Merge tag 'v9.0.0-rc3'
[qemu/ar7.git] / bsd-user / signal.c
blobe5a773dddeeffb375ce08ac7ede4c8e5aca00871
1 /*
2 * Emulation of BSD signals
4 * Copyright (c) 2003 - 2008 Fabrice Bellard
5 * Copyright (c) 2013 Stacey Son
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, see <http://www.gnu.org/licenses/>.
21 #include "qemu/osdep.h"
22 #include "qemu/log.h"
23 #include "qemu.h"
24 #include "gdbstub/user.h"
25 #include "signal-common.h"
26 #include "trace.h"
27 #include "hw/core/tcg-cpu-ops.h"
28 #include "host-signal.h"
30 /* target_siginfo_t must fit in gdbstub's siginfo save area. */
31 QEMU_BUILD_BUG_ON(sizeof(target_siginfo_t) > MAX_SIGINFO_LENGTH);
33 static struct target_sigaction sigact_table[TARGET_NSIG];
34 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc);
35 static void target_to_host_sigset_internal(sigset_t *d,
36 const target_sigset_t *s);
38 static inline int on_sig_stack(TaskState *ts, unsigned long sp)
40 return sp - ts->sigaltstack_used.ss_sp < ts->sigaltstack_used.ss_size;
43 static inline int sas_ss_flags(TaskState *ts, unsigned long sp)
45 return ts->sigaltstack_used.ss_size == 0 ? SS_DISABLE :
46 on_sig_stack(ts, sp) ? SS_ONSTACK : 0;
50 * The BSD ABIs use the same signal numbers across all the CPU architectures, so
51 * (unlike Linux) these functions are just the identity mapping. This might not
52 * be true for XyzBSD running on AbcBSD, which doesn't currently work.
54 int host_to_target_signal(int sig)
56 return sig;
59 int target_to_host_signal(int sig)
61 return sig;
64 static inline void target_sigemptyset(target_sigset_t *set)
66 memset(set, 0, sizeof(*set));
69 static inline void target_sigaddset(target_sigset_t *set, int signum)
71 signum--;
72 uint32_t mask = (uint32_t)1 << (signum % TARGET_NSIG_BPW);
73 set->__bits[signum / TARGET_NSIG_BPW] |= mask;
76 static inline int target_sigismember(const target_sigset_t *set, int signum)
78 signum--;
79 abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW);
80 return (set->__bits[signum / TARGET_NSIG_BPW] & mask) != 0;
83 /* Adjust the signal context to rewind out of safe-syscall if we're in it */
84 static inline void rewind_if_in_safe_syscall(void *puc)
86 ucontext_t *uc = (ucontext_t *)puc;
87 uintptr_t pcreg = host_signal_pc(uc);
89 if (pcreg > (uintptr_t)safe_syscall_start
90 && pcreg < (uintptr_t)safe_syscall_end) {
91 host_signal_set_pc(uc, (uintptr_t)safe_syscall_start);
96 * Note: The following take advantage of the BSD signal property that all
97 * signals are available on all architectures.
99 static void host_to_target_sigset_internal(target_sigset_t *d,
100 const sigset_t *s)
102 int i;
104 target_sigemptyset(d);
105 for (i = 1; i <= NSIG; i++) {
106 if (sigismember(s, i)) {
107 target_sigaddset(d, host_to_target_signal(i));
112 void host_to_target_sigset(target_sigset_t *d, const sigset_t *s)
114 target_sigset_t d1;
115 int i;
117 host_to_target_sigset_internal(&d1, s);
118 for (i = 0; i < _SIG_WORDS; i++) {
119 d->__bits[i] = tswap32(d1.__bits[i]);
123 static void target_to_host_sigset_internal(sigset_t *d,
124 const target_sigset_t *s)
126 int i;
128 sigemptyset(d);
129 for (i = 1; i <= TARGET_NSIG; i++) {
130 if (target_sigismember(s, i)) {
131 sigaddset(d, target_to_host_signal(i));
136 void target_to_host_sigset(sigset_t *d, const target_sigset_t *s)
138 target_sigset_t s1;
139 int i;
141 for (i = 0; i < TARGET_NSIG_WORDS; i++) {
142 s1.__bits[i] = tswap32(s->__bits[i]);
144 target_to_host_sigset_internal(d, &s1);
147 static bool has_trapno(int tsig)
149 return tsig == TARGET_SIGILL ||
150 tsig == TARGET_SIGFPE ||
151 tsig == TARGET_SIGSEGV ||
152 tsig == TARGET_SIGBUS ||
153 tsig == TARGET_SIGTRAP;
156 /* Siginfo conversion. */
159 * Populate tinfo w/o swapping based on guessing which fields are valid.
