tests/acceptance: Ignore binary data sent on serial console
[qemu/ar7.git] / tests / qtest / fuzz / generic_fuzz.c
blob6c6752271743b814b4d05f9152581a00ba3e76f1
1 /*
2 * Generic Virtual-Device Fuzzing Target
4 * Copyright Red Hat Inc., 2020
6 * Authors:
7 * Alexander Bulekov <alxndr@bu.edu>
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
13 #include "qemu/osdep.h"
15 #include <wordexp.h>
17 #include "hw/core/cpu.h"
18 #include "tests/qtest/libqos/libqtest.h"
19 #include "tests/qtest/libqos/pci-pc.h"
20 #include "fuzz.h"
21 #include "fork_fuzz.h"
22 #include "string.h"
23 #include "exec/memory.h"
24 #include "exec/ramblock.h"
25 #include "hw/qdev-core.h"
26 #include "hw/pci/pci.h"
27 #include "hw/boards.h"
28 #include "generic_fuzz_configs.h"
29 #include "hw/mem/sparse-mem.h"
32 * SEPARATOR is used to separate "operations" in the fuzz input
34 #define SEPARATOR "FUZZ"
36 enum cmds {
37 OP_IN,
38 OP_OUT,
39 OP_READ,
40 OP_WRITE,
41 OP_PCI_READ,
42 OP_PCI_WRITE,
43 OP_DISABLE_PCI,
44 OP_ADD_DMA_PATTERN,
45 OP_CLEAR_DMA_PATTERNS,
46 OP_CLOCK_STEP,
49 #define DEFAULT_TIMEOUT_US 100000
50 #define USEC_IN_SEC 1000000000
52 #define MAX_DMA_FILL_SIZE 0x10000
54 #define PCI_HOST_BRIDGE_CFG 0xcf8
55 #define PCI_HOST_BRIDGE_DATA 0xcfc
57 typedef struct {
58 ram_addr_t addr;
59 ram_addr_t size; /* The number of bytes until the end of the I/O region */
60 } address_range;
62 static useconds_t timeout = DEFAULT_TIMEOUT_US;
64 static bool qtest_log_enabled;
66 MemoryRegion *sparse_mem_mr;
69 * A pattern used to populate a DMA region or perform a memwrite. This is
70 * useful for e.g. populating tables of unique addresses.
71 * Example {.index = 1; .stride = 2; .len = 3; .data = "\x00\x01\x02"}
72 * Renders as: 00 01 02 00 03 02 00 05 02 00 07 02 ...
74 typedef struct {
75 uint8_t index; /* Index of a byte to increment by stride */
76 uint8_t stride; /* Increment each index'th byte by this amount */
77 size_t len;
78 const uint8_t *data;
79 } pattern;
81 /* Avoid filling the same DMA region between MMIO/PIO commands ? */
82 static bool avoid_double_fetches;
84 static QTestState *qts_global; /* Need a global for the DMA callback */
87 * List of memory regions that are children of QOM objects specified by the
88 * user for fuzzing.
90 static GHashTable *fuzzable_memoryregions;
91 static GPtrArray *fuzzable_pci_devices;
93 struct get_io_cb_info {
94 int index;
95 int found;
96 address_range result;
99 static bool get_io_address_cb(Int128 start, Int128 size,
100 const MemoryRegion *mr,
101 hwaddr offset_in_region,
102 void *opaque)
104 struct get_io_cb_info *info = opaque;
105 if (g_hash_table_lookup(fuzzable_memoryregions, mr)) {
106 if (info->index == 0) {
107 info->result.addr = (ram_addr_t)start;
108 info->result.size = (ram_addr_t)size;
109 info->found = 1;
110 return true;
112 info->index--;
114 return false;
118 * List of dma regions populated since the last fuzzing command. Used to ensure
119 * that we only write to each DMA address once, to avoid race conditions when
120 * building reproducers.
122 static GArray *dma_regions;
124 static GArray *dma_patterns;
125 static int dma_pattern_index;
126 static bool pci_disabled;
129 * Allocate a block of memory and populate it with a pattern.
