Merge tag 'v9.0.0-rc3'
[qemu/ar7.git] / hw / ppc / spapr_numa.c
blobea6762d3d2be8c7b3b70f74a63fdf524b2b7d410
1 /*
2 * QEMU PowerPC pSeries Logical Partition NUMA associativity handling
4 * Copyright IBM Corp. 2020
6 * Authors:
7 * Daniel Henrique Barboza <danielhb413@gmail.com>
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
13 #include "qemu/osdep.h"
14 #include "hw/ppc/spapr_numa.h"
15 #include "hw/pci-host/spapr.h"
16 #include "hw/ppc/fdt.h"
18 /* Moved from hw/ppc/spapr_pci_nvlink2.c */
19 #define SPAPR_GPU_NUMA_ID (cpu_to_be32(1))
22 * Retrieves max_dist_ref_points of the current NUMA affinity.
24 static int get_max_dist_ref_points(SpaprMachineState *spapr)
26 if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) {
27 return FORM2_DIST_REF_POINTS;
30 return FORM1_DIST_REF_POINTS;
34 * Retrieves numa_assoc_size of the current NUMA affinity.
36 static int get_numa_assoc_size(SpaprMachineState *spapr)
38 if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) {
39 return FORM2_NUMA_ASSOC_SIZE;
42 return FORM1_NUMA_ASSOC_SIZE;
46 * Retrieves vcpu_assoc_size of the current NUMA affinity.
48 * vcpu_assoc_size is the size of ibm,associativity array
49 * for CPUs, which has an extra element (vcpu_id) in the end.
51 static int get_vcpu_assoc_size(SpaprMachineState *spapr)
53 return get_numa_assoc_size(spapr) + 1;
57 * Retrieves the ibm,associativity array of NUMA node 'node_id'
58 * for the current NUMA affinity.
60 static const uint32_t *get_associativity(SpaprMachineState *spapr, int node_id)
62 if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) {
63 return spapr->FORM2_assoc_array[node_id];
65 return spapr->FORM1_assoc_array[node_id];
69 * Wrapper that returns node distance from ms->numa_state->nodes
70 * after handling edge cases where the distance might be absent.
72 static int get_numa_distance(MachineState *ms, int src, int dst)
74 NodeInfo *numa_info = ms->numa_state->nodes;
75 int ret = numa_info[src].distance[dst];
77 if (ret != 0) {
78 return ret;
82 * In case QEMU adds a default NUMA single node when the user
83 * did not add any, or where the user did not supply distances,
84 * the distance will be absent (zero). Return local/remote
85 * distance in this case.
87 if (src == dst) {
88 return NUMA_DISTANCE_MIN;
91 return NUMA_DISTANCE_DEFAULT;
94 static bool spapr_numa_is_symmetrical(MachineState *ms)
96 int nb_numa_nodes = ms->numa_state->num_nodes;
97 int src, dst;
99 for (src = 0; src < nb_numa_nodes; src++) {
100 for (dst = src; dst < nb_numa_nodes; dst++) {
101 if (get_numa_distance(ms, src, dst) !=
102 get_numa_distance(ms, dst, src)) {
103 return false;
108 return true;
112 * This function will translate the user distances into
113 * what the kernel understand as possible values: 10
114 * (local distance), 20, 40, 80 and 160, and return the equivalent
115 * NUMA level for each. Current heuristic is:
116 * - local distance (10) returns numa_level = 0x4, meaning there is
117 * no rounding for local distance
118 * - distances between 11 and 30 inclusive -> rounded to 20,
119 * numa_level = 0x3
120 * - distances between 31 and 60 inclusive -> rounded to 40,
121 * numa_level = 0x2
122 * - distances between 61 and 120 inclusive -> rounded to 80,
123 * numa_level = 0x1
124 * - everything above 120 returns numa_level = 0 to indicate that
125 * there is no match. This will be calculated as disntace = 160
126 * by the kernel (as of v5.9)
128 static uint8_t spapr_numa_get_numa_level(uint8_t distance)
130 if (distance == 10) {
131 return 0x4;
132 } else if (distance > 11 && distance <= 30) {
133 return 0x3;
134 } else if (distance > 31 && distance <= 60) {
135 return 0x2;
136 } else if (distance > 61 && distance <= 120) {
137 return 0x1;
140 return 0;
143 static void spapr_numa_define_FORM1_domains(SpaprMachineState *spapr)
145 MachineState *ms = MACHINE(spapr);
146 int nb_numa_nodes = ms->numa_state->num_nodes;
147 int src, dst, i, j;
150 * Fill all associativity domains of non-zero NUMA nodes with
151 * node_id. This is required because the default value (0) is
152 * considered a match with associativity domains of node 0.
