4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include "qemu/osdep.h"
16 #include "qapi/error.h"
17 #include <sys/ioctl.h>
18 #include <sys/utsname.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
23 #include "qemu-common.h"
25 #include "sysemu/sysemu.h"
26 #include "sysemu/kvm_int.h"
30 #include "exec/gdbstub.h"
31 #include "qemu/host-utils.h"
32 #include "qemu/config-file.h"
33 #include "qemu/error-report.h"
34 #include "hw/i386/pc.h"
35 #include "hw/i386/apic.h"
36 #include "hw/i386/apic_internal.h"
37 #include "hw/i386/apic-msidef.h"
39 #include "exec/ioport.h"
40 #include "standard-headers/asm-x86/hyperv.h"
41 #include "hw/pci/pci.h"
42 #include "hw/pci/msi.h"
43 #include "migration/migration.h"
44 #include "exec/memattrs.h"
49 #define DPRINTF(fmt, ...) \
50 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
52 #define DPRINTF(fmt, ...) \
56 #define MSR_KVM_WALL_CLOCK 0x11
57 #define MSR_KVM_SYSTEM_TIME 0x12
59 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
60 * 255 kvm_msr_entry structs */
61 #define MSR_BUF_SIZE 4096
64 #define BUS_MCEERR_AR 4
67 #define BUS_MCEERR_AO 5
70 const KVMCapabilityInfo kvm_arch_required_capabilities
[] = {
71 KVM_CAP_INFO(SET_TSS_ADDR
),
72 KVM_CAP_INFO(EXT_CPUID
),
73 KVM_CAP_INFO(MP_STATE
),
77 static bool has_msr_star
;
78 static bool has_msr_hsave_pa
;
79 static bool has_msr_tsc_aux
;
80 static bool has_msr_tsc_adjust
;
81 static bool has_msr_tsc_deadline
;
82 static bool has_msr_feature_control
;
83 static bool has_msr_async_pf_en
;
84 static bool has_msr_pv_eoi_en
;
85 static bool has_msr_misc_enable
;
86 static bool has_msr_smbase
;
87 static bool has_msr_bndcfgs
;
88 static bool has_msr_kvm_steal_time
;
89 static int lm_capable_kernel
;
90 static bool has_msr_hv_hypercall
;
91 static bool has_msr_hv_vapic
;
92 static bool has_msr_hv_tsc
;
93 static bool has_msr_hv_crash
;
94 static bool has_msr_hv_reset
;
95 static bool has_msr_hv_vpindex
;
96 static bool has_msr_hv_runtime
;
97 static bool has_msr_hv_synic
;
98 static bool has_msr_hv_stimer
;
99 static bool has_msr_mtrr
;
100 static bool has_msr_xss
;
102 static bool has_msr_architectural_pmu
;
103 static uint32_t num_architectural_pmu_counters
;
105 static int has_xsave
;
107 static int has_pit_state2
;
109 static bool has_msr_mcg_ext_ctl
;
111 static struct kvm_cpuid2
*cpuid_cache
;
113 int kvm_has_pit_state2(void)
115 return has_pit_state2
;
118 bool kvm_has_smm(void)
120 return kvm_check_extension(kvm_state
, KVM_CAP_X86_SMM
);
123 bool kvm_allows_irq0_override(void)
125 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
128 static int kvm_get_tsc(CPUState
*cs
)
130 X86CPU
*cpu
= X86_CPU(cs
);
131 CPUX86State
*env
= &cpu
->env
;
133 struct kvm_msrs info
;
134 struct kvm_msr_entry entries
[1];
138 if (env
->tsc_valid
) {
142 msr_data
.info
.nmsrs
= 1;
143 msr_data
.entries
[0].index
= MSR_IA32_TSC
;
144 env
->tsc_valid
= !runstate_is_running();
146 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_MSRS
, &msr_data
);
152 env
->tsc
= msr_data
.entries
[0].data
;
156 static inline void do_kvm_synchronize_tsc(void *arg
)
163 void kvm_synchronize_all_tsc(void)
169 run_on_cpu(cpu
, do_kvm_synchronize_tsc
, cpu
);
174 static struct kvm_cpuid2
*try_get_cpuid(KVMState
*s
, int max
)
176 struct kvm_cpuid2
*cpuid
;
179 size
= sizeof(*cpuid
) + max
* sizeof(*cpuid
->entries
);
180 cpuid
= g_malloc0(size
);
182 r
= kvm_ioctl(s
, KVM_GET_SUPPORTED_CPUID
, cpuid
);
183 if (r
== 0 && cpuid
->nent
>= max
) {
191 fprintf(stderr
, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
199 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
202 static struct kvm_cpuid2
*get_supported_cpuid(KVMState
*s
)
204 struct kvm_cpuid2
*cpuid
;
207 if (cpuid_cache
!= NULL
) {
210 while ((cpuid
= try_get_cpuid(s
, max
)) == NULL
) {
217 static const struct kvm_para_features
{
220 } para_features
[] = {
221 { KVM_CAP_CLOCKSOURCE
, KVM_FEATURE_CLOCKSOURCE
},
222 { KVM_CAP_NOP_IO_DELAY
, KVM_FEATURE_NOP_IO_DELAY
},
223 { KVM_CAP_PV_MMU
, KVM_FEATURE_MMU_OP
},
224 { KVM_CAP_ASYNC_PF
, KVM_FEATURE_ASYNC_PF
},
227 static int get_para_features(KVMState
*s
)
231 for (i
= 0; i
< ARRAY_SIZE(para_features
); i
++) {
232 if (kvm_check_extension(s
, para_features
[i
].cap
)) {
233 features
|= (1 << para_features
[i
].feature
);
241 /* Returns the value for a specific register on the cpuid entry
243 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2
*entry
, int reg
)
263 /* Find matching entry for function/index on kvm_cpuid2 struct
265 static struct kvm_cpuid_entry2
*cpuid_find_entry(struct kvm_cpuid2
*cpuid
,
270 for (i
= 0; i
< cpuid
->nent
; ++i
) {
271 if (cpuid
->entries
[i
].function
== function
&&
272 cpuid
->entries
[i
].index
== index
) {
273 return &cpuid
->entries
[i
];
280 uint32_t kvm_arch_get_supported_cpuid(KVMState
*s
, uint32_t function
,
281 uint32_t index
, int reg
)
283 struct kvm_cpuid2
*cpuid
;
285 uint32_t cpuid_1_edx
;
288 cpuid
= get_supported_cpuid(s
);
290 struct kvm_cpuid_entry2
*entry
= cpuid_find_entry(cpuid
, function
, index
);
293 ret
= cpuid_entry_get_reg(entry
, reg
);
296 /* Fixups for the data returned by KVM, below */
298 if (function
== 1 && reg
== R_EDX
) {
299 /* KVM before 2.6.30 misreports the following features */
300 ret
|= CPUID_MTRR
| CPUID_PAT
| CPUID_MCE
| CPUID_MCA
;
301 } else if (function
== 1 && reg
== R_ECX
) {
302 /* We can set the hypervisor flag, even if KVM does not return it on
303 * GET_SUPPORTED_CPUID
305 ret
|= CPUID_EXT_HYPERVISOR
;
306 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
307 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
308 * and the irqchip is in the kernel.
310 if (kvm_irqchip_in_kernel() &&
311 kvm_check_extension(s
, KVM_CAP_TSC_DEADLINE_TIMER
)) {
312 ret
|= CPUID_EXT_TSC_DEADLINE_TIMER
;
315 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
316 * without the in-kernel irqchip
318 if (!kvm_irqchip_in_kernel()) {
319 ret
&= ~CPUID_EXT_X2APIC
;
321 } else if (function
== 6 && reg
== R_EAX
) {
322 ret
|= CPUID_6_EAX_ARAT
; /* safe to allow because of emulated APIC */
323 } else if (function
== 0x80000001 && reg
== R_EDX
) {
324 /* On Intel, kvm returns cpuid according to the Intel spec,
325 * so add missing bits according to the AMD spec:
327 cpuid_1_edx
= kvm_arch_get_supported_cpuid(s
, 1, 0, R_EDX
);
328 ret
|= cpuid_1_edx
& CPUID_EXT2_AMD_ALIASES
;
331 /* fallback for older kernels */
332 if ((function
== KVM_CPUID_FEATURES
) && !found
) {
333 ret
= get_para_features(s
);
339 typedef struct HWPoisonPage
{
341 QLIST_ENTRY(HWPoisonPage
) list
;
344 static QLIST_HEAD(, HWPoisonPage
) hwpoison_page_list
=
345 QLIST_HEAD_INITIALIZER(hwpoison_page_list
);
347 static void kvm_unpoison_all(void *param
)
349 HWPoisonPage
*page
, *next_page
;
351 QLIST_FOREACH_SAFE(page
, &hwpoison_page_list
, list
, next_page
) {
352 QLIST_REMOVE(page
, list
);
353 qemu_ram_remap(page
->ram_addr
, TARGET_PAGE_SIZE
);
358 static void kvm_hwpoison_page_add(ram_addr_t ram_addr
)
362 QLIST_FOREACH(page
, &hwpoison_page_list
, list
) {
363 if (page
->ram_addr
== ram_addr
) {
367 page
= g_new(HWPoisonPage
, 1);
368 page
->ram_addr
= ram_addr
;
369 QLIST_INSERT_HEAD(&hwpoison_page_list
, page
, list
);
372 static int kvm_get_mce_cap_supported(KVMState
*s
, uint64_t *mce_cap
,
377 r
= kvm_check_extension(s
, KVM_CAP_MCE
);
380 return kvm_ioctl(s
, KVM_X86_GET_MCE_CAP_SUPPORTED
, mce_cap
);
385 static void kvm_mce_inject(X86CPU
*cpu
, hwaddr paddr
, int code
)
387 CPUState
*cs
= CPU(cpu
);
388 CPUX86State
*env
= &cpu
->env
;
389 uint64_t status
= MCI_STATUS_VAL
| MCI_STATUS_UC
| MCI_STATUS_EN
|
390 MCI_STATUS_MISCV
| MCI_STATUS_ADDRV
| MCI_STATUS_S
;
391 uint64_t mcg_status
= MCG_STATUS_MCIP
;
394 if (code
== BUS_MCEERR_AR
) {
395 status
|= MCI_STATUS_AR
| 0x134;
396 mcg_status
|= MCG_STATUS_EIPV
;
399 mcg_status
|= MCG_STATUS_RIPV
;
402 flags
= cpu_x86_support_mca_broadcast(env
) ? MCE_INJECT_BROADCAST
: 0;
403 /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
404 * guest kernel back into env->mcg_ext_ctl.
406 cpu_synchronize_state(cs
);
407 if (env
->mcg_ext_ctl
& MCG_EXT_CTL_LMCE_EN
) {
408 mcg_status
|= MCG_STATUS_LMCE
;
412 cpu_x86_inject_mce(NULL
, cpu
, 9, status
, mcg_status
, paddr
,
413 (MCM_ADDR_PHYS
<< 6) | 0xc, flags
);
416 static void hardware_memory_error(void)
418 fprintf(stderr
, "Hardware memory error!\n");
422 int kvm_arch_on_sigbus_vcpu(CPUState
*c
, int code
, void *addr
)
424 X86CPU
*cpu
= X86_CPU(c
);
425 CPUX86State
*env
= &cpu
->env
;
429 if ((env
->mcg_cap
& MCG_SER_P
) && addr
430 && (code
== BUS_MCEERR_AR
|| code
== BUS_MCEERR_AO
)) {
431 ram_addr
= qemu_ram_addr_from_host(addr
);
432 if (ram_addr
== RAM_ADDR_INVALID
||
433 !kvm_physical_memory_addr_from_host(c
->kvm_state
, addr
, &paddr
)) {
434 fprintf(stderr
, "Hardware memory error for memory used by "
435 "QEMU itself instead of guest system!\n");
436 /* Hope we are lucky for AO MCE */
437 if (code
== BUS_MCEERR_AO
) {
440 hardware_memory_error();
443 kvm_hwpoison_page_add(ram_addr
);
444 kvm_mce_inject(cpu
, paddr
, code
);
446 if (code
== BUS_MCEERR_AO
) {
448 } else if (code
== BUS_MCEERR_AR
) {
449 hardware_memory_error();
457 int kvm_arch_on_sigbus(int code
, void *addr
)
459 X86CPU
*cpu
= X86_CPU(first_cpu
);
461 if ((cpu
->env
.mcg_cap
& MCG_SER_P
) && addr
&& code
== BUS_MCEERR_AO
) {
465 /* Hope we are lucky for AO MCE */
466 ram_addr
= qemu_ram_addr_from_host(addr
);
467 if (ram_addr
== RAM_ADDR_INVALID
||
468 !kvm_physical_memory_addr_from_host(first_cpu
->kvm_state
,
470 fprintf(stderr
, "Hardware memory error for memory used by "
471 "QEMU itself instead of guest system!: %p\n", addr
);
474 kvm_hwpoison_page_add(ram_addr
);
475 kvm_mce_inject(X86_CPU(first_cpu
), paddr
, code
);
477 if (code
== BUS_MCEERR_AO
) {
479 } else if (code
== BUS_MCEERR_AR
) {
480 hardware_memory_error();
488 static int kvm_inject_mce_oldstyle(X86CPU
*cpu
)
490 CPUX86State
*env
= &cpu
->env
;
492 if (!kvm_has_vcpu_events() && env
->exception_injected
== EXCP12_MCHK
) {
493 unsigned int bank
, bank_num
= env
->mcg_cap
& 0xff;
494 struct kvm_x86_mce mce
;
496 env
->exception_injected
= -1;
499 * There must be at least one bank in use if an MCE is pending.
500 * Find it and use its values for the event injection.
