2 * Block driver for the QCOW version 2 format
4 * Copyright (c) 2004-2006 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
27 #include "qemu-common.h"
28 #include "block_int.h"
29 #include "block/qcow2.h"
31 int qcow2_grow_l1_table(BlockDriverState
*bs
, int min_size
)
33 BDRVQcowState
*s
= bs
->opaque
;
34 int new_l1_size
, new_l1_size2
, ret
, i
;
35 uint64_t *new_l1_table
;
36 int64_t new_l1_table_offset
;
39 new_l1_size
= s
->l1_size
;
40 if (min_size
<= new_l1_size
)
42 if (new_l1_size
== 0) {
45 while (min_size
> new_l1_size
) {
46 new_l1_size
= (new_l1_size
* 3 + 1) / 2;
49 printf("grow l1_table from %d to %d\n", s
->l1_size
, new_l1_size
);
52 new_l1_size2
= sizeof(uint64_t) * new_l1_size
;
53 new_l1_table
= qemu_mallocz(align_offset(new_l1_size2
, 512));
54 memcpy(new_l1_table
, s
->l1_table
, s
->l1_size
* sizeof(uint64_t));
56 /* write new table (align to cluster) */
57 new_l1_table_offset
= qcow2_alloc_clusters(bs
, new_l1_size2
);
58 if (new_l1_table_offset
< 0) {
59 qemu_free(new_l1_table
);
60 return new_l1_table_offset
;
63 for(i
= 0; i
< s
->l1_size
; i
++)
64 new_l1_table
[i
] = cpu_to_be64(new_l1_table
[i
]);
65 ret
= bdrv_pwrite(s
->hd
, new_l1_table_offset
, new_l1_table
, new_l1_size2
);
66 if (ret
!= new_l1_size2
)
68 for(i
= 0; i
< s
->l1_size
; i
++)
69 new_l1_table
[i
] = be64_to_cpu(new_l1_table
[i
]);
72 cpu_to_be32w((uint32_t*)data
, new_l1_size
);
73 cpu_to_be64w((uint64_t*)(data
+ 4), new_l1_table_offset
);
74 ret
= bdrv_pwrite(s
->hd
, offsetof(QCowHeader
, l1_size
), data
,sizeof(data
));
75 if (ret
!= sizeof(data
)) {
78 qemu_free(s
->l1_table
);
79 qcow2_free_clusters(bs
, s
->l1_table_offset
, s
->l1_size
* sizeof(uint64_t));
80 s
->l1_table_offset
= new_l1_table_offset
;
81 s
->l1_table
= new_l1_table
;
82 s
->l1_size
= new_l1_size
;
85 qemu_free(new_l1_table
);
86 qcow2_free_clusters(bs
, new_l1_table_offset
, new_l1_size2
);
87 return ret
< 0 ? ret
: -EIO
;
90 void qcow2_l2_cache_reset(BlockDriverState
*bs
)
92 BDRVQcowState
*s
= bs
->opaque
;
94 memset(s
->l2_cache
, 0, s
->l2_size
* L2_CACHE_SIZE
* sizeof(uint64_t));
95 memset(s
->l2_cache_offsets
, 0, L2_CACHE_SIZE
* sizeof(uint64_t));
96 memset(s
->l2_cache_counts
, 0, L2_CACHE_SIZE
* sizeof(uint32_t));
99 static inline int l2_cache_new_entry(BlockDriverState
*bs
)
101 BDRVQcowState
*s
= bs
->opaque
;
105 /* find a new entry in the least used one */
107 min_count
= 0xffffffff;
108 for(i
= 0; i
< L2_CACHE_SIZE
; i
++) {
109 if (s
->l2_cache_counts
[i
] < min_count
) {
110 min_count
= s
->l2_cache_counts
[i
];
120 * seek l2_offset in the l2_cache table
121 * if not found, return NULL,
123 * increments the l2 cache hit count of the entry,
124 * if counter overflow, divide by two all counters
125 * return the pointer to the l2 cache entry
129 static uint64_t *seek_l2_table(BDRVQcowState
*s
, uint64_t l2_offset
)
133 for(i
= 0; i
< L2_CACHE_SIZE
; i
++) {
134 if (l2_offset
== s
->l2_cache_offsets
[i
]) {
135 /* increment the hit count */
136 if (++s
->l2_cache_counts
[i
] == 0xffffffff) {
137 for(j
= 0; j
< L2_CACHE_SIZE
; j
++) {
138 s
->l2_cache_counts
[j
] >>= 1;
141 return s
->l2_cache
+ (i
<< s
->l2_bits
);
150 * Loads a L2 table into memory. If the table is in the cache, the cache
151 * is used; otherwise the L2 table is loaded from the image file.
