2 * Arm SSE (Subsystems for Embedded): IoTKit
4 * Copyright (c) 2018 Linaro Limited
5 * Written by Peter Maydell
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 or
9 * (at your option) any later version.
12 #include "qemu/osdep.h"
14 #include "qemu/bitops.h"
15 #include "qapi/error.h"
17 #include "hw/sysbus.h"
18 #include "hw/registerfields.h"
19 #include "hw/arm/armsse.h"
20 #include "hw/arm/arm.h"
22 /* Format of the System Information block SYS_CONFIG register */
23 typedef enum SysConfigFormat
{
34 SysConfigFormat sys_config_format
;
42 static const ARMSSEInfo armsse_variants
[] = {
47 .sys_version
= 0x41743,
49 .sys_config_format
= IoTKitFormat
,
52 .has_cachectrl
= false,
53 .has_cpusecctrl
= false,
60 .sys_version
= 0x22041743,
62 .sys_config_format
= SSE200Format
,
65 .has_cachectrl
= true,
66 .has_cpusecctrl
= true,
71 static uint32_t armsse_sys_config_value(ARMSSE
*s
, const ARMSSEInfo
*info
)
73 /* Return the SYS_CONFIG value for this SSE */
76 switch (info
->sys_config_format
) {
79 sys_config
= deposit32(sys_config
, 0, 4, info
->sram_banks
);
80 sys_config
= deposit32(sys_config
, 4, 4, s
->sram_addr_width
- 12);
84 sys_config
= deposit32(sys_config
, 0, 4, info
->sram_banks
);
85 sys_config
= deposit32(sys_config
, 4, 5, s
->sram_addr_width
);
86 sys_config
= deposit32(sys_config
, 24, 4, 2);
87 if (info
->num_cpus
> 1) {
88 sys_config
= deposit32(sys_config
, 10, 1, 1);
89 sys_config
= deposit32(sys_config
, 20, 4, info
->sram_banks
- 1);
90 sys_config
= deposit32(sys_config
, 28, 4, 2);
94 g_assert_not_reached();
99 /* Clock frequency in HZ of the 32KHz "slow clock" */
100 #define S32KCLK (32 * 1000)
102 /* Is internal IRQ n shared between CPUs in a multi-core SSE ? */
103 static bool irq_is_common
[32] = {
105 /* 6, 7: per-CPU MHU interrupts */
107 /* 13: per-CPU icache interrupt */
113 /* 28, 29: per-CPU CTI interrupts */
114 /* 30, 31: reserved */
118 * Create an alias region in @container of @size bytes starting at @base
119 * which mirrors the memory starting at @orig.
121 static void make_alias(ARMSSE
*s
, MemoryRegion
*mr
, MemoryRegion
*container
,
122 const char *name
, hwaddr base
, hwaddr size
, hwaddr orig
)
124 memory_region_init_alias(mr
, NULL
, name
, container
, orig
, size
);
125 /* The alias is even lower priority than unimplemented_device regions */
126 memory_region_add_subregion_overlap(container
, base
, mr
, -1500);
129 static void irq_status_forwarder(void *opaque
, int n
, int level
)
131 qemu_irq destirq
= opaque
;
133 qemu_set_irq(destirq
, level
);
136 static void nsccfg_handler(void *opaque
, int n
, int level
)
138 ARMSSE
*s
= ARMSSE(opaque
);
143 static void armsse_forward_ppc(ARMSSE
*s
, const char *ppcname
, int ppcnum
)
145 /* Each of the 4 AHB and 4 APB PPCs that might be present in a
146 * system using the ARMSSE has a collection of control lines which
147 * are provided by the security controller and which we want to
148 * expose as control lines on the ARMSSE device itself, so the
149 * code using the ARMSSE can wire them up to the PPCs.
151 SplitIRQ
*splitter
= &s
->ppc_irq_splitter
[ppcnum
];
152 DeviceState
*armssedev
= DEVICE(s
);
153 DeviceState
*dev_secctl
= DEVICE(&s
->secctl
);
154 DeviceState
*dev_splitter
= DEVICE(splitter
);
157 name
= g_strdup_printf("%s_nonsec", ppcname
);
158 qdev_pass_gpios(dev_secctl
, armssedev
, name
);
160 name
= g_strdup_printf("%s_ap", ppcname
);
161 qdev_pass_gpios(dev_secctl
, armssedev
, name
);
163 name
= g_strdup_printf("%s_irq_enable", ppcname
);
164 qdev_pass_gpios(dev_secctl
, armssedev
, name
);
166 name
= g_strdup_printf("%s_irq_clear", ppcname
);
167 qdev_pass_gpios(dev_secctl
, armssedev
, name
);
170 /* irq_status is a little more tricky, because we need to
171 * split it so we can send it both to the security controller
172 * and to our OR gate for the NVIC interrupt line.
173 * Connect up the splitter's outputs, and create a GPIO input
174 * which will pass the line state to the input splitter.
176 name
= g_strdup_printf("%s_irq_status", ppcname
);
177 qdev_connect_gpio_out(dev_splitter
, 0,
178 qdev_get_gpio_in_named(dev_secctl
,
180 qdev_connect_gpio_out(dev_splitter
, 1,
181 qdev_get_gpio_in(DEVICE(&s
->ppc_irq_orgate
), ppcnum
));
182 s
->irq_status_in
[ppcnum
] = qdev_get_gpio_in(dev_splitter
, 0);
183 qdev_init_gpio_in_named_with_opaque(armssedev
, irq_status_forwarder
,
184 s
->irq_status_in
[ppcnum
], name
, 1);
188 static void armsse_forward_sec_resp_cfg(ARMSSE
*s
)
190 /* Forward the 3rd output from the splitter device as a
191 * named GPIO output of the armsse object.
193 DeviceState
*dev
= DEVICE(s
);
194 DeviceState
*dev_splitter
= DEVICE(&s
->sec_resp_splitter
);
196 qdev_init_gpio_out_named(dev
, &s
->sec_resp_cfg
, "sec_resp_cfg", 1);
197 s
->sec_resp_cfg_in
= qemu_allocate_irq(irq_status_forwarder
,
199 qdev_connect_gpio_out(dev_splitter
, 2, s
->sec_resp_cfg_in
);
202 static void armsse_init(Object
*obj
)
204 ARMSSE
*s
= ARMSSE(obj
);
205 ARMSSEClass
*asc
= ARMSSE_GET_CLASS(obj
);
206 const ARMSSEInfo
*info
= asc
->info
;
209 assert(info
->sram_banks
<= MAX_SRAM_BANKS
);
210 assert(info
->num_cpus
<= SSE_MAX_CPUS
);
212 memory_region_init(&s
->container
, obj
, "armsse-container", UINT64_MAX
);
214 for (i
= 0; i
< info
->num_cpus
; i
++) {
216 * We put each CPU in its own cluster as they are logically
217 * distinct and may be configured differently.