502 for (bank
= 0; bank
< bank_num
; bank
++) {
503 if (env
->mce_banks
[bank
* 4 + 1] & MCI_STATUS_VAL
) {
507 assert(bank
< bank_num
);
510 mce
.status
= env
->mce_banks
[bank
* 4 + 1];
511 mce
.mcg_status
= env
->mcg_status
;
512 mce
.addr
= env
->mce_banks
[bank
* 4 + 2];
513 mce
.misc
= env
->mce_banks
[bank
* 4 + 3];
515 return kvm_vcpu_ioctl(CPU(cpu
), KVM_X86_SET_MCE
, &mce
);
520 static void cpu_update_state(void *opaque
, int running
, RunState state
)
522 CPUX86State
*env
= opaque
;
525 env
->tsc_valid
= false;
529 unsigned long kvm_arch_vcpu_id(CPUState
*cs
)
531 X86CPU
*cpu
= X86_CPU(cs
);
535 #ifndef KVM_CPUID_SIGNATURE_NEXT
536 #define KVM_CPUID_SIGNATURE_NEXT 0x40000100
539 static bool hyperv_hypercall_available(X86CPU
*cpu
)
541 return cpu
->hyperv_vapic
||
542 (cpu
->hyperv_spinlock_attempts
!= HYPERV_SPINLOCK_NEVER_RETRY
);
545 static bool hyperv_enabled(X86CPU
*cpu
)
547 CPUState
*cs
= CPU(cpu
);
548 return kvm_check_extension(cs
->kvm_state
, KVM_CAP_HYPERV
) > 0 &&
549 (hyperv_hypercall_available(cpu
) ||
551 cpu
->hyperv_relaxed_timing
||
554 cpu
->hyperv_vpindex
||
555 cpu
->hyperv_runtime
||
560 static int kvm_arch_set_tsc_khz(CPUState
*cs
)
562 X86CPU
*cpu
= X86_CPU(cs
);
563 CPUX86State
*env
= &cpu
->env
;
570 r
= kvm_check_extension(cs
->kvm_state
, KVM_CAP_TSC_CONTROL
) ?
571 kvm_vcpu_ioctl(cs
, KVM_SET_TSC_KHZ
, env
->tsc_khz
) :
574 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
575 * TSC frequency doesn't match the one we want.
577 int cur_freq
= kvm_check_extension(cs
->kvm_state
, KVM_CAP_GET_TSC_KHZ
) ?
578 kvm_vcpu_ioctl(cs
, KVM_GET_TSC_KHZ
) :
580 if (cur_freq
<= 0 || cur_freq
!= env
->tsc_khz
) {
581 error_report("warning: TSC frequency mismatch between "
582 "VM (%" PRId64
" kHz) and host (%d kHz), "
583 "and TSC scaling unavailable",
584 env
->tsc_khz
, cur_freq
);
592 static int hyperv_handle_properties(CPUState
*cs
)
594 X86CPU
*cpu
= X86_CPU(cs
);
595 CPUX86State
*env
= &cpu
->env
;
597 if (cpu
->hyperv_relaxed_timing
) {
598 env
->features
[FEAT_HYPERV_EAX
] |= HV_X64_MSR_HYPERCALL_AVAILABLE
;
600 if (cpu
->hyperv_vapic
) {
601 env
->features
[FEAT_HYPERV_EAX
] |= HV_X64_MSR_HYPERCALL_AVAILABLE
;
602 env
->features
[FEAT_HYPERV_EAX
] |= HV_X64_MSR_APIC_ACCESS_AVAILABLE
;
603 has_msr_hv_vapic
= true;
605 if (cpu
->hyperv_time
&&
606 kvm_check_extension(cs
->kvm_state
, KVM_CAP_HYPERV_TIME
) > 0) {
607 env
->features
[FEAT_HYPERV_EAX
] |= HV_X64_MSR_HYPERCALL_AVAILABLE
;
608 env
->features
[FEAT_HYPERV_EAX
] |= HV_X64_MSR_TIME_REF_COUNT_AVAILABLE
;
609 env
->features
[FEAT_HYPERV_EAX
] |= 0x200;
610 has_msr_hv_tsc
= true;
612 if (cpu
->hyperv_crash
&& has_msr_hv_crash
) {
613 env
->features
[FEAT_HYPERV_EDX
] |= HV_X64_GUEST_CRASH_MSR_AVAILABLE
;
615 env
->features
[FEAT_HYPERV_EDX
] |= HV_X64_CPU_DYNAMIC_PARTITIONING_AVAILABLE
;
616 if (cpu
->hyperv_reset
&& has_msr_hv_reset
) {
617 env
->features
[FEAT_HYPERV_EAX
] |= HV_X64_MSR_RESET_AVAILABLE
;
619 if (cpu
->hyperv_vpindex
&& has_msr_hv_vpindex
) {
620 env
->features
[FEAT_HYPERV_EAX
] |= HV_X64_MSR_VP_INDEX_AVAILABLE
;
622 if (cpu
->hyperv_runtime
&& has_msr_hv_runtime
) {
623 env
->features
[FEAT_HYPERV_EAX
] |= HV_X64_MSR_VP_RUNTIME_AVAILABLE
;
625 if (cpu
->hyperv_synic
) {
628 if (!has_msr_hv_synic
||
629 kvm_vcpu_enable_cap(cs
, KVM_CAP_HYPERV_SYNIC
, 0)) {
630 fprintf(stderr
, "Hyper-V SynIC is not supported by kernel\n");
634 env
->features
[FEAT_HYPERV_EAX
] |= HV_X64_MSR_SYNIC_AVAILABLE
;
635 env
->msr_hv_synic_version
= HV_SYNIC_VERSION_1
;
636 for (sint
= 0; sint
< ARRAY_SIZE(env
->msr_hv_synic_sint
); sint
++) {
637 env
->msr_hv_synic_sint
[sint
] = HV_SYNIC_SINT_MASKED
;
640 if (cpu
->hyperv_stimer
) {
641 if (!has_msr_hv_stimer
) {
642 fprintf(stderr
, "Hyper-V timers aren't supported by kernel\n");
645 env
->features
[FEAT_HYPERV_EAX
] |= HV_X64_MSR_SYNTIMER_AVAILABLE
;
650 static Error
*invtsc_mig_blocker
;
652 #define KVM_MAX_CPUID_ENTRIES 100
654 int kvm_arch_init_vcpu(CPUState
*cs
)
657 struct kvm_cpuid2 cpuid
;
658 struct kvm_cpuid_entry2 entries
[KVM_MAX_CPUID_ENTRIES
];
659 } QEMU_PACKED cpuid_data
;
660 X86CPU
*cpu
= X86_CPU(cs
);
661 CPUX86State
*env
= &cpu
->env
;
662 uint32_t limit
, i
, j
, cpuid_i
;
664 struct kvm_cpuid_entry2
*c
;
665 uint32_t signature
[3];
666 int kvm_base
= KVM_CPUID_SIGNATURE
;
669 memset(&cpuid_data
, 0, sizeof(cpuid_data
));
673 /* Paravirtualization CPUIDs */
674 if (hyperv_enabled(cpu
)) {
675 c
= &cpuid_data
.entries
[cpuid_i
++];
676 c
->function
= HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS
;
677 if (!cpu
->hyperv_vendor_id
) {
678 memcpy(signature
, "Microsoft Hv", 12);
680 size_t len
= strlen(cpu
->hyperv_vendor_id
);
683 error_report("hv-vendor-id truncated to 12 characters");
686 memset(signature
, 0, 12);
687 memcpy(signature
, cpu
->hyperv_vendor_id
, len
);
689 c
->eax
= HYPERV_CPUID_MIN
;
690 c
->ebx
= signature
[0];
691 c
->ecx
= signature
[1];
692 c
->edx
= signature
[2];
694 c
= &cpuid_data
.entries
[cpuid_i
++];
695 c
->function
= HYPERV_CPUID_INTERFACE
;
696 memcpy(signature
, "Hv#1\0\0\0\0\0\0\0\0", 12);
697 c
->eax
= signature
[0];
702 c
= &cpuid_data
.entries
[cpuid_i
++];
703 c
->function
= HYPERV_CPUID_VERSION
;
707 c
= &cpuid_data
.entries
[cpuid_i
++];
708 c
->function
= HYPERV_CPUID_FEATURES
;
709 r
= hyperv_handle_properties(cs
);
713 c
->eax
= env
->features
[FEAT_HYPERV_EAX
];
714 c
->ebx
= env
->features
[FEAT_HYPERV_EBX
];
715 c
->edx
= env
->features
[FEAT_HYPERV_EDX
];
717 c
= &cpuid_data
.entries
[cpuid_i
++];
718 c
->function
= HYPERV_CPUID_ENLIGHTMENT_INFO
;
719 if (cpu
->hyperv_relaxed_timing
) {
720 c
->eax
|= HV_X64_RELAXED_TIMING_RECOMMENDED
;
722 if (has_msr_hv_vapic
) {
723 c
->eax
|= HV_X64_APIC_ACCESS_RECOMMENDED
;
725 c
->ebx
= cpu
->hyperv_spinlock_attempts
;
727 c
= &cpuid_data
.entries
[cpuid_i
++];
728 c
->function
= HYPERV_CPUID_IMPLEMENT_LIMITS
;
732 kvm_base
= KVM_CPUID_SIGNATURE_NEXT
;
733 has_msr_hv_hypercall
= true;
736 if (cpu
->expose_kvm
) {
737 memcpy(signature
, "KVMKVMKVM\0\0\0", 12);
738 c
= &cpuid_data
.entries
[cpuid_i
++];
739 c
->function
= KVM_CPUID_SIGNATURE
| kvm_base
;
740 c
->eax
= KVM_CPUID_FEATURES
| kvm_base
;
741 c
->ebx
= signature
[0];
742 c
->ecx
= signature
[1];
743 c
->edx
= signature
[2];
745 c
= &cpuid_data
.entries
[cpuid_i
++];
746 c
->function
= KVM_CPUID_FEATURES
| kvm_base
;
747 c
->eax
= env
->features
[FEAT_KVM
];
749 has_msr_async_pf_en
= c
->eax
& (1 << KVM_FEATURE_ASYNC_PF
);
751 has_msr_pv_eoi_en
= c
->eax
& (1 << KVM_FEATURE_PV_EOI
);
753 has_msr_kvm_steal_time
= c
->eax
& (1 << KVM_FEATURE_STEAL_TIME
);
756 cpu_x86_cpuid(env
, 0, 0, &limit
, &unused
, &unused
, &unused
);
758 for (i
= 0; i
<= limit
; i
++) {
759 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
760 fprintf(stderr
, "unsupported level value: 0x%x\n", limit
);
763 c
= &cpuid_data
.entries
[cpuid_i
++];
764 assert(cpuid_i
< 100);
768 /* Keep reading function 2 till all the input is received */
772 c
->flags
= KVM_CPUID_FLAG_STATEFUL_FUNC
|
773 KVM_CPUID_FLAG_STATE_READ_NEXT
;
774 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
775 times
= c
->eax
& 0xff;
777 for (j
= 1; j
< times
; ++j
) {
778 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
779 fprintf(stderr
, "cpuid_data is full, no space for "
780 "cpuid(eax:2):eax & 0xf = 0x%x\n", times
);
783 c
= &cpuid_data
.entries
[cpuid_i
++];
785 c
->flags
= KVM_CPUID_FLAG_STATEFUL_FUNC
;
786 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
794 if (i
== 0xd && j
== 64) {
798 c
->flags
= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
800 cpu_x86_cpuid(env
, i
, j
, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
802 if (i
== 4 && c
->eax
== 0) {
805 if (i
== 0xb && !(c
->ecx
& 0xff00)) {
808 if (i
== 0xd && c
->eax
== 0) {
811 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
812 fprintf(stderr
, "cpuid_data is full, no space for "
813 "cpuid(eax:0x%x,ecx:0x%x)\n", i
, j
);
816 c
= &cpuid_data
.entries
[cpuid_i
++];
822 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
830 cpu_x86_cpuid(env
, 0x0a, 0, &ver
, &unused
, &unused
, &unused
);
831 if ((ver
& 0xff) > 0) {
832 has_msr_architectural_pmu
= true;
833 num_architectural_pmu_counters
= (ver
& 0xff00) >> 8;
835 /* Shouldn't be more than 32, since that's the number of bits
836 * available in EBX to tell us _which_ counters are available.
839 if (num_architectural_pmu_counters
> MAX_GP_COUNTERS
) {
840 num_architectural_pmu_counters
= MAX_GP_COUNTERS
;
845 cpu_x86_cpuid(env
, 0x80000000, 0, &limit
, &unused
, &unused
, &unused
);
847 for (i
= 0x80000000; i
<= limit
; i
++) {
848 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
849 fprintf(stderr
, "unsupported xlevel value: 0x%x\n", limit
);
852 c
= &cpuid_data
.entries
[cpuid_i
++];
853 assert(cpuid_i
< 100);
857 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
860 /* Call Centaur's CPUID instructions they are supported. */
861 if (env
->cpuid_xlevel2
> 0) {
862 cpu_x86_cpuid(env
, 0xC0000000, 0, &limit
, &unused
, &unused
, &unused
);
864 for (i
= 0xC0000000; i
<= limit
; i
++) {
865 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
866 fprintf(stderr
, "unsupported xlevel2 value: 0x%x\n", limit
);
869 c
= &cpuid_data
.entries
[cpuid_i
++];
873 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
877 cpuid_data
.cpuid
.nent
= cpuid_i
;
879 if (((env
->cpuid_version
>> 8)&0xF) >= 6
880 && (env
->features
[FEAT_1_EDX
] & (CPUID_MCE
| CPUID_MCA
)) ==
881 (CPUID_MCE
| CPUID_MCA
)
882 && kvm_check_extension(cs
->kvm_state
, KVM_CAP_MCE
) > 0) {
883 uint64_t mcg_cap
, unsupported_caps
;
887 ret
= kvm_get_mce_cap_supported(cs
->kvm_state
, &mcg_cap
, &banks
);
889 fprintf(stderr
, "kvm_get_mce_cap_supported: %s", strerror(-ret
));
893 if (banks
< (env
->mcg_cap
& MCG_CAP_BANKS_MASK
)) {
894 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
895 (int)(env
->mcg_cap
& MCG_CAP_BANKS_MASK
), banks
);
899 unsupported_caps
= env
->mcg_cap
& ~(mcg_cap
| MCG_CAP_BANKS_MASK
);
900 if (unsupported_caps
) {
901 if (unsupported_caps
& MCG_LMCE_P
) {
902 error_report("kvm: LMCE not supported");
905 error_report("warning: Unsupported MCG_CAP bits: 0x%" PRIx64
,
909 env
->mcg_cap
&= mcg_cap
| MCG_CAP_BANKS_MASK
;
910 ret
= kvm_vcpu_ioctl(cs
, KVM_X86_SETUP_MCE
, &env
->mcg_cap
);
912 fprintf(stderr
, "KVM_X86_SETUP_MCE: %s", strerror(-ret
));
917 qemu_add_vm_change_state_handler(cpu_update_state
, env
);
919 c
= cpuid_find_entry(&cpuid_data
.cpuid
, 1, 0);
921 has_msr_feature_control
= !!(c
->ecx
& CPUID_EXT_VMX
) ||
922 !!(c
->ecx
& CPUID_EXT_SMX
);
925 if (env
->mcg_cap
& MCG_LMCE_P
) {
926 has_msr_mcg_ext_ctl
= has_msr_feature_control
= true;
929 c
= cpuid_find_entry(&cpuid_data
.cpuid
, 0x80000007, 0);
930 if (c
&& (c
->edx
& 1<<8) && invtsc_mig_blocker
== NULL
) {
932 error_setg(&invtsc_mig_blocker
,
933 "State blocked by non-migratable CPU device"
935 migrate_add_blocker(invtsc_mig_blocker
);
937 vmstate_x86_cpu
.unmigratable
= 1;
940 cpuid_data
.cpuid
.padding
= 0;
941 r
= kvm_vcpu_ioctl(cs
, KVM_SET_CPUID2
, &cpuid_data
);
946 r
= kvm_arch_set_tsc_khz(cs
);
951 /* vcpu's TSC frequency is either specified by user, or following
952 * the value used by KVM if the former is not present. In the
953 * latter case, we query it from KVM and record in env->tsc_khz,
954 * so that vcpu's TSC frequency can be migrated later via this field.
