4 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
30 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
31 #define PAGE_SIZE TARGET_PAGE_SIZE
36 #define dprintf(fmt, ...) \
37 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
39 #define dprintf(fmt, ...) \
43 typedef struct KVMSlot
45 target_phys_addr_t start_addr
;
46 ram_addr_t memory_size
;
47 ram_addr_t phys_offset
;
52 typedef struct kvm_dirty_log KVMDirtyLog
;
62 #ifdef KVM_CAP_COALESCED_MMIO
63 struct kvm_coalesced_mmio_ring
*coalesced_mmio_ring
;
65 int broken_set_mem_region
;
68 int robust_singlestep
;
69 #ifdef KVM_CAP_SET_GUEST_DEBUG
70 struct kvm_sw_breakpoint_head kvm_sw_breakpoints
;
72 int irqchip_in_kernel
;
76 static KVMState
*kvm_state
;
78 static KVMSlot
*kvm_alloc_slot(KVMState
*s
)
82 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
83 /* KVM private memory slots */
86 if (s
->slots
[i
].memory_size
== 0)
90 fprintf(stderr
, "%s: no free slot available\n", __func__
);
94 static KVMSlot
*kvm_lookup_matching_slot(KVMState
*s
,
95 target_phys_addr_t start_addr
,
96 target_phys_addr_t end_addr
)
100 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
101 KVMSlot
*mem
= &s
->slots
[i
];
103 if (start_addr
== mem
->start_addr
&&
104 end_addr
== mem
->start_addr
+ mem
->memory_size
) {
113 * Find overlapping slot with lowest start address
115 static KVMSlot
*kvm_lookup_overlapping_slot(KVMState
*s
,
116 target_phys_addr_t start_addr
,
117 target_phys_addr_t end_addr
)
119 KVMSlot
*found
= NULL
;
122 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
123 KVMSlot
*mem
= &s
->slots
[i
];
125 if (mem
->memory_size
== 0 ||
126 (found
&& found
->start_addr
< mem
->start_addr
)) {
130 if (end_addr
> mem
->start_addr
&&
131 start_addr
< mem
->start_addr
+ mem
->memory_size
) {
139 static int kvm_set_user_memory_region(KVMState
*s
, KVMSlot
*slot
)
141 struct kvm_userspace_memory_region mem
;
143 mem
.slot
= slot
->slot
;
144 mem
.guest_phys_addr
= slot
->start_addr
;
145 mem
.memory_size
= slot
->memory_size
;
146 mem
.userspace_addr
= (unsigned long)qemu_get_ram_ptr(slot
->phys_offset
);
147 mem
.flags
= slot
->flags
;
148 if (s
->migration_log
) {
149 mem
.flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
151 return kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
154 static void kvm_reset_vcpu(void *opaque
)
156 CPUState
*env
= opaque
;
158 kvm_arch_reset_vcpu(env
);
161 int kvm_irqchip_in_kernel(void)
163 return kvm_state
->irqchip_in_kernel
;
166 int kvm_pit_in_kernel(void)
168 return kvm_state
->pit_in_kernel
;
172 int kvm_init_vcpu(CPUState
*env
)
174 KVMState
*s
= kvm_state
;
178 dprintf("kvm_init_vcpu\n");
180 ret
= kvm_vm_ioctl(s
, KVM_CREATE_VCPU
, env
->cpu_index
);
182 dprintf("kvm_create_vcpu failed\n");
189 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
191 dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
195 env
->kvm_run
= mmap(NULL
, mmap_size
, PROT_READ
| PROT_WRITE
, MAP_SHARED
,
197 if (env
->kvm_run
== MAP_FAILED
) {
199 dprintf("mmap'ing vcpu state failed\n");
203 #ifdef KVM_CAP_COALESCED_MMIO
204 if (s