221 name
= g_strdup_printf("cluster%d", i
);
222 object_initialize_child(obj
, name
, &s
->cluster
[i
],
223 sizeof(s
->cluster
[i
]), TYPE_CPU_CLUSTER
,
225 qdev_prop_set_uint32(DEVICE(&s
->cluster
[i
]), "cluster-id", i
);
228 name
= g_strdup_printf("armv7m%d", i
);
229 sysbus_init_child_obj(OBJECT(&s
->cluster
[i
]), name
,
230 &s
->armv7m
[i
], sizeof(s
->armv7m
), TYPE_ARMV7M
);
231 qdev_prop_set_string(DEVICE(&s
->armv7m
[i
]), "cpu-type",
232 ARM_CPU_TYPE_NAME("cortex-m33"));
234 name
= g_strdup_printf("arm-sse-cpu-container%d", i
);
235 memory_region_init(&s
->cpu_container
[i
], obj
, name
, UINT64_MAX
);
238 name
= g_strdup_printf("arm-sse-container-alias%d", i
);
239 memory_region_init_alias(&s
->container_alias
[i
- 1], obj
,
240 name
, &s
->container
, 0, UINT64_MAX
);
245 sysbus_init_child_obj(obj
, "secctl", &s
->secctl
, sizeof(s
->secctl
),
247 sysbus_init_child_obj(obj
, "apb-ppc0", &s
->apb_ppc0
, sizeof(s
->apb_ppc0
),
249 sysbus_init_child_obj(obj
, "apb-ppc1", &s
->apb_ppc1
, sizeof(s
->apb_ppc1
),
251 for (i
= 0; i
< info
->sram_banks
; i
++) {
252 char *name
= g_strdup_printf("mpc%d", i
);
253 sysbus_init_child_obj(obj
, name
, &s
->mpc
[i
],
254 sizeof(s
->mpc
[i
]), TYPE_TZ_MPC
);
257 object_initialize_child(obj
, "mpc-irq-orgate", &s
->mpc_irq_orgate
,
258 sizeof(s
->mpc_irq_orgate
), TYPE_OR_IRQ
,
261 for (i
= 0; i
< IOTS_NUM_EXP_MPC
+ info
->sram_banks
; i
++) {
262 char *name
= g_strdup_printf("mpc-irq-splitter-%d", i
);
263 SplitIRQ
*splitter
= &s
->mpc_irq_splitter
[i
];
265 object_initialize_child(obj
, name
, splitter
, sizeof(*splitter
),
266 TYPE_SPLIT_IRQ
, &error_abort
, NULL
);
269 sysbus_init_child_obj(obj
, "timer0", &s
->timer0
, sizeof(s
->timer0
),
270 TYPE_CMSDK_APB_TIMER
);
271 sysbus_init_child_obj(obj
, "timer1", &s
->timer1
, sizeof(s
->timer1
),
272 TYPE_CMSDK_APB_TIMER
);
273 sysbus_init_child_obj(obj
, "s32ktimer", &s
->s32ktimer
, sizeof(s
->s32ktimer
),
274 TYPE_CMSDK_APB_TIMER
);
275 sysbus_init_child_obj(obj
, "dualtimer", &s
->dualtimer
, sizeof(s
->dualtimer
),
276 TYPE_CMSDK_APB_DUALTIMER
);
277 sysbus_init_child_obj(obj
, "s32kwatchdog", &s
->s32kwatchdog
,
278 sizeof(s
->s32kwatchdog
), TYPE_CMSDK_APB_WATCHDOG
);
279 sysbus_init_child_obj(obj
, "nswatchdog", &s
->nswatchdog
,
280 sizeof(s
->nswatchdog
), TYPE_CMSDK_APB_WATCHDOG
);
281 sysbus_init_child_obj(obj
, "swatchdog", &s
->swatchdog
,
282 sizeof(s
->swatchdog
), TYPE_CMSDK_APB_WATCHDOG
);
283 sysbus_init_child_obj(obj
, "armsse-sysctl", &s
->sysctl
,
284 sizeof(s
->sysctl
), TYPE_IOTKIT_SYSCTL
);
285 sysbus_init_child_obj(obj
, "armsse-sysinfo", &s
->sysinfo
,
286 sizeof(s
->sysinfo
), TYPE_IOTKIT_SYSINFO
);
287 if (info
->has_mhus
) {
288 sysbus_init_child_obj(obj
, "mhu0", &s
->mhu
[0], sizeof(s
->mhu
[0]),
290 sysbus_init_child_obj(obj
, "mhu1", &s
->mhu
[1], sizeof(s
->mhu
[1]),
293 if (info
->has_ppus
) {
294 for (i
= 0; i
< info
->num_cpus
; i
++) {
295 char *name
= g_strdup_printf("CPU%dCORE_PPU", i
);
296 int ppuidx
= CPU0CORE_PPU
+ i
;
298 sysbus_init_child_obj(obj
, name
, &s
->ppu
[ppuidx
],
299 sizeof(s
->ppu
[ppuidx
]),
300 TYPE_UNIMPLEMENTED_DEVICE
);
303 sysbus_init_child_obj(obj
, "DBG_PPU", &s
->ppu
[DBG_PPU
],
304 sizeof(s
->ppu
[DBG_PPU
]),
305 TYPE_UNIMPLEMENTED_DEVICE
);
306 for (i
= 0; i
< info
->sram_banks
; i
++) {
307 char *name
= g_strdup_printf("RAM%d_PPU", i
);
308 int ppuidx
= RAM0_PPU
+ i
;
310 sysbus_init_child_obj(obj
, name
, &s
->ppu
[ppuidx
],
311 sizeof(s
->ppu
[ppuidx
]),
312 TYPE_UNIMPLEMENTED_DEVICE
);
316 if (info
->has_cachectrl
) {
317 for (i
= 0; i
< info
->num_cpus
; i
++) {
318 char *name
= g_strdup_printf("cachectrl%d", i
);
320 sysbus_init_child_obj(obj
, name
, &s
->cachectrl
[i
],
321 sizeof(s
->cachectrl
[i
]),
322 TYPE_UNIMPLEMENTED_DEVICE
);
326 if (info
->has_cpusecctrl
) {
327 for (i
= 0; i
< info
->num_cpus
; i
++) {
328 char *name
= g_strdup_printf("cpusecctrl%d", i
);
330 sysbus_init_child_obj(obj
, name
, &s
->cpusecctrl
[i
],
331 sizeof(s
->cpusecctrl
[i
]),
332 TYPE_UNIMPLEMENTED_DEVICE
);
336 if (info
->has_cpuid
) {
337 for (i
= 0; i
< info
->num_cpus
; i
++) {
338 char *name
= g_strdup_printf("cpuid%d", i
);
340 sysbus_init_child_obj(obj
, name
, &s
->cpuid
[i
],
346 object_initialize_child(obj
, "nmi-orgate", &s
->nmi_orgate
,
347 sizeof(s
->nmi_orgate
), TYPE_OR_IRQ
,
349 object_initialize_child(obj
, "ppc-irq-orgate", &s
