Merge tag 'v9.0.0-rc3'
[qemu/ar7.git] / target / ppc / gdbstub.c
blob3b28d4e21c73df79a362beddd806d5eb3f8f5b5b
1 /*
2 * PowerPC gdb server stub
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 * Copyright (c) 2013 SUSE LINUX Products GmbH
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/gdbstub.h"
23 #include "gdbstub/helpers.h"
24 #include "internal.h"
26 static int ppc_gdb_register_len_apple(int n)
28 switch (n) {
29 case 0 ... 31:
30 /* gprs */
31 return 8;
32 case 32 ... 63:
33 /* fprs */
34 return 8;
35 case 64 ... 95:
36 return 16;
37 case 64 + 32: /* nip */
38 case 65 + 32: /* msr */
39 case 67 + 32: /* lr */
40 case 68 + 32: /* ctr */
41 case 70 + 32: /* fpscr */
42 return 8;
43 case 66 + 32: /* cr */
44 case 69 + 32: /* xer */
45 return 4;
46 default:
47 return 0;
51 static int ppc_gdb_register_len(int n)
53 switch (n) {
54 case 0 ... 31:
55 /* gprs */
56 return sizeof(target_ulong);
57 case 66:
58 /* cr */
59 case 69:
60 /* xer */
61 return 4;
62 case 64:
63 /* nip */
64 case 65:
65 /* msr */
66 case 67:
67 /* lr */
68 case 68:
69 /* ctr */
70 return sizeof(target_ulong);
71 default:
72 return 0;
77 * We need to present the registers to gdb in the "current" memory
78 * ordering. For user-only mode we get this for free;
79 * TARGET_BIG_ENDIAN is set to the proper ordering for the
80 * binary, and cannot be changed. For system mode,
81 * TARGET_BIG_ENDIAN is always set, and we must check the current
82 * mode of the chip to see if we're running in little-endian.
84 void ppc_maybe_bswap_register(CPUPPCState *env, uint8_t *mem_buf, int len)
86 #ifndef CONFIG_USER_ONLY
87 if (!FIELD_EX64(env->msr, MSR, LE)) {
88 /* do nothing */
89 } else if (len == 4) {
90 bswap32s((uint32_t *)mem_buf);
91 } else if (len == 8) {
92 bswap64s((uint64_t *)mem_buf);
93 } else if (len == 16) {
94 bswap128s((Int128 *)mem_buf);
95 } else {
96 g_assert_not_reached();
98 #endif
102 * Old gdb always expects FP registers. Newer (xml-aware) gdb only
103 * expects whatever the target description contains. Due to a
104 * historical mishap the FP registers appear in between core integer
105 * regs and PC, MSR, CR, and so forth. We hack round this by giving
106 * the FP regs zero size when talking to a newer gdb.
109 int ppc_cpu_gdb_read_register(CPUState *cs, GByteArray *buf, int n)
111 CPUPPCState *env = cpu_env(cs);
112 uint8_t *mem_buf;
113 int r = ppc_gdb_register_len(n);
115 if (!r) {
116 return r;
119 if (n < 32) {
120 /* gprs */
121 gdb_get_regl(buf, env->gpr[n]);
122 } else {
123 switch (n) {
124 case 64:
125 gdb_get_regl(buf, env->nip);
126 break;
127 case 65:
128 gdb_get_regl(buf, env->msr);
129 break;
130 case 66:
132 uint32_t cr = ppc_get_cr(env);
133 gdb_get_reg32(buf, cr);
134 break;
136 case 67:
137 gdb_get_regl(buf, env->lr);
138 break;
139 case 68:
140 gdb_get_regl(buf, env->ctr);
141 break;
142 case 69:
143 gdb_get_reg32(buf, cpu_read_xer(env));
144 break;
147 mem_buf = buf->data + buf->len - r;
148 ppc_maybe_bswap_register(env, mem_buf, r);
149 return r;
152 int ppc_cpu_gdb_read_register_apple(CPUState *cs, GByteArray *buf, int n)
154 CPUPPCState *env = cpu_env(cs);
155 uint8_t *mem_buf;
156 int r = ppc_gdb_register_len_apple(n);
158 if (!r) {
159 return r;
162 if (n < 32) {
