Merge remote-tracking branch 'qemu-project/master'
[qemu/ar7.git] / system / physmem.c
blob9a3b3a76360cfebe4518ff1149f45c0c14980048
1 /*
2 * RAM allocation and memory access
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "exec/page-vary.h"
22 #include "qapi/error.h"
24 #include "qemu/cutils.h"
25 #include "qemu/cacheflush.h"
26 #include "qemu/hbitmap.h"
27 #include "qemu/madvise.h"
28 #include "qemu/lockable.h"
30 #ifdef CONFIG_TCG
31 #include "hw/core/tcg-cpu-ops.h"
32 #endif /* CONFIG_TCG */
34 #include "exec/exec-all.h"
35 #include "exec/page-protection.h"
36 #include "exec/target_page.h"
37 #include "hw/qdev-core.h"
38 #include "hw/qdev-properties.h"
39 #include "hw/boards.h"
40 #include "sysemu/xen.h"
41 #include "sysemu/kvm.h"
42 #include "sysemu/tcg.h"
43 #include "sysemu/qtest.h"
44 #include "qemu/timer.h"
45 #include "qemu/config-file.h"
46 #include "qemu/error-report.h"
47 #include "qemu/qemu-print.h"
48 #include "qemu/log.h"
49 #include "qemu/memalign.h"
50 #include "exec/memory.h"
51 #include "exec/ioport.h"
52 #include "sysemu/dma.h"
53 #include "sysemu/hostmem.h"
54 #include "sysemu/hw_accel.h"
55 #include "sysemu/xen-mapcache.h"
56 #include "trace.h"
58 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
59 #include <linux/falloc.h>
60 #endif
62 #include "qemu/rcu_queue.h"
63 #include "qemu/main-loop.h"
64 #include "exec/translate-all.h"
65 #include "sysemu/replay.h"
67 #include "exec/memory-internal.h"
68 #include "exec/ram_addr.h"
70 #include "qemu/pmem.h"
72 #include "migration/vmstate.h"
74 #include "qemu/range.h"
75 #ifndef _WIN32
76 #include "qemu/mmap-alloc.h"
77 #endif
79 #include "monitor/monitor.h"
81 #ifdef CONFIG_LIBDAXCTL
82 #include <daxctl/libdaxctl.h>
83 #endif
85 //#define DEBUG_SUBPAGE
87 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
88 * are protected by the ramlist lock.
90 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
92 static MemoryRegion *system_memory;
93 static MemoryRegion *system_io;
95 AddressSpace address_space_io;
96 AddressSpace address_space_memory;
98 static MemoryRegion io_mem_unassigned;
100 typedef struct PhysPageEntry PhysPageEntry;
102 struct PhysPageEntry {
103 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
104 uint32_t skip : 6;
105 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
106 uint32_t ptr : 26;
109 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
111 /* Size of the L2 (and L3, etc) page tables. */
112 #define ADDR_SPACE_BITS 64
114 #define P_L2_BITS 9
115 #define P_L2_SIZE (1 << P_L2_BITS)
117 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
119 typedef PhysPageEntry Node[P_L2_SIZE];
121 typedef struct PhysPageMap {
122 struct rcu_head rcu;
124 unsigned sections_nb;
125 unsigned sections_nb_alloc;
126 unsigned nodes_nb;
127 unsigned nodes_nb_alloc;
128 Node *nodes;
129 MemoryRegionSection *sections;
130 } PhysPageMap;
132 struct AddressSpaceDispatch {
133 MemoryRegionSection *mru_section;
134 /* This is a multi-level map on the physical address space.
135 * The bottom level has pointers to MemoryRegionSections.
137 PhysPageEntry phys_map;
138 PhysPageMap map;
141 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
142 typedef struct subpage_t {
143 MemoryRegion iomem;
144 FlatView *fv;
145 hwaddr base;
146 uint16_t sub_section[];
147 } subpage_t;
149 #define PHYS_SECTION_UNASSIGNED 0
151 static void io_mem_init(void);
152 static void memory_map_init(void);
153 static void tcg_log_global_after_sync(MemoryListener *listener);
154 static void tcg_commit(MemoryListener *listener);
157 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
158 * @cpu: the CPU whose AddressSpace this is
159 * @as: the AddressSpace itself
160 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
161 * @tcg_as_listener: listener for tracking changes to the AddressSpace
163 typedef struct CPUAddressSpace {
164 CPUState *cpu;
165 AddressSpace *as;
166 struct AddressSpaceDispatch *memory_dispatch;
167 MemoryListener tcg_as_listener;
168 } CPUAddressSpace;
170 struct DirtyBitmapSnapshot {
171 ram_addr_t start;
172 ram_addr_t end;
173 unsigned long dirty[];
176 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
178 static unsigned alloc_hint = 16;
179 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
180 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
181 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
182 alloc_hint = map->nodes_nb_alloc;
186 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
188 unsigned i;
189 uint32_t ret;
190 PhysPageEntry e;
191 PhysPageEntry *p;
193 ret = map->nodes_nb++;
194 p = map->nodes[ret];
195 assert(ret != PHYS_MAP_NODE_NIL);
196 assert(ret != map->nodes_nb_alloc);
198 e.skip = leaf ? 0 : 1;
199 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
200 for (i = 0; i < P_L2_SIZE; ++i) {
201 memcpy(&p[i], &e, sizeof(e));
203 return ret;
206 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
207 hwaddr *index, uint64_t *nb, uint16_t leaf,
208 int level)
210 PhysPageEntry *p;
211 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
213 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
214 lp->ptr = phys_map_node_alloc(map, level == 0);
216 p = map->nodes[lp->ptr];
217 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
219 while (*nb && lp < &p[P_L2_SIZE]) {
220 if ((*index & (step - 1)) == 0 && *nb >= step) {
221 lp->skip = 0;
222 lp->ptr = leaf;
223 *index += step;
224 *nb -= step;
225 } else {
226 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
228 ++lp;
232 static void phys_page_set(AddressSpaceDispatch *d,
233 hwaddr index, uint64_t nb,
234 uint16_t leaf)
236 /* Wildly overreserve - it doesn't matter much. */
237 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
239 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
242 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
243 * and update our entry so we can skip it and go directly to the destination.
245 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
247 unsigned valid_ptr = P_L2_SIZE;
248 int valid = 0;
249 PhysPageEntry *p;
250 int i;
252 if (lp->ptr == PHYS_MAP_NODE_NIL) {
253 return;
256 p = nodes[lp->ptr];
257 for (i = 0; i < P_L2_SIZE; i++) {
258 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
259 continue;
262 valid_ptr = i;
263 valid++;
264 if (p[i].skip) {
265 phys_page_compact(&p[i], nodes);
269 /* We can only compress if there's only one child. */
270 if (valid != 1) {
271 return;
274 assert(valid_ptr < P_L2_SIZE);
276 /* Don't compress if it won't fit in the # of bits we have. */
277 if (P_L2_LEVELS >= (1 << 6) &&
278 lp->skip + p[valid_ptr].skip >= (1 << 6)) {
279 return;
282 lp->ptr = p[valid_ptr].ptr;
283 if (!p[valid_ptr].skip) {
284 /* If our only child is a leaf, make this a leaf. */
285 /* By design, we should have made this node a leaf to begin with so we
286 * should never reach here.
287 * But since it's so simple to handle this, let's do it just in case we
288 * change this rule.
290 lp->skip = 0;
291 } else {
292 lp->skip += p[valid_ptr].skip;
296 void address_space_dispatch_compact(AddressSpaceDispatch *d)
298 if (d->phys_map.skip) {
299 phys_page_compact(&d->phys_map, d->map.nodes);
303 static inline bool section_covers_addr(const MemoryRegionSection *section,
304 hwaddr addr)
306 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
307 * the section must cover the entire address space.
309 return int128_gethi(section->size) ||
310 range_covers_byte(section->offset_within_address_space,
311 int128_getlo(section->size), addr);
314 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
316 PhysPageEntry lp = d->phys_map, *p;
317 Node *nodes = d->map.nodes;
318 MemoryRegionSection *sections = d->map.sections;
319 hwaddr index = addr >> TARGET_PAGE_BITS;
320 int i;
322 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
323 if (lp.ptr == PHYS_MAP_NODE_NIL) {
324 return &sections[PHYS_SECTION_UNASSIGNED];
326 p = nodes[lp.ptr];
327 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
330 if (section_covers_addr(&sections[lp.ptr], addr)) {
331 return &sections[lp.ptr];
332 } else {
333 return &sections[PHYS_SECTION_UNASSIGNED];
337 /* Called from RCU critical section */
338 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
339 hwaddr addr,
340 bool resolve_subpage)
342 MemoryRegionSection *section = qatomic_read(&d->mru_section);
343 subpage_t *subpage;
345 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
346 !section_covers_addr(section, addr)) {
347 section = phys_page_find(d, addr);
348 qatomic_set(&d->mru_section, section);
350 if (resolve_subpage && section->mr->subpage) {
351 subpage = container_of(section->mr, subpage_t, iomem);
352 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
354 return section;
357 /* Called from RCU critical section */
358 static MemoryRegionSection *
359 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
360 hwaddr *plen, bool resolve_subpage)
362 MemoryRegionSection *section;
363 MemoryRegion *mr;
364 Int128 diff;
366 section = address_space_lookup_region(d, addr, resolve_subpage);
367 /* Compute offset within MemoryRegionSection */
368 addr -= section->offset_within_address_space;
370 /* Compute offset within MemoryRegion */
371 *xlat = addr + section->offset_within_region;
373 mr = section->mr;
375 /* MMIO registers can be expected to perform full-width accesses based only
376 * on their address, without considering adjacent registers that could
377 * decode to completely different MemoryRegions. When such registers
378 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
379 * regions overlap wildly. For this reason we cannot clamp the accesses
380 * here.
382 * If the length is small (as is the case for address_space_ldl/stl),
383 * everything works fine. If the incoming length is large, however,
384 * the caller really has to do the clamping through memory_access_size.
386 if (memory_region_is_ram(mr)) {
387 diff = int128_sub(section->size, int128_make64(addr));
388 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
390 return section;
394 * address_space_translate_iommu - translate an address through an IOMMU
395 * memory region and then through the target address space.
397 * @iommu_mr: the IOMMU memory region that we start the translation from
398 * @addr: the address to be translated through the MMU
399 * @xlat: the translated address offset within the destination memory region.
400 * It cannot be %NULL.
401 * @plen_out: valid read/write length of the translated address. It
402 * cannot be %NULL.
403 * @page_mask_out: page mask for the translated address. This
404 * should only be meaningful for IOMMU translated
405 * addresses, since there may be huge pages that this bit
406 * would tell. It can be %NULL if we don't care about it.
407 * @is_write: whether the translation operation is for write
408 * @is_mmio: whether this can be MMIO, set true if it can
409 * @target_as: the address space targeted by the IOMMU
410 * @attrs: transaction attributes
412 * This function is called from RCU critical section. It is the common
413 * part of flatview_do_translate and address_space_translate_cached.
415 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
416 hwaddr *xlat,
417 hwaddr *plen_out,
418 hwaddr *page_mask_out,
419 bool is_write,
420 bool is_mmio,
421 AddressSpace **target_as,
422 MemTxAttrs attrs)
424 MemoryRegionSection *section;
425 hwaddr page_mask = (hwaddr)-1;
427 do {
428 hwaddr addr = *xlat;
429 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
430 int iommu_idx = 0;
431 IOMMUTLBEntry iotlb;
433 if (imrc->attrs_to_index) {
434 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
437 iotlb = imrc->translate(iommu_mr, addr, is_write ?
438 IOMMU_WO : IOMMU_RO, iommu_idx);
440 if (!(iotlb.perm & (1 << is_write))) {
441 goto unassigned;
444 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
445 | (addr & iotlb.addr_mask));
446 page_mask &= iotlb.addr_mask;
447 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
448 *target_as = iotlb.target_as;
450 section = address_space_translate_internal(
451 address_space_to_dispatch(iotlb.target_as), addr, xlat,
452 plen_out, is_mmio);
454 iommu_mr = memory_region_get_iommu(section->mr);
455 } while (unlikely(iommu_mr));
457 if (page_mask_out) {
458 *page_mask_out = page_mask;
460 return *section;
462 unassigned:
463 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
467 * flatview_do_translate - translate an address in FlatView
469 * @fv: the flat view that we want to translate on
470 * @addr: the address to be translated in above address space
471 * @xlat: the translated address offset within memory region. It
472 * cannot be @NULL.
473 * @plen_out: valid read/write length of the translated address. It
474 * can be @NULL when we don't care about it.
475 * @page_mask_out: page mask for the translated address. This
476 * should only be meaningful for IOMMU translated
477 * addresses, since there may be huge pages that this bit
478 * would tell. It can be @NULL if we don't care about it.