161 static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo,
162 const siginfo_t *info)
164 int sig = host_to_target_signal(info->si_signo);
165 int si_code = info->si_code;
166 int si_type;
169 * Make sure we that the variable portion of the target siginfo is zeroed
170 * out so we don't leak anything into that.
172 memset(&tinfo->_reason, 0, sizeof(tinfo->_reason));
175 * This is awkward, because we have to use a combination of the si_code and
176 * si_signo to figure out which of the union's members are valid.o We
177 * therefore make our best guess.
179 * Once we have made our guess, we record it in the top 16 bits of
180 * the si_code, so that tswap_siginfo() later can use it.
181 * tswap_siginfo() will strip these top bits out before writing
182 * si_code to the guest (sign-extending the lower bits).
184 tinfo->si_signo = sig;
185 tinfo->si_errno = info->si_errno;
186 tinfo->si_code = info->si_code;
187 tinfo->si_pid = info->si_pid;
188 tinfo->si_uid = info->si_uid;
189 tinfo->si_status = info->si_status;
190 tinfo->si_addr = (abi_ulong)(unsigned long)info->si_addr;
192 * si_value is opaque to kernel. On all FreeBSD platforms,
193 * sizeof(sival_ptr) >= sizeof(sival_int) so the following
194 * always will copy the larger element.
196 tinfo->si_value.sival_ptr =
197 (abi_ulong)(unsigned long)info->si_value.sival_ptr;
199 switch (si_code) {
201 * All the SI_xxx codes that are defined here are global to
202 * all the signals (they have values that none of the other,
203 * more specific signal info will set).
205 case SI_USER:
206 case SI_LWP:
207 case SI_KERNEL:
208 case SI_QUEUE:
209 case SI_ASYNCIO:
211 * Only the fixed parts are valid (though FreeBSD doesn't always
212 * set all the fields to non-zero values.
214 si_type = QEMU_SI_NOINFO;
215 break;
216 case SI_TIMER:
217 tinfo->_reason._timer._timerid = info->_reason._timer._timerid;
218 tinfo->_reason._timer._overrun = info->_reason._timer._overrun;
219 si_type = QEMU_SI_TIMER;
220 break;
221 case SI_MESGQ:
222 tinfo->_reason._mesgq._mqd = info->_reason._mesgq._mqd;
223 si_type = QEMU_SI_MESGQ;
224 break;
225 default:
227 * We have to go based on the signal number now to figure out
228 * what's valid.
230 si_type = QEMU_SI_NOINFO;
231 if (has_trapno(sig)) {
232 tinfo->_reason._fault._trapno = info->_reason._fault._trapno;
233 si_type = QEMU_SI_FAULT;
235 #ifdef TARGET_SIGPOLL
237 * FreeBSD never had SIGPOLL, but emulates it for Linux so there's
238 * a chance it may popup in the future.
240 if (sig == TARGET_SIGPOLL) {
241 tinfo->_reason._poll._band = info->_reason._poll._band;
242 si_type = QEMU_SI_POLL;
244 #endif
246 * Unsure that this can actually be generated, and our support for
247 * capsicum is somewhere between weak and non-existent, but if we get
248 * one, then we know what to save.
250 #ifdef QEMU_SI_CAPSICUM
251 if (sig == TARGET_SIGTRAP) {
252 tinfo->_reason._capsicum._syscall =
253 info->_reason._capsicum._syscall;
254 si_type = QEMU_SI_CAPSICUM;
256 #endif
257 break;
259 tinfo->si_code = deposit32(si_code, 24, 8, si_type);
262 static void tswap_siginfo(target_siginfo_t *tinfo, const target_siginfo_t *info)
264 int si_type = extract32(info->si_code, 24, 8);
265 int si_code = sextract32(info->si_code, 0, 24);
267 __put_user(info->si_signo, &tinfo->si_signo);
268 __put_user(info->si_errno, &tinfo->si_errno);
269 __put_user(si_code, &tinfo->si_code); /* Zero out si_type, it's internal */
270 __put_user(info->si_pid, &tinfo->si_pid);
271 __put_user(info->si_uid, &tinfo->si_uid);
272 __put_user(info->si_status, &tinfo->si_status);
273 __put_user(info->si_addr, &tinfo->si_addr);
275 * Unswapped, because we passed it through mostly untouched. si_value is
276 * opaque to the kernel, so we didn't bother with potentially wasting cycles
277 * to swap it into host byte order.