->ppc_irq_orgate
,
350 sizeof(s
->ppc_irq_orgate
), TYPE_OR_IRQ
,
352 object_initialize_child(obj
, "sec-resp-splitter", &s
->sec_resp_splitter
,
353 sizeof(s
->sec_resp_splitter
), TYPE_SPLIT_IRQ
,
355 for (i
= 0; i
< ARRAY_SIZE(s
->ppc_irq_splitter
); i
++) {
356 char *name
= g_strdup_printf("ppc-irq-splitter-%d", i
);
357 SplitIRQ
*splitter
= &s
->ppc_irq_splitter
[i
];
359 object_initialize_child(obj
, name
, splitter
, sizeof(*splitter
),
360 TYPE_SPLIT_IRQ
, &error_abort
, NULL
);
363 if (info
->num_cpus
> 1) {
364 for (i
= 0; i
< ARRAY_SIZE(s
->cpu_irq_splitter
); i
++) {
365 if (irq_is_common
[i
]) {
366 char *name
= g_strdup_printf("cpu-irq-splitter%d", i
);
367 SplitIRQ
*splitter
= &s
->cpu_irq_splitter
[i
];
369 object_initialize_child(obj
, name
, splitter
, sizeof(*splitter
),
370 TYPE_SPLIT_IRQ
, &error_abort
, NULL
);
377 static void armsse_exp_irq(void *opaque
, int n
, int level
)
379 qemu_irq
*irqarray
= opaque
;
381 qemu_set_irq(irqarray
[n
], level
);
384 static void armsse_mpcexp_status(void *opaque
, int n
, int level
)
386 ARMSSE
*s
= ARMSSE(opaque
);
387 qemu_set_irq(s
->mpcexp_status_in
[n
], level
);
390 static qemu_irq
armsse_get_common_irq_in(ARMSSE
*s
, int irqno
)
393 * Return a qemu_irq which can be used to signal IRQ n to
394 * all CPUs in the SSE.
396 ARMSSEClass
*asc
= ARMSSE_GET_CLASS(s
);
397 const ARMSSEInfo
*info
= asc
->info
;
399 assert(irq_is_common
[irqno
]);
401 if (info
->num_cpus
== 1) {
402 /* Only one CPU -- just connect directly to it */
403 return qdev_get_gpio_in(DEVICE(&s
->armv7m
[0]), irqno
);
405 /* Connect to the splitter which feeds all CPUs */
406 return qdev_get_gpio_in(DEVICE(&s
->cpu_irq_splitter
[irqno
]), 0);
410 static void map_ppu(ARMSSE
*s
, int ppuidx
, const char *name
, hwaddr addr
)
412 /* Map a PPU unimplemented device stub */
413 DeviceState
*dev
= DEVICE(&s
->ppu
[ppuidx
]);
415 qdev_prop_set_string(dev
, "name", name
);
416 qdev_prop_set_uint64(dev
, "size", 0x1000);
417 qdev_init_nofail(dev
);
418 sysbus_mmio_map(SYS_BUS_DEVICE(&s
->ppu
[ppuidx
]), 0, addr
);
421 static void armsse_realize(DeviceState
*dev
, Error
**errp
)
423 ARMSSE
*s
= ARMSSE(dev
);
424 ARMSSEClass
*asc
= ARMSSE_GET_CLASS(dev
);
425 const ARMSSEInfo
*info
= asc
->info
;
429 SysBusDevice
*sbd_apb_ppc0
;
430 SysBusDevice
*sbd_secctl
;
431 DeviceState
*dev_apb_ppc0
;
432 DeviceState
*dev_apb_ppc1
;
433 DeviceState
*dev_secctl
;
434 DeviceState
*dev_splitter
;
435 uint32_t addr_width_max
;
437 if (!s
->board_memory
) {
438 error_setg(errp
, "memory property was not set");
442 if (!s
->mainclk_frq
) {
443 error_setg(errp
, "MAINCLK property was not set");
447 /* max SRAM_ADDR_WIDTH: 24 - log2(SRAM_NUM_BANK) */
448 assert(is_power_of_2(info
->sram_banks
));
449 addr_width_max
= 24 - ctz32(info
->sram_banks
);
450 if (s
->sram_addr_width
< 1 || s
->sram_addr_width
> addr_width_max
) {
451 error_setg(errp
, "SRAM_ADDR_WIDTH must be between 1 and %d",
456 /* Handling of which devices should be available only to secure
457 * code is usually done differently for M profile than for A profile.
458 * Instead of putting some devices only into the secure address space,
459 * devices exist in both address spaces but with hard-wired security
460 * permissions that will cause the CPU to fault for non-secure accesses.
462 * The ARMSSE has an IDAU (Implementation Defined Access Unit),
463 * which specifies hard-wired security permissions for different
464 * areas of the physical address space. For the ARMSSE IDAU, the
465 * top 4 bits of the physical address are the IDAU region ID, and
466 * if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS
467 * region, otherwise it is an S region.
469 * The various devices and RAMs are generally all mapped twice,
470 * once into a region that the IDAU defines as secure and once
471 * into a non-secure region. They sit behind either a Memory
472 * Protection Controller (for RAM) or a Peripheral Protection
473 * Controller (for devices), which allow a more fine grained
474 * configuration of whether non-secure accesses are permitted.
476 * (The other place that guest software can configure security
477 * permissions is in the architected SAU (Security Attribution
478 * Unit), which is entirely inside the CPU. The IDAU can upgrade
479 * the security attributes for a region to more restrictive than
480 * the SAU specifies, but cannot downgrade them.)
