initialize struct sigevent before timer_create
[qemu/ar7.git] / target-i386 / kvm.c
blob7cdcf31cabba8c41d26f77169f732609cd248106
1 /*
2 * QEMU KVM support
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
19 #include <linux/kvm.h>
21 #include "qemu-common.h"
22 #include "sysemu.h"
23 #include "kvm.h"
24 #include "cpu.h"
25 #include "gdbstub.h"
27 //#define DEBUG_KVM
29 #ifdef DEBUG_KVM
30 #define dprintf(fmt, ...) \
31 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
32 #else
33 #define dprintf(fmt, ...) \
34 do { } while (0)
35 #endif
37 #ifdef KVM_CAP_EXT_CPUID
39 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
41 struct kvm_cpuid2 *cpuid;
42 int r, size;
44 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
45 cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
46 cpuid->nent = max;
47 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
48 if (r == 0 && cpuid->nent >= max) {
49 r = -E2BIG;
51 if (r < 0) {
52 if (r == -E2BIG) {
53 qemu_free(cpuid);
54 return NULL;
55 } else {
56 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
57 strerror(-r));
58 exit(1);
61 return cpuid;
64 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
66 struct kvm_cpuid2 *cpuid;
67 int i, max;
68 uint32_t ret = 0;
69 uint32_t cpuid_1_edx;
71 if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
72 return -1U;
75 max = 1;
76 while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
77 max *= 2;
80 for (i = 0; i < cpuid->nent; ++i) {
81 if (cpuid->entries[i].function == function) {
82 switch (reg) {
83 case R_EAX:
84 ret = cpuid->entries[i].eax;
85 break;
86 case R_EBX:
87 ret = cpuid->entries[i].ebx;
88 break;
89 case R_ECX:
90 ret = cpuid->entries[i].ecx;
91 break;
92 case R_EDX:
93 ret = cpuid->entries[i].edx;
94 if (function == 0x80000001) {
95 /* On Intel, kvm returns cpuid according to the Intel spec,
96 * so add missing bits according to the AMD spec:
98 cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, R_EDX);
99 ret |= cpuid_1_edx & 0xdfeff7ff;
101 break;
106 qemu_free(cpuid);
108 return ret;
111 #else
113 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
115 return -1U;
118 #endif
120 int kvm_arch_init_vcpu(CPUState *env)
122 struct {
123 struct kvm_cpuid2 cpuid;
124 struct kvm_cpuid_entry2 entries[100];
125 } __attribute__((packed)) cpuid_data;
126 uint32_t limit, i, j, cpuid_i;
127 uint32_t unused;
129 cpuid_i = 0;
131 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
133 for (i = 0; i <= limit; i++) {
134 struct kvm_cpuid_entry2 *c = &cpuid_data.entries[cpuid_i++];
136 switch (i) {
137 case 2: {
138 /* Keep reading function 2 till all the input is received */
139 int times;
141 c->function = i;
142 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
143 KVM_CPUID_FLAG_STATE_READ_NEXT;
144 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
145 times = c->eax & 0xff;
147 for (j = 1; j < times; ++j) {
148 c = &cpuid_data.entries[cpuid_i++];
149 c->function = i;
150 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
151 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
153 break;
155 case 4:
156 case 0xb:
157 case 0xd:
158 for (j = 0; ; j++) {
159 c->function = i;
160 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
161 c->index = j;
162 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
164 if (i == 4 && c->eax == 0)
165 break;
166 if (i == 0xb && !(c->ecx & 0xff00))
167 break;
168 if (i == 0xd && c->eax == 0)
169 break;
171 c = &cpuid_data.entries[cpuid_i++];
173 break;
174 default:
175 c->function = i;
176 c->flags = 0;
177 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
178 break;
181 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
183 for (i = 0x80000000; i <= limit; i++) {
