coroutine: Revert to constant batch size
[qemu/ar7.git] / hw / i2c / smbus_eeprom.c
blob12c5741f3884a3ce17a9583f5661722e91efdf75
1 /*
2 * QEMU SMBus EEPROM device
4 * Copyright (c) 2007 Arastra, Inc.
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "qapi/error.h"
28 #include "hw/boards.h"
29 #include "hw/i2c/i2c.h"
30 #include "hw/i2c/smbus_slave.h"
31 #include "hw/qdev-properties.h"
32 #include "migration/vmstate.h"
33 #include "hw/i2c/smbus_eeprom.h"
34 #include "qom/object.h"
36 //#define DEBUG
38 #define TYPE_SMBUS_EEPROM "smbus-eeprom"
40 OBJECT_DECLARE_SIMPLE_TYPE(SMBusEEPROMDevice, SMBUS_EEPROM)
42 #define SMBUS_EEPROM_SIZE 256
44 struct SMBusEEPROMDevice {
45 SMBusDevice smbusdev;
46 uint8_t data[SMBUS_EEPROM_SIZE];
47 uint8_t *init_data;
48 uint8_t offset;
49 bool accessed;
52 static uint8_t eeprom_receive_byte(SMBusDevice *dev)
54 SMBusEEPROMDevice *eeprom = SMBUS_EEPROM(dev);
55 uint8_t *data = eeprom->data;
56 uint8_t val = data[eeprom->offset++];
58 eeprom->accessed = true;
59 #ifdef DEBUG
60 printf("eeprom_receive_byte: addr=0x%02x val=0x%02x\n",
61 dev->i2c.address, val);
62 #endif
63 return val;
66 static int eeprom_write_data(SMBusDevice *dev, uint8_t *buf, uint8_t len)
68 SMBusEEPROMDevice *eeprom = SMBUS_EEPROM(dev);
69 uint8_t *data = eeprom->data;
71 eeprom->accessed = true;
72 #ifdef DEBUG
73 printf("eeprom_write_byte: addr=0x%02x cmd=0x%02x val=0x%02x\n",
74 dev->i2c.address, buf[0], buf[1]);
75 #endif
76 /* len is guaranteed to be > 0 */
77 eeprom->offset = buf[0];
78 buf++;
79 len--;
81 for (; len > 0; len--) {
82 data[eeprom->offset] = *buf++;
83 eeprom->offset = (eeprom->offset + 1) % SMBUS_EEPROM_SIZE;
86 return 0;
89 static bool smbus_eeprom_vmstate_needed(void *opaque)
91 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
92 SMBusEEPROMDevice *eeprom = opaque;
94 return (eeprom->accessed || smbus_vmstate_needed(&eeprom->smbusdev)) &&
95 !mc->smbus_no_migration_support;
98 static const VMStateDescription vmstate_smbus_eeprom = {
99 .name = "smbus-eeprom",
100 .version_id = 1,
101 .minimum_version_id = 1,
102 .needed = smbus_eeprom_vmstate_needed,
103 .fields = (VMStateField[]) {
104 VMSTATE_SMBUS_DEVICE(smbusdev, SMBusEEPROMDevice),
105 VMSTATE_UINT8_ARRAY(data, SMBusEEPROMDevice, SMBUS_EEPROM_SIZE),
106 VMSTATE_UINT8(offset, SMBusEEPROMDevice),
107 VMSTATE_BOOL(accessed, SMBusEEPROMDevice),
108 VMSTATE_END_OF_LIST()
113 * Reset the EEPROM contents to the initial state on a reset. This
114 * isn't really how an EEPROM works, of course, but the general
115 * principle of QEMU is to restore function on reset to what it would
116 * be if QEMU was stopped and started.
118 * The proper thing to do would be to have a backing blockdev to hold
119 * the contents and restore that on startup, and not do this on reset.
120 * But until that time, act as if we had been stopped and restarted.