154 for (i = 1; i < nb_numa_nodes; i++) {
155 for (j = 1; j < FORM1_DIST_REF_POINTS; j++) {
156 spapr->FORM1_assoc_array[i][j] = cpu_to_be32(i);
160 for (src = 0; src < nb_numa_nodes; src++) {
161 for (dst = src; dst < nb_numa_nodes; dst++) {
163 * This is how the associativity domain between A and B
164 * is calculated:
166 * - get the distance D between them
167 * - get the correspondent NUMA level 'n_level' for D
168 * - all associativity arrays were initialized with their own
169 * numa_ids, and we're calculating the distance in node_id
170 * ascending order, starting from node id 0 (the first node
171 * retrieved by numa_state). This will have a cascade effect in
172 * the algorithm because the associativity domains that node 0
173 * defines will be carried over to other nodes, and node 1
174 * associativities will be carried over after taking node 0
175 * associativities into account, and so on. This happens because
176 * we'll assign assoc_src as the associativity domain of dst
177 * as well, for all NUMA levels beyond and including n_level.
179 * The PPC kernel expects the associativity domains of node 0 to
180 * be always 0, and this algorithm will grant that by default.
182 uint8_t distance = get_numa_distance(ms, src, dst);
183 uint8_t n_level = spapr_numa_get_numa_level(distance);
184 uint32_t assoc_src;
187 * n_level = 0 means that the distance is greater than our last
188 * rounded value (120). In this case there is no NUMA level match
189 * between src and dst and we can skip the remaining of the loop.
191 * The Linux kernel will assume that the distance between src and
192 * dst, in this case of no match, is 10 (local distance) doubled
193 * for each NUMA it didn't match. We have FORM1_DIST_REF_POINTS
194 * levels (4), so this gives us 10*2*2*2*2 = 160.
196 * This logic can be seen in the Linux kernel source code, as of
197 * v5.9, in arch/powerpc/mm/numa.c, function __node_distance().
199 if (n_level == 0) {
200 continue;
204 * We must assign all assoc_src to dst, starting from n_level
205 * and going up to 0x1.
207 for (i = n_level; i > 0; i--) {
208 assoc_src = spapr->FORM1_assoc_array[src][i];
209 spapr->FORM1_assoc_array[dst][i] = assoc_src;
216 static void spapr_numa_FORM1_affinity_check(MachineState *machine)
218 int i;
221 * Check we don't have a memory-less/cpu-less NUMA node
222 * Firmware relies on the existing memory/cpu topology to provide the
223 * NUMA topology to the kernel.
224 * And the linux kernel needs to know the NUMA topology at start
225 * to be able to hotplug CPUs later.