184 struct kvm_cpuid_entry2 *c = &cpuid_data.entries[cpuid_i++];
186 c->function = i;
187 c->flags = 0;
188 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
191 cpuid_data.cpuid.nent = cpuid_i;
193 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
196 static int kvm_has_msr_star(CPUState *env)
198 static int has_msr_star;
199 int ret;
201 /* first time */
202 if (has_msr_star == 0) {
203 struct kvm_msr_list msr_list, *kvm_msr_list;
205 has_msr_star = -1;
207 /* Obtain MSR list from KVM. These are the MSRs that we must
208 * save/restore */
209 msr_list.nmsrs = 0;
210 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
211 if (ret < 0)
212 return 0;
214 kvm_msr_list = qemu_mallocz(sizeof(msr_list) +
215 msr_list.nmsrs * sizeof(msr_list.indices[0]));
217 kvm_msr_list->nmsrs = msr_list.nmsrs;
218 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
219 if (ret >= 0) {
220 int i;
222 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
223 if (kvm_msr_list->indices[i] == MSR_STAR) {
224 has_msr_star = 1;
225 break;
230 free(kvm_msr_list);
233 if (has_msr_star == 1)
234 return 1;
235 return 0;
238 int kvm_arch_init(KVMState *s, int smp_cpus)
240 int ret;
242 /* create vm86 tss. KVM uses vm86 mode to emulate 16-bit code
243 * directly. In order to use vm86 mode, a TSS is needed. Since this
244 * must be part of guest physical memory, we need to allocate it. Older
245 * versions of KVM just assumed that it would be at the end of physical
246 * memory but that doesn't work with more than 4GB of memory. We simply
247 * refuse to work with those older versions of KVM. */
248 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
249 if (ret <= 0) {
250 fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
251 return ret;
254 /* this address is 3 pages before the bios, and the bios should present
255 * as unavaible memory. FIXME, need to ensure the e820 map deals with
256 * this?
258 return kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
261 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
263 lhs->selector = rhs->selector;
264 lhs->base = rhs->base;
265 lhs->limit = rhs->limit;
266 lhs->type = 3;
267 lhs->present = 1;
268 lhs->dpl = 3;
269 lhs->db = 0;
270 lhs->s = 1;
271 lhs->l = 0;
272 lhs->g = 0;
273 lhs->avl = 0;
274 lhs->unusable = 0;
277 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
279 unsigned flags = rhs->flags;
280 lhs->selector = rhs->selector;
281 lhs->base = rhs->base;
282 lhs->limit = rhs->limit;
283 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
284 lhs->present = (flags & DESC_P_MASK) != 0;
285 lhs->dpl = rhs->selector & 3;
286 lhs->db = (flags >> DESC_B_SHIFT) & 1;
287 lhs->s = (flags & DESC_S_MASK) != 0;
288 lhs->l = (flags >> DESC_L_SHIFT) & 1;
289 lhs->g = (flags & DESC_G_MASK) != 0;
290 lhs->avl = (flags & DESC_AVL_MASK) != 0;
291 lhs->unusable = 0;
294 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
296 lhs->selector = rhs->selector;
297 lhs->base = rhs->base;
298 lhs->limit = rhs->limit;
299 lhs->flags =
300 (rhs->type << DESC_TYPE_SHIFT)
301 | (rhs->present * DESC_P_MASK)
302 | (rhs->dpl << DESC_DPL_SHIFT)
303 | (rhs->db << DESC_B_SHIFT)
304 | (rhs->s * DESC_S_MASK)
305 | (rhs->l << DESC_L_SHIFT)
306 | (rhs->g * DESC_G_MASK)
307 | (rhs->avl * DESC_AVL_MASK);
310 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
312 if (set)
313 *kvm_reg = *qemu_reg;
314 else
315 *qemu_reg = *kvm_reg;
318 static int kvm_getput_regs(CPUState *env, int set)
320 struct kvm_regs regs;
321 int ret = 0;
323 if (!set) {
324 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
325 if (ret < 0)
326 return ret;
329 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