153 * Returns a pointer to the L2 table on success, or NULL if the read from
154 * the image file failed.
157 static uint64_t *l2_load(BlockDriverState
*bs
, uint64_t l2_offset
)
159 BDRVQcowState
*s
= bs
->opaque
;
163 /* seek if the table for the given offset is in the cache */
165 l2_table
= seek_l2_table(s
, l2_offset
);
166 if (l2_table
!= NULL
)
169 /* not found: load a new entry in the least used one */
171 min_index
= l2_cache_new_entry(bs
);
172 l2_table
= s
->l2_cache
+ (min_index
<< s
->l2_bits
);
173 if (bdrv_pread(s
->hd
, l2_offset
, l2_table
, s
->l2_size
* sizeof(uint64_t)) !=
174 s
->l2_size
* sizeof(uint64_t))
176 s
->l2_cache_offsets
[min_index
] = l2_offset
;
177 s
->l2_cache_counts
[min_index
] = 1;
183 * Writes one sector of the L1 table to the disk (can't update single entries
184 * and we really don't want bdrv_pread to perform a read-modify-write)
186 #define L1_ENTRIES_PER_SECTOR (512 / 8)
187 static int write_l1_entry(BDRVQcowState
*s
, int l1_index
)
189 uint64_t buf
[L1_ENTRIES_PER_SECTOR
];
193 l1_start_index
= l1_index
& ~(L1_ENTRIES_PER_SECTOR
- 1);
194 for (i
= 0; i
< L1_ENTRIES_PER_SECTOR
; i
++) {
195 buf
[i
] = cpu_to_be64(s
->l1_table
[l1_start_index
+ i
]);
198 if (bdrv_pwrite(s
->hd
, s
->l1_table_offset
+ 8 * l1_start_index
,
199 buf
, sizeof(buf
)) != sizeof(buf
))
210 * Allocate a new l2 entry in the file. If l1_index points to an already
211 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
212 * table) copy the contents of the old L2 table into the newly allocated one.
213 * Otherwise the new table is initialized with zeros.