227 if (machine->numa_state->num_nodes) {
228 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
229 /* check for memory-less node */
230 if (machine->numa_state->nodes[i].node_mem == 0) {
231 CPUState *cs;
232 int found = 0;
233 /* check for cpu-less node */
234 CPU_FOREACH(cs) {
235 PowerPCCPU *cpu = POWERPC_CPU(cs);
236 if (cpu->node_id == i) {
237 found = 1;
238 break;
241 /* memory-less and cpu-less node */
242 if (!found) {
243 error_report(
244 "Memory-less/cpu-less nodes are not supported with FORM1 NUMA (node %d)", i);
245 exit(EXIT_FAILURE);
251 if (!spapr_numa_is_symmetrical(machine)) {
252 error_report(
253 "Asymmetrical NUMA topologies aren't supported in the pSeries machine using FORM1 NUMA");
254 exit(EXIT_FAILURE);
259 * Set NUMA machine state data based on FORM1 affinity semantics.
261 static void spapr_numa_FORM1_affinity_init(SpaprMachineState *spapr,
262 MachineState *machine)
264 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
265 int nb_numa_nodes = machine->numa_state->num_nodes;
266 int i, j;
269 * For all associativity arrays: first position is the size,
270 * position FORM1_DIST_REF_POINTS is always the numa_id,
271 * represented by the index 'i'.
273 * This will break on sparse NUMA setups, when/if QEMU starts
274 * to support it, because there will be no more guarantee that
275 * 'i' will be a valid node_id set by the user.
277 for (i = 0; i < nb_numa_nodes; i++) {
278 spapr->FORM1_assoc_array[i][0] = cpu_to_be32(FORM1_DIST_REF_POINTS);
279 spapr->FORM1_assoc_array[i][FORM1_DIST_REF_POINTS] = cpu_to_be32(i);
282 for (i = nb_numa_nodes; i < nb_numa_nodes; i++) {
283 spapr->FORM1_assoc_array[i][0] = cpu_to_be32(FORM1_DIST_REF_POINTS);
285 for (j = 1; j < FORM1_DIST_REF_POINTS; j++) {
286 uint32_t gpu_assoc = smc->pre_5_1_assoc_refpoints ?
287 SPAPR_GPU_NUMA_ID : cpu_to_be32(i);
288 spapr->FORM1_assoc_array[i][j] = gpu_assoc;
291 spapr->FORM1_assoc_array[i][FORM1_DIST_REF_POINTS] = cpu_to_be32(i);
295 * Guests pseries-5.1 and older uses zeroed associativity domains,
296 * i.e. no domain definition based on NUMA distance input.
298 * Same thing with guests that have only one NUMA node.
300 if (smc->pre_5_2_numa_associativity ||
301 machine->numa_state->num_nodes <= 1) {
302 return;
305 spapr_numa_define_FORM1_domains(spapr);
309 * Init NUMA FORM2 machine state data
311 static void spapr_numa_FORM2_affinity_init(SpaprMachineState *spapr)
313 int i;
316 * For all resources but CPUs, FORM2 associativity arrays will
317 * be a size 2 array with the following format:
319 * ibm,associativity = {1, numa_id}
321 * CPUs will write an additional 'vcpu_id' on top of the arrays
322 * being initialized here. 'numa_id' is represented by the
323 * index 'i' of the loop.
325 for (i = 0; i < NUMA_NODES_MAX_NUM; i++) {
326 spapr->FORM2_assoc_array[i][0] = cpu_to_be32(1);
327 spapr->FORM2_assoc_array[i][1] = cpu_to_be32(i);
331 void spapr_numa_associativity_init(SpaprMachineState *spapr,
332 MachineState *machine)
334 spapr_numa_FORM1_affinity_init(spapr, machine);
335 spapr_numa_FORM2_affinity_init(spapr);
338 void spapr_numa_associativity_check(SpaprMachineState *spapr)
341 * FORM2 does not have any restrictions we need to handle
342 * at CAS time, for now.
