Merge tag 'v9.0.0-rc3'
[qemu/ar7.git] / target / ppc / mmu-hash64.c
blobd645c0bb94aeac03c99d8b8cdce43af0140e1ee3
1 /*
2 * PowerPC MMU, TLB, SLB and BAT emulation helpers for QEMU.
4 * Copyright (c) 2003-2007 Jocelyn Mayer
5 * Copyright (c) 2013 David Gibson, IBM Corporation
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu/units.h"
22 #include "cpu.h"
23 #include "exec/exec-all.h"
24 #include "qemu/error-report.h"
25 #include "qemu/qemu-print.h"
26 #include "sysemu/hw_accel.h"
27 #include "kvm_ppc.h"
28 #include "mmu-hash64.h"
29 #include "exec/log.h"
30 #include "hw/hw.h"
31 #include "internal.h"
32 #include "mmu-book3s-v3.h"
33 #include "helper_regs.h"
35 #ifdef CONFIG_TCG
36 #include "exec/helper-proto.h"
37 #endif
39 /* #define DEBUG_SLB */
41 #ifdef DEBUG_SLB
42 # define LOG_SLB(...) qemu_log_mask(CPU_LOG_MMU, __VA_ARGS__)
43 #else
44 # define LOG_SLB(...) do { } while (0)
45 #endif
48 * SLB handling
51 static ppc_slb_t *slb_lookup(PowerPCCPU *cpu, target_ulong eaddr)
53 CPUPPCState *env = &cpu->env;
54 uint64_t esid_256M, esid_1T;
55 int n;
57 LOG_SLB("%s: eaddr " TARGET_FMT_lx "\n", __func__, eaddr);
59 esid_256M = (eaddr & SEGMENT_MASK_256M) | SLB_ESID_V;
60 esid_1T = (eaddr & SEGMENT_MASK_1T) | SLB_ESID_V;
62 for (n = 0; n < cpu->hash64_opts->slb_size; n++) {
63 ppc_slb_t *slb = &env->slb[n];
65 LOG_SLB("%s: slot %d %016" PRIx64 " %016"
66 PRIx64 "\n", __func__, n, slb->esid, slb->vsid);
68 * We check for 1T matches on all MMUs here - if the MMU
69 * doesn't have 1T segment support, we will have prevented 1T
70 * entries from being inserted in the slbmte code.
72 if (((slb->esid == esid_256M) &&
73 ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_256M))
74 || ((slb->esid == esid_1T) &&
75 ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_1T))) {
76 return slb;
80 return NULL;
83 void dump_slb(PowerPCCPU *cpu)
85 CPUPPCState *env = &cpu->env;
86 int i;
87 uint64_t slbe, slbv;
89 cpu_synchronize_state(CPU(cpu));
91 qemu_printf("SLB\tESID\t\t\tVSID\n");
92 for (i = 0; i < cpu->hash64_opts->slb_size; i++) {
93 slbe = env->slb[i].esid;
94 slbv = env->slb[i].vsid;
95 if (slbe == 0 && slbv == 0) {
96 continue;
98 qemu_printf("%d\t0x%016" PRIx64 "\t0x%016" PRIx64 "\n",
99 i, slbe, slbv);
103 #ifdef CONFIG_TCG
104 void helper_SLBIA(CPUPPCState *env, uint32_t ih)
106 PowerPCCPU *cpu = env_archcpu(env);
107 int starting_entry;
108 int n;
111 * slbia must always flush all TLB (which is equivalent to ERAT in ppc
112 * architecture). Matching on SLB_ESID_V is not good enough, because slbmte
113 * can overwrite a valid SLB without flushing its lookaside information.
115 * It would be possible to keep the TLB in synch with the SLB by flushing
116 * when a valid entry is overwritten by slbmte, and therefore slbia would
117 * not have to flush unless it evicts a valid SLB entry. However it is
118 * expected that slbmte is more common than slbia, and slbia is usually
119 * going to evict valid SLB entries, so that tradeoff is unlikely to be a
120 * good one.
122 * ISA v2.05 introduced IH field with values 0,1,2,6. These all invalidate
123 * the same SLB entries (everything but entry 0), but differ in what
124 * "lookaside information" is invalidated. TCG can ignore this and flush
125 * everything.
127 * ISA v3.0 introduced additional values 3,4,7, which change what SLBs are
128 * invalidated.
131 env->tlb_need_flush |= TLB_NEED_LOCAL_FLUSH;
133 starting_entry = 1; /* default for IH=0,1,2,6 */
135 if (env->mmu_model == POWERPC_MMU_3_00) {
136 switch (ih) {
137 case 0x7:
138 /* invalidate no SLBs, but all lookaside information */
139 return;
141 case 0x3:
142 case 0x4:
143 /* also considers SLB entry 0 */
144 starting_entry = 0;
145 break;
147 case 0x5:
148 /* treat undefined values as ih==0, and warn */
149 qemu_log_mask(LOG_GUEST_ERROR,
150 "slbia undefined IH field %u.\n", ih);
151 break;
153 default:
154 /* 0,1,2,6 */
155 break;
159 for (n = starting_entry; n < cpu->hash64_opts->slb_size; n++) {
160 ppc_slb_t *slb = &env->slb[n];
162 if (!(slb->esid & SLB_ESID_V)) {
163 continue;
165 if (env->mmu_model == POWERPC_MMU_3_00) {
166 if (ih == 0x3 && (slb->vsid & SLB_VSID_C) == 0) {
167 /* preserves entries with a class value of 0 */
168 continue;
172 slb->esid &= ~SLB_ESID_V;
176 #if defined(TARGET_PPC64)
177 void helper_SLBIAG(CPUPPCState *env, target_ulong rs, uint32_t l)
179 PowerPCCPU *cpu = env_archcpu(env);
180 int n;
183 * slbiag must always flush all TLB (which is equivalent to ERAT in ppc
184 * architecture). Matching on SLB_ESID_V is not good enough, because slbmte
185 * can overwrite a valid SLB without flushing its lookaside information.
