Merge remote-tracking branch 'qemu-project/master'
[qemu/ar7.git] / target / m68k / helper.c
blob7967ad13cbf79863e87258e513dfd8c4e4cebac6
1 /*
2 * m68k op helpers
4 * Copyright (c) 2006-2007 CodeSourcery
5 * Written by Paul Brook
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
21 #include "qemu/osdep.h"
22 #include "cpu.h"
23 #include "exec/exec-all.h"
24 #include "exec/page-protection.h"
25 #include "exec/gdbstub.h"
26 #include "exec/helper-proto.h"
27 #include "gdbstub/helpers.h"
28 #include "fpu/softfloat.h"
29 #include "qemu/qemu-print.h"
31 #define SIGNBIT (1u << 31)
33 static int cf_fpu_gdb_get_reg(CPUState *cs, GByteArray *mem_buf, int n)
35 M68kCPU *cpu = M68K_CPU(cs);
36 CPUM68KState *env = &cpu->env;
38 if (n < 8) {
39 float_status s;
40 return gdb_get_reg64(mem_buf, floatx80_to_float64(env->fregs[n].d, &s));
42 switch (n) {
43 case 8: /* fpcontrol */
44 return gdb_get_reg32(mem_buf, env->fpcr);
45 case 9: /* fpstatus */
46 return gdb_get_reg32(mem_buf, env->fpsr);
47 case 10: /* fpiar, not implemented */
48 return gdb_get_reg32(mem_buf, 0);
50 return 0;
53 static int cf_fpu_gdb_set_reg(CPUState *cs, uint8_t *mem_buf, int n)
55 M68kCPU *cpu = M68K_CPU(cs);
56 CPUM68KState *env = &cpu->env;
58 if (n < 8) {
59 float_status s;
60 env->fregs[n].d = float64_to_floatx80(ldq_p(mem_buf), &s);
61 return 8;
63 switch (n) {
64 case 8: /* fpcontrol */
65 cpu_m68k_set_fpcr(env, ldl_p(mem_buf));
66 return 4;
67 case 9: /* fpstatus */
68 env->fpsr = ldl_p(mem_buf);
69 return 4;
70 case 10: /* fpiar, not implemented */
71 return 4;
73 return 0;
76 static int m68k_fpu_gdb_get_reg(CPUState *cs, GByteArray *mem_buf, int n)
78 M68kCPU *cpu = M68K_CPU(cs);
79 CPUM68KState *env = &cpu->env;
81 if (n < 8) {
82 int len = gdb_get_reg16(mem_buf, env->fregs[n].l.upper);
83 len += gdb_get_reg16(mem_buf, 0);
84 len += gdb_get_reg64(mem_buf, env->fregs[n].l.lower);
85 return len;
87 switch (n) {
88 case 8: /* fpcontrol */
89 return gdb_get_reg32(mem_buf, env->fpcr);
90 case 9: /* fpstatus */
91 return gdb_get_reg32(mem_buf, cpu_m68k_get_fpsr(env));
92 case 10: /* fpiar, not implemented */
93 return gdb_get_reg32(mem_buf, 0);
95 return 0;
98 static int m68k_fpu_gdb_set_reg(CPUState *cs, uint8_t *mem_buf, int n)
100 M68kCPU *cpu = M68K_CPU(cs);
101 CPUM68KState *env = &cpu->env;
103 if (n < 8) {
104 env->fregs[n].l.upper = lduw_be_p(mem_buf);
105 env->fregs[n].l.lower = ldq_be_p(mem_buf + 4);
106 return 12;
108 switch (n) {
109 case 8: /* fpcontrol */
110 cpu_m68k_set_fpcr(env, ldl_p(mem_buf));
111 return 4;
112 case 9: /* fpstatus */
113 cpu_m68k_set_fpsr(env, ldl_p(mem_buf));
114 return 4;
115 case 10: /* fpiar, not implemented */
116 return 4;
118 return 0;
121 void m68k_cpu_init_gdb(M68kCPU *cpu)
123 CPUState *cs = CPU(cpu);
124 CPUM68KState *env = &cpu->env;
126 if (m68k_feature(env, M68K_FEATURE_CF_FPU)) {
127 gdb_register_coprocessor(cs, cf_fpu_gdb_get_reg, cf_fpu_gdb_set_reg,
128 gdb_find_static_feature("cf-fp.xml"), 18);
129 } else if (m68k_feature(env, M68K_FEATURE_FPU)) {
130 gdb_register_coprocessor(cs, m68k_fpu_gdb_get_reg, m68k_fpu_gdb_set_reg,
131 gdb_find_static_feature("m68k-fp.xml"), 18);
133 /* TODO: Add [E]MAC registers. */
136 void HELPER(cf_movec_to)(CPUM68KState *env, uint32_t reg, uint32_t val)
138 switch (reg) {
139 case M68K_CR_CACR:
140 env->cacr = val;
141 m68k_switch_sp(env);
142 break;
143 case M68K_CR_ACR0:
144 case M68K_CR_ACR1:
145 case M68K_CR_ACR2:
146 case M68K_CR_ACR3:
147 /* TODO: Implement Access Control Registers. */
148 break;
149 case M68K_CR_VBR:
150 env->vbr = val;
151 break;
152 /* TODO: Implement control registers. */
153 default:
154 cpu_abort(env_cpu(env),
155 "Unimplemented control register write 0x%x = 0x%x\n",
156 reg, val);
160 static void raise_exception_ra(CPUM68KState *env, int tt, uintptr_t raddr)
162 CPUState *cs = env_cpu(env);
164 cs->exception_index = tt;
165 cpu_loop_exit_restore(cs, raddr);
168 void HELPER(m68k_movec_to)(CPUM68KState *env, uint32_t reg, uint32_t val)
170 switch (reg) {
171 /* MC680[12346]0 */
172 case M68K_CR_SFC:
173 env->sfc = val & 7;
174 return;
175 /* MC680[12346]0 */
176 case M68K_CR_DFC:
177 env->dfc = val & 7;
178 return;
179 /* MC680[12346]0 */
180 case M68K_CR_VBR:
181 env->vbr = val;
182 return;
183 /* MC680[2346]0 */
184 case M68K_CR_CACR:
185 if (m68k_feature(env, M68K_FEATURE_M68020)) {
186 env->cacr = val & 0x0000000f;
187 } else if (m68k_feature(env, M68K_FEATURE_M68030)) {
188 env->cacr = val & 0x00003f1f;
189 } else if (m68k_feature(env, M68K_FEATURE_M68040)) {