482 * 0x10000000..0x1fffffff alias of 0x00000000..0x0fffffff
483 * 0x20000000..0x2007ffff 32KB FPGA block RAM
484 * 0x30000000..0x3fffffff alias of 0x20000000..0x2fffffff
485 * 0x40000000..0x4000ffff base peripheral region 1
486 * 0x40010000..0x4001ffff CPU peripherals (none for ARMSSE)
487 * 0x40020000..0x4002ffff system control element peripherals
488 * 0x40080000..0x400fffff base peripheral region 2
489 * 0x50000000..0x5fffffff alias of 0x40000000..0x4fffffff
492 memory_region_add_subregion_overlap(&s
->container
, 0, s
->board_memory
, -2);
494 for (i
= 0; i
< info
->num_cpus
; i
++) {
495 DeviceState
*cpudev
= DEVICE(&s
->armv7m
[i
]);
496 Object
*cpuobj
= OBJECT(&s
->armv7m
[i
]);
500 qdev_prop_set_uint32(cpudev
, "num-irq", s
->exp_numirq
+ 32);
502 * In real hardware the initial Secure VTOR is set from the INITSVTOR*
503 * registers in the IoT Kit System Control Register block. In QEMU
504 * we set the initial value here, and also the reset value of the
505 * sysctl register, from this object's QOM init-svtor property.
506 * If the guest changes the INITSVTOR* registers at runtime then the
507 * code in iotkit-sysctl.c will update the CPU init-svtor property
508 * (which will then take effect on the next CPU warm-reset).
510 * Note that typically a board using the SSE-200 will have a system
511 * control processor whose boot firmware initializes the INITSVTOR*
512 * registers before powering up the CPUs. QEMU doesn't emulate
513 * the control processor, so instead we behave in the way that the
514 * firmware does: the initial value should be set by the board code
515 * (using the init-svtor property on the ARMSSE object) to match
516 * whatever its firmware does.
518 qdev_prop_set_uint32(cpudev
, "init-svtor", s
->init_svtor
);
520 * CPUs start powered down if the corresponding bit in the CPUWAIT
521 * register is 1. In real hardware the CPUWAIT register reset value is
522 * a configurable property of the SSE-200 (via the CPUWAIT0_RST and
523 * CPUWAIT1_RST parameters), but since all the boards we care about
524 * start CPU0 and leave CPU1 powered off, we hard-code that in
525 * info->cpuwait_rst for now. We can add QOM properties for this
526 * later if necessary.
528 if (extract32(info
->cpuwait_rst
, i
, 1)) {
529 object_property_set_bool(cpuobj
, true, "start-powered-off", &err
);
531 error_propagate(errp
, err
);
537 memory_region_add_subregion_overlap(&s
->cpu_container
[i
], 0,
538 &s
->container_alias
[i
- 1], -1);
540 memory_region_add_subregion_overlap(&s
->cpu_container
[i
], 0,
543 object_property_set_link(cpuobj
, OBJECT(&s
->cpu_container
[i
]),
546 error_propagate(errp
, err
);
549 object_property_set_link(cpuobj
, OBJECT(s
), "idau", &err
);
551 error_propagate(errp
, err
);
554 object_property_set_bool(cpuobj
, true, "realized", &err
);
556 error_propagate(errp
, err
);
560 * The cluster must be realized after the armv7m container, as
561 * the container's CPU object is only created on realize, and the
562 * CPU must exist and have been parented into the cluster before
563 * the cluster is realized.
565 object_property_set_bool(OBJECT(&s
->cluster
[i
]),
566 true, "realized", &err
);
568 error_propagate(errp
, err
);
572 /* Connect EXP_IRQ/EXP_CPUn_IRQ GPIOs to the NVIC's lines 32 and up */
573 s
->exp_irqs
[i
] = g_new(qemu_irq
, s
->exp_numirq
);
574 for (j
= 0; j
< s
->exp_numirq
; j
++) {
575 s
->exp_irqs
[i
][j
] = qdev_get_gpio_in(cpudev
, j
+ 32);
578 gpioname
= g_strdup("EXP_IRQ");
580 gpioname
= g_strdup_printf("EXP_CPU%d_IRQ", i
);
582 qdev_init_gpio_in_named_with_opaque(dev
, armsse_exp_irq
,
584 gpioname
, s
->exp_numirq
);
588 /* Wire up the splitters that connect common IRQs to all CPUs */
589 if (info
->num_cpus
> 1) {
590 for (i
= 0; i
< ARRAY_SIZE(s
->cpu_irq_splitter
); i
++) {
591 if (irq_is_common
[i
]) {
592 Object
*splitter
= OBJECT(&s
->cpu_irq_splitter
[i
]);
593 DeviceState
*devs
= DEVICE(splitter
);
596 object_property_set_int(splitter
, info
->num_cpus
,
599 error_propagate(errp
, err
);
602 object_property_set_bool(splitter
, true, "realized", &err
);
604 error_propagate(errp
, err
);
607 for (cpunum
= 0; cpunum
< info
->num_cpus
; cpunum
++) {
608 DeviceState
*cpudev
= DEVICE(&s
->armv7m
[cpunum
]);
610 qdev_connect_gpio_out(devs
, cpunum
,
611 qdev_get_gpio_in(cpudev
, i
));
617 /* Set up the big aliases first */
618 make_alias(s
, &s
->alias1
, &s
->container
, "alias 1",
619 0x10000000, 0x10000000, 0x00000000);
620 make_alias(s
, &s
->alias2
, &s
->container
,
621 "alias 2", 0x30000000, 0x10000000, 0x20000000);
622 /* The 0x50000000..0x5fffffff region is not a pure alias: it has
623 * a few extra devices that only appear there (generally the
624 * control interfaces for the protection controllers).
625 * We implement this by mapping those devices over the top of this
626 * alias MR at a higher priority. Some of the devices in this range
627 * are per-CPU, so we must put this alias in the per-cpu containers.
629 for (i
= 0; i
< info
->num_cpus
; i
++) {
630 make_alias(s
, &s
->alias3
[i
], &s
->cpu_container
[i
],
631 "alias 3", 0x50000000, 0x10000000, 0x40000000);
634 /* Security controller */
635 object_property_set_bool(OBJECT(&s
->secctl
), true, "realized", &err
);
637 error_propagate(errp
, err
);
640 sbd_secctl
= SYS_BUS_DEVICE(&s
->secctl
);
641 dev_secctl
= DEVICE(&s
->secctl
);
642 sysbus_mmio_map(sbd_secctl
, 0, 0x50080000);
643 sysbus_mmio_map(sbd_secctl
, 1, 0x40080000);
645 s
->nsc_cfg_in
= qemu_allocate_irq(nsccfg_handler
, s
, 1);
646 qdev_connect_gpio_out_named(dev_secctl
, "nsc_cfg", 0, s
->nsc_cfg_in
);
648 /* The sec_resp_cfg output from the security controller must be split into
649 * multiple lines, one for each of the PPCs within the ARMSSE and one
650 * that will be an output from the ARMSSE to the system.