279 tinfo->si_value.sival_ptr = info->si_value.sival_ptr;
282 * We can use our internal marker of which fields in the structure
283 * are valid, rather than duplicating the guesswork of
284 * host_to_target_siginfo_noswap() here.
286 switch (si_type) {
287 case QEMU_SI_NOINFO: /* No additional info */
288 break;
289 case QEMU_SI_FAULT:
290 __put_user(info->_reason._fault._trapno,
291 &tinfo->_reason._fault._trapno);
292 break;
293 case QEMU_SI_TIMER:
294 __put_user(info->_reason._timer._timerid,
295 &tinfo->_reason._timer._timerid);
296 __put_user(info->_reason._timer._overrun,
297 &tinfo->_reason._timer._overrun);
298 break;
299 case QEMU_SI_MESGQ:
300 __put_user(info->_reason._mesgq._mqd, &tinfo->_reason._mesgq._mqd);
301 break;
302 case QEMU_SI_POLL:
303 /* Note: Not generated on FreeBSD */
304 __put_user(info->_reason._poll._band, &tinfo->_reason._poll._band);
305 break;
306 #ifdef QEMU_SI_CAPSICUM
307 case QEMU_SI_CAPSICUM:
308 __put_user(info->_reason._capsicum._syscall,
309 &tinfo->_reason._capsicum._syscall);
310 break;
311 #endif
312 default:
313 g_assert_not_reached();
317 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info)
319 host_to_target_siginfo_noswap(tinfo, info);
320 tswap_siginfo(tinfo, tinfo);
323 int block_signals(void)
325 TaskState *ts = get_task_state(thread_cpu);
326 sigset_t set;
329 * It's OK to block everything including SIGSEGV, because we won't run any
330 * further guest code before unblocking signals in
331 * process_pending_signals(). We depend on the FreeBSD behavior here where
332 * this will only affect this thread's signal mask. We don't use
333 * pthread_sigmask which might seem more correct because that routine also
334 * does odd things with SIGCANCEL to implement pthread_cancel().
336 sigfillset(&set);
337 sigprocmask(SIG_SETMASK, &set, 0);
339 return qatomic_xchg(&ts->signal_pending, 1);
342 /* Returns 1 if given signal should dump core if not handled. */
343 static int core_dump_signal(int sig)
345 switch (sig) {
346 case TARGET_SIGABRT:
347 case TARGET_SIGFPE:
348 case TARGET_SIGILL:
349 case TARGET_SIGQUIT:
350 case TARGET_SIGSEGV:
351 case TARGET_SIGTRAP:
352 case TARGET_SIGBUS:
353 return 1;
354 default:
355 return 0;
359 /* Abort execution with signal. */
360 static G_NORETURN
361 void dump_core_and_abort(int target_sig)
363 CPUState *cpu = thread_cpu;
364 CPUArchState *env = cpu_env(cpu);
365 TaskState *ts = get_task_state(cpu);
366 int core_dumped = 0;
367 int host_sig;
368 struct sigaction act;
370 host_sig = target_to_host_signal(target_sig);
371 gdb_signalled(env, target_sig);
373 /* Dump core if supported by target binary format */
374 if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) {
375 stop_all_tasks();
376 core_dumped =
377 ((*ts->bprm->core_dump)(target_sig, env) == 0);
379 if (core_dumped) {
380 struct rlimit nodump;
383 * We already dumped the core of target process, we don't want
384 * a coredump of qemu itself.
386 getrlimit(RLIMIT_CORE, &nodump);
387 nodump.rlim_cur = 0;
388 setrlimit(RLIMIT_CORE, &nodump);
389 (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) "
390 "- %s\n", target_sig, strsignal(host_sig), "core dumped");
394 * The proper exit code for dying from an uncaught signal is
395 * -<signal>. The kernel doesn't allow exit() or _exit() to pass
396 * a negative value. To get the proper exit code we need to
397 * actually die from an uncaught signal. Here the default signal
398 * handler is installed, we send ourself a signal and we wait for
399 * it to arrive.
401 memset(&act, 0, sizeof(act));
402 sigfillset(&act.sa_mask);
403 act.sa_handler = SIG_DFL;
404 sigaction(host_sig, &act, NULL);
406 kill(getpid(), host_sig);
409 * Make sure the signal isn't masked (just reuse the mask inside
410 * of act).