190 env->cacr = val & 0x80008000;
191 } else if (m68k_feature(env, M68K_FEATURE_M68060)) {
192 env->cacr = val & 0xf8e0e000;
193 } else {
194 break;
196 m68k_switch_sp(env);
197 return;
198 /* MC680[46]0 */
199 case M68K_CR_TC:
200 if (m68k_feature(env, M68K_FEATURE_M68040)
201 || m68k_feature(env, M68K_FEATURE_M68060)) {
202 env->mmu.tcr = val;
203 return;
205 break;
206 /* MC68040 */
207 case M68K_CR_MMUSR:
208 if (m68k_feature(env, M68K_FEATURE_M68040)) {
209 env->mmu.mmusr = val;
210 return;
212 break;
213 /* MC680[46]0 */
214 case M68K_CR_SRP:
215 if (m68k_feature(env, M68K_FEATURE_M68040)
216 || m68k_feature(env, M68K_FEATURE_M68060)) {
217 env->mmu.srp = val;
218 return;
220 break;
221 /* MC680[46]0 */
222 case M68K_CR_URP:
223 if (m68k_feature(env, M68K_FEATURE_M68040)
224 || m68k_feature(env, M68K_FEATURE_M68060)) {
225 env->mmu.urp = val;
226 return;
228 break;
229 /* MC680[12346]0 */
230 case M68K_CR_USP:
231 env->sp[M68K_USP] = val;
232 return;
233 /* MC680[234]0 */
234 case M68K_CR_MSP:
235 if (m68k_feature(env, M68K_FEATURE_M68020)
236 || m68k_feature(env, M68K_FEATURE_M68030)
237 || m68k_feature(env, M68K_FEATURE_M68040)) {
238 env->sp[M68K_SSP] = val;
239 return;
241 break;
242 /* MC680[234]0 */
243 case M68K_CR_ISP:
244 if (m68k_feature(env, M68K_FEATURE_M68020)
245 || m68k_feature(env, M68K_FEATURE_M68030)
246 || m68k_feature(env, M68K_FEATURE_M68040)) {
247 env->sp[M68K_ISP] = val;
248 return;
250 break;
251 /* MC68040/MC68LC040 */
252 case M68K_CR_ITT0: /* MC68EC040 only: M68K_CR_IACR0 */
253 if (m68k_feature(env, M68K_FEATURE_M68040)) {
254 env->mmu.ttr[M68K_ITTR0] = val;
255 return;
257 break;
258 /* MC68040/MC68LC040 */
259 case M68K_CR_ITT1: /* MC68EC040 only: M68K_CR_IACR1 */
260 if (m68k_feature(env, M68K_FEATURE_M68040)) {
261 env->mmu.ttr[M68K_ITTR1] = val;
262 return;
264 break;
265 /* MC68040/MC68LC040 */
266 case M68K_CR_DTT0: /* MC68EC040 only: M68K_CR_DACR0 */
267 if (m68k_feature(env, M68K_FEATURE_M68040)) {
268 env->mmu.ttr[M68K_DTTR0] = val;
269 return;
271 break;
272 /* MC68040/MC68LC040 */
273 case M68K_CR_DTT1: /* MC68EC040 only: M68K_CR_DACR1 */
274 if (m68k_feature(env, M68K_FEATURE_M68040)) {
275 env->mmu.ttr[M68K_DTTR1] = val;
276 return;
278 break;
279 /* Unimplemented Registers */
280 case M68K_CR_CAAR:
281 case M68K_CR_PCR:
282 case M68K_CR_BUSCR:
283 cpu_abort(env_cpu(env),
284 "Unimplemented control register write 0x%x = 0x%x\n",
285 reg, val);
288 /* Invalid control registers will generate an exception. */
289 raise_exception_ra(env, EXCP_ILLEGAL, 0);
290 return;
293 uint32_t HELPER(m68k_movec_from)(CPUM68KState *env, uint32_t reg)
295 switch (reg) {
296 /* MC680[12346]0 */
297 case M68K_CR_SFC:
298 return env->sfc;
299 /* MC680[12346]0 */
300 case M68K_CR_DFC:
301 return env->dfc;
302 /* MC680[12346]0 */
303 case M68K_CR_VBR:
304 return env->vbr;
305 /* MC680[2346]0 */
306 case M68K_CR_CACR:
307 if (m68k_feature(env, M68K_FEATURE_M68020)
308 || m68k_feature(env, M68K_FEATURE_M68030)
309 || m68k_feature(env, M68K_FEATURE_M68040)
310 || m68k_feature(env, M68K_FEATURE_M68060)) {
311 return env->cacr;
313 break;
314 /* MC680[46]0 */
315 case M68K_CR_TC:
316 if (m68k_feature(env, M68K_FEATURE_M68040)
317 || m68k_feature(env, M68K_FEATURE_M68060)) {
318 return env->mmu.tcr;
320 break;
321 /* MC68040 */
322 case M68K_CR_MMUSR:
323 if (m68k_feature(env, M68K_FEATURE_M68040)) {
324 return env->mmu.mmusr;
326 break;
327 /* MC680[46]0 */
328 case M68K_CR_SRP:
329 if (m68k_feature(env, M68K_FEATURE_M68040)
330 || m68k_feature(env, M68K_FEATURE_M68060)) {
331 return env->mmu.srp;
333 break;
334 /* MC68040/MC68LC040 */
335 case M68K_CR_URP:
336 if (m68k_feature(env, M68K_FEATURE_M68040)
337 || m68k_feature(env, M68K_FEATURE_M68060)) {
338 return env->mmu.urp;
340 break;
341 /* MC680[46]0 */
342 case M68K_CR_USP:
343 return env->sp[M68K_USP];
344 /* MC680[234]0 */
345 case M68K_CR_MSP:
346 if (m68k_feature(env, M68K_FEATURE_M68020)
347 || m68k_feature(env, M68K_FEATURE_M68030)
348 || m68k_feature(env, M68K_FEATURE_M68040)) {
349 return env->sp[M68K_SSP];
351 break;
352 /* MC680[234]0 */
353 case M68K_CR_ISP:
354 if (m68k_feature(env, M68K_FEATURE_M68020)
355 || m68k_feature(env, M68K_FEATURE_M68030)
356 || m68k_feature(env, M68K_FEATURE_M68040)) {
357 return env->sp[M68K_ISP];
359 break;
360 /* MC68040/MC68LC040 */
361 case M68K_CR_ITT0: /* MC68EC040 only: M68K_CR_IACR0 */
362 if (m68k_feature(env, M68K_FEATURE_M68040)) {
363 return env->mmu.ttr[M68K_ITTR0];
365 break;