957 r
= kvm_check_extension(cs
->kvm_state
, KVM_CAP_GET_TSC_KHZ
) ?
958 kvm_vcpu_ioctl(cs
, KVM_GET_TSC_KHZ
) :
966 env
->kvm_xsave_buf
= qemu_memalign(4096, sizeof(struct kvm_xsave
));
968 cpu
->kvm_msr_buf
= g_malloc0(MSR_BUF_SIZE
);
970 if (env
->features
[FEAT_1_EDX
] & CPUID_MTRR
) {
973 if (!(env
->features
[FEAT_8000_0001_EDX
] & CPUID_EXT2_RDTSCP
)) {
974 has_msr_tsc_aux
= false;
980 void kvm_arch_reset_vcpu(X86CPU
*cpu
)
982 CPUX86State
*env
= &cpu
->env
;
984 env
->exception_injected
= -1;
985 env
->interrupt_injected
= -1;
987 if (kvm_irqchip_in_kernel()) {
988 env
->mp_state
= cpu_is_bsp(cpu
) ? KVM_MP_STATE_RUNNABLE
:
989 KVM_MP_STATE_UNINITIALIZED
;
991 env
->mp_state
= KVM_MP_STATE_RUNNABLE
;
995 void kvm_arch_do_init_vcpu(X86CPU
*cpu
)
997 CPUX86State
*env
= &cpu
->env
;
999 /* APs get directly into wait-for-SIPI state. */
1000 if (env
->mp_state
== KVM_MP_STATE_UNINITIALIZED
) {
1001 env
->mp_state
= KVM_MP_STATE_INIT_RECEIVED
;
1005 static int kvm_get_supported_msrs(KVMState
*s
)
1007 static int kvm_supported_msrs
;
1011 if (kvm_supported_msrs
== 0) {
1012 struct kvm_msr_list msr_list
, *kvm_msr_list
;
1014 kvm_supported_msrs
= -1;
1016 /* Obtain MSR list from KVM. These are the MSRs that we must
1019 ret
= kvm_ioctl(s
, KVM_GET_MSR_INDEX_LIST
, &msr_list
);
1020 if (ret
< 0 && ret
!= -E2BIG
) {
1023 /* Old kernel modules had a bug and could write beyond the provided
1024 memory. Allocate at least a safe amount of 1K. */
1025 kvm_msr_list
= g_malloc0(MAX(1024, sizeof(msr_list
) +
1027 sizeof(msr_list
.indices
[0])));
1029 kvm_msr_list
->nmsrs
= msr_list
.nmsrs
;
1030 ret
= kvm_ioctl(s
, KVM_GET_MSR_INDEX_LIST
, kvm_msr_list
);
1034 for (i
= 0; i
< kvm_msr_list
->nmsrs
; i
++) {
1035 if (kvm_msr_list
->indices
[i
] == MSR_STAR
) {
1036 has_msr_star
= true;
1039 if (kvm_msr_list
->indices
[i
] == MSR_VM_HSAVE_PA
) {
1040 has_msr_hsave_pa
= true;
1043 if (kvm_msr_list
->indices
[i
] == MSR_TSC_AUX
) {
1044 has_msr_tsc_aux
= true;
1047 if (kvm_msr_list
->indices
[i
] == MSR_TSC_ADJUST
) {
1048 has_msr_tsc_adjust
= true;
1051 if (kvm_msr_list
->indices
[i
] == MSR_IA32_TSCDEADLINE
) {
1052 has_msr_tsc_deadline
= true;
1055 if (kvm_msr_list
->indices
[i
] == MSR_IA32_SMBASE
) {
1056 has_msr_smbase
= true;
1059 if (kvm_msr_list
->indices
[i
] == MSR_IA32_MISC_ENABLE
) {
1060 has_msr_misc_enable
= true;
1063 if (kvm_msr_list
->indices
[i
] == MSR_IA32_BNDCFGS
) {
1064 has_msr_bndcfgs
= true;
1067 if (kvm_msr_list
->indices
[i
] == MSR_IA32_XSS
) {
1071 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_CRASH_CTL
) {
1072 has_msr_hv_crash
= true;
1075 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_RESET
) {
1076 has_msr_hv_reset
= true;
1079 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_VP_INDEX
) {
1080 has_msr_hv_vpindex
= true;
1083 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_VP_RUNTIME
) {
1084 has_msr_hv_runtime
= true;
1087 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_SCONTROL
) {
1088 has_msr_hv_synic
= true;
1091 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_STIMER0_CONFIG
) {
1092 has_msr_hv_stimer
= true;
1098 g_free(kvm_msr_list
);
1104 static Notifier smram_machine_done
;
1105 static KVMMemoryListener smram_listener
;
1106 static AddressSpace smram_address_space
;
1107 static MemoryRegion smram_as_root
;
1108 static MemoryRegion smram_as_mem
;
1110 static void register_smram_listener(Notifier
*n
, void *unused
)
1112 MemoryRegion
*smram
=
1113 (MemoryRegion
*) object_resolve_path("/machine/smram", NULL
);
1115 /* Outer container... */
1116 memory_region_init(&smram_as_root
, OBJECT(kvm_state
), "mem-container-smram", ~0ull);
1117 memory_region_set_enabled(&smram_as_root
, true);
1119 /* ... with two regions inside: normal system memory with low
1122 memory_region_init_alias(&smram_as_mem
, OBJECT(kvm_state
), "mem-smram",
1123 get_system_memory(), 0, ~0ull);
1124 memory_region_add_subregion_overlap(&smram_as_root
, 0, &smram_as_mem
, 0);
1125 memory_region_set_enabled(&smram_as_mem
, true);
1128 /* ... SMRAM with higher priority */
1129 memory_region_add_subregion_overlap(&smram_as_root
, 0, smram
, 10);
1130 memory_region_set_enabled(smram
, true);
1133 address_space_init(&smram_address_space
, &smram_as_root
, "KVM-SMRAM");
1134 kvm_memory_listener_register(kvm_state
, &smram_listener
,
1135 &smram_address_space
, 1);
1138 int kvm_arch_init(MachineState
*ms
, KVMState
*s
)
1140 uint64_t identity_base
= 0xfffbc000;
1141 uint64_t shadow_mem
;
1143 struct utsname utsname
;
1145 #ifdef KVM_CAP_XSAVE
1146 has_xsave
= kvm_check_extension(s
, KVM_CAP_XSAVE
);
1150 has_xcrs
= kvm_check_extension(s
, KVM_CAP_XCRS
);
1153 #ifdef KVM_CAP_PIT_STATE2
1154 has_pit_state2
= kvm_check_extension(s
, KVM_CAP_PIT_STATE2
);
1157 ret
= kvm_get_supported_msrs(s
);
1163 lm_capable_kernel
= strcmp(utsname
.machine
, "x86_64") == 0;
1166 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
1167 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
1168 * Since these must be part of guest physical memory, we need to allocate
1169 * them, both by setting their start addresses in the kernel and by
1170 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
1172 * Older KVM versions may not support setting the identity map base. In
1173 * that case we need to stick with the default, i.e. a 256K maximum BIOS
1176 if (kvm_check_extension(s
, KVM_CAP_SET_IDENTITY_MAP_ADDR
)) {
1177 /* Allows up to 16M BIOSes. */
1178 identity_base
= 0xfeffc000;
1180 ret
= kvm_vm_ioctl(s
, KVM_SET_IDENTITY_MAP_ADDR
, &identity_base
);
1186 /* Set TSS base one page after EPT identity map. */
1187 ret
= kvm_vm_ioctl(s
, KVM_SET_TSS_ADDR
, identity_base
+ 0x1000);
1192 /* Tell fw_cfg to notify the BIOS to reserve the range. */
1193 ret
= e820_add_entry(identity_base
, 0x4000, E820_RESERVED
);
1195 fprintf(stderr
, "e820_add_entry() table is full\n");
1198 qemu_register_reset(kvm_unpoison_all
, NULL
);
1200 shadow_mem
= machine_kvm_shadow_mem(ms
);
1201 if (shadow_mem
!= -1) {
1203 ret
= kvm_vm_ioctl(s
, KVM_SET_NR_MMU_PAGES
, shadow_mem
);
1209 if (kvm_check_extension(s
, KVM_CAP_X86_SMM
)) {
1210 smram_machine_done
.notify
= register_smram_listener
;
1211 qemu_add_machine_init_done_notifier(&smram_machine_done
);
1216 static void set_v8086_seg(struct kvm_segment
*lhs
, const SegmentCache
*rhs
)
1218 lhs
->selector
= rhs
->selector
;
1219 lhs
->base
= rhs
->base
;
1220 lhs
->limit
= rhs
->limit
;
1232 static void set_seg(struct kvm_segment
*lhs
, const SegmentCache
*rhs
)
1234 unsigned flags
= rhs
->flags
;
1235 lhs
->selector
= rhs
->selector
;
1236 lhs
->base
= rhs
->base
;
1237 lhs
->limit
= rhs
->limit
;
1238 lhs
->type
= (flags
>> DESC_TYPE_SHIFT
) & 15;
1239 lhs
->present
= (flags
& DESC_P_MASK
) != 0;
1240 lhs
->dpl
= (flags
>> DESC_DPL_SHIFT
) & 3;
1241 lhs
->db
= (flags
>> DESC_B_SHIFT
) & 1;
1242 lhs
->s
= (flags
& DESC_S_MASK
) != 0;
1243 lhs
->l
= (flags
>> DESC_L_SHIFT
) & 1;
1244 lhs
->g
= (flags
& DESC_G_MASK
) != 0;
1245 lhs
->avl
= (flags
& DESC_AVL_MASK
) != 0;
1246 lhs
->unusable
= !lhs
->present
;
1250 static void get_seg(SegmentCache
*lhs
, const struct kvm_segment
*rhs
)
1252 lhs
->selector
= rhs
->selector
;
1253 lhs
->base
= rhs
->base
;
1254 lhs
->limit
= rhs
->limit
;
1255 if (rhs
->unusable
) {
1258 lhs
->flags
= (rhs
->type
<< DESC_TYPE_SHIFT
) |
1259 (rhs
->present
* DESC_P_MASK
) |
1260 (rhs
->dpl
<< DESC_DPL_SHIFT
) |
1261 (rhs
->db
<< DESC_B_SHIFT
) |
1262 (rhs
->s
* DESC_S_MASK
) |
1263 (rhs
->l
<< DESC_L_SHIFT
) |
1264 (rhs
->g
* DESC_G_MASK
) |
1265 (rhs
->avl
* DESC_AVL_MASK
);
1269 static void kvm_getput_reg(__u64
*kvm_reg
, target_ulong
*qemu_reg
, int set
)
1272 *kvm_reg
= *qemu_reg
;
1274 *qemu_reg
= *kvm_reg
;
1278 static int kvm_getput_regs(X86CPU
*cpu
, int set
)
1280 CPUX86State
*env
= &cpu
->env
;
1281 struct kvm_regs regs
;
1285 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_REGS
, ®s
);
1291 kvm_getput_reg(®s
.rax
, &env
->regs
[R_EAX
], set
);
1292 kvm_getput_reg(®s
.rbx
, &env
->regs
[R_EBX
], set
);
1293 kvm_getput_reg(®s
.rcx
, &env
->regs
[R_ECX
], set
);
1294 kvm_getput_reg(®s
.rdx
, &env
->regs
[R_EDX
], set
);
1295 kvm_getput_reg(®s
.rsi
, &env
->regs
[R_ESI
], set
);
1296 kvm_getput_reg(®s
.rdi
, &env
->regs
[R_EDI
], set
);
1297 kvm_getput_reg(®s
.rsp
, &env
->regs
[R_ESP
], set
);
1298 kvm_getput_reg(®s
.rbp
, &env
->regs
[R_EBP
], set
);
1299 #ifdef TARGET_X86_64
1300 kvm_getput_reg(®s
.r8
, &env
->regs
[8], set
);
1301 kvm_getput_reg(®s
.r9
, &env
->regs
[9], set
);
1302 kvm_getput_reg(®s
.r10
, &env
->regs
[10], set
);
1303 kvm_getput_reg(®s
.r11
, &env
->regs
[11], set
);
1304 kvm_getput_reg(®s
.r12
, &env
->regs
[12], set
);
1305 kvm_getput_reg(®s
.r13
, &env
->regs
[13], set
);
1306 kvm_getput_reg(®s
.r14
, &env
->regs
[14], set
);
1307 kvm_getput_reg(®s
.r15
, &env
->regs
[15], set
);
1310 kvm_getput_reg(®s
.rflags
, &env
->eflags
, set
);
1311 kvm_getput_reg(®s
.rip
, &env
->eip
, set
);
1314 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_REGS
, ®s
);
1320 static int kvm_put_fpu(X86CPU