131 static void *pattern_alloc(pattern p, size_t len)
133 int i;
134 uint8_t *buf = g_malloc(len);
135 uint8_t sum = 0;
137 for (i = 0; i < len; ++i) {
138 buf[i] = p.data[i % p.len];
139 if ((i % p.len) == p.index) {
140 buf[i] += sum;
141 sum += p.stride;
144 return buf;
147 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
149 unsigned access_size_max = mr->ops->valid.max_access_size;
152 * Regions are assumed to support 1-4 byte accesses unless
153 * otherwise specified.
155 if (access_size_max == 0) {
156 access_size_max = 4;
159 /* Bound the maximum access by the alignment of the address. */
160 if (!mr->ops->impl.unaligned) {
161 unsigned align_size_max = addr & -addr;
162 if (align_size_max != 0 && align_size_max < access_size_max) {
163 access_size_max = align_size_max;
167 /* Don't attempt accesses larger than the maximum. */
168 if (l > access_size_max) {
169 l = access_size_max;
171 l = pow2floor(l);
173 return l;
177 * Call-back for functions that perform DMA reads from guest memory. Confirm
178 * that the region has not already been populated since the last loop in
179 * generic_fuzz(), avoiding potential race-conditions, which we don't have
180 * a good way for reproducing right now.
182 void fuzz_dma_read_cb(size_t addr, size_t len, MemoryRegion *mr)
184 /* Are we in the generic-fuzzer or are we using another fuzz-target? */
185 if (!qts_global) {
186 return;
190 * Return immediately if:
191 * - We have no DMA patterns defined
192 * - The length of the DMA read request is zero
193 * - The DMA read is hitting an MR other than the machine's main RAM
194 * - The DMA request hits past the bounds of our RAM
196 if (dma_patterns->len == 0
197 || len == 0
198 || (mr != current_machine->ram && mr != sparse_mem_mr)) {
199 return;
203 * If we overlap with any existing dma_regions, split the range and only
204 * populate the non-overlapping parts.
206 address_range region;
207 bool double_fetch = false;
208 for (int i = 0;
209 i < dma_regions->len && (avoid_double_fetches || qtest_log_enabled);
210 ++i) {
211 region = g_array_index(dma_regions, address_range, i);
212 if (addr < region.addr + region.size && addr + len > region.addr) {
213 double_fetch = true;
214 if (addr < region.addr
215 && avoid_double_fetches) {
216 fuzz_dma_read_cb(addr, region.addr - addr, mr);
218 if (addr + len > region.addr + region.size
219 && avoid_double_fetches) {
220 fuzz_dma_read_cb(region.addr + region.size,
221 addr + len - (region.addr + region.size), mr);
223 return;
227 /* Cap the length of the DMA access to something reasonable */
228 len = MIN(len, MAX_DMA_FILL_SIZE);
230 address_range ar = {addr, len};
231 g_array_append_val(dma_regions, ar);
232 pattern p = g_array_index(dma_patterns, pattern, dma_pattern_index);
233 void *buf_base = pattern_alloc(p, ar.size);
234 void *buf = buf_base;
235 hwaddr l, addr1;
236 MemoryRegion *mr1;
237 while (len > 0) {
238 l = len;
239 mr1 = address_space_translate(first_cpu->as,
240 addr, &addr1, &l, true,
241 MEMTXATTRS_UNSPECIFIED);
243 if (!(memory_region_is_ram(mr1) ||
244 memory_region_is_romd(mr1)) && mr1 != sparse_mem_mr) {
245 l = memory_access_size(mr1, l, addr1);
246 } else {
247 /* ROM/RAM case */
248 if (qtest_log_enabled) {
250 * With QTEST_LOG, use a normal, slow QTest memwrite. Prefix the log
251 * that will be written by qtest.c with a DMA tag, so we can reorder
252 * the resulting QTest trace so the DMA fills precede the last PIO/MMIO
253 * command.
255 fprintf(stderr, "[DMA] ");
256 if (double_fetch) {
257 fprintf(stderr, "[DOUBLE-FETCH] ");
259 fflush(stderr);
261 qtest_memwrite(qts_global, addr, buf, l);
263 len -= l;
264 buf += l;
265 addr += l;
268 g_free(buf_base);
270 /* Increment the index of the pattern for the next DMA access */
271 dma_pattern_index = (dma_pattern_index + 1) % dma_patterns->len;
275 * Here we want to convert a fuzzer-provided [io-region-index, offset] to
276 * a physical address. To do this, we iterate over all of the matched
277 * MemoryRegions. Check whether each region exists within the particular io
278 * space. Return the absolute address of the offset within the index'th region
279 * that is a subregion of the io_space and the distance until the end of the
280 * memory region.