366 /* MC68040/MC68LC040 */
367 case M68K_CR_ITT1: /* MC68EC040 only: M68K_CR_IACR1 */
368 if (m68k_feature(env, M68K_FEATURE_M68040)) {
369 return env->mmu.ttr[M68K_ITTR1];
371 break;
372 /* MC68040/MC68LC040 */
373 case M68K_CR_DTT0: /* MC68EC040 only: M68K_CR_DACR0 */
374 if (m68k_feature(env, M68K_FEATURE_M68040)) {
375 return env->mmu.ttr[M68K_DTTR0];
377 break;
378 /* MC68040/MC68LC040 */
379 case M68K_CR_DTT1: /* MC68EC040 only: M68K_CR_DACR1 */
380 if (m68k_feature(env, M68K_FEATURE_M68040)) {
381 return env->mmu.ttr[M68K_DTTR1];
383 break;
384 /* Unimplemented Registers */
385 case M68K_CR_CAAR:
386 case M68K_CR_PCR:
387 case M68K_CR_BUSCR:
388 cpu_abort(env_cpu(env), "Unimplemented control register read 0x%x\n",
389 reg);
392 /* Invalid control registers will generate an exception. */
393 raise_exception_ra(env, EXCP_ILLEGAL, 0);
395 return 0;
398 void HELPER(set_macsr)(CPUM68KState *env, uint32_t val)
400 uint32_t acc;
401 int8_t exthigh;
402 uint8_t extlow;
403 uint64_t regval;
404 int i;
405 if ((env->macsr ^ val) & (MACSR_FI | MACSR_SU)) {
406 for (i = 0; i < 4; i++) {
407 regval = env->macc[i];
408 exthigh = regval >> 40;
409 if (env->macsr & MACSR_FI) {
410 acc = regval >> 8;
411 extlow = regval;
412 } else {
413 acc = regval;
414 extlow = regval >> 32;
416 if (env->macsr & MACSR_FI) {
417 regval = (((uint64_t)acc) << 8) | extlow;
418 regval |= ((int64_t)exthigh) << 40;
419 } else if (env->macsr & MACSR_SU) {
420 regval = acc | (((int64_t)extlow) << 32);
421 regval |= ((int64_t)exthigh) << 40;
422 } else {
423 regval = acc | (((uint64_t)extlow) << 32);
424 regval |= ((uint64_t)(uint8_t)exthigh) << 40;
426 env->macc[i] = regval;
429 env->macsr = val;
432 void m68k_switch_sp(CPUM68KState *env)
434 int new_sp;
436 env->sp[env->current_sp] = env->aregs[7];
437 if (m68k_feature(env, M68K_FEATURE_M68K)) {
438 if (env->sr & SR_S) {
439 /* SR:Master-Mode bit unimplemented then ISP is not available */
440 if (!m68k_feature(env, M68K_FEATURE_MSP) || env->sr & SR_M) {
441 new_sp = M68K_SSP;
442 } else {
443 new_sp = M68K_ISP;
445 } else {
446 new_sp = M68K_USP;
448 } else {
449 new_sp = (env->sr & SR_S && env->cacr & M68K_CACR_EUSP)
450 ? M68K_SSP : M68K_USP;
452 env->aregs[7] = env->sp[new_sp];
453 env->current_sp = new_sp;
456 #if !defined(CONFIG_USER_ONLY)
457 /* MMU: 68040 only */
459 static void print_address_zone(uint32_t logical, uint32_t physical,
460 uint32_t size, int attr)
462 qemu_printf("%08x - %08x -> %08x - %08x %c ",
463 logical, logical + size - 1,
464 physical, physical + size - 1,
465 attr & 4 ? 'W' : '-');
466 size >>= 10;
467 if (size < 1024) {
468 qemu_printf("(%d KiB)\n", size);
469 } else {
470 size >>= 10;
471 if (size < 1024) {
472 qemu_printf("(%d MiB)\n", size);
473 } else {
474 size >>= 10;
475 qemu_printf("(%d GiB)\n", size);
480 static void dump_address_map(CPUM68KState *env, uint32_t root_pointer)
482 int i, j, k;
483 int tic_size, tic_shift;
484 uint32_t tib_mask;
485 uint32_t tia, tib, tic;
486 uint32_t logical = 0xffffffff, physical = 0xffffffff;
487 uint32_t first_logical = 0xffffffff, first_physical = 0xffffffff;
488 uint32_t last_logical, last_physical;
489 int32_t size;
490 int last_attr = -1, attr = -1;
491 CPUState *cs = env_cpu(env);
492 MemTxResult txres;
494 if (env->mmu.tcr & M68K_TCR_PAGE_8K) {
495 /* 8k page */
496 tic_size = 32;
497 tic_shift = 13;
498 tib_mask = M68K_8K_PAGE_MASK;
499 } else {
500 /* 4k page */
501 tic_size = 64;
502 tic_shift = 12;
503 tib_mask = M68K_4K_PAGE_MASK;
505 for (i = 0; i < M68K_ROOT_POINTER_ENTRIES; i++) {
506 tia = address_space_ldl(cs->as, M68K_POINTER_BASE(root_pointer) + i * 4,
507 MEMTXATTRS_UNSPECIFIED, &txres);
508 if (txres != MEMTX_OK || !M68K_UDT_VALID(tia)) {
509 continue;
511 for (j = 0; j < M68K_ROOT_POINTER_ENTRIES; j++) {
512 tib = address_space_ldl(cs->as, M68K_POINTER_BASE(tia) + j * 4,
513 MEMTXATTRS_UNSPECIFIED, &txres);
514 if (txres != MEMTX_OK || !M68K_UDT_VALID(tib)) {
515 continue;
517 for (k = 0; k < tic_size; k++) {
518 tic = address_space_ldl(cs->as, (tib & tib_mask) + k * 4,
519 MEMTXATTRS_UNSPECIFIED, &txres);
520 if (txres != MEMTX_OK || !M68K_PDT_VALID(tic)) {
521 continue;
523 if (M68K_PDT_INDIRECT(tic)) {
524 tic = address_space_ldl(cs->as, M68K_INDIRECT_POINTER(tic),
525 MEMTXATTRS_UNSPECIFIED, &txres);
526 if (txres != MEMTX_OK) {
527 continue;
531 last_logical = logical;
532 logical = (i << M68K_TTS_ROOT_SHIFT) |
533 (j << M68K_TTS_POINTER_SHIFT) |
534 (k << tic_shift);
536 last_physical = physical;