*cpu
)
1322 CPUX86State
*env
= &cpu
->env
;
1326 memset(&fpu
, 0, sizeof fpu
);
1327 fpu
.fsw
= env
->fpus
& ~(7 << 11);
1328 fpu
.fsw
|= (env
->fpstt
& 7) << 11;
1329 fpu
.fcw
= env
->fpuc
;
1330 fpu
.last_opcode
= env
->fpop
;
1331 fpu
.last_ip
= env
->fpip
;
1332 fpu
.last_dp
= env
->fpdp
;
1333 for (i
= 0; i
< 8; ++i
) {
1334 fpu
.ftwx
|= (!env
->fptags
[i
]) << i
;
1336 memcpy(fpu
.fpr
, env
->fpregs
, sizeof env
->fpregs
);
1337 for (i
= 0; i
< CPU_NB_REGS
; i
++) {
1338 stq_p(&fpu
.xmm
[i
][0], env
->xmm_regs
[i
].ZMM_Q(0));
1339 stq_p(&fpu
.xmm
[i
][8], env
->xmm_regs
[i
].ZMM_Q(1));
1341 fpu
.mxcsr
= env
->mxcsr
;
1343 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_FPU
, &fpu
);
1346 #define XSAVE_FCW_FSW 0
1347 #define XSAVE_FTW_FOP 1
1348 #define XSAVE_CWD_RIP 2
1349 #define XSAVE_CWD_RDP 4
1350 #define XSAVE_MXCSR 6
1351 #define XSAVE_ST_SPACE 8
1352 #define XSAVE_XMM_SPACE 40
1353 #define XSAVE_XSTATE_BV 128
1354 #define XSAVE_YMMH_SPACE 144
1355 #define XSAVE_BNDREGS 240
1356 #define XSAVE_BNDCSR 256
1357 #define XSAVE_OPMASK 272
1358 #define XSAVE_ZMM_Hi256 288
1359 #define XSAVE_Hi16_ZMM 416
1360 #define XSAVE_PKRU 672
1362 #define XSAVE_BYTE_OFFSET(word_offset) \
1363 ((word_offset) * sizeof(((struct kvm_xsave *)0)->region[0]))
1365 #define ASSERT_OFFSET(word_offset, field) \
1366 QEMU_BUILD_BUG_ON(XSAVE_BYTE_OFFSET(word_offset) != \
1367 offsetof(X86XSaveArea, field))
1369 ASSERT_OFFSET(XSAVE_FCW_FSW
, legacy
.fcw
);
1370 ASSERT_OFFSET(XSAVE_FTW_FOP
, legacy
.ftw
);
1371 ASSERT_OFFSET(XSAVE_CWD_RIP
, legacy
.fpip
);
1372 ASSERT_OFFSET(XSAVE_CWD_RDP
, legacy
.fpdp
);
1373 ASSERT_OFFSET(XSAVE_MXCSR
, legacy
.mxcsr
);
1374 ASSERT_OFFSET(XSAVE_ST_SPACE
, legacy
.fpregs
);
1375 ASSERT_OFFSET(XSAVE_XMM_SPACE
, legacy
.xmm_regs
);
1376 ASSERT_OFFSET(XSAVE_XSTATE_BV
, header
.xstate_bv
);
1377 ASSERT_OFFSET(XSAVE_YMMH_SPACE
, avx_state
);
1378 ASSERT_OFFSET(XSAVE_BNDREGS
, bndreg_state
);
1379 ASSERT_OFFSET(XSAVE_BNDCSR
, bndcsr_state
);
1380 ASSERT_OFFSET(XSAVE_OPMASK
, opmask_state
);
1381 ASSERT_OFFSET(XSAVE_ZMM_Hi256
, zmm_hi256_state
);
1382 ASSERT_OFFSET(XSAVE_Hi16_ZMM
, hi16_zmm_state
);
1383 ASSERT_OFFSET(XSAVE_PKRU
, pkru_state
);
1385 static int kvm_put_xsave(X86CPU
*cpu
)
1387 CPUX86State
*env
= &cpu
->env
;
1388 X86XSaveArea
*xsave
= env
->kvm_xsave_buf
;
1389 uint16_t cwd
, swd
, twd
;
1393 return kvm_put_fpu(cpu
);
1396 memset(xsave
, 0, sizeof(struct kvm_xsave
));
1398 swd
= env
->fpus
& ~(7 << 11);
1399 swd
|= (env
->fpstt
& 7) << 11;
1401 for (i
= 0; i
< 8; ++i
) {
1402 twd
|= (!env
->fptags
[i
]) << i
;
1404 xsave
->legacy
.fcw
= cwd
;
1405 xsave
->legacy
.fsw
= swd
;
1406 xsave
->legacy
.ftw
= twd
;
1407 xsave
->legacy
.fpop
= env
->fpop
;
1408 xsave
->legacy
.fpip
= env
->fpip
;
1409 xsave
->legacy
.fpdp
= env
->fpdp
;
1410 memcpy(&xsave
->legacy
.fpregs
, env
->fpregs
,
1411 sizeof env
->fpregs
);
1412 xsave
->legacy
.mxcsr
= env
->mxcsr
;
1413 xsave
->header
.xstate_bv
= env
->xstate_bv
;
1414 memcpy(&xsave
->bndreg_state
.bnd_regs
, env
->bnd_regs
,
1415 sizeof env
->bnd_regs
);
1416 xsave
->bndcsr_state
.bndcsr
= env
->bndcs_regs
;
1417 memcpy(&xsave
->opmask_state
.opmask_regs
, env
->opmask_regs
,
1418 sizeof env
->opmask_regs
);
1420 for (i
= 0; i
< CPU_NB_REGS
; i
++) {
1421 uint8_t *xmm
= xsave
->legacy
.xmm_regs
[i
];
1422 uint8_t *ymmh
= xsave
->avx_state
.ymmh
[i
];
1423 uint8_t *zmmh
= xsave
->zmm_hi256_state
.zmm_hi256
[i
];
1424 stq_p(xmm
, env
->xmm_regs
[i
].ZMM_Q(0));
1425 stq_p(xmm
+8, env
->xmm_regs
[i
].ZMM_Q(1));
1426 stq_p(ymmh
, env
->xmm_regs
[i
].ZMM_Q(2));
1427 stq_p(ymmh
+8, env
->xmm_regs
[i
].ZMM_Q(3));
1428 stq_p(zmmh
, env
->xmm_regs
[i
].ZMM_Q(4));
1429 stq_p(zmmh
+8, env
->xmm_regs
[i
].ZMM_Q(5));
1430 stq_p(zmmh
+16, env
->xmm_regs
[i
].ZMM_Q(6));
1431 stq_p(zmmh
+24, env
->xmm_regs
[i
].ZMM_Q(7));
1434 #ifdef TARGET_X86_64
1435 memcpy(&xsave
->hi16_zmm_state
.hi16_zmm
, &env
->xmm_regs
[16],
1436 16 * sizeof env
->xmm_regs
[16]);
1437 memcpy(&xsave
->pkru_state
, &env
->pkru
, sizeof env
->pkru
);
1439 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_XSAVE
, xsave
);
1442 static int kvm_put_xcrs(X86CPU
*cpu
)
1444 CPUX86State
*env
= &cpu
->env
;
1445 struct kvm_xcrs xcrs
= {};
1453 xcrs
.xcrs
[0].xcr
= 0;
1454 xcrs
.xcrs
[0].value
= env
->xcr0
;
1455 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_XCRS
, &xcrs
);
1458 static int kvm_put_sregs(X86CPU
*cpu
)
1460 CPUX86State
*env
= &cpu
->env
;
1461 struct kvm_sregs sregs
;
1463 memset(sregs
.interrupt_bitmap
, 0, sizeof(sregs
.interrupt_bitmap
));
1464 if (env
->interrupt_injected
>= 0) {
1465 sregs
.interrupt_bitmap
[env
->interrupt_injected
/ 64] |=
1466 (uint64_t)1 << (env
->interrupt_injected
% 64);
1469 if ((env
->eflags
& VM_MASK
)) {
1470 set_v8086_seg(&sregs
.cs
, &env
->segs
[R_CS
]);
1471 set_v8086_seg(&sregs
.ds
, &env
->segs
[R_DS
]);
1472 set_v8086_seg(&sregs
.es
, &env
->segs
[R_ES
]);
1473 set_v8086_seg(&sregs
.fs
, &env
->segs
[R_FS
]);
1474 set_v8086_seg(&sregs
.gs
, &env
->segs
[R_GS
]);
1475 set_v8086_seg(&sregs
.ss
, &env
->segs
[R_SS
]);
1477 set_seg(&sregs
.cs
, &env
->segs
[R_CS
]);
1478 set_seg(&sregs
.ds
, &env
->segs
[R_DS
]);
1479 set_seg(&sregs
.es
, &env
->segs
[R_ES
]);
1480 set_seg(&sregs
.fs
, &env
->segs
[R_FS
]);
1481 set_seg(&sregs
.gs
, &env
->segs
[R_GS
]);
1482 set_seg(&sregs
.ss
, &env
->segs
[R_SS
]);
1485 set_seg(&sregs
.tr
, &env
->tr
);
1486 set_seg(&sregs
.ldt
, &env
->ldt
);
1488 sregs
.idt
.limit
= env
->idt
.limit
;
1489 sregs
.idt
.base
= env
->idt
.base
;
1490 memset(sregs
.idt
.padding
, 0, sizeof sregs
.idt
.padding
);
1491 sregs
.gdt
.limit
= env
->gdt
.limit
;
1492 sregs
.gdt
.base
= env
->gdt
.base
;
1493 memset(sregs
.gdt
.padding
, 0, sizeof sregs
.gdt
.padding
);
1495 sregs
.cr0
= env
->cr
[0];
1496 sregs
.cr2
= env
->cr
[2];
1497 sregs
.cr3
= env
->cr
[3];
1498 sregs
.cr4
= env
->cr
[4];
1500 sregs
.cr8
= cpu_get_apic_tpr(cpu
->apic_state
);
1501 sregs
.apic_base
= cpu_get_apic_base(cpu
->apic_state
);
1503 sregs
.efer
= env
->efer
;
1505 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_SREGS
, &sregs
);
1508 static void kvm_msr_buf_reset(X86CPU
*cpu
)
1510 memset(cpu
->kvm_msr_buf
, 0, MSR_BUF_SIZE
);
1513 static void kvm_msr_entry_add(X86CPU
*cpu
, uint32_t index
, uint64_t value
)
1515 struct kvm_msrs
*msrs
= cpu
->kvm_msr_buf
;
1516 void *limit
= ((void *)msrs
) + MSR_BUF_SIZE
;
1517 struct kvm_msr_entry
*entry
= &msrs
->entries
[msrs
->nmsrs
];
1519 assert((void *)(entry
+ 1) <= limit
);
1521 entry
->index
= index
;
1522 entry
->reserved
= 0;
1523 entry
->data
= value
;
1527 static int kvm_put_tscdeadline_msr(X86CPU
*cpu
)
1529 CPUX86State
*env
= &cpu
->env
;
1532 if (!has_msr_tsc_deadline
) {
1536 kvm_msr_buf_reset(cpu
);
1537 kvm_msr_entry_add(cpu
, MSR_IA32_TSCDEADLINE
, env
->tsc_deadline
);
1539 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MSRS
, cpu
->kvm_msr_buf
);
1549 * Provide a separate write service for the feature control MSR in order to
1550 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
1551 * before writing any other state because forcibly leaving nested mode
1552 * invalidates the VCPU state.
1554 static int kvm_put_msr_feature_control(X86CPU
*cpu
)
1558 if (!has_msr_feature_control
) {
1562 kvm_msr_buf_reset(cpu
);
1563 kvm_msr_entry_add(cpu
, MSR_IA32_FEATURE_CONTROL
,
1564 cpu
->env
.msr_ia32_feature_control
);
1566 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MSRS
, cpu
->kvm_msr_buf
);
1575 static int kvm_put_msrs(X86CPU
*cpu
, int level
)
1577 CPUX86State
*env
= &cpu
->env
;
1581 kvm_msr_buf_reset(cpu
);
1583 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_CS
, env
->sysenter_cs
);
1584 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_ESP
, env
->sysenter_esp
);
1585 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_EIP
, env
->sysenter_eip
);
1586 kvm_msr_entry_add(cpu
, MSR_PAT
, env
->pat
);
1588 kvm_msr_entry_add(cpu
, MSR_STAR
, env
->star
);
1590 if (has_msr_hsave_pa
) {
1591 kvm_msr_entry_add(cpu
, MSR_VM_HSAVE_PA
, env
->vm_hsave
);
1593 if (has_msr_tsc_aux
) {
1594 kvm_msr_entry_add(cpu
, MSR_TSC_AUX
, env
->tsc_aux
);
1596 if (has_msr_tsc_adjust
) {
1597 kvm_msr_entry_add(cpu
, MSR_TSC_ADJUST
, env
->tsc_adjust
);
1599 if (has_msr_misc_enable
) {
1600 kvm_msr_entry_add(cpu
, MSR_IA32_MISC_ENABLE
,
1601 env
->msr_ia32_misc_enable
);
1603 if (has_msr_smbase
) {
1604 kvm_msr_entry_add(cpu
, MSR_IA32_SMBASE
, env
->smbase
);
1606 if (has_msr_bndcfgs
) {
1607 kvm_msr_entry_add(cpu
, MSR_IA32_BNDCFGS
, env
->msr_bndcfgs
);
1610 kvm_msr_entry_add(cpu
, MSR_IA32_XSS
, env
->xss
);
1612 #ifdef TARGET_X86_64
1613 if (lm_capable_kernel
) {
1614 kvm_msr_entry_add(cpu
, MSR_CSTAR
, env
->cstar
);
1615 kvm_msr_entry_add(cpu
, MSR_KERNELGSBASE
, env
->kernelgsbase
);
1616 kvm_msr_entry_add(cpu
, MSR_FMASK
, env
->fmask
);
1617 kvm_msr_entry_add(cpu
, MSR_LSTAR
, env
->lstar
);
1621 * The following MSRs have side effects on the guest or are too heavy
1622 * for normal writeback. Limit them to reset or full state updates.