217 static uint64_t *l2_allocate(BlockDriverState
*bs
, int l1_index
)
219 BDRVQcowState
*s
= bs
->opaque
;
221 uint64_t old_l2_offset
;
225 old_l2_offset
= s
->l1_table
[l1_index
];
227 /* allocate a new l2 entry */
229 l2_offset
= qcow2_alloc_clusters(bs
, s
->l2_size
* sizeof(uint64_t));
234 /* update the L1 entry */
236 s
->l1_table
[l1_index
] = l2_offset
| QCOW_OFLAG_COPIED
;
237 if (write_l1_entry(s
, l1_index
) < 0) {
241 /* allocate a new entry in the l2 cache */
243 min_index
= l2_cache_new_entry(bs
);
244 l2_table
= s
->l2_cache
+ (min_index
<< s
->l2_bits
);
246 if (old_l2_offset
== 0) {
247 /* if there was no old l2 table, clear the new table */
248 memset(l2_table
, 0, s
->l2_size
* sizeof(uint64_t));
250 /* if there was an old l2 table, read it from the disk */
251 if (bdrv_pread(s
->hd
, old_l2_offset
,
252 l2_table
, s
->l2_size
* sizeof(uint64_t)) !=
253 s
->l2_size
* sizeof(uint64_t))
256 /* write the l2 table to the file */
257 if (bdrv_pwrite(s
->hd
, l2_offset
,
258 l2_table
, s
->l2_size
* sizeof(uint64_t)) !=
259 s
->l2_size
* sizeof(uint64_t))
262 /* update the l2 cache entry */
264 s
->l2_cache_offsets
[min_index
] = l2_offset
;
265 s
->l2_cache_counts
[min_index
] = 1;
270 static int count_contiguous_clusters(uint64_t nb_clusters
, int cluster_size
,
271 uint64_t *l2_table
, uint64_t start
, uint64_t mask
)
274 uint64_t offset
= be64_to_cpu(l2_table
[0]) & ~mask
;
279 for (i
= start
; i
< start
+ nb_clusters
; i
++)
280 if (offset
+ (uint64_t) i
* cluster_size
!= (be64_to_cpu(l2_table
[i
]) & ~mask
))
286 static int count_contiguous_free_clusters(uint64_t nb_clusters
, uint64_t *l2_table
)
290 while(nb_clusters
-- && l2_table
[i
] == 0)
296 /* The crypt function is compatible with the linux cryptoloop
297 algorithm for < 4 GB images. NOTE: out_buf == in_buf is
299 void qcow2_encrypt_sectors(BDRVQcowState
*s
, int64_t sector_num
,
300 uint8_t *out_buf
, const uint8_t *in_buf
,
301 int nb_sectors
, int enc
,
310 for(i
= 0; i
< nb_sectors
; i
++) {
311 ivec
.ll
[0] = cpu_to_le64(sector_num
);
313 AES_cbc_encrypt(in_buf
, out_buf
, 512, key
,
322 static int qcow_read(BlockDriverState
*bs
, int64_t sector_num
,
323 uint8_t *buf
, int nb_sectors
)
325 BDRVQcowState
*s
= bs
->opaque
;
326 int ret
, index_in_cluster
, n
, n1
;
327 uint64_t cluster_offset
;
329 while (nb_sectors
> 0) {
331 cluster_offset
= qcow2_get_cluster_offset(bs
, sector_num
<< 9, &n
);
332 index_in_cluster
= sector_num
& (s
->cluster_sectors
- 1);
333 if (!cluster_offset
) {
334 if (bs
->backing_hd
) {
335 /* read from the base image */
336 n1
= qcow2_backing_read1(bs
->backing_hd
, sector_num
, buf
, n
);
338 ret
= bdrv_read(bs
->backing_hd
, sector_num
, buf
, n1
);
343 memset(buf
, 0, 512 * n
);
345 } else if (cluster_offset
& QCOW_OFLAG_COMPRESSED
) {
346 if (qcow2_decompress_cluster(s
, cluster_offset
) < 0)
348 memcpy(buf
, s
->cluster_cache
+ index_in_cluster
* 512, 512 * n
);
350 ret
= bdrv_pread(s
->hd
, cluster_offset
+ index_in_cluster
* 512, buf
, n
* 512);
353 if (s
->crypt_method
) {
354 qcow2_encrypt_sectors(s
, sector_num
, buf
, buf
, n
, 0,
355 &s
->aes_decrypt_key
);
365 static int copy_sectors(BlockDriverState
*bs
, uint64_t start_sect
,
366 uint64_t cluster_offset
, int n_start
, int n_end
)
368 BDRVQcowState
*s
= bs
->opaque
;
374 ret
= qcow_read(bs
, start_sect
+ n_start
, s
->cluster_data
, n
);
377 if (s
->crypt_method
) {
378 qcow2_encrypt_sectors(s
, start_sect
+ n_start
,
380 s
->cluster_data
, n
, 1,
381 &s
->aes_encrypt_key
);
383 ret
= bdrv_write(s
->hd
, (cluster_offset
>> 9) + n_start
,
394 * For a given offset of the disk image, return cluster offset in
397 * on entry, *num is the number of contiguous clusters we'd like to
398 * access following offset.