537 physical = tic & ~((1 << tic_shift) - 1);
539 last_attr = attr;
540 attr = tic & ((1 << tic_shift) - 1);
542 if ((logical != (last_logical + (1 << tic_shift))) ||
543 (physical != (last_physical + (1 << tic_shift))) ||
544 (attr & 4) != (last_attr & 4)) {
546 if (first_logical != 0xffffffff) {
547 size = last_logical + (1 << tic_shift) -
548 first_logical;
549 print_address_zone(first_logical,
550 first_physical, size, last_attr);
552 first_logical = logical;
553 first_physical = physical;
558 if (first_logical != logical || (attr & 4) != (last_attr & 4)) {
559 size = logical + (1 << tic_shift) - first_logical;
560 print_address_zone(first_logical, first_physical, size, last_attr);
564 #define DUMP_CACHEFLAGS(a) \
565 switch (a & M68K_DESC_CACHEMODE) { \
566 case M68K_DESC_CM_WRTHRU: /* cacheable, write-through */ \
567 qemu_printf("T"); \
568 break; \
569 case M68K_DESC_CM_COPYBK: /* cacheable, copyback */ \
570 qemu_printf("C"); \
571 break; \
572 case M68K_DESC_CM_SERIAL: /* noncachable, serialized */ \
573 qemu_printf("S"); \
574 break; \
575 case M68K_DESC_CM_NCACHE: /* noncachable */ \
576 qemu_printf("N"); \
577 break; \
580 static void dump_ttr(uint32_t ttr)
582 if ((ttr & M68K_TTR_ENABLED) == 0) {
583 qemu_printf("disabled\n");
584 return;
586 qemu_printf("Base: 0x%08x Mask: 0x%08x Control: ",
587 ttr & M68K_TTR_ADDR_BASE,
588 (ttr & M68K_TTR_ADDR_MASK) << M68K_TTR_ADDR_MASK_SHIFT);
589 switch (ttr & M68K_TTR_SFIELD) {
590 case M68K_TTR_SFIELD_USER:
591 qemu_printf("U");
592 break;
593 case M68K_TTR_SFIELD_SUPER:
594 qemu_printf("S");
595 break;
596 default:
597 qemu_printf("*");
598 break;
600 DUMP_CACHEFLAGS(ttr);
601 if (ttr & M68K_DESC_WRITEPROT) {
602 qemu_printf("R");
603 } else {
604 qemu_printf("W");
606 qemu_printf(" U: %d\n", (ttr & M68K_DESC_USERATTR) >>
607 M68K_DESC_USERATTR_SHIFT);
610 void dump_mmu(CPUM68KState *env)
612 if ((env->mmu.tcr & M68K_TCR_ENABLED) == 0) {
613 qemu_printf("Translation disabled\n");
614 return;
616 qemu_printf("Page Size: ");
617 if (env->mmu.tcr & M68K_TCR_PAGE_8K) {
618 qemu_printf("8kB\n");
619 } else {
620 qemu_printf("4kB\n");
623 qemu_printf("MMUSR: ");
624 if (env->mmu.mmusr & M68K_MMU_B_040) {
625 qemu_printf("BUS ERROR\n");
626 } else {
627 qemu_printf("Phy=%08x Flags: ", env->mmu.mmusr & 0xfffff000);
628 /* flags found on the page descriptor */
629 if (env->mmu.mmusr & M68K_MMU_G_040) {
630 qemu_printf("G"); /* Global */
631 } else {
632 qemu_printf(".");
634 if (env->mmu.mmusr & M68K_MMU_S_040) {
635 qemu_printf("S"); /* Supervisor */
636 } else {
637 qemu_printf(".");
639 if (env->mmu.mmusr & M68K_MMU_M_040) {
640 qemu_printf("M"); /* Modified */
641 } else {
642 qemu_printf(".");
644 if (env->mmu.mmusr & M68K_MMU_WP_040) {
645 qemu_printf("W"); /* Write protect */
646 } else {
647 qemu_printf(".");
649 if (env->mmu.mmusr & M68K_MMU_T_040) {
650 qemu_printf("T"); /* Transparent */
651 } else {
652 qemu_printf(".");
654 if (env->mmu.mmusr & M68K_MMU_R_040) {
655 qemu_printf("R"); /* Resident */
656 } else {
657 qemu_printf(".");
659 qemu_printf(" Cache: ");
660 DUMP_CACHEFLAGS(env->mmu.mmusr);
661 qemu_printf(" U: %d\n", (env->mmu.mmusr >> 8) & 3);
662 qemu_printf("\n");
665 qemu_printf("ITTR0: ");
666 dump_ttr(env->mmu.ttr[M68K_ITTR0]);
667 qemu_printf("ITTR1: ");
668 dump_ttr(env->mmu.ttr[M68K_ITTR1]);
669 qemu_printf("DTTR0: ");
670 dump_ttr(env->mmu.ttr[M68K_DTTR0]);
671 qemu_printf("DTTR1: ");
672 dump_ttr(env->mmu.ttr[M68K_DTTR1]);
674 qemu_printf("SRP: 0x%08x\n", env->mmu.srp);
675 dump_address_map(env, env->mmu.srp);
677 qemu_printf("URP: 0x%08x\n", env->mmu.urp);
678 dump_address_map(env, env->mmu.urp);
681 static int check_TTR(uint32_t ttr, int *prot, target_ulong addr,
682 int access_type)
684 uint32_t base, mask;
686 /* check if transparent translation is enabled */
687 if ((ttr & M68K_TTR_ENABLED) == 0) {
688 return 0;
691 /* check mode access */
692 switch (ttr & M68K_TTR_SFIELD) {
693 case M68K_TTR_SFIELD_USER:
694 /* match only if user */
695 if ((access_type & ACCESS_SUPER) != 0) {
696 return 0;
698 break;
699 case M68K_TTR_SFIELD_SUPER:
700 /* match only if supervisor */
701 if ((access_type & ACCESS_SUPER) == 0) {
702 return 0;
704 break;
705 default:
706 /* all other values disable mode matching (FC2) */
707 break;
710 /* check address matching */
712 base = ttr & M68K_TTR_ADDR_BASE;
713 mask = (ttr & M68K_TTR_ADDR_MASK) ^ M68K_TTR_ADDR_MASK;
714 mask <<= M68K_TTR_ADDR_MASK_SHIFT;
716 if ((addr & mask) != (base & mask)) {
717 return 0;
720 *prot = PAGE_READ | PAGE_EXEC;