282 static bool get_io_address(address_range *result, AddressSpace *as,
283 uint8_t index,
284 uint32_t offset) {
285 FlatView *view;
286 view = as->current_map;
287 g_assert(view);
288 struct get_io_cb_info cb_info = {};
290 cb_info.index = index;
293 * Loop around the FlatView until we match "index" number of
294 * fuzzable_memoryregions, or until we know that there are no matching
295 * memory_regions.
297 do {
298 flatview_for_each_range(view, get_io_address_cb , &cb_info);
299 } while (cb_info.index != index && !cb_info.found);
301 *result = cb_info.result;
302 if (result->size) {
303 offset = offset % result->size;
304 result->addr += offset;
305 result->size -= offset;
307 return cb_info.found;
310 static bool get_pio_address(address_range *result,
311 uint8_t index, uint16_t offset)
314 * PIO BARs can be set past the maximum port address (0xFFFF). Thus, result
315 * can contain an addr that extends past the PIO space. When we pass this
316 * address to qtest_in/qtest_out, it is cast to a uint16_t, so we might end
317 * up fuzzing a completely different MemoryRegion/Device. Therefore, check
318 * that the address here is within the PIO space limits.
320 bool found = get_io_address(result, &address_space_io, index, offset);
321 return result->addr <= 0xFFFF ? found : false;
324 static bool get_mmio_address(address_range *result,
325 uint8_t index, uint32_t offset)
327 return get_io_address(result, &address_space_memory, index, offset);
330 static void op_in(QTestState *s, const unsigned char * data, size_t len)
332 enum Sizes {Byte, Word, Long, end_sizes};
333 struct {
334 uint8_t size;
335 uint8_t base;
336 uint16_t offset;
337 } a;
338 address_range abs;
340 if (len < sizeof(a)) {
341 return;
343 memcpy(&a, data, sizeof(a));
344 if (get_pio_address(&abs, a.base, a.offset) == 0) {
345 return;
348 switch (a.size %= end_sizes) {
349 case Byte:
350 qtest_inb(s, abs.addr);
351 break;
352 case Word:
353 if (abs.size >= 2) {
354 qtest_inw(s, abs.addr);
356 break;
357 case Long:
358 if (abs.size >= 4) {
359 qtest_inl(s, abs.addr);
361 break;
365 static void op_out(QTestState *s, const unsigned char * data, size_t len)
367 enum Sizes {Byte, Word, Long, end_sizes};
368 struct {
369 uint8_t size;
370 uint8_t base;
371 uint16_t offset;
372 uint32_t value;
373 } a;
374 address_range abs;
376 if (len < sizeof(a)) {
377 return;
379 memcpy(&a, data, sizeof(a));
381 if (get_pio_address(&abs, a.base, a.offset) == 0) {
382 return;
385 switch (a.size %= end_sizes) {
386 case Byte:
387 qtest_outb(s, abs.addr, a.value & 0xFF);
388 break;
389 case Word:
390 if (abs.size >= 2) {
391 qtest_outw(s, abs.addr, a.value & 0xFFFF);
393 break;
394 case Long:
395 if (abs.size >= 4) {
396 qtest_outl(s, abs.addr, a.value);
398 break;
402 static void op_read(QTestState *s, const unsigned char * data, size_t len)
404 enum Sizes {Byte, Word, Long, Quad, end_sizes};
405 struct {
406 uint8_t size;
407 uint8_t base;
408 uint32_t offset;
409 } a;
410 address_range abs;
412 if (len < sizeof(a)) {
413 return;
415 memcpy(&a, data, sizeof(a));
