT (1 << 0) // Current Connect Status
129 #define FRAME_TIMER_FREQ 1000
130 #define FRAME_TIMER_NS (1000000000 / FRAME_TIMER_FREQ)
132 #define NB_MAXINTRATE 8 // Max rate at which controller issues ints
133 #define NB_PORTS 4 // Number of downstream ports
134 #define BUFF_SIZE 5*4096 // Max bytes to transfer per transaction
135 #define MAX_ITERATIONS 20 // Max number of QH before we break the loop
136 #define MAX_QH 100 // Max allowable queue heads in a chain
138 /* Internal periodic / asynchronous schedule state machine states
140 typedef enum {
141 EST_INACTIVE = 1000,
142 EST_ACTIVE,
143 EST_EXECUTING,
144 EST_SLEEPING,
145 /* The following states are internal to the state machine function
147 EST_WAITLISTHEAD,
148 EST_FETCHENTRY,
149 EST_FETCHQH,
150 EST_FETCHITD,
151 EST_ADVANCEQUEUE,
152 EST_FETCHQTD,
153 EST_EXECUTE,
154 EST_WRITEBACK,
155 EST_HORIZONTALQH
156 } EHCI_STATES;
158 /* macros for accessing fields within next link pointer entry */
159 #define NLPTR_GET(x) ((x) & 0xffffffe0)
160 #define NLPTR_TYPE_GET(x) (((x) >> 1) & 3)
161 #define NLPTR_TBIT(x) ((x) & 1) // 1=invalid, 0=valid
163 /* link pointer types */
164 #define NLPTR_TYPE_ITD 0 // isoc xfer descriptor
165 #define NLPTR_TYPE_QH 1 // queue head
166 #define NLPTR_TYPE_STITD 2 // split xaction, isoc xfer descriptor
167 #define NLPTR_TYPE_FSTN 3 // frame span traversal node
170 /* EHCI spec version 1.0 Section 3.3
172 typedef struct EHCIitd {
173 uint32_t next;
175 uint32_t transact[8];
176 #define ITD_XACT_ACTIVE (1 << 31)
177 #define ITD_XACT_DBERROR (1 << 30)
178 #define ITD_XACT_BABBLE (1 << 29)
179 #define ITD_XACT_XACTERR (1 << 28)
180 #define ITD_XACT_LENGTH_MASK 0x0fff0000
181 #define ITD_XACT_LENGTH_SH 16
182 #define ITD_XACT_IOC (1 << 15)
183 #define ITD_XACT_PGSEL_MASK 0x00007000
184 #define ITD_XACT_PGSEL_SH 12
185 #define ITD_XACT_OFFSET_MASK 0x00000fff
187 uint32_t bufptr[7];
188 #define ITD_BUFPTR_MASK 0xfffff000
189 #define ITD_BUFPTR_SH 12
190 #define ITD_BUFPTR_EP_MASK 0x00000f00
191 #define ITD_BUFPTR_EP_SH 8
192 #define ITD_BUFPTR_DEVADDR_MASK 0x0000007f
193 #define ITD_BUFPTR_DEVADDR_SH 0
194 #define ITD_BUFPTR_DIRECTION (1 << 11)
195 #define ITD_BUFPTR_MAXPKT_MASK 0x000007ff
196 #define ITD_BUFPTR_MAXPKT_SH 0
197 #define ITD_BUFPTR_MULT_MASK 0x00000003
198 #define ITD_BUFPTR_MULT_SH 0
199 } EHCIitd;
201 /* EHCI spec version 1.0 Section 3.4
203 typedef struct EHCIsitd {
204 uint32_t next; // Standard next link pointer
205 uint32_t epchar;
206 #define SITD_EPCHAR_IO (1 << 31)
207 #define SITD_EPCHAR_PORTNUM_MASK 0x7f000000
208 #define SITD_EPCHAR_PORTNUM_SH 24
209 #define SITD_EPCHAR_HUBADD_MASK 0x007f0000
210 #define SITD_EPCHAR_HUBADDR_SH 16
211 #define SITD_EPCHAR_EPNUM_MASK 0x00000f00
212 #define SITD_EPCHAR_EPNUM_SH 8
213 #define SITD_EPCHAR_DEVADDR_MASK 0x0000007f
215 uint32_t uframe;
216 #define SITD_UFRAME_CMASK_MASK 0x0000ff00
217 #define SITD_UFRAME_CMASK_SH 8
218 #define SITD_UFRAME_SMASK_MASK 0x000000ff
220 uint32_t results;
221 #define SITD_RESULTS_IOC (1 << 31)
222 #define SITD_RESULTS_PGSEL (1 << 30)
223 #define SITD_RESULTS_TBYTES_MASK 0x03ff0000
224 #define SITD_RESULTS_TYBYTES_SH 16
225 #define SITD_RESULTS_CPROGMASK_MASK 0x0000ff00
226 #define SITD_RESULTS_CPROGMASK_SH 8
227 #define SITD_RESULTS_ACTIVE (1 << 7)
228 #define SITD_RESULTS_ERR (1 << 6)
229 #define SITD_RESULTS_DBERR (1 << 5)
230 #define SITD_RESULTS_BABBLE (1 << 4)
231 #define SITD_RESULTS_XACTERR (1 << 3)
232 #define SITD_RESULTS_MISSEDUF (1 << 2)
233 #define SITD_RESULTS_SPLITXSTATE (1 << 1)
235 uint32_t bufptr[2];
236 #define SITD_BUFPTR_MASK 0xfffff000
237 #define SITD_BUFPTR_CURROFF_MASK 0x00000fff
238 #define SITD_BUFPTR_TPOS_MASK 0x00000018
239 #define SITD_BUFPTR_TPOS_SH 3
240 #define SITD_BUFPTR_TCNT_MASK 0x00000007
242 uint32_t backptr; // Standard next link pointer
243 } EHCIsitd;
245 /* EHCI spec version 1.0 Section 3.5
247 typedef struct EHCIqtd {
248 uint32_t next; // Standard next link pointer
249 uint32_t altnext; // Standard next link pointer
250 uint32_t token;
251 #define QTD_TOKEN_DTOGGLE (1 << 31)
252 #define QTD_TOKEN_TBYTES_MASK 0x7fff0000
253 #define QTD_TOKEN_TBYTES_SH 16
254 #define QTD_TOKEN_IOC (1 << 15)
255 #define QTD_TOKEN_CPAGE_MASK 0x00007000
256 #define QTD_TOKEN_CPAGE_SH 12
257 #define QTD_TOKEN_CERR_MASK 0x00000c00
258 #define QTD_TOKEN_CERR_SH 10
259 #define QTD_TOKEN_PID_MASK 0x00000300
260 #define QTD_TOKEN_PID_SH 8
261 #define QTD_TOKEN_ACTIVE (1 << 7)
262 #define QTD_TOKEN_HALT (1 << 6)
263 #define QTD_TOKEN_DBERR (1 << 5)
264 #define QTD_TOKEN_BABBLE (1 << 4)
265 #define QTD_TOKEN_XACTERR (1 << 3)
266 #define QTD_TOKEN_MISSEDUF (1 << 2)
267 #define QTD_TOKEN_SPLITXSTATE (1 << 1)
268 #define QTD_TOKEN_PING (1 << 0)
270 uint32_t bufptr[5]; // Standard buffer pointer
271 #define QTD_BUFPTR_MASK 0xfffff000
272 } EHCIqtd;
274 /* EHCI spec version 1.0 Section 3.6
276 typedef struct EHCIqh {
277 uint32_t next; // Standard next link pointer
279 /* endpoint characteristics */
280 uint32_t epchar;
281 #define QH_EPCHAR_RL_MASK 0xf0000000
282 #define QH_EPCHAR_RL_SH 28
283 #define QH_EPCHAR_C (1 << 27)
284 #define QH_EPCHAR_MPLEN_MASK 0x07FF0000
285 #define QH_EPCHAR_MPLEN_SH 16
286 #define QH_EPCHAR_H (1 << 15)
287 #define QH_EPCHAR_DTC (1 << 14)
288 #define QH_EPCHAR_EPS_MASK 0x00003000
289 #define QH_EPCHAR_EPS_SH 12
290 #define EHCI_QH_EPS_FULL 0
291 #define EHCI_QH_EPS_LOW 1
292 #define EHCI_QH_EPS_HIGH 2
293 #define EHCI_QH_EPS_RESERVED 3
295 #define QH_EPCHAR_EP_MASK 0x00000f00
296 #define QH_EPCHAR_EP_SH 8
297 #define QH_EPCHAR_I (1 << 7)
298 #define QH_EPCHAR_DEVADDR_MASK 0x0000007f
299 #define QH_EPCHAR_DEVADDR_SH 0
301 /* endpoint capabilities */
302 uint32_t epcap;
303 #define QH_EPCAP_MULT_MASK 0xc0000000
304 #define QH_EPCAP_MULT_SH 30
305 #define QH_EPCAP_PORTNUM_MASK 0x3f800000
306 #define QH_EPCAP_PORTNUM_SH 23
307 #define QH_EPCAP_HUBADDR_MASK 0x007f0000
308 #define QH_EPCAP_HUBADDR_SH 16
309 #define QH_EPCAP_CMASK_MASK 0x0000ff00
310 #define QH_EPCAP_CMASK_SH 8
311 #define QH_EPCAP_SMASK_MASK 0x000000ff
312 #define QH_EPCAP_SMASK_SH 0
314 uint32_t current_qtd; // Standard next link pointer
315 uint32_t next_qtd; // Standard next link pointer
316 uint32_t altnext_qtd;
317 #define QH_ALTNEXT_NAKCNT_MASK 0x0000001e
318 #define QH_ALTNEXT_NAKCNT_SH 1
320 uint32_t token; // Same as QTD token
321 uint32_t bufptr[5]; // Standard buffer pointer
322 #define BUFPTR_CPROGMASK_MASK 0x000000ff
323 #define BUFPTR_FRAMETAG_MASK 0x0000001f