->coalesced_mmio
&& !s
->coalesced_mmio_ring
)
205 s
->coalesced_mmio_ring
= (void *) env
->kvm_run
+
206 s
->coalesced_mmio
* PAGE_SIZE
;
209 ret
= kvm_arch_init_vcpu(env
);
211 qemu_register_reset(kvm_reset_vcpu
, env
);
212 kvm_arch_reset_vcpu(env
);
219 * dirty pages logging control
221 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr
,
222 ram_addr_t size
, int flags
, int mask
)
224 KVMState
*s
= kvm_state
;
225 KVMSlot
*mem
= kvm_lookup_matching_slot(s
, phys_addr
, phys_addr
+ size
);
229 fprintf(stderr
, "BUG: %s: invalid parameters " TARGET_FMT_plx
"-"
230 TARGET_FMT_plx
"\n", __func__
, phys_addr
,
231 (target_phys_addr_t
)(phys_addr
+ size
- 1));
235 old_flags
= mem
->flags
;
237 flags
= (mem
->flags
& ~mask
) | flags
;
240 /* If nothing changed effectively, no need to issue ioctl */
241 if (s
->migration_log
) {
242 flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
244 if (flags
== old_flags
) {
248 return kvm_set_user_memory_region(s
, mem
);
251 int kvm_log_start(target_phys_addr_t phys_addr
, ram_addr_t size
)
253 return kvm_dirty_pages_log_change(phys_addr
, size
,
254 KVM_MEM_LOG_DIRTY_PAGES
,
255 KVM_MEM_LOG_DIRTY_PAGES
);
258 int kvm_log_stop(target_phys_addr_t phys_addr
, ram_addr_t size
)
260 return kvm_dirty_pages_log_change(phys_addr
, size
,
262 KVM_MEM_LOG_DIRTY_PAGES
);
265 static int kvm_set_migration_log(int enable
)
267 KVMState
*s
= kvm_state
;
271 s
->migration_log
= enable
;
273 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
276 if (!!(mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) == enable
) {
279 err
= kvm_set_user_memory_region(s
, mem
);
287 static int test_le_bit(unsigned long nr
, unsigned char *addr
)
289 return (addr
[nr
>> 3] >> (nr
& 7)) & 1;
293 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
294 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
295 * This means all bits are set to dirty.
297 * @start_add: start of logged region.
298 * @end_addr: end of logged region.
300 static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr
,
301 target_phys_addr_t end_addr
)
303 KVMState
*s
= kvm_state
;
304 unsigned long size
, allocated_size
= 0;
305 target_phys_addr_t phys_addr
;
311 d
.dirty_bitmap
= NULL
;
312 while (start_addr
< end_addr
) {
313 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, end_addr
);
318 size
= ((mem
->memory_size
>> TARGET_PAGE_BITS
) + 7) / 8;
319 if (!d
.dirty_bitmap
) {
320 d
.dirty_bitmap
= qemu_malloc(size
);
321 } else if (size
> allocated_size
) {
322 d
.dirty_bitmap
= qemu_realloc(d
.dirty_bitmap
, size
);
324 allocated_size
= size
;
325 memset(d
.dirty_bitmap
, 0, allocated_size
);
329 if (kvm_vm_ioctl(s
, KVM_GET_DIRTY_LOG
, &d
) == -1) {
330 dprintf("ioctl failed %d\n", errno
);
335 for (phys_addr
= mem
->start_addr
, addr
= mem
->phys_offset
;
336 phys_addr
< mem
->start_addr
+ mem
->memory_size
;
337 phys_addr
+= TARGET_PAGE_SIZE
, addr
+= TARGET_PAGE_SIZE
) {
338 unsigned char *bitmap
= (unsigned char *)d
.dirty_bitmap
;
339 unsigned nr
= (phys_addr
- mem
->start_addr
) >> TARGET_PAGE_BITS
;