412 sigdelset(&act.sa_mask, host_sig);
413 sigsuspend(&act.sa_mask);
415 /* unreachable */
416 abort();
420 * Queue a signal so that it will be send to the virtual CPU as soon as
421 * possible.
423 void queue_signal(CPUArchState *env, int sig, int si_type,
424 target_siginfo_t *info)
426 CPUState *cpu = env_cpu(env);
427 TaskState *ts = get_task_state(cpu);
429 trace_user_queue_signal(env, sig);
431 info->si_code = deposit32(info->si_code, 24, 8, si_type);
433 ts->sync_signal.info = *info;
434 ts->sync_signal.pending = sig;
435 /* Signal that a new signal is pending. */
436 qatomic_set(&ts->signal_pending, 1);
437 return;
440 static int fatal_signal(int sig)
443 switch (sig) {
444 case TARGET_SIGCHLD:
445 case TARGET_SIGURG:
446 case TARGET_SIGWINCH:
447 case TARGET_SIGINFO:
448 /* Ignored by default. */
449 return 0;
450 case TARGET_SIGCONT:
451 case TARGET_SIGSTOP:
452 case TARGET_SIGTSTP:
453 case TARGET_SIGTTIN:
454 case TARGET_SIGTTOU:
455 /* Job control signals. */
456 return 0;
457 default:
458 return 1;
463 * Force a synchronously taken QEMU_SI_FAULT signal. For QEMU the
464 * 'force' part is handled in process_pending_signals().
466 void force_sig_fault(int sig, int code, abi_ulong addr)
468 CPUState *cpu = thread_cpu;
469 target_siginfo_t info = {};
471 info.si_signo = sig;
472 info.si_errno = 0;
473 info.si_code = code;
474 info.si_addr = addr;
475 queue_signal(cpu_env(cpu), sig, QEMU_SI_FAULT, &info);
478 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc)
480 CPUState *cpu = thread_cpu;
481 TaskState *ts = get_task_state(cpu);
482 target_siginfo_t tinfo;
483 ucontext_t *uc = puc;
484 struct emulated_sigtable *k;
485 int guest_sig;
486 uintptr_t pc = 0;
487 bool sync_sig = false;
490 * Non-spoofed SIGSEGV and SIGBUS are synchronous, and need special
491 * handling wrt signal blocking and unwinding.
493 if ((host_sig == SIGSEGV || host_sig == SIGBUS) && info->si_code > 0) {
494 MMUAccessType access_type;
495 uintptr_t host_addr;
496 abi_ptr guest_addr;
497 bool is_write;
499 host_addr = (uintptr_t)info->si_addr;
502 * Convert forcefully to guest address space: addresses outside
503 * reserved_va are still valid to report via SEGV_MAPERR.
505 guest_addr = h2g_nocheck(host_addr);
507 pc = host_signal_pc(uc);
508 is_write = host_signal_write(info, uc);
509 access_type = adjust_signal_pc(&pc, is_write);
511 if (host_sig == SIGSEGV) {
512 bool maperr = true;
514 if (info->si_code == SEGV_ACCERR && h2g_valid(host_addr)) {
515 /* If this was a write to a TB protected page, restart. */
516 if (is_write &&
517 handle_sigsegv_accerr_write(cpu, &uc->uc_sigmask,
518 pc, guest_addr)) {
519 return;
523 * With reserved_va, the whole address space is PROT_NONE,
524 * which means that we may get ACCERR when we want MAPERR.
526 if (page_get_flags(guest_addr) & PAGE_VALID) {
527 maperr = false;
528 } else {
529 info->si_code = SEGV_MAPERR;
533 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
534 cpu_loop_exit_sigsegv(cpu, guest_addr, access_type, maperr, pc);
535 } else {
536 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
537 if (info->si_code == BUS_ADRALN) {
538 cpu_loop_exit_sigbus(cpu, guest_addr, access_type, pc);
542 sync_sig = true;
545 /* Get the target signal number. */
546 guest_sig = host_to_target_signal(host_sig);
547 if (guest_sig < 1 || guest_sig > TARGET_NSIG) {
548 return;
550 trace_user_host_signal(cpu, host_sig, guest_sig);
552 host_to_target_siginfo_noswap(&tinfo, info);
554 k = &ts->sigtab[guest_sig - 1];
555 k->info = tinfo;
556 k->pending = guest_sig;
557 ts->signal_pending = 1;
560 * For synchronous signals, unwind the cpu state to the faulting
561 * insn and then exit back to the main loop so that the signal
562 * is delivered immediately.