324 #define BUFPTR_SBYTES_MASK 0x00000fe0
325 #define BUFPTR_SBYTES_SH 5
326 } EHCIqh;
328 /* EHCI spec version 1.0 Section 3.7
330 typedef struct EHCIfstn {
331 uint32_t next; // Standard next link pointer
332 uint32_t backptr; // Standard next link pointer
333 } EHCIfstn;
335 typedef struct EHCIQueue EHCIQueue;
336 typedef struct EHCIState EHCIState;
338 enum async_state {
339 EHCI_ASYNC_NONE = 0,
340 EHCI_ASYNC_INFLIGHT,
341 EHCI_ASYNC_FINISHED,
344 struct EHCIQueue {
345 EHCIState *ehci;
346 QTAILQ_ENTRY(EHCIQueue) next;
347 bool async_schedule;
348 uint32_t seen;
349 uint64_t ts;
351 /* cached data from guest - needs to be flushed
352 * when guest removes an entry (doorbell, handshake sequence)
354 EHCIqh qh; // copy of current QH (being worked on)
355 uint32_t qhaddr; // address QH read from
356 EHCIqtd qtd; // copy of current QTD (being worked on)
357 uint32_t qtdaddr; // address QTD read from
359 USBPacket packet;
360 uint8_t buffer[BUFF_SIZE];
361 int pid;
362 uint32_t tbytes;
363 enum async_state async;
364 int usb_status;
367 struct EHCIState {
368 PCIDevice dev;
369 USBBus bus;
370 qemu_irq irq;
371 target_phys_addr_t mem_base;
372 int mem;
373 int companion_count;
375 /* properties */
376 uint32_t freq;
377 uint32_t maxframes;
380 * EHCI spec version 1.0 Section 2.3
381 * Host Controller Operational Registers
383 union {
384 uint8_t mmio[MMIO_SIZE];
385 struct {
386 uint8_t cap[OPREGBASE];
387 uint32_t usbcmd;
388 uint32_t usbsts;
389 uint32_t usbintr;
390 uint32_t frindex;
391 uint32_t ctrldssegment;
392 uint32_t periodiclistbase;
393 uint32_t asynclistaddr;
394 uint32_t notused[9];
395 uint32_t configflag;
396 uint32_t portsc[NB_PORTS];
401 * Internal states, shadow registers, etc
403 uint32_t sofv;
404 QEMUTimer *frame_timer;
405 int attach_poll_counter;
406 int astate; // Current state in asynchronous schedule
407 int pstate; // Current state in periodic schedule
408 USBPort ports[NB_PORTS];
409 USBPort *companion_ports[NB_PORTS];
410 uint32_t usbsts_pending;
411 QTAILQ_HEAD(, EHCIQueue) queues;
413 uint32_t a_fetch_addr; // which address to look at next
414 uint32_t p_fetch_addr; // which address to look at next
416 USBPacket ipacket;
417 uint8_t ibuffer[BUFF_SIZE];
418 int isoch_pause;
420 uint64_t last_run_ns;
423 #define SET_LAST_RUN_CLOCK(s) \
424 (s)->last_run_ns = qemu_get_clock_ns(vm_clock);
426 /* nifty macros from Arnon's EHCI version */
427 #define get_field(data, field) \
428 (((data) & field##_MASK) >> field##_SH)
430 #define set_field(data, newval, field) do { \
431 uint32_t val = *data; \
432 val &= ~ field##_MASK; \
433 val |= ((newval) << field##_SH) & field##_MASK; \
434 *data = val; \
435 } while(0)
437 static const char *ehci_state_names[] = {
438 [ EST_INACTIVE ] = "INACTIVE",
439 [ EST_ACTIVE ] = "ACTIVE",
440 [ EST_EXECUTING ] = "EXECUTING",
441 [ EST_SLEEPING ] = "SLEEPING",
442 [ EST_WAITLISTHEAD ] = "WAITLISTHEAD",
443 [ EST_FETCHENTRY ] = "FETCH ENTRY",
444 [ EST_FETCHQH ] = "FETCH QH",
445 [ EST_FETCHITD ] = "FETCH ITD",
446 [ EST_ADVANCEQUEUE ] = "ADVANCEQUEUE",
447 [ EST_FETCHQTD ] = "FETCH QTD",
448 [ EST_EXECUTE ] = "EXECUTE",
449 [ EST_WRITEBACK ] = "WRITEBACK",
450 [ EST_HORIZONTALQH ] = "HORIZONTALQH",
453 static const char *ehci_mmio_names[] = {
454 [ CAPLENGTH ] = "CAPLENGTH",
455 [ HCIVERSION ] = "HCIVERSION",
456 [ HCSPARAMS ] = "HCSPARAMS",
457 [ HCCPARAMS ] = "HCCPARAMS",
458 [ USBCMD ] = "USBCMD",
459 [ USBSTS ] = "USBSTS",
460 [ USBINTR ] = "USBINTR",
461 [ FRINDEX ] = "FRINDEX",
462 [ PERIODICLISTBASE ] = "P-LIST BASE",
463 [ ASYNCLISTADDR ] = "A-LIST ADDR",
464 [ PORTSC_BEGIN ] = "PORTSC #0",
465 [ PORTSC_BEGIN + 4] = "PORTSC #1",
466 [ PORTSC_BEGIN + 8] = "PORTSC #2",
467 [ PORTSC_BEGIN + 12] = "PORTSC #3",
468 [ CONFIGFLAG ] = "CONFIGFLAG",
471 static const char *nr2str(const char **n, size_t len, uint32_t nr)
473 if (nr < len && n[nr] != NULL) {
474 return n[nr];
475 } else {
476 return "unknown";
480 static const char *state2str(uint32_t state)
482 return nr2str(ehci_state_names, ARRAY_SIZE(ehci_state_names), state);
485 static const char *addr2str(target_phys_addr_t addr)
487 return nr2str(ehci_mmio_names, ARRAY_SIZE(ehci_mmio_names), addr);
490 static void ehci_trace_usbsts(uint32_t mask, int state)
492 /* interrupts */
493 if (mask & USBSTS_INT) {
494 trace_usb_ehci_usbsts("INT", state);
496 if (mask & USBSTS_ERRINT) {
497 trace_usb_ehci_usbsts("ERRINT", state);
499 if (mask & USBSTS_PCD) {
500 trace_usb_ehci_usbsts("PCD", state);
502 if (mask & USBSTS_FLR) {
503 trace_usb_ehci_usbsts("FLR", state);
505 if (mask & USBSTS_HSE) {
506 trace_usb_ehci_usbsts("HSE", state);
508 if (mask & USBSTS_IAA) {
509 trace_usb_ehci_usbsts("IAA", state);
512 /* status */
513 if (mask & USBSTS_HALT) {
514 trace_usb_ehci_usbsts("HALT", state);
516 if (mask & USBSTS_REC) {
517 trace_usb_ehci_usbsts("REC", state);
519 if (mask & USBSTS_PSS) {
520 trace_usb_ehci_usbsts("PSS", state);
522 if (mask & USBSTS_ASS) {
523 trace_usb_ehci_usbsts("ASS", state);
527 static inline void ehci_set_usbsts(EHCIState *s, int mask)
529 if ((s->usbsts & mask) == mask) {
530 return;
532 ehci_trace_usbsts(mask, 1);
533 s->usbsts |= mask;
536 static inline void ehci_clear_usbsts(EHCIState *s, int mask)
538 if ((s->usbsts & mask) == 0) {
539 return;
541 ehci_trace_usbsts(mask, 0);
542 s->usbsts &= ~mask;
545 static inline void ehci_set_interrupt(EHCIState *s, int intr)
547 int level = 0;
549 // TODO honour interrupt threshold requests
551 ehci_set_usbsts(s, intr);
553 if ((s->usbsts & USBINTR_MASK) & s->usbintr) {
554 level = 1;
557 qemu_set_irq(s->irq, level);
560 static inline void ehci_record_interrupt(EHCIState *s, int intr)
562 s->usbsts_pending |= intr;
565 static inline void ehci_commit_interrupt(EHCIState *s)
567 if (!s->usbsts_pending) {
568 return;
570 ehci_set_interrupt(s, s->usbsts_pending);
571 s->usbsts_pending = 0;
574 static void ehci_set_state(EHCIState *s, int async, int state)
576 if (async) {
577 trace_usb_ehci_state("async", state2str(state));
578 s->astate = state;
579 } else {
580 trace_usb_ehci_state("periodic", state2str(state));
581 s->pstate = state;
585 static int ehci_get_state(EHCIState *s, int async)
587 return async ? s->astate : s->pstate;
590 static void ehci_set_fetch_addr(EHCIState *s, int async, uint32_t addr)
592 if (async) {
593 s->a_fetch_addr = addr;
594 } else {
595 s->p_fetch_addr = addr;
599 static int ehci_get_fetch_addr(EHCIState *s, int async)