400 * on exit, *num is the number of contiguous clusters we can read.
402 * Return 1, if the offset is found
403 * Return 0, otherwise.
407 uint64_t qcow2_get_cluster_offset(BlockDriverState
*bs
, uint64_t offset
,
410 BDRVQcowState
*s
= bs
->opaque
;
411 unsigned int l1_index
, l2_index
;
412 uint64_t l2_offset
, *l2_table
, cluster_offset
;
414 unsigned int index_in_cluster
, nb_clusters
;
415 uint64_t nb_available
, nb_needed
;
417 index_in_cluster
= (offset
>> 9) & (s
->cluster_sectors
- 1);
418 nb_needed
= *num
+ index_in_cluster
;
420 l1_bits
= s
->l2_bits
+ s
->cluster_bits
;
422 /* compute how many bytes there are between the offset and
423 * the end of the l1 entry
426 nb_available
= (1ULL << l1_bits
) - (offset
& ((1ULL << l1_bits
) - 1));
428 /* compute the number of available sectors */
430 nb_available
= (nb_available
>> 9) + index_in_cluster
;
432 if (nb_needed
> nb_available
) {
433 nb_needed
= nb_available
;
438 /* seek the the l2 offset in the l1 table */
440 l1_index
= offset
>> l1_bits
;
441 if (l1_index
>= s
->l1_size
)
444 l2_offset
= s
->l1_table
[l1_index
];
446 /* seek the l2 table of the given l2 offset */
451 /* load the l2 table in memory */
453 l2_offset
&= ~QCOW_OFLAG_COPIED
;
454 l2_table
= l2_load(bs
, l2_offset
);
455 if (l2_table
== NULL
)
458 /* find the cluster offset for the given disk offset */
460 l2_index
= (offset
>> s
->cluster_bits
) & (s
->l2_size
- 1);
461 cluster_offset
= be64_to_cpu(l2_table
[l2_index
]);
462 nb_clusters
= size_to_clusters(s
, nb_needed
<< 9);
464 if (!cluster_offset
) {
465 /* how many empty clusters ? */
466 c
= count_contiguous_free_clusters(nb_clusters
, &l2_table
[l2_index
]);
468 /* how many allocated clusters ? */
469 c
= count_contiguous_clusters(nb_clusters
, s
->cluster_size
,
470 &l2_table
[l2_index
], 0, QCOW_OFLAG_COPIED
);
473 nb_available
= (c
* s
->cluster_sectors
);
475 if (nb_available
> nb_needed
)
476 nb_available
= nb_needed
;
478 *num
= nb_available
- index_in_cluster
;
480 return cluster_offset
& ~QCOW_OFLAG_COPIED
;
486 * for a given disk offset, load (and allocate if needed)
489 * the l2 table offset in the qcow2 file and the cluster index
490 * in the l2 table are given to the caller.
492 * Returns 0 on success, -errno in failure case
494 static int get_cluster_table(BlockDriverState
*bs
, uint64_t offset
,
495 uint64_t **new_l2_table
,
496 uint64_t *new_l2_offset
,
499 BDRVQcowState
*s
= bs
->opaque
;
500 unsigned int l1_index
, l2_index
;
501 uint64_t l2_offset
, *l2_table
;
504 /* seek the the l2 offset in the l1 table */
506 l1_index
= offset
>> (s
->l2_bits
+ s
->cluster_bits
);
507 if (l1_index
>= s
->l1_size
) {
508 ret
= qcow2_grow_l1_table(bs
, l1_index
+ 1);
513 l2_offset
= s
->l1_table
[l1_index
];
515 /* seek the l2 table of the given l2 offset */
517 if (l2_offset
& QCOW_OFLAG_COPIED
) {
518 /* load the l2 table in memory */
519 l2_offset
&= ~QCOW_OFLAG_COPIED
;
520 l2_table
= l2_load(bs
, l2_offset
);
521 if (l2_table
== NULL
) {
526 qcow2_free_clusters(bs
, l2_offset
, s
->l2_size
* sizeof(uint64_t));
527 l2_table
= l2_allocate(bs
, l1_index
);
528 if (l2_table
== NULL
) {
531 l2_offset
= s
->l1_table
[l1_index
] & ~QCOW_OFLAG_COPIED
;
534 /* find the cluster offset for the given disk offset */
536 l2_index
= (offset
>> s
->cluster_bits
) & (s
->l2_size
- 1);
538 *new_l2_table
= l2_table
;
539 *new_l2_offset
= l2_offset
;
540 *new_l2_index
= l2_index
;
546 * alloc_compressed_cluster_offset
548 * For a given offset of the disk image, return cluster offset in
551 * If the offset is not found, allocate a new compressed cluster.