187 * It would be possible to keep the TLB in synch with the SLB by flushing
188 * when a valid entry is overwritten by slbmte, and therefore slbiag would
189 * not have to flush unless it evicts a valid SLB entry. However it is
190 * expected that slbmte is more common than slbiag, and slbiag is usually
191 * going to evict valid SLB entries, so that tradeoff is unlikely to be a
192 * good one.
194 env->tlb_need_flush |= TLB_NEED_LOCAL_FLUSH;
196 for (n = 0; n < cpu->hash64_opts->slb_size; n++) {
197 ppc_slb_t *slb = &env->slb[n];
198 slb->esid &= ~SLB_ESID_V;
201 #endif
203 static void __helper_slbie(CPUPPCState *env, target_ulong addr,
204 target_ulong global)
206 PowerPCCPU *cpu = env_archcpu(env);
207 ppc_slb_t *slb;
209 slb = slb_lookup(cpu, addr);
210 if (!slb) {
211 return;
214 if (slb->esid & SLB_ESID_V) {
215 slb->esid &= ~SLB_ESID_V;
218 * XXX: given the fact that segment size is 256 MB or 1TB,
219 * and we still don't have a tlb_flush_mask(env, n, mask)
220 * in QEMU, we just invalidate all TLBs
222 env->tlb_need_flush |=
223 (global == false ? TLB_NEED_LOCAL_FLUSH : TLB_NEED_GLOBAL_FLUSH);
227 void helper_SLBIE(CPUPPCState *env, target_ulong addr)
229 __helper_slbie(env, addr, false);
232 void helper_SLBIEG(CPUPPCState *env, target_ulong addr)
234 __helper_slbie(env, addr, true);
236 #endif
238 int ppc_store_slb(PowerPCCPU *cpu, target_ulong slot,
239 target_ulong esid, target_ulong vsid)
241 CPUPPCState *env = &cpu->env;
242 ppc_slb_t *slb = &env->slb[slot];
243 const PPCHash64SegmentPageSizes *sps = NULL;
244 int i;
246 if (slot >= cpu->hash64_opts->slb_size) {
247 return -1; /* Bad slot number */
249 if (esid & ~(SLB_ESID_ESID | SLB_ESID_V)) {
250 return -1; /* Reserved bits set */
252 if (vsid & (SLB_VSID_B & ~SLB_VSID_B_1T)) {
253 return -1; /* Bad segment size */
255 if ((vsid & SLB_VSID_B) && !(ppc_hash64_has(cpu, PPC_HASH64_1TSEG))) {
256 return -1; /* 1T segment on MMU that doesn't support it */
259 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
260 const PPCHash64SegmentPageSizes *sps1 = &cpu->hash64_opts->sps[i];
262 if (!sps1->page_shift) {
263 break;
266 if ((vsid & SLB_VSID_LLP_MASK) == sps1->slb_enc) {
267 sps = sps1;
268 break;
272 if (!sps) {
273 error_report("Bad page size encoding in SLB store: slot "TARGET_FMT_lu
274 " esid 0x"TARGET_FMT_lx" vsid 0x"TARGET_FMT_lx,
275 slot, esid, vsid);
276 return -1;
279 slb->esid = esid;
280 slb->vsid = vsid;
281 slb->sps = sps;
283 LOG_SLB("%s: " TARGET_FMT_lu " " TARGET_FMT_lx " - " TARGET_FMT_lx
284 " => %016" PRIx64 " %016" PRIx64 "\n", __func__, slot, esid, vsid,
285 slb->esid, slb->vsid);
287 return 0;
290 #ifdef CONFIG_TCG
291 static int ppc_load_slb_esid(PowerPCCPU *cpu, target_ulong rb,
292 target_ulong *rt)
294 CPUPPCState *env = &cpu->env;
295 int slot = rb & 0xfff;
296 ppc_slb_t *slb = &env->slb[slot];
298 if (slot >= cpu->hash64_opts->slb_size) {
299 return -1;
302 *rt = slb->esid;
303 return 0;
306 static int ppc_load_slb_vsid(PowerPCCPU *cpu, target_ulong rb,
307 target_ulong *rt)
309 CPUPPCState *env = &cpu->env;
310 int slot = rb & 0xfff;
311 ppc_slb_t *slb = &env->slb[slot];
313 if (slot >= cpu->hash64_opts->slb_size) {
314 return -1;
317 *rt = slb->vsid;
318 return 0;
321 static int ppc_find_slb_vsid(PowerPCCPU *cpu, target_ulong rb,
322 target_ulong *rt)
324 CPUPPCState *env = &cpu->env;
325 ppc_slb_t *slb;
327 if (!msr_is_64bit(env, env->msr)) {
328 rb &= 0xffffffff;
330 slb = slb_lookup(cpu, rb);
331 if (slb == NULL) {
332 *rt = (target_ulong)-1ul;
333 } else {
334 *rt = slb->vsid;
336 return 0;
339 void helper_SLBMTE(CPUPPCState *env, target_ulong rb, target_ulong rs)
341 PowerPCCPU *cpu = env_archcpu(env);
343 if (ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs) < 0) {
344 raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
345 POWERPC_EXCP_INVAL, GETPC());