652 object_property_set_int(OBJECT(&s
->sec_resp_splitter
), 3,
655 error_propagate(errp
, err
);
658 object_property_set_bool(OBJECT(&s
->sec_resp_splitter
), true,
661 error_propagate(errp
, err
);
664 dev_splitter
= DEVICE(&s
->sec_resp_splitter
);
665 qdev_connect_gpio_out_named(dev_secctl
, "sec_resp_cfg", 0,
666 qdev_get_gpio_in(dev_splitter
, 0));
668 /* Each SRAM bank lives behind its own Memory Protection Controller */
669 for (i
= 0; i
< info
->sram_banks
; i
++) {
670 char *ramname
= g_strdup_printf("armsse.sram%d", i
);
671 SysBusDevice
*sbd_mpc
;
672 uint32_t sram_bank_size
= 1 << s
->sram_addr_width
;
674 memory_region_init_ram(&s
->sram
[i
], NULL
, ramname
,
675 sram_bank_size
, &err
);
678 error_propagate(errp
, err
);
681 object_property_set_link(OBJECT(&s
->mpc
[i
]), OBJECT(&s
->sram
[i
]),
684 error_propagate(errp
, err
);
687 object_property_set_bool(OBJECT(&s
->mpc
[i
]), true, "realized", &err
);
689 error_propagate(errp
, err
);
692 /* Map the upstream end of the MPC into the right place... */
693 sbd_mpc
= SYS_BUS_DEVICE(&s
->mpc
[i
]);
694 memory_region_add_subregion(&s
->container
,
695 0x20000000 + i
* sram_bank_size
,
696 sysbus_mmio_get_region(sbd_mpc
, 1));
697 /* ...and its register interface */
698 memory_region_add_subregion(&s
->container
, 0x50083000 + i
* 0x1000,
699 sysbus_mmio_get_region(sbd_mpc
, 0));
702 /* We must OR together lines from the MPC splitters to go to the NVIC */
703 object_property_set_int(OBJECT(&s
->mpc_irq_orgate
),
704 IOTS_NUM_EXP_MPC
+ info
->sram_banks
,
707 error_propagate(errp
, err
);
710 object_property_set_bool(OBJECT(&s
->mpc_irq_orgate
), true,
713 error_propagate(errp
, err
);
716 qdev_connect_gpio_out(DEVICE(&s
->mpc_irq_orgate
), 0,
717 armsse_get_common_irq_in(s
, 9));
719 /* Devices behind APB PPC0:
722 * 0x40002000: dual timer
723 * 0x40003000: MHU0 (SSE-200 only)
724 * 0x40004000: MHU1 (SSE-200 only)
725 * We must configure and realize each downstream device and connect
726 * it to the appropriate PPC port; then we can realize the PPC and
727 * map its upstream ends to the right place in the container.
729 qdev_prop_set_uint32(DEVICE(&s
->timer0
), "pclk-frq", s
->mainclk_frq
);
730 object_property_set_bool(OBJECT(&s
->timer0
), true, "realized", &err
);
732 error_propagate(errp
, err
);
735 sysbus_connect_irq(SYS_BUS_DEVICE(&s
->timer0
), 0,
736 armsse_get_common_irq_in(s
, 3));
737 mr
= sysbus_mmio_get_region(SYS_BUS_DEVICE(&s
->timer0
), 0);
738 object_property_set_link(OBJECT(&s
->apb_ppc0
), OBJECT(mr
), "port[0]", &err
);
740 error_propagate(errp
, err
);
744 qdev_prop_set_uint32(DEVICE(&s
->timer1
), "pclk-frq", s
->mainclk_frq
);
745 object_property_set_bool(OBJECT(&s
->timer1
), true, "realized", &err
);
747 error_propagate(errp
, err
);
750 sysbus_connect_irq(SYS_BUS_DEVICE(&s
->timer1
), 0,
751 armsse_get_common_irq_in(s
, 4));
752 mr
= sysbus_mmio_get_region(SYS_BUS_DEVICE(&s
->timer1
), 0);
753 object_property_set_link(OBJECT(&s
->apb_ppc0
), OBJECT(mr
), "port[1]", &err
);
755 error_propagate(errp
, err
);
760 qdev_prop_set_uint32(DEVICE(&s
->dualtimer
), "pclk-frq", s
->mainclk_frq
);
761 object_property_set_bool(OBJECT(&s
->dualtimer
), true, "realized", &err
);
763 error_propagate(errp
, err
);
766 sysbus_connect_irq(SYS_BUS_DEVICE(&s
->dualtimer
), 0,
767 armsse_get_common_irq_in(s
, 5));
768 mr
= sysbus_mmio_get_region(SYS_BUS_DEVICE(&s
->dualtimer
), 0);
769 object_property_set_link(OBJECT(&s
->apb_ppc0
), OBJECT(mr
), "port[2]", &err
);
771 error_propagate(errp
, err
);
775 if (info
->has_mhus
) {
777 * An SSE-200 with only one CPU should have only one MHU created,
778 * with the region where the second MHU usually is being RAZ/WI.
779 * We don't implement that SSE-200 config; if we want to support
780 * it then this code needs to be enhanced to handle creating the
781 * RAZ/WI region instead of the second MHU.