330 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
331 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
332 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
333 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
334 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
335 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
336 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
337 #ifdef TARGET_X86_64
338 kvm_getput_reg(&regs.r8, &env->regs[8], set);
339 kvm_getput_reg(&regs.r9, &env->regs[9], set);
340 kvm_getput_reg(&regs.r10, &env->regs[10], set);
341 kvm_getput_reg(&regs.r11, &env->regs[11], set);
342 kvm_getput_reg(&regs.r12, &env->regs[12], set);
343 kvm_getput_reg(&regs.r13, &env->regs[13], set);
344 kvm_getput_reg(&regs.r14, &env->regs[14], set);
345 kvm_getput_reg(&regs.r15, &env->regs[15], set);
346 #endif
348 kvm_getput_reg(&regs.rflags, &env->eflags, set);
349 kvm_getput_reg(&regs.rip, &env->eip, set);
351 if (set)
352 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
354 return ret;
357 static int kvm_put_fpu(CPUState *env)
359 struct kvm_fpu fpu;
360 int i;
362 memset(&fpu, 0, sizeof fpu);
363 fpu.fsw = env->fpus & ~(7 << 11);
364 fpu.fsw |= (env->fpstt & 7) << 11;
365 fpu.fcw = env->fpuc;
366 for (i = 0; i < 8; ++i)
367 fpu.ftwx |= (!env->fptags[i]) << i;
368 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
369 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
370 fpu.mxcsr = env->mxcsr;
372 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
375 static int kvm_put_sregs(CPUState *env)
377 struct kvm_sregs sregs;
379 memcpy(sregs.interrupt_bitmap,
380 env->interrupt_bitmap,
381 sizeof(sregs.interrupt_bitmap));
383 if ((env->eflags & VM_MASK)) {
384 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
385 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
386 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
387 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
388 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
389 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
390 } else {
391 set_seg(&sregs.cs, &env->segs[R_CS]);
392 set_seg(&sregs.ds, &env->segs[R_DS]);
393 set_seg(&sregs.es, &env->segs[R_ES]);
394 set_seg(&sregs.fs, &env->segs[R_FS]);
395 set_seg(&sregs.gs, &env->segs[R_GS]);
396 set_seg(&sregs.ss, &env->segs[R_SS]);
398 if (env->cr[0] & CR0_PE_MASK) {
399 /* force ss cpl to cs cpl */
400 sregs.ss.selector = (sregs.ss.selector & ~3) |
401 (sregs.cs.selector & 3);
402 sregs.ss.dpl = sregs.ss.selector & 3;
406 set_seg(&sregs.tr, &env->tr);
407 set_seg(&sregs.ldt, &env->ldt);
409 sregs.idt.limit = env->idt.limit;
410 sregs.idt.base = env->idt.base;
411 sregs.gdt.limit = env->gdt.limit;
412 sregs.gdt.base = env->gdt.base;
414 sregs.cr0 = env->cr[0];
415 sregs.cr2 = env->cr[2];
416 sregs.cr3 = env->cr[3];
417 sregs.cr4 = env->cr[4];
419 sregs.cr8 = cpu_get_apic_tpr(env);
420 sregs.apic_base = cpu_get_apic_base(env);
422 sregs.efer = env->efer;
424 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
427 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
428 uint32_t index, uint64_t value)
430 entry->index = index;
431 entry->data = value;
434 static int kvm_put_msrs(CPUState *env)
436 struct {
437 struct kvm_msrs info;
438 struct kvm_msr_entry entries[100];
439 } msr_data;
440 struct kvm_msr_entry *msrs = msr_data.entries;
441 int n = 0;
443 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
444 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
445 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
446 if (kvm_has_msr_star(env))
447 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
448 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
449 #ifdef TARGET_X86_64