417 if (get_mmio_address(&abs, a.base, a.offset) == 0) {
418 return;
421 switch (a.size %= end_sizes) {
422 case Byte:
423 qtest_readb(s, abs.addr);
424 break;
425 case Word:
426 if (abs.size >= 2) {
427 qtest_readw(s, abs.addr);
429 break;
430 case Long:
431 if (abs.size >= 4) {
432 qtest_readl(s, abs.addr);
434 break;
435 case Quad:
436 if (abs.size >= 8) {
437 qtest_readq(s, abs.addr);
439 break;
443 static void op_write(QTestState *s, const unsigned char * data, size_t len)
445 enum Sizes {Byte, Word, Long, Quad, end_sizes};
446 struct {
447 uint8_t size;
448 uint8_t base;
449 uint32_t offset;
450 uint64_t value;
451 } a;
452 address_range abs;
454 if (len < sizeof(a)) {
455 return;
457 memcpy(&a, data, sizeof(a));
459 if (get_mmio_address(&abs, a.base, a.offset) == 0) {
460 return;
463 switch (a.size %= end_sizes) {
464 case Byte:
465 qtest_writeb(s, abs.addr, a.value & 0xFF);
466 break;
467 case Word:
468 if (abs.size >= 2) {
469 qtest_writew(s, abs.addr, a.value & 0xFFFF);
471 break;
472 case Long:
473 if (abs.size >= 4) {
474 qtest_writel(s, abs.addr, a.value & 0xFFFFFFFF);
476 break;
477 case Quad:
478 if (abs.size >= 8) {
479 qtest_writeq(s, abs.addr, a.value);
481 break;
485 static void op_pci_read(QTestState *s, const unsigned char * data, size_t len)
487 enum Sizes {Byte, Word, Long, end_sizes};
488 struct {
489 uint8_t size;
490 uint8_t base;
491 uint8_t offset;
492 } a;
493 if (len < sizeof(a) || fuzzable_pci_devices->len == 0 || pci_disabled) {
494 return;
496 memcpy(&a, data, sizeof(a));
497 PCIDevice *dev = g_ptr_array_index(fuzzable_pci_devices,
498 a.base % fuzzable_pci_devices->len);
499 int devfn = dev->devfn;
500 qtest_outl(s, PCI_HOST_BRIDGE_CFG, (1U << 31) | (devfn << 8) | a.offset);
501 switch (a.size %= end_sizes) {
502 case Byte:
503 qtest_inb(s, PCI_HOST_BRIDGE_DATA);
504 break;
505 case Word:
506 qtest_inw(s, PCI_HOST_BRIDGE_DATA);
507 break;
508 case Long:
509 qtest_inl(s, PCI_HOST_BRIDGE_DATA);
510 break;
514 static void op_pci_write(QTestState *s, const unsigned char * data, size_t len)
516 enum Sizes {Byte, Word, Long, end_sizes};
517 struct {
518 uint8_t size;
519 uint8_t base;
520 uint8_t offset;
521 uint32_t value;
522 } a;
523 if (len < sizeof(a) || fuzzable_pci_devices->len == 0 || pci_disabled) {
524 return;
526 memcpy(&a, data, sizeof(a));
527 PCIDevice *dev = g_ptr_array_index(fuzzable_pci_devices,
528 a.base % fuzzable_pci_devices->len);
529 int devfn = dev->devfn;
530 qtest_outl(s, PCI_HOST_BRIDGE_CFG, (1U << 31) | (devfn << 8) | a.offset);
531 switch (a.size %= end_sizes) {
532 case Byte:
533 qtest_outb(s, PCI_HOST_BRIDGE_DATA, a.value & 0xFF);
534 break;
535 case Word:
536 qtest_outw(s, PCI_HOST_BRIDGE_DATA, a.value & 0xFFFF);
537 break;
538 case Long:
539 qtest_outl(s, PCI_HOST_BRIDGE_DATA, a.value & 0xFFFFFFFF);
540 break;
544 static void op_add_dma_pattern(QTestState *s,
545 const unsigned char *data, size_t len)
547 struct {
549 * index and stride can be used to increment the index-th byte of the
550 * pattern by the value stride, for each loop of the pattern.