553 * Return the cluster offset if successful,
554 * Return 0, otherwise.
558 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState
*bs
,
562 BDRVQcowState
*s
= bs
->opaque
;
564 uint64_t l2_offset
, *l2_table
;
565 int64_t cluster_offset
;
568 ret
= get_cluster_table(bs
, offset
, &l2_table
, &l2_offset
, &l2_index
);
573 cluster_offset
= be64_to_cpu(l2_table
[l2_index
]);
574 if (cluster_offset
& QCOW_OFLAG_COPIED
)
575 return cluster_offset
& ~QCOW_OFLAG_COPIED
;
578 qcow2_free_any_clusters(bs
, cluster_offset
, 1);
580 cluster_offset
= qcow2_alloc_bytes(bs
, compressed_size
);
581 if (cluster_offset
< 0) {
585 nb_csectors
= ((cluster_offset
+ compressed_size
- 1) >> 9) -
586 (cluster_offset
>> 9);
588 cluster_offset
|= QCOW_OFLAG_COMPRESSED
|
589 ((uint64_t)nb_csectors
<< s
->csize_shift
);
591 /* update L2 table */
593 /* compressed clusters never have the copied flag */
595 l2_table
[l2_index
] = cpu_to_be64(cluster_offset
);
596 if (bdrv_pwrite(s
->hd
,
597 l2_offset
+ l2_index
* sizeof(uint64_t),
599 sizeof(uint64_t)) != sizeof(uint64_t))
602 return cluster_offset
;
606 * Write L2 table updates to disk, writing whole sectors to avoid a
607 * read-modify-write in bdrv_pwrite
609 #define L2_ENTRIES_PER_SECTOR (512 / 8)
610 static int write_l2_entries(BDRVQcowState
*s
, uint64_t *l2_table
,
611 uint64_t l2_offset
, int l2_index
, int num
)
613 int l2_start_index
= l2_index
& ~(L1_ENTRIES_PER_SECTOR
- 1);
614 int start_offset
= (8 * l2_index
) & ~511;
615 int end_offset
= (8 * (l2_index
+ num
) + 511) & ~511;
616 size_t len
= end_offset
- start_offset
;
618 if (bdrv_pwrite(s
->hd
, l2_offset
+ start_offset
, &l2_table
[l2_start_index
],
627 int qcow2_alloc_cluster_link_l2(BlockDriverState
*bs
, QCowL2Meta
*m
)
629 BDRVQcowState
*s
= bs
->opaque
;
630 int i
, j
= 0, l2_index
, ret
;
631 uint64_t *old_cluster
, start_sect
, l2_offset
, *l2_table
;
632 uint64_t cluster_offset
= m
->cluster_offset
;
634 if (m
->nb_clusters
== 0)
637 old_cluster
= qemu_malloc(m
->nb_clusters
* sizeof(uint64_t));
639 /* copy content of unmodified sectors */
640 start_sect
= (m
->offset
& ~(s
->cluster_size
- 1)) >> 9;
642 ret
= copy_sectors(bs
, start_sect
, cluster_offset
, 0, m
->n_start
);
647 if (m
->nb_available
& (s
->cluster_sectors
- 1)) {
648 uint64_t end
= m
->nb_available
& ~(uint64_t)(s
->cluster_sectors
- 1);
649 ret
= copy_sectors(bs
, start_sect
+ end
, cluster_offset
+ (end
<< 9),
650 m
->nb_available
- end
, s
->cluster_sectors
);
655 /* update L2 table */
656 ret
= get_cluster_table(bs
, m
->offset
, &l2_table
, &l2_offset
, &l2_index
);
661 for (i
= 0; i
< m
->nb_clusters
; i
++) {
662 /* if two concurrent writes happen to the same unallocated cluster
663 * each write allocates separate cluster and writes data concurrently.