163 /* gprs */
164 gdb_get_reg64(buf, env->gpr[n]);
165 } else if (n < 64) {
166 /* fprs */
167 gdb_get_reg64(buf, *cpu_fpr_ptr(env, n - 32));
168 } else if (n < 96) {
169 /* Altivec */
170 gdb_get_reg64(buf, n - 64);
171 gdb_get_reg64(buf, 0);
172 } else {
173 switch (n) {
174 case 64 + 32:
175 gdb_get_reg64(buf, env->nip);
176 break;
177 case 65 + 32:
178 gdb_get_reg64(buf, env->msr);
179 break;
180 case 66 + 32:
182 uint32_t cr = ppc_get_cr(env);
183 gdb_get_reg32(buf, cr);
184 break;
186 case 67 + 32:
187 gdb_get_reg64(buf, env->lr);
188 break;
189 case 68 + 32:
190 gdb_get_reg64(buf, env->ctr);
191 break;
192 case 69 + 32:
193 gdb_get_reg32(buf, cpu_read_xer(env));
194 break;
195 case 70 + 32:
196 gdb_get_reg64(buf, env->fpscr);
197 break;
200 mem_buf = buf->data + buf->len - r;
201 ppc_maybe_bswap_register(env, mem_buf, r);
202 return r;
205 int ppc_cpu_gdb_write_register(CPUState *cs, uint8_t *mem_buf, int n)
207 CPUPPCState *env = cpu_env(cs);
208 int r = ppc_gdb_register_len(n);
210 if (!r) {
211 return r;
213 ppc_maybe_bswap_register(env, mem_buf, r);
214 if (n < 32) {
215 /* gprs */
216 env->gpr[n] = ldtul_p(mem_buf);
217 } else if (n < 64) {
218 /* fprs */
219 *cpu_fpr_ptr(env, n - 32) = ldq_p(mem_buf);
220 } else {
221 switch (n) {
222 case 64:
223 env->nip = ldtul_p(mem_buf);
224 break;
225 case 65:
226 ppc_store_msr(env, ldtul_p(mem_buf));
227 break;
228 case 66:
230 uint32_t cr = ldl_p(mem_buf);
231 ppc_set_cr(env, cr);
232 break;
234 case 67:
235 env->lr = ldtul_p(mem_buf);
236 break;
237 case 68:
238 env->ctr = ldtul_p(mem_buf);
239 break;
240 case 69:
241 cpu_write_xer(env, ldl_p(mem_buf));
242 break;
243 case 70:
244 /* fpscr */
245 ppc_store_fpscr(env, ldtul_p(mem_buf));
246 break;
249 return r;
251 int ppc_cpu_gdb_write_register_apple(CPUState *cs, uint8_t *mem_buf, int n)
253 CPUPPCState *env = cpu_env(cs);
254 int r = ppc_gdb_register_len_apple(n);
256 if (!r) {
257 return r;
259 ppc_maybe_bswap_register(env, mem_buf, r);
260 if (n < 32) {
261 /* gprs */
262 env->gpr[n] = ldq_p(mem_buf);
263 } else if (n < 64) {
264 /* fprs */
265 *cpu_fpr_ptr(env, n - 32) = ldq_p(mem_buf);
266 } else {
267 switch (n) {
268 case 64 + 32:
269 env->nip = ldq_p(mem_buf);
270 break;
271 case 65 + 32:
272 ppc_store_msr(env, ldq_p(mem_buf));
273 break;
274 case 66 + 32:
276 uint32_t cr = ldl_p(mem_buf);
277 ppc_set_cr(env, cr);
278 break;
280 case 67 + 32:
281 env->lr = ldq_p(mem_buf);
282 break;
283 case 68 + 32:
284 env->ctr = ldq_p(mem_buf);
285 break;
286 case 69 + 32:
287 cpu_write_xer(env, ldl_p(mem_buf));
288 break;
289 case 70 + 32:
290 /* fpscr */
291 ppc_store_fpscr(env, ldq_p(mem_buf));
292 break;
295 return r;
298 #ifndef CONFIG_USER_ONLY
299 static void gdb_gen_spr_feature(CPUState *cs)
301 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
302 PowerPCCPU *cpu = POWERPC_CPU(cs);
303 CPUPPCState *env = &cpu->env;
304 GDBFeatureBuilder builder;
305 unsigned int num_regs = 0;
306 int i;
308 for (i = 0; i < ARRAY_SIZE(env->spr_cb); i++) {
309 ppc_spr_t *spr = &env->spr_cb[i];
311 if (!spr->name) {
312 continue;
316 * GDB identifies registers based on the order they are
317 * presented in the XML. These ids will not match QEMU's
318 * representation (which follows the PowerISA).