601 return async ? s->a_fetch_addr : s->p_fetch_addr;
604 static void ehci_trace_qh(EHCIQueue *q, target_phys_addr_t addr, EHCIqh *qh)
606 /* need three here due to argument count limits */
607 trace_usb_ehci_qh_ptrs(q, addr, qh->next,
608 qh->current_qtd, qh->next_qtd, qh->altnext_qtd);
609 trace_usb_ehci_qh_fields(addr,
610 get_field(qh->epchar, QH_EPCHAR_RL),
611 get_field(qh->epchar, QH_EPCHAR_MPLEN),
612 get_field(qh->epchar, QH_EPCHAR_EPS),
613 get_field(qh->epchar, QH_EPCHAR_EP),
614 get_field(qh->epchar, QH_EPCHAR_DEVADDR));
615 trace_usb_ehci_qh_bits(addr,
616 (bool)(qh->epchar & QH_EPCHAR_C),
617 (bool)(qh->epchar & QH_EPCHAR_H),
618 (bool)(qh->epchar & QH_EPCHAR_DTC),
619 (bool)(qh->epchar & QH_EPCHAR_I));
622 static void ehci_trace_qtd(EHCIQueue *q, target_phys_addr_t addr, EHCIqtd *qtd)
624 /* need three here due to argument count limits */
625 trace_usb_ehci_qtd_ptrs(q, addr, qtd->next, qtd->altnext);
626 trace_usb_ehci_qtd_fields(addr,
627 get_field(qtd->token, QTD_TOKEN_TBYTES),
628 get_field(qtd->token, QTD_TOKEN_CPAGE),
629 get_field(qtd->token, QTD_TOKEN_CERR),
630 get_field(qtd->token, QTD_TOKEN_PID));
631 trace_usb_ehci_qtd_bits(addr,
632 (bool)(qtd->token & QTD_TOKEN_IOC),
633 (bool)(qtd->token & QTD_TOKEN_ACTIVE),
634 (bool)(qtd->token & QTD_TOKEN_HALT),
635 (bool)(qtd->token & QTD_TOKEN_BABBLE),
636 (bool)(qtd->token & QTD_TOKEN_XACTERR));
639 static void ehci_trace_itd(EHCIState *s, target_phys_addr_t addr, EHCIitd *itd)
641 trace_usb_ehci_itd(addr, itd->next,
642 get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT),
643 get_field(itd->bufptr[2], ITD_BUFPTR_MULT),
644 get_field(itd->bufptr[0], ITD_BUFPTR_EP),
645 get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR));
648 /* queue management */
650 static EHCIQueue *ehci_alloc_queue(EHCIState *ehci, int async)
652 EHCIQueue *q;
654 q = qemu_mallocz(sizeof(*q));
655 q->ehci = ehci;
656 q->async_schedule = async;
657 QTAILQ_INSERT_HEAD(&ehci->queues, q, next);
658 trace_usb_ehci_queue_action(q, "alloc");
659 return q;
662 static void ehci_free_queue(EHCIQueue *q)
664 trace_usb_ehci_queue_action(q, "free");
665 if (q->async == EHCI_ASYNC_INFLIGHT) {
666 usb_cancel_packet(&q->packet);
668 QTAILQ_REMOVE(&q->ehci->queues, q, next);
669 qemu_free(q);
672 static EHCIQueue *ehci_find_queue_by_qh(EHCIState *ehci, uint32_t addr)
674 EHCIQueue *q;
676 QTAILQ_FOREACH(q, &ehci->queues, next) {
677 if (addr == q->qhaddr) {
678 return q;
681 return NULL;
684 static void ehci_queues_rip_unused(EHCIState *ehci)
686 EHCIQueue *q, *tmp;
688 QTAILQ_FOREACH_SAFE(q, &ehci->queues, next, tmp) {
689 if (q->seen) {
690 q->seen = 0;
691 q->ts = ehci->last_run_ns;
692 continue;
694 if (ehci->last_run_ns < q->ts + 250000000) {
695 /* allow 0.25 sec idle */
696 continue;
698 ehci_free_queue(q);
702 static void ehci_queues_rip_device(EHCIState *ehci, USBDevice *dev)
704 EHCIQueue *q, *tmp;
706 QTAILQ_FOREACH_SAFE(q, &ehci->queues, next, tmp) {
707 if (q->packet.owner != dev) {
708 continue;
710 ehci_free_queue(q);
714 static void ehci_queues_rip_all(EHCIState *ehci)
716 EHCIQueue *q, *tmp;
718 QTAILQ_FOREACH_SAFE(q, &ehci->queues, next, tmp) {
719 ehci_free_queue(q);
723 /* Attach or detach a device on root hub */
725 static void ehci_attach(USBPort *port)
727 EHCIState *s = port->opaque;
728 uint32_t *portsc = &s->portsc[port->index];
730 trace_usb_ehci_port_attach(port->index, port->dev->product_desc);
732 if (*portsc & PORTSC_POWNER) {
733 USBPort *companion = s->companion_ports[port->index];
734 companion->dev = port->dev;
735 companion->ops->attach(companion);
736 return;
739 *portsc |= PORTSC_CONNECT;
740 *portsc |= PORTSC_CSC;
742 ehci_set_interrupt(s, USBSTS_PCD);
745 static void ehci_detach(USBPort *port)
747 EHCIState *s = port->opaque;
748 uint32_t *portsc = &s->portsc[port->index];
750 trace_usb_ehci_port_detach(port->index);
752 if (*portsc & PORTSC_POWNER) {
753 USBPort *companion = s->companion_ports[port->index];
754 companion->ops->detach(companion);
755 companion->dev = NULL;
756 return;
759 ehci_queues_rip_device(s, port->dev);
761 *portsc &= ~(PORTSC_CONNECT|PORTSC_PED);
762 *portsc |= PORTSC_CSC;
764 ehci_set_interrupt(s, USBSTS_PCD);
767 static void ehci_child_detach(USBPort *port, USBDevice *child)
769 EHCIState *s = port->opaque;
770 uint32_t portsc = s->portsc[port->index];
772 if (portsc & PORTSC_POWNER) {
773 USBPort *companion = s->companion_ports[port->index];
774 companion->ops->child_detach(companion, child);
775 companion->dev = NULL;
776 return;
779 ehci_queues_rip_device(s, child);
782 static void ehci_wakeup(USBPort *port)
784 EHCIState *s = port->opaque;
785 uint32_t portsc = s->portsc[port->index];
787 if (portsc & PORTSC_POWNER) {
788 USBPort *companion = s->companion_ports[port->index];
789 if (companion->ops->wakeup) {
790 companion->ops->wakeup(companion);
795 static int ehci_register_companion(USBBus *bus, USBPort *ports[],
796 uint32_t portcount, uint32_t firstport)
798 EHCIState *s = container_of(bus, EHCIState, bus);
799 uint32_t i;
801 if (firstport + portcount > NB_PORTS) {
802 qerror_report(QERR_INVALID_PARAMETER_VALUE, "firstport",
803 "firstport on masterbus");
804 error_printf_unless_qmp(
805 "firstport value of %u makes companion take ports %u - %u, which "
806 "is outside of the valid range of 0 - %u\n", firstport, firstport,
807 firstport + portcount - 1, NB_PORTS - 1);
808 return -1;
811 for (i = 0; i < portcount; i++) {
812 if (s->companion_ports[firstport + i]) {
813 qerror_report(QERR_INVALID_PARAMETER_VALUE, "masterbus",
814 "an USB masterbus");
815 error_printf_unless_qmp(
816 "port %u on masterbus %s already has a companion assigned\n",
817 firstport + i, bus->qbus.name);
818 return -1;
822 for (i = 0; i < portcount; i++) {
823 s->companion_ports[firstport + i] = ports[i];
824 s->ports[firstport + i].speedmask |=
825 USB_SPEED_MASK_LOW | USB_SPEED_MASK_FULL;
826 /* Ensure devs attached before the initial reset go to the companion */
827 s->portsc[firstport + i] = PORTSC_POWNER;
830 s->companion_count++;
831 s->mmio[0x05] = (s->companion_count << 4) | portcount;
833 return 0;
836 /* 4.1 host controller initialization */
837 static void ehci_reset(void *opaque)
839 EHCIState *s = opaque;
840 int i;
841 USBDevice *devs[NB_PORTS];
843 trace_usb_ehci_reset();
846 * Do the detach before touching portsc, so that it correctly gets send to
847 * us or to our companion based on PORTSC_POWNER before the reset.