479 * @is_write: whether the translation operation is for write
480 * @is_mmio: whether this can be MMIO, set true if it can
481 * @target_as: the address space targeted by the IOMMU
482 * @attrs: memory transaction attributes
484 * This function is called from RCU critical section
486 static MemoryRegionSection flatview_do_translate(FlatView *fv,
487 hwaddr addr,
488 hwaddr *xlat,
489 hwaddr *plen_out,
490 hwaddr *page_mask_out,
491 bool is_write,
492 bool is_mmio,
493 AddressSpace **target_as,
494 MemTxAttrs attrs)
496 MemoryRegionSection *section;
497 IOMMUMemoryRegion *iommu_mr;
498 hwaddr plen = (hwaddr)(-1);
500 if (!plen_out) {
501 plen_out = &plen;
504 section = address_space_translate_internal(
505 flatview_to_dispatch(fv), addr, xlat,
506 plen_out, is_mmio);
508 iommu_mr = memory_region_get_iommu(section->mr);
509 if (unlikely(iommu_mr)) {
510 return address_space_translate_iommu(iommu_mr, xlat,
511 plen_out, page_mask_out,
512 is_write, is_mmio,
513 target_as, attrs);
515 if (page_mask_out) {
516 /* Not behind an IOMMU, use default page size. */
517 *page_mask_out = ~TARGET_PAGE_MASK;
520 return *section;
523 /* Called from RCU critical section */
524 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
525 bool is_write, MemTxAttrs attrs)
527 MemoryRegionSection section;
528 hwaddr xlat, page_mask;
531 * This can never be MMIO, and we don't really care about plen,
532 * but page mask.
534 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
535 NULL, &page_mask, is_write, false, &as,
536 attrs);
538 /* Illegal translation */
539 if (section.mr == &io_mem_unassigned) {
540 goto iotlb_fail;
543 /* Convert memory region offset into address space offset */
544 xlat += section.offset_within_address_space -
545 section.offset_within_region;
547 return (IOMMUTLBEntry) {
548 .target_as = as,
549 .iova = addr & ~page_mask,
550 .translated_addr = xlat & ~page_mask,
551 .addr_mask = page_mask,
552 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
553 .perm = IOMMU_RW,
556 iotlb_fail:
557 return (IOMMUTLBEntry) {0};
560 /* Called from RCU critical section */
561 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
562 hwaddr *plen, bool is_write,
563 MemTxAttrs attrs)
565 MemoryRegion *mr;
566 MemoryRegionSection section;
567 AddressSpace *as = NULL;
569 /* This can be MMIO, so setup MMIO bit. */
570 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
571 is_write, true, &as, attrs);
572 mr = section.mr;
574 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
575 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
576 *plen = MIN(page, *plen);
579 return mr;
582 typedef struct TCGIOMMUNotifier {
583 IOMMUNotifier n;
584 MemoryRegion *mr;
585 CPUState *cpu;
586 int iommu_idx;
587 bool active;
588 } TCGIOMMUNotifier;
590 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
592 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
594 if (!notifier->active) {
595 return;
597 tlb_flush(notifier->cpu);
598 notifier->active = false;
599 /* We leave the notifier struct on the list to avoid reallocating it later.
600 * Generally the number of IOMMUs a CPU deals with will be small.
601 * In any case we can't unregister the iommu notifier from a notify
602 * callback.
606 static void tcg_register_iommu_notifier(CPUState *cpu,
607 IOMMUMemoryRegion *iommu_mr,
608 int iommu_idx)
610 /* Make sure this CPU has an IOMMU notifier registered for this
611 * IOMMU/IOMMU index combination, so that we can flush its TLB
612 * when the IOMMU tells us the mappings we've cached have changed.
614 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
615 TCGIOMMUNotifier *notifier = NULL;
616 int i;
618 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
619 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
620 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
621 break;
624 if (i == cpu->iommu_notifiers->len) {
625 /* Not found, add a new entry at the end of the array */
626 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
627 notifier = g_new0(TCGIOMMUNotifier, 1);
628 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
630 notifier->mr = mr;
631 notifier->iommu_idx = iommu_idx;
632 notifier->cpu = cpu;
633 /* Rather than trying to register interest in the specific part
634 * of the iommu's address space that we've accessed and then
635 * expand it later as subsequent accesses touch more of it, we
636 * just register interest in the whole thing, on the assumption
637 * that iommu reconfiguration will be rare.
639 iommu_notifier_init(&notifier->n,
640 tcg_iommu_unmap_notify,
641 IOMMU_NOTIFIER_UNMAP,
643 HWADDR_MAX,
644 iommu_idx);
645 memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
646 &error_fatal);
649 if (!notifier->active) {
650 notifier->active = true;
654 void tcg_iommu_free_notifier_list(CPUState *cpu)
656 /* Destroy the CPU's notifier list */
657 int i;
658 TCGIOMMUNotifier *notifier;
660 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
661 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
662 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
663 g_free(notifier);
665 g_array_free(cpu->iommu_notifiers, true);
668 void tcg_iommu_init_notifier_list(CPUState *cpu)
670 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
673 /* Called from RCU critical section */
674 MemoryRegionSection *
675 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr orig_addr,
676 hwaddr *xlat, hwaddr *plen,
677 MemTxAttrs attrs, int *prot)
679 MemoryRegionSection *section;
680 IOMMUMemoryRegion *iommu_mr;
681 IOMMUMemoryRegionClass *imrc;
682 IOMMUTLBEntry iotlb;
683 int iommu_idx;
684 hwaddr addr = orig_addr;
685 AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch;
687 for (;;) {
688 section = address_space_translate_internal(d, addr, &addr, plen, false);
690 iommu_mr = memory_region_get_iommu(section->mr);
691 if (!iommu_mr) {
692 break;
695 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
697 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
698 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
699 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
700 * doesn't short-cut its translation table walk.
702 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
703 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
704 | (addr & iotlb.addr_mask));
705 /* Update the caller's prot bits to remove permissions the IOMMU
706 * is giving us a failure response for. If we get down to no
707 * permissions left at all we can give up now.
709 if (!(iotlb.perm & IOMMU_RO)) {
710 *prot &= ~(PAGE_READ | PAGE_EXEC);
712 if (!(iotlb.perm & IOMMU_WO)) {
713 *prot &= ~PAGE_WRITE;
716 if (!*prot) {
717 goto translate_fail;
720 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
723 assert(!memory_region_is_iommu(section->mr));
724 *xlat = addr;
725 return section;
727 translate_fail:
729 * We should be given a page-aligned address -- certainly
730 * tlb_set_page_with_attrs() does so. The page offset of xlat
731 * is used to index sections[], and PHYS_SECTION_UNASSIGNED = 0.
732 * The page portion of xlat will be logged by memory_region_access_valid()
733 * when this memory access is rejected, so use the original untranslated
734 * physical address.
736 assert((orig_addr & ~TARGET_PAGE_MASK) == 0);
737 *xlat = orig_addr;
738 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
741 void cpu_address_space_init(CPUState *cpu, int asidx,
742 const char *prefix, MemoryRegion *mr)
744 CPUAddressSpace *newas;
745 AddressSpace *as = g_new0(AddressSpace, 1);
746 char *as_name;
748 assert(mr);
749 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
750 address_space_init(as, mr, as_name);
751 g_free(as_name);
753 /* Target code should have set num_ases before calling us */
754 assert(asidx < cpu->num_ases);
756 if (asidx == 0) {
757 /* address space 0 gets the convenience alias */
758 cpu->as = as;
761 /* KVM cannot currently support multiple address spaces. */
762 assert(asidx == 0 || !kvm_enabled());
764 if (!cpu->cpu_ases) {
765 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
768 newas = &cpu->cpu_ases[asidx];
769 newas->cpu = cpu;
770 newas->as = as;
771 if (tcg_enabled()) {
772 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
773 newas->tcg_as_listener.commit = tcg_commit;
774 newas->tcg_as_listener.name = "tcg";
775 memory_listener_register(&newas->tcg_as_listener, as);
779 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
781 /* Return the AddressSpace corresponding to the specified index */
782 return cpu->cpu_ases[asidx].as;
785 /* Called from RCU critical section */
786 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
788 RAMBlock *block;
790 block = qatomic_rcu_read(&ram_list.mru_block);
791 if (block && addr - block->offset < block->max_length) {
792 return block;
794 RAMBLOCK_FOREACH(block) {
795 if (addr - block->offset < block->max_length) {
796 goto found;
800 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
801 abort();
803 found:
804 /* It is safe to write mru_block outside the BQL. This
805 * is what happens:
807 * mru_block = xxx
808 * rcu_read_unlock()
809 * xxx removed from list
810 * rcu_read_lock()
811 * read mru_block
812 * mru_block = NULL;
813 * call_rcu(reclaim_ramblock, xxx);
814 * rcu_read_unlock()
816 * qatomic_rcu_set is not needed here. The block was already published
817 * when it was placed into the list. Here we're just making an extra
818 * copy of the pointer.
820 ram_list.mru_block = block;
821 return block;
824 void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
826 CPUState *cpu;
827 ram_addr_t start1;
828 RAMBlock *block;
829 ram_addr_t end;
831 assert(tcg_enabled());
832 end = TARGET_PAGE_ALIGN(start + length);
833 start &= TARGET_PAGE_MASK;
835 RCU_READ_LOCK_GUARD();
836 block = qemu_get_ram_block(start);
837 assert(block == qemu_get_ram_block(end - 1));
838 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
839 CPU_FOREACH(cpu) {
840 tlb_reset_dirty(cpu, start1, length);
844 /* Note: start and end must be within the same ram block. */
845 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
846 ram_addr_t length,
847 unsigned client)
849 DirtyMemoryBlocks *blocks;
850 unsigned long end, page, start_page;
851 bool dirty = false;
852 RAMBlock *ramblock;
853 uint64_t mr_offset, mr_size;
855 if (length == 0) {
856 return false;
859 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
860 start_page = start >> TARGET_PAGE_BITS;
861 page = start_page;
863 WITH_RCU_READ_LOCK_GUARD() {
864 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
865 ramblock = qemu_get_ram_block(start);
866 /* Range sanity check on the ramblock */
867 assert(start >= ramblock->offset &&
868 start + length <= ramblock->offset + ramblock->used_length);
870 while (page < end) {
871 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
872 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
873 unsigned long num = MIN(end - page,
874 DIRTY_MEMORY_BLOCK_SIZE - offset);
876 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
877 offset, num);
878 page += num;
881 mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset;
882 mr_size = (end - start_page) << TARGET_PAGE_BITS;
883 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
886 if (dirty) {
887 cpu_physical_memory_dirty_bits_cleared(start, length);
890 return dirty;
893 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
894 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
896 DirtyMemoryBlocks *blocks;
897 ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
898 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
899 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
900 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
901 DirtyBitmapSnapshot *snap;
902 unsigned long page, end, dest;
904 snap = g_malloc0(sizeof(*snap) +
905 ((last - first) >> (TARGET_PAGE_BITS + 3)));
906 snap->start = first;
907 snap->end = last;
909 page = first >> TARGET_PAGE_BITS;
910 end = last >> TARGET_PAGE_BITS;
911 dest = 0;
913 WITH_RCU_READ_LOCK_GUARD() {
914 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
916 while (page < end) {
917 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
918 unsigned long ofs = page % DIRTY_MEMORY_BLOCK_SIZE;
919 unsigned long num = MIN(end - page,
920 DIRTY_MEMORY_BLOCK_SIZE - ofs);
922 assert(QEMU_IS_ALIGNED(ofs, (1 << BITS_PER_LEVEL)));
923 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
924 ofs >>= BITS_PER_LEVEL;
926 bitmap_copy_and_clear_atomic(snap->dirty + dest,
927 blocks->blocks[idx] + ofs,
928 num);
929 page += num;
930 dest += num >> BITS_PER_LEVEL;
934 cpu_physical_memory_dirty_bits_cleared(start, length);
936 memory_region_clear_dirty_bitmap(mr, offset, length);
938 return snap;
941 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
942 ram_addr_t start,
943 ram_addr_t length)
945 unsigned long page, end;
947 assert(start >= snap->start);
948 assert(start + length <= snap->end);
950 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
951 page = (start - snap->start) >> TARGET_PAGE_BITS;
953 while (page < end) {
954 if (test_bit(page, snap->dirty)) {
955 return true;
957 page++;
959 return false;
962 /* Called from RCU critical section */
963 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
964 MemoryRegionSection *section)
966 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
967 return section - d->map.sections;
970 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
971 uint16_t section);
972 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
974 static uint16_t phys_section_add(PhysPageMap *map,
975 MemoryRegionSection *section)
977 /* The physical section number is ORed with a page-aligned
978 * pointer to produce the iotlb entries. Thus it should
979 * never overflow into the page-aligned value.
981 assert(map->sections_nb < TARGET_PAGE_SIZE);
983 if (map->sections_nb == map->sections_nb_alloc) {
984 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
985 map->sections = g_renew(MemoryRegionSection, map->sections,
986 map->sections_nb_alloc);
988 map->sections[map->sections_nb] = *section;
989 memory_region_ref(section->mr);
990 return map->sections_nb++;
993 static void phys_section_destroy(MemoryRegion *mr)
995 bool have_sub_page = mr->subpage;
997 memory_region_unref(mr);
999 if (have_sub_page) {
1000 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1001 object_unref(OBJECT(&subpage->iomem));
1002 g_free(subpage);
1006 static void phys_sections_free(PhysPageMap *map)
1008 while (map->sections_nb > 0) {
1009 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1010 phys_section_destroy(section->mr);
1012 g_free(map->sections);
1013 g_free(map->nodes);
1016 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1018 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1019 subpage_t *subpage;
1020 hwaddr base = section->offset_within_address_space
1021 & TARGET_PAGE_MASK;
1022 MemoryRegionSection *existing = phys_page_find(d, base);
1023 MemoryRegionSection subsection = {
1024 .offset_within_address_space = base,
1025 .size = int128_make64(TARGET_PAGE_SIZE),
1027 hwaddr start, end;
1029 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1031 if (!(existing->mr->subpage)) {
1032 subpage = subpage_init(fv, base);
1033 subsection.fv = fv;
1034 subsection.mr = &subpage->iomem;
1035 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1036 phys_section_add(&d->map, &subsection));
1037 } else {
1038 subpage = container_of(existing->mr, subpage_t, iomem);
1040 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1041 end = start + int128_get64(section->size) - 1;
1042 subpage_register(subpage, start, end,
1043 phys_section_add(&d->map, section));
1047 static void register_multipage(FlatView *fv,
1048 MemoryRegionSection *section)
1050 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1051 hwaddr start_addr = section->offset_within_address_space;
1052 uint16_t section_index = phys_section_add(&d->map, section);
1053 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1054 TARGET_PAGE_BITS));
1056 assert(num_pages);
1057 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1061 * The range in *section* may look like this:
1063 * |s|PPPPPPP|s|
1065 * where s stands for subpage and P for page.