450 /* FIXME if lm capable */
451 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
452 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
453 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
454 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
455 #endif
456 msr_data.info.nmsrs = n;
458 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
463 static int kvm_get_fpu(CPUState *env)
465 struct kvm_fpu fpu;
466 int i, ret;
468 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
469 if (ret < 0)
470 return ret;
472 env->fpstt = (fpu.fsw >> 11) & 7;
473 env->fpus = fpu.fsw;
474 env->fpuc = fpu.fcw;
475 for (i = 0; i < 8; ++i)
476 env->fptags[i] = !((fpu.ftwx >> i) & 1);
477 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
478 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
479 env->mxcsr = fpu.mxcsr;
481 return 0;
484 static int kvm_get_sregs(CPUState *env)
486 struct kvm_sregs sregs;
487 uint32_t hflags;
488 int ret;
490 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
491 if (ret < 0)
492 return ret;
494 memcpy(env->interrupt_bitmap,
495 sregs.interrupt_bitmap,
496 sizeof(sregs.interrupt_bitmap));
498 get_seg(&env->segs[R_CS], &sregs.cs);
499 get_seg(&env->segs[R_DS], &sregs.ds);
500 get_seg(&env->segs[R_ES], &sregs.es);
501 get_seg(&env->segs[R_FS], &sregs.fs);
502 get_seg(&env->segs[R_GS], &sregs.gs);
503 get_seg(&env->segs[R_SS], &sregs.ss);
505 get_seg(&env->tr, &sregs.tr);
506 get_seg(&env->ldt, &sregs.ldt);
508 env->idt.limit = sregs.idt.limit;
509 env->idt.base = sregs.idt.base;
510 env->gdt.limit = sregs.gdt.limit;
511 env->gdt.base = sregs.gdt.base;
513 env->cr[0] = sregs.cr0;
514 env->cr[2] = sregs.cr2;
515 env->cr[3] = sregs.cr3;
516 env->cr[4] = sregs.cr4;
518 cpu_set_apic_base(env, sregs.apic_base);
520 env->efer = sregs.efer;
521 //cpu_set_apic_tpr(env, sregs.cr8);
523 #define HFLAG_COPY_MASK ~( \
524 HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
525 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
526 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
527 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
531 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
532 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
533 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
534 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
535 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
536 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
537 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
539 if (env->efer & MSR_EFER_LMA) {
540 hflags |= HF_LMA_MASK;
543 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
544 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
545 } else {
546 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
547 (DESC_B_SHIFT - HF_CS32_SHIFT);
548 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
549 (DESC_B_SHIFT - HF_SS32_SHIFT);
550 if (!(env->cr[0] & CR0_PE_MASK) ||
551 (env->eflags & VM_MASK) ||
552 !(hflags & HF_CS32_MASK)) {
553 hflags |= HF_ADDSEG_MASK;
554 } else {
555 hflags |= ((env->segs[R_DS].base |
556 env->segs[R_ES].base |
557 env->segs[R_SS].base) != 0) <<
558 HF_ADDSEG_SHIFT;
561 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
563 return 0;
566 static int kvm_get_msrs(CPUState *env)
568 struct {
569 struct kvm_msrs info;
570 struct kvm_msr_entry entries[100];
571 } msr_data;
572 struct kvm_msr_entry *msrs = msr_data.entries;
573 int ret, i, n;
575 n = 0;
576 msrs[n++].index = MSR_IA32_SYSENTER_CS;
577 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
578 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
579 if (kvm_has_msr_star(env))
580 msrs[n++].index = MSR_STAR;
581 msrs[n++].index = MSR_IA32_TSC;