721 if ((ttr & M68K_DESC_WRITEPROT) == 0) {
722 *prot |= PAGE_WRITE;
725 return 1;
728 static int get_physical_address(CPUM68KState *env, hwaddr *physical,
729 int *prot, target_ulong address,
730 int access_type, target_ulong *page_size)
732 CPUState *cs = env_cpu(env);
733 uint32_t entry;
734 uint32_t next;
735 target_ulong page_mask;
736 bool debug = access_type & ACCESS_DEBUG;
737 int page_bits;
738 int i;
739 MemTxResult txres;
741 /* Transparent Translation (physical = logical) */
742 for (i = 0; i < M68K_MAX_TTR; i++) {
743 if (check_TTR(env->mmu.TTR(access_type, i),
744 prot, address, access_type)) {
745 if (access_type & ACCESS_PTEST) {
746 /* Transparent Translation Register bit */
747 env->mmu.mmusr = M68K_MMU_T_040 | M68K_MMU_R_040;
749 *physical = address;
750 *page_size = TARGET_PAGE_SIZE;
751 return 0;
755 /* Page Table Root Pointer */
756 *prot = PAGE_READ | PAGE_WRITE;
757 if (access_type & ACCESS_CODE) {
758 *prot |= PAGE_EXEC;
760 if (access_type & ACCESS_SUPER) {
761 next = env->mmu.srp;
762 } else {
763 next = env->mmu.urp;
766 /* Root Index */
767 entry = M68K_POINTER_BASE(next) | M68K_ROOT_INDEX(address);
769 next = address_space_ldl(cs->as, entry, MEMTXATTRS_UNSPECIFIED, &txres);
770 if (txres != MEMTX_OK) {
771 goto txfail;
773 if (!M68K_UDT_VALID(next)) {
774 return -1;
776 if (!(next & M68K_DESC_USED) && !debug) {
777 address_space_stl(cs->as, entry, next | M68K_DESC_USED,
778 MEMTXATTRS_UNSPECIFIED, &txres);
779 if (txres != MEMTX_OK) {
780 goto txfail;
783 if (next & M68K_DESC_WRITEPROT) {
784 if (access_type & ACCESS_PTEST) {
785 env->mmu.mmusr |= M68K_MMU_WP_040;
787 *prot &= ~PAGE_WRITE;
788 if (access_type & ACCESS_STORE) {
789 return -1;
793 /* Pointer Index */
794 entry = M68K_POINTER_BASE(next) | M68K_POINTER_INDEX(address);
796 next = address_space_ldl(cs->as, entry, MEMTXATTRS_UNSPECIFIED, &txres);
797 if (txres != MEMTX_OK) {
798 goto txfail;
800 if (!M68K_UDT_VALID(next)) {
801 return -1;
803 if (!(next & M68K_DESC_USED) && !debug) {
804 address_space_stl(cs->as, entry, next | M68K_DESC_USED,
805 MEMTXATTRS_UNSPECIFIED, &txres);
806 if (txres != MEMTX_OK) {
807 goto txfail;
810 if (next & M68K_DESC_WRITEPROT) {
811 if (access_type & ACCESS_PTEST) {
812 env->mmu.mmusr |= M68K_MMU_WP_040;
814 *prot &= ~PAGE_WRITE;
815 if (access_type & ACCESS_STORE) {
816 return -1;
820 /* Page Index */
821 if (env->mmu.tcr & M68K_TCR_PAGE_8K) {
822 entry = M68K_8K_PAGE_BASE(next) | M68K_8K_PAGE_INDEX(address);
823 } else {
824 entry = M68K_4K_PAGE_BASE(next) | M68K_4K_PAGE_INDEX(address);
827 next = address_space_ldl(cs->as, entry, MEMTXATTRS_UNSPECIFIED, &txres);
828 if (txres != MEMTX_OK) {
829 goto txfail;
832 if (!M68K_PDT_VALID(next)) {
833 return -1;
835 if (M68K_PDT_INDIRECT(next)) {
836 next = address_space_ldl(cs->as, M68K_INDIRECT_POINTER(next),
837 MEMTXATTRS_UNSPECIFIED, &txres);
838 if (txres != MEMTX_OK) {
839 goto txfail;
842 if (access_type & ACCESS_STORE) {
843 if (next & M68K_DESC_WRITEPROT) {
844 if (!(next & M68K_DESC_USED) && !debug) {
845 address_space_stl(cs->as, entry, next | M68K_DESC_USED,
846 MEMTXATTRS_UNSPECIFIED, &txres);
847 if (txres != MEMTX_OK) {
848 goto txfail;
851 } else if ((next & (M68K_DESC_MODIFIED | M68K_DESC_USED)) !=
852 (M68K_DESC_MODIFIED | M68K_DESC_USED) && !debug) {
853 address_space_stl(cs->as, entry,
854 next | (M68K_DESC_MODIFIED | M68K_DESC_USED),
855 MEMTXATTRS_UNSPECIFIED, &txres);
856 if (txres != MEMTX_OK) {
857 goto txfail;
860 } else {
861 if (!(next & M68K_DESC_USED) && !debug) {
862 address_space_stl(cs->as, entry, next | M68K_DESC_USED,
863 MEMTXATTRS_UNSPECIFIED, &txres);
864 if (txres != MEMTX_OK) {
865 goto txfail;
870 if (env->mmu.tcr & M68K_TCR_PAGE_8K) {
871 page_bits = 13;
872 } else {
873 page_bits = 12;
875 *page_size = 1 << page_bits;
876 page_mask = ~(*page_size - 1);
877 *physical = (next & page_mask) + (address & (*page_size - 1));
879 if (access_type & ACCESS_PTEST) {
880 env->mmu.mmusr |= next & M68K_MMU_SR_MASK_040;
881 env->mmu.mmusr |= *physical & 0xfffff000;
882 env->mmu.mmusr |= M68K_MMU_R_040;
885 if (next & M68K_DESC_WRITEPROT) {
886 *prot &= ~PAGE_WRITE;
887 if (access_type & ACCESS_STORE) {
888 return -1;
891 if (next & M68K_DESC_SUPERONLY) {
892 if ((access_type & ACCESS_SUPER) == 0) {
893 return -1;
897 return 0;
899 txfail:
901 * A page table load/store failed. TODO: we should really raise a
902 * suitable guest fault here if this is not a debug access.
903 * For now just return that the translation failed.