1067 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1069 MemoryRegionSection remain = *section;
1070 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1072 /* register first subpage */
1073 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1074 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1075 - remain.offset_within_address_space;
1077 MemoryRegionSection now = remain;
1078 now.size = int128_min(int128_make64(left), now.size);
1079 register_subpage(fv, &now);
1080 if (int128_eq(remain.size, now.size)) {
1081 return;
1083 remain.size = int128_sub(remain.size, now.size);
1084 remain.offset_within_address_space += int128_get64(now.size);
1085 remain.offset_within_region += int128_get64(now.size);
1088 /* register whole pages */
1089 if (int128_ge(remain.size, page_size)) {
1090 MemoryRegionSection now = remain;
1091 now.size = int128_and(now.size, int128_neg(page_size));
1092 register_multipage(fv, &now);
1093 if (int128_eq(remain.size, now.size)) {
1094 return;
1096 remain.size = int128_sub(remain.size, now.size);
1097 remain.offset_within_address_space += int128_get64(now.size);
1098 remain.offset_within_region += int128_get64(now.size);
1101 /* register last subpage */
1102 register_subpage(fv, &remain);
1105 void qemu_flush_coalesced_mmio_buffer(void)
1107 if (kvm_enabled())
1108 kvm_flush_coalesced_mmio_buffer();
1111 void qemu_mutex_lock_ramlist(void)
1113 qemu_mutex_lock(&ram_list.mutex);
1116 void qemu_mutex_unlock_ramlist(void)
1118 qemu_mutex_unlock(&ram_list.mutex);
1121 GString *ram_block_format(void)
1123 RAMBlock *block;
1124 char *psize;
1125 GString *buf = g_string_new("");
1127 RCU_READ_LOCK_GUARD();
1128 g_string_append_printf(buf, "%24s %8s %18s %18s %18s %18s %3s\n",
1129 "Block Name", "PSize", "Offset", "Used", "Total",
1130 "HVA", "RO");
1132 RAMBLOCK_FOREACH(block) {
1133 psize = size_to_str(block->page_size);
1134 g_string_append_printf(buf, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1135 " 0x%016" PRIx64 " 0x%016" PRIx64 " %3s\n",
1136 block->idstr, psize,
1137 (uint64_t)block->offset,
1138 (uint64_t)block->used_length,
1139 (uint64_t)block->max_length,
1140 (uint64_t)(uintptr_t)block->host,
1141 block->mr->readonly ? "ro" : "rw");
1143 g_free(psize);
1146 return buf;
1149 static int find_min_backend_pagesize(Object *obj, void *opaque)
1151 long *hpsize_min = opaque;
1153 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1154 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1155 long hpsize = host_memory_backend_pagesize(backend);
1157 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1158 *hpsize_min = hpsize;
1162 return 0;
1165 static int find_max_backend_pagesize(Object *obj, void *opaque)
1167 long *hpsize_max = opaque;
1169 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1170 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1171 long hpsize = host_memory_backend_pagesize(backend);
1173 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1174 *hpsize_max = hpsize;
1178 return 0;
1182 * TODO: We assume right now that all mapped host memory backends are
1183 * used as RAM, however some might be used for different purposes.
1185 long qemu_minrampagesize(void)
1187 long hpsize = LONG_MAX;
1188 Object *memdev_root = object_resolve_path("/objects", NULL);
1190 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1191 return hpsize;
1194 long qemu_maxrampagesize(void)
1196 long pagesize = 0;
1197 Object *memdev_root = object_resolve_path("/objects", NULL);
1199 object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize);
1200 return pagesize;
1203 #ifdef CONFIG_POSIX
1204 static int64_t get_file_size(int fd)
1206 int64_t size;
1207 #if defined(__linux__)
1208 struct stat st;
1210 if (fstat(fd, &st) < 0) {
1211 return -errno;
1214 /* Special handling for devdax character devices */
1215 if (S_ISCHR(st.st_mode)) {
1216 g_autofree char *subsystem_path = NULL;
1217 g_autofree char *subsystem = NULL;
1219 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1220 major(st.st_rdev), minor(st.st_rdev));
1221 subsystem = g_file_read_link(subsystem_path, NULL);
1223 if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1224 g_autofree char *size_path = NULL;
1225 g_autofree char *size_str = NULL;
1227 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1228 major(st.st_rdev), minor(st.st_rdev));
1230 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1231 return g_ascii_strtoll(size_str, NULL, 0);
1235 #endif /* defined(__linux__) */
1237 /* st.st_size may be zero for special files yet lseek(2) works */
1238 size = lseek(fd, 0, SEEK_END);
1239 if (size < 0) {
1240 return -errno;
1242 return size;
1245 static int64_t get_file_align(int fd)
1247 int64_t align = -1;
1248 #if defined(__linux__) && defined(CONFIG_LIBDAXCTL)
1249 struct stat st;
1251 if (fstat(fd, &st) < 0) {
1252 return -errno;
1255 /* Special handling for devdax character devices */
1256 if (S_ISCHR(st.st_mode)) {
1257 g_autofree char *path = NULL;
1258 g_autofree char *rpath = NULL;
1259 struct daxctl_ctx *ctx;
1260 struct daxctl_region *region;
1261 int rc = 0;
1263 path = g_strdup_printf("/sys/dev/char/%d:%d",
1264 major(st.st_rdev), minor(st.st_rdev));
1265 rpath = realpath(path, NULL);
1266 if (!rpath) {
1267 return -errno;
1270 rc = daxctl_new(&ctx);
1271 if (rc) {
1272 return -1;
1275 daxctl_region_foreach(ctx, region) {
1276 if (strstr(rpath, daxctl_region_get_path(region))) {
1277 align = daxctl_region_get_align(region);
1278 break;
1281 daxctl_unref(ctx);
1283 #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */
1285 return align;
1288 static int file_ram_open(const char *path,
1289 const char *region_name,
1290 bool readonly,
1291 bool *created)
1293 char *filename;
1294 char *sanitized_name;
1295 char *c;
1296 int fd = -1;
1298 *created = false;
1299 for (;;) {
1300 fd = open(path, readonly ? O_RDONLY : O_RDWR);
1301 if (fd >= 0) {
1303 * open(O_RDONLY) won't fail with EISDIR. Check manually if we
1304 * opened a directory and fail similarly to how we fail ENOENT
1305 * in readonly mode. Note that mkstemp() would imply O_RDWR.
1307 if (readonly) {
1308 struct stat file_stat;
1310 if (fstat(fd, &file_stat)) {
1311 close(fd);
1312 if (errno == EINTR) {
1313 continue;
1315 return -errno;
1316 } else if (S_ISDIR(file_stat.st_mode)) {
1317 close(fd);
1318 return -EISDIR;
1321 /* @path names an existing file, use it */
1322 break;
1324 if (errno == ENOENT) {
1325 if (readonly) {
1326 /* Refuse to create new, readonly files. */
1327 return -ENOENT;
1329 /* @path names a file that doesn't exist, create it */
1330 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1331 if (fd >= 0) {
1332 *created = true;
1333 break;
1335 } else if (errno == EISDIR) {
1336 /* @path names a directory, create a file there */
1337 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1338 sanitized_name = g_strdup(region_name);
1339 for (c = sanitized_name; *c != '\0'; c++) {
1340 if (*c == '/') {
1341 *c = '_';
1345 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1346 sanitized_name);
1347 g_free(sanitized_name);
1349 fd = mkstemp(filename);
1350 if (fd >= 0) {
1351 unlink(filename);
1352 g_free(filename);
1353 break;
1355 g_free(filename);
1357 if (errno != EEXIST && errno != EINTR) {
1358 return -errno;
1361 * Try again on EINTR and EEXIST. The latter happens when
1362 * something else creates the file between our two open().
1366 return fd;
1369 static void *file_ram_alloc(RAMBlock *block,
1370 ram_addr_t memory,
1371 int fd,
1372 bool truncate,
1373 off_t offset,
1374 Error **errp)
1376 uint32_t qemu_map_flags;
1377 void *area;
1379 block->page_size = qemu_fd_getpagesize(fd);
1380 if (block->mr->align % block->page_size) {
1381 error_setg(errp, "alignment 0x%" PRIx64
1382 " must be multiples of page size 0x%zx",
1383 block->mr->align, block->page_size);
1384 return NULL;
1385 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1386 error_setg(errp, "alignment 0x%" PRIx64
1387 " must be a power of two", block->mr->align);
1388 return NULL;
1389 } else if (offset % block->page_size) {
1390 error_setg(errp, "offset 0x%" PRIx64
1391 " must be multiples of page size 0x%zx",
1392 offset, block->page_size);
1393 return NULL;
1395 block->mr->align = MAX(block->page_size, block->mr->align);
1396 #if defined(__s390x__)
1397 if (kvm_enabled()) {
1398 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1400 #endif
1402 if (memory < block->page_size) {
1403 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1404 "or larger than page size 0x%zx",
1405 memory, block->page_size);
1406 return NULL;
1409 memory = ROUND_UP(memory, block->page_size);
1412 * ftruncate is not supported by hugetlbfs in older
1413 * hosts, so don't bother bailing out on errors.
1414 * If anything goes wrong with it under other filesystems,
1415 * mmap will fail.
1417 * Do not truncate the non-empty backend file to avoid corrupting
1418 * the existing data in the file. Disabling shrinking is not
1419 * enough. For example, the current vNVDIMM implementation stores
1420 * the guest NVDIMM labels at the end of the backend file. If the
1421 * backend file is later extended, QEMU will not be able to find
1422 * those labels. Therefore, extending the non-empty backend file
1423 * is disabled as well.
1425 if (truncate && ftruncate(fd, offset + memory)) {
1426 perror("ftruncate");
1429 qemu_map_flags = (block->flags & RAM_READONLY) ? QEMU_MAP_READONLY : 0;
1430 qemu_map_flags |= (block->flags & RAM_SHARED) ? QEMU_MAP_SHARED : 0;
1431 qemu_map_flags |= (block->flags & RAM_PMEM) ? QEMU_MAP_SYNC : 0;
1432 qemu_map_flags |= (block->flags & RAM_NORESERVE) ? QEMU_MAP_NORESERVE : 0;
1433 area = qemu_ram_mmap(fd, memory, block->mr->align, qemu_map_flags, offset);
1434 if (area == MAP_FAILED) {
1435 error_setg_errno(errp, errno,
1436 "unable to map backing store for guest RAM");
1437 return NULL;
1440 block->fd = fd;
1441 block->fd_offset = offset;
1442 return area;
1444 #endif
1446 /* Allocate space within the ram_addr_t space that governs the
1447 * dirty bitmaps.
1448 * Called with the ramlist lock held.
1450 static ram_addr_t find_ram_offset(ram_addr_t size)
1452 RAMBlock *block, *next_block;
1453 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1455 assert(size != 0); /* it would hand out same offset multiple times */
1457 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1458 return 0;
1461 RAMBLOCK_FOREACH(block) {
1462 ram_addr_t candidate, next = RAM_ADDR_MAX;
1464 /* Align blocks to start on a 'long' in the bitmap
1465 * which makes the bitmap sync'ing take the fast path.
1467 candidate = block->offset + block->max_length;
1468 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1470 /* Search for the closest following block
1471 * and find the gap.
1473 RAMBLOCK_FOREACH(next_block) {
1474 if (next_block->offset >= candidate) {
1475 next = MIN(next, next_block->offset);
1479 /* If it fits remember our place and remember the size
1480 * of gap, but keep going so that we might find a smaller
1481 * gap to fill so avoiding fragmentation.