349 target_ulong helper_SLBMFEE(CPUPPCState *env, target_ulong rb)
351 PowerPCCPU *cpu = env_archcpu(env);
352 target_ulong rt = 0;
354 if (ppc_load_slb_esid(cpu, rb, &rt) < 0) {
355 raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
356 POWERPC_EXCP_INVAL, GETPC());
358 return rt;
361 target_ulong helper_SLBFEE(CPUPPCState *env, target_ulong rb)
363 PowerPCCPU *cpu = env_archcpu(env);
364 target_ulong rt = 0;
366 if (ppc_find_slb_vsid(cpu, rb, &rt) < 0) {
367 raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
368 POWERPC_EXCP_INVAL, GETPC());
370 return rt;
373 target_ulong helper_SLBMFEV(CPUPPCState *env, target_ulong rb)
375 PowerPCCPU *cpu = env_archcpu(env);
376 target_ulong rt = 0;
378 if (ppc_load_slb_vsid(cpu, rb, &rt) < 0) {
379 raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
380 POWERPC_EXCP_INVAL, GETPC());
382 return rt;
384 #endif
386 /* Check No-Execute or Guarded Storage */
387 static inline int ppc_hash64_pte_noexec_guard(PowerPCCPU *cpu,
388 ppc_hash_pte64_t pte)
390 /* Exec permissions CANNOT take away read or write permissions */
391 return (pte.pte1 & HPTE64_R_N) || (pte.pte1 & HPTE64_R_G) ?
392 PAGE_READ | PAGE_WRITE : PAGE_READ | PAGE_WRITE | PAGE_EXEC;
395 /* Check Basic Storage Protection */
396 static int ppc_hash64_pte_prot(int mmu_idx,
397 ppc_slb_t *slb, ppc_hash_pte64_t pte)
399 unsigned pp, key;
401 * Some pp bit combinations have undefined behaviour, so default
402 * to no access in those cases
404 int prot = 0;
406 key = !!(mmuidx_pr(mmu_idx) ? (slb->vsid & SLB_VSID_KP)
407 : (slb->vsid & SLB_VSID_KS));
408 pp = (pte.pte1 & HPTE64_R_PP) | ((pte.pte1 & HPTE64_R_PP0) >> 61);
410 if (key == 0) {
411 switch (pp) {
412 case 0x0:
413 case 0x1:
414 case 0x2:
415 prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
416 break;
418 case 0x3:
419 case 0x6:
420 prot = PAGE_READ | PAGE_EXEC;
421 break;
423 } else {
424 switch (pp) {
425 case 0x0:
426 case 0x6:
427 break;
429 case 0x1:
430 case 0x3:
431 prot = PAGE_READ | PAGE_EXEC;
432 break;
434 case 0x2:
435 prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
436 break;
440 return prot;
443 /* Check the instruction access permissions specified in the IAMR */
444 static int ppc_hash64_iamr_prot(PowerPCCPU *cpu, int key)
446 CPUPPCState *env = &cpu->env;
447 int iamr_bits = (env->spr[SPR_IAMR] >> 2 * (31 - key)) & 0x3;
450 * An instruction fetch is permitted if the IAMR bit is 0.
451 * If the bit is set, return PAGE_READ | PAGE_WRITE because this bit
452 * can only take away EXEC permissions not READ or WRITE permissions.
453 * If bit is cleared return PAGE_READ | PAGE_WRITE | PAGE_EXEC since
454 * EXEC permissions are allowed.
456 return (iamr_bits & 0x1) ? PAGE_READ | PAGE_WRITE :
457 PAGE_READ | PAGE_WRITE | PAGE_EXEC;
460 static int ppc_hash64_amr_prot(PowerPCCPU *cpu, ppc_hash_pte64_t pte)
462 CPUPPCState *env = &cpu->env;
463 int key, amrbits;
464 int prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
466 /* Only recent MMUs implement Virtual Page Class Key Protection */
467 if (!ppc_hash64_has(cpu, PPC_HASH64_AMR)) {
468 return prot;
471 key = HPTE64_R_KEY(pte.pte1);
472 amrbits = (env->spr[SPR_AMR] >> 2 * (31 - key)) & 0x3;
474 /* fprintf(stderr, "AMR protection: key=%d AMR=0x%" PRIx64 "\n", key, */
475 /* env->spr[SPR_AMR]); */
478 * A store is permitted if the AMR bit is 0. Remove write
479 * protection if it is set.
481 if (amrbits & 0x2) {
482 prot &= ~PAGE_WRITE;
485 * A load is permitted if the AMR bit is 0. Remove read
486 * protection if it is set.
488 if (amrbits & 0x1) {
489 prot &= ~PAGE_READ;
492 switch (env->mmu_model) {
494 * MMU version 2.07 and later support IAMR
495 * Check if the IAMR allows the instruction access - it will return
496 * PAGE_EXEC if it doesn't (and thus that bit will be cleared) or 0
497 * if it does (and prot will be unchanged indicating execution support).