905 return -1;
908 hwaddr m68k_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
910 CPUM68KState *env = cpu_env(cs);
911 hwaddr phys_addr;
912 int prot;
913 int access_type;
914 target_ulong page_size;
916 if ((env->mmu.tcr & M68K_TCR_ENABLED) == 0) {
917 /* MMU disabled */
918 return addr;
921 access_type = ACCESS_DATA | ACCESS_DEBUG;
922 if (env->sr & SR_S) {
923 access_type |= ACCESS_SUPER;
926 if (get_physical_address(env, &phys_addr, &prot,
927 addr, access_type, &page_size) != 0) {
928 return -1;
931 return phys_addr;
935 * Notify CPU of a pending interrupt. Prioritization and vectoring should
936 * be handled by the interrupt controller. Real hardware only requests
937 * the vector when the interrupt is acknowledged by the CPU. For
938 * simplicity we calculate it when the interrupt is signalled.
940 void m68k_set_irq_level(M68kCPU *cpu, int level, uint8_t vector)
942 CPUState *cs = CPU(cpu);
943 CPUM68KState *env = &cpu->env;
945 env->pending_level = level;
946 env->pending_vector = vector;
947 if (level) {
948 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
949 } else {
950 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
954 bool m68k_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
955 MMUAccessType qemu_access_type, int mmu_idx,
956 bool probe, uintptr_t retaddr)
958 CPUM68KState *env = cpu_env(cs);
959 hwaddr physical;
960 int prot;
961 int access_type;
962 int ret;
963 target_ulong page_size;
965 if ((env->mmu.tcr & M68K_TCR_ENABLED) == 0) {
966 /* MMU disabled */
967 tlb_set_page(cs, address & TARGET_PAGE_MASK,
968 address & TARGET_PAGE_MASK,
969 PAGE_READ | PAGE_WRITE | PAGE_EXEC,
970 mmu_idx, TARGET_PAGE_SIZE);
971 return true;
974 if (qemu_access_type == MMU_INST_FETCH) {
975 access_type = ACCESS_CODE;
976 } else {
977 access_type = ACCESS_DATA;
978 if (qemu_access_type == MMU_DATA_STORE) {
979 access_type |= ACCESS_STORE;
982 if (mmu_idx != MMU_USER_IDX) {
983 access_type |= ACCESS_SUPER;
986 ret = get_physical_address(env, &physical, &prot,
987 address, access_type, &page_size);
988 if (likely(ret == 0)) {
989 tlb_set_page(cs, address & TARGET_PAGE_MASK,
990 physical & TARGET_PAGE_MASK, prot, mmu_idx, page_size);
991 return true;
994 if (probe) {
995 return false;
998 /* page fault */
999 env->mmu.ssw = M68K_ATC_040;
1000 switch (size) {
1001 case 1:
1002 env->mmu.ssw |= M68K_BA_SIZE_BYTE;
1003 break;
1004 case 2:
1005 env->mmu.ssw |= M68K_BA_SIZE_WORD;
1006 break;
1007 case 4:
1008 env->mmu.ssw |= M68K_BA_SIZE_LONG;
1009 break;
1011 if (access_type & ACCESS_SUPER) {
1012 env->mmu.ssw |= M68K_TM_040_SUPER;
1014 if (access_type & ACCESS_CODE) {
1015 env->mmu.ssw |= M68K_TM_040_CODE;
1016 } else {
1017 env->mmu.ssw |= M68K_TM_040_DATA;
1019 if (!(access_type & ACCESS_STORE)) {
1020 env->mmu.ssw |= M68K_RW_040;
1023 cs->exception_index = EXCP_ACCESS;
1024 env->mmu.ar = address;
1025 cpu_loop_exit_restore(cs, retaddr);
1027 #endif /* !CONFIG_USER_ONLY */
1029 uint32_t HELPER(bitrev)(uint32_t x)
1031 x = ((x >> 1) & 0x55555555u) | ((x << 1) & 0xaaaaaaaau);
1032 x = ((x >> 2) & 0x33333333u) | ((x << 2) & 0xccccccccu);
1033 x = ((x >> 4) & 0x0f0f0f0fu) | ((x << 4) & 0xf0f0f0f0u);
1034 return bswap32(x);
1037 uint32_t HELPER(ff1)(uint32_t x)
1039 int n;
1040 for (n = 32; x; n--)
1041 x >>= 1;
1042 return n;
1045 uint32_t HELPER(sats)(uint32_t val, uint32_t v)
1047 /* The result has the opposite sign to the original value. */
1048 if ((int32_t)v < 0) {
1049 val = (((int32_t)val) >> 31) ^ SIGNBIT;
1051 return val;
1054 void cpu_m68k_set_sr(CPUM68KState *env, uint32_t sr)
1056 env->sr = sr & 0xffe0;
1057 cpu_m68k_set_ccr(env, sr);
1058 m68k_switch_sp(env);
1061 void HELPER(set_sr)(CPUM68KState *env, uint32_t val)
1063 cpu_m68k_set_sr(env, val);
1066 /* MAC unit. */
1068 * FIXME: The MAC unit implementation is a bit of a mess. Some helpers
1069 * take values, others take register numbers and manipulate the contents
1070 * in-place.
1072 void HELPER(mac_move)(CPUM68KState *env, uint32_t dest, uint32_t src)
1074 uint32_t mask;
1075 env->macc[dest] = env->macc[src];
1076 mask = MACSR_PAV0 << dest;
1077 if (env->macsr & (MACSR_PAV0 << src))
1078 env->macsr |= mask;
1079 else
1080 env->macsr &= ~mask;
1083 uint64_t HELPER(macmuls)(CPUM68KState *env, uint32_t op1, uint32_t op2)
1085 int64_t product;
1086 int64_t res;
1088 product = (uint64_t)op1 * op2;
1089 res = (product << 24) >> 24;
1090 if (res != product) {
1091 env->macsr |= MACSR_V;
1092 if (env->macsr & MACSR_OMC) {
1093 /* Make sure the accumulate operation overflows. */
1094 if (product < 0)
1095 res = ~(1ll << 50);
1096 else
1097 res = 1ll << 50;
1100 return res;
1103 uint64_t HELPER(macmulu)(CPUM68KState *env, uint32_t op1, uint32_t op2)
1105 uint64_t product;
1107 product = (uint64_t)op1 * op2;
1108 if (product & (0xffffffull << 40)) {
1109 env->macsr |= MACSR_V;
1110 if (env->macsr & MACSR_OMC) {
1111 /* Make sure the accumulate operation overflows. */
1112 product = 1ll << 50;
1113 } else {
1114 product &= ((1ull << 40) - 1);
1117 return product;
1120 uint64_t HELPER(macmulf)(CPUM68KState *env, uint32_t op1, uint32_t op2)
1122 uint64_t product;
1123 uint32_t remainder;
1125 product = (uint64_t)op1 * op2;
1126 if (env->macsr & MACSR_RT) {
1127 remainder = product & 0xffffff;
1128 product >>= 24;
1129 if (remainder > 0x800000)
1130 product++;
1131 else if (remainder == 0x800000)
1132 product += (product & 1);
1133 } else {
1134 product >>= 24;
1136 return product;
1139 void HELPER(macsats)(CPUM68KState *env, uint32_t acc)
1141 int64_t tmp;
1142 int64_t result;
1143 tmp = env->macc[acc];
1144 result = ((tmp << 16) >> 16);
1145 if (result != tmp) {
1146 env->macsr |= MACSR_V;
1148 if (env->macsr & MACSR_V) {
1149 env->macsr |= MACSR_PAV0 << acc;
1150 if (env->macsr & MACSR_OMC) {
1152 * The result is saturated to 32 bits, despite overflow occurring
1153 * at 48 bits. Seems weird, but that's what the hardware docs
1154 * say.