552 uint8_t index;
553 uint8_t stride;
554 } a;
556 if (len < sizeof(a) + 1) {
557 return;
559 memcpy(&a, data, sizeof(a));
560 pattern p = {a.index, a.stride, len - sizeof(a), data + sizeof(a)};
561 p.index = a.index % p.len;
562 g_array_append_val(dma_patterns, p);
563 return;
566 static void op_clear_dma_patterns(QTestState *s,
567 const unsigned char *data, size_t len)
569 g_array_set_size(dma_patterns, 0);
570 dma_pattern_index = 0;
573 static void op_clock_step(QTestState *s, const unsigned char *data, size_t len)
575 qtest_clock_step_next(s);
578 static void op_disable_pci(QTestState *s, const unsigned char *data, size_t len)
580 pci_disabled = true;
583 static void handle_timeout(int sig)
585 if (qtest_log_enabled) {
586 fprintf(stderr, "[Timeout]\n");
587 fflush(stderr);
591 * If there is a crash, libfuzzer/ASAN forks a child to run an
592 * "llvm-symbolizer" process for printing out a pretty stacktrace. It
593 * communicates with this child using a pipe. If we timeout+Exit, while
594 * libfuzzer is still communicating with the llvm-symbolizer child, we will
595 * be left with an orphan llvm-symbolizer process. Sometimes, this appears
596 * to lead to a deadlock in the forkserver. Use waitpid to check if there
597 * are any waitable children. If so, exit out of the signal-handler, and
598 * let libfuzzer finish communicating with the child, and exit, on its own.
600 if (waitpid(-1, NULL, WNOHANG) == 0) {
601 return;
604 _Exit(0);
608 * Here, we interpret random bytes from the fuzzer, as a sequence of commands.
609 * Some commands can be variable-width, so we use a separator, SEPARATOR, to
610 * specify the boundaries between commands. SEPARATOR is used to separate
611 * "operations" in the fuzz input. Why use a separator, instead of just using
612 * the operations' length to identify operation boundaries?
613 * 1. This is a simple way to support variable-length operations
614 * 2. This adds "stability" to the input.
615 * For example take the input "AbBcgDefg", where there is no separator and
616 * Opcodes are capitalized.
617 * Simply, by removing the first byte, we end up with a very different
618 * sequence:
619 * BbcGdefg...
620 * By adding a separator, we avoid this problem:
621 * Ab SEP Bcg SEP Defg -> B SEP Bcg SEP Defg
622 * Since B uses two additional bytes as operands, the first "B" will be
623 * ignored. The fuzzer actively tries to reduce inputs, so such unused
624 * bytes are likely to be pruned, eventually.
626 * SEPARATOR is trivial for the fuzzer to discover when using ASan. Optionally,
627 * SEPARATOR can be manually specified as a dictionary value (see libfuzzer's
628 * -dict), though this should not be necessary.
630 * As a result, the stream of bytes is converted into a sequence of commands.
631 * In a simplified example where SEPARATOR is 0xFF:
632 * 00 01 02 FF 03 04 05 06 FF 01 FF ...
633 * becomes this sequence of commands:
634 * 00 01 02 -> op00 (0102) -> in (0102, 2)
635 * 03 04 05 06 -> op03 (040506) -> write (040506, 3)
636 * 01 -> op01 (-,0) -> out (-,0)
637 * ...
639 * Note here that it is the job of the individual opcode functions to check
640 * that enough data was provided. I.e. in the last command out (,0), out needs
641 * to check that there is not enough data provided to select an address/value
642 * for the operation.
644 static void generic_fuzz(QTestState *s, const unsigned char *Data, size_t Size)
646 void (*ops[]) (QTestState *s, const unsigned char* , size_t) = {
647 [OP_IN] = op_in,
648 [OP_OUT] = op_out,
649 [OP_READ] = op_read,
650 [OP_WRITE] = op_write,
651 [OP_PCI_READ] = op_pci_read,
652 [OP_PCI_WRITE] = op_pci_write,
653 [OP_DISABLE_PCI] = op_disable_pci,
654 [OP_ADD_DMA_PATTERN] = op_add_dma_pattern,
655 [OP_CLEAR_DMA_PATTERNS] = op_clear_dma_patterns,
656 [OP_CLOCK_STEP] = op_clock_step,
658 const unsigned char *cmd = Data;
659 const unsigned char *nextcmd;
660 size_t cmd_len;
661 uint8_t op;
663 if (fork() == 0) {
665 * Sometimes the fuzzer will find inputs that take quite a long time to
666 * process. Often times, these inputs do not result in new coverage.