499 case POWERPC_MMU_2_07:
500 case POWERPC_MMU_3_00:
501 prot &= ppc_hash64_iamr_prot(cpu, key);
502 break;
503 default:
504 break;
507 return prot;
510 const ppc_hash_pte64_t *ppc_hash64_map_hptes(PowerPCCPU *cpu,
511 hwaddr ptex, int n)
513 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
514 hwaddr base;
515 hwaddr plen = n * HASH_PTE_SIZE_64;
516 const ppc_hash_pte64_t *hptes;
518 if (cpu->vhyp) {
519 PPCVirtualHypervisorClass *vhc =
520 PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
521 return vhc->map_hptes(cpu->vhyp, ptex, n);
523 base = ppc_hash64_hpt_base(cpu);
525 if (!base) {
526 return NULL;
529 hptes = address_space_map(CPU(cpu)->as, base + pte_offset, &plen, false,
530 MEMTXATTRS_UNSPECIFIED);
531 if (plen < (n * HASH_PTE_SIZE_64)) {
532 hw_error("%s: Unable to map all requested HPTEs\n", __func__);
534 return hptes;
537 void ppc_hash64_unmap_hptes(PowerPCCPU *cpu, const ppc_hash_pte64_t *hptes,
538 hwaddr ptex, int n)
540 if (cpu->vhyp) {
541 PPCVirtualHypervisorClass *vhc =
542 PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
543 vhc->unmap_hptes(cpu->vhyp, hptes, ptex, n);
544 return;
547 address_space_unmap(CPU(cpu)->as, (void *)hptes, n * HASH_PTE_SIZE_64,
548 false, n * HASH_PTE_SIZE_64);
551 static unsigned hpte_page_shift(const PPCHash64SegmentPageSizes *sps,
552 uint64_t pte0, uint64_t pte1)
554 int i;
556 if (!(pte0 & HPTE64_V_LARGE)) {
557 if (sps->page_shift != 12) {
558 /* 4kiB page in a non 4kiB segment */
559 return 0;
561 /* Normal 4kiB page */
562 return 12;
565 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
566 const PPCHash64PageSize *ps = &sps->enc[i];
567 uint64_t mask;
569 if (!ps->page_shift) {
570 break;
573 if (ps->page_shift == 12) {
574 /* L bit is set so this can't be a 4kiB page */
575 continue;
578 mask = ((1ULL << ps->page_shift) - 1) & HPTE64_R_RPN;
580 if ((pte1 & mask) == ((uint64_t)ps->pte_enc << HPTE64_R_RPN_SHIFT)) {
581 return ps->page_shift;
585 return 0; /* Bad page size encoding */
588 static void ppc64_v3_new_to_old_hpte(target_ulong *pte0, target_ulong *pte1)
590 /* Insert B into pte0 */
591 *pte0 = (*pte0 & HPTE64_V_COMMON_BITS) |
592 ((*pte1 & HPTE64_R_3_0_SSIZE_MASK) <<
593 (HPTE64_V_SSIZE_SHIFT - HPTE64_R_3_0_SSIZE_SHIFT));
595 /* Remove B from pte1 */
596 *pte1 = *pte1 & ~HPTE64_R_3_0_SSIZE_MASK;
600 static hwaddr ppc_hash64_pteg_search(PowerPCCPU *cpu, hwaddr hash,
601 const PPCHash64SegmentPageSizes *sps,
602 target_ulong ptem,
603 ppc_hash_pte64_t *pte, unsigned *pshift)
605 int i;
606 const ppc_hash_pte64_t *pteg;
607 target_ulong pte0, pte1;
608 target_ulong ptex;
610 ptex = (hash & ppc_hash64_hpt_mask(cpu)) * HPTES_PER_GROUP;
611 pteg = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP);
612 if (!pteg) {
613 return -1;
615 for (i = 0; i < HPTES_PER_GROUP; i++) {
616 pte0 = ppc_hash64_hpte0(cpu, pteg, i);
618 * pte0 contains the valid bit and must be read before pte1,
619 * otherwise we might see an old pte1 with a new valid bit and
620 * thus an inconsistent hpte value
622 smp_rmb();
623 pte1 = ppc_hash64_hpte1(cpu, pteg, i);
625 /* Convert format if necessary */
626 if (cpu->env.mmu_model == POWERPC_MMU_3_00 && !cpu->vhyp) {
627 ppc64_v3_new_to_old_hpte(&pte0, &pte1);
630 /* This compares V, B, H (secondary) and the AVPN */
631 if (HPTE64_V_COMPARE(pte0, ptem)) {
632 *pshift = hpte_page_shift(sps, pte0, pte1);
634 * If there is no match, ignore the PTE, it could simply
635 * be for a different segment size encoding and the
636 * architecture specifies we should not match. Linux will
637 * potentially leave behind PTEs for the wrong base page
638 * size when demoting segments.
640 if (*pshift == 0) {
641 continue;
644 * We don't do anything with pshift yet as qemu TLB only
645 * deals with 4K pages anyway
647 pte->pte0 = pte0;
648 pte->pte1 = pte1;
649 ppc_hash64_unmap_hptes(cpu, pteg, ptex, HPTES_PER_GROUP);
650 return ptex + i;
653 ppc_hash64_unmap_hptes(cpu, pteg, ptex, HPTES_PER_GROUP);
655 * We didn't find a valid entry.