1156 result = (result >> 63) ^ 0x7fffffff;
1159 env->macc[acc] = result;
1162 void HELPER(macsatu)(CPUM68KState *env, uint32_t acc)
1164 uint64_t val;
1166 val = env->macc[acc];
1167 if (val & (0xffffull << 48)) {
1168 env->macsr |= MACSR_V;
1170 if (env->macsr & MACSR_V) {
1171 env->macsr |= MACSR_PAV0 << acc;
1172 if (env->macsr & MACSR_OMC) {
1173 if (val > (1ull << 53))
1174 val = 0;
1175 else
1176 val = (1ull << 48) - 1;
1177 } else {
1178 val &= ((1ull << 48) - 1);
1181 env->macc[acc] = val;
1184 void HELPER(macsatf)(CPUM68KState *env, uint32_t acc)
1186 int64_t sum;
1187 int64_t result;
1189 sum = env->macc[acc];
1190 result = (sum << 16) >> 16;
1191 if (result != sum) {
1192 env->macsr |= MACSR_V;
1194 if (env->macsr & MACSR_V) {
1195 env->macsr |= MACSR_PAV0 << acc;
1196 if (env->macsr & MACSR_OMC) {
1197 result = (result >> 63) ^ 0x7fffffffffffll;
1200 env->macc[acc] = result;
1203 void HELPER(mac_set_flags)(CPUM68KState *env, uint32_t acc)
1205 uint64_t val;
1206 val = env->macc[acc];
1207 if (val == 0) {
1208 env->macsr |= MACSR_Z;
1209 } else if (val & (1ull << 47)) {
1210 env->macsr |= MACSR_N;
1212 if (env->macsr & (MACSR_PAV0 << acc)) {
1213 env->macsr |= MACSR_V;
1215 if (env->macsr & MACSR_FI) {
1216 val = ((int64_t)val) >> 40;
1217 if (val != 0 && val != -1)
1218 env->macsr |= MACSR_EV;
1219 } else if (env->macsr & MACSR_SU) {
1220 val = ((int64_t)val) >> 32;
1221 if (val != 0 && val != -1)
1222 env->macsr |= MACSR_EV;
1223 } else {
1224 if ((val >> 32) != 0)
1225 env->macsr |= MACSR_EV;
1229 #define EXTSIGN(val, index) ( \
1230 (index == 0) ? (int8_t)(val) : ((index == 1) ? (int16_t)(val) : (val)) \
1233 #define COMPUTE_CCR(op, x, n, z, v, c) { \
1234 switch (op) { \
1235 case CC_OP_FLAGS: \
1236 /* Everything in place. */ \
1237 break; \
1238 case CC_OP_ADDB: \
1239 case CC_OP_ADDW: \
1240 case CC_OP_ADDL: \
1241 res = n; \
1242 src2 = v; \
1243 src1 = EXTSIGN(res - src2, op - CC_OP_ADDB); \
1244 c = x; \
1245 z = n; \
1246 v = (res ^ src1) & ~(src1 ^ src2); \
1247 break; \
1248 case CC_OP_SUBB: \
1249 case CC_OP_SUBW: \
1250 case CC_OP_SUBL: \
1251 res = n; \
1252 src2 = v; \
1253 src1 = EXTSIGN(res + src2, op - CC_OP_SUBB); \
1254 c = x; \
1255 z = n; \
1256 v = (res ^ src1) & (src1 ^ src2); \
1257 break; \
1258 case CC_OP_CMPB: \
1259 case CC_OP_CMPW: \
1260 case CC_OP_CMPL: \
1261 src1 = n; \
1262 src2 = v; \
1263 res = EXTSIGN(src1 - src2, op - CC_OP_CMPB); \
1264 n = res; \
1265 z = res; \
1266 c = src1 < src2; \
1267 v = (res ^ src1) & (src1 ^ src2); \
1268 break; \
1269 case CC_OP_LOGIC: \
1270 c = v = 0; \
1271 z = n; \
1272 break; \
1273 default: \
1274 cpu_abort(env_cpu(env), "Bad CC_OP %d", op); \
1276 } while (0)
1278 uint32_t cpu_m68k_get_ccr(CPUM68KState *env)
1280 uint32_t x, c, n, z, v;
1281 uint32_t res, src1, src2;
1283 x = env->cc_x;
1284 n = env->cc_n;
1285 z = env->cc_z;
1286 v = env->cc_v;
1287 c = env->cc_c;
1289 COMPUTE_CCR(env->cc_op, x, n, z, v, c);
1291 n = n >> 31;
1292 z = (z == 0);
1293 v = v >> 31;
1295 return x * CCF_X + n * CCF_N + z * CCF_Z + v * CCF_V + c * CCF_C;
1298 uint32_t HELPER(get_ccr)(CPUM68KState *env)
1300 return cpu_m68k_get_ccr(env);
1303 void cpu_m68k_set_ccr(CPUM68KState *env, uint32_t ccr)
1305 env->cc_x = (ccr & CCF_X ? 1 : 0);
1306 env->cc_n = (ccr & CCF_N ? -1 : 0);
1307 env->cc_z = (ccr & CCF_Z ? 0 : 1);
1308 env->cc_v = (ccr & CCF_V ? -1 : 0);
1309 env->cc_c = (ccr & CCF_C ? 1 : 0);
1310 env->cc_op = CC_OP_FLAGS;
1313 void HELPER(set_ccr)(CPUM68KState *env, uint32_t ccr)
1315 cpu_m68k_set_ccr(env, ccr);
1318 void HELPER(flush_flags)(CPUM68KState *env, uint32_t cc_op)
1320 uint32_t res, src1, src2;
1322 COMPUTE_CCR(cc_op, env->cc_x, env->cc_n, env->cc_z, env->cc_v, env->cc_c);
1323 env->cc_op = CC_OP_FLAGS;
1326 uint32_t HELPER(get_macf)(CPUM68KState *env, uint64_t val)
1328 int rem;
1329 uint32_t result;
1331 if (env->macsr & MACSR_SU) {
1332 /* 16-bit rounding. */
1333 rem = val & 0xffffff;
1334 val = (val >> 24) & 0xffffu;
1335 if (rem > 0x800000)
1336 val++;
1337 else if (rem == 0x800000)