564 if (sync_sig) {
565 cpu->exception_index = EXCP_INTERRUPT;
566 cpu_loop_exit_restore(cpu, pc);
569 rewind_if_in_safe_syscall(puc);
572 * Block host signals until target signal handler entered. We
573 * can't block SIGSEGV or SIGBUS while we're executing guest
574 * code in case the guest code provokes one in the window between
575 * now and it getting out to the main loop. Signals will be
576 * unblocked again in process_pending_signals().
578 sigfillset(&uc->uc_sigmask);
579 sigdelset(&uc->uc_sigmask, SIGSEGV);
580 sigdelset(&uc->uc_sigmask, SIGBUS);
582 /* Interrupt the virtual CPU as soon as possible. */
583 cpu_exit(thread_cpu);
586 /* do_sigaltstack() returns target values and errnos. */
587 /* compare to kern/kern_sig.c sys_sigaltstack() and kern_sigaltstack() */
588 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp)
590 TaskState *ts = get_task_state(thread_cpu);
591 int ret;
592 target_stack_t oss;
594 if (uoss_addr) {
595 /* Save current signal stack params */
596 oss.ss_sp = tswapl(ts->sigaltstack_used.ss_sp);
597 oss.ss_size = tswapl(ts->sigaltstack_used.ss_size);
598 oss.ss_flags = tswapl(sas_ss_flags(ts, sp));
601 if (uss_addr) {
602 target_stack_t *uss;
603 target_stack_t ss;
604 size_t minstacksize = TARGET_MINSIGSTKSZ;
606 ret = -TARGET_EFAULT;
607 if (!lock_user_struct(VERIFY_READ, uss, uss_addr, 1)) {
608 goto out;
610 __get_user(ss.ss_sp, &uss->ss_sp);
611 __get_user(ss.ss_size, &uss->ss_size);
612 __get_user(ss.ss_flags, &uss->ss_flags);
613 unlock_user_struct(uss, uss_addr, 0);
615 ret = -TARGET_EPERM;
616 if (on_sig_stack(ts, sp)) {
617 goto out;
620 ret = -TARGET_EINVAL;
621 if (ss.ss_flags != TARGET_SS_DISABLE
622 && ss.ss_flags != TARGET_SS_ONSTACK
623 && ss.ss_flags != 0) {
624 goto out;
627 if (ss.ss_flags == TARGET_SS_DISABLE) {
628 ss.ss_size = 0;
629 ss.ss_sp = 0;
630 } else {
631 ret = -TARGET_ENOMEM;
632 if (ss.ss_size < minstacksize) {
633 goto out;
637 ts->sigaltstack_used.ss_sp = ss.ss_sp;
638 ts->sigaltstack_used.ss_size = ss.ss_size;
641 if (uoss_addr) {
642 ret = -TARGET_EFAULT;
643 if (copy_to_user(uoss_addr, &oss, sizeof(oss))) {
644 goto out;
648 ret = 0;
649 out:
650 return ret;
653 /* do_sigaction() return host values and errnos */
654 int do_sigaction(int sig, const struct target_sigaction *act,
655 struct target_sigaction *oact)
657 struct target_sigaction *k;
658 struct sigaction act1;
659 int host_sig;
660 int ret = 0;
662 if (sig < 1 || sig > TARGET_NSIG) {
663 return -TARGET_EINVAL;
666 if ((sig == TARGET_SIGKILL || sig == TARGET_SIGSTOP) &&
667 act != NULL && act->_sa_handler != TARGET_SIG_DFL) {
668 return -TARGET_EINVAL;
671 if (block_signals()) {
672 return -TARGET_ERESTART;
675 k = &sigact_table[sig - 1];
676 if (oact) {
677 oact->_sa_handler = tswapal(k->_sa_handler);
678 oact->sa_flags = tswap32(k->sa_flags);
679 oact->sa_mask = k->sa_mask;
681 if (act) {
682 k->_sa_handler = tswapal(act->_sa_handler);
683 k->sa_flags = tswap32(act->sa_flags);
684 k->sa_mask = act->sa_mask;
686 /* Update the host signal state. */
687 host_sig = target_to_host_signal(sig);
688 if (host_sig != SIGSEGV && host_sig != SIGBUS) {
689 memset(&act1, 0, sizeof(struct sigaction));
690 sigfillset(&act1.sa_mask);
691 act1.sa_flags = SA_SIGINFO;
692 if (k->sa_flags & TARGET_SA_RESTART) {
693 act1.sa_flags |= SA_RESTART;
696 * Note: It is important to update the host kernel signal mask to
697 * avoid getting unexpected interrupted system calls.