657 return -1;
660 static hwaddr ppc_hash64_htab_lookup(PowerPCCPU *cpu,
661 ppc_slb_t *slb, target_ulong eaddr,
662 ppc_hash_pte64_t *pte, unsigned *pshift)
664 CPUPPCState *env = &cpu->env;
665 hwaddr hash, ptex;
666 uint64_t vsid, epnmask, epn, ptem;
667 const PPCHash64SegmentPageSizes *sps = slb->sps;
670 * The SLB store path should prevent any bad page size encodings
671 * getting in there, so:
673 assert(sps);
675 /* If ISL is set in LPCR we need to clamp the page size to 4K */
676 if (env->spr[SPR_LPCR] & LPCR_ISL) {
677 /* We assume that when using TCG, 4k is first entry of SPS */
678 sps = &cpu->hash64_opts->sps[0];
679 assert(sps->page_shift == 12);
682 epnmask = ~((1ULL << sps->page_shift) - 1);
684 if (slb->vsid & SLB_VSID_B) {
685 /* 1TB segment */
686 vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT_1T;
687 epn = (eaddr & ~SEGMENT_MASK_1T) & epnmask;
688 hash = vsid ^ (vsid << 25) ^ (epn >> sps->page_shift);
689 } else {
690 /* 256M segment */
691 vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT;
692 epn = (eaddr & ~SEGMENT_MASK_256M) & epnmask;
693 hash = vsid ^ (epn >> sps->page_shift);
695 ptem = (slb->vsid & SLB_VSID_PTEM) | ((epn >> 16) & HPTE64_V_AVPN);
696 ptem |= HPTE64_V_VALID;
698 /* Page address translation */
699 qemu_log_mask(CPU_LOG_MMU,
700 "htab_base " HWADDR_FMT_plx " htab_mask " HWADDR_FMT_plx
701 " hash " HWADDR_FMT_plx "\n",
702 ppc_hash64_hpt_base(cpu), ppc_hash64_hpt_mask(cpu), hash);
704 /* Primary PTEG lookup */
705 qemu_log_mask(CPU_LOG_MMU,
706 "0 htab=" HWADDR_FMT_plx "/" HWADDR_FMT_plx
707 " vsid=" TARGET_FMT_lx " ptem=" TARGET_FMT_lx
708 " hash=" HWADDR_FMT_plx "\n",
709 ppc_hash64_hpt_base(cpu), ppc_hash64_hpt_mask(cpu),
710 vsid, ptem, hash);
711 ptex = ppc_hash64_pteg_search(cpu, hash, sps, ptem, pte, pshift);
713 if (ptex == -1) {
714 /* Secondary PTEG lookup */
715 ptem |= HPTE64_V_SECONDARY;
716 qemu_log_mask(CPU_LOG_MMU,
717 "1 htab=" HWADDR_FMT_plx "/" HWADDR_FMT_plx
718 " vsid=" TARGET_FMT_lx " api=" TARGET_FMT_lx
719 " hash=" HWADDR_FMT_plx "\n", ppc_hash64_hpt_base(cpu),
720 ppc_hash64_hpt_mask(cpu), vsid, ptem, ~hash);
722 ptex = ppc_hash64_pteg_search(cpu, ~hash, sps, ptem, pte, pshift);
725 return ptex;
728 unsigned ppc_hash64_hpte_page_shift_noslb(PowerPCCPU *cpu,
729 uint64_t pte0, uint64_t pte1)
731 int i;
733 if (!(pte0 & HPTE64_V_LARGE)) {
734 return 12;
738 * The encodings in env->sps need to be carefully chosen so that
739 * this gives an unambiguous result.
741 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
742 const PPCHash64SegmentPageSizes *sps = &cpu->hash64_opts->sps[i];
743 unsigned shift;
745 if (!sps->page_shift) {
746 break;
749 shift = hpte_page_shift(sps, pte0, pte1);
750 if (shift) {
751 return shift;
755 return 0;
758 static bool ppc_hash64_use_vrma(CPUPPCState *env)
760 switch (env->mmu_model) {
761 case POWERPC_MMU_3_00:
763 * ISAv3.0 (POWER9) always uses VRMA, the VPM0 field and RMOR
764 * register no longer exist
766 return true;
768 default:
769 return !!(env->spr[SPR_LPCR] & LPCR_VPM0);
773 static void ppc_hash64_set_isi(CPUState *cs, int mmu_idx, uint64_t slb_vsid,
774 uint64_t error_code)
776 CPUPPCState *env = &POWERPC_CPU(cs)->env;
777 bool vpm;
779 if (!mmuidx_real(mmu_idx)) {
780 vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM1);
781 } else {
782 vpm = ppc_hash64_use_vrma(env);
784 if (vpm && !mmuidx_hv(mmu_idx)) {
785 cs->exception_index = POWERPC_EXCP_HISI;
786 env->spr[SPR_ASDR] = slb_vsid;
787 } else {
788 cs->exception_index = POWERPC_EXCP_ISI;
790 env->error_code = error_code;
793 static void ppc_hash64_set_dsi(CPUState *cs, int mmu_idx, uint64_t slb_vsid,
794 uint64_t dar, uint64_t dsisr)
796 CPUPPCState *env = &POWERPC_CPU(cs)->env;
797 bool vpm;
799 if (!mmuidx_real(mmu_idx)) {
800 vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM1);
801 } else {
802 vpm = ppc_hash64_use_vrma(env);
804 if (vpm && !mmuidx_hv(mmu_idx)) {
805 cs->exception_index = POWERPC_EXCP_HDSI;
806 env->spr[SPR_HDAR] = dar;
807 env->spr[SPR_HDSISR] = dsisr;