849 for(i = 0; i < NB_PORTS; i++) {
850 devs[i] = s->ports[i].dev;
851 if (devs[i]) {
852 usb_attach(&s->ports[i], NULL);
856 memset(&s->mmio[OPREGBASE], 0x00, MMIO_SIZE - OPREGBASE);
858 s->usbcmd = NB_MAXINTRATE << USBCMD_ITC_SH;
859 s->usbsts = USBSTS_HALT;
861 s->astate = EST_INACTIVE;
862 s->pstate = EST_INACTIVE;
863 s->isoch_pause = -1;
864 s->attach_poll_counter = 0;
866 for(i = 0; i < NB_PORTS; i++) {
867 if (s->companion_ports[i]) {
868 s->portsc[i] = PORTSC_POWNER | PORTSC_PPOWER;
869 } else {
870 s->portsc[i] = PORTSC_PPOWER;
872 if (devs[i]) {
873 usb_attach(&s->ports[i], devs[i]);
876 ehci_queues_rip_all(s);
879 static uint32_t ehci_mem_readb(void *ptr, target_phys_addr_t addr)
881 EHCIState *s = ptr;
882 uint32_t val;
884 val = s->mmio[addr];
886 return val;
889 static uint32_t ehci_mem_readw(void *ptr, target_phys_addr_t addr)
891 EHCIState *s = ptr;
892 uint32_t val;
894 val = s->mmio[addr] | (s->mmio[addr+1] << 8);
896 return val;
899 static uint32_t ehci_mem_readl(void *ptr, target_phys_addr_t addr)
901 EHCIState *s = ptr;
902 uint32_t val;
904 val = s->mmio[addr] | (s->mmio[addr+1] << 8) |
905 (s->mmio[addr+2] << 16) | (s->mmio[addr+3] << 24);
907 trace_usb_ehci_mmio_readl(addr, addr2str(addr), val);
908 return val;
911 static void ehci_mem_writeb(void *ptr, target_phys_addr_t addr, uint32_t val)
913 fprintf(stderr, "EHCI doesn't handle byte writes to MMIO\n");
914 exit(1);
917 static void ehci_mem_writew(void *ptr, target_phys_addr_t addr, uint32_t val)
919 fprintf(stderr, "EHCI doesn't handle 16-bit writes to MMIO\n");
920 exit(1);
923 static void handle_port_owner_write(EHCIState *s, int port, uint32_t owner)
925 USBDevice *dev = s->ports[port].dev;
926 uint32_t *portsc = &s->portsc[port];
927 uint32_t orig;
929 if (s->companion_ports[port] == NULL)
930 return;
932 owner = owner & PORTSC_POWNER;
933 orig = *portsc & PORTSC_POWNER;
935 if (!(owner ^ orig)) {
936 return;
939 if (dev) {
940 usb_attach(&s->ports[port], NULL);
943 *portsc &= ~PORTSC_POWNER;
944 *portsc |= owner;
946 if (dev) {
947 usb_attach(&s->ports[port], dev);
951 static void handle_port_status_write(EHCIState *s, int port, uint32_t val)
953 uint32_t *portsc = &s->portsc[port];
954 USBDevice *dev = s->ports[port].dev;
956 /* Clear rwc bits */
957 *portsc &= ~(val & PORTSC_RWC_MASK);
958 /* The guest may clear, but not set the PED bit */
959 *portsc &= val | ~PORTSC_PED;
960 /* POWNER is masked out by RO_MASK as it is RO when we've no companion */
961 handle_port_owner_write(s, port, val);
962 /* And finally apply RO_MASK */
963 val &= PORTSC_RO_MASK;
965 if ((val & PORTSC_PRESET) && !(*portsc & PORTSC_PRESET)) {
966 trace_usb_ehci_port_reset(port, 1);
969 if (!(val & PORTSC_PRESET) &&(*portsc & PORTSC_PRESET)) {
970 trace_usb_ehci_port_reset(port, 0);
971 if (dev) {
972 usb_attach(&s->ports[port], dev);
973 usb_send_msg(dev, USB_MSG_RESET);
974 *portsc &= ~PORTSC_CSC;
978 * Table 2.16 Set the enable bit(and enable bit change) to indicate
979 * to SW that this port has a high speed device attached
981 if (dev && (dev->speedmask & USB_SPEED_MASK_HIGH)) {
982 val |= PORTSC_PED;
986 *portsc &= ~PORTSC_RO_MASK;
987 *portsc |= val;
990 static void ehci_mem_writel(void *ptr, target_phys_addr_t addr, uint32_t val)
992 EHCIState *s = ptr;
993 uint32_t *mmio = (uint32_t *)(&s->mmio[addr]);
994 uint32_t old = *mmio;
995 int i;
997 trace_usb_ehci_mmio_writel(addr, addr2str(addr), val);
999 /* Only aligned reads are allowed on OHCI */
1000 if (addr & 3) {
1001 fprintf(stderr, "usb-ehci: Mis-aligned write to addr 0x"
1002 TARGET_FMT_plx "\n", addr);
1003 return;
1006 if (addr >= PORTSC && addr < PORTSC + 4 * NB_PORTS) {
1007 handle_port_status_write(s, (addr-PORTSC)/4, val);
1008 trace_usb_ehci_mmio_change(addr, addr2str(addr), *mmio, old);
1009 return;
1012 if (addr < OPREGBASE) {
1013 fprintf(stderr, "usb-ehci: write attempt to read-only register"
1014 TARGET_FMT_plx "\n", addr);
1015 return;
1019 /* Do any register specific pre-write processing here. */
1020 switch(addr) {
1021 case USBCMD:
1022 if ((val & USBCMD_RUNSTOP) && !(s->usbcmd & USBCMD_RUNSTOP)) {
1023 qemu_mod_timer(s->frame_timer, qemu_get_clock_ns(vm_clock));
1024 SET_LAST_RUN_CLOCK(s);
1025 ehci_clear_usbsts(s, USBSTS_HALT);
1028 if (!(val & USBCMD_RUNSTOP) && (s->usbcmd & USBCMD_RUNSTOP)) {
1029 qemu_del_timer(s->frame_timer);
1030 // TODO - should finish out some stuff before setting halt
1031 ehci_set_usbsts(s, USBSTS_HALT);
1034 if (val & USBCMD_HCRESET) {
1035 ehci_reset(s);
1036 val &= ~USBCMD_HCRESET;
1039 /* not supporting dynamic frame list size at the moment */
1040 if ((val & USBCMD_FLS) && !(s->usbcmd & USBCMD_FLS)) {
1041 fprintf(stderr, "attempt to set frame list size -- value %d\n",
1042 val & USBCMD_FLS);
1043 val &= ~USBCMD_FLS;
1045 break;
1047 case USBSTS:
1048 val &= USBSTS_RO_MASK; // bits 6 thru 31 are RO
1049 ehci_clear_usbsts(s, val); // bits 0 thru 5 are R/WC
1050 val = s->usbsts;
1051 ehci_set_interrupt(s, 0);
1052 break;
1054 case USBINTR:
1055 val &= USBINTR_MASK;
1056 break;
1058 case FRINDEX:
1059 s->sofv = val >> 3;
1060 break;
1062 case CONFIGFLAG:
1063 val &= 0x1;
1064 if (val) {
1065 for(i = 0; i < NB_PORTS; i++)
1066 handle_port_owner_write(s, i, 0);
1068 break;
1070 case PERIODICLISTBASE:
1071 if ((s->usbcmd & USBCMD_PSE) && (s->usbcmd & USBCMD_RUNSTOP)) {
1072 fprintf(stderr,
1073 "ehci: PERIODIC list base register set while periodic schedule\n"
1074 " is enabled and HC is enabled\n");
1076 break;
1078 case ASYNCLISTADDR:
1079 if ((s->usbcmd & USBCMD_ASE) && (s->usbcmd & USBCMD_RUNSTOP)) {
1080 fprintf(stderr,
1081 "ehci: ASYNC list address register set while async schedule\n"
1082 " is enabled and HC is enabled\n");
1084 break;
1087 *mmio = val;
1088 trace_usb_ehci_mmio_change(addr, addr2str(addr), *mmio, old);
1092 // TODO : Put in common header file, duplication from usb-ohci.c
1094 /* Get an array of dwords from main memory */
1095 static inline int get_dwords(uint32_t addr, uint32_t *buf, int num)
1097 int i;
1099 for(i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
1100 cpu_physical_memory_rw(addr,(uint8_t *)buf, sizeof(*buf), 0);
1101 *buf = le32_to_cpu(*buf);
1104 return 1;
1107 /* Put an array of dwords in to main memory */
1108 static inline int put_dwords(uint32_t addr, uint32_t *buf, int num)
1110 int i;
1112 for(i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
1113 uint32_t tmp = cpu_to_le32(*buf);
1114 cpu_physical_memory_rw(addr,(uint8_t *)&tmp, sizeof(tmp), 1);
1117 return 1;
1120 // 4.10.2
1122 static int ehci_qh_do_overlay(EHCIQueue *q)
1124 int i;
1125 int dtoggle;
1126 int ping;
1127 int eps;
1128 int reload;
1130 // remember values in fields to preserve in qh after overlay
1132 dtoggle = q->qh.token & QTD_TOKEN_DTOGGLE;
1133 ping = q->qh.token & QTD_TOKEN_PING;
1135 q->qh.current_qtd = q->qtdaddr;
1136 q->qh.next_qtd = q->qtd.next;
1137 q->qh.altnext_qtd = q->qtd.altnext;
1138 q->qh.token = q->qtd.token;
1141 eps = get_field(q->qh.epchar, QH_EPCHAR_EPS);
1142 if (eps == EHCI_QH_EPS_HIGH) {
1143 q->qh.token &= ~QTD_TOKEN_PING;
1144 q->qh.token |= ping;
1147 reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1148 set_field(&q->qh.altnext_qtd, reload, QH_ALTNEXT_NAKCNT);
1150 for (i = 0; i < 5; i++) {
1151 q->qh.bufptr[i] = q->qtd.bufptr[i];
1154 if (!(q->qh.epchar & QH_EPCHAR_DTC)) {
1155 // preserve QH DT bit
1156 q->qh.token &= ~QTD_TOKEN_DTOGGLE;
1157 q->qh.token |= dtoggle;
1160 q->qh.bufptr[1] &= ~BUFPTR_CPROGMASK_MASK;
1161 q->qh.bufptr[2] &= ~BUFPTR_FRAMETAG_MASK;
1163 put_dwords(NLPTR_GET(q->qhaddr), (uint32_t *) &q->qh, sizeof(EHCIqh) >> 2);
1165 return 0;
1168 static int ehci_buffer_rw(EHCIQueue *q, int bytes, int rw)
1170 int bufpos = 0;
1171 int cpage, offset;
1172 uint32_t head;
1173 uint32_t tail;
1176 if (!bytes) {
1177 return 0;