667 * Even if these inputs might be interesting, they can slow down the
668 * fuzzer, overall. Set a timeout to avoid hurting performance, too much
670 if (timeout) {
671 struct sigaction sact;
672 struct itimerval timer;
674 sigemptyset(&sact.sa_mask);
675 sact.sa_flags = SA_NODEFER;
676 sact.sa_handler = handle_timeout;
677 sigaction(SIGALRM, &sact, NULL);
679 memset(&timer, 0, sizeof(timer));
680 timer.it_value.tv_sec = timeout / USEC_IN_SEC;
681 timer.it_value.tv_usec = timeout % USEC_IN_SEC;
682 setitimer(ITIMER_VIRTUAL, &timer, NULL);
685 op_clear_dma_patterns(s, NULL, 0);
686 pci_disabled = false;
688 while (cmd && Size) {
689 /* Get the length until the next command or end of input */
690 nextcmd = memmem(cmd, Size, SEPARATOR, strlen(SEPARATOR));
691 cmd_len = nextcmd ? nextcmd - cmd : Size;
693 if (cmd_len > 0) {
694 /* Interpret the first byte of the command as an opcode */
695 op = *cmd % (sizeof(ops) / sizeof((ops)[0]));
696 ops[op](s, cmd + 1, cmd_len - 1);
698 /* Run the main loop */
699 flush_events(s);
701 /* Advance to the next command */
702 cmd = nextcmd ? nextcmd + sizeof(SEPARATOR) - 1 : nextcmd;
703 Size = Size - (cmd_len + sizeof(SEPARATOR) - 1);
704 g_array_set_size(dma_regions, 0);
706 _Exit(0);
707 } else {
708 flush_events(s);
709 wait(0);
713 static void usage(void)
715 printf("Please specify the following environment variables:\n");
716 printf("QEMU_FUZZ_ARGS= the command line arguments passed to qemu\n");
717 printf("QEMU_FUZZ_OBJECTS= "
718 "a space separated list of QOM type names for objects to fuzz\n");
719 printf("Optionally: QEMU_AVOID_DOUBLE_FETCH= "
720 "Try to avoid racy DMA double fetch bugs? %d by default\n",
721 avoid_double_fetches);
722 printf("Optionally: QEMU_FUZZ_TIMEOUT= Specify a custom timeout (us). "
723 "0 to disable. %d by default\n", timeout);
724 exit(0);
727 static int locate_fuzz_memory_regions(Object *child, void *opaque)
729 const char *name;
730 MemoryRegion *mr;
731 if (object_dynamic_cast(child, TYPE_MEMORY_REGION)) {
732 mr = MEMORY_REGION(child);
733 if ((memory_region_is_ram(mr) ||
734 memory_region_is_ram_device(mr) ||
735 memory_region_is_rom(mr)) == false) {
736 name = object_get_canonical_path_component(child);
738 * We don't want duplicate pointers to the same MemoryRegion, so
739 * try to remove copies of the pointer, before adding it.
741 g_hash_table_insert(fuzzable_memoryregions, mr, (gpointer)true);
744 return 0;
747 static int locate_fuzz_objects(Object *child, void *opaque)
749 char *pattern = opaque;
750 if (g_pattern_match_simple(pattern, object_get_typename(child))) {
751 /* Find and save ptrs to any child MemoryRegions */
752 object_child_foreach_recursive(child, locate_fuzz_memory_regions, NULL);
755 * We matched an object. If its a PCI device, store a pointer to it so
756 * we can map BARs and fuzz its config space.
758 if (object_dynamic_cast(OBJECT(child), TYPE_PCI_DEVICE)) {
760 * Don't want duplicate pointers to the same PCIDevice, so remove
761 * copies of the pointer, before adding it.