1338 val += (val & 1);
1339 } else if (env->macsr & MACSR_RT) {
1340 /* 32-bit rounding. */
1341 rem = val & 0xff;
1342 val >>= 8;
1343 if (rem > 0x80)
1344 val++;
1345 else if (rem == 0x80)
1346 val += (val & 1);
1347 } else {
1348 /* No rounding. */
1349 val >>= 8;
1351 if (env->macsr & MACSR_OMC) {
1352 /* Saturate. */
1353 if (env->macsr & MACSR_SU) {
1354 if (val != (uint16_t) val) {
1355 result = ((val >> 63) ^ 0x7fff) & 0xffff;
1356 } else {
1357 result = val & 0xffff;
1359 } else {
1360 if (val != (uint32_t)val) {
1361 result = ((uint32_t)(val >> 63) & 0x7fffffff);
1362 } else {
1363 result = (uint32_t)val;
1366 } else {
1367 /* No saturation. */
1368 if (env->macsr & MACSR_SU) {
1369 result = val & 0xffff;
1370 } else {
1371 result = (uint32_t)val;
1374 return result;
1377 uint32_t HELPER(get_macs)(uint64_t val)
1379 if (val == (int32_t)val) {
1380 return (int32_t)val;
1381 } else {
1382 return (val >> 61) ^ ~SIGNBIT;
1386 uint32_t HELPER(get_macu)(uint64_t val)
1388 if ((val >> 32) == 0) {
1389 return (uint32_t)val;
1390 } else {
1391 return 0xffffffffu;
1395 uint32_t HELPER(get_mac_extf)(CPUM68KState *env, uint32_t acc)
1397 uint32_t val;
1398 val = env->macc[acc] & 0x00ff;
1399 val |= (env->macc[acc] >> 32) & 0xff00;
1400 val |= (env->macc[acc + 1] << 16) & 0x00ff0000;
1401 val |= (env->macc[acc + 1] >> 16) & 0xff000000;
1402 return val;
1405 uint32_t HELPER(get_mac_exti)(CPUM68KState *env, uint32_t acc)
1407 uint32_t val;
1408 val = (env->macc[acc] >> 32) & 0xffff;
1409 val |= (env->macc[acc + 1] >> 16) & 0xffff0000;
1410 return val;
1413 void HELPER(set_mac_extf)(CPUM68KState *env, uint32_t val, uint32_t acc)
1415 int64_t res;
1416 int32_t tmp;
1417 res = env->macc[acc] & 0xffffffff00ull;
1418 tmp = (int16_t)(val & 0xff00);
1419 res |= ((int64_t)tmp) << 32;
1420 res |= val & 0xff;
1421 env->macc[acc] = res;
1422 res = env->macc[acc + 1] & 0xffffffff00ull;
1423 tmp = (val & 0xff000000);
1424 res |= ((int64_t)tmp) << 16;
1425 res |= (val >> 16) & 0xff;
1426 env->macc[acc + 1] = res;
1429 void HELPER(set_mac_exts)(CPUM68KState *env, uint32_t val, uint32_t acc)
1431 int64_t res;
1432 int32_t tmp;
1433 res = (uint32_t)env->macc[acc];
1434 tmp = (int16_t)val;
1435 res |= ((int64_t)tmp) << 32;
1436 env->macc[acc] = res;
1437 res = (uint32_t)env->macc[acc + 1];
1438 tmp = val & 0xffff0000;
1439 res |= (int64_t)tmp << 16;
1440 env->macc[acc + 1] = res;
1443 void HELPER(set_mac_extu)(CPUM68KState *env, uint32_t val, uint32_t acc)
1445 uint64_t res;
1446 res = (uint32_t)env->macc[acc];
1447 res |= ((uint64_t)(val & 0xffff)) << 32;
1448 env->macc[acc] = res;
1449 res = (uint32_t)env->macc[acc + 1];
1450 res |= (uint64_t)(val & 0xffff0000) << 16;
1451 env->macc[acc + 1] = res;
1454 #if !defined(CONFIG_USER_ONLY)
1455 void HELPER(ptest)(CPUM68KState *env, uint32_t addr, uint32_t is_read)
1457 hwaddr physical;
1458 int access_type;
1459 int prot;
1460 int ret;
1461 target_ulong page_size;
1463 access_type = ACCESS_PTEST;
1464 if (env->dfc & 4) {
1465 access_type |= ACCESS_SUPER;
1467 if ((env->dfc & 3) == 2) {
1468 access_type |= ACCESS_CODE;
1470 if (!is_read) {
1471 access_type |= ACCESS_STORE;
1474 env->mmu.mmusr = 0;
1475 env->mmu.ssw = 0;
1476 ret = get_physical_address(env, &physical, &prot, addr,
1477 access_type, &page_size);
1478 if (ret == 0) {
1479 tlb_set_page(env_cpu(env), addr & TARGET_PAGE_MASK,
1480 physical & TARGET_PAGE_MASK,
1481 prot, access_type & ACCESS_SUPER ?
1482 MMU_KERNEL_IDX : MMU_USER_IDX, page_size);
1486 void HELPER(pflush)(CPUM68KState *env, uint32_t addr, uint32_t opmode)
1488 CPUState *cs = env_cpu(env);
1490 switch (opmode) {
1491 case 0: /* Flush page entry if not global */
1492 case 1: /* Flush page entry */
1493 tlb_flush_page(cs, addr);
1494 break;
1495 case 2: /* Flush all except global entries */
1496 tlb_flush(cs);
1497 break;
1498 case 3: /* Flush all entries */
1499 tlb_flush(cs);
1500 break;
1504 void HELPER(reset)(CPUM68KState *env)
1506 /* FIXME: reset all except CPU */
1508 #endif /* !CONFIG_USER_ONLY */