1180 cpage = get_field(q->qh.token, QTD_TOKEN_CPAGE);
1181 if (cpage > 4) {
1182 fprintf(stderr, "cpage out of range (%d)\n", cpage);
1183 return USB_RET_PROCERR;
1186 offset = q->qh.bufptr[0] & ~QTD_BUFPTR_MASK;
1188 do {
1189 /* start and end of this page */
1190 head = q->qh.bufptr[cpage] & QTD_BUFPTR_MASK;
1191 tail = head + ~QTD_BUFPTR_MASK + 1;
1192 /* add offset into page */
1193 head |= offset;
1195 if (bytes <= (tail - head)) {
1196 tail = head + bytes;
1199 trace_usb_ehci_data(rw, cpage, offset, head, tail-head, bufpos);
1200 cpu_physical_memory_rw(head, q->buffer + bufpos, tail - head, rw);
1202 bufpos += (tail - head);
1203 offset += (tail - head);
1204 bytes -= (tail - head);
1206 if (bytes > 0) {
1207 cpage++;
1208 offset = 0;
1210 } while (bytes > 0);
1212 /* save cpage */
1213 set_field(&q->qh.token, cpage, QTD_TOKEN_CPAGE);
1215 /* save offset into cpage */
1216 q->qh.bufptr[0] &= QTD_BUFPTR_MASK;
1217 q->qh.bufptr[0] |= offset;
1219 return 0;
1222 static void ehci_async_complete_packet(USBPort *port, USBPacket *packet)
1224 EHCIQueue *q;
1225 EHCIState *s = port->opaque;
1226 uint32_t portsc = s->portsc[port->index];
1228 if (portsc & PORTSC_POWNER) {
1229 USBPort *companion = s->companion_ports[port->index];
1230 companion->ops->complete(companion, packet);
1231 return;
1234 q = container_of(packet, EHCIQueue, packet);
1235 trace_usb_ehci_queue_action(q, "wakeup");
1236 assert(q->async == EHCI_ASYNC_INFLIGHT);
1237 q->async = EHCI_ASYNC_FINISHED;
1238 q->usb_status = packet->len;
1241 static void ehci_execute_complete(EHCIQueue *q)
1243 int c_err, reload;
1245 assert(q->async != EHCI_ASYNC_INFLIGHT);
1246 q->async = EHCI_ASYNC_NONE;
1248 DPRINTF("execute_complete: qhaddr 0x%x, next %x, qtdaddr 0x%x, status %d\n",
1249 q->qhaddr, q->qh.next, q->qtdaddr, q->usb_status);
1251 if (q->usb_status < 0) {
1252 err:
1253 /* TO-DO: put this is in a function that can be invoked below as well */
1254 c_err = get_field(q->qh.token, QTD_TOKEN_CERR);
1255 c_err--;
1256 set_field(&q->qh.token, c_err, QTD_TOKEN_CERR);
1258 switch(q->usb_status) {
1259 case USB_RET_NODEV:
1260 q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_XACTERR);
1261 ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1262 break;
1263 case USB_RET_STALL:
1264 q->qh.token |= QTD_TOKEN_HALT;
1265 ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1266 break;
1267 case USB_RET_NAK:
1268 /* 4.10.3 */
1269 reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1270 if ((q->pid == USB_TOKEN_IN) && reload) {
1271 int nakcnt = get_field(q->qh.altnext_qtd, QH_ALTNEXT_NAKCNT);
1272 nakcnt--;
1273 set_field(&q->qh.altnext_qtd, nakcnt, QH_ALTNEXT_NAKCNT);
1274 } else if (!reload) {
1275 return;
1277 break;
1278 case USB_RET_BABBLE:
1279 q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_BABBLE);
1280 ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1281 break;
1282 default:
1283 /* should not be triggerable */
1284 fprintf(stderr, "USB invalid response %d to handle\n", q->usb_status);
1285 assert(0);
1286 break;
1288 } else {
1289 // DPRINTF("Short packet condition\n");
1290 // TODO check 4.12 for splits
1292 if ((q->usb_status > q->tbytes) && (q->pid == USB_TOKEN_IN)) {
1293 q->usb_status = USB_RET_BABBLE;
1294 goto err;
1297 if (q->tbytes && q->pid == USB_TOKEN_IN) {
1298 if (ehci_buffer_rw(q, q->usb_status, 1) != 0) {
1299 q->usb_status = USB_RET_PROCERR;
1300 return;
1302 q->tbytes -= q->usb_status;
1303 } else {
1304 q->tbytes = 0;
1307 DPRINTF("updating tbytes to %d\n", q->tbytes);
1308 set_field(&q->qh.token, q->tbytes, QTD_TOKEN_TBYTES);
1311 q->qh.token ^= QTD_TOKEN_DTOGGLE;
1312 q->qh.token &= ~QTD_TOKEN_ACTIVE;
1314 if ((q->usb_status >= 0) && (q->qh.token & QTD_TOKEN_IOC)) {
1315 ehci_record_interrupt(q->ehci, USBSTS_INT);
1319 // 4.10.3
1321 static int ehci_execute(EHCIQueue *q)
1323 USBPort *port;
1324 USBDevice *dev;
1325 int ret;
1326 int i;
1327 int endp;
1328 int devadr;
1330 if ( !(q->qh.token & QTD_TOKEN_ACTIVE)) {
1331 fprintf(stderr, "Attempting to execute inactive QH\n");
1332 return USB_RET_PROCERR;
1335 q->tbytes = (q->qh.token & QTD_TOKEN_TBYTES_MASK) >> QTD_TOKEN_TBYTES_SH;
1336 if (q->tbytes > BUFF_SIZE) {
1337 fprintf(stderr, "Request for more bytes than allowed\n");
1338 return USB_RET_PROCERR;
1341 q->pid = (q->qh.token & QTD_TOKEN_PID_MASK) >> QTD_TOKEN_PID_SH;
1342 switch(q->pid) {
1343 case 0: q->pid = USB_TOKEN_OUT; break;
1344 case 1: q->pid = USB_TOKEN_IN; break;
1345 case 2: q->pid = USB_TOKEN_SETUP; break;
1346 default: fprintf(stderr, "bad token\n"); break;
1349 if ((q->tbytes && q->pid != USB_TOKEN_IN) &&
1350 (ehci_buffer_rw(q, q->tbytes, 0) != 0)) {
1351 return USB_RET_PROCERR;
1354 endp = get_field(q->qh.epchar, QH_EPCHAR_EP);
1355 devadr = get_field(q->qh.epchar, QH_EPCHAR_DEVADDR);
1357 ret = USB_RET_NODEV;
1359 // TO-DO: associating device with ehci port
1360 for(i = 0; i < NB_PORTS; i++) {
1361 port = &q->ehci->ports[i];
1362 dev = port->dev;
1364 if (!(q->ehci->portsc[i] &(PORTSC_CONNECT))) {
1365 DPRINTF("Port %d, no exec, not connected(%08X)\n",
1366 i, q->ehci->portsc[i]);
1367 continue;
1370 q->packet.pid = q->pid;
1371 q->packet.devaddr = devadr;
1372 q->packet.devep = endp;
1373 q->packet.data = q->buffer;
1374 q->packet.len = q->tbytes;
1376 ret = usb_handle_packet(dev, &q->packet);
1378 DPRINTF("submit: qh %x next %x qtd %x pid %x len %d (total %d) endp %x ret %d\n",
1379 q->qhaddr, q->qh.next, q->qtdaddr, q->pid,
1380 q->packet.len, q->tbytes, endp, ret);
1382 if (ret != USB_RET_NODEV) {
1383 break;
1387 if (ret > BUFF_SIZE) {
1388 fprintf(stderr, "ret from usb_handle_packet > BUFF_SIZE\n");
1389 return USB_RET_PROCERR;
1392 return ret;
1395 /* 4.7.2
1398 static int ehci_process_itd(EHCIState *ehci,
1399 EHCIitd *itd)
1401 USBPort *port;
1402 USBDevice *dev;
1403 int ret;
1404 uint32_t i, j, len, len1, len2, pid, dir, devaddr, endp;
1405 uint32_t pg, off, ptr1, ptr2, max, mult;
1407 dir =(itd->bufptr[1] & ITD_BUFPTR_DIRECTION);
1408 devaddr = get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR);
1409 endp = get_field(itd->bufptr[0], ITD_BUFPTR_EP);
1410 max = get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT);
1411 mult = get_field(itd->bufptr[2], ITD_BUFPTR_MULT);
1413 for(i = 0; i < 8; i++) {
1414 if (itd->transact[i] & ITD_XACT_ACTIVE) {
1415 pg = get_field(itd->transact[i], ITD_XACT_PGSEL);
1416 off = itd->transact[i] & ITD_XACT_OFFSET_MASK;
1417 ptr1 = (itd->bufptr[pg] & ITD_BUFPTR_MASK);
1418 ptr2 = (itd->bufptr[pg+1] & ITD_BUFPTR_MASK);
1419 len = get_field(itd->transact[i], ITD_XACT_LENGTH);
1421 if (len > max * mult) {
1422 len = max * mult;
1425 if (len > BUFF_SIZE) {
1426 return USB_RET_PROCERR;
1429 if (off + len > 4096) {
1430 /* transfer crosses page border */
1431 len2 = off + len - 4096;
1432 len1 = len - len2;
1433 } else {
1434 len1 = len;
1435 len2 = 0;
1438 if (!dir) {
1439 pid = USB_TOKEN_OUT;
1440 trace_usb_ehci_data(0, pg, off, ptr1 + off, len1, 0);
1441 cpu_physical_memory_rw(ptr1 + off, &ehci->ibuffer[0], len1, 0);
1442 if (len2) {
1443 trace_usb_ehci_data(0, pg+1, 0, ptr2, len2, len1);
1444 cpu_physical_memory_rw(ptr2, &ehci->ibuffer[len1], len2, 0);
1446 } else {
1447 pid = USB_TOKEN_IN;
1450 ret = USB_RET_NODEV;
1452 for (j = 0; j < NB_PORTS; j++) {
1453 port = &ehci->ports[j];
1454 dev = port->dev;
1456 if (!(ehci->portsc[j] &(PORTSC_CONNECT))) {
1457 continue;
1460 ehci->ipacket.pid = pid;
1461 ehci->ipacket.devaddr = devaddr;
1462 ehci->ipacket.devep = endp;
1463 ehci->ipacket.data = ehci->ibuffer;
1464 ehci->ipacket.len = len;
1466 ret = usb_handle_packet(dev, &ehci->ipacket);
1468 if (ret != USB_RET_NODEV) {
1469 break;
1473 #if 0
1474 /* In isoch, there is no facility to indicate a NAK so let's
1475 * instead just complete a zero-byte transaction. Setting
1476 * DBERR seems too draconian.