582 #ifdef TARGET_X86_64
583 /* FIXME lm_capable_kernel */
584 msrs[n++].index = MSR_CSTAR;
585 msrs[n++].index = MSR_KERNELGSBASE;
586 msrs[n++].index = MSR_FMASK;
587 msrs[n++].index = MSR_LSTAR;
588 #endif
589 msr_data.info.nmsrs = n;
590 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
591 if (ret < 0)
592 return ret;
594 for (i = 0; i < ret; i++) {
595 switch (msrs[i].index) {
596 case MSR_IA32_SYSENTER_CS:
597 env->sysenter_cs = msrs[i].data;
598 break;
599 case MSR_IA32_SYSENTER_ESP:
600 env->sysenter_esp = msrs[i].data;
601 break;
602 case MSR_IA32_SYSENTER_EIP:
603 env->sysenter_eip = msrs[i].data;
604 break;
605 case MSR_STAR:
606 env->star = msrs[i].data;
607 break;
608 #ifdef TARGET_X86_64
609 case MSR_CSTAR:
610 env->cstar = msrs[i].data;
611 break;
612 case MSR_KERNELGSBASE:
613 env->kernelgsbase = msrs[i].data;
614 break;
615 case MSR_FMASK:
616 env->fmask = msrs[i].data;
617 break;
618 case MSR_LSTAR:
619 env->lstar = msrs[i].data;
620 break;
621 #endif
622 case MSR_IA32_TSC:
623 env->tsc = msrs[i].data;
624 break;
628 return 0;
631 int kvm_arch_put_registers(CPUState *env)
633 int ret;
635 ret = kvm_getput_regs(env, 1);
636 if (ret < 0)
637 return ret;
639 ret = kvm_put_fpu(env);
640 if (ret < 0)
641 return ret;
643 ret = kvm_put_sregs(env);
644 if (ret < 0)
645 return ret;
647 ret = kvm_put_msrs(env);
648 if (ret < 0)
649 return ret;
651 return 0;
654 int kvm_arch_get_registers(CPUState *env)
656 int ret;
658 ret = kvm_getput_regs(env, 0);
659 if (ret < 0)
660 return ret;
662 ret = kvm_get_fpu(env);
663 if (ret < 0)
664 return ret;
666 ret = kvm_get_sregs(env);
667 if (ret < 0)
668 return ret;
670 ret = kvm_get_msrs(env);
671 if (ret < 0)
672 return ret;
674 return 0;
677 int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
679 /* Try to inject an interrupt if the guest can accept it */
680 if (run->ready_for_interrupt_injection &&
681 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
682 (env->eflags & IF_MASK)) {
683 int irq;
685 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
686 irq = cpu_get_pic_interrupt(env);
687 if (irq >= 0) {
688 struct kvm_interrupt intr;
689 intr.irq = irq;
690 /* FIXME: errors */
691 dprintf("injected interrupt %d\n", irq);
692 kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
696 /* If we have an interrupt but the guest is not ready to receive an
697 * interrupt, request an interrupt window exit. This will
698 * cause a return to userspace as soon as the guest is ready to
699 * receive interrupts. */
700 if ((env->interrupt_request & CPU_INTERRUPT_HARD))
701 run->request_interrupt_window = 1;
702 else
703 run->request_interrupt_window = 0;
705 dprintf("setting tpr\n");
706 run->cr8 = cpu_get_apic_tpr(env);
708 return 0;
711 int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
713 if (run->if_flag)
714 env->eflags |= IF_MASK;
715 else
716 env->eflags &= ~IF_MASK;
718 cpu_set_apic_tpr(env, run->cr8);
719 cpu_set_apic_base(env, run->apic_base);
721 return 0;
724 static int kvm_handle_halt(CPUState *env)
726 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
727 (env->eflags & IF_MASK)) &&
728 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
729 env->halted = 1;
730 env->exception_index = EXCP_HLT;
731 return 0;
734 return 1;
737 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
739 int ret = 0;
741 switch (run->exit_reason) {
742 case KVM_EXIT_HLT:
743 dprintf("handle_hlt\n");
744 ret = kvm_handle_halt(env);
745 break;
748 return ret;
751 #ifdef KVM_CAP_SET_GUEST_DEBUG
752 int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
754 const static uint8_t int3 = 0xcc;
756 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