344 if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) {
345 return;
348 spapr_numa_FORM1_affinity_check(MACHINE(spapr));
351 void spapr_numa_write_associativity_dt(SpaprMachineState *spapr, void *fdt,
352 int offset, int nodeid)
354 const uint32_t *associativity = get_associativity(spapr, nodeid);
356 _FDT((fdt_setprop(fdt, offset, "ibm,associativity",
357 associativity,
358 get_numa_assoc_size(spapr) * sizeof(uint32_t))));
361 static uint32_t *spapr_numa_get_vcpu_assoc(SpaprMachineState *spapr,
362 PowerPCCPU *cpu)
364 const uint32_t *associativity = get_associativity(spapr, cpu->node_id);
365 int max_distance_ref_points = get_max_dist_ref_points(spapr);
366 int vcpu_assoc_size = get_vcpu_assoc_size(spapr);
367 uint32_t *vcpu_assoc = g_new(uint32_t, vcpu_assoc_size);
368 int index = spapr_get_vcpu_id(cpu);
371 * VCPUs have an extra 'cpu_id' value in ibm,associativity
372 * compared to other resources. Increment the size at index
373 * 0, put cpu_id last, then copy the remaining associativity
374 * domains.
376 vcpu_assoc[0] = cpu_to_be32(max_distance_ref_points + 1);
377 vcpu_assoc[vcpu_assoc_size - 1] = cpu_to_be32(index);
378 memcpy(vcpu_assoc + 1, associativity + 1,
379 (vcpu_assoc_size - 2) * sizeof(uint32_t));
381 return vcpu_assoc;
384 int spapr_numa_fixup_cpu_dt(SpaprMachineState *spapr, void *fdt,
385 int offset, PowerPCCPU *cpu)
387 g_autofree uint32_t *vcpu_assoc = NULL;
388 int vcpu_assoc_size = get_vcpu_assoc_size(spapr);
390 vcpu_assoc = spapr_numa_get_vcpu_assoc(spapr, cpu);
392 /* Advertise NUMA via ibm,associativity */
393 return fdt_setprop(fdt, offset, "ibm,associativity", vcpu_assoc,
394 vcpu_assoc_size * sizeof(uint32_t));
398 int spapr_numa_write_assoc_lookup_arrays(SpaprMachineState *spapr, void *fdt,
399 int offset)
401 MachineState *machine = MACHINE(spapr);
402 int max_distance_ref_points = get_max_dist_ref_points(spapr);
403 int nb_numa_nodes = machine->numa_state->num_nodes;
404 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
405 g_autofree uint32_t *int_buf = NULL;
406 uint32_t *cur_index;
407 int i;
409 /* ibm,associativity-lookup-arrays */
410 int_buf = g_new0(uint32_t, nr_nodes * max_distance_ref_points + 2);
411 cur_index = int_buf;
412 int_buf[0] = cpu_to_be32(nr_nodes);
413 /* Number of entries per associativity list */
414 int_buf[1] = cpu_to_be32(max_distance_ref_points);
415 cur_index += 2;
416 for (i = 0; i < nr_nodes; i++) {
418 * For the lookup-array we use the ibm,associativity array of the
419 * current NUMA affinity, without the first element (size).