1483 if (next - candidate >= size && next - candidate < mingap) {
1484 offset = candidate;
1485 mingap = next - candidate;
1488 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1491 if (offset == RAM_ADDR_MAX) {
1492 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1493 (uint64_t)size);
1494 abort();
1497 trace_find_ram_offset(size, offset);
1499 return offset;
1502 static unsigned long last_ram_page(void)
1504 RAMBlock *block;
1505 ram_addr_t last = 0;
1507 RCU_READ_LOCK_GUARD();
1508 RAMBLOCK_FOREACH(block) {
1509 last = MAX(last, block->offset + block->max_length);
1511 return last >> TARGET_PAGE_BITS;
1514 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1516 int ret;
1518 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1519 if (!machine_dump_guest_core(current_machine)) {
1520 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1521 if (ret) {
1522 perror("qemu_madvise");
1523 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1524 "but dump-guest-core=off specified\n");
1529 const char *qemu_ram_get_idstr(RAMBlock *rb)
1531 return rb->idstr;
1534 void *qemu_ram_get_host_addr(RAMBlock *rb)
1536 return rb->host;
1539 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
1541 return rb->offset;
1544 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
1546 return rb->used_length;
1549 ram_addr_t qemu_ram_get_max_length(RAMBlock *rb)
1551 return rb->max_length;
1554 bool qemu_ram_is_shared(RAMBlock *rb)
1556 return rb->flags & RAM_SHARED;
1559 bool qemu_ram_is_noreserve(RAMBlock *rb)
1561 return rb->flags & RAM_NORESERVE;
1564 /* Note: Only set at the start of postcopy */
1565 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1567 return rb->flags & RAM_UF_ZEROPAGE;
1570 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1572 rb->flags |= RAM_UF_ZEROPAGE;
1575 bool qemu_ram_is_migratable(RAMBlock *rb)
1577 return rb->flags & RAM_MIGRATABLE;
1580 void qemu_ram_set_migratable(RAMBlock *rb)
1582 rb->flags |= RAM_MIGRATABLE;
1585 void qemu_ram_unset_migratable(RAMBlock *rb)
1587 rb->flags &= ~RAM_MIGRATABLE;
1590 bool qemu_ram_is_named_file(RAMBlock *rb)
1592 return rb->flags & RAM_NAMED_FILE;
1595 int qemu_ram_get_fd(RAMBlock *rb)
1597 return rb->fd;
1600 /* Called with the BQL held. */
1601 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1603 RAMBlock *block;
1605 assert(new_block);
1606 assert(!new_block->idstr[0]);
1608 if (dev) {
1609 char *id = qdev_get_dev_path(dev);
1610 if (id) {
1611 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1612 g_free(id);
1615 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1617 RCU_READ_LOCK_GUARD();
1618 RAMBLOCK_FOREACH(block) {
1619 if (block != new_block &&
1620 !strcmp(block->idstr, new_block->idstr)) {
1621 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1622 new_block->idstr);
1623 abort();
1628 /* Called with the BQL held. */
1629 void qemu_ram_unset_idstr(RAMBlock *block)
1631 /* FIXME: arch_init.c assumes that this is not called throughout
1632 * migration. Ignore the problem since hot-unplug during migration
1633 * does not work anyway.
1635 if (block) {
1636 memset(block->idstr, 0, sizeof(block->idstr));
1640 size_t qemu_ram_pagesize(RAMBlock *rb)
1642 return rb->page_size;
1645 /* Returns the largest size of page in use */
1646 size_t qemu_ram_pagesize_largest(void)
1648 RAMBlock *block;
1649 size_t largest = 0;
1651 RAMBLOCK_FOREACH(block) {
1652 largest = MAX(largest, qemu_ram_pagesize(block));
1655 return largest;
1658 static int memory_try_enable_merging(void *addr, size_t len)
1660 if (!machine_mem_merge(current_machine)) {
1661 /* disabled by the user */
1662 return 0;
1665 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1669 * Resizing RAM while migrating can result in the migration being canceled.
1670 * Care has to be taken if the guest might have already detected the memory.
1672 * As memory core doesn't know how is memory accessed, it is up to
1673 * resize callback to update device state and/or add assertions to detect
1674 * misuse, if necessary.
1676 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1678 const ram_addr_t oldsize = block->used_length;
1679 const ram_addr_t unaligned_size = newsize;
1681 assert(block);
1683 newsize = TARGET_PAGE_ALIGN(newsize);
1684 newsize = REAL_HOST_PAGE_ALIGN(newsize);
1686 if (block->used_length == newsize) {
1688 * We don't have to resize the ram block (which only knows aligned
1689 * sizes), however, we have to notify if the unaligned size changed.
1691 if (unaligned_size != memory_region_size(block->mr)) {
1692 memory_region_set_size(block->mr, unaligned_size);
1693 if (block->resized) {
1694 block->resized(block->idstr, unaligned_size, block->host);
1697 return 0;
1700 if (!(block->flags & RAM_RESIZEABLE)) {
1701 error_setg_errno(errp, EINVAL,
1702 "Size mismatch: %s: 0x" RAM_ADDR_FMT
1703 " != 0x" RAM_ADDR_FMT, block->idstr,
1704 newsize, block->used_length);
1705 return -EINVAL;
1708 if (block->max_length < newsize) {
1709 error_setg_errno(errp, EINVAL,
1710 "Size too large: %s: 0x" RAM_ADDR_FMT
1711 " > 0x" RAM_ADDR_FMT, block->idstr,
1712 newsize, block->max_length);
1713 return -EINVAL;
1716 /* Notify before modifying the ram block and touching the bitmaps. */
1717 if (block->host) {
1718 ram_block_notify_resize(block->host, oldsize, newsize);
1721 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1722 block->used_length = newsize;
1723 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1724 DIRTY_CLIENTS_ALL);
1725 memory_region_set_size(block->mr, unaligned_size);
1726 if (block->resized) {
1727 block->resized(block->idstr, unaligned_size, block->host);
1729 return 0;
1733 * Trigger sync on the given ram block for range [start, start + length]
1734 * with the backing store if one is available.
1735 * Otherwise no-op.
1736 * @Note: this is supposed to be a synchronous op.
1738 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length)
1740 /* The requested range should fit in within the block range */
1741 g_assert((start + length) <= block->used_length);
1743 #ifdef CONFIG_LIBPMEM
1744 /* The lack of support for pmem should not block the sync */
1745 if (ramblock_is_pmem(block)) {
1746 void *addr = ramblock_ptr(block, start);
1747 pmem_persist(addr, length);
1748 return;
1750 #endif
1751 if (block->fd >= 0) {
1753 * Case there is no support for PMEM or the memory has not been
1754 * specified as persistent (or is not one) - use the msync.
1755 * Less optimal but still achieves the same goal
1757 void *addr = ramblock_ptr(block, start);
1758 if (qemu_msync(addr, length, block->fd)) {
1759 warn_report("%s: failed to sync memory range: start: "
1760 RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
1761 __func__, start, length);
1766 /* Called with ram_list.mutex held */
1767 static void dirty_memory_extend(ram_addr_t old_ram_size,
1768 ram_addr_t new_ram_size)
1770 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1771 DIRTY_MEMORY_BLOCK_SIZE);
1772 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1773 DIRTY_MEMORY_BLOCK_SIZE);
1774 int i;
1776 /* Only need to extend if block count increased */
1777 if (new_num_blocks <= old_num_blocks) {
1778 return;
1781 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1782 DirtyMemoryBlocks *old_blocks;
1783 DirtyMemoryBlocks *new_blocks;
1784 int j;
1786 old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]);
1787 new_blocks = g_malloc(sizeof(*new_blocks) +
1788 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1790 if (old_num_blocks) {
1791 memcpy(new_blocks->blocks, old_blocks->blocks,
1792 old_num_blocks * sizeof(old_blocks->blocks[0]));
1795 for (j = old_num_blocks; j < new_num_blocks; j++) {
1796 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1799 qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1801 if (old_blocks) {
1802 g_free_rcu(old_blocks, rcu);
1807 static void ram_block_add(RAMBlock *new_block, Error **errp)
1809 const bool noreserve = qemu_ram_is_noreserve(new_block);
1810 const bool shared = qemu_ram_is_shared(new_block);
1811 RAMBlock *block;
1812 RAMBlock *last_block = NULL;
1813 bool free_on_error = false;
1814 ram_addr_t old_ram_size, new_ram_size;
1815 Error *err = NULL;
1817 old_ram_size = last_ram_page();
1819 qemu_mutex_lock_ramlist();
1820 new_block->offset = find_ram_offset(new_block->max_length);
1822 if (!new_block->host) {
1823 if (xen_enabled()) {
1824 xen_ram_alloc(new_block->offset, new_block->max_length,
1825 new_block->mr, &err);
1826 if (err) {
1827 error_propagate(errp, err);
1828 qemu_mutex_unlock_ramlist();
1829 return;
1831 } else {
1832 new_block->host = qemu_anon_ram_alloc(new_block->max_length,
1833 &new_block->mr->align,
1834 shared, noreserve);
1835 if (!new_block->host) {
1836 error_setg_errno(errp, errno,
1837 "cannot set up guest memory '%s'",
1838 memory_region_name(new_block->mr));
1839 qemu_mutex_unlock_ramlist();
1840 return;
1842 memory_try_enable_merging(new_block->host, new_block->max_length);
1843 free_on_error = true;
1847 if (new_block->flags & RAM_GUEST_MEMFD) {
1848 int ret;
1850 assert(kvm_enabled());
1851 assert(new_block->guest_memfd < 0);
1853 ret = ram_block_discard_require(true);
1854 if (ret < 0) {
1855 error_setg_errno(errp, -ret,
1856 "cannot set up private guest memory: discard currently blocked");
1857 error_append_hint(errp, "Are you using assigned devices?\n");
1858 goto out_free;
1861 new_block->guest_memfd = kvm_create_guest_memfd(new_block->max_length,
1862 0, errp);
1863 if (new_block->guest_memfd < 0) {
1864 qemu_mutex_unlock_ramlist();
1865 goto out_free;
1869 new_ram_size = MAX(old_ram_size,
1870 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1871 if (new_ram_size > old_ram_size) {
1872 dirty_memory_extend(old_ram_size, new_ram_size);
1874 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1875 * QLIST (which has an RCU-friendly variant) does not have insertion at
1876 * tail, so save the last element in last_block.
1878 RAMBLOCK_FOREACH(block) {
1879 last_block = block;
1880 if (block->max_length < new_block->max_length) {
1881 break;
1884 if (block) {
1885 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
1886 } else if (last_block) {
1887 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
1888 } else { /* list is empty */
1889 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
1891 ram_list.mru_block = NULL;
1893 /* Write list before version */
1894 smp_wmb();
1895 ram_list.version++;
1896 qemu_mutex_unlock_ramlist();
1898 cpu_physical_memory_set_dirty_range(new_block->offset,
1899 new_block->used_length,
1900 DIRTY_CLIENTS_ALL);
1902 if (new_block->host) {
1903 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1904 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1906 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
1907 * Configure it unless the machine is a qtest server, in which case
1908 * KVM is not used and it may be forked (eg for fuzzing purposes).
1910 if (!qtest_enabled()) {
1911 qemu_madvise(new_block->host, new_block->max_length,
1912 QEMU_MADV_DONTFORK);
1914 ram_block_notify_add(new_block->host, new_block->used_length,
1915 new_block->max_length);
1917 return;
1919 out_free:
1920 if (free_on_error) {
1921 qemu_anon_ram_free(new_block->host, new_block->max_length);
1922 new_block->host = NULL;
1926 #ifdef CONFIG_POSIX
1927 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
1928 uint32_t ram_flags, int fd, off_t offset,
1929 Error **errp)
1931 RAMBlock *new_block;
1932 Error *local_err = NULL;
1933 int64_t file_size, file_align;
1935 /* Just support these ram flags by now. */
1936 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM | RAM_NORESERVE |
1937 RAM_PROTECTED | RAM_NAMED_FILE | RAM_READONLY |
1938 RAM_READONLY_FD | RAM_GUEST_MEMFD)) == 0);
1940 if (xen_enabled()) {
1941 error_setg(errp, "-mem-path not supported with Xen");
1942 return NULL;
1945 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1946 error_setg(errp,
1947 "host lacks kvm mmu notifiers, -mem-path unsupported");
1948 return NULL;
1951 size = TARGET_PAGE_ALIGN(size);
1952 size = REAL_HOST_PAGE_ALIGN(size);
1954 file_size = get_file_size(fd);
1955 if (file_size > offset && file_size < (offset + size)) {
1956 error_setg(errp, "backing store size 0x%" PRIx64
1957 " does not match 'size' option 0x" RAM_ADDR_FMT,
1958 file_size, size);
1959 return NULL;
1962 file_align = get_file_align(fd);
1963 if (file_align > 0 && file_align > mr->align) {
1964 error_setg(errp, "backing store align 0x%" PRIx64
1965 " is larger than 'align' option 0x%" PRIx64,
1966 file_align, mr->align);
1967 return NULL;
1970 new_block = g_malloc0(sizeof(*new_block));
1971 new_block->mr = mr;
1972 new_block->used_length = size;
1973 new_block->max_length = size;
1974 new_block->flags = ram_flags;
1975 new_block->guest_memfd = -1;
1976 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, offset,
1977 errp);
1978 if (!new_block->host) {
1979 g_free(new_block);
1980 return NULL;
1983 ram_block_add(new_block, &local_err);
1984 if (local_err) {
1985 g_free(new_block);
1986 error_propagate(errp, local_err);
1987 return NULL;
1989 return new_block;
1994 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
1995 uint32_t ram_flags, const char *mem_path,
1996 off_t offset, Error **errp)
1998 int fd;
1999 bool created;
2000 RAMBlock *block;
2002 fd = file_ram_open(mem_path, memory_region_name(mr),
2003 !!(ram_flags & RAM_READONLY_FD), &created);
2004 if (fd < 0) {
2005 error_setg_errno(errp, -fd, "can't open backing store %s for guest RAM",
2006 mem_path);
2007 if (!(ram_flags & RAM_READONLY_FD) && !(ram_flags & RAM_SHARED) &&
2008 fd == -EACCES) {
2010 * If we can open the file R/O (note: will never create a new file)
2011 * and we are dealing with a private mapping, there are still ways
2012 * to consume such files and get RAM instead of ROM.