763 g_ptr_array_remove_fast(fuzzable_pci_devices, PCI_DEVICE(child));
764 g_ptr_array_add(fuzzable_pci_devices, PCI_DEVICE(child));
766 } else if (object_dynamic_cast(OBJECT(child), TYPE_MEMORY_REGION)) {
767 if (g_pattern_match_simple(pattern,
768 object_get_canonical_path_component(child))) {
769 MemoryRegion *mr;
770 mr = MEMORY_REGION(child);
771 if ((memory_region_is_ram(mr) ||
772 memory_region_is_ram_device(mr) ||
773 memory_region_is_rom(mr)) == false) {
774 g_hash_table_insert(fuzzable_memoryregions, mr, (gpointer)true);
778 return 0;
782 static void pci_enum(gpointer pcidev, gpointer bus)
784 PCIDevice *dev = pcidev;
785 QPCIDevice *qdev;
786 int i;
788 qdev = qpci_device_find(bus, dev->devfn);
789 g_assert(qdev != NULL);
790 for (i = 0; i < 6; i++) {
791 if (dev->io_regions[i].size) {
792 qpci_iomap(qdev, i, NULL);
795 qpci_device_enable(qdev);
796 g_free(qdev);
799 static void generic_pre_fuzz(QTestState *s)
801 GHashTableIter iter;
802 MemoryRegion *mr;
803 QPCIBus *pcibus;
804 char **result;
806 if (!getenv("QEMU_FUZZ_OBJECTS")) {
807 usage();
809 if (getenv("QTEST_LOG")) {
810 qtest_log_enabled = 1;
812 if (getenv("QEMU_AVOID_DOUBLE_FETCH")) {
813 avoid_double_fetches = 1;
815 if (getenv("QEMU_FUZZ_TIMEOUT")) {
816 timeout = g_ascii_strtoll(getenv("QEMU_FUZZ_TIMEOUT"), NULL, 0);
818 qts_global = s;
821 * Create a special device that we can use to back DMA buffers at very
822 * high memory addresses
824 sparse_mem_mr = sparse_mem_init(0, UINT64_MAX);
826 dma_regions = g_array_new(false, false, sizeof(address_range));
827 dma_patterns = g_array_new(false, false, sizeof(pattern));
829 fuzzable_memoryregions = g_hash_table_new(NULL, NULL);
830 fuzzable_pci_devices = g_ptr_array_new();
832 result = g_strsplit(getenv("QEMU_FUZZ_OBJECTS"), " ", -1);
833 for (int i = 0; result[i] != NULL; i++) {
834 printf("Matching objects by name %s\n", result[i]);
835 object_child_foreach_recursive(qdev_get_machine(),
836 locate_fuzz_objects,
837 result[i]);
839 g_strfreev(result);
840 printf("This process will try to fuzz the following MemoryRegions:\n");
842 g_hash_table_iter_init(&iter, fuzzable_memoryregions);
843 while (g_hash_table_iter_next(&iter, (gpointer)&mr, NULL)) {
844 printf(" * %s (size 0x%" PRIx64 ")\n",
845 object_get_canonical_path_component(&(mr->parent_obj)),
846 memory_region_size(mr));
849 if (!g_hash_table_size(fuzzable_memoryregions)) {
850 printf("No fuzzable memory regions found...\n");
851 exit(1);
854 pcibus = qpci_new_pc(s, NULL);
855 g_ptr_array_foreach(fuzzable_pci_devices, pci_enum, pcibus);
856 qpci_free_pc(pcibus);
858 counter_shm_init();
862 * When libfuzzer gives us two inputs to combine, return a new input with the
863 * following structure:
865 * Input 1 (data1)
866 * SEPARATOR
867 * Clear out the DMA Patterns
868 * SEPARATOR
869 * Disable the pci_read/write instructions
870 * SEPARATOR
871 * Input 2 (data2)
873 * The idea is to collate the core behaviors of the two inputs.
874 * For example:
875 * Input 1: maps a device's BARs, sets up three DMA patterns, and triggers
876 * device functionality A
877 * Input 2: maps a device's BARs, sets up one DMA pattern, and triggers device
878 * functionality B
880 * This function attempts to produce an input that:
881 * Ouptut: maps a device's BARs, set up three DMA patterns, triggers
882 * functionality A device, replaces the DMA patterns with a single
883 * patten, and triggers device functionality B.