341 if (test_le_bit(nr
, bitmap
)) {
342 cpu_physical_memory_set_dirty(addr
);
345 start_addr
= phys_addr
;
347 qemu_free(d
.dirty_bitmap
);
352 int kvm_coalesce_mmio_region(target_phys_addr_t start
, ram_addr_t size
)
355 #ifdef KVM_CAP_COALESCED_MMIO
356 KVMState
*s
= kvm_state
;
358 if (s
->coalesced_mmio
) {
359 struct kvm_coalesced_mmio_zone zone
;
364 ret
= kvm_vm_ioctl(s
, KVM_REGISTER_COALESCED_MMIO
, &zone
);
371 int kvm_uncoalesce_mmio_region(target_phys_addr_t start
, ram_addr_t size
)
374 #ifdef KVM_CAP_COALESCED_MMIO
375 KVMState
*s
= kvm_state
;
377 if (s
->coalesced_mmio
) {
378 struct kvm_coalesced_mmio_zone zone
;
383 ret
= kvm_vm_ioctl(s
, KVM_UNREGISTER_COALESCED_MMIO
, &zone
);
390 int kvm_check_extension(KVMState
*s
, unsigned int extension
)
394 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
402 static void kvm_set_phys_mem(target_phys_addr_t start_addr
,
404 ram_addr_t phys_offset
)
406 KVMState
*s
= kvm_state
;
407 ram_addr_t flags
= phys_offset
& ~TARGET_PAGE_MASK
;
411 if (start_addr
& ~TARGET_PAGE_MASK
) {
412 if (flags
>= IO_MEM_UNASSIGNED
) {
413 if (!kvm_lookup_overlapping_slot(s
, start_addr
,
414 start_addr
+ size
)) {
417 fprintf(stderr
, "Unaligned split of a KVM memory slot\n");
419 fprintf(stderr
, "Only page-aligned memory slots supported\n");
424 /* KVM does not support read-only slots */
425 phys_offset
&= ~IO_MEM_ROM
;
428 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, start_addr
+ size
);
433 if (flags
< IO_MEM_UNASSIGNED
&& start_addr
>= mem
->start_addr
&&
434 (start_addr
+ size
<= mem
->start_addr
+ mem
->memory_size
) &&
435 (phys_offset
- start_addr
== mem
->phys_offset
- mem
->start_addr
)) {
436 /* The new slot fits into the existing one and comes with
437 * identical parameters - nothing to be done. */
443 /* unregister the overlapping slot */
444 mem
->memory_size
= 0;
445 err
= kvm_set_user_memory_region(s
, mem
);
447 fprintf(stderr
, "%s: error unregistering overlapping slot: %s\n",
448 __func__
, strerror(-err
));
452 /* Workaround for older KVM versions: we can't join slots, even not by
453 * unregistering the previous ones and then registering the larger
454 * slot. We have to maintain the existing fragmentation. Sigh.
456 * This workaround assumes that the new slot starts at the same
457 * address as the first existing one. If not or if some overlapping
458 * slot comes around later, we will fail (not seen in practice so far)
459 * - and actually require a recent KVM version. */
460 if (s
->broken_set_mem_region
&&
461 old
.start_addr
== start_addr
&& old
.memory_size
< size
&&
462 flags
< IO_MEM_UNASSIGNED
) {
463 mem
= kvm_alloc_slot(s
);
464 mem
->memory_size
= old
.memory_size
;
465 mem
->start_addr
= old
.start_addr
;
466 mem
->phys_offset
= old
.phys_offset
;
469 err
= kvm_set_user_memory_region(s
, mem
);
471 fprintf(stderr
, "%s: error updating slot: %s\n", __func__
,
476 start_addr
+= old
.memory_size
;
477 phys_offset
+= old
.memory_size
;
478 size
-= old
.memory_size
;
482 /* register prefix slot */
483 if (old
.start_addr
< start_addr
) {
484 mem