1624 if (level
>= KVM_PUT_RESET_STATE
) {
1625 kvm_msr_entry_add(cpu
, MSR_IA32_TSC
, env
->tsc
);
1626 kvm_msr_entry_add(cpu
, MSR_KVM_SYSTEM_TIME
, env
->system_time_msr
);
1627 kvm_msr_entry_add(cpu
, MSR_KVM_WALL_CLOCK
, env
->wall_clock_msr
);
1628 if (has_msr_async_pf_en
) {
1629 kvm_msr_entry_add(cpu
, MSR_KVM_ASYNC_PF_EN
, env
->async_pf_en_msr
);
1631 if (has_msr_pv_eoi_en
) {
1632 kvm_msr_entry_add(cpu
, MSR_KVM_PV_EOI_EN
, env
->pv_eoi_en_msr
);
1634 if (has_msr_kvm_steal_time
) {
1635 kvm_msr_entry_add(cpu
, MSR_KVM_STEAL_TIME
, env
->steal_time_msr
);
1637 if (has_msr_architectural_pmu
) {
1638 /* Stop the counter. */
1639 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_FIXED_CTR_CTRL
, 0);
1640 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_CTRL
, 0);
1642 /* Set the counter values. */
1643 for (i
= 0; i
< MAX_FIXED_COUNTERS
; i
++) {
1644 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_FIXED_CTR0
+ i
,
1645 env
->msr_fixed_counters
[i
]);
1647 for (i
= 0; i
< num_architectural_pmu_counters
; i
++) {
1648 kvm_msr_entry_add(cpu
, MSR_P6_PERFCTR0
+ i
,
1649 env
->msr_gp_counters
[i
]);
1650 kvm_msr_entry_add(cpu
, MSR_P6_EVNTSEL0
+ i
,
1651 env
->msr_gp_evtsel
[i
]);
1653 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_STATUS
,
1654 env
->msr_global_status
);
1655 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_OVF_CTRL
,
1656 env
->msr_global_ovf_ctrl
);
1658 /* Now start the PMU. */
1659 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_FIXED_CTR_CTRL
,
1660 env
->msr_fixed_ctr_ctrl
);
1661 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_CTRL
,
1662 env
->msr_global_ctrl
);
1664 if (has_msr_hv_hypercall
) {
1665 kvm_msr_entry_add(cpu
, HV_X64_MSR_GUEST_OS_ID
,
1666 env
->msr_hv_guest_os_id
);
1667 kvm_msr_entry_add(cpu
, HV_X64_MSR_HYPERCALL
,
1668 env
->msr_hv_hypercall
);
1670 if (has_msr_hv_vapic
) {
1671 kvm_msr_entry_add(cpu
, HV_X64_MSR_APIC_ASSIST_PAGE
,
1674 if (has_msr_hv_tsc
) {
1675 kvm_msr_entry_add(cpu
, HV_X64_MSR_REFERENCE_TSC
, env
->msr_hv_tsc
);
1677 if (has_msr_hv_crash
) {
1680 for (j
= 0; j
< HV_X64_MSR_CRASH_PARAMS
; j
++)
1681 kvm_msr_entry_add(cpu
, HV_X64_MSR_CRASH_P0
+ j
,
1682 env
->msr_hv_crash_params
[j
]);
1684 kvm_msr_entry_add(cpu
, HV_X64_MSR_CRASH_CTL
,
1685 HV_X64_MSR_CRASH_CTL_NOTIFY
);
1687 if (has_msr_hv_runtime
) {
1688 kvm_msr_entry_add(cpu
, HV_X64_MSR_VP_RUNTIME
, env
->msr_hv_runtime
);
1690 if (cpu
->hyperv_synic
) {
1693 kvm_msr_entry_add(cpu
, HV_X64_MSR_SCONTROL
,
1694 env
->msr_hv_synic_control
);
1695 kvm_msr_entry_add(cpu
, HV_X64_MSR_SVERSION
,
1696 env
->msr_hv_synic_version
);
1697 kvm_msr_entry_add(cpu
, HV_X64_MSR_SIEFP
,
1698 env
->msr_hv_synic_evt_page
);
1699 kvm_msr_entry_add(cpu
, HV_X64_MSR_SIMP
,
1700 env
->msr_hv_synic_msg_page
);
1702 for (j
= 0; j
< ARRAY_SIZE(env
->msr_hv_synic_sint
); j
++) {
1703 kvm_msr_entry_add(cpu
, HV_X64_MSR_SINT0
+ j
,
1704 env
->msr_hv_synic_sint
[j
]);
1707 if (has_msr_hv_stimer
) {
1710 for (j
= 0; j
< ARRAY_SIZE(env
->msr_hv_stimer_config
); j
++) {
1711 kvm_msr_entry_add(cpu
, HV_X64_MSR_STIMER0_CONFIG
+ j
* 2,
1712 env
->msr_hv_stimer_config
[j
]);
1715 for (j
= 0; j
< ARRAY_SIZE(env
->msr_hv_stimer_count
); j
++) {
1716 kvm_msr_entry_add(cpu
, HV_X64_MSR_STIMER0_COUNT
+ j
* 2,
1717 env
->msr_hv_stimer_count
[j
]);
1721 kvm_msr_entry_add(cpu
, MSR_MTRRdefType
, env
->mtrr_deftype
);
1722 kvm_msr_entry_add(cpu
, MSR_MTRRfix64K_00000
, env
->mtrr_fixed
[0]);
1723 kvm_msr_entry_add(cpu
, MSR_MTRRfix16K_80000
, env
->mtrr_fixed
[1]);
1724 kvm_msr_entry_add(cpu
, MSR_MTRRfix16K_A0000
, env
->mtrr_fixed
[2]);
1725 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_C0000
, env
->mtrr_fixed
[3]);
1726 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_C8000
, env
->mtrr_fixed
[4]);
1727 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_D0000
, env
->mtrr_fixed
[5]);
1728 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_D8000
, env
->mtrr_fixed
[6]);
1729 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_E0000
, env
->mtrr_fixed
[7]);
1730 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_E8000
, env
->mtrr_fixed
[8]);
1731 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_F0000
, env
->mtrr_fixed
[9]);
1732 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_F8000
, env
->mtrr_fixed
[10]);
1733 for (i
= 0; i
< MSR_MTRRcap_VCNT
; i
++) {
1734 kvm_msr_entry_add(cpu
, MSR_MTRRphysBase(i
),
1735 env
->mtrr_var
[i
].base
);
1736 kvm_msr_entry_add(cpu
, MSR_MTRRphysMask(i
),
1737 env
->mtrr_var
[i
].mask
);
1741 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
1742 * kvm_put_msr_feature_control. */
1747 kvm_msr_entry_add(cpu
, MSR_MCG_STATUS
, env
->mcg_status
);
1748 kvm_msr_entry_add(cpu
, MSR_MCG_CTL
, env
->mcg_ctl
);
1749 if (has_msr_mcg_ext_ctl
) {
1750 kvm_msr_entry_add(cpu
, MSR_MCG_EXT_CTL
, env
->mcg_ext_ctl
);
1752 for (i
= 0; i
< (env
->mcg_cap
& 0xff) * 4; i
++) {
1753 kvm_msr_entry_add(cpu
, MSR_MC0_CTL
+ i
, env
->mce_banks
[i
]);
1757 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MSRS
, cpu
->kvm_msr_buf
);
1762 assert(ret
== cpu
->kvm_msr_buf
->nmsrs
);
1767 static int kvm_get_fpu(X86CPU
*cpu
)
1769 CPUX86State
*env
= &cpu
->env
;
1773 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_FPU
, &fpu
);
1778 env
->fpstt
= (fpu
.fsw
>> 11) & 7;
1779 env
->fpus
= fpu
.fsw
;
1780 env
->fpuc
= fpu
.fcw
;
1781 env
->fpop
= fpu
.last_opcode
;
1782 env
->fpip
= fpu
.last_ip
;
1783 env
->fpdp
= fpu
.last_dp
;
1784 for (i
= 0; i
< 8; ++i
) {
1785 env
->fptags
[i
] = !((fpu
.ftwx
>> i
) & 1);
1787 memcpy(env
->fpregs
, fpu
.fpr
, sizeof env
->fpregs
);
1788 for (i
= 0; i
< CPU_NB_REGS
; i
++) {
1789 env
->xmm_regs
[i
].ZMM_Q(0) = ldq_p(&fpu
.xmm
[i
][0]);
1790 env
->xmm_regs
[i
].ZMM_Q(1) = ldq_p(&fpu
.xmm
[i
][8]);
1792 env
->mxcsr
= fpu
.mxcsr
;
1797 static int kvm_get_xsave(X86CPU
*cpu
)
1799 CPUX86State
*env
= &cpu
->env
;
1800 X86XSaveArea
*xsave
= env
->kvm_xsave_buf
;
1802 uint16_t cwd
, swd
, twd
;
1805 return kvm_get_fpu(cpu
);
1808 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_XSAVE
, xsave
);
1813 cwd
= xsave
->legacy
.fcw
;
1814 swd
= xsave
->legacy
.fsw
;
1815 twd
= xsave
->legacy
.ftw
;
1816 env
->fpop
= xsave
->legacy
.fpop
;
1817 env
->fpstt
= (swd
>> 11) & 7;
1820 for (i
= 0; i
< 8; ++i
) {
1821 env
->fptags
[i
] = !((twd
>> i
) & 1);
1823 env
->fpip
= xsave
->legacy
.fpip
;
1824 env
->fpdp
= xsave
->legacy
.fpdp
;
1825 env
->mxcsr
= xsave
->legacy
.mxcsr
;
1826 memcpy(env
->fpregs
, &xsave
->legacy
.fpregs
,
1827 sizeof env
->fpregs
);
1828 env
->xstate_bv
= xsave
->header
.xstate_bv
;
1829 memcpy(env
->bnd_regs
, &xsave
->bndreg_state
.bnd_regs
,
1830 sizeof env
->bnd_regs
);
1831 env
->bndcs_regs
= xsave
->bndcsr_state
.bndcsr
;
1832 memcpy(env
->opmask_regs
, &xsave
->opmask_state
.opmask_regs
,
1833 sizeof env
->opmask_regs
);
1835 for (i
= 0; i
< CPU_NB_REGS
; i
++) {
1836 uint8_t *xmm
= xsave
->legacy
.xmm_regs
[i
];
1837 uint8_t *ymmh
= xsave
->avx_state
.ymmh
[i
];
1838 uint8_t *zmmh
= xsave
->zmm_hi256_state
.zmm_hi256
[i
];
1839 env
->xmm_regs
[i
].ZMM_Q(0) = ldq_p(xmm
);
1840 env
->xmm_regs
[i
].ZMM_Q(1) = ldq_p(xmm
+8);
1841 env
->xmm_regs
[i
].ZMM_Q(2) = ldq_p(ymmh
);
1842 env
->xmm_regs
[i
].ZMM_Q(3) = ldq_p(ymmh
+8);
1843 env
->xmm_regs
[i
].ZMM_Q(4) = ldq_p(zmmh
);
1844 env
->xmm_regs
[i
].ZMM_Q(5) = ldq_p(zmmh
+8);
1845 env
->xmm_regs
[i
].ZMM_Q(6) = ldq_p(zmmh
+16);
1846 env
->xmm_regs
[i
].ZMM_Q(7) = ldq_p(zmmh
+24);
1849 #ifdef TARGET_X86_64
1850 memcpy(&env
->xmm_regs
[16], &xsave
->hi16_zmm_state
.hi16_zmm
,
1851 16 * sizeof env
->xmm_regs
[16]);
1852 memcpy(&env
->pkru
, &xsave
->pkru_state
, sizeof env
->pkru
);
1857 static int kvm_get_xcrs(X86CPU
*cpu
)
1859 CPUX86State
*env
= &cpu
->env
;
1861 struct kvm_xcrs xcrs
;
1867 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_XCRS
, &xcrs
);
1872 for (i
= 0; i
< xcrs
.nr_xcrs
; i
++) {
1873 /* Only support xcr0 now */
1874 if (xcrs
.xcrs
[i
].xcr
== 0) {
1875 env
->xcr0
= xcrs
.xcrs
[i
].value
;
1882 static int kvm_get_sregs(X86CPU
*cpu
)
1884 CPUX86State
*env
= &cpu
->env
;
1885 struct kvm_sregs sregs
;
1889 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_SREGS
, &sregs
);
1894 /* There can only be one pending IRQ set in the bitmap at a time, so try
1895 to find it and save its number instead (-1 for none). */
1896 env
->interrupt_injected
= -1;
1897 for (i
= 0; i
< ARRAY_SIZE(sregs
.interrupt_bitmap
); i
++) {
1898 if (sregs
.interrupt_bitmap
[i
]) {
1899 bit
= ctz64(sregs
.interrupt_bitmap
[i
]);
1900 env
->interrupt_injected
= i
* 64 + bit
;
1905 get_seg(&env
->segs
[R_CS
], &sregs
.cs
);
1906 get_seg(&env
->segs
[R_DS
], &sregs
.ds
);
1907 get_seg(&env
->segs
[R_ES
], &sregs
.es
);
1908 get_seg(&env
->segs
[R_FS
], &sregs
.fs
);
1909 get_seg(&env
->segs
[R_GS
], &sregs
.gs
);
1910 get_seg(&env
->segs
[R_SS
], &sregs
.ss
);
1912 get_seg(&env
->tr
, &sregs
.tr
);
1913 get_seg(&env
->ldt
, &sregs
.ldt
);
1915 env
->idt
.limit
= sregs
.idt
.limit
;
1916 env
->idt
.base
= sregs
.idt
.base
;
1917 env
->gdt
.limit
= sregs
.gdt
.limit
;
1918 env
->gdt
.base
= sregs
.gdt
.base
;
1920 env
->cr
[0] = sregs
.cr0
;
1921 env
->cr
[2] = sregs
.cr2
;
1922 env
->cr
[3] = sregs
.cr3
;
1923 env
->cr
[4] = sregs