885 static size_t generic_fuzz_crossover(const uint8_t *data1, size_t size1, const
886 uint8_t *data2, size_t size2, uint8_t *out,
887 size_t max_out_size, unsigned int seed)
889 size_t copy_len = 0, size = 0;
891 /* Check that we have enough space for data1 and at least part of data2 */
892 if (max_out_size <= size1 + strlen(SEPARATOR) * 3 + 2) {
893 return 0;
896 /* Copy_Len in the first input */
897 copy_len = size1;
898 memcpy(out + size, data1, copy_len);
899 size += copy_len;
900 max_out_size -= copy_len;
902 /* Append a separator */
903 copy_len = strlen(SEPARATOR);
904 memcpy(out + size, SEPARATOR, copy_len);
905 size += copy_len;
906 max_out_size -= copy_len;
908 /* Clear out the DMA Patterns */
909 copy_len = 1;
910 if (copy_len) {
911 out[size] = OP_CLEAR_DMA_PATTERNS;
913 size += copy_len;
914 max_out_size -= copy_len;
916 /* Append a separator */
917 copy_len = strlen(SEPARATOR);
918 memcpy(out + size, SEPARATOR, copy_len);
919 size += copy_len;
920 max_out_size -= copy_len;
922 /* Disable PCI ops. Assume data1 took care of setting up PCI */
923 copy_len = 1;
924 if (copy_len) {
925 out[size] = OP_DISABLE_PCI;
927 size += copy_len;
928 max_out_size -= copy_len;
930 /* Append a separator */
931 copy_len = strlen(SEPARATOR);
932 memcpy(out + size, SEPARATOR, copy_len);
933 size += copy_len;
934 max_out_size -= copy_len;
936 /* Copy_Len over the second input */
937 copy_len = MIN(size2, max_out_size);
938 memcpy(out + size, data2, copy_len);
939 size += copy_len;
940 max_out_size -= copy_len;
942 return size;
946 static GString *generic_fuzz_cmdline(FuzzTarget *t)
948 GString *cmd_line = g_string_new(TARGET_NAME);
949 if (!getenv("QEMU_FUZZ_ARGS")) {
950 usage();
952 g_string_append_printf(cmd_line, " -display none \
953 -machine accel=qtest, \
954 -m 512M %s ", getenv("QEMU_FUZZ_ARGS"));
955 return cmd_line;
958 static GString *generic_fuzz_predefined_config_cmdline(FuzzTarget *t)
960 gchar *args;
961 const generic_fuzz_config *config;
962 g_assert(t->opaque);
964 config = t->opaque;
965 setenv("QEMU_AVOID_DOUBLE_FETCH", "1", 1);
966 if (config->argfunc) {
967 args = config->argfunc();
968 setenv("QEMU_FUZZ_ARGS", args, 1);
969 g_free(args);
970 } else {
971 g_assert_nonnull(config->args);
972 setenv("QEMU_FUZZ_ARGS", config->args, 1);
974 setenv("QEMU_FUZZ_OBJECTS", config->objects, 1);
975 return generic_fuzz_cmdline(t);
978 static void register_generic_fuzz_targets(void)
980 fuzz_add_target(&(FuzzTarget){
981 .name = "generic-fuzz",
982 .description = "Fuzz based on any qemu command-line args. ",
983 .get_init_cmdline = generic_fuzz_cmdline,
984 .pre_fuzz = generic_pre_fuzz,
985 .fuzz = generic_fuzz,
986 .crossover = generic_fuzz_crossover
989 GString *name;
990 const generic_fuzz_config *config;
992 for (int i = 0;
993 i < sizeof(predefined_configs) / sizeof(generic_fuzz_config);
994 i++) {
995 config = predefined_configs + i;
996 name = g_string_new("generic-fuzz");
997 g_string_append_printf(name, "-%s", config->name);
998 fuzz_add_target(&(FuzzTarget){
999 .name = name->str,
1000 .description = "Predefined generic-fuzz config.",
1001 .get_init_cmdline = generic_fuzz_predefined_config_cmdline,
1002 .pre_fuzz = generic_pre_fuzz,
1003 .fuzz = generic_fuzz,
1004 .crossover = generic_fuzz_crossover,
1005 .opaque = (void *)config
1010 fuzz_target_init(register_generic_fuzz_targets);