= kvm_alloc_slot(s
);
485 mem
->memory_size
= start_addr
- old
.start_addr
;
486 mem
->start_addr
= old
.start_addr
;
487 mem
->phys_offset
= old
.phys_offset
;
490 err
= kvm_set_user_memory_region(s
, mem
);
492 fprintf(stderr
, "%s: error registering prefix slot: %s\n",
493 __func__
, strerror(-err
));
498 /* register suffix slot */
499 if (old
.start_addr
+ old
.memory_size
> start_addr
+ size
) {
500 ram_addr_t size_delta
;
502 mem
= kvm_alloc_slot(s
);
503 mem
->start_addr
= start_addr
+ size
;
504 size_delta
= mem
->start_addr
- old
.start_addr
;
505 mem
->memory_size
= old
.memory_size
- size_delta
;
506 mem
->phys_offset
= old
.phys_offset
+ size_delta
;
509 err
= kvm_set_user_memory_region(s
, mem
);
511 fprintf(stderr
, "%s: error registering suffix slot: %s\n",
512 __func__
, strerror(-err
));
518 /* in case the KVM bug workaround already "consumed" the new slot */
522 /* KVM does not need to know about this memory */
523 if (flags
>= IO_MEM_UNASSIGNED
)
526 mem
= kvm_alloc_slot(s
);
527 mem
->memory_size
= size
;
528 mem
->start_addr
= start_addr
;
529 mem
->phys_offset
= phys_offset
;
532 err
= kvm_set_user_memory_region(s
, mem
);
534 fprintf(stderr
, "%s: error registering slot: %s\n", __func__
,
540 static void kvm_client_set_memory(struct CPUPhysMemoryClient
*client
,
541 target_phys_addr_t start_addr
,
543 ram_addr_t phys_offset
)
545 kvm_set_phys_mem(start_addr
, size
, phys_offset
);
548 static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient
*client
,
549 target_phys_addr_t start_addr
,
550 target_phys_addr_t end_addr
)
552 return kvm_physical_sync_dirty_bitmap(start_addr
, end_addr
);
555 static int kvm_client_migration_log(struct CPUPhysMemoryClient
*client
,
558 return kvm_set_migration_log(enable
);
561 static CPUPhysMemoryClient kvm_cpu_phys_memory_client
= {
562 .set_memory
= kvm_client_set_memory
,
563 .sync_dirty_bitmap
= kvm_client_sync_dirty_bitmap
,
564 .migration_log
= kvm_client_migration_log
,
567 int kvm_init(int smp_cpus
)
569 static const char upgrade_note
[] =
570 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
571 "(see http://sourceforge.net/projects/kvm).\n";
577 fprintf(stderr
, "No SMP KVM support, use '-smp 1'\n");
581 s
= qemu_mallocz(sizeof(KVMState
));
583 #ifdef KVM_CAP_SET_GUEST_DEBUG
584 QTAILQ_INIT(&s
->kvm_sw_breakpoints
);
586 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++)
587 s
->slots
[i
].slot
= i
;
590 s
->fd
= qemu_open("/dev/kvm", O_RDWR
);
592 fprintf(stderr
, "Could not access KVM kernel module: %m\n");
597 ret
= kvm_ioctl(s
, KVM_GET_API_VERSION
, 0);
598 if (ret
< KVM_API_VERSION
) {
601 fprintf(stderr
, "kvm version too old\n");
605 if (ret
> KVM_API_VERSION
) {
607 fprintf(stderr
, "kvm version not supported\n");
611 s
->vmfd
= kvm_ioctl(s
, KVM_CREATE_VM
, 0);
615 /* initially, KVM allocated its own memory and we had to jump through
616 * hooks to make phys_ram_base point to this. Modern versions of KVM
617 * just use a user allocated buffer so we can use regular pages
618 * unmodified. Make sure we have a sufficiently modern version of KVM.