320 * Store the position of the current register description so
321 * we can make the correspondence later.
323 spr->gdb_id = num_regs;
324 num_regs++;
327 if (pcc->gdb_spr.xml) {
328 return;
331 gdb_feature_builder_init(&builder, &pcc->gdb_spr,
332 "org.qemu.power.spr", "power-spr.xml",
333 cs->gdb_num_regs);
335 for (i = 0; i < ARRAY_SIZE(env->spr_cb); i++) {
336 ppc_spr_t *spr = &env->spr_cb[i];
338 if (!spr->name) {
339 continue;
342 gdb_feature_builder_append_reg(&builder, g_ascii_strdown(spr->name, -1),
343 TARGET_LONG_BITS, spr->gdb_id,
344 "int", "spr");
347 gdb_feature_builder_end(&builder);
349 #endif
351 #if !defined(CONFIG_USER_ONLY)
352 static int gdb_find_spr_idx(CPUPPCState *env, int n)
354 int i;
356 for (i = 0; i < ARRAY_SIZE(env->spr_cb); i++) {
357 ppc_spr_t *spr = &env->spr_cb[i];
359 if (spr->name && spr->gdb_id == n) {
360 return i;
363 return -1;
366 static int gdb_get_spr_reg(CPUState *cs, GByteArray *buf, int n)
368 PowerPCCPU *cpu = POWERPC_CPU(cs);
369 CPUPPCState *env = &cpu->env;
370 int reg;
371 int len;
373 reg = gdb_find_spr_idx(env, n);
374 if (reg < 0) {
375 return 0;
378 len = TARGET_LONG_SIZE;
380 /* Handle those SPRs that are not part of the env->spr[] array */
381 target_ulong val;
382 switch (reg) {
383 #if defined(TARGET_PPC64)
384 case SPR_CFAR:
385 val = env->cfar;
386 break;
387 #endif
388 case SPR_HDEC:
389 val = cpu_ppc_load_hdecr(env);
390 break;
391 case SPR_TBL:
392 val = cpu_ppc_load_tbl(env);
393 break;
394 case SPR_TBU:
395 val = cpu_ppc_load_tbu(env);
396 break;
397 case SPR_DECR:
398 val = cpu_ppc_load_decr(env);
399 break;
400 default:
401 val = env->spr[reg];
403 gdb_get_regl(buf, val);
405 ppc_maybe_bswap_register(env, gdb_get_reg_ptr(buf, len), len);
406 return len;
409 static int gdb_set_spr_reg(CPUState *cs, uint8_t *mem_buf, int n)
411 PowerPCCPU *cpu = POWERPC_CPU(cs);
412 CPUPPCState *env = &cpu->env;
413 int reg;
414 int len;
416 reg = gdb_find_spr_idx(env, n);
417 if (reg < 0) {
418 return 0;
421 len = TARGET_LONG_SIZE;
422 ppc_maybe_bswap_register(env, mem_buf, len);
424 /* Handle those SPRs that are not part of the env->spr[] array */
425 target_ulong val = ldn_p(mem_buf, len);
426 switch (reg) {
427 #if defined(TARGET_PPC64)
428 case SPR_CFAR:
429 env->cfar = val;
430 break;
431 #endif
432 default:
433 env->spr[reg] = val;
436 return len;
438 #endif
440 static int gdb_get_float_reg(CPUState *cs, GByteArray *buf, int n)
442 PowerPCCPU *cpu = POWERPC_CPU(cs);
443 CPUPPCState *env = &cpu->env;