.cr4
;
1925 env
->efer
= sregs
.efer
;
1927 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
1929 #define HFLAG_COPY_MASK \
1930 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1931 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1932 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1933 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1935 hflags
= env
->hflags
& HFLAG_COPY_MASK
;
1936 hflags
|= (env
->segs
[R_SS
].flags
>> DESC_DPL_SHIFT
) & HF_CPL_MASK
;
1937 hflags
|= (env
->cr
[0] & CR0_PE_MASK
) << (HF_PE_SHIFT
- CR0_PE_SHIFT
);
1938 hflags
|= (env
->cr
[0] << (HF_MP_SHIFT
- CR0_MP_SHIFT
)) &
1939 (HF_MP_MASK
| HF_EM_MASK
| HF_TS_MASK
);
1940 hflags
|= (env
->eflags
& (HF_TF_MASK
| HF_VM_MASK
| HF_IOPL_MASK
));
1942 if (env
->cr
[4] & CR4_OSFXSR_MASK
) {
1943 hflags
|= HF_OSFXSR_MASK
;
1946 if (env
->efer
& MSR_EFER_LMA
) {
1947 hflags
|= HF_LMA_MASK
;
1950 if ((hflags
& HF_LMA_MASK
) && (env
->segs
[R_CS
].flags
& DESC_L_MASK
)) {
1951 hflags
|= HF_CS32_MASK
| HF_SS32_MASK
| HF_CS64_MASK
;
1953 hflags
|= (env
->segs
[R_CS
].flags
& DESC_B_MASK
) >>
1954 (DESC_B_SHIFT
- HF_CS32_SHIFT
);
1955 hflags
|= (env
->segs
[R_SS
].flags
& DESC_B_MASK
) >>
1956 (DESC_B_SHIFT
- HF_SS32_SHIFT
);
1957 if (!(env
->cr
[0] & CR0_PE_MASK
) || (env
->eflags
& VM_MASK
) ||
1958 !(hflags
& HF_CS32_MASK
)) {
1959 hflags
|= HF_ADDSEG_MASK
;
1961 hflags
|= ((env
->segs
[R_DS
].base
| env
->segs
[R_ES
].base
|
1962 env
->segs
[R_SS
].base
) != 0) << HF_ADDSEG_SHIFT
;
1965 env
->hflags
= hflags
;
1970 static int kvm_get_msrs(X86CPU
*cpu
)
1972 CPUX86State
*env
= &cpu
->env
;
1973 struct kvm_msr_entry
*msrs
= cpu
->kvm_msr_buf
->entries
;
1976 kvm_msr_buf_reset(cpu
);
1978 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_CS
, 0);
1979 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_ESP
, 0);
1980 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_EIP
, 0);
1981 kvm_msr_entry_add(cpu
, MSR_PAT
, 0);
1983 kvm_msr_entry_add(cpu
, MSR_STAR
, 0);
1985 if (has_msr_hsave_pa
) {
1986 kvm_msr_entry_add(cpu
, MSR_VM_HSAVE_PA
, 0);
1988 if (has_msr_tsc_aux
) {
1989 kvm_msr_entry_add(cpu
, MSR_TSC_AUX
, 0);
1991 if (has_msr_tsc_adjust
) {
1992 kvm_msr_entry_add(cpu
, MSR_TSC_ADJUST
, 0);
1994 if (has_msr_tsc_deadline
) {
1995 kvm_msr_entry_add(cpu
, MSR_IA32_TSCDEADLINE
, 0);
1997 if (has_msr_misc_enable
) {
1998 kvm_msr_entry_add(cpu
, MSR_IA32_MISC_ENABLE
, 0);
2000 if (has_msr_smbase
) {
2001 kvm_msr_entry_add(cpu
, MSR_IA32_SMBASE
, 0);
2003 if (has_msr_feature_control
) {
2004 kvm_msr_entry_add(cpu
, MSR_IA32_FEATURE_CONTROL
, 0);
2006 if (has_msr_bndcfgs
) {
2007 kvm_msr_entry_add(cpu
, MSR_IA32_BNDCFGS
, 0);
2010 kvm_msr_entry_add(cpu
, MSR_IA32_XSS
, 0);
2014 if (!env
->tsc_valid
) {
2015 kvm_msr_entry_add(cpu
, MSR_IA32_TSC
, 0);
2016 env
->tsc_valid
= !runstate_is_running();
2019 #ifdef TARGET_X86_64
2020 if (lm_capable_kernel
) {
2021 kvm_msr_entry_add(cpu
, MSR_CSTAR
, 0);
2022 kvm_msr_entry_add(cpu
, MSR_KERNELGSBASE
, 0);
2023 kvm_msr_entry_add(cpu
, MSR_FMASK
, 0);
2024 kvm_msr_entry_add(cpu
, MSR_LSTAR
, 0);
2027 kvm_msr_entry_add(cpu
, MSR_KVM_SYSTEM_TIME
, 0);
2028 kvm_msr_entry_add(cpu
, MSR_KVM_WALL_CLOCK
, 0);
2029 if (has_msr_async_pf_en
) {
2030 kvm_msr_entry_add(cpu
, MSR_KVM_ASYNC_PF_EN
, 0);
2032 if (has_msr_pv_eoi_en
) {
2033 kvm_msr_entry_add(cpu
, MSR_KVM_PV_EOI_EN
, 0);
2035 if (has_msr_kvm_steal_time
) {
2036 kvm_msr_entry_add(cpu
, MSR_KVM_STEAL_TIME
, 0);
2038 if (has_msr_architectural_pmu
) {
2039 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_FIXED_CTR_CTRL
, 0);
2040 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_CTRL
, 0);
2041 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_STATUS
, 0);
2042 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_OVF_CTRL
, 0);
2043 for (i
= 0; i
< MAX_FIXED_COUNTERS
; i
++) {
2044 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_FIXED_CTR0
+ i
, 0);
2046 for (i
= 0; i
< num_architectural_pmu_counters
; i
++) {
2047 kvm_msr_entry_add(cpu
, MSR_P6_PERFCTR0
+ i
, 0);
2048 kvm_msr_entry_add(cpu
, MSR_P6_EVNTSEL0
+ i
, 0);
2053 kvm_msr_entry_add(cpu
, MSR_MCG_STATUS
, 0);
2054 kvm_msr_entry_add(cpu
, MSR_MCG_CTL
, 0);
2055 if (has_msr_mcg_ext_ctl
) {
2056 kvm_msr_entry_add(cpu
, MSR_MCG_EXT_CTL
, 0);
2058 for (i
= 0; i
< (env
->mcg_cap
& 0xff) * 4; i
++) {
2059 kvm_msr_entry_add(cpu
, MSR_MC0_CTL
+ i
, 0);
2063 if (has_msr_hv_hypercall
) {
2064 kvm_msr_entry_add(cpu
, HV_X64_MSR_HYPERCALL
, 0);
2065 kvm_msr_entry_add(cpu
, HV_X64_MSR_GUEST_OS_ID
, 0);
2067 if (has_msr_hv_vapic
) {
2068 kvm_msr_entry_add(cpu
, HV_X64_MSR_APIC_ASSIST_PAGE
, 0);
2070 if (has_msr_hv_tsc
) {
2071 kvm_msr_entry_add(cpu
, HV_X64_MSR_REFERENCE_TSC
, 0);
2073 if (has_msr_hv_crash
) {
2076 for (j
= 0; j
< HV_X64_MSR_CRASH_PARAMS
; j
++) {
2077 kvm_msr_entry_add(cpu
, HV_X64_MSR_CRASH_P0
+ j
, 0);
2080 if (has_msr_hv_runtime
) {
2081 kvm_msr_entry_add(cpu
, HV_X64_MSR_VP_RUNTIME
, 0);
2083 if (cpu
->hyperv_synic
) {
2086 kvm_msr_entry_add(cpu
, HV_X64_MSR_SCONTROL
, 0);
2087 kvm_msr_entry_add(cpu
, HV_X64_MSR_SVERSION
, 0);
2088 kvm_msr_entry_add(cpu
, HV_X64_MSR_SIEFP
, 0);
2089 kvm_msr_entry_add(cpu
, HV_X64_MSR_SIMP
, 0);
2090 for (msr
= HV_X64_MSR_SINT0
; msr
<= HV_X64_MSR_SINT15
; msr
++) {
2091 kvm_msr_entry_add(cpu
, msr
, 0);
2094 if (has_msr_hv_stimer
) {
2097 for (msr
= HV_X64_MSR_STIMER0_CONFIG
; msr
<= HV_X64_MSR_STIMER3_COUNT
;
2099 kvm_msr_entry_add(cpu
, msr
, 0);
2103 kvm_msr_entry_add(cpu
, MSR_MTRRdefType
, 0);
2104 kvm_msr_entry_add(cpu
, MSR_MTRRfix64K_00000
, 0);
2105 kvm_msr_entry_add(cpu
, MSR_MTRRfix16K_80000
, 0);
2106 kvm_msr_entry_add(cpu
, MSR_MTRRfix16K_A0000
, 0);
2107 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_C0000
, 0);
2108 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_C8000
, 0);
2109 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_D0000
, 0);
2110 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_D8000
, 0);
2111 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_E0000
, 0);
2112 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_E8000
, 0);
2113 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_F0000
, 0);
2114 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_F8000
, 0);
2115 for (i
= 0; i
< MSR_MTRRcap_VCNT
; i
++) {
2116 kvm_msr_entry_add(cpu
, MSR_MTRRphysBase(i
), 0);
2117 kvm_msr_entry_add(cpu
, MSR_MTRRphysMask(i
), 0);
2121 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_MSRS
, cpu
->kvm_msr_buf
);
2126 assert(ret
== cpu
->kvm_msr_buf
->nmsrs
);
2127 for (i
= 0; i
< ret
; i
++) {
2128 uint32_t index
= msrs
[i
].index
;
2130 case MSR_IA32_SYSENTER_CS
:
2131 env
->sysenter_cs
= msrs
[i
].data
;
2133 case MSR_IA32_SYSENTER_ESP
:
2134 env
->sysenter_esp
= msrs
[i
].data
;
2136 case MSR_IA32_SYSENTER_EIP
:
2137 env
->sysenter_eip
= msrs
[i
].data
;
2140 env
->pat
= msrs
[i
].data
;
2143 env
->star
= msrs
[i
].data
;
2145 #ifdef TARGET_X86_64
2147 env
->cstar
= msrs
[i
].data
;
2149 case MSR_KERNELGSBASE
:
2150 env
->kernelgsbase
= msrs
[i
].data
;
2153 env
->fmask
= msrs
[i
].data
;
2156 env
->lstar
= msrs
[i
].data
;
2160 env
->tsc
= msrs
[i
].data
;
2163 env
->tsc_aux
= msrs
[i
].data
;
2165 case MSR_TSC_ADJUST
:
2166 env
->tsc_adjust
= msrs
[i
].data
;
2168 case MSR_IA32_TSCDEADLINE
:
2169 env
->tsc_deadline
= msrs
[i
].data
;
2171 case MSR_VM_HSAVE_PA
:
2172 env
->vm_hsave
= msrs
[i
].data
;
2174 case MSR_KVM_SYSTEM_TIME
:
2175 env
->system_time_msr
= msrs
[i
].data
;
2177 case MSR_KVM_WALL_CLOCK
:
2178 env
->wall_clock_msr
= msrs
[i
].data
;
2180 case MSR_MCG_STATUS
:
2181 env
->mcg_status
= msrs
[i
].data
;
2184 env
->mcg_ctl
= msrs
[i
].data
;
2186 case MSR_MCG_EXT_CTL
:
2187 env
->mcg_ext_ctl
= msrs
[i
].data
;
2189 case MSR_IA32_MISC_ENABLE
:
2190 env
->msr_ia32_misc_enable
= msrs
[i
].data
;
2192 case MSR_IA32_SMBASE
:
2193 env
->smbase
= msrs
[i
].data
;
2195 case MSR_IA32_FEATURE_CONTROL
:
2196 env
->msr_ia32_feature_control
= msrs
[i
].data
;
2198 case MSR_IA32_BNDCFGS
:
2199 env
->msr_bndcfgs
= msrs
[i
].data
;
2202 env
->xss
= msrs
[i
].data
;
2205 if (msrs
[i
].index
>= MSR_MC0_CTL
&&
2206 msrs
[i
].index
< MSR_MC0_CTL
+ (env
->mcg_cap
& 0xff) * 4) {
2207 env
->mce_banks
[msrs
[i
].index
- MSR_MC0_CTL
] = msrs
[i
].data
;
2210 case MSR_KVM_ASYNC_PF_EN
:
2211 env
->async_pf_en_msr
= msrs
[i
].data
;
2213 case MSR_KVM_PV_EOI_EN
:
2214 env
->pv_eoi_en_msr
= msrs
[i
].data
;
2216 case MSR_KVM_STEAL_TIME
:
2217 env
->steal_time_msr
= msrs
[i
].data
;
2219 case MSR_CORE_PERF_FIXED_CTR_CTRL
:
2220 env
->msr_fixed_ctr_ctrl
= msrs
[i
].data
;
2222 case MSR_CORE_PERF_GLOBAL_CTRL
:
2223 env
->msr_global_ctrl
= msrs
[i
].data
;
2225 case MSR_CORE_PERF_GLOBAL_STATUS
:
2226 env
->msr_global_status
= msrs
[i
].data
;
2228 case MSR_CORE_PERF_GLOBAL_OVF_CTRL
:
2229 env
->msr_global_ovf_ctrl
= msrs
[i
].data
;
2231 case MSR_CORE_PERF_FIXED_CTR0
... MSR_CORE_PERF_FIXED_CTR0
+ MAX_FIXED_COUNTERS
- 1:
2232 env
->msr_fixed_counters
[index
- MSR_CORE_PERF_FIXED_CTR0
] = msrs
[i
].data
;
2234 case MSR_P6_PERFCTR0
... MSR_P6_PERFCTR0
+ MAX_GP_COUNTERS
- 1:
2235 env
->msr_gp_counters
[index
- MSR_P6_PERFCTR0
] = msrs
[i
].data
;
2237 case MSR_P6_EVNTSEL0
... MSR_P6_EVNTSEL0
+ MAX_GP_COUNTERS
- 1:
2238 env
->msr_gp_evtsel
[index