620 if (!kvm_check_extension(s
, KVM_CAP_USER_MEMORY
)) {
622 fprintf(stderr
, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
627 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
628 * destroyed properly. Since we rely on this capability, refuse to work
629 * with any kernel without this capability. */
630 if (!kvm_check_extension(s
, KVM_CAP_DESTROY_MEMORY_REGION_WORKS
)) {
634 "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
639 s
->coalesced_mmio
= 0;
640 #ifdef KVM_CAP_COALESCED_MMIO
641 s
->coalesced_mmio
= kvm_check_extension(s
, KVM_CAP_COALESCED_MMIO
);
642 s
->coalesced_mmio_ring
= NULL
;
645 s
->broken_set_mem_region
= 1;
646 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
647 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
);
649 s
->broken_set_mem_region
= 0;
654 #ifdef KVM_CAP_VCPU_EVENTS
655 s
->vcpu_events
= kvm_check_extension(s
, KVM_CAP_VCPU_EVENTS
);
658 s
->robust_singlestep
= 0;
659 #ifdef KVM_CAP_X86_ROBUST_SINGLESTEP
660 s
->robust_singlestep
=
661 kvm_check_extension(s
, KVM_CAP_X86_ROBUST_SINGLESTEP
);
664 ret
= kvm_arch_init(s
, smp_cpus
);
669 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client
);
685 static int kvm_handle_io(uint16_t port
, void *data
, int direction
, int size
,
691 for (i
= 0; i
< count
; i
++) {
692 if (direction
== KVM_EXIT_IO_IN
) {
695 stb_p(ptr
, cpu_inb(port
));
698 stw_p(ptr
, cpu_inw(port
));
701 stl_p(ptr
, cpu_inl(port
));
707 cpu_outb(port
, ldub_p(ptr
));
710 cpu_outw(port
, lduw_p(ptr
));
713 cpu_outl(port
, ldl_p(ptr
));
724 void kvm_flush_coalesced_mmio_buffer(void)
726 #ifdef KVM_CAP_COALESCED_MMIO
727 KVMState
*s
= kvm_state
;
728 if (s
->coalesced_mmio_ring
) {
729 struct kvm_coalesced_mmio_ring
*ring
= s
->coalesced_mmio_ring
;
730 while (ring
->first
!= ring
->last
) {
731 struct kvm_coalesced_mmio
*ent
;
733 ent
= &ring
->coalesced_mmio
[ring
->first
];
735 cpu_physical_memory_write(ent
->phys_addr
, ent
->data
, ent
->len
);
737 ring
->first
= (ring
->first
+ 1) % KVM_COALESCED_MMIO_MAX
;
743 void kvm_cpu_synchronize_state(CPUState
*env
)
745 if (!env
->kvm_vcpu_dirty
) {
746 kvm_arch_get_registers(env
);
747 env
->kvm_vcpu_dirty
= 1;
751 void kvm_cpu_synchronize_post_reset(CPUState
*env
)
753 kvm_arch_put_registers(env
, KVM_PUT_RESET_STATE
);
754 env
->kvm_vcpu_dirty
= 0;
757 void kvm_cpu_synchronize_post_init(CPUState
*env
)
759 kvm_arch_put_registers(env
, KVM_PUT_FULL_STATE
);
760 env
->kvm_vcpu_dirty
= 0;
763 int kvm_cpu_exec(CPUState
*env
)
765 struct kvm_run
*run
= env
->kvm_run
;
768 dprintf("kvm_cpu_exec()\n");
771 #ifndef CONFIG_IOTHREAD
772 if (env
->exit_request
) {
773 dprintf("interrupt exit requested\n");
779 if (env
->kvm_vcpu_dirty
) {
780 kvm_arch_put_registers(env
, KVM_PUT_RUNTIME_STATE
);
781 env
->kvm_vcpu_dirty
= 0;
784 kvm_arch_pre_run(env
, run
);
785 qemu_mutex_unlock_iothread();
786 ret
= kvm_vcpu_ioctl(env
, KVM_RUN
, 0);
787 qemu_mutex_lock_iothread();
788 kvm_arch_post_run(env