444 uint8_t *mem_buf;
445 if (n < 32) {
446 gdb_get_reg64(buf, *cpu_fpr_ptr(env, n));
447 mem_buf = gdb_get_reg_ptr(buf, 8);
448 ppc_maybe_bswap_register(env, mem_buf, 8);
449 return 8;
451 if (n == 32) {
452 gdb_get_reg32(buf, env->fpscr);
453 mem_buf = gdb_get_reg_ptr(buf, 4);
454 ppc_maybe_bswap_register(env, mem_buf, 4);
455 return 4;
457 return 0;
460 static int gdb_set_float_reg(CPUState *cs, uint8_t *mem_buf, int n)
462 PowerPCCPU *cpu = POWERPC_CPU(cs);
463 CPUPPCState *env = &cpu->env;
465 if (n < 32) {
466 ppc_maybe_bswap_register(env, mem_buf, 8);
467 *cpu_fpr_ptr(env, n) = ldq_p(mem_buf);
468 return 8;
470 if (n == 32) {
471 ppc_maybe_bswap_register(env, mem_buf, 4);
472 ppc_store_fpscr(env, ldl_p(mem_buf));
473 return 4;
475 return 0;
478 static int gdb_get_avr_reg(CPUState *cs, GByteArray *buf, int n)
480 PowerPCCPU *cpu = POWERPC_CPU(cs);
481 CPUPPCState *env = &cpu->env;
482 uint8_t *mem_buf;
484 if (n < 32) {
485 ppc_avr_t *avr = cpu_avr_ptr(env, n);
486 gdb_get_reg128(buf, avr->VsrD(0), avr->VsrD(1));
487 mem_buf = gdb_get_reg_ptr(buf, 16);
488 ppc_maybe_bswap_register(env, mem_buf, 16);
489 return 16;
491 if (n == 32) {
492 gdb_get_reg32(buf, ppc_get_vscr(env));
493 mem_buf = gdb_get_reg_ptr(buf, 4);
494 ppc_maybe_bswap_register(env, mem_buf, 4);
495 return 4;
497 if (n == 33) {
498 gdb_get_reg32(buf, (uint32_t)env->spr[SPR_VRSAVE]);
499 mem_buf = gdb_get_reg_ptr(buf, 4);
500 ppc_maybe_bswap_register(env, mem_buf, 4);
501 return 4;
503 return 0;
506 static int gdb_set_avr_reg(CPUState *cs, uint8_t *mem_buf, int n)
508 PowerPCCPU *cpu = POWERPC_CPU(cs);
509 CPUPPCState *env = &cpu->env;
511 if (n < 32) {
512 ppc_avr_t *avr = cpu_avr_ptr(env, n);
513 ppc_maybe_bswap_register(env, mem_buf, 16);
514 avr->VsrD(0) = ldq_p(mem_buf);
515 avr->VsrD(1) = ldq_p(mem_buf + 8);
516 return 16;
518 if (n == 32) {
519 ppc_maybe_bswap_register(env, mem_buf, 4);
520 ppc_store_vscr(env, ldl_p(mem_buf));
521 return 4;
523 if (n == 33) {
524 ppc_maybe_bswap_register(env, mem_buf, 4);
525 env->spr[SPR_VRSAVE] = (target_ulong)ldl_p(mem_buf);
526 return 4;
528 return 0;
531 static int gdb_get_spe_reg(CPUState *cs, GByteArray *buf, int n)
533 PowerPCCPU *cpu = POWERPC_CPU(cs);
534 CPUPPCState *env = &cpu->env;
536 if (n < 32) {
537 #if defined(TARGET_PPC64)
538 gdb_get_reg32(buf, env->gpr[n] >> 32);
539 ppc_maybe_bswap_register(env, gdb_get_reg_ptr(buf, 4), 4);
540 #else
541 gdb_get_reg32(buf, env->gprh[n]);
542 #endif
543 return 4;
545 if (n == 32) {
546 gdb_get_reg64(buf, env->spe_acc);