421 const uint32_t *associativity = get_associativity(spapr, i);
422 memcpy(cur_index, ++associativity,
423 sizeof(uint32_t) * max_distance_ref_points);
424 cur_index += max_distance_ref_points;
427 return fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays",
428 int_buf, (cur_index - int_buf) * sizeof(uint32_t));
431 static void spapr_numa_FORM1_write_rtas_dt(SpaprMachineState *spapr,
432 void *fdt, int rtas)
434 MachineState *ms = MACHINE(spapr);
435 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
436 uint32_t refpoints[] = {
437 cpu_to_be32(0x4),
438 cpu_to_be32(0x3),
439 cpu_to_be32(0x2),
440 cpu_to_be32(0x1),
442 uint32_t nr_refpoints = ARRAY_SIZE(refpoints);
443 uint32_t maxdomain = ms->numa_state->num_nodes;
444 uint32_t maxdomains[] = {
445 cpu_to_be32(4),
446 cpu_to_be32(maxdomain),
447 cpu_to_be32(maxdomain),
448 cpu_to_be32(maxdomain),
449 cpu_to_be32(maxdomain)
452 if (smc->pre_5_2_numa_associativity ||
453 ms->numa_state->num_nodes <= 1) {
454 uint32_t legacy_refpoints[] = {
455 cpu_to_be32(0x4),
456 cpu_to_be32(0x4),
457 cpu_to_be32(0x2),
459 uint32_t legacy_maxdomains[] = {
460 cpu_to_be32(4),
461 cpu_to_be32(0),
462 cpu_to_be32(0),
463 cpu_to_be32(0),
464 cpu_to_be32(maxdomain ? maxdomain : 1),
467 G_STATIC_ASSERT(sizeof(legacy_refpoints) <= sizeof(refpoints));
468 G_STATIC_ASSERT(sizeof(legacy_maxdomains) <= sizeof(maxdomains));
470 nr_refpoints = 3;
472 memcpy(refpoints, legacy_refpoints, sizeof(legacy_refpoints));
473 memcpy(maxdomains, legacy_maxdomains, sizeof(legacy_maxdomains));
475 /* pseries-5.0 and older reference-points array is {0x4, 0x4} */
476 if (smc->pre_5_1_assoc_refpoints) {
477 nr_refpoints = 2;
481 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
482 refpoints, nr_refpoints * sizeof(refpoints[0])));
484 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
485 maxdomains, sizeof(maxdomains)));
488 static void spapr_numa_FORM2_write_rtas_tables(SpaprMachineState *spapr,
489 void *fdt, int rtas)
491 MachineState *ms = MACHINE(spapr);
492 int nb_numa_nodes = ms->numa_state->num_nodes;
493 int distance_table_entries = nb_numa_nodes * nb_numa_nodes;
494 g_autofree uint32_t *lookup_index_table = NULL;
495 g_autofree uint8_t *distance_table = NULL;
496 int src, dst, i, distance_table_size;
499 * ibm,numa-lookup-index-table: array with length and a
500 * list of NUMA ids present in the guest.
502 lookup_index_table = g_new0(uint32_t, nb_numa_nodes + 1);
503 lookup_index_table[0] = cpu_to_be32(nb_numa_nodes);
505 for (i = 0; i < nb_numa_nodes; i++) {
506 lookup_index_table[i + 1] = cpu_to_be32(i);
509 _FDT(fdt_setprop(fdt, rtas, "ibm,numa-lookup-index-table",
510 lookup_index_table,
511 (nb_numa_nodes + 1) * sizeof(uint32_t)));
514 * ibm,numa-distance-table: contains all node distances. First
515 * element is the size of the table as uint32, followed up
516 * by all the uint8 distances from the first NUMA node, then all
517 * distances from the second NUMA node and so on.
519 * ibm,numa-lookup-index-table is used by guest to navigate this
520 * array because NUMA ids can be sparse (node 0 is the first,
521 * node 8 is the second ...).
523 distance_table_size = distance_table_entries * sizeof(uint8_t) +
524 sizeof(uint32_t);
525 distance_table = g_new0(uint8_t, distance_table_size);
526 stl_be_p(distance_table, distance_table_entries);
528 /* Skip the uint32_t array length at the start */
529 i = sizeof(uint32_t);
531 for (src = 0; src < nb_numa_nodes; src++) {
532 for (dst = 0; dst < nb_numa_nodes; dst++) {
533 distance_table[i++] = get_numa_distance(ms, src, dst);
537 _FDT(fdt_setprop(fdt, rtas, "ibm,numa-distance-table",
538 distance_table, distance_table_size));
542 * This helper could be compressed in a single function with
543 * FORM1 logic since we're setting the same DT values, with the
544 * difference being a call to spapr_numa_FORM2_write_rtas_tables()
545 * in the end. The separation was made to avoid clogging FORM1 code
546 * which already has to deal with compat modes from previous
547 * QEMU machine types.