783 assert(info
->num_cpus
== ARRAY_SIZE(s
->mhu
));
785 for (i
= 0; i
< ARRAY_SIZE(s
->mhu
); i
++) {
788 SysBusDevice
*mhu_sbd
= SYS_BUS_DEVICE(&s
->mhu
[i
]);
790 object_property_set_bool(OBJECT(&s
->mhu
[i
]), true,
793 error_propagate(errp
, err
);
796 port
= g_strdup_printf("port[%d]", i
+ 3);
797 mr
= sysbus_mmio_get_region(mhu_sbd
, 0);
798 object_property_set_link(OBJECT(&s
->apb_ppc0
), OBJECT(mr
),
802 error_propagate(errp
, err
);
807 * Each MHU has an irq line for each CPU:
808 * MHU 0 irq line 0 -> CPU 0 IRQ 6
809 * MHU 0 irq line 1 -> CPU 1 IRQ 6
810 * MHU 1 irq line 0 -> CPU 0 IRQ 7
811 * MHU 1 irq line 1 -> CPU 1 IRQ 7
813 for (cpunum
= 0; cpunum
< info
->num_cpus
; cpunum
++) {
814 DeviceState
*cpudev
= DEVICE(&s
->armv7m
[cpunum
]);
816 sysbus_connect_irq(mhu_sbd
, cpunum
,
817 qdev_get_gpio_in(cpudev
, 6 + i
));
822 object_property_set_bool(OBJECT(&s
->apb_ppc0
), true, "realized", &err
);
824 error_propagate(errp
, err
);
828 sbd_apb_ppc0
= SYS_BUS_DEVICE(&s
->apb_ppc0
);
829 dev_apb_ppc0
= DEVICE(&s
->apb_ppc0
);
831 mr
= sysbus_mmio_get_region(sbd_apb_ppc0
, 0);
832 memory_region_add_subregion(&s
->container
, 0x40000000, mr
);
833 mr
= sysbus_mmio_get_region(sbd_apb_ppc0
, 1);
834 memory_region_add_subregion(&s
->container
, 0x40001000, mr
);
835 mr
= sysbus_mmio_get_region(sbd_apb_ppc0
, 2);
836 memory_region_add_subregion(&s
->container
, 0x40002000, mr
);
837 if (info
->has_mhus
) {
838 mr
= sysbus_mmio_get_region(sbd_apb_ppc0
, 3);
839 memory_region_add_subregion(&s
->container
, 0x40003000, mr
);
840 mr
= sysbus_mmio_get_region(sbd_apb_ppc0
, 4);
841 memory_region_add_subregion(&s
->container
, 0x40004000, mr
);
843 for (i
= 0; i
< IOTS_APB_PPC0_NUM_PORTS
; i
++) {
844 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc0_nonsec", i
,
845 qdev_get_gpio_in_named(dev_apb_ppc0
,
847 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc0_ap", i
,
848 qdev_get_gpio_in_named(dev_apb_ppc0
,
851 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc0_irq_enable", 0,
852 qdev_get_gpio_in_named(dev_apb_ppc0
,
854 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc0_irq_clear", 0,
855 qdev_get_gpio_in_named(dev_apb_ppc0
,
857 qdev_connect_gpio_out(dev_splitter
, 0,
858 qdev_get_gpio_in_named(dev_apb_ppc0
,
861 /* All the PPC irq lines (from the 2 internal PPCs and the 8 external
862 * ones) are sent individually to the security controller, and also
863 * ORed together to give a single combined PPC interrupt to the NVIC.
865 object_property_set_int(OBJECT(&s
->ppc_irq_orgate
),
866 NUM_PPCS
, "num-lines", &err
);
868 error_propagate(errp
, err
);
871 object_property_set_bool(OBJECT(&s
->ppc_irq_orgate
), true,
874 error_propagate(errp
, err
);
877 qdev_connect_gpio_out(DEVICE(&s
->ppc_irq_orgate
), 0,
878 armsse_get_common_irq_in(s
, 10));
881 * 0x40010000 .. 0x4001ffff (and the 0x5001000... secure-only alias):
882 * private per-CPU region (all these devices are SSE-200 only):
883 * 0x50010000: L1 icache control registers
884 * 0x50011000: CPUSECCTRL (CPU local security control registers)
885 * 0x4001f000 and 0x5001f000: CPU_IDENTITY register block
887 if (info
->has_cachectrl
) {
888 for (i
= 0; i
< info
->num_cpus
; i
++) {
889 char *name
= g_strdup_printf("cachectrl%d", i
);
892 qdev_prop_set_string(DEVICE(&s
->cachectrl
[i
]), "name", name
);
894 qdev_prop_set_uint64(DEVICE(&s
->cachectrl
[i
]), "size", 0x1000);
895 object_property_set_bool(OBJECT(&s
->cachectrl
[i
]), true,
898 error_propagate(errp
, err
);
902 mr
= sysbus_mmio_get_region(SYS_BUS_DEVICE(&s
->cachectrl
[i
]), 0);
903 memory_region_add_subregion(&s
->cpu_container
[i
], 0x50010000, mr
);
906 if (info
->has_cpusecctrl
) {
907 for (i
= 0; i
< info
->num_cpus
; i
++) {
908 char *name
= g_strdup_printf("CPUSECCTRL%d", i
);
911 qdev_prop_set_string(DEVICE(&s
->cpusecctrl
[i
]), "name", name
);
913 qdev_prop_set_uint64(DEVICE(&s
->cpusecctrl
[i
]), "size", 0x1000);
914 object_property_set_bool(OBJECT(&s
->cpusecctrl
[i
]), true,
917 error_propagate(errp
, err
);
921 mr
= sysbus_mmio_get_region(SYS_BUS_DEVICE(&s
->cpusecctrl
[i
]), 0);
922 memory_region_add_subregion(&s
->cpu_container
[i
], 0x50011000, mr
);
925 if (info
->has_cpuid
) {
926 for (i
= 0; i
< info
->num_cpus
; i
++) {
929 qdev_prop_set_uint32(DEVICE(&s
->cpuid
[i
]), "CPUID", i
);
930 object_property_set_bool(OBJECT(&s
->cpuid
[i
]), true,
933 error_propagate(errp
, err
);
937 mr
= sysbus_mmio_get_region(SYS_BUS_DEVICE(&s
->cpuid
[i
]), 0);
938 memory_region_add_subregion(&s
->cpu_container
[i
], 0x4001F000, mr
);
942 /* 0x40020000 .. 0x4002ffff : ARMSSE system control peripheral region */
943 /* Devices behind APB PPC1:
944 * 0x4002f000: S32K timer
946 qdev_prop_set_uint32(DEVICE(&s
->s32ktimer
), "pclk-frq", S32KCLK
);
947 object_property_set_bool(OBJECT(&s
->s32ktimer
), true, "realized", &err
);
949 error_propagate(errp
, err
);
952 sysbus_connect_irq(SYS_BUS_DEVICE(&s
->s32ktimer
), 0,
953 armsse_get_common_irq_in(s
, 2));