122 static void smbus_eeprom_reset(DeviceState *dev)
124 SMBusEEPROMDevice *eeprom = SMBUS_EEPROM(dev);
126 memcpy(eeprom->data, eeprom->init_data, SMBUS_EEPROM_SIZE);
127 eeprom->offset = 0;
130 static void smbus_eeprom_realize(DeviceState *dev, Error **errp)
132 SMBusEEPROMDevice *eeprom = SMBUS_EEPROM(dev);
134 smbus_eeprom_reset(dev);
135 if (eeprom->init_data == NULL) {
136 error_setg(errp, "init_data cannot be NULL");
140 static void smbus_eeprom_class_initfn(ObjectClass *klass, void *data)
142 DeviceClass *dc = DEVICE_CLASS(klass);
143 SMBusDeviceClass *sc = SMBUS_DEVICE_CLASS(klass);
145 dc->realize = smbus_eeprom_realize;
146 dc->reset = smbus_eeprom_reset;
147 sc->receive_byte = eeprom_receive_byte;
148 sc->write_data = eeprom_write_data;
149 dc->vmsd = &vmstate_smbus_eeprom;
150 /* Reason: init_data */
151 dc->user_creatable = false;
154 static const TypeInfo smbus_eeprom_info = {
155 .name = TYPE_SMBUS_EEPROM,
156 .parent = TYPE_SMBUS_DEVICE,
157 .instance_size = sizeof(SMBusEEPROMDevice),
158 .class_init = smbus_eeprom_class_initfn,
161 static void smbus_eeprom_register_types(void)
163 type_register_static(&smbus_eeprom_info);
166 type_init(smbus_eeprom_register_types)
168 void smbus_eeprom_init_one(I2CBus *smbus, uint8_t address, uint8_t *eeprom_buf)
170 DeviceState *dev;
172 dev = qdev_new(TYPE_SMBUS_EEPROM);
173 qdev_prop_set_uint8(dev, "address", address);
174 /* FIXME: use an array of byte or block backend property? */
175 SMBUS_EEPROM(dev)->init_data = eeprom_buf;
176 qdev_realize_and_unref(dev, (BusState *)smbus, &error_fatal);
179 void smbus_eeprom_init(I2CBus *smbus, int nb_eeprom,
180 const uint8_t *eeprom_spd, int eeprom_spd_size)
182 int i;
183 /* XXX: make this persistent */
185 assert(nb_eeprom <= 8);
186 uint8_t *eeprom_buf = g_malloc0(8 * SMBUS_EEPROM_SIZE);
187 if (eeprom_spd_size > 0) {
188 memcpy(eeprom_buf, eeprom_spd, eeprom_spd_size);
191 for (i = 0; i < nb_eeprom; i++) {
192 smbus_eeprom_init_one(smbus, 0x50 + i,
193 eeprom_buf + (i * SMBUS_EEPROM_SIZE));
197 /* Generate SDRAM SPD EEPROM data describing a module of type and size */
198 uint8_t *spd_data_generate(enum sdram_type type, ram_addr_t ram_size)
200 uint8_t *spd;
201 uint8_t nbanks;
202 uint16_t density;
203 uint32_t size;
204 int min_log2, max_log2, sz_log2;
205 int i;
207 switch (type) {
208 case SDR:
209 min_log2 = 2;
210 max_log2 = 9;
211 break;
212 case DDR:
213 min_log2 = 5;
214 max_log2 = 12;
215 break;
216 case DDR2:
217 min_log2 = 7;
218 max_log2 = 14;
219 break;
220 default:
221 g_assert_not_reached();
223 size = ram_size >> 20; /* work in terms of megabytes */
224 sz_log2 = 31 - clz32(size);
225 size = 1U << sz_log2;
226 assert(ram_size == size * MiB);
227 assert(sz_log2 >= min_log2);
229 nbanks = 1;
230 while (sz_log2 > max_log2 && nbanks < 8) {
231 sz_log2--;
232 nbanks *= 2;
235 assert(size == (1ULL << sz_log2) * nbanks);
237 /* split to 2 banks if possible to avoid a bug in MIPS Malta firmware */
238 if (nbanks == 1 && sz_log2 > min_log2) {
239 sz_log2--;
240 nbanks++;
243 density = 1ULL << (sz_log2 - 2);
244 switch (type) {
245 case DDR2:
246 density = (density & 0xe0) | (density >> 8 & 0x1f);
247 break;
248 case DDR:
249 density = (density & 0xf8) | (density >> 8 & 0x07);
250 break;
251 case SDR:
252 default:
253 density &= 0xff;
254 break;
257 spd = g_malloc0(256);
258 spd[0] = 128; /* data bytes in EEPROM */
259 spd[1] = 8; /* log2 size of EEPROM */
260 spd[2] = type;
261 spd[3] = 13; /* row address bits */
262 spd[4] = 10; /* column address bits */
263 spd[5] = (type == DDR2 ? nbanks - 1 : nbanks);
264 spd[6] = 64; /* module data width */
265 /* reserved / data width high */
266 spd[8] = 4; /* interface voltage level */
267 spd[9] = 0x25; /* highest CAS latency */
268 spd[10] = 1; /* access time */
269 /* DIMM configuration 0 = non-ECC */
270 spd[12] = 0x82; /* refresh requirements */
271 spd[13] = 8; /* primary SDRAM width */
272 /* ECC SDRAM width */
273 spd[15] = (type == DDR2 ? 0 : 1); /* reserved / delay for random col rd */
274 spd[16] = 12; /* burst lengths supported */
275 spd[17] = 4; /* banks per SDRAM device */
276 spd[18] = 12; /* ~CAS latencies supported */
277 spd[19] = (type == DDR2 ? 0 : 1); /* reserved / ~CS latencies supported */
278 spd[20] = 2; /* DIMM type / ~WE latencies */
279 spd[21] = (type < DDR2 ? 0x20 : 0); /* module features */
280 /* memory chip features */
281 spd[23] = 0x12; /* clock cycle time @ medium CAS latency */
282 /* data access time */
283 /* clock cycle time @ short CAS latency */
284 /* data access time */
285 spd[27] = 20; /* min. row precharge time */
286 spd[28] = 15; /* min. row active row delay */
287 spd[29] = 20; /* min. ~RAS to ~CAS delay */
288 spd[30] = 45; /* min. active to precharge time */
289 spd[31] = density;
290 spd[32] = 20; /* addr/cmd setup time */
291 spd[33] = 8; /* addr/cmd hold time */
292 spd[34] = 20; /* data input setup time */
293 spd[35] = 8; /* data input hold time */
295 /* checksum */
296 for (i = 0; i < 63; i++) {
297 spd[63] += spd[i];
299 return spd;