808 env->spr[SPR_ASDR] = slb_vsid;
809 } else {
810 cs->exception_index = POWERPC_EXCP_DSI;
811 env->spr[SPR_DAR] = dar;
812 env->spr[SPR_DSISR] = dsisr;
814 env->error_code = 0;
818 static void ppc_hash64_set_r(PowerPCCPU *cpu, hwaddr ptex, uint64_t pte1)
820 hwaddr base, offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_R;
822 if (cpu->vhyp) {
823 PPCVirtualHypervisorClass *vhc =
824 PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
825 vhc->hpte_set_r(cpu->vhyp, ptex, pte1);
826 return;
828 base = ppc_hash64_hpt_base(cpu);
831 /* The HW performs a non-atomic byte update */
832 stb_phys(CPU(cpu)->as, base + offset, ((pte1 >> 8) & 0xff) | 0x01);
835 static void ppc_hash64_set_c(PowerPCCPU *cpu, hwaddr ptex, uint64_t pte1)
837 hwaddr base, offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_C;
839 if (cpu->vhyp) {
840 PPCVirtualHypervisorClass *vhc =
841 PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
842 vhc->hpte_set_c(cpu->vhyp, ptex, pte1);
843 return;
845 base = ppc_hash64_hpt_base(cpu);
847 /* The HW performs a non-atomic byte update */
848 stb_phys(CPU(cpu)->as, base + offset, (pte1 & 0xff) | 0x80);
851 static target_ulong rmls_limit(PowerPCCPU *cpu)
853 CPUPPCState *env = &cpu->env;
855 * In theory the meanings of RMLS values are implementation
856 * dependent. In practice, this seems to have been the set from
857 * POWER4+..POWER8, and RMLS is no longer supported in POWER9.
859 * Unsupported values mean the OS has shot itself in the
860 * foot. Return a 0-sized RMA in this case, which we expect
861 * to trigger an immediate DSI or ISI
863 static const target_ulong rma_sizes[16] = {
864 [0] = 256 * GiB,
865 [1] = 16 * GiB,
866 [2] = 1 * GiB,
867 [3] = 64 * MiB,
868 [4] = 256 * MiB,
869 [7] = 128 * MiB,
870 [8] = 32 * MiB,
872 target_ulong rmls = (env->spr[SPR_LPCR] & LPCR_RMLS) >> LPCR_RMLS_SHIFT;
874 return rma_sizes[rmls];
877 /* Return the LLP in SLB_VSID format */
878 static uint64_t get_vrma_llp(PowerPCCPU *cpu)
880 CPUPPCState *env = &cpu->env;
881 uint64_t llp;
883 if (env->mmu_model == POWERPC_MMU_3_00) {
884 ppc_v3_pate_t pate;
885 uint64_t ps, l, lp;
888 * ISA v3.0 removes the LPCR[VRMASD] field and puts the VRMA base
889 * page size (L||LP equivalent) in the PS field in the HPT partition
890 * table entry.
892 if (!ppc64_v3_get_pate(cpu, cpu->env.spr[SPR_LPIDR], &pate)) {
893 error_report("Bad VRMA with no partition table entry");
894 return 0;
896 ps = PATE0_GET_PS(pate.dw0);
897 /* PS has L||LP in 3 consecutive bits, put them into SLB LLP format */
898 l = (ps >> 2) & 0x1;
899 lp = ps & 0x3;
900 llp = (l << SLB_VSID_L_SHIFT) | (lp << SLB_VSID_LP_SHIFT);
902 } else {
903 uint64_t lpcr = env->spr[SPR_LPCR];
904 target_ulong vrmasd = (lpcr & LPCR_VRMASD) >> LPCR_VRMASD_SHIFT;
906 /* VRMASD LLP matches SLB format, just shift and mask it */
907 llp = (vrmasd << SLB_VSID_LP_SHIFT) & SLB_VSID_LLP_MASK;
910 return llp;
913 static int build_vrma_slbe(PowerPCCPU *cpu, ppc_slb_t *slb)
915 uint64_t llp = get_vrma_llp(cpu);
916 target_ulong vsid = SLB_VSID_VRMA | llp;
917 int i;
919 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
920 const PPCHash64SegmentPageSizes *sps = &cpu->hash64_opts->sps[i];
922 if (!sps->page_shift) {
923 break;
926 if ((vsid & SLB_VSID_LLP_MASK) == sps->slb_enc) {
927 slb->esid = SLB_ESID_V;
928 slb->vsid = vsid;
929 slb->sps = sps;
930 return 0;
934 error_report("Bad VRMA page size encoding 0x" TARGET_FMT_lx, llp);
936 return -1;
939 bool ppc_hash64_xlate(PowerPCCPU *cpu, vaddr eaddr, MMUAccessType access_type,
940 hwaddr *raddrp, int *psizep, int *protp, int mmu_idx,
941 bool guest_visible)
943 CPUState *cs = CPU(cpu);
944 CPUPPCState *env = &cpu->env;
945 ppc_slb_t vrma_slbe;
946 ppc_slb_t *slb;
947 unsigned apshift;
948 hwaddr ptex;
949 ppc_hash_pte64_t pte;
950 int exec_prot, pp_prot, amr_prot, prot;
951 int need_prot;
952 hwaddr raddr;
955 * Note on LPCR usage: 970 uses HID4, but our special variant of
956 * store_spr copies relevant fields into env->spr[SPR_LPCR].