2014 fd = file_ram_open(mem_path, memory_region_name(mr), true,
2015 &created);
2016 if (fd < 0) {
2017 return NULL;
2019 assert(!created);
2020 close(fd);
2021 error_append_hint(errp, "Consider opening the backing store"
2022 " read-only but still creating writable RAM using"
2023 " '-object memory-backend-file,readonly=on,rom=off...'"
2024 " (see \"VM templating\" documentation)\n");
2026 return NULL;
2029 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, offset, errp);
2030 if (!block) {
2031 if (created) {
2032 unlink(mem_path);
2034 close(fd);
2035 return NULL;
2038 return block;
2040 #endif
2042 static
2043 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2044 void (*resized)(const char*,
2045 uint64_t length,
2046 void *host),
2047 void *host, uint32_t ram_flags,
2048 MemoryRegion *mr, Error **errp)
2050 RAMBlock *new_block;
2051 Error *local_err = NULL;
2052 int align;
2054 assert((ram_flags & ~(RAM_SHARED | RAM_RESIZEABLE | RAM_PREALLOC |
2055 RAM_NORESERVE | RAM_GUEST_MEMFD)) == 0);
2056 assert(!host ^ (ram_flags & RAM_PREALLOC));
2058 align = qemu_real_host_page_size();
2059 align = MAX(align, TARGET_PAGE_SIZE);
2060 size = ROUND_UP(size, align);
2061 max_size = ROUND_UP(max_size, align);
2063 new_block = g_malloc0(sizeof(*new_block));
2064 new_block->mr = mr;
2065 new_block->resized = resized;
2066 new_block->used_length = size;
2067 new_block->max_length = max_size;
2068 assert(max_size >= size);
2069 new_block->fd = -1;
2070 new_block->guest_memfd = -1;
2071 new_block->page_size = qemu_real_host_page_size();
2072 new_block->host = host;
2073 new_block->flags = ram_flags;
2074 ram_block_add(new_block, &local_err);
2075 if (local_err) {
2076 g_free(new_block);
2077 error_propagate(errp, local_err);
2078 return NULL;
2080 return new_block;
2083 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2084 MemoryRegion *mr, Error **errp)
2086 return qemu_ram_alloc_internal(size, size, NULL, host, RAM_PREALLOC, mr,
2087 errp);
2090 RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags,
2091 MemoryRegion *mr, Error **errp)
2093 assert((ram_flags & ~(RAM_SHARED | RAM_NORESERVE | RAM_GUEST_MEMFD)) == 0);
2094 return qemu_ram_alloc_internal(size, size, NULL, NULL, ram_flags, mr, errp);
2097 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2098 void (*resized)(const char*,
2099 uint64_t length,
2100 void *host),
2101 MemoryRegion *mr, Error **errp)
2103 return qemu_ram_alloc_internal(size, maxsz, resized, NULL,
2104 RAM_RESIZEABLE, mr, errp);
2107 static void reclaim_ramblock(RAMBlock *block)
2109 if (block->flags & RAM_PREALLOC) {
2111 } else if (xen_enabled()) {
2112 xen_invalidate_map_cache_entry(block->host);
2113 #ifndef _WIN32
2114 } else if (block->fd >= 0) {
2115 qemu_ram_munmap(block->fd, block->host, block->max_length);
2116 close(block->fd);
2117 #endif
2118 } else {
2119 qemu_anon_ram_free(block->host, block->max_length);
2122 if (block->guest_memfd >= 0) {
2123 close(block->guest_memfd);
2124 ram_block_discard_require(false);
2127 g_free(block);
2130 void qemu_ram_free(RAMBlock *block)
2132 if (!block) {
2133 return;
2136 if (block->host) {
2137 ram_block_notify_remove(block->host, block->used_length,
2138 block->max_length);
2141 qemu_mutex_lock_ramlist();
2142 QLIST_REMOVE_RCU(block, next);
2143 ram_list.mru_block = NULL;
2144 /* Write list before version */
2145 smp_wmb();
2146 ram_list.version++;
2147 call_rcu(block, reclaim_ramblock, rcu);
2148 qemu_mutex_unlock_ramlist();
2151 #ifndef _WIN32
2152 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2154 RAMBlock *block;
2155 ram_addr_t offset;
2156 int flags;
2157 void *area, *vaddr;
2158 int prot;
2160 RAMBLOCK_FOREACH(block) {
2161 offset = addr - block->offset;
2162 if (offset < block->max_length) {
2163 vaddr = ramblock_ptr(block, offset);
2164 if (block->flags & RAM_PREALLOC) {
2166 } else if (xen_enabled()) {
2167 abort();
2168 } else {
2169 flags = MAP_FIXED;
2170 flags |= block->flags & RAM_SHARED ?
2171 MAP_SHARED : MAP_PRIVATE;
2172 flags |= block->flags & RAM_NORESERVE ? MAP_NORESERVE : 0;
2173 prot = PROT_READ;
2174 prot |= block->flags & RAM_READONLY ? 0 : PROT_WRITE;
2175 if (block->fd >= 0) {
2176 area = mmap(vaddr, length, prot, flags, block->fd,
2177 offset + block->fd_offset);
2178 } else {
2179 flags |= MAP_ANONYMOUS;
2180 area = mmap(vaddr, length, prot, flags, -1, 0);
2182 if (area != vaddr) {
2183 error_report("Could not remap addr: "
2184 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2185 length, addr);
2186 exit(1);
2188 memory_try_enable_merging(vaddr, length);
2189 qemu_ram_setup_dump(vaddr, length);
2194 #endif /* !_WIN32 */
2197 * Return a host pointer to guest's ram.
2198 * For Xen, foreign mappings get created if they don't already exist.
2200 * @block: block for the RAM to lookup (optional and may be NULL).
2201 * @addr: address within the memory region.
2202 * @size: pointer to requested size (optional and may be NULL).
2203 * size may get modified and return a value smaller than
2204 * what was requested.
2205 * @lock: wether to lock the mapping in xen-mapcache until invalidated.
2206 * @is_write: hint wether to map RW or RO in the xen-mapcache.
2207 * (optional and may always be set to true).
2209 * Called within RCU critical section.
2211 static void *qemu_ram_ptr_length(RAMBlock *block, ram_addr_t addr,
2212 hwaddr *size, bool lock,
2213 bool is_write)
2215 hwaddr len = 0;
2217 if (size && *size == 0) {
2218 return NULL;
2221 if (block == NULL) {
2222 block = qemu_get_ram_block(addr);
2223 addr -= block->offset;
2225 if (size) {
2226 *size = MIN(*size, block->max_length - addr);
2227 len = *size;
2230 if (xen_enabled() && block->host == NULL) {
2231 /* We need to check if the requested address is in the RAM
2232 * because we don't want to map the entire memory in QEMU.
2233 * In that case just map the requested area.
2235 if (xen_mr_is_memory(block->mr)) {
2236 return xen_map_cache(block->mr, block->offset + addr,
2237 len, block->offset,
2238 lock, lock, is_write);
2241 block->host = xen_map_cache(block->mr, block->offset,
2242 block->max_length,
2243 block->offset,
2244 1, lock, is_write);
2247 return ramblock_ptr(block, addr);
2251 * Return a host pointer to ram allocated with qemu_ram_alloc.
2252 * This should not be used for general purpose DMA. Use address_space_map
2253 * or address_space_rw instead. For local memory (e.g. video ram) that the
2254 * device owns, use memory_region_get_ram_ptr.
2256 * Called within RCU critical section.
2258 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2260 return qemu_ram_ptr_length(ram_block, addr, NULL, false, true);
2263 /* Return the offset of a hostpointer within a ramblock */
2264 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2266 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2267 assert((uintptr_t)host >= (uintptr_t)rb->host);
2268 assert(res < rb->max_length);
2270 return res;
2273 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2274 ram_addr_t *offset)
2276 RAMBlock *block;
2277 uint8_t *host = ptr;
2279 if (xen_enabled()) {
2280 ram_addr_t ram_addr;
2281 RCU_READ_LOCK_GUARD();
2282 ram_addr = xen_ram_addr_from_mapcache(ptr);
2283 if (ram_addr == RAM_ADDR_INVALID) {
2284 return NULL;
2287 block = qemu_get_ram_block(ram_addr);
2288 if (block) {
2289 *offset = ram_addr - block->offset;
2291 return block;
2294 RCU_READ_LOCK_GUARD();
2295 block = qatomic_rcu_read(&ram_list.mru_block);
2296 if (block && block->host && host - block->host < block->max_length) {
2297 goto found;
2300 RAMBLOCK_FOREACH(block) {
2301 /* This case append when the block is not mapped. */
2302 if (block->host == NULL) {
2303 continue;
2305 if (host - block->host < block->max_length) {
2306 goto found;
2310 return NULL;
2312 found:
2313 *offset = (host - block->host);
2314 if (round_offset) {
2315 *offset &= TARGET_PAGE_MASK;
2317 return block;
2321 * Finds the named RAMBlock
2323 * name: The name of RAMBlock to find
2325 * Returns: RAMBlock (or NULL if not found)
2327 RAMBlock *qemu_ram_block_by_name(const char *name)
2329 RAMBlock *block;
2331 RAMBLOCK_FOREACH(block) {
2332 if (!strcmp(name, block->idstr)) {
2333 return block;
2337 return NULL;
2341 * Some of the system routines need to translate from a host pointer
2342 * (typically a TLB entry) back to a ram offset.
2344 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2346 RAMBlock *block;
2347 ram_addr_t offset;
2349 block = qemu_ram_block_from_host(ptr, false, &offset);
2350 if (!block) {
2351 return RAM_ADDR_INVALID;
2354 return block->offset + offset;
2357 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
2359 ram_addr_t ram_addr;
2361 ram_addr = qemu_ram_addr_from_host(ptr);
2362 if (ram_addr == RAM_ADDR_INVALID) {
2363 error_report("Bad ram pointer %p", ptr);
2364 abort();
2366 return ram_addr;
2369 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2370 MemTxAttrs attrs, void *buf, hwaddr len);
2371 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2372 const void *buf, hwaddr len);
2373 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2374 bool is_write, MemTxAttrs attrs);
2376 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2377 unsigned len, MemTxAttrs attrs)
2379 subpage_t *subpage = opaque;
2380 uint8_t buf[8];
2381 MemTxResult res;
2383 #if defined(DEBUG_SUBPAGE)
2384 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx "\n", __func__,
2385 subpage, len, addr);
2386 #endif
2387 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2388 if (res) {
2389 return res;
2391 *data = ldn_p(buf, len);
2392 return MEMTX_OK;
2395 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2396 uint64_t value, unsigned len, MemTxAttrs attrs)
2398 subpage_t *subpage = opaque;
2399 uint8_t buf[8];
2401 #if defined(DEBUG_SUBPAGE)
2402 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx
2403 " value %"PRIx64"\n",
2404 __func__, subpage, len, addr, value);
2405 #endif
2406 stn_p(buf, len, value);
2407 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2410 static bool subpage_accepts(void *opaque, hwaddr addr,
2411 unsigned len, bool is_write,
2412 MemTxAttrs attrs)
2414 subpage_t *subpage = opaque;
2415 #if defined(DEBUG_SUBPAGE)
2416 printf("%s: subpage %p %c len %u addr " HWADDR_FMT_plx "\n",
2417 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2418 #endif
2420 return flatview_access_valid(subpage->fv, addr + subpage->base,
2421 len, is_write, attrs);
2424 static const MemoryRegionOps subpage_ops = {
2425 .read_with_attrs = subpage_read,
2426 .write_with_attrs = subpage_write,
2427 .impl.min_access_size = 1,
2428 .impl.max_access_size = 8,
2429 .valid.min_access_size = 1,
2430 .valid.max_access_size = 8,
2431 .valid.accepts = subpage_accepts,
2432 .endianness = DEVICE_NATIVE_ENDIAN,
2435 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2436 uint16_t section)
2438 int idx, eidx;
2440 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2441 return -1;
2442 idx = SUBPAGE_IDX(start);
2443 eidx = SUBPAGE_IDX(end);
2444 #if defined(DEBUG_SUBPAGE)
2445 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2446 __func__, mmio, start, end, idx, eidx, section);
2447 #endif
2448 for (; idx <= eidx; idx++) {
2449 mmio->sub_section[idx] = section;
2452 return 0;
2455 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2457 subpage_t *mmio;
2459 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2460 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2461 mmio->fv = fv;
2462 mmio->base = base;
2463 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2464 NULL, TARGET_PAGE_SIZE);
2465 mmio->iomem.subpage = true;
2466 #if defined(DEBUG_SUBPAGE)
2467 printf("%s: %p base " HWADDR_FMT_plx " len %08x\n", __func__,
2468 mmio, base, TARGET_PAGE_SIZE);
2469 #endif
2471 return mmio;
2474 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2476 assert(fv);
2477 MemoryRegionSection section = {
2478 .fv = fv,
2479 .mr = mr,
2480 .offset_within_address_space = 0,
2481 .offset_within_region = 0,
2482 .size = int128_2_64(),
2485 return phys_section_add(map, &section);
2488 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2489 hwaddr index, MemTxAttrs attrs)
2491 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2492 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2493 AddressSpaceDispatch *d = cpuas->memory_dispatch;
2494 int section_index = index & ~TARGET_PAGE_MASK;
2495 MemoryRegionSection *ret;
2497 assert(section_index < d->map.sections_nb);
2498 ret = d->map.sections + section_index;
2499 assert(ret->mr);
2500 assert(ret->mr->ops);
2502 return ret;
2505 static void io_mem_init(void)
2507 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2508 NULL, UINT64_MAX);
2511 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2513 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2514 uint16_t n;
2516 n = dummy_section(&d->map, fv, &io_mem_unassigned);
2517 assert(n == PHYS_SECTION_UNASSIGNED);
2519 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2521 return d;
2524 void address_space_dispatch_free(AddressSpaceDispatch *d)
2526 phys_sections_free(&d->map);
2527 g_free(d);
2530 static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2534 static void tcg_log_global_after_sync(MemoryListener *listener)
2536 CPUAddressSpace *cpuas;
2538 /* Wait for the CPU to end the current TB. This avoids the following
2539 * incorrect race:
2541 * vCPU migration
2542 * ---------------------- -------------------------
2543 * TLB check -> slow path
2544 * notdirty_mem_write
2545 * write to RAM
2546 * mark dirty
2547 * clear dirty flag
2548 * TLB check -> fast path
2549 * read memory
2550 * write to RAM
2552 * by pushing the migration thread's memory read after the vCPU thread has
2553 * written the memory.