1479 if (ret == USB_RET_NAK) {
1480 if (ehci->isoch_pause > 0) {
1481 DPRINTF("ISOCH: received a NAK but paused so returning\n");
1482 ehci->isoch_pause--;
1483 return 0;
1484 } else if (ehci->isoch_pause == -1) {
1485 DPRINTF("ISOCH: recv NAK & isoch pause inactive, setting\n");
1486 // Pause frindex for up to 50 msec waiting for data from
1487 // remote
1488 ehci->isoch_pause = 50;
1489 return 0;
1490 } else {
1491 DPRINTF("ISOCH: isoch pause timeout! return 0\n");
1492 ret = 0;
1494 } else {
1495 DPRINTF("ISOCH: received ACK, clearing pause\n");
1496 ehci->isoch_pause = -1;
1498 #else
1499 if (ret == USB_RET_NAK) {
1500 ret = 0;
1502 #endif
1504 if (ret >= 0) {
1505 if (!dir) {
1506 /* OUT */
1507 set_field(&itd->transact[i], len - ret, ITD_XACT_LENGTH);
1508 } else {
1509 /* IN */
1510 if (len1 > ret) {
1511 len1 = ret;
1513 if (len2 > ret - len1) {
1514 len2 = ret - len1;
1516 if (len1) {
1517 trace_usb_ehci_data(1, pg, off, ptr1 + off, len1, 0);
1518 cpu_physical_memory_rw(ptr1 + off, &ehci->ibuffer[0], len1, 1);
1520 if (len2) {
1521 trace_usb_ehci_data(1, pg+1, 0, ptr2, len2, len1);
1522 cpu_physical_memory_rw(ptr2, &ehci->ibuffer[len1], len2, 1);
1524 set_field(&itd->transact[i], ret, ITD_XACT_LENGTH);
1527 if (itd->transact[i] & ITD_XACT_IOC) {
1528 ehci_record_interrupt(ehci, USBSTS_INT);
1531 itd->transact[i] &= ~ITD_XACT_ACTIVE;
1534 return 0;
1537 /* This state is the entry point for asynchronous schedule
1538 * processing. Entry here consitutes a EHCI start event state (4.8.5)
1540 static int ehci_state_waitlisthead(EHCIState *ehci, int async)
1542 EHCIqh qh;
1543 int i = 0;
1544 int again = 0;
1545 uint32_t entry = ehci->asynclistaddr;
1547 /* set reclamation flag at start event (4.8.6) */
1548 if (async) {
1549 ehci_set_usbsts(ehci, USBSTS_REC);
1552 ehci_queues_rip_unused(ehci);
1554 /* Find the head of the list (4.9.1.1) */
1555 for(i = 0; i < MAX_QH; i++) {
1556 get_dwords(NLPTR_GET(entry), (uint32_t *) &qh, sizeof(EHCIqh) >> 2);
1557 ehci_trace_qh(NULL, NLPTR_GET(entry), &qh);
1559 if (qh.epchar & QH_EPCHAR_H) {
1560 if (async) {
1561 entry |= (NLPTR_TYPE_QH << 1);
1564 ehci_set_fetch_addr(ehci, async, entry);
1565 ehci_set_state(ehci, async, EST_FETCHENTRY);
1566 again = 1;
1567 goto out;
1570 entry = qh.next;
1571 if (entry == ehci->asynclistaddr) {
1572 break;
1576 /* no head found for list. */
1578 ehci_set_state(ehci, async, EST_ACTIVE);
1580 out:
1581 return again;
1585 /* This state is the entry point for periodic schedule processing as
1586 * well as being a continuation state for async processing.
1588 static int ehci_state_fetchentry(EHCIState *ehci, int async)
1590 int again = 0;
1591 uint32_t entry = ehci_get_fetch_addr(ehci, async);
1593 if (entry < 0x1000) {
1594 DPRINTF("fetchentry: entry invalid (0x%08x)\n", entry);
1595 ehci_set_state(ehci, async, EST_ACTIVE);
1596 goto out;
1599 /* section 4.8, only QH in async schedule */
1600 if (async && (NLPTR_TYPE_GET(entry) != NLPTR_TYPE_QH)) {
1601 fprintf(stderr, "non queue head request in async schedule\n");
1602 return -1;
1605 switch (NLPTR_TYPE_GET(entry)) {
1606 case NLPTR_TYPE_QH:
1607 ehci_set_state(ehci, async, EST_FETCHQH);
1608 again = 1;
1609 break;
1611 case NLPTR_TYPE_ITD:
1612 ehci_set_state(ehci, async, EST_FETCHITD);
1613 again = 1;
1614 break;
1616 default:
1617 // TODO: handle siTD and FSTN types
1618 fprintf(stderr, "FETCHENTRY: entry at %X is of type %d "
1619 "which is not supported yet\n", entry, NLPTR_TYPE_GET(entry));
1620 return -1;
1623 out:
1624 return again;
1627 static EHCIQueue *ehci_state_fetchqh(EHCIState *ehci, int async)
1629 uint32_t entry;
1630 EHCIQueue *q;
1631 int reload;
1633 entry = ehci_get_fetch_addr(ehci, async);
1634 q = ehci_find_queue_by_qh(ehci, entry);
1635 if (NULL == q) {
1636 q = ehci_alloc_queue(ehci, async);
1638 q->qhaddr = entry;
1639 q->seen++;
1641 if (q->seen > 1) {
1642 /* we are going in circles -- stop processing */
1643 ehci_set_state(ehci, async, EST_ACTIVE);
1644 q = NULL;
1645 goto out;
1648 get_dwords(NLPTR_GET(q->qhaddr), (uint32_t *) &q->qh, sizeof(EHCIqh) >> 2);
1649 ehci_trace_qh(q, NLPTR_GET(q->qhaddr), &q->qh);
1651 if (q->async == EHCI_ASYNC_INFLIGHT) {
1652 /* I/O still in progress -- skip queue */
1653 ehci_set_state(ehci, async, EST_HORIZONTALQH);
1654 goto out;
1656 if (q->async == EHCI_ASYNC_FINISHED) {
1657 /* I/O finished -- continue processing queue */
1658 trace_usb_ehci_queue_action(q, "resume");
1659 ehci_set_state(ehci, async, EST_EXECUTING);
1660 goto out;
1663 if (async && (q->qh.epchar & QH_EPCHAR_H)) {
1665 /* EHCI spec version 1.0 Section 4.8.3 & 4.10.1 */
1666 if (ehci->usbsts & USBSTS_REC) {
1667 ehci_clear_usbsts(ehci, USBSTS_REC);
1668 } else {
1669 DPRINTF("FETCHQH: QH 0x%08x. H-bit set, reclamation status reset"
1670 " - done processing\n", q->qhaddr);
1671 ehci_set_state(ehci, async, EST_ACTIVE);
1672 q = NULL;
1673 goto out;
1677 #if EHCI_DEBUG
1678 if (q->qhaddr != q->qh.next) {
1679 DPRINTF("FETCHQH: QH 0x%08x (h %x halt %x active %x) next 0x%08x\n",
1680 q->qhaddr,
1681 q->qh.epchar & QH_EPCHAR_H,
1682 q->qh.token & QTD_TOKEN_HALT,
1683 q->qh.token & QTD_TOKEN_ACTIVE,
1684 q->qh.next);
1686 #endif
1688 reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1689 if (reload) {
1690 set_field(&q->qh.altnext_qtd, reload, QH_ALTNEXT_NAKCNT);
1693 if (q->qh.token & QTD_TOKEN_HALT) {
1694 ehci_set_state(ehci, async, EST_HORIZONTALQH);
1696 } else if ((q->qh.token & QTD_TOKEN_ACTIVE) && (q->qh.current_qtd > 0x1000)) {
1697 q->qtdaddr = q->qh.current_qtd;
1698 ehci_set_state(ehci, async, EST_FETCHQTD);
1700 } else {
1701 /* EHCI spec version 1.0 Section 4.10.2 */
1702 ehci_set_state(ehci, async, EST_ADVANCEQUEUE);
1705 out:
1706 return q;
1709 static int ehci_state_fetchitd(EHCIState *ehci, int async)
1711 uint32_t entry;
1712 EHCIitd itd;
1714 assert(!async);
1715 entry = ehci_get_fetch_addr(ehci, async);
1717 get_dwords(NLPTR_GET(entry),(uint32_t *) &itd,
1718 sizeof(EHCIitd) >> 2);
1719 ehci_trace_itd(ehci, entry, &itd);
1721 if (ehci_process_itd(ehci, &itd) != 0) {
1722 return -1;
1725 put_dwords(NLPTR_GET(entry), (uint32_t *) &itd,
1726 sizeof(EHCIitd) >> 2);
1727 ehci_set_fetch_addr(ehci, async, itd.next);
1728 ehci_set_state(ehci, async, EST_FETCHENTRY);
1730 return 1;
1733 /* Section 4.10.2 - paragraph 3 */
1734 static int ehci_state_advqueue(EHCIQueue *q, int async)
1736 #if 0
1737 /* TO-DO: 4.10.2 - paragraph 2
1738 * if I-bit is set to 1 and QH is not active
1739 * go to horizontal QH
1741 if (I-bit set) {
1742 ehci_set_state(ehci, async, EST_HORIZONTALQH);
1743 goto out;
1745 #endif
1748 * want data and alt-next qTD is valid
1750 if (((q->qh.token & QTD_TOKEN_TBYTES_MASK) != 0) &&
1751 (q->qh.altnext_qtd > 0x1000) &&
1752 (NLPTR_TBIT(q->qh.altnext_qtd) == 0)) {
1753 q->qtdaddr = q->qh.altnext_qtd;
1754 ehci_set_state(q->ehci, async, EST_FETCHQTD);
1757 * next qTD is valid
1759 } else if ((q->qh.next_qtd > 0x1000) &&
1760 (NLPTR_TBIT(q->qh.next_qtd) == 0)) {
1761 q->qtdaddr = q->qh.next_qtd;
1762 ehci_set_state(q->ehci, async, EST_FETCHQTD);
1765 * no valid qTD, try next QH
1767 } else {
1768 ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1771 return 1;
1774 /* Section 4.10.2 - paragraph 4 */
1775 static int ehci_state_fetchqtd(EHCIQueue *q, int async)
1777 int again = 0;
1779 get_dwords(NLPTR_GET(q->qtdaddr),(uint32_t *) &q->qtd, sizeof(EHCIqtd) >> 2);
1780 ehci_trace_qtd(q, NLPTR_GET(q->qtdaddr), &q->qtd);
1782 if (q->qtd.token & QTD_TOKEN_ACTIVE) {
1783 ehci_set_state(q->ehci, async, EST_EXECUTE);
1784 again = 1;
1785 } else {
1786 ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1787 again = 1;
1790 return again;
1793 static int ehci_state_horizqh(EHCIQueue *q, int async)
1795 int again = 0;
1797 if (ehci_get_fetch_addr(q->ehci, async) != q->qh.next) {
1798 ehci_set_fetch_addr(q->ehci, async, q->qh.next);
1799 ehci_set_state(q->ehci, async, EST_FETCHENTRY);
1800 again = 1;
1801 } else {
1802 ehci_set_state(q->ehci, async, EST_ACTIVE);
1805 return again;
1809 * Write the qh back to guest physical memory. This step isn't
1810 * in the EHCI spec but we need to do it since we don't share
1811 * physical memory with our guest VM.