- MSR_P6_EVNTSEL0
] = msrs
[i
].data
;
2240 case HV_X64_MSR_HYPERCALL
:
2241 env
->msr_hv_hypercall
= msrs
[i
].data
;
2243 case HV_X64_MSR_GUEST_OS_ID
:
2244 env
->msr_hv_guest_os_id
= msrs
[i
].data
;
2246 case HV_X64_MSR_APIC_ASSIST_PAGE
:
2247 env
->msr_hv_vapic
= msrs
[i
].data
;
2249 case HV_X64_MSR_REFERENCE_TSC
:
2250 env
->msr_hv_tsc
= msrs
[i
].data
;
2252 case HV_X64_MSR_CRASH_P0
... HV_X64_MSR_CRASH_P4
:
2253 env
->msr_hv_crash_params
[index
- HV_X64_MSR_CRASH_P0
] = msrs
[i
].data
;
2255 case HV_X64_MSR_VP_RUNTIME
:
2256 env
->msr_hv_runtime
= msrs
[i
].data
;
2258 case HV_X64_MSR_SCONTROL
:
2259 env
->msr_hv_synic_control
= msrs
[i
].data
;
2261 case HV_X64_MSR_SVERSION
:
2262 env
->msr_hv_synic_version
= msrs
[i
].data
;
2264 case HV_X64_MSR_SIEFP
:
2265 env
->msr_hv_synic_evt_page
= msrs
[i
].data
;
2267 case HV_X64_MSR_SIMP
:
2268 env
->msr_hv_synic_msg_page
= msrs
[i
].data
;
2270 case HV_X64_MSR_SINT0
... HV_X64_MSR_SINT15
:
2271 env
->msr_hv_synic_sint
[index
- HV_X64_MSR_SINT0
] = msrs
[i
].data
;
2273 case HV_X64_MSR_STIMER0_CONFIG
:
2274 case HV_X64_MSR_STIMER1_CONFIG
:
2275 case HV_X64_MSR_STIMER2_CONFIG
:
2276 case HV_X64_MSR_STIMER3_CONFIG
:
2277 env
->msr_hv_stimer_config
[(index
- HV_X64_MSR_STIMER0_CONFIG
)/2] =
2280 case HV_X64_MSR_STIMER0_COUNT
:
2281 case HV_X64_MSR_STIMER1_COUNT
:
2282 case HV_X64_MSR_STIMER2_COUNT
:
2283 case HV_X64_MSR_STIMER3_COUNT
:
2284 env
->msr_hv_stimer_count
[(index
- HV_X64_MSR_STIMER0_COUNT
)/2] =
2287 case MSR_MTRRdefType
:
2288 env
->mtrr_deftype
= msrs
[i
].data
;
2290 case MSR_MTRRfix64K_00000
:
2291 env
->mtrr_fixed
[0] = msrs
[i
].data
;
2293 case MSR_MTRRfix16K_80000
:
2294 env
->mtrr_fixed
[1] = msrs
[i
].data
;
2296 case MSR_MTRRfix16K_A0000
:
2297 env
->mtrr_fixed
[2] = msrs
[i
].data
;
2299 case MSR_MTRRfix4K_C0000
:
2300 env
->mtrr_fixed
[3] = msrs
[i
].data
;
2302 case MSR_MTRRfix4K_C8000
:
2303 env
->mtrr_fixed
[4] = msrs
[i
].data
;
2305 case MSR_MTRRfix4K_D0000
:
2306 env
->mtrr_fixed
[5] = msrs
[i
].data
;
2308 case MSR_MTRRfix4K_D8000
:
2309 env
->mtrr_fixed
[6] = msrs
[i
].data
;
2311 case MSR_MTRRfix4K_E0000
:
2312 env
->mtrr_fixed
[7] = msrs
[i
].data
;
2314 case MSR_MTRRfix4K_E8000
:
2315 env
->mtrr_fixed
[8] = msrs
[i
].data
;
2317 case MSR_MTRRfix4K_F0000
:
2318 env
->mtrr_fixed
[9] = msrs
[i
].data
;
2320 case MSR_MTRRfix4K_F8000
:
2321 env
->mtrr_fixed
[10] = msrs
[i
].data
;
2323 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT
- 1):
2325 env
->mtrr_var
[MSR_MTRRphysIndex(index
)].mask
= msrs
[i
].data
;
2327 env
->mtrr_var
[MSR_MTRRphysIndex(index
)].base
= msrs
[i
].data
;
2336 static int kvm_put_mp_state(X86CPU
*cpu
)
2338 struct kvm_mp_state mp_state
= { .mp_state
= cpu
->env
.mp_state
};
2340 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MP_STATE
, &mp_state
);
2343 static int kvm_get_mp_state(X86CPU
*cpu
)
2345 CPUState
*cs
= CPU(cpu
);
2346 CPUX86State
*env
= &cpu
->env
;
2347 struct kvm_mp_state mp_state
;
2350 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_MP_STATE
, &mp_state
);
2354 env
->mp_state
= mp_state
.mp_state
;
2355 if (kvm_irqchip_in_kernel()) {
2356 cs
->halted
= (mp_state
.mp_state
== KVM_MP_STATE_HALTED
);
2361 static int kvm_get_apic(X86CPU
*cpu
)
2363 DeviceState
*apic
= cpu
->apic_state
;
2364 struct kvm_lapic_state kapic
;
2367 if (apic
&& kvm_irqchip_in_kernel()) {
2368 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_LAPIC
, &kapic
);
2373 kvm_get_apic_state(apic
, &kapic
);
2378 static int kvm_put_apic(X86CPU
*cpu
)
2380 DeviceState
*apic
= cpu
->apic_state
;
2381 struct kvm_lapic_state kapic
;
2383 if (apic
&& kvm_irqchip_in_kernel()) {
2384 kvm_put_apic_state(apic
, &kapic
);
2386 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_LAPIC
, &kapic
);
2391 static int kvm_put_vcpu_events(X86CPU
*cpu
, int level
)
2393 CPUState
*cs
= CPU(cpu
);
2394 CPUX86State
*env
= &cpu
->env
;
2395 struct kvm_vcpu_events events
= {};
2397 if (!kvm_has_vcpu_events()) {
2401 events
.exception
.injected
= (env
->exception_injected
>= 0);
2402 events
.exception
.nr
= env
->exception_injected
;
2403 events
.exception
.has_error_code
= env
->has_error_code
;
2404 events
.exception
.error_code
= env
->error_code
;
2405 events
.exception
.pad
= 0;
2407 events
.interrupt
.injected
= (env
->interrupt_injected
>= 0);
2408 events
.interrupt
.nr
= env
->interrupt_injected
;
2409 events
.interrupt
.soft
= env
->soft_interrupt
;
2411 events
.nmi
.injected
= env
->nmi_injected
;
2412 events
.nmi
.pending
= env
->nmi_pending
;
2413 events
.nmi
.masked
= !!(env
->hflags2
& HF2_NMI_MASK
);
2416 events
.sipi_vector
= env
->sipi_vector
;
2418 if (has_msr_smbase
) {
2419 events
.smi
.smm
= !!(env
->hflags
& HF_SMM_MASK
);
2420 events
.smi
.smm_inside_nmi
= !!(env
->hflags2
& HF2_SMM_INSIDE_NMI_MASK
);
2421 if (kvm_irqchip_in_kernel()) {
2422 /* As soon as these are moved to the kernel, remove them
2423 * from cs->interrupt_request.
2425 events
.smi
.pending
= cs
->interrupt_request
& CPU_INTERRUPT_SMI
;
2426 events
.smi
.latched_init
= cs
->interrupt_request
& CPU_INTERRUPT_INIT
;
2427 cs
->interrupt_request
&= ~(CPU_INTERRUPT_INIT
| CPU_INTERRUPT_SMI
);
2429 /* Keep these in cs->interrupt_request. */
2430 events
.smi
.pending
= 0;
2431 events
.smi
.latched_init
= 0;
2433 events
.flags
|= KVM_VCPUEVENT_VALID_SMM
;
2437 if (level
>= KVM_PUT_RESET_STATE
) {
2439 KVM_VCPUEVENT_VALID_NMI_PENDING
| KVM_VCPUEVENT_VALID_SIPI_VECTOR
;
2442 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_VCPU_EVENTS
, &events
);
2445 static int kvm_get_vcpu_events(X86CPU
*cpu
)
2447 CPUX86State
*env
= &cpu
->env
;
2448 struct kvm_vcpu_events events
;
2451 if (!kvm_has_vcpu_events()) {
2455 memset(&events
, 0, sizeof(events
));
2456 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_VCPU_EVENTS
, &events
);
2460 env
->exception_injected
=
2461 events
.exception
.injected
? events
.exception
.nr
: -1;
2462 env
->has_error_code
= events
.exception
.has_error_code
;
2463 env
->error_code
= events
.exception
.error_code
;
2465 env
->interrupt_injected
=
2466 events
.interrupt
.injected
? events
.interrupt
.nr
: -1;
2467 env
->soft_interrupt
= events
.interrupt
.soft
;
2469 env
->nmi_injected
= events
.nmi
.injected
;
2470 env
->nmi_pending
= events
.nmi
.pending
;
2471 if (events
.nmi
.masked
) {
2472 env
->hflags2
|= HF2_NMI_MASK
;
2474 env
->hflags2
&= ~HF2_NMI_MASK
;
2477 if (events
.flags
& KVM_VCPUEVENT_VALID_SMM
) {
2478 if (events
.smi
.smm
) {
2479 env
->hflags
|= HF_SMM_MASK
;
2481 env
->hflags
&= ~HF_SMM_MASK
;
2483 if (events
.smi
.pending
) {
2484 cpu_interrupt(CPU(cpu
), CPU_INTERRUPT_SMI
);
2486 cpu_reset_interrupt(CPU(cpu
), CPU_INTERRUPT_SMI
);
2488 if (events
.smi
.smm_inside_nmi
) {
2489 env
->hflags2
|= HF2_SMM_INSIDE_NMI_MASK
;
2491 env
->hflags2
&= ~HF2_SMM_INSIDE_NMI_MASK
;
2493 if (events
.smi
.latched_init
) {
2494 cpu_interrupt(CPU(cpu
), CPU_INTERRUPT_INIT
);
2496 cpu_reset_interrupt(CPU(cpu
), CPU_INTERRUPT_INIT
);
2500 env
->sipi_vector
= events
.sipi_vector
;
2505 static int kvm_guest_debug_workarounds(X86CPU
*cpu
)
2507 CPUState
*cs
= CPU(cpu
);
2508 CPUX86State
*env
= &cpu
->env
;
2510 unsigned long reinject_trap
= 0;
2512 if (!kvm_has_vcpu_events()) {
2513 if (env
->exception_injected
== 1) {
2514 reinject_trap
= KVM_GUESTDBG_INJECT_DB
;
2515 } else if (env
->exception_injected
== 3) {
2516 reinject_trap
= KVM_GUESTDBG_INJECT_BP
;
2518 env
->exception_injected
= -1;
2522 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
2523 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
2524 * by updating the debug state once again if single-stepping is on.
2525 * Another reason to call kvm_update_guest_debug here is a pending debug
2526 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
2527 * reinject them via SET_GUEST_DEBUG.
2529 if (reinject_trap
||
2530 (!kvm_has_robust_singlestep() && cs
->singlestep_enabled
)) {
2531 ret
= kvm_update_guest_debug(cs
, reinject_trap
);
2536 static int kvm_put_debugregs(X86CPU
*cpu
)
2538 CPUX86State
*env
= &cpu
->env
;
2539 struct kvm_debugregs dbgregs
;
2542 if (!kvm_has_debugregs()) {
2546 for (i
= 0; i
< 4; i
++) {
2547 dbgregs
.db
[i
] = env
->dr
[i
];
2549 dbgregs
.dr6
= env
->dr
[6];
2550 dbgregs
.dr7
= env
->dr
[7];
2553 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_DEBUGREGS
, &dbgregs
);
2556 static int kvm_get_debugregs(X86CPU
*cpu
)
2558 CPUX86State
*env
= &cpu
->env
;
2559 struct kvm_debugregs dbgregs
;
2562 if (!kvm_has_debugregs()) {
2566 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_DEBUGREGS
, &dbgregs
);
2570 for (i
= 0; i
< 4; i
++) {
2571 env
->dr
[i
] = dbgregs
.db
[i
];
2573 env
->dr
[4] = env
->dr
[6] = dbgregs
.dr6
;
2574 env
->dr
[5] = env
->dr
[7] = dbgregs
.dr7
;
2579 int kvm_arch_put_registers(CPUState
*cpu
, int level
)
2581 X86CPU
*x86_cpu
= X86_CPU(cpu
);
2584 assert(cpu_is_stopped(cpu
) || qemu_cpu_is_self(cpu
));
2586 if (level
>= KVM_PUT_RESET_STATE
) {
2587 ret
= kvm_put_msr_feature_control(x86_cpu
);
2593 if (level
== KVM_PUT_FULL_STATE
) {
2594 /* We don't check for kvm_arch_set_tsc_khz() errors here,
2595 * because TSC frequency mismatch shouldn't abort migration,
2596 * unless the user explicitly asked for a more strict TSC
2597 * setting (e.g. using an explicit "tsc-freq" option).