664 * The first one to complete updates l2 table with pointer to its
665 * cluster the second one has to do RMW (which is done above by
666 * copy_sectors()), update l2 table with its cluster pointer and free
667 * old cluster. This is what this loop does */
668 if(l2_table
[l2_index
+ i
] != 0)
669 old_cluster
[j
++] = l2_table
[l2_index
+ i
];
671 l2_table
[l2_index
+ i
] = cpu_to_be64((cluster_offset
+
672 (i
<< s
->cluster_bits
)) | QCOW_OFLAG_COPIED
);
675 if (write_l2_entries(s
, l2_table
, l2_offset
, l2_index
, m
->nb_clusters
) < 0) {
680 for (i
= 0; i
< j
; i
++)
681 qcow2_free_any_clusters(bs
,
682 be64_to_cpu(old_cluster
[i
]) & ~QCOW_OFLAG_COPIED
, 1);
686 qemu_free(old_cluster
);
691 * alloc_cluster_offset
693 * For a given offset of the disk image, return cluster offset in qcow2 file.
694 * If the offset is not found, allocate a new cluster.
696 * If the cluster was already allocated, m->nb_clusters is set to 0,
697 * m->depends_on is set to NULL and the other fields in m are meaningless.
699 * If the cluster is newly allocated, m->nb_clusters is set to the number of
700 * contiguous clusters that have been allocated. This may be 0 if the request
701 * conflict with another write request in flight; in this case, m->depends_on
702 * is set and the remaining fields of m are meaningless.
704 * If m->nb_clusters is non-zero, the other fields of m are valid and contain
705 * information about the first allocated cluster.
707 * Return 0 on success and -errno in error cases
709 int qcow2_alloc_cluster_offset(BlockDriverState
*bs
, uint64_t offset
,
710 int n_start
, int n_end
, int *num
, QCowL2Meta
*m
)
712 BDRVQcowState
*s
= bs
->opaque
;
714 uint64_t l2_offset
, *l2_table
;
715 int64_t cluster_offset
;
716 unsigned int nb_clusters
, i
= 0;
717 QCowL2Meta
*old_alloc
;
719 ret
= get_cluster_table(bs
, offset
, &l2_table
, &l2_offset
, &l2_index
);
724 nb_clusters
= size_to_clusters(s
, n_end
<< 9);
726 nb_clusters
= MIN(nb_clusters
, s
->l2_size
- l2_index
);
728 cluster_offset
= be64_to_cpu(l2_table
[l2_index
]);
730 /* We keep all QCOW_OFLAG_COPIED clusters */
732 if (cluster_offset
& QCOW_OFLAG_COPIED
) {
733 nb_clusters
= count_contiguous_clusters(nb_clusters
, s
->cluster_size
,
734 &l2_table
[l2_index
], 0, 0);
736 cluster_offset
&= ~QCOW_OFLAG_COPIED
;
738 m
->depends_on
= NULL
;
743 /* for the moment, multiple compressed clusters are not managed */
745 if (cluster_offset
& QCOW_OFLAG_COMPRESSED
)
748 /* how many available clusters ? */
750 while (i
< nb_clusters
) {
751 i
+= count_contiguous_clusters(nb_clusters
- i
, s
->cluster_size
,
752 &l2_table
[l2_index
], i
, 0);
753 if ((i
>= nb_clusters
) || be64_to_cpu(l2_table
[l2_index
+ i
])) {
757 i
+= count_contiguous_free_clusters(nb_clusters
- i
,
758 &l2_table
[l2_index
+ i
]);
759 if (i
>= nb_clusters
) {
763 cluster_offset
= be64_to_cpu(l2_table
[l2_index
+ i
]);
765 if ((cluster_offset
& QCOW_OFLAG_COPIED
) ||
766 (cluster_offset
& QCOW_OFLAG_COMPRESSED
))
769 assert(i
<= nb_clusters
);
773 * Check if there already is an AIO write request in flight which allocates
774 * the same cluster. In this case we need to wait until the previous
775 * request has completed and updated the L2 table accordingly.