954 mr
= sysbus_mmio_get_region(SYS_BUS_DEVICE(&s
->s32ktimer
), 0);
955 object_property_set_link(OBJECT(&s
->apb_ppc1
), OBJECT(mr
), "port[0]", &err
);
957 error_propagate(errp
, err
);
961 object_property_set_bool(OBJECT(&s
->apb_ppc1
), true, "realized", &err
);
963 error_propagate(errp
, err
);
966 mr
= sysbus_mmio_get_region(SYS_BUS_DEVICE(&s
->apb_ppc1
), 0);
967 memory_region_add_subregion(&s
->container
, 0x4002f000, mr
);
969 dev_apb_ppc1
= DEVICE(&s
->apb_ppc1
);
970 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc1_nonsec", 0,
971 qdev_get_gpio_in_named(dev_apb_ppc1
,
973 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc1_ap", 0,
974 qdev_get_gpio_in_named(dev_apb_ppc1
,
976 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc1_irq_enable", 0,
977 qdev_get_gpio_in_named(dev_apb_ppc1
,
979 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc1_irq_clear", 0,
980 qdev_get_gpio_in_named(dev_apb_ppc1
,
982 qdev_connect_gpio_out(dev_splitter
, 1,
983 qdev_get_gpio_in_named(dev_apb_ppc1
,
986 object_property_set_int(OBJECT(&s
->sysinfo
), info
->sys_version
,
987 "SYS_VERSION", &err
);
989 error_propagate(errp
, err
);
992 object_property_set_int(OBJECT(&s
->sysinfo
),
993 armsse_sys_config_value(s
, info
),
996 error_propagate(errp
, err
);
999 object_property_set_bool(OBJECT(&s
->sysinfo
), true, "realized", &err
);
1001 error_propagate(errp
, err
);
1004 /* System information registers */
1005 sysbus_mmio_map(SYS_BUS_DEVICE(&s
->sysinfo
), 0, 0x40020000);
1006 /* System control registers */
1007 object_property_set_int(OBJECT(&s
->sysctl
), info
->sys_version
,
1008 "SYS_VERSION", &err
);
1009 object_property_set_int(OBJECT(&s
->sysctl
), info
->cpuwait_rst
,
1010 "CPUWAIT_RST", &err
);
1011 object_property_set_int(OBJECT(&s
->sysctl
), s
->init_svtor
,
1012 "INITSVTOR0_RST", &err
);
1013 object_property_set_int(OBJECT(&s
->sysctl
), s
->init_svtor
,
1014 "INITSVTOR1_RST", &err
);
1015 object_property_set_bool(OBJECT(&s
->sysctl
), true, "realized", &err
);
1017 error_propagate(errp
, err
);
1020 sysbus_mmio_map(SYS_BUS_DEVICE(&s
->sysctl
), 0, 0x50021000);
1022 if (info
->has_ppus
) {
1023 /* CPUnCORE_PPU for each CPU */
1024 for (i
= 0; i
< info
->num_cpus
; i
++) {
1025 char *name
= g_strdup_printf("CPU%dCORE_PPU", i
);
1027 map_ppu(s
, CPU0CORE_PPU
+ i
, name
, 0x50023000 + i
* 0x2000);
1029 * We don't support CPU debug so don't create the
1030 * CPU0DEBUG_PPU at 0x50024000 and 0x50026000.
1034 map_ppu(s
, DBG_PPU
, "DBG_PPU", 0x50029000);
1036 for (i
= 0; i
< info
->sram_banks
; i
++) {
1037 char *name
= g_strdup_printf("RAM%d_PPU", i
);
1039 map_ppu(s
, RAM0_PPU
+ i
, name
, 0x5002a000 + i
* 0x1000);
1044 /* This OR gate wires together outputs from the secure watchdogs to NMI */
1045 object_property_set_int(OBJECT(&s
->nmi_orgate
), 2, "num-lines", &err
);
1047 error_propagate(errp
, err
);
1050 object_property_set_bool(OBJECT(&s
->nmi_orgate
), true, "realized", &err
);
1052 error_propagate(errp
, err
);
1055 qdev_connect_gpio_out(DEVICE(&s
->nmi_orgate
), 0,
1056 qdev_get_gpio_in_named(DEVICE(&s
->armv7m
), "NMI", 0));
1058 qdev_prop_set_uint32(DEVICE(&s
->s32kwatchdog
), "wdogclk-frq", S32KCLK
);
1059 object_property_set_bool(OBJECT(&s
->s32kwatchdog
), true, "realized", &err
);
1061 error_propagate(errp
, err
);
1064 sysbus_connect_irq(SYS_BUS_DEVICE(&s
->s32kwatchdog
), 0,
1065 qdev_get_gpio_in(DEVICE(&s
->nmi_orgate
), 0));
1066 sysbus_mmio_map(SYS_BUS_DEVICE(&s
->s32kwatchdog
), 0, 0x5002e000);
1068 /* 0x40080000 .. 0x4008ffff : ARMSSE second Base peripheral region */
1070 qdev_prop_set_uint32(DEVICE(&s
->nswatchdog
), "wdogclk-frq", s
->mainclk_frq
);
1071 object_property_set_bool(OBJECT(&s
->nswatchdog
), true, "realized", &err
);
1073 error_propagate(errp
, err
);
1076 sysbus_connect_irq(SYS_BUS_DEVICE(&s
->nswatchdog
), 0,
1077 armsse_get_common_irq_in(s
, 1));
1078 sysbus_mmio_map(SYS_BUS_DEVICE(&s
->nswatchdog
), 0, 0x40081000);
1080 qdev_prop_set_uint32(DEVICE(&s
->swatchdog
), "wdogclk-frq", s
->mainclk_frq
);
1081 object_property_set_bool(OBJECT(&s
->swatchdog
), true, "realized", &err
);
1083 error_propagate(errp
, err
);
1086 sysbus_connect_irq(SYS_BUS_DEVICE(&s
->swatchdog
), 0,
1087 qdev_get_gpio_in(DEVICE(&s
->nmi_orgate
), 1));
1088 sysbus_mmio_map(SYS_BUS_DEVICE(&s
->swatchdog
), 0, 0x50081000);
1090 for (i
= 0; i
< ARRAY_SIZE(s
->ppc_irq_splitter
); i
++) {
1091 Object
*splitter
= OBJECT(&s
->ppc_irq_splitter
[i
]);
1093 object_property_set_int(splitter
, 2, "num-lines", &err
);
1095 error_propagate(errp
, err
);
1098 object_property_set_bool(splitter
, true, "realized", &err
);
1100 error_propagate(errp
, err
);
1105 for (i
= 0; i
< IOTS_NUM_AHB_EXP_PPC
; i
++) {
1106 char *ppcname
= g_strdup_printf("ahb_ppcexp%d", i
);
1108 armsse_forward_ppc(s
, ppcname
, i
);
1112 for (i
= 0; i
< IOTS_NUM_APB_EXP_PPC
; i
++) {
1113 char *ppcname
= g_strdup_printf("apb_ppcexp%d", i
);
1115 armsse_forward_ppc(s
, ppcname
, i