1813 * The first three dwords are read-only for the EHCI, so skip them
1814 * when writing back the qh.
1816 static void ehci_flush_qh(EHCIQueue *q)
1818 uint32_t *qh = (uint32_t *) &q->qh;
1819 uint32_t dwords = sizeof(EHCIqh) >> 2;
1820 uint32_t addr = NLPTR_GET(q->qhaddr);
1822 put_dwords(addr + 3 * sizeof(uint32_t), qh + 3, dwords - 3);
1825 static int ehci_state_execute(EHCIQueue *q, int async)
1827 int again = 0;
1828 int reload, nakcnt;
1829 int smask;
1831 if (ehci_qh_do_overlay(q) != 0) {
1832 return -1;
1835 smask = get_field(q->qh.epcap, QH_EPCAP_SMASK);
1837 if (!smask) {
1838 reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1839 nakcnt = get_field(q->qh.altnext_qtd, QH_ALTNEXT_NAKCNT);
1840 if (reload && !nakcnt) {
1841 ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1842 again = 1;
1843 goto out;
1847 // TODO verify enough time remains in the uframe as in 4.4.1.1
1848 // TODO write back ptr to async list when done or out of time
1849 // TODO Windows does not seem to ever set the MULT field
1851 if (!async) {
1852 int transactCtr = get_field(q->qh.epcap, QH_EPCAP_MULT);
1853 if (!transactCtr) {
1854 ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1855 again = 1;
1856 goto out;
1860 if (async) {
1861 ehci_set_usbsts(q->ehci, USBSTS_REC);
1864 q->usb_status = ehci_execute(q);
1865 if (q->usb_status == USB_RET_PROCERR) {
1866 again = -1;
1867 goto out;
1869 if (q->usb_status == USB_RET_ASYNC) {
1870 ehci_flush_qh(q);
1871 trace_usb_ehci_queue_action(q, "suspend");
1872 q->async = EHCI_ASYNC_INFLIGHT;
1873 ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1874 again = 1;
1875 goto out;
1878 ehci_set_state(q->ehci, async, EST_EXECUTING);
1879 again = 1;
1881 out:
1882 return again;
1885 static int ehci_state_executing(EHCIQueue *q, int async)
1887 int again = 0;
1888 int reload, nakcnt;
1890 ehci_execute_complete(q);
1891 if (q->usb_status == USB_RET_ASYNC) {
1892 goto out;
1894 if (q->usb_status == USB_RET_PROCERR) {
1895 again = -1;
1896 goto out;
1899 // 4.10.3
1900 if (!async) {
1901 int transactCtr = get_field(q->qh.epcap, QH_EPCAP_MULT);
1902 transactCtr--;
1903 set_field(&q->qh.epcap, transactCtr, QH_EPCAP_MULT);
1904 // 4.10.3, bottom of page 82, should exit this state when transaction
1905 // counter decrements to 0
1908 reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1909 if (reload) {
1910 nakcnt = get_field(q->qh.altnext_qtd, QH_ALTNEXT_NAKCNT);
1911 if (q->usb_status == USB_RET_NAK) {
1912 if (nakcnt) {
1913 nakcnt--;
1915 } else {
1916 nakcnt = reload;
1918 set_field(&q->qh.altnext_qtd, nakcnt, QH_ALTNEXT_NAKCNT);
1921 /* 4.10.5 */
1922 if ((q->usb_status == USB_RET_NAK) || (q->qh.token & QTD_TOKEN_ACTIVE)) {
1923 ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1924 } else {
1925 ehci_set_state(q->ehci, async, EST_WRITEBACK);
1928 again = 1;
1930 out:
1931 ehci_flush_qh(q);
1932 return again;
1936 static int ehci_state_writeback(EHCIQueue *q, int async)
1938 int again = 0;
1940 /* Write back the QTD from the QH area */
1941 ehci_trace_qtd(q, NLPTR_GET(q->qtdaddr), (EHCIqtd*) &q->qh.next_qtd);
1942 put_dwords(NLPTR_GET(q->qtdaddr),(uint32_t *) &q->qh.next_qtd,
1943 sizeof(EHCIqtd) >> 2);
1946 * EHCI specs say go horizontal here.
1948 * We can also advance the queue here for performance reasons. We
1949 * need to take care to only take that shortcut in case we've
1950 * processed the qtd just written back without errors, i.e. halt
1951 * bit is clear.
1953 if (q->qh.token & QTD_TOKEN_HALT) {
1954 ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1955 again = 1;
1956 } else {
1957 ehci_set_state(q->ehci, async, EST_ADVANCEQUEUE);
1958 again = 1;
1960 return again;
1964 * This is the state machine that is common to both async and periodic
1967 static void ehci_advance_state(EHCIState *ehci,
1968 int async)
1970 EHCIQueue *q = NULL;
1971 int again;
1972 int iter = 0;
1974 do {
1975 if (ehci_get_state(ehci, async) == EST_FETCHQH) {
1976 iter++;
1977 /* if we are roaming a lot of QH without executing a qTD
1978 * something is wrong with the linked list. TO-DO: why is
1979 * this hack needed?
1981 assert(iter < MAX_ITERATIONS);
1982 #if 0
1983 if (iter > MAX_ITERATIONS) {
1984 DPRINTF("\n*** advance_state: bailing on MAX ITERATIONS***\n");
1985 ehci_set_state(ehci, async, EST_ACTIVE);
1986 break;
1988 #endif
1990 switch(ehci_get_state(ehci, async)) {
1991 case EST_WAITLISTHEAD:
1992 again = ehci_state_waitlisthead(ehci, async);
1993 break;
1995 case EST_FETCHENTRY:
1996 again = ehci_state_fetchentry(ehci, async);
1997 break;
1999 case EST_FETCHQH:
2000 q = ehci_state_fetchqh(ehci, async);
2001 again = q ? 1 : 0;
2002 break;
2004 case EST_FETCHITD:
2005 again = ehci_state_fetchitd(ehci, async);
2006 break;
2008 case EST_ADVANCEQUEUE:
2009 again = ehci_state_advqueue(q, async);
2010 break;
2012 case EST_FETCHQTD:
2013 again = ehci_state_fetchqtd(q, async);
2014 break;
2016 case EST_HORIZONTALQH:
2017 again = ehci_state_horizqh(q, async);
2018 break;
2020 case EST_EXECUTE:
2021 iter = 0;
2022 again = ehci_state_execute(q, async);
2023 break;
2025 case EST_EXECUTING:
2026 assert(q != NULL);
2027 again = ehci_state_executing(q, async);
2028 break;
2030 case EST_WRITEBACK:
2031 again = ehci_state_writeback(q, async);
2032 break;
2034 default:
2035 fprintf(stderr, "Bad state!\n");
2036 again = -1;
2037 assert(0);
2038 break;
2041 if (again < 0) {
2042 fprintf(stderr, "processing error - resetting ehci HC\n");
2043 ehci_reset(ehci);
2044 again = 0;
2045 assert(0);
2048 while (again);
2050 ehci_commit_interrupt(ehci);
2053 static void ehci_advance_async_state(EHCIState *ehci)
2055 int async = 1;
2057 switch(ehci_get_state(ehci, async)) {
2058 case EST_INACTIVE:
2059 if (!(ehci->usbcmd & USBCMD_ASE)) {
2060 break;
2062 ehci_set_usbsts(ehci, USBSTS_ASS);
2063 ehci_set_state(ehci, async, EST_ACTIVE);
2064 // No break, fall through to ACTIVE
2066 case EST_ACTIVE:
2067 if ( !(ehci->usbcmd & USBCMD_ASE)) {
2068 ehci_clear_usbsts(ehci, USBSTS_ASS);
2069 ehci_set_state(ehci, async, EST_INACTIVE);
2070 break;
2073 /* If the doorbell is set, the guest wants to make a change to the
2074 * schedule. The host controller needs to release cached data.