, run
);
790 if (ret
== -EINTR
|| ret
== -EAGAIN
) {
792 dprintf("io window exit\n");
798 dprintf("kvm run failed %s\n", strerror(-ret
));
802 kvm_flush_coalesced_mmio_buffer();
804 ret
= 0; /* exit loop */
805 switch (run
->exit_reason
) {
807 dprintf("handle_io\n");
808 ret
= kvm_handle_io(run
->io
.port
,
809 (uint8_t *)run
+ run
->io
.data_offset
,
815 dprintf("handle_mmio\n");
816 cpu_physical_memory_rw(run
->mmio
.phys_addr
,
822 case KVM_EXIT_IRQ_WINDOW_OPEN
:
823 dprintf("irq_window_open\n");
825 case KVM_EXIT_SHUTDOWN
:
826 dprintf("shutdown\n");
827 qemu_system_reset_request();
830 case KVM_EXIT_UNKNOWN
:
831 dprintf("kvm_exit_unknown\n");
833 case KVM_EXIT_FAIL_ENTRY
:
834 dprintf("kvm_exit_fail_entry\n");
836 case KVM_EXIT_EXCEPTION
:
837 dprintf("kvm_exit_exception\n");
840 dprintf("kvm_exit_debug\n");
841 #ifdef KVM_CAP_SET_GUEST_DEBUG
842 if (kvm_arch_debug(&run
->debug
.arch
)) {
843 gdb_set_stop_cpu(env
);
845 env
->exception_index
= EXCP_DEBUG
;
848 /* re-enter, this exception was guest-internal */
850 #endif /* KVM_CAP_SET_GUEST_DEBUG */
853 dprintf("kvm_arch_handle_exit\n");
854 ret
= kvm_arch_handle_exit(env
, run
);
859 if (env
->exit_request
) {
860 env
->exit_request
= 0;
861 env
->exception_index
= EXCP_INTERRUPT
;
867 int kvm_ioctl(KVMState
*s
, int type
, ...)
874 arg
= va_arg(ap
, void *);
877 ret
= ioctl(s
->fd
, type
, arg
);
884 int kvm_vm_ioctl(KVMState
*s
, int type
, ...)
891 arg
= va_arg(ap
, void *);
894 ret
= ioctl(s
->vmfd
, type
, arg
);
901 int kvm_vcpu_ioctl(CPUState
*env
, int type
, ...)
908 arg
= va_arg(ap
, void *);
911 ret
= ioctl(env
->kvm_fd
, type
, arg
);
918 int kvm_has_sync_mmu(void)
920 #ifdef KVM_CAP_SYNC_MMU
921 KVMState
*s
= kvm_state
;
923 return kvm_check_extension(s
, KVM_CAP_SYNC_MMU
);
929 int kvm_has_vcpu_events(void)
931 return kvm_state
->vcpu_events
;
934 int kvm_has_robust_singlestep(void)
936 return kvm_state
->robust_singlestep
;
939 void kvm_setup_guest_memory(void *start
, size_t size
)
941 if (!kvm_has_sync_mmu()) {
943 int ret
= madvise(start
, size
, MADV_DONTFORK
);
951 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
957 #ifdef KVM_CAP_SET_GUEST_DEBUG
958 static void on_vcpu(CPUState
*env
, void (*func
)(void *data
), void *data
)
960 #ifdef CONFIG_IOTHREAD
961 if (env
!= cpu_single_env
) {
968 struct kvm_sw_breakpoint
*kvm_find_sw_breakpoint(CPUState
*env
,
971 struct kvm_sw_breakpoint
*bp
;
973 QTAILQ_FOREACH(bp
, &env
->kvm_state
->kvm_sw_breakpoints
, entry
) {
980 int kvm_sw_breakpoints_active(CPUState
*env
)
982 return !QTAILQ_EMPTY(&env
->kvm_state
->kvm_sw_breakpoints
);
985 struct kvm_set_guest_debug_data
{
986 struct kvm_guest_debug dbg
;
991 static void kvm_invoke_set_guest_debug(void *data
)
993 struct kvm_set_guest_debug_data
*dbg_data
= data
;
994 CPUState
*env
= dbg_data
->env
;
996 dbg_data
->err
= kvm_vcpu_ioctl(env
, KVM_SET_GUEST_DEBUG
, &dbg_data
->dbg
);
999 int kvm_update_guest_debug(CPUState
*env