2555 if (replay_mode == REPLAY_MODE_NONE) {
2557 * VGA can make calls to this function while updating the screen.
2558 * In record/replay mode this causes a deadlock, because
2559 * run_on_cpu waits for rr mutex. Therefore no races are possible
2560 * in this case and no need for making run_on_cpu when
2561 * record/replay is enabled.
2563 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2564 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2568 static void tcg_commit_cpu(CPUState *cpu, run_on_cpu_data data)
2570 CPUAddressSpace *cpuas = data.host_ptr;
2572 cpuas->memory_dispatch = address_space_to_dispatch(cpuas->as);
2573 tlb_flush(cpu);
2576 static void tcg_commit(MemoryListener *listener)
2578 CPUAddressSpace *cpuas;
2579 CPUState *cpu;
2581 assert(tcg_enabled());
2582 /* since each CPU stores ram addresses in its TLB cache, we must
2583 reset the modified entries */
2584 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2585 cpu = cpuas->cpu;
2588 * Defer changes to as->memory_dispatch until the cpu is quiescent.
2589 * Otherwise we race between (1) other cpu threads and (2) ongoing
2590 * i/o for the current cpu thread, with data cached by mmu_lookup().
2592 * In addition, queueing the work function will kick the cpu back to
2593 * the main loop, which will end the RCU critical section and reclaim
2594 * the memory data structures.
2596 * That said, the listener is also called during realize, before
2597 * all of the tcg machinery for run-on is initialized: thus halt_cond.
2599 if (cpu->halt_cond) {
2600 async_run_on_cpu(cpu, tcg_commit_cpu, RUN_ON_CPU_HOST_PTR(cpuas));
2601 } else {
2602 tcg_commit_cpu(cpu, RUN_ON_CPU_HOST_PTR(cpuas));
2606 static void memory_map_init(void)
2608 system_memory = g_malloc(sizeof(*system_memory));
2610 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2611 address_space_init(&address_space_memory, system_memory, "memory");
2613 system_io = g_malloc(sizeof(*system_io));
2614 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2615 65536);
2616 address_space_init(&address_space_io, system_io, "I/O");
2619 MemoryRegion *get_system_memory(void)
2621 return system_memory;
2624 MemoryRegion *get_system_io(void)
2626 return system_io;
2629 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2630 hwaddr length)
2632 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2633 addr += memory_region_get_ram_addr(mr);
2635 /* No early return if dirty_log_mask is or becomes 0, because
2636 * cpu_physical_memory_set_dirty_range will still call
2637 * xen_modified_memory.
2639 if (dirty_log_mask) {
2640 dirty_log_mask =
2641 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2643 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2644 assert(tcg_enabled());
2645 tb_invalidate_phys_range(addr, addr + length - 1);
2646 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2648 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2651 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
2654 * In principle this function would work on other memory region types too,
2655 * but the ROM device use case is the only one where this operation is
2656 * necessary. Other memory regions should use the
2657 * address_space_read/write() APIs.
2659 assert(memory_region_is_romd(mr));
2661 invalidate_and_set_dirty(mr, addr, size);
2664 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2666 unsigned access_size_max = mr->ops->valid.max_access_size;
2668 /* Regions are assumed to support 1-4 byte accesses unless
2669 otherwise specified. */
2670 if (access_size_max == 0) {
2671 access_size_max = 4;
2674 /* Bound the maximum access by the alignment of the address. */
2675 if (!mr->ops->impl.unaligned) {
2676 unsigned align_size_max = addr & -addr;
2677 if (align_size_max != 0 && align_size_max < access_size_max) {
2678 access_size_max = align_size_max;
2682 /* Don't attempt accesses larger than the maximum. */
2683 if (l > access_size_max) {
2684 l = access_size_max;
2686 l = pow2floor(l);
2688 return l;
2691 bool prepare_mmio_access(MemoryRegion *mr)
2693 bool release_lock = false;
2695 if (!bql_locked()) {
2696 bql_lock();
2697 release_lock = true;
2699 if (mr->flush_coalesced_mmio) {
2700 qemu_flush_coalesced_mmio_buffer();
2703 return release_lock;
2707 * flatview_access_allowed
2708 * @mr: #MemoryRegion to be accessed
2709 * @attrs: memory transaction attributes
2710 * @addr: address within that memory region
2711 * @len: the number of bytes to access
2713 * Check if a memory transaction is allowed.
2715 * Returns: true if transaction is allowed, false if denied.
2717 static bool flatview_access_allowed(MemoryRegion *mr, MemTxAttrs attrs,
2718 hwaddr addr, hwaddr len)
2720 if (likely(!attrs.memory)) {
2721 return true;
2723 if (memory_region_is_ram(mr)) {
2724 return true;
2726 qemu_log_mask(LOG_GUEST_ERROR,
2727 "Invalid access to non-RAM device at "
2728 "addr 0x%" HWADDR_PRIX ", size %" HWADDR_PRIu ", "
2729 "region '%s'\n", addr, len, memory_region_name(mr));
2730 return false;
2733 static MemTxResult flatview_write_continue_step(MemTxAttrs attrs,
2734 const uint8_t *buf,
2735 hwaddr len, hwaddr mr_addr,
2736 hwaddr *l, MemoryRegion *mr)
2738 if (!flatview_access_allowed(mr, attrs, mr_addr, *l)) {
2739 return MEMTX_ACCESS_ERROR;
2742 if (!memory_access_is_direct(mr, true)) {
2743 uint64_t val;
2744 MemTxResult result;
2745 bool release_lock = prepare_mmio_access(mr);
2747 *l = memory_access_size(mr, *l, mr_addr);
2749 * XXX: could force current_cpu to NULL to avoid
2750 * potential bugs
2754 * Assure Coverity (and ourselves) that we are not going to OVERRUN
2755 * the buffer by following ldn_he_p().
2757 #ifdef QEMU_STATIC_ANALYSIS
2758 assert((*l == 1 && len >= 1) ||
2759 (*l == 2 && len >= 2) ||
2760 (*l == 4 && len >= 4) ||
2761 (*l == 8 && len >= 8));
2762 #endif
2763 val = ldn_he_p(buf, *l);
2764 result = memory_region_dispatch_write(mr, mr_addr, val,
2765 size_memop(*l), attrs);
2766 if (release_lock) {
2767 bql_unlock();
2770 return result;
2771 } else {
2772 /* RAM case */
2773 uint8_t *ram_ptr = qemu_ram_ptr_length(mr->ram_block, mr_addr, l,
2774 false, true);
2776 memmove(ram_ptr, buf, *l);
2777 invalidate_and_set_dirty(mr, mr_addr, *l);
2779 return MEMTX_OK;
2783 /* Called within RCU critical section. */
2784 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
2785 MemTxAttrs attrs,
2786 const void *ptr,
2787 hwaddr len, hwaddr mr_addr,
2788 hwaddr l, MemoryRegion *mr)
2790 MemTxResult result = MEMTX_OK;
2791 const uint8_t *buf = ptr;
2793 for (;;) {
2794 result |= flatview_write_continue_step(attrs, buf, len, mr_addr, &l,
2795 mr);
2797 len -= l;
2798 buf += l;
2799 addr += l;
2801 if (!len) {
2802 break;
2805 l = len;
2806 mr = flatview_translate(fv, addr, &mr_addr, &l, true, attrs);
2809 return result;
2812 /* Called from RCU critical section. */
2813 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2814 const void *buf, hwaddr len)
2816 hwaddr l;
2817 hwaddr mr_addr;
2818 MemoryRegion *mr;
2820 l = len;
2821 mr = flatview_translate(fv, addr, &mr_addr, &l, true, attrs);
2822 if (!flatview_access_allowed(mr, attrs, addr, len)) {
2823 return MEMTX_ACCESS_ERROR;
2825 return flatview_write_continue(fv, addr, attrs, buf, len,
2826 mr_addr, l, mr);
2829 static MemTxResult flatview_read_continue_step(MemTxAttrs attrs, uint8_t *buf,
2830 hwaddr len, hwaddr mr_addr,
2831 hwaddr *l,
2832 MemoryRegion *mr)
2834 if (!flatview_access_allowed(mr, attrs, mr_addr, *l)) {
2835 return MEMTX_ACCESS_ERROR;
2838 if (!memory_access_is_direct(mr, false)) {
2839 /* I/O case */
2840 uint64_t val;
2841 MemTxResult result;
2842 bool release_lock = prepare_mmio_access(mr);
2844 *l = memory_access_size(mr, *l, mr_addr);
2845 result = memory_region_dispatch_read(mr, mr_addr, &val, size_memop(*l),
2846 attrs);
2849 * Assure Coverity (and ourselves) that we are not going to OVERRUN
2850 * the buffer by following stn_he_p().
2852 #ifdef QEMU_STATIC_ANALYSIS
2853 assert((*l == 1 && len >= 1) ||
2854 (*l == 2 && len >= 2) ||
2855 (*l == 4 && len >= 4) ||
2856 (*l == 8 && len >= 8));
2857 #endif
2858 stn_he_p(buf, *l, val);
2860 if (release_lock) {
2861 bql_unlock();
2863 return result;
2864 } else {
2865 /* RAM case */
2866 uint8_t *ram_ptr = qemu_ram_ptr_length(mr->ram_block, mr_addr, l,
2867 false, false);
2869 memcpy(buf, ram_ptr, *l);
2871 return MEMTX_OK;
2875 /* Called within RCU critical section. */
2876 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2877 MemTxAttrs attrs, void *ptr,
2878 hwaddr len, hwaddr mr_addr, hwaddr l,
2879 MemoryRegion *mr)
2881 MemTxResult result = MEMTX_OK;
2882 uint8_t *buf = ptr;
2884 fuzz_dma_read_cb(addr, len, mr);
2885 for (;;) {
2886 result |= flatview_read_continue_step(attrs, buf, len, mr_addr, &l, mr);
2888 len -= l;
2889 buf += l;
2890 addr += l;
2892 if (!len) {
2893 break;
2896 l = len;
2897 mr = flatview_translate(fv, addr, &mr_addr, &l, false, attrs);
2900 return result;
2903 /* Called from RCU critical section. */
2904 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2905 MemTxAttrs attrs, void *buf, hwaddr len)
2907 hwaddr l;
2908 hwaddr mr_addr;
2909 MemoryRegion *mr;
2911 l = len;
2912 mr = flatview_translate(fv, addr, &mr_addr, &l, false, attrs);
2913 if (!flatview_access_allowed(mr, attrs, addr, len)) {
2914 return MEMTX_ACCESS_ERROR;
2916 return flatview_read_continue(fv, addr, attrs, buf, len,
2917 mr_addr, l, mr);
2920 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2921 MemTxAttrs attrs, void *buf, hwaddr len)
2923 MemTxResult result = MEMTX_OK;
2924 FlatView *fv;
2926 if (len > 0) {
2927 RCU_READ_LOCK_GUARD();
2928 fv = address_space_to_flatview(as);
2929 result = flatview_read(fv, addr, attrs, buf, len);
2932 return result;
2935 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2936 MemTxAttrs attrs,
2937 const void *buf, hwaddr len)
2939 MemTxResult result = MEMTX_OK;
2940 FlatView *fv;
2942 if (len > 0) {
2943 RCU_READ_LOCK_GUARD();
2944 fv = address_space_to_flatview(as);
2945 result = flatview_write(fv, addr, attrs, buf, len);
2948 return result;
2951 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2952 void *buf, hwaddr len, bool is_write)
2954 if (is_write) {
2955 return address_space_write(as, addr, attrs, buf, len);
2956 } else {
2957 return address_space_read_full(as, addr, attrs, buf, len);
2961 MemTxResult address_space_set(AddressSpace *as, hwaddr addr,
2962 uint8_t c, hwaddr len, MemTxAttrs attrs)
2964 #define FILLBUF_SIZE 512
2965 uint8_t fillbuf[FILLBUF_SIZE];
2966 int l;
2967 MemTxResult error = MEMTX_OK;
2969 memset(fillbuf, c, FILLBUF_SIZE);
2970 while (len > 0) {
2971 l = len < FILLBUF_SIZE ? len : FILLBUF_SIZE;
2972 error |= address_space_write(as, addr, attrs, fillbuf, l);
2973 len -= l;
2974 addr += l;
2977 return error;
2980 void cpu_physical_memory_rw(hwaddr addr, void *buf,
2981 hwaddr len, bool is_write)
2983 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
2984 buf, len, is_write);
2987 enum write_rom_type {
2988 WRITE_DATA,
2989 FLUSH_CACHE,
2992 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
2993 hwaddr addr,
2994 MemTxAttrs attrs,
2995 const void *ptr,
2996 hwaddr len,
2997 enum write_rom_type type)
2999 hwaddr l;
3000 uint8_t *ram_ptr;
3001 hwaddr addr1;
3002 MemoryRegion *mr;
3003 const uint8_t *buf = ptr;
3005 RCU_READ_LOCK_GUARD();
3006 while (len > 0) {
3007 l = len;
3008 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3010 if (!(memory_region_is_ram(mr) ||
3011 memory_region_is_romd(mr))) {
3012 l = memory_access_size(mr, l, addr1);
3013 } else {
3014 /* ROM/RAM case */
3015 ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3016 switch (type) {
3017 case WRITE_DATA:
3018 memcpy(ram_ptr, buf, l);
3019 invalidate_and_set_dirty(mr, addr1, l);
3020 break;
3021 case FLUSH_CACHE:
3022 flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l);
3023 break;
3026 len -= l;
3027 buf += l;
3028 addr += l;
3030 return MEMTX_OK;
3033 /* used for ROM loading : can write in RAM and ROM */
3034 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3035 MemTxAttrs attrs,
3036 const void *buf, hwaddr len)
3038 return address_space_write_rom_internal(as, addr, attrs,
3039 buf, len, WRITE_DATA);
3042 void cpu_flush_icache_range(hwaddr start, hwaddr len)
3045 * This function should do the same thing as an icache flush that was
3046 * triggered from within the guest. For TCG we are always cache coherent,
3047 * so there is no need to flush anything. For KVM / Xen we need to flush
3048 * the host's instruction cache at least.