757 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1))
758 return -EINVAL;
759 return 0;
762 int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
764 uint8_t int3;
766 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
767 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
768 return -EINVAL;
769 return 0;
772 static struct {
773 target_ulong addr;
774 int len;
775 int type;
776 } hw_breakpoint[4];
778 static int nb_hw_breakpoint;
780 static int find_hw_breakpoint(target_ulong addr, int len, int type)
782 int n;
784 for (n = 0; n < nb_hw_breakpoint; n++)
785 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
786 (hw_breakpoint[n].len == len || len == -1))
787 return n;
788 return -1;
791 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
792 target_ulong len, int type)
794 switch (type) {
795 case GDB_BREAKPOINT_HW:
796 len = 1;
797 break;
798 case GDB_WATCHPOINT_WRITE:
799 case GDB_WATCHPOINT_ACCESS:
800 switch (len) {
801 case 1:
802 break;
803 case 2:
804 case 4:
805 case 8:
806 if (addr & (len - 1))
807 return -EINVAL;
808 break;
809 default:
810 return -EINVAL;
812 break;
813 default:
814 return -ENOSYS;
817 if (nb_hw_breakpoint == 4)
818 return -ENOBUFS;
820 if (find_hw_breakpoint(addr, len, type) >= 0)
821 return -EEXIST;
823 hw_breakpoint[nb_hw_breakpoint].addr = addr;
824 hw_breakpoint[nb_hw_breakpoint].len = len;
825 hw_breakpoint[nb_hw_breakpoint].type = type;
826 nb_hw_breakpoint++;
828 return 0;
831 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
832 target_ulong len, int type)
834 int n;
836 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
837 if (n < 0)
838 return -ENOENT;
840 nb_hw_breakpoint--;
841 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
843 return 0;
846 void kvm_arch_remove_all_hw_breakpoints(void)
848 nb_hw_breakpoint = 0;
851 static CPUWatchpoint hw_watchpoint;
853 int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
855 int handle = 0;
856 int n;
858 if (arch_info->exception == 1) {
859 if (arch_info->dr6 & (1 << 14)) {
860 if (cpu_single_env->singlestep_enabled)
861 handle = 1;
862 } else {
863 for (n = 0; n < 4; n++)
864 if (arch_info->dr6 & (1 << n))
865 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
866 case 0x0:
867 handle = 1;
868 break;
869 case 0x1:
870 handle = 1;
871 cpu_single_env->watchpoint_hit = &hw_watchpoint;
872 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
873 hw_watchpoint.flags = BP_MEM_WRITE;
874 break;
875 case 0x3:
876 handle = 1;
877 cpu_single_env->watchpoint_hit = &hw_watchpoint;
878 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
879 hw_watchpoint.flags = BP_MEM_ACCESS;
880 break;
883 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc))
884 handle = 1;
886 if (!handle)
887 kvm_update_guest_debug(cpu_single_env,
888 (arch_info->exception == 1) ?
889 KVM_GUESTDBG_INJECT_DB : KVM_GUESTDBG_INJECT_BP);
891 return handle;
894 void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
896 const uint8_t type_code[] = {
897 [GDB_BREAKPOINT_HW] = 0x0,
898 [GDB_WATCHPOINT_WRITE] = 0x1,
899 [GDB_WATCHPOINT_ACCESS] = 0x3
901 const uint8_t len_code[] = {
902 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
904 int n;
906 if (kvm_sw_breakpoints_active(env))
907 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
909 if (nb_hw_breakpoint > 0) {
910 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
911 dbg->arch.debugreg[7] = 0x0600;
912 for (n = 0; n < nb_hw_breakpoint; n++) {
913 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
914 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
915 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
916 (len_code[hw_breakpoint[n].len] << (18 + n*4));
920 #endif /* KVM_CAP_SET_GUEST_DEBUG */