777 QLIST_FOREACH(old_alloc
, &s
->cluster_allocs
, next_in_flight
) {
779 uint64_t end_offset
= offset
+ nb_clusters
* s
->cluster_size
;
780 uint64_t old_offset
= old_alloc
->offset
;
781 uint64_t old_end_offset
= old_alloc
->offset
+
782 old_alloc
->nb_clusters
* s
->cluster_size
;
784 if (end_offset
< old_offset
|| offset
> old_end_offset
) {
785 /* No intersection */
787 if (offset
< old_offset
) {
788 /* Stop at the start of a running allocation */
789 nb_clusters
= (old_offset
- offset
) >> s
->cluster_bits
;
794 if (nb_clusters
== 0) {
795 /* Set dependency and wait for a callback */
796 m
->depends_on
= old_alloc
;
808 QLIST_INSERT_HEAD(&s
->cluster_allocs
, m
, next_in_flight
);
810 /* allocate a new cluster */
812 cluster_offset
= qcow2_alloc_clusters(bs
, nb_clusters
* s
->cluster_size
);
813 if (cluster_offset
< 0) {
814 return cluster_offset
;
817 /* save info needed for meta data update */
819 m
->n_start
= n_start
;
820 m
->nb_clusters
= nb_clusters
;
823 m
->nb_available
= MIN(nb_clusters
<< (s
->cluster_bits
- 9), n_end
);
824 m
->cluster_offset
= cluster_offset
;
826 *num
= m
->nb_available
- n_start
;
831 static int decompress_buffer(uint8_t *out_buf
, int out_buf_size
,
832 const uint8_t *buf
, int buf_size
)
834 z_stream strm1
, *strm
= &strm1
;
837 memset(strm
, 0, sizeof(*strm
));
839 strm
->next_in
= (uint8_t *)buf
;
840 strm
->avail_in
= buf_size
;
841 strm
->next_out
= out_buf
;
842 strm
->avail_out
= out_buf_size
;
844 ret
= inflateInit2(strm
, -12);
847 ret
= inflate(strm
, Z_FINISH
);
848 out_len
= strm
->next_out
- out_buf
;
849 if ((ret
!= Z_STREAM_END
&& ret
!= Z_BUF_ERROR
) ||
850 out_len
!= out_buf_size
) {
858 int qcow2_decompress_cluster(BDRVQcowState
*s
, uint64_t cluster_offset
)
860 int ret
, csize
, nb_csectors
, sector_offset
;
863 coffset
= cluster_offset
& s
->cluster_offset_mask
;
864 if (s
->cluster_cache_offset
!= coffset
) {
865 nb_csectors
= ((cluster_offset
>> s
->csize_shift
) & s
->csize_mask
) + 1;
866 sector_offset
= coffset
& 511;
867 csize
= nb_csectors
* 512 - sector_offset
;
868 ret
= bdrv_read(s
->hd
, coffset
>> 9, s
->cluster_data
, nb_csectors
);
872 if (decompress_buffer(s
->cluster_cache
, s
->cluster_size
,
873 s
->cluster_data
+ sector_offset
, csize
) < 0) {
876 s
->cluster_cache_offset
= coffset
;