3050 if (tcg_enabled()) {
3051 return;
3054 address_space_write_rom_internal(&address_space_memory,
3055 start, MEMTXATTRS_UNSPECIFIED,
3056 NULL, len, FLUSH_CACHE);
3059 static void
3060 address_space_unregister_map_client_do(AddressSpaceMapClient *client)
3062 QLIST_REMOVE(client, link);
3063 g_free(client);
3066 static void address_space_notify_map_clients_locked(AddressSpace *as)
3068 AddressSpaceMapClient *client;
3070 while (!QLIST_EMPTY(&as->map_client_list)) {
3071 client = QLIST_FIRST(&as->map_client_list);
3072 qemu_bh_schedule(client->bh);
3073 address_space_unregister_map_client_do(client);
3077 void address_space_register_map_client(AddressSpace *as, QEMUBH *bh)
3079 AddressSpaceMapClient *client = g_malloc(sizeof(*client));
3081 QEMU_LOCK_GUARD(&as->map_client_list_lock);
3082 client->bh = bh;
3083 QLIST_INSERT_HEAD(&as->map_client_list, client, link);
3084 /* Write map_client_list before reading in_use. */
3085 smp_mb();
3086 if (!qatomic_read(&as->bounce.in_use)) {
3087 address_space_notify_map_clients_locked(as);
3091 void cpu_exec_init_all(void)
3093 qemu_mutex_init(&ram_list.mutex);
3094 /* The data structures we set up here depend on knowing the page size,
3095 * so no more changes can be made after this point.
3096 * In an ideal world, nothing we did before we had finished the
3097 * machine setup would care about the target page size, and we could
3098 * do this much later, rather than requiring board models to state
3099 * up front what their requirements are.
3101 finalize_target_page_bits();
3102 io_mem_init();
3103 memory_map_init();
3106 void address_space_unregister_map_client(AddressSpace *as, QEMUBH *bh)
3108 AddressSpaceMapClient *client;
3110 QEMU_LOCK_GUARD(&as->map_client_list_lock);
3111 QLIST_FOREACH(client, &as->map_client_list, link) {
3112 if (client->bh == bh) {
3113 address_space_unregister_map_client_do(client);
3114 break;
3119 static void address_space_notify_map_clients(AddressSpace *as)
3121 QEMU_LOCK_GUARD(&as->map_client_list_lock);
3122 address_space_notify_map_clients_locked(as);
3125 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3126 bool is_write, MemTxAttrs attrs)
3128 MemoryRegion *mr;
3129 hwaddr l, xlat;
3131 while (len > 0) {
3132 l = len;
3133 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3134 if (!memory_access_is_direct(mr, is_write)) {
3135 l = memory_access_size(mr, l, addr);
3136 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3137 return false;
3141 len -= l;
3142 addr += l;
3144 return true;
3147 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3148 hwaddr len, bool is_write,
3149 MemTxAttrs attrs)
3151 FlatView *fv;
3153 RCU_READ_LOCK_GUARD();
3154 fv = address_space_to_flatview(as);
3155 return flatview_access_valid(fv, addr, len, is_write, attrs);
3158 static hwaddr
3159 flatview_extend_translation(FlatView *fv, hwaddr addr,
3160 hwaddr target_len,
3161 MemoryRegion *mr, hwaddr base, hwaddr len,
3162 bool is_write, MemTxAttrs attrs)
3164 hwaddr done = 0;
3165 hwaddr xlat;
3166 MemoryRegion *this_mr;
3168 for (;;) {
3169 target_len -= len;
3170 addr += len;
3171 done += len;
3172 if (target_len == 0) {
3173 return done;
3176 len = target_len;
3177 this_mr = flatview_translate(fv, addr, &xlat,
3178 &len, is_write, attrs);
3179 if (this_mr != mr || xlat != base + done) {
3180 return done;
3185 /* Map a physical memory region into a host virtual address.
3186 * May map a subset of the requested range, given by and returned in *plen.
3187 * May return NULL if resources needed to perform the mapping are exhausted.
3188 * Use only for reads OR writes - not for read-modify-write operations.
3189 * Use address_space_register_map_client() to know when retrying the map
3190 * operation is likely to succeed.
3192 void *address_space_map(AddressSpace *as,
3193 hwaddr addr,
3194 hwaddr *plen,
3195 bool is_write,
3196 MemTxAttrs attrs)
3198 hwaddr len = *plen;
3199 hwaddr l, xlat;
3200 MemoryRegion *mr;
3201 FlatView *fv;
3203 trace_address_space_map(as, addr, len, is_write, *(uint32_t *) &attrs);
3205 if (len == 0) {
3206 return NULL;
3209 l = len;
3210 RCU_READ_LOCK_GUARD();
3211 fv = address_space_to_flatview(as);
3212 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3214 if (!memory_access_is_direct(mr, is_write)) {
3215 if (qatomic_xchg(&as->bounce.in_use, true)) {
3216 *plen = 0;
3217 return NULL;
3219 /* Avoid unbounded allocations */
3220 l = MIN(l, TARGET_PAGE_SIZE);
3221 as->bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3222 as->bounce.addr = addr;
3223 as->bounce.len = l;
3225 memory_region_ref(mr);
3226 as->bounce.mr = mr;
3227 if (!is_write) {
3228 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3229 as->bounce.buffer, l);
3232 *plen = l;
3233 return as->bounce.buffer;
3237 memory_region_ref(mr);
3238 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3239 l, is_write, attrs);
3240 fuzz_dma_read_cb(addr, *plen, mr);
3241 return qemu_ram_ptr_length(mr->ram_block, xlat, plen, true, is_write);
3244 /* Unmaps a memory region previously mapped by address_space_map().
3245 * Will also mark the memory as dirty if is_write is true. access_len gives
3246 * the amount of memory that was actually read or written by the caller.
3248 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3249 bool is_write, hwaddr access_len)
3251 if (buffer != as->bounce.buffer) {
3252 MemoryRegion *mr;
3253 ram_addr_t addr1;
3255 mr = memory_region_from_host(buffer, &addr1);
3256 assert(mr != NULL);
3257 if (is_write) {
3258 invalidate_and_set_dirty(mr, addr1, access_len);
3260 if (xen_enabled()) {
3261 xen_invalidate_map_cache_entry(buffer);
3263 memory_region_unref(mr);
3264 return;
3266 if (is_write) {
3267 address_space_write(as, as->bounce.addr, MEMTXATTRS_UNSPECIFIED,
3268 as->bounce.buffer, access_len);
3270 qemu_vfree(as->bounce.buffer);
3271 as->bounce.buffer = NULL;
3272 memory_region_unref(as->bounce.mr);
3273 /* Clear in_use before reading map_client_list. */
3274 qatomic_set_mb(&as->bounce.in_use, false);
3275 address_space_notify_map_clients(as);
3278 void *cpu_physical_memory_map(hwaddr addr,
3279 hwaddr *plen,
3280 bool is_write)
3282 return address_space_map(&address_space_memory, addr, plen, is_write,
3283 MEMTXATTRS_UNSPECIFIED);
3286 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3287 bool is_write, hwaddr access_len)
3289 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3292 #define ARG1_DECL AddressSpace *as
3293 #define ARG1 as
3294 #define SUFFIX
3295 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3296 #define RCU_READ_LOCK(...) rcu_read_lock()
3297 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3298 #include "memory_ldst.c.inc"
3300 int64_t address_space_cache_init(MemoryRegionCache *cache,
3301 AddressSpace *as,
3302 hwaddr addr,
3303 hwaddr len,
3304 bool is_write)
3306 AddressSpaceDispatch *d;
3307 hwaddr l;
3308 MemoryRegion *mr;
3309 Int128 diff;
3311 assert(len > 0);
3313 l = len;
3314 cache->fv = address_space_get_flatview(as);
3315 d = flatview_to_dispatch(cache->fv);
3316 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3319 * cache->xlat is now relative to cache->mrs.mr, not to the section itself.
3320 * Take that into account to compute how many bytes are there between
3321 * cache->xlat and the end of the section.
3323 diff = int128_sub(cache->mrs.size,
3324 int128_make64(cache->xlat - cache->mrs.offset_within_region));
3325 l = int128_get64(int128_min(diff, int128_make64(l)));
3327 mr = cache->mrs.mr;
3328 memory_region_ref(mr);
3329 if (memory_access_is_direct(mr, is_write)) {
3330 /* We don't care about the memory attributes here as we're only
3331 * doing this if we found actual RAM, which behaves the same
3332 * regardless of attributes; so UNSPECIFIED is fine.
3334 l = flatview_extend_translation(cache->fv, addr, len, mr,
3335 cache->xlat, l, is_write,
3336 MEMTXATTRS_UNSPECIFIED);
3337 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true,
3338 is_write);
3339 } else {
3340 cache->ptr = NULL;
3343 cache->len = l;
3344 cache->is_write = is_write;
3345 return l;
3348 void address_space_cache_invalidate(MemoryRegionCache *cache,
3349 hwaddr addr,
3350 hwaddr access_len)
3352 assert(cache->is_write);
3353 if (likely(cache->ptr)) {
3354 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3358 void address_space_cache_destroy(MemoryRegionCache *cache)
3360 if (!cache->mrs.mr) {
3361 return;
3364 if (xen_enabled()) {
3365 xen_invalidate_map_cache_entry(cache->ptr);
3367 memory_region_unref(cache->mrs.mr);
3368 flatview_unref(cache->fv);
3369 cache->mrs.mr = NULL;
3370 cache->fv = NULL;
3373 /* Called from RCU critical section. This function has the same
3374 * semantics as address_space_translate, but it only works on a
3375 * predefined range of a MemoryRegion that was mapped with
3376 * address_space_cache_init.
3378 static inline MemoryRegion *address_space_translate_cached(
3379 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3380 hwaddr *plen, bool is_write, MemTxAttrs attrs)
3382 MemoryRegionSection section;
3383 MemoryRegion *mr;
3384 IOMMUMemoryRegion *iommu_mr;
3385 AddressSpace *target_as;
3387 assert(!cache->ptr);
3388 *xlat = addr + cache->xlat;
3390 mr = cache->mrs.mr;
3391 iommu_mr = memory_region_get_iommu(mr);
3392 if (!iommu_mr) {
3393 /* MMIO region. */
3394 return mr;
3397 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3398 NULL, is_write, true,
3399 &target_as, attrs);
3400 return section.mr;
3403 /* Called within RCU critical section. */
3404 static MemTxResult address_space_write_continue_cached(MemTxAttrs attrs,
3405 const void *ptr,
3406 hwaddr len,
3407 hwaddr mr_addr,
3408 hwaddr l,
3409 MemoryRegion *mr)
3411 MemTxResult result = MEMTX_OK;
3412 const uint8_t *buf = ptr;
3414 for (;;) {
3415 result |= flatview_write_continue_step(attrs, buf, len, mr_addr, &l,
3416 mr);
3418 len -= l;
3419 buf += l;
3420 mr_addr += l;
3422 if (!len) {
3423 break;
3426 l = len;
3429 return result;
3432 /* Called within RCU critical section. */
3433 static MemTxResult address_space_read_continue_cached(MemTxAttrs attrs,
3434 void *ptr, hwaddr len,
3435 hwaddr mr_addr, hwaddr l,
3436 MemoryRegion *mr)
3438 MemTxResult result = MEMTX_OK;
3439 uint8_t *buf = ptr;
3441 for (;;) {
3442 result |= flatview_read_continue_step(attrs, buf, len, mr_addr, &l, mr);
3443 len -= l;
3444 buf += l;
3445 mr_addr += l;
3447 if (!len) {
3448 break;
3450 l = len;
3453 return result;
3456 /* Called from RCU critical section. address_space_read_cached uses this
3457 * out of line function when the target is an MMIO or IOMMU region.