699 if (k->_sa_handler == TARGET_SIG_IGN) {
700 act1.sa_sigaction = (void *)SIG_IGN;
701 } else if (k->_sa_handler == TARGET_SIG_DFL) {
702 if (fatal_signal(sig)) {
703 act1.sa_sigaction = host_signal_handler;
704 } else {
705 act1.sa_sigaction = (void *)SIG_DFL;
707 } else {
708 act1.sa_sigaction = host_signal_handler;
710 ret = sigaction(host_sig, &act1, NULL);
713 return ret;
716 static inline abi_ulong get_sigframe(struct target_sigaction *ka,
717 CPUArchState *env, size_t frame_size)
719 TaskState *ts = get_task_state(thread_cpu);
720 abi_ulong sp;
722 /* Use default user stack */
723 sp = get_sp_from_cpustate(env);
725 if ((ka->sa_flags & TARGET_SA_ONSTACK) && sas_ss_flags(ts, sp) == 0) {
726 sp = ts->sigaltstack_used.ss_sp + ts->sigaltstack_used.ss_size;
729 /* TODO: make this a target_arch function / define */
730 #if defined(TARGET_ARM)
731 return (sp - frame_size) & ~7;
732 #elif defined(TARGET_AARCH64)
733 return (sp - frame_size) & ~15;
734 #else
735 return sp - frame_size;
736 #endif
739 /* compare to $M/$M/exec_machdep.c sendsig and sys/kern/kern_sig.c sigexit */
741 static void setup_frame(int sig, int code, struct target_sigaction *ka,
742 target_sigset_t *set, target_siginfo_t *tinfo, CPUArchState *env)
744 struct target_sigframe *frame;
745 abi_ulong frame_addr;
746 int i;
748 frame_addr = get_sigframe(ka, env, sizeof(*frame));
749 trace_user_setup_frame(env, frame_addr);
750 if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) {
751 unlock_user_struct(frame, frame_addr, 1);
752 dump_core_and_abort(TARGET_SIGILL);
753 return;
756 memset(frame, 0, sizeof(*frame));
757 setup_sigframe_arch(env, frame_addr, frame, 0);
759 for (i = 0; i < TARGET_NSIG_WORDS; i++) {
760 __put_user(set->__bits[i], &frame->sf_uc.uc_sigmask.__bits[i]);
763 if (tinfo) {
764 frame->sf_si.si_signo = tinfo->si_signo;
765 frame->sf_si.si_errno = tinfo->si_errno;
766 frame->sf_si.si_code = tinfo->si_code;
767 frame->sf_si.si_pid = tinfo->si_pid;
768 frame->sf_si.si_uid = tinfo->si_uid;
769 frame->sf_si.si_status = tinfo->si_status;
770 frame->sf_si.si_addr = tinfo->si_addr;
771 /* see host_to_target_siginfo_noswap() for more details */
772 frame->sf_si.si_value.sival_ptr = tinfo->si_value.sival_ptr;
774 * At this point, whatever is in the _reason union is complete
775 * and in target order, so just copy the whole thing over, even
776 * if it's too large for this specific signal.
777 * host_to_target_siginfo_noswap() and tswap_siginfo() have ensured
778 * that's so.