547 ppc_maybe_bswap_register(env, gdb_get_reg_ptr(buf, 8), 8);
548 return 8;
550 if (n == 33) {
551 gdb_get_reg32(buf, env->spe_fscr);
552 ppc_maybe_bswap_register(env, gdb_get_reg_ptr(buf, 4), 4);
553 return 4;
555 return 0;
558 static int gdb_set_spe_reg(CPUState *cs, uint8_t *mem_buf, int n)
560 PowerPCCPU *cpu = POWERPC_CPU(cs);
561 CPUPPCState *env = &cpu->env;
563 if (n < 32) {
564 #if defined(TARGET_PPC64)
565 target_ulong lo = (uint32_t)env->gpr[n];
566 target_ulong hi;
568 ppc_maybe_bswap_register(env, mem_buf, 4);
570 hi = (target_ulong)ldl_p(mem_buf) << 32;
571 env->gpr[n] = lo | hi;
572 #else
573 env->gprh[n] = ldl_p(mem_buf);
574 #endif
575 return 4;
577 if (n == 32) {
578 ppc_maybe_bswap_register(env, mem_buf, 8);
579 env->spe_acc = ldq_p(mem_buf);
580 return 8;
582 if (n == 33) {
583 ppc_maybe_bswap_register(env, mem_buf, 4);
584 env->spe_fscr = ldl_p(mem_buf);
585 return 4;
587 return 0;
590 static int gdb_get_vsx_reg(CPUState *cs, GByteArray *buf, int n)
592 PowerPCCPU *cpu = POWERPC_CPU(cs);
593 CPUPPCState *env = &cpu->env;
595 if (n < 32) {
596 gdb_get_reg64(buf, *cpu_vsrl_ptr(env, n));
597 ppc_maybe_bswap_register(env, gdb_get_reg_ptr(buf, 8), 8);
598 return 8;
600 return 0;
603 static int gdb_set_vsx_reg(CPUState *cs, uint8_t *mem_buf, int n)
605 PowerPCCPU *cpu = POWERPC_CPU(cs);
606 CPUPPCState *env = &cpu->env;
608 if (n < 32) {
609 ppc_maybe_bswap_register(env, mem_buf, 8);
610 *cpu_vsrl_ptr(env, n) = ldq_p(mem_buf);
611 return 8;
613 return 0;
616 const gchar *ppc_gdb_arch_name(CPUState *cs)
618 #if defined(TARGET_PPC64)
619 return "powerpc:common64";
620 #else
621 return "powerpc:common";
622 #endif
625 void ppc_gdb_init(CPUState *cs, PowerPCCPUClass *pcc)
627 if (pcc->insns_flags & PPC_FLOAT) {
628 gdb_register_coprocessor(cs, gdb_get_float_reg, gdb_set_float_reg,
629 gdb_find_static_feature("power-fpu.xml"), 0);
631 if (pcc->insns_flags & PPC_ALTIVEC) {
632 gdb_register_coprocessor(cs, gdb_get_avr_reg, gdb_set_avr_reg,
633 gdb_find_static_feature("power-altivec.xml"),
636 if (pcc->insns_flags & PPC_SPE) {
637 gdb_register_coprocessor(cs, gdb_get_spe_reg, gdb_set_spe_reg,
638 gdb_find_static_feature("power-spe.xml"), 0);
640 if (pcc->insns_flags2 & PPC2_VSX) {
641 gdb_register_coprocessor(cs, gdb_get_vsx_reg, gdb_set_vsx_reg,
642 gdb_find_static_feature("power-vsx.xml"), 0);
644 #ifndef CONFIG_USER_ONLY
645 gdb_gen_spr_feature(cs);
646 gdb_register_coprocessor(cs, gdb_get_spr_reg, gdb_set_spr_reg,
647 &pcc->gdb_spr, 0);
648 #endif