2075 * (section 4.8.2)
2077 if (ehci->usbcmd & USBCMD_IAAD) {
2078 DPRINTF("ASYNC: doorbell request acknowledged\n");
2079 ehci->usbcmd &= ~USBCMD_IAAD;
2080 ehci_set_interrupt(ehci, USBSTS_IAA);
2081 break;
2084 /* make sure guest has acknowledged */
2085 /* TO-DO: is this really needed? */
2086 if (ehci->usbsts & USBSTS_IAA) {
2087 DPRINTF("IAA status bit still set.\n");
2088 break;
2091 /* check that address register has been set */
2092 if (ehci->asynclistaddr == 0) {
2093 break;
2096 ehci_set_state(ehci, async, EST_WAITLISTHEAD);
2097 ehci_advance_state(ehci, async);
2098 break;
2100 default:
2101 /* this should only be due to a developer mistake */
2102 fprintf(stderr, "ehci: Bad asynchronous state %d. "
2103 "Resetting to active\n", ehci->astate);
2104 assert(0);
2108 static void ehci_advance_periodic_state(EHCIState *ehci)
2110 uint32_t entry;
2111 uint32_t list;
2112 int async = 0;
2114 // 4.6
2116 switch(ehci_get_state(ehci, async)) {
2117 case EST_INACTIVE:
2118 if ( !(ehci->frindex & 7) && (ehci->usbcmd & USBCMD_PSE)) {
2119 ehci_set_usbsts(ehci, USBSTS_PSS);
2120 ehci_set_state(ehci, async, EST_ACTIVE);
2121 // No break, fall through to ACTIVE
2122 } else
2123 break;
2125 case EST_ACTIVE:
2126 if ( !(ehci->frindex & 7) && !(ehci->usbcmd & USBCMD_PSE)) {
2127 ehci_clear_usbsts(ehci, USBSTS_PSS);
2128 ehci_set_state(ehci, async, EST_INACTIVE);
2129 break;
2132 list = ehci->periodiclistbase & 0xfffff000;
2133 /* check that register has been set */
2134 if (list == 0) {
2135 break;
2137 list |= ((ehci->frindex & 0x1ff8) >> 1);
2139 cpu_physical_memory_rw(list, (uint8_t *) &entry, sizeof entry, 0);
2140 entry = le32_to_cpu(entry);
2142 DPRINTF("PERIODIC state adv fr=%d. [%08X] -> %08X\n",
2143 ehci->frindex / 8, list, entry);
2144 ehci_set_fetch_addr(ehci, async,entry);
2145 ehci_set_state(ehci, async, EST_FETCHENTRY);
2146 ehci_advance_state(ehci, async);
2147 break;
2149 default:
2150 /* this should only be due to a developer mistake */
2151 fprintf(stderr, "ehci: Bad periodic state %d. "
2152 "Resetting to active\n", ehci->pstate);
2153 assert(0);
2157 static void ehci_frame_timer(void *opaque)
2159 EHCIState *ehci = opaque;
2160 int64_t expire_time, t_now;
2161 uint64_t ns_elapsed;
2162 int frames;
2163 int i;
2164 int skipped_frames = 0;
2166 t_now = qemu_get_clock_ns(vm_clock);
2167 expire_time = t_now + (get_ticks_per_sec() / ehci->freq);
2169 ns_elapsed = t_now - ehci->last_run_ns;
2170 frames = ns_elapsed / FRAME_TIMER_NS;
2172 for (i = 0; i < frames; i++) {
2173 if ( !(ehci->usbsts & USBSTS_HALT)) {
2174 if (ehci->isoch_pause <= 0) {
2175 ehci->frindex += 8;
2178 if (ehci->frindex > 0x00001fff) {
2179 ehci->frindex = 0;
2180 ehci_set_interrupt(ehci, USBSTS_FLR);
2183 ehci->sofv = (ehci->frindex - 1) >> 3;
2184 ehci->sofv &= 0x000003ff;
2187 if (frames - i > ehci->maxframes) {
2188 skipped_frames++;
2189 } else {
2190 ehci_advance_periodic_state(ehci);
2193 ehci->last_run_ns += FRAME_TIMER_NS;
2196 #if 0
2197 if (skipped_frames) {
2198 DPRINTF("WARNING - EHCI skipped %d frames\n", skipped_frames);
2200 #endif
2202 /* Async is not inside loop since it executes everything it can once
2203 * called
2205 ehci_advance_async_state(ehci);
2207 qemu_mod_timer(ehci->frame_timer, expire_time);
2210 static CPUReadMemoryFunc *ehci_readfn[3]={
2211 ehci_mem_readb,
2212 ehci_mem_readw,
2213 ehci_mem_readl
2216 static CPUWriteMemoryFunc *ehci_writefn[3]={
2217 ehci_mem_writeb,
2218 ehci_mem_writew,
2219 ehci_mem_writel
2222 static void ehci_map(PCIDevice *pci_dev, int region_num,
2223 pcibus_t addr, pcibus_t size, int type)
2225 EHCIState *s =(EHCIState *)pci_dev;
2227 DPRINTF("ehci_map: region %d, addr %08" PRIx64 ", size %" PRId64 ", s->mem %08X\n",
2228 region_num, addr, size, s->mem);
2229 s->mem_base = addr;
2230 cpu_register_physical_memory(addr, size, s->mem);
2233 static int usb_ehci_initfn(PCIDevice *dev);
2235 static USBPortOps ehci_port_ops = {
2236 .attach = ehci_attach,
2237 .detach = ehci_detach,
2238 .child_detach = ehci_child_detach,
2239 .wakeup = ehci_wakeup,
2240 .complete = ehci_async_complete_packet,
2243 static USBBusOps ehci_bus_ops = {
2244 .register_companion = ehci_register_companion,
2247 static PCIDeviceInfo ehci_info = {
2248 .qdev.name = "usb-ehci",
2249 .qdev.size = sizeof(EHCIState),
2250 .init = usb_ehci_initfn,
2251 .vendor_id = PCI_VENDOR_ID_INTEL,
2252 .device_id = PCI_DEVICE_ID_INTEL_82801D,
2253 .revision = 0x10,
2254 .class_id = PCI_CLASS_SERIAL_USB,
2255 .qdev.props = (Property[]) {
2256 DEFINE_PROP_UINT32("freq", EHCIState, freq, FRAME_TIMER_FREQ),
2257 DEFINE_PROP_UINT32("maxframes", EHCIState, maxframes, 128),
2258 DEFINE_PROP_END_OF_LIST(),
2262 static int usb_ehci_initfn(PCIDevice *dev)
2264 EHCIState *s = DO_UPCAST(EHCIState, dev, dev);
2265 uint8_t *pci_conf = s->dev.config;
2266 int i;
2268 pci_set_byte(&pci_conf[PCI_CLASS_PROG], 0x20);
2270 /* capabilities pointer */
2271 pci_set_byte(&pci_conf[PCI_CAPABILITY_LIST], 0x00);
2272 //pci_set_byte(&pci_conf[PCI_CAPABILITY_LIST], 0x50);
2274 pci_set_byte(&pci_conf[PCI_INTERRUPT_PIN], 4); // interrupt pin 3
2275 pci_set_byte(&pci_conf[PCI_MIN_GNT], 0);
2276 pci_set_byte(&pci_conf[PCI_MAX_LAT], 0);
2278 // pci_conf[0x50] = 0x01; // power management caps
2280 pci_set_byte(&pci_conf[USB_SBRN], USB_RELEASE_2); // release number (2.1.4)
2281 pci_set_byte(&pci_conf[0x61], 0x20); // frame length adjustment (2.1.5)
2282 pci_set_word(&pci_conf[0x62], 0x00); // port wake up capability (2.1.6)
2284 pci_conf[0x64] = 0x00;
2285 pci_conf[0x65] = 0x00;
2286 pci_conf[0x66] = 0x00;
2287 pci_conf[0x67] = 0x00;
2288 pci_conf[0x68] = 0x01;
2289 pci_conf[0x69] = 0x00;
2290 pci_conf[0x6a] = 0x00;
2291 pci_conf[0x6b] = 0x00; // USBLEGSUP
2292 pci_conf[0x6c] = 0x00;
2293 pci_conf[0x6d] = 0x00;
2294 pci_conf[0x6e] = 0x00;
2295 pci_conf[0x6f] = 0xc0; // USBLEFCTLSTS
2297 // 2.2 host controller interface version
2298 s->mmio[0x00] = (uint8_t) OPREGBASE;
2299 s->mmio[0x01] = 0x00;
2300 s->mmio[0x02] = 0x00;
2301 s->mmio[0x03] = 0x01; // HC version
2302 s->mmio[0x04] = NB_PORTS; // Number of downstream ports
2303 s->mmio[0x05] = 0x00; // No companion ports at present
2304 s->mmio[0x06] = 0x00;
2305 s->mmio[0x07] = 0x00;
2306 s->mmio[0x08] = 0x80; // We can cache whole frame, not 64-bit capable
2307 s->mmio[0x09] = 0x68; // EECP
2308 s->mmio[0x0a] = 0x00;
2309 s->mmio[0x0b] = 0x00;
2311 s->irq = s->dev.irq[3];
2313 usb_bus_new(&s->bus, &ehci_bus_ops, &s->dev.qdev);
2314 for(i = 0; i < NB_PORTS; i++) {
2315 usb_register_port(&s->bus, &s->ports[i], s, i, &ehci_port_ops,
2316 USB_SPEED_MASK_HIGH);
2317 s->ports[i].dev = 0;
2320 s->frame_timer = qemu_new_timer_ns(vm_clock, ehci_frame_timer, s);
2321 QTAILQ_INIT(&s->queues);
2323 qemu_register_reset(ehci_reset, s);
2325 s->mem = cpu_register_io_memory(ehci_readfn, ehci_writefn, s,
2326 DEVICE_LITTLE_ENDIAN);
2328 pci_register_bar(&s->dev, 0, MMIO_SIZE, PCI_BASE_ADDRESS_SPACE_MEMORY,
2329 ehci_map);
2331 fprintf(stderr, "*** EHCI support is under development ***\n");
2333 return 0;
2336 static void ehci_register(void)
2338 pci_qdev_register(&ehci_info);
2340 device_init(ehci_register);
2343 * vim: expandtab ts=4