780 memcpy(&frame->sf_si._reason, &tinfo->_reason,
781 sizeof(tinfo->_reason));
784 set_sigtramp_args(env, sig, frame, frame_addr, ka);
786 unlock_user_struct(frame, frame_addr, 1);
789 static int reset_signal_mask(target_ucontext_t *ucontext)
791 int i;
792 sigset_t blocked;
793 target_sigset_t target_set;
794 TaskState *ts = get_task_state(thread_cpu);
796 for (i = 0; i < TARGET_NSIG_WORDS; i++) {
797 __get_user(target_set.__bits[i], &ucontext->uc_sigmask.__bits[i]);
799 target_to_host_sigset_internal(&blocked, &target_set);
800 ts->signal_mask = blocked;
802 return 0;
805 /* See sys/$M/$M/exec_machdep.c sigreturn() */
806 long do_sigreturn(CPUArchState *env, abi_ulong addr)
808 long ret;
809 abi_ulong target_ucontext;
810 target_ucontext_t *ucontext = NULL;
812 /* Get the target ucontext address from the stack frame */
813 ret = get_ucontext_sigreturn(env, addr, &target_ucontext);
814 if (is_error(ret)) {
815 return ret;
817 trace_user_do_sigreturn(env, addr);
818 if (!lock_user_struct(VERIFY_READ, ucontext, target_ucontext, 0)) {
819 goto badframe;
822 /* Set the register state back to before the signal. */
823 if (set_mcontext(env, &ucontext->uc_mcontext, 1)) {
824 goto badframe;
827 /* And reset the signal mask. */
828 if (reset_signal_mask(ucontext)) {
829 goto badframe;
832 unlock_user_struct(ucontext, target_ucontext, 0);
833 return -TARGET_EJUSTRETURN;
835 badframe:
836 if (ucontext != NULL) {
837 unlock_user_struct(ucontext, target_ucontext, 0);
839 return -TARGET_EFAULT;
842 void signal_init(void)
844 TaskState *ts = get_task_state(thread_cpu);
845 struct sigaction act;
846 struct sigaction oact;
847 int i;
848 int host_sig;
850 /* Set the signal mask from the host mask. */
851 sigprocmask(0, 0, &ts->signal_mask);
853 sigfillset(&act.sa_mask);
854 act.sa_sigaction = host_signal_handler;
855 act.sa_flags = SA_SIGINFO;
857 for (i = 1; i <= TARGET_NSIG; i++) {
858 host_sig = target_to_host_signal(i);
859 sigaction(host_sig, NULL, &oact);
860 if (oact.sa_sigaction == (void *)SIG_IGN) {
861 sigact_table[i - 1]._sa_handler = TARGET_SIG_IGN;
862 } else if (oact.sa_sigaction == (void *)SIG_DFL) {
863 sigact_table[i - 1]._sa_handler = TARGET_SIG_DFL;
866 * If there's already a handler installed then something has
867 * gone horribly wrong, so don't even try to handle that case.
868 * Install some handlers for our own use. We need at least
869 * SIGSEGV and SIGBUS, to detect exceptions. We can not just
870 * trap all signals because it affects syscall interrupt
871 * behavior. But do trap all default-fatal signals.
873 if (fatal_signal(i)) {
874 sigaction(host_sig, &act, NULL);
879 static void handle_pending_signal(CPUArchState *env, int sig,
880 struct emulated_sigtable *k)
882 CPUState *cpu = env_cpu(env);
883 TaskState *ts = get_task_state(cpu);
884 struct target_sigaction *sa;
885 int code;
886 sigset_t set;
887 abi_ulong handler;
888 target_siginfo_t tinfo;
889 target_sigset_t target_old_set;
891 trace_user_handle_signal(env, sig);
893 k->pending = 0;
895 sig = gdb_handlesig(cpu, sig, NULL, &k->info, sizeof(k->info));
896 if (!sig) {
897 sa = NULL;
898 handler = TARGET_SIG_IGN;
899 } else {
900 sa = &sigact_table[sig - 1];
901 handler = sa->_sa_handler;
904 if (do_strace) {
905 print_taken_signal(sig, &k->info);
908 if (handler == TARGET_SIG_DFL) {
910 * default handler : ignore some signal. The other are job
911 * control or fatal.
913 if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN ||
914 sig == TARGET_SIGTTOU) {
915 kill(getpid(), SIGSTOP);
916 } else if (sig != TARGET_SIGCHLD && sig != TARGET_SIGURG &&
917 sig != TARGET_SIGINFO && sig != TARGET_SIGWINCH &&
918 sig != TARGET_SIGCONT) {
919 dump_core_and_abort(sig);
921 } else if (handler == TARGET_SIG_IGN) {
922 /* ignore sig */
923 } else if (handler == TARGET_SIG_ERR) {
924 dump_core_and_abort(sig);
925 } else {
926 /* compute the blocked signals during the handler execution */
927 sigset_t *blocked_set;
929 target_to_host_sigset(&set, &sa->sa_mask);
931 * SA_NODEFER indicates that the current signal should not be
932 * blocked during the handler.
934 if (!(sa->sa_flags & TARGET_SA_NODEFER)) {
935 sigaddset(&set, target_to_host_signal(sig));
939 * Save the previous blocked signal state to restore it at the
940 * end of the signal execution (see do_sigreturn).