957 * Similarly we filter unimplemented bits when storing into LPCR
958 * depending on the MMU version. This code can thus just use the
959 * LPCR "as-is".
962 /* 1. Handle real mode accesses */
963 if (mmuidx_real(mmu_idx)) {
965 * Translation is supposedly "off", but in real mode the top 4
966 * effective address bits are (mostly) ignored
968 raddr = eaddr & 0x0FFFFFFFFFFFFFFFULL;
970 if (cpu->vhyp) {
972 * In virtual hypervisor mode, there's nothing to do:
973 * EA == GPA == qemu guest address
975 } else if (mmuidx_hv(mmu_idx) || !env->has_hv_mode) {
976 /* In HV mode, add HRMOR if top EA bit is clear */
977 if (!(eaddr >> 63)) {
978 raddr |= env->spr[SPR_HRMOR];
980 } else if (ppc_hash64_use_vrma(env)) {
981 /* Emulated VRMA mode */
982 slb = &vrma_slbe;
983 if (build_vrma_slbe(cpu, slb) != 0) {
984 /* Invalid VRMA setup, machine check */
985 if (guest_visible) {
986 cs->exception_index = POWERPC_EXCP_MCHECK;
987 env->error_code = 0;
989 return false;
992 goto skip_slb_search;
993 } else {
994 target_ulong limit = rmls_limit(cpu);
996 /* Emulated old-style RMO mode, bounds check against RMLS */
997 if (raddr >= limit) {
998 if (!guest_visible) {
999 return false;
1001 switch (access_type) {
1002 case MMU_INST_FETCH:
1003 ppc_hash64_set_isi(cs, mmu_idx, 0, SRR1_PROTFAULT);
1004 break;
1005 case MMU_DATA_LOAD:
1006 ppc_hash64_set_dsi(cs, mmu_idx, 0, eaddr, DSISR_PROTFAULT);
1007 break;
1008 case MMU_DATA_STORE:
1009 ppc_hash64_set_dsi(cs, mmu_idx, 0, eaddr,
1010 DSISR_PROTFAULT | DSISR_ISSTORE);
1011 break;
1012 default:
1013 g_assert_not_reached();
1015 return false;
1018 raddr |= env->spr[SPR_RMOR];
1021 *raddrp = raddr;
1022 *protp = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1023 *psizep = TARGET_PAGE_BITS;
1024 return true;
1027 /* 2. Translation is on, so look up the SLB */
1028 slb = slb_lookup(cpu, eaddr);
1029 if (!slb) {
1030 /* No entry found, check if in-memory segment tables are in use */
1031 if (ppc64_use_proc_tbl(cpu)) {
1032 /* TODO - Unsupported */
1033 error_report("Segment Table Support Unimplemented");
1034 exit(1);
1036 /* Segment still not found, generate the appropriate interrupt */
1037 if (!guest_visible) {
1038 return false;
1040 switch (access_type) {
1041 case MMU_INST_FETCH:
1042 cs->exception_index = POWERPC_EXCP_ISEG;
1043 env->error_code = 0;
1044 break;
1045 case MMU_DATA_LOAD:
1046 case MMU_DATA_STORE:
1047 cs->exception_index = POWERPC_EXCP_DSEG;
1048 env->error_code = 0;
1049 env->spr[SPR_DAR] = eaddr;
1050 break;
1051 default:
1052 g_assert_not_reached();
1054 return false;
1057 skip_slb_search:
1059 /* 3. Check for segment level no-execute violation */
1060 if (access_type == MMU_INST_FETCH && (slb->vsid & SLB_VSID_N)) {
1061 if (guest_visible) {
1062 ppc_hash64_set_isi(cs, mmu_idx, slb->vsid, SRR1_NOEXEC_GUARD);
1064 return false;
1067 /* 4. Locate the PTE in the hash table */
1068 ptex = ppc_hash64_htab_lookup(cpu, slb, eaddr, &pte, &apshift);
1069 if (ptex == -1) {
1070 if (!guest_visible) {
1071 return false;
1073 switch (access_type) {
1074 case MMU_INST_FETCH:
1075 ppc_hash64_set_isi(cs, mmu_idx, slb->vsid, SRR1_NOPTE);
1076 break;
1077 case MMU_DATA_LOAD:
1078 ppc_hash64_set_dsi(cs, mmu_idx, slb->vsid, eaddr, DSISR_NOPTE);
1079 break;
1080 case MMU_DATA_STORE:
1081 ppc_hash64_set_dsi(cs, mmu_idx, slb->vsid, eaddr,
1082 DSISR_NOPTE | DSISR_ISSTORE);
1083 break;
1084 default:
1085 g_assert_not_reached();
1087 return false;
1089 qemu_log_mask(CPU_LOG_MMU,
1090 "found PTE at index %08" HWADDR_PRIx "\n", ptex);
1092 /* 5. Check access permissions */
1094 exec_prot = ppc_hash64_pte_noexec_guard(cpu, pte);
1095 pp_prot = ppc_hash64_pte_prot(mmu_idx, slb, pte);
1096 amr_prot = ppc_hash64_amr_prot(cpu, pte);