, unsigned long reinject_trap
)
1001 struct kvm_set_guest_debug_data data
;
1003 data
.dbg
.control
= reinject_trap
;
1005 if (env
->singlestep_enabled
) {
1006 data
.dbg
.control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_SINGLESTEP
;
1008 kvm_arch_update_guest_debug(env
, &data
.dbg
);
1011 on_vcpu(env
, kvm_invoke_set_guest_debug
, &data
);
1015 int kvm_insert_breakpoint(CPUState
*current_env
, target_ulong addr
,
1016 target_ulong len
, int type
)
1018 struct kvm_sw_breakpoint
*bp
;
1022 if (type
== GDB_BREAKPOINT_SW
) {
1023 bp
= kvm_find_sw_breakpoint(current_env
, addr
);
1029 bp
= qemu_malloc(sizeof(struct kvm_sw_breakpoint
));
1035 err
= kvm_arch_insert_sw_breakpoint(current_env
, bp
);
1041 QTAILQ_INSERT_HEAD(¤t_env
->kvm_state
->kvm_sw_breakpoints
,
1044 err
= kvm_arch_insert_hw_breakpoint(addr
, len
, type
);
1049 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1050 err
= kvm_update_guest_debug(env
, 0);
1057 int kvm_remove_breakpoint(CPUState
*current_env
, target_ulong addr
,
1058 target_ulong len
, int type
)
1060 struct kvm_sw_breakpoint
*bp
;
1064 if (type
== GDB_BREAKPOINT_SW
) {
1065 bp
= kvm_find_sw_breakpoint(current_env
, addr
);
1069 if (bp
->use_count
> 1) {
1074 err
= kvm_arch_remove_sw_breakpoint(current_env
, bp
);
1078 QTAILQ_REMOVE(¤t_env
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
1081 err
= kvm_arch_remove_hw_breakpoint(addr
, len
, type
);
1086 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1087 err
= kvm_update_guest_debug(env
, 0);
1094 void kvm_remove_all_breakpoints(CPUState
*current_env
)
1096 struct kvm_sw_breakpoint
*bp
, *next
;
1097 KVMState
*s
= current_env
->kvm_state
;
1100 QTAILQ_FOREACH_SAFE(bp
, &s
->kvm_sw_breakpoints
, entry
, next
) {
1101 if (kvm_arch_remove_sw_breakpoint(current_env
, bp
) != 0) {
1102 /* Try harder to find a CPU that currently sees the breakpoint. */
1103 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1104 if (kvm_arch_remove_sw_breakpoint(env
, bp
) == 0)
1109 kvm_arch_remove_all_hw_breakpoints();
1111 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
)
1112 kvm_update_guest_debug(env
, 0);
1115 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1117 int kvm_update_guest_debug(CPUState
*env
, unsigned long reinject_trap
)
1122 int kvm_insert_breakpoint(CPUState
*current_env
, target_ulong addr
,
1123 target_ulong len
, int type
)
1128 int kvm_remove_breakpoint(CPUState
*current_env
, target_ulong addr
,
1129 target_ulong len
, int type
)
1134 void kvm_remove_all_breakpoints(CPUState
*current_env
)
1137 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1139 int kvm_set_signal_mask(CPUState
*env
, const sigset_t
*sigset
)
1141 struct kvm_signal_mask
*sigmask
;
1145 return kvm_vcpu_ioctl(env
, KVM_SET_SIGNAL_MASK
, NULL
);
1147 sigmask
= qemu_malloc(sizeof(*sigmask
) + sizeof(*sigset
));
1150 memcpy(sigmask
->sigset
, sigset
, sizeof(*sigset
));
1151 r
= kvm_vcpu_ioctl(env
, KVM_SET_SIGNAL_MASK
, sigmask
);