942 host_to_target_sigset_internal(&target_old_set, &ts->signal_mask);
944 blocked_set = ts->in_sigsuspend ?
945 &ts->sigsuspend_mask : &ts->signal_mask;
946 sigorset(&ts->signal_mask, blocked_set, &set);
947 ts->in_sigsuspend = false;
948 sigprocmask(SIG_SETMASK, &ts->signal_mask, NULL);
950 /* XXX VM86 on x86 ??? */
952 code = k->info.si_code; /* From host, so no si_type */
953 /* prepare the stack frame of the virtual CPU */
954 if (sa->sa_flags & TARGET_SA_SIGINFO) {
955 tswap_siginfo(&tinfo, &k->info);
956 setup_frame(sig, code, sa, &target_old_set, &tinfo, env);
957 } else {
958 setup_frame(sig, code, sa, &target_old_set, NULL, env);
960 if (sa->sa_flags & TARGET_SA_RESETHAND) {
961 sa->_sa_handler = TARGET_SIG_DFL;
966 void process_pending_signals(CPUArchState *env)
968 CPUState *cpu = env_cpu(env);
969 int sig;
970 sigset_t *blocked_set, set;
971 struct emulated_sigtable *k;
972 TaskState *ts = get_task_state(cpu);
974 while (qatomic_read(&ts->signal_pending)) {
975 sigfillset(&set);
976 sigprocmask(SIG_SETMASK, &set, 0);
978 restart_scan:
979 sig = ts->sync_signal.pending;
980 if (sig) {
982 * Synchronous signals are forced by the emulated CPU in some way.
983 * If they are set to ignore, restore the default handler (see
984 * sys/kern_sig.c trapsignal() and execsigs() for this behavior)
985 * though maybe this is done only when forcing exit for non SIGCHLD.
987 if (sigismember(&ts->signal_mask, target_to_host_signal(sig)) ||
988 sigact_table[sig - 1]._sa_handler == TARGET_SIG_IGN) {
989 sigdelset(&ts->signal_mask, target_to_host_signal(sig));
990 sigact_table[sig - 1]._sa_handler = TARGET_SIG_DFL;
992 handle_pending_signal(env, sig, &ts->sync_signal);
995 k = ts->sigtab;
996 for (sig = 1; sig <= TARGET_NSIG; sig++, k++) {
997 blocked_set = ts->in_sigsuspend ?
998 &ts->sigsuspend_mask : &ts->signal_mask;
999 if (k->pending &&
1000 !sigismember(blocked_set, target_to_host_signal(sig))) {
1001 handle_pending_signal(env, sig, k);
1003 * Restart scan from the beginning, as handle_pending_signal
1004 * might have resulted in a new synchronous signal (eg SIGSEGV).
1006 goto restart_scan;
1011 * Unblock signals and check one more time. Unblocking signals may cause
1012 * us to take another host signal, which will set signal_pending again.
1014 qatomic_set(&ts->signal_pending, 0);
1015 ts->in_sigsuspend = false;
1016 set = ts->signal_mask;
1017 sigdelset(&set, SIGSEGV);
1018 sigdelset(&set, SIGBUS);
1019 sigprocmask(SIG_SETMASK, &set, 0);
1021 ts->in_sigsuspend = false;
1024 void cpu_loop_exit_sigsegv(CPUState *cpu, target_ulong addr,
1025 MMUAccessType access_type, bool maperr, uintptr_t ra)
1027 const TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
1029 if (tcg_ops->record_sigsegv) {
1030 tcg_ops->record_sigsegv(cpu, addr, access_type, maperr, ra);
1033 force_sig_fault(TARGET_SIGSEGV,
1034 maperr ? TARGET_SEGV_MAPERR : TARGET_SEGV_ACCERR,
1035 addr);
1036 cpu->exception_index = EXCP_INTERRUPT;
1037 cpu_loop_exit_restore(cpu, ra);
1040 void cpu_loop_exit_sigbus(CPUState *cpu, target_ulong addr,
1041 MMUAccessType access_type, uintptr_t ra)
1043 const TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
1045 if (tcg_ops->record_sigbus) {
1046 tcg_ops->record_sigbus(cpu, addr, access_type, ra);
1049 force_sig_fault(TARGET_SIGBUS, TARGET_BUS_ADRALN, addr);
1050 cpu->exception_index = EXCP_INTERRUPT;
1051 cpu_loop_exit_restore(cpu, ra);