1097 prot = exec_prot & pp_prot & amr_prot;
1099 need_prot = prot_for_access_type(access_type);
1100 if (need_prot & ~prot) {
1101 /* Access right violation */
1102 qemu_log_mask(CPU_LOG_MMU, "PTE access rejected\n");
1103 if (!guest_visible) {
1104 return false;
1106 if (access_type == MMU_INST_FETCH) {
1107 int srr1 = 0;
1108 if (PAGE_EXEC & ~exec_prot) {
1109 srr1 |= SRR1_NOEXEC_GUARD; /* Access violates noexec or guard */
1110 } else if (PAGE_EXEC & ~pp_prot) {
1111 srr1 |= SRR1_PROTFAULT; /* Access violates access authority */
1113 if (PAGE_EXEC & ~amr_prot) {
1114 srr1 |= SRR1_IAMR; /* Access violates virt pg class key prot */
1116 ppc_hash64_set_isi(cs, mmu_idx, slb->vsid, srr1);
1117 } else {
1118 int dsisr = 0;
1119 if (need_prot & ~pp_prot) {
1120 dsisr |= DSISR_PROTFAULT;
1122 if (access_type == MMU_DATA_STORE) {
1123 dsisr |= DSISR_ISSTORE;
1125 if (need_prot & ~amr_prot) {
1126 dsisr |= DSISR_AMR;
1128 ppc_hash64_set_dsi(cs, mmu_idx, slb->vsid, eaddr, dsisr);
1130 return false;
1133 qemu_log_mask(CPU_LOG_MMU, "PTE access granted !\n");
1135 /* 6. Update PTE referenced and changed bits if necessary */
1137 if (!(pte.pte1 & HPTE64_R_R)) {
1138 ppc_hash64_set_r(cpu, ptex, pte.pte1);
1140 if (!(pte.pte1 & HPTE64_R_C)) {
1141 if (access_type == MMU_DATA_STORE) {
1142 ppc_hash64_set_c(cpu, ptex, pte.pte1);
1143 } else {
1145 * Treat the page as read-only for now, so that a later write
1146 * will pass through this function again to set the C bit
1148 prot &= ~PAGE_WRITE;
1152 /* 7. Determine the real address from the PTE */
1154 *raddrp = deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, eaddr);
1155 *protp = prot;
1156 *psizep = apshift;
1157 return true;
1160 void ppc_hash64_tlb_flush_hpte(PowerPCCPU *cpu, target_ulong ptex,
1161 target_ulong pte0, target_ulong pte1)
1164 * XXX: given the fact that there are too many segments to
1165 * invalidate, and we still don't have a tlb_flush_mask(env, n,
1166 * mask) in QEMU, we just invalidate all TLBs
1168 cpu->env.tlb_need_flush = TLB_NEED_GLOBAL_FLUSH | TLB_NEED_LOCAL_FLUSH;
1171 #ifdef CONFIG_TCG
1172 void helper_store_lpcr(CPUPPCState *env, target_ulong val)
1174 PowerPCCPU *cpu = env_archcpu(env);
1176 ppc_store_lpcr(cpu, val);
1178 #endif
1180 void ppc_hash64_init(PowerPCCPU *cpu)
1182 CPUPPCState *env = &cpu->env;
1183 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
1185 if (!pcc->hash64_opts) {
1186 assert(!mmu_is_64bit(env->mmu_model));
1187 return;
1190 cpu->hash64_opts = g_memdup(pcc->hash64_opts, sizeof(*cpu->hash64_opts));
1193 void ppc_hash64_finalize(PowerPCCPU *cpu)
1195 g_free(cpu->hash64_opts);
1198 const PPCHash64Options ppc_hash64_opts_basic = {
1199 .flags = 0,
1200 .slb_size = 64,
1201 .sps = {
1202 { .page_shift = 12, /* 4K */
1203 .slb_enc = 0,
1204 .enc = { { .page_shift = 12, .pte_enc = 0 } }
1206 { .page_shift = 24, /* 16M */
1207 .slb_enc = 0x100,
1208 .enc = { { .page_shift = 24, .pte_enc = 0 } }
1213 const PPCHash64Options ppc_hash64_opts_POWER7 = {
1214 .flags = PPC_HASH64_1TSEG | PPC_HASH64_AMR | PPC_HASH64_CI_LARGEPAGE,
1215 .slb_size = 32,
1216 .sps = {
1218 .page_shift = 12, /* 4K */
1219 .slb_enc = 0,
1220 .enc = { { .page_shift = 12, .pte_enc = 0 },
1221 { .page_shift = 16, .pte_enc = 0x7 },
1222 { .page_shift = 24, .pte_enc = 0x38 }, },
1225 .page_shift = 16, /* 64K */
1226 .slb_enc = SLB_VSID_64K,
1227 .enc = { { .page_shift = 16, .pte_enc = 0x1 },
1228 { .page_shift = 24, .pte_enc = 0x8 }, },
1231 .page_shift = 24, /* 16M */
1232 .slb_enc = SLB_VSID_16M,
1233 .enc = { { .page_shift = 24, .pte_enc = 0 }, },
1236 .page_shift = 34, /* 16G */
1237 .slb_enc = SLB_VSID_16G,
1238 .enc = { { .page_shift = 34, .pte_enc = 0x3 }, },