549 static void spapr_numa_FORM2_write_rtas_dt(SpaprMachineState *spapr,
550 void *fdt, int rtas)
552 MachineState *ms = MACHINE(spapr);
555 * In FORM2, ibm,associativity-reference-points will point to
556 * the element in the ibm,associativity array that contains the
557 * primary domain index (for FORM2, the first element).
559 * This value (in our case, the numa-id) is then used as an index
560 * to retrieve all other attributes of the node (distance,
561 * bandwidth, latency) via ibm,numa-lookup-index-table and other
562 * ibm,numa-*-table properties.
564 uint32_t refpoints[] = { cpu_to_be32(1) };
566 uint32_t maxdomain = ms->numa_state->num_nodes;
567 uint32_t maxdomains[] = { cpu_to_be32(1), cpu_to_be32(maxdomain) };
569 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
570 refpoints, sizeof(refpoints)));
572 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
573 maxdomains, sizeof(maxdomains)));
575 spapr_numa_FORM2_write_rtas_tables(spapr, fdt, rtas);
579 * Helper that writes ibm,associativity-reference-points and
580 * max-associativity-domains in the RTAS pointed by @rtas
581 * in the DT @fdt.
583 void spapr_numa_write_rtas_dt(SpaprMachineState *spapr, void *fdt, int rtas)
585 if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) {
586 spapr_numa_FORM2_write_rtas_dt(spapr, fdt, rtas);
587 return;
590 spapr_numa_FORM1_write_rtas_dt(spapr, fdt, rtas);
593 static target_ulong h_home_node_associativity(PowerPCCPU *cpu,
594 SpaprMachineState *spapr,
595 target_ulong opcode,
596 target_ulong *args)
598 g_autofree uint32_t *vcpu_assoc = NULL;
599 target_ulong flags = args[0];
600 target_ulong procno = args[1];
601 PowerPCCPU *tcpu;
602 int idx, assoc_idx;
603 int vcpu_assoc_size = get_vcpu_assoc_size(spapr);
605 /* only support procno from H_REGISTER_VPA */
606 if (flags != 0x1) {
607 return H_FUNCTION;
610 tcpu = spapr_find_cpu(procno);
611 if (tcpu == NULL) {
612 return H_P2;
616 * Given that we want to be flexible with the sizes and indexes,
617 * we must consider that there is a hard limit of how many
618 * associativities domain we can fit in R4 up to R9, which would be
619 * 12 associativity domains for vcpus. Assert and bail if that's
620 * not the case.
622 g_assert((vcpu_assoc_size - 1) <= 12);
624 vcpu_assoc = spapr_numa_get_vcpu_assoc(spapr, tcpu);
625 /* assoc_idx starts at 1 to skip associativity size */
626 assoc_idx = 1;
628 #define ASSOCIATIVITY(a, b) (((uint64_t)(a) << 32) | \
629 ((uint64_t)(b) & 0xffffffff))
631 for (idx = 0; idx < 6; idx++) {
632 int32_t a, b;
635 * vcpu_assoc[] will contain the associativity domains for tcpu,
636 * including tcpu->node_id and procno, meaning that we don't
637 * need to use these variables here.
639 * We'll read 2 values at a time to fill up the ASSOCIATIVITY()
640 * macro. The ternary will fill the remaining registers with -1
641 * after we went through vcpu_assoc[].
643 a = assoc_idx < vcpu_assoc_size ?
644 be32_to_cpu(vcpu_assoc[assoc_idx++]) : -1;
645 b = assoc_idx < vcpu_assoc_size ?
646 be32_to_cpu(vcpu_assoc[assoc_idx++]) : -1;
648 args[idx] = ASSOCIATIVITY(a, b);
650 #undef ASSOCIATIVITY
652 return H_SUCCESS;
655 static void spapr_numa_register_types(void)
657 /* Virtual Processor Home Node */
658 spapr_register_hypercall(H_HOME_NODE_ASSOCIATIVITY,
659 h_home_node_associativity);
662 type_init(spapr_numa_register_types)