3459 MemTxResult
3460 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3461 void *buf, hwaddr len)
3463 hwaddr mr_addr, l;
3464 MemoryRegion *mr;
3466 l = len;
3467 mr = address_space_translate_cached(cache, addr, &mr_addr, &l, false,
3468 MEMTXATTRS_UNSPECIFIED);
3469 return address_space_read_continue_cached(MEMTXATTRS_UNSPECIFIED,
3470 buf, len, mr_addr, l, mr);
3473 /* Called from RCU critical section. address_space_write_cached uses this
3474 * out of line function when the target is an MMIO or IOMMU region.
3476 MemTxResult
3477 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3478 const void *buf, hwaddr len)
3480 hwaddr mr_addr, l;
3481 MemoryRegion *mr;
3483 l = len;
3484 mr = address_space_translate_cached(cache, addr, &mr_addr, &l, true,
3485 MEMTXATTRS_UNSPECIFIED);
3486 return address_space_write_continue_cached(MEMTXATTRS_UNSPECIFIED,
3487 buf, len, mr_addr, l, mr);
3490 #define ARG1_DECL MemoryRegionCache *cache
3491 #define ARG1 cache
3492 #define SUFFIX _cached_slow
3493 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3494 #define RCU_READ_LOCK() ((void)0)
3495 #define RCU_READ_UNLOCK() ((void)0)
3496 #include "memory_ldst.c.inc"
3498 /* virtual memory access for debug (includes writing to ROM) */
3499 int cpu_memory_rw_debug(CPUState *cpu, vaddr addr,
3500 void *ptr, size_t len, bool is_write)
3502 hwaddr phys_addr;
3503 vaddr l, page;
3504 uint8_t *buf = ptr;
3506 cpu_synchronize_state(cpu);
3507 while (len > 0) {
3508 int asidx;
3509 MemTxAttrs attrs;
3510 MemTxResult res;
3512 page = addr & TARGET_PAGE_MASK;
3513 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3514 asidx = cpu_asidx_from_attrs(cpu, attrs);
3515 /* if no physical page mapped, return an error */
3516 if (phys_addr == -1)
3517 return -1;
3518 l = (page + TARGET_PAGE_SIZE) - addr;
3519 if (l > len)
3520 l = len;
3521 phys_addr += (addr & ~TARGET_PAGE_MASK);
3522 if (is_write) {
3523 res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3524 attrs, buf, l);
3525 } else {
3526 res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr,
3527 attrs, buf, l);
3529 if (res != MEMTX_OK) {
3530 return -1;
3532 len -= l;
3533 buf += l;
3534 addr += l;
3536 return 0;
3539 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3541 MemoryRegion*mr;
3542 hwaddr l = 1;
3544 RCU_READ_LOCK_GUARD();
3545 mr = address_space_translate(&address_space_memory,
3546 phys_addr, &phys_addr, &l, false,
3547 MEMTXATTRS_UNSPECIFIED);
3549 return !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3552 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3554 RAMBlock *block;
3555 int ret = 0;
3557 RCU_READ_LOCK_GUARD();
3558 RAMBLOCK_FOREACH(block) {
3559 ret = func(block, opaque);
3560 if (ret) {
3561 break;
3564 return ret;
3568 * Unmap pages of memory from start to start+length such that
3569 * they a) read as 0, b) Trigger whatever fault mechanism
3570 * the OS provides for postcopy.
3571 * The pages must be unmapped by the end of the function.
3572 * Returns: 0 on success, none-0 on failure
3575 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3577 int ret = -1;
3579 uint8_t *host_startaddr = rb->host + start;
3581 if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
3582 error_report("%s: Unaligned start address: %p",
3583 __func__, host_startaddr);
3584 goto err;
3587 if ((start + length) <= rb->max_length) {
3588 bool need_madvise, need_fallocate;
3589 if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
3590 error_report("%s: Unaligned length: %zx", __func__, length);
3591 goto err;
3594 errno = ENOTSUP; /* If we are missing MADVISE etc */
3596 /* The logic here is messy;
3597 * madvise DONTNEED fails for hugepages
3598 * fallocate works on hugepages and shmem
3599 * shared anonymous memory requires madvise REMOVE
3601 need_madvise = (rb->page_size == qemu_real_host_page_size());
3602 need_fallocate = rb->fd != -1;
3603 if (need_fallocate) {
3604 /* For a file, this causes the area of the file to be zero'd
3605 * if read, and for hugetlbfs also causes it to be unmapped
3606 * so a userfault will trigger.
3608 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3610 * fallocate() will fail with readonly files. Let's print a
3611 * proper error message.
3613 if (rb->flags & RAM_READONLY_FD) {
3614 error_report("%s: Discarding RAM with readonly files is not"
3615 " supported", __func__);
3616 goto err;
3620 * We'll discard data from the actual file, even though we only
3621 * have a MAP_PRIVATE mapping, possibly messing with other
3622 * MAP_PRIVATE/MAP_SHARED mappings. There is no easy way to
3623 * change that behavior whithout violating the promised
3624 * semantics of ram_block_discard_range().
3626 * Only warn, because it works as long as nobody else uses that
3627 * file.
3629 if (!qemu_ram_is_shared(rb)) {
3630 warn_report_once("%s: Discarding RAM"
3631 " in private file mappings is possibly"
3632 " dangerous, because it will modify the"
3633 " underlying file and will affect other"
3634 " users of the file", __func__);
3637 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3638 start, length);
3639 if (ret) {
3640 ret = -errno;
3641 error_report("%s: Failed to fallocate %s:%" PRIx64 " +%zx (%d)",
3642 __func__, rb->idstr, start, length, ret);
3643 goto err;
3645 #else
3646 ret = -ENOSYS;
3647 error_report("%s: fallocate not available/file"
3648 "%s:%" PRIx64 " +%zx (%d)",
3649 __func__, rb->idstr, start, length, ret);
3650 goto err;
3651 #endif
3653 if (need_madvise) {
3654 /* For normal RAM this causes it to be unmapped,
3655 * for shared memory it causes the local mapping to disappear
3656 * and to fall back on the file contents (which we just
3657 * fallocate'd away).
3659 #if defined(CONFIG_MADVISE)
3660 if (qemu_ram_is_shared(rb) && rb->fd < 0) {
3661 ret = madvise(host_startaddr, length, QEMU_MADV_REMOVE);
3662 } else {
3663 ret = madvise(host_startaddr, length, QEMU_MADV_DONTNEED);
3665 if (ret) {
3666 ret = -errno;
3667 error_report("%s: Failed to discard range "
3668 "%s:%" PRIx64 " +%zx (%d)",
3669 __func__, rb->idstr, start, length, ret);
3670 goto err;
3672 #else
3673 ret = -ENOSYS;
3674 error_report("%s: MADVISE not available %s:%" PRIx64 " +%zx (%d)",
3675 __func__, rb->idstr, start, length, ret);
3676 goto err;
3677 #endif
3679 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3680 need_madvise, need_fallocate, ret);
3681 } else {
3682 error_report("%s: Overrun block '%s' (%" PRIu64 "/%zx/" RAM_ADDR_FMT")",
3683 __func__, rb->idstr, start, length, rb->max_length);
3686 err:
3687 return ret;
3690 int ram_block_discard_guest_memfd_range(RAMBlock *rb, uint64_t start,
3691 size_t length)
3693 int ret = -1;
3695 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3696 ret = fallocate(rb->guest_memfd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3697 start, length);
3699 if (ret) {
3700 ret = -errno;
3701 error_report("%s: Failed to fallocate %s:%" PRIx64 " +%zx (%d)",
3702 __func__, rb->idstr, start, length, ret);
3704 #else
3705 ret = -ENOSYS;
3706 error_report("%s: fallocate not available %s:%" PRIx64 " +%zx (%d)",
3707 __func__, rb->idstr, start, length, ret);
3708 #endif
3710 return ret;
3713 bool ramblock_is_pmem(RAMBlock *rb)
3715 return rb->flags & RAM_PMEM;
3718 static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
3720 if (start == end - 1) {
3721 qemu_printf("\t%3d ", start);
3722 } else {
3723 qemu_printf("\t%3d..%-3d ", start, end - 1);
3725 qemu_printf(" skip=%d ", skip);
3726 if (ptr == PHYS_MAP_NODE_NIL) {
3727 qemu_printf(" ptr=NIL");
3728 } else if (!skip) {
3729 qemu_printf(" ptr=#%d", ptr);
3730 } else {
3731 qemu_printf(" ptr=[%d]", ptr);
3733 qemu_printf("\n");
3736 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3737 int128_sub((size), int128_one())) : 0)
3739 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
3741 int i;
3743 qemu_printf(" Dispatch\n");
3744 qemu_printf(" Physical sections\n");
3746 for (i = 0; i < d->map.sections_nb; ++i) {
3747 MemoryRegionSection *s = d->map.sections + i;
3748 const char *names[] = { " [unassigned]", " [not dirty]",
3749 " [ROM]", " [watch]" };
3751 qemu_printf(" #%d @" HWADDR_FMT_plx ".." HWADDR_FMT_plx
3752 " %s%s%s%s%s",
3754 s->offset_within_address_space,
3755 s->offset_within_address_space + MR_SIZE(s->size),
3756 s->mr->name ? s->mr->name : "(noname)",
3757 i < ARRAY_SIZE(names) ? names[i] : "",
3758 s->mr == root ? " [ROOT]" : "",
3759 s == d->mru_section ? " [MRU]" : "",
3760 s->mr->is_iommu ? " [iommu]" : "");
3762 if (s->mr->alias) {
3763 qemu_printf(" alias=%s", s->mr->alias->name ?
3764 s->mr->alias->name : "noname");
3766 qemu_printf("\n");
3769 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3770 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3771 for (i = 0; i < d->map.nodes_nb; ++i) {
3772 int j, jprev;
3773 PhysPageEntry prev;
3774 Node *n = d->map.nodes + i;
3776 qemu_printf(" [%d]\n", i);
3778 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
3779 PhysPageEntry *pe = *n + j;
3781 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
3782 continue;
3785 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3787 jprev = j;
3788 prev = *pe;
3791 if (jprev != ARRAY_SIZE(*n)) {
3792 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3797 /* Require any discards to work. */
3798 static unsigned int ram_block_discard_required_cnt;
3799 /* Require only coordinated discards to work. */
3800 static unsigned int ram_block_coordinated_discard_required_cnt;
3801 /* Disable any discards. */
3802 static unsigned int ram_block_discard_disabled_cnt;
3803 /* Disable only uncoordinated discards. */
3804 static unsigned int ram_block_uncoordinated_discard_disabled_cnt;
3805 static QemuMutex ram_block_discard_disable_mutex;
3807 static void ram_block_discard_disable_mutex_lock(void)
3809 static gsize initialized;
3811 if (g_once_init_enter(&initialized)) {
3812 qemu_mutex_init(&ram_block_discard_disable_mutex);
3813 g_once_init_leave(&initialized, 1);
3815 qemu_mutex_lock(&ram_block_discard_disable_mutex);
3818 static void ram_block_discard_disable_mutex_unlock(void)
3820 qemu_mutex_unlock(&ram_block_discard_disable_mutex);
3823 int ram_block_discard_disable(bool state)
3825 int ret = 0;
3827 ram_block_discard_disable_mutex_lock();
3828 if (!state) {
3829 ram_block_discard_disabled_cnt--;
3830 } else if (ram_block_discard_required_cnt ||
3831 ram_block_coordinated_discard_required_cnt) {
3832 ret = -EBUSY;
3833 } else {
3834 ram_block_discard_disabled_cnt++;
3836 ram_block_discard_disable_mutex_unlock();
3837 return ret;
3840 int ram_block_uncoordinated_discard_disable(bool state)
3842 int ret = 0;
3844 ram_block_discard_disable_mutex_lock();
3845 if (!state) {
3846 ram_block_uncoordinated_discard_disabled_cnt--;
3847 } else if (ram_block_discard_required_cnt) {
3848 ret = -EBUSY;
3849 } else {
3850 ram_block_uncoordinated_discard_disabled_cnt++;
3852 ram_block_discard_disable_mutex_unlock();
3853 return ret;
3856 int ram_block_discard_require(bool state)
3858 int ret = 0;
3860 ram_block_discard_disable_mutex_lock();
3861 if (!state) {
3862 ram_block_discard_required_cnt--;
3863 } else if (ram_block_discard_disabled_cnt ||
3864 ram_block_uncoordinated_discard_disabled_cnt) {
3865 ret = -EBUSY;
3866 } else {
3867 ram_block_discard_required_cnt++;
3869 ram_block_discard_disable_mutex_unlock();
3870 return ret;
3873 int ram_block_coordinated_discard_require(bool state)
3875 int ret = 0;
3877 ram_block_discard_disable_mutex_lock();
3878 if (!state) {
3879 ram_block_coordinated_discard_required_cnt--;
3880 } else if (ram_block_discard_disabled_cnt) {
3881 ret = -EBUSY;
3882 } else {
3883 ram_block_coordinated_discard_required_cnt++;
3885 ram_block_discard_disable_mutex_unlock();
3886 return ret;
3889 bool ram_block_discard_is_disabled(void)
3891 return qatomic_read(&ram_block_discard_disabled_cnt) ||
3892 qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt);
3895 bool ram_block_discard_is_required(void)
3897 return qatomic_read(&ram_block_discard_required_cnt) ||
3898 qatomic_read(&ram_block_coordinated_discard_required_cnt);