+ IOTS_NUM_AHB_EXP_PPC
);
1119 for (i
= NUM_EXTERNAL_PPCS
; i
< NUM_PPCS
; i
++) {
1120 /* Wire up IRQ splitter for internal PPCs */
1121 DeviceState
*devs
= DEVICE(&s
->ppc_irq_splitter
[i
]);
1122 char *gpioname
= g_strdup_printf("apb_ppc%d_irq_status",
1123 i
- NUM_EXTERNAL_PPCS
);
1124 TZPPC
*ppc
= (i
== NUM_EXTERNAL_PPCS
) ? &s
->apb_ppc0
: &s
->apb_ppc1
;
1126 qdev_connect_gpio_out(devs
, 0,
1127 qdev_get_gpio_in_named(dev_secctl
, gpioname
, 0));
1128 qdev_connect_gpio_out(devs
, 1,
1129 qdev_get_gpio_in(DEVICE(&s
->ppc_irq_orgate
), i
));
1130 qdev_connect_gpio_out_named(DEVICE(ppc
), "irq", 0,
1131 qdev_get_gpio_in(devs
, 0));
1135 /* Wire up the splitters for the MPC IRQs */
1136 for (i
= 0; i
< IOTS_NUM_EXP_MPC
+ info
->sram_banks
; i
++) {
1137 SplitIRQ
*splitter
= &s
->mpc_irq_splitter
[i
];
1138 DeviceState
*dev_splitter
= DEVICE(splitter
);
1140 object_property_set_int(OBJECT(splitter
), 2, "num-lines", &err
);
1142 error_propagate(errp
, err
);
1145 object_property_set_bool(OBJECT(splitter
), true, "realized", &err
);
1147 error_propagate(errp
, err
);
1151 if (i
< IOTS_NUM_EXP_MPC
) {
1152 /* Splitter input is from GPIO input line */
1153 s
->mpcexp_status_in
[i
] = qdev_get_gpio_in(dev_splitter
, 0);
1154 qdev_connect_gpio_out(dev_splitter
, 0,
1155 qdev_get_gpio_in_named(dev_secctl
,
1156 "mpcexp_status", i
));
1158 /* Splitter input is from our own MPC */
1159 qdev_connect_gpio_out_named(DEVICE(&s
->mpc
[i
- IOTS_NUM_EXP_MPC
]),
1161 qdev_get_gpio_in(dev_splitter
, 0));
1162 qdev_connect_gpio_out(dev_splitter
, 0,
1163 qdev_get_gpio_in_named(dev_secctl
,
1167 qdev_connect_gpio_out(dev_splitter
, 1,
1168 qdev_get_gpio_in(DEVICE(&s
->mpc_irq_orgate
), i
));
1170 /* Create GPIO inputs which will pass the line state for our
1171 * mpcexp_irq inputs to the correct splitter devices.
1173 qdev_init_gpio_in_named(dev
, armsse_mpcexp_status
, "mpcexp_status",
1176 armsse_forward_sec_resp_cfg(s
);
1178 /* Forward the MSC related signals */
1179 qdev_pass_gpios(dev_secctl
, dev
, "mscexp_status");
1180 qdev_pass_gpios(dev_secctl
, dev
, "mscexp_clear");
1181 qdev_pass_gpios(dev_secctl
, dev
, "mscexp_ns");
1182 qdev_connect_gpio_out_named(dev_secctl
, "msc_irq", 0,
1183 armsse_get_common_irq_in(s
, 11));
1186 * Expose our container region to the board model; this corresponds
1187 * to the AHB Slave Expansion ports which allow bus master devices
1188 * (eg DMA controllers) in the board model to make transactions into
1189 * devices in the ARMSSE.
1191 sysbus_init_mmio(SYS_BUS_DEVICE(s
), &s
->container
);
1193 system_clock_scale
= NANOSECONDS_PER_SECOND
/ s
->mainclk_frq
;
1196 static void armsse_idau_check(IDAUInterface
*ii
, uint32_t address
,
1197 int *iregion
, bool *exempt
, bool *ns
, bool *nsc
)
1200 * For ARMSSE systems the IDAU responses are simple logical functions
1201 * of the address bits. The NSC attribute is guest-adjustable via the
1202 * NSCCFG register in the security controller.
1204 ARMSSE
*s
= ARMSSE(ii
);
1205 int region
= extract32(address
, 28, 4);
1207 *ns
= !(region
& 1);
1208 *nsc
= (region
== 1 && (s
->nsccfg
& 1)) || (region
== 3 && (s
->nsccfg
& 2));
1209 /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
1210 *exempt
= (address
& 0xeff00000) == 0xe0000000;
1214 static const VMStateDescription armsse_vmstate
= {
1217 .minimum_version_id
= 1,
1218 .fields
= (VMStateField
[]) {
1219 VMSTATE_UINT32(nsccfg
, ARMSSE
),
1220 VMSTATE_END_OF_LIST()
1224 static Property armsse_properties
[] = {
1225 DEFINE_PROP_LINK("memory", ARMSSE
, board_memory
, TYPE_MEMORY_REGION
,
1227 DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE
, exp_numirq
, 64),
1228 DEFINE_PROP_UINT32("MAINCLK", ARMSSE
, mainclk_frq
, 0),
1229 DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE
, sram_addr_width
, 15),
1230 DEFINE_PROP_UINT32("init-svtor", ARMSSE
, init_svtor
, 0x10000000),
1231 DEFINE_PROP_END_OF_LIST()
1234 static void armsse_reset(DeviceState
*dev
)
1236 ARMSSE
*s
= ARMSSE(dev
);
1241 static void armsse_class_init(ObjectClass
*klass
, void *data
)
1243 DeviceClass
*dc
= DEVICE_CLASS(klass
);
1244 IDAUInterfaceClass
*iic
= IDAU_INTERFACE_CLASS(klass
);
1245 ARMSSEClass
*asc
= ARMSSE_CLASS(klass
);
1247 dc
->realize
= armsse_realize
;
1248 dc
->vmsd
= &armsse_vmstate
;
1249 dc
->props
= armsse_properties
;
1250 dc
->reset
= armsse_reset
;
1251 iic
->check
= armsse_idau_check
;
1255 static const TypeInfo armsse_info
= {
1256 .name
= TYPE_ARMSSE
,
1257 .parent
= TYPE_SYS_BUS_DEVICE
,
1258 .instance_size
= sizeof(ARMSSE
),
1259 .instance_init
= armsse_init
,
1261 .interfaces
= (InterfaceInfo
[]) {
1262 { TYPE_IDAU_INTERFACE
},
1267 static void armsse_register_types(void)
1271 type_register_static(&armsse_info
);
1273 for (i
= 0; i
< ARRAY_SIZE(armsse_variants
); i
++) {
1275 .name
= armsse_variants
[i
].name
,
1276 .parent
= TYPE_ARMSSE
,
1277 .class_init
= armsse_class_init
,
1278 .class_data
= (void *)&armsse_variants
[i
],
1284 type_init(armsse_register_types
);