2599 kvm_arch_set_tsc_khz(cpu
);
2602 ret
= kvm_getput_regs(x86_cpu
, 1);
2606 ret
= kvm_put_xsave(x86_cpu
);
2610 ret
= kvm_put_xcrs(x86_cpu
);
2614 ret
= kvm_put_sregs(x86_cpu
);
2618 /* must be before kvm_put_msrs */
2619 ret
= kvm_inject_mce_oldstyle(x86_cpu
);
2623 ret
= kvm_put_msrs(x86_cpu
, level
);
2627 if (level
>= KVM_PUT_RESET_STATE
) {
2628 ret
= kvm_put_mp_state(x86_cpu
);
2632 ret
= kvm_put_apic(x86_cpu
);
2638 ret
= kvm_put_tscdeadline_msr(x86_cpu
);
2643 ret
= kvm_put_vcpu_events(x86_cpu
, level
);
2647 ret
= kvm_put_debugregs(x86_cpu
);
2652 ret
= kvm_guest_debug_workarounds(x86_cpu
);
2659 int kvm_arch_get_registers(CPUState
*cs
)
2661 X86CPU
*cpu
= X86_CPU(cs
);
2664 assert(cpu_is_stopped(cs
) || qemu_cpu_is_self(cs
));
2666 ret
= kvm_getput_regs(cpu
, 0);
2670 ret
= kvm_get_xsave(cpu
);
2674 ret
= kvm_get_xcrs(cpu
);
2678 ret
= kvm_get_sregs(cpu
);
2682 ret
= kvm_get_msrs(cpu
);
2686 ret
= kvm_get_mp_state(cpu
);
2690 ret
= kvm_get_apic(cpu
);
2694 ret
= kvm_get_vcpu_events(cpu
);
2698 ret
= kvm_get_debugregs(cpu
);
2704 cpu_sync_bndcs_hflags(&cpu
->env
);
2708 void kvm_arch_pre_run(CPUState
*cpu
, struct kvm_run
*run
)
2710 X86CPU
*x86_cpu
= X86_CPU(cpu
);
2711 CPUX86State
*env
= &x86_cpu
->env
;
2715 if (cpu
->interrupt_request
& (CPU_INTERRUPT_NMI
| CPU_INTERRUPT_SMI
)) {
2716 if (cpu
->interrupt_request
& CPU_INTERRUPT_NMI
) {
2717 qemu_mutex_lock_iothread();
2718 cpu
->interrupt_request
&= ~CPU_INTERRUPT_NMI
;
2719 qemu_mutex_unlock_iothread();
2720 DPRINTF("injected NMI\n");
2721 ret
= kvm_vcpu_ioctl(cpu
, KVM_NMI
);
2723 fprintf(stderr
, "KVM: injection failed, NMI lost (%s)\n",
2727 if (cpu
->interrupt_request
& CPU_INTERRUPT_SMI
) {
2728 qemu_mutex_lock_iothread();
2729 cpu
->interrupt_request
&= ~CPU_INTERRUPT_SMI
;
2730 qemu_mutex_unlock_iothread();
2731 DPRINTF("injected SMI\n");
2732 ret
= kvm_vcpu_ioctl(cpu
, KVM_SMI
);
2734 fprintf(stderr
, "KVM: injection failed, SMI lost (%s)\n",
2740 if (!kvm_pic_in_kernel()) {
2741 qemu_mutex_lock_iothread();
2744 /* Force the VCPU out of its inner loop to process any INIT requests
2745 * or (for userspace APIC, but it is cheap to combine the checks here)
2746 * pending TPR access reports.
2748 if (cpu
->interrupt_request
& (CPU_INTERRUPT_INIT
| CPU_INTERRUPT_TPR
)) {
2749 if ((cpu
->interrupt_request
& CPU_INTERRUPT_INIT
) &&
2750 !(env
->hflags
& HF_SMM_MASK
)) {
2751 cpu
->exit_request
= 1;
2753 if (cpu
->interrupt_request
& CPU_INTERRUPT_TPR
) {
2754 cpu
->exit_request
= 1;
2758 if (!kvm_pic_in_kernel()) {
2759 /* Try to inject an interrupt if the guest can accept it */
2760 if (run
->ready_for_interrupt_injection
&&
2761 (cpu
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
2762 (env
->eflags
& IF_MASK
)) {
2765 cpu
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
2766 irq
= cpu_get_pic_interrupt(env
);
2768 struct kvm_interrupt intr
;
2771 DPRINTF("injected interrupt %d\n", irq
);
2772 ret
= kvm_vcpu_ioctl(cpu
, KVM_INTERRUPT
, &intr
);
2775 "KVM: injection failed, interrupt lost (%s)\n",
2781 /* If we have an interrupt but the guest is not ready to receive an
2782 * interrupt, request an interrupt window exit. This will
2783 * cause a return to userspace as soon as the guest is ready to
2784 * receive interrupts. */
2785 if ((cpu
->interrupt_request
& CPU_INTERRUPT_HARD
)) {
2786 run
->request_interrupt_window
= 1;
2788 run
->request_interrupt_window
= 0;
2791 DPRINTF("setting tpr\n");
2792 run
->cr8
= cpu_get_apic_tpr(x86_cpu
->apic_state
);
2794 qemu_mutex_unlock_iothread();
2798 MemTxAttrs
kvm_arch_post_run(CPUState
*cpu
, struct kvm_run
*run
)
2800 X86CPU
*x86_cpu
= X86_CPU(cpu
);
2801 CPUX86State
*env
= &x86_cpu
->env
;
2803 if (run
->flags
& KVM_RUN_X86_SMM
) {
2804 env
->hflags
|= HF_SMM_MASK
;
2806 env
->hflags
&= HF_SMM_MASK
;
2809 env
->eflags
|= IF_MASK
;
2811 env
->eflags
&= ~IF_MASK
;
2814 /* We need to protect the apic state against concurrent accesses from
2815 * different threads in case the userspace irqchip is used. */
2816 if (!kvm_irqchip_in_kernel()) {
2817 qemu_mutex_lock_iothread();
2819 cpu_set_apic_tpr(x86_cpu
->apic_state
, run
->cr8
);
2820 cpu_set_apic_base(x86_cpu
->apic_state
, run
->apic_base
);
2821 if (!kvm_irqchip_in_kernel()) {
2822 qemu_mutex_unlock_iothread();
2824 return cpu_get_mem_attrs(env
);
2827 int kvm_arch_process_async_events(CPUState
*cs
)
2829 X86CPU
*cpu
= X86_CPU(cs
);
2830 CPUX86State
*env
= &cpu
->env
;
2832 if (cs
->interrupt_request
& CPU_INTERRUPT_MCE
) {
2833 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
2834 assert(env
->mcg_cap
);
2836 cs
->interrupt_request
&= ~CPU_INTERRUPT_MCE
;
2838 kvm_cpu_synchronize_state(cs
);
2840 if (env
->exception_injected
== EXCP08_DBLE
) {
2841 /* this means triple fault */
2842 qemu_system_reset_request();
2843 cs
->exit_request
= 1;
2846 env
->exception_injected
= EXCP12_MCHK
;
2847 env
->has_error_code
= 0;
2850 if (kvm_irqchip_in_kernel() && env
->mp_state
== KVM_MP_STATE_HALTED
) {
2851 env
->mp_state
= KVM_MP_STATE_RUNNABLE
;
2855 if ((cs
->interrupt_request
& CPU_INTERRUPT_INIT
) &&
2856 !(env
->hflags
& HF_SMM_MASK
)) {
2857 kvm_cpu_synchronize_state(cs
);
2861 if (kvm_irqchip_in_kernel()) {
2865 if (cs
->interrupt_request
& CPU_INTERRUPT_POLL
) {
2866 cs
->interrupt_request
&= ~CPU_INTERRUPT_POLL
;
2867 apic_poll_irq(cpu
->apic_state
);
2869 if (((cs
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
2870 (env
->eflags
& IF_MASK
)) ||
2871 (cs
->interrupt_request
& CPU_INTERRUPT_NMI
)) {
2874 if (cs
->interrupt_request
& CPU_INTERRUPT_SIPI
) {
2875 kvm_cpu_synchronize_state(cs
);
2878 if (cs
->interrupt_request
& CPU_INTERRUPT_TPR
) {
2879 cs
->interrupt_request
&= ~CPU_INTERRUPT_TPR
;
2880 kvm_cpu_synchronize_state(cs
);
2881 apic_handle_tpr_access_report(cpu
->apic_state
, env
->eip
,
2882 env
->tpr_access_type
);
2888 static int kvm_handle_halt(X86CPU
*cpu
)
2890 CPUState
*cs
= CPU(cpu
);
2891 CPUX86State
*env
= &cpu
->env
;
2893 if (!((cs
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
2894 (env
->eflags
& IF_MASK
)) &&
2895 !(cs
->interrupt_request
& CPU_INTERRUPT_NMI
)) {
2903 static int kvm_handle_tpr_access(X86CPU
*cpu
)
2905 CPUState
*cs
= CPU(cpu
);
2906 struct kvm_run
*run
= cs
->kvm_run
;
2908 apic_handle_tpr_access_report(cpu
->apic_state
, run
->tpr_access
.rip
,
2909 run
->tpr_access
.is_write
? TPR_ACCESS_WRITE
2914 int kvm_arch_insert_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
2916 static const uint8_t int3
= 0xcc;
2918 if (cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
, 1, 0) ||
2919 cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&int3
, 1, 1)) {
2925 int kvm_arch_remove_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
2929 if (cpu_memory_rw_debug(cs
, bp
->pc
, &int3
, 1, 0) || int3
!= 0xcc ||
2930 cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
, 1, 1)) {
2942 static int nb_hw_breakpoint
;
2944 static int find_hw_breakpoint(target_ulong addr
, int len
, int type
)
2948 for (n
= 0; n
< nb_hw_breakpoint
; n
++) {
2949 if (hw_breakpoint
[n
].addr
== addr
&& hw_breakpoint
[n
].type
== type
&&
2950 (hw_breakpoint
[n
].len
== len
|| len
== -1)) {
2957 int kvm_arch_insert_hw_breakpoint(target_ulong addr
,
2958 target_ulong len
, int type
)
2961 case GDB_BREAKPOINT_HW
:
2964 case GDB_WATCHPOINT_WRITE
:
2965 case GDB_WATCHPOINT_ACCESS
:
2972 if (addr
& (len
- 1)) {
2984 if (nb_hw_breakpoint
== 4) {
2987 if (find_hw_breakpoint(addr
, len
, type
) >= 0) {
2990 hw_breakpoint
[nb_hw_breakpoint
].addr
= addr
;
2991 hw_breakpoint
[nb_hw_breakpoint
].len
= len
;
2992 hw_breakpoint
[nb_hw_breakpoint
].type
= type
;
2998 int kvm_arch_remove_hw_breakpoint(target_ulong addr
,
2999 target_ulong len
, int type
)
3003 n
= find_hw_breakpoint(addr
, (type
== GDB_BREAKPOINT_HW
) ? 1 : len
, type
);
3008 hw_breakpoint
[n
] = hw_breakpoint
[nb_hw_breakpoint
];
3013 void kvm_arch_remove_all_hw_breakpoints(void)
3015 nb_hw_breakpoint
= 0;
3018 static CPUWatchpoint hw_watchpoint
;
3020 static int kvm_handle_debug(X86CPU
*cpu
,
3021 struct kvm_debug_exit_arch
*arch_info
)
3023 CPUState
*cs
= CPU(cpu
);
3024 CPUX86State
*env
= &cpu
->env
;
3028 if (arch_info
->exception
== 1) {
3029 if (arch_info
->dr6
& (1 << 14)) {
3030 if (cs
->singlestep_enabled
) {
3034 for (n
= 0; n
< 4; n
++) {
3035 if (arch_info
->dr6
& (1 << n
)) {
3036 switch ((arch_info
->dr7
>> (16 + n
*4)) & 0x3) {
3042 cs
->watchpoint_hit
= &hw_watchpoint
;
3043 hw_watchpoint
.vaddr
= hw_breakpoint
[n
].addr
;
3044 hw_watchpoint
.flags
= BP_MEM_WRITE
;
3048 cs
->watchpoint_hit
= &hw_watchpoint
;
3049 hw_watchpoint
.vaddr
= hw_breakpoint
[n
].addr
;
3050 hw_watchpoint
.flags
= BP_MEM_ACCESS
;
3056 } else if (kvm_find_sw_breakpoint(cs
, arch_info
->pc
)) {
3060 cpu_synchronize_state(cs
);
3061 assert(env
->exception_injected
== -1);
3064 env
->exception_injected
= arch_info
->exception
;
3065 env
->has_error_code
= 0;
3071 void kvm_arch_update_guest_debug(CPUState
*cpu
, struct kvm_guest_debug
*dbg
)
3073 const uint8_t type_code
[] = {
3074 [GDB_BREAKPOINT_HW
] = 0x0,
3075 [GDB_WATCHPOINT_WRITE
] = 0x1,
3076 [GDB_WATCHPOINT_ACCESS
] = 0x3
3078 const uint8_t len_code
[] = {
3079 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
3083 if (kvm_sw_breakpoints_active(cpu
)) {
3084 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_SW_BP
;
3086 if (nb_hw_breakpoint
> 0) {
3087 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_HW_BP
;
3088 dbg
->arch
.debugreg
[7] = 0x0600;
3089 for (n
= 0; n
< nb_hw_breakpoint
; n
++) {
3090 dbg
->arch
.debugreg
[n
] = hw_breakpoint
[n
].addr
;
3091 dbg
->arch
.debugreg
[7] |= (2 << (n
* 2)) |
3092 (type_code
[hw_breakpoint
[n
].type
] << (16 + n
*4)) |
3093 ((uint32_t)len_code
[hw_breakpoint
[n
].len
] << (18 + n
*4));
3098 static bool host_supports_vmx(void)
3100 uint32_t ecx
, unused
;
3102 host_cpuid(1, 0, &unused
, &unused
, &ecx
, &unused
);
3103 return ecx
& CPUID_EXT_VMX
;
3106 #define VMX_INVALID_GUEST_STATE 0x80000021
3108 int kvm_arch_handle_exit(CPUState
*cs
, struct kvm_run
*run
)
3110 X86CPU
*cpu
= X86_CPU(cs
);
3114 switch (run
->exit_reason
) {
3116 DPRINTF("handle_hlt\n");
3117 qemu_mutex_lock_iothread();
3118 ret
= kvm_handle_halt(cpu
);
3119 qemu_mutex_unlock_iothread();
3121 case KVM_EXIT_SET_TPR
:
3124 case KVM_EXIT_TPR_ACCESS
:
3125 qemu_mutex_lock_iothread();
3126 ret
= kvm_handle_tpr_access(cpu
);
3127 qemu_mutex_unlock_iothread();
3129 case KVM_EXIT_FAIL_ENTRY
:
3130 code
= run
->fail_entry
.hardware_entry_failure_reason
;
3131 fprintf(stderr
, "KVM: entry failed, hardware error 0x%" PRIx64
"\n",
3133 if (host_supports_vmx() && code
== VMX_INVALID_GUEST_STATE
) {
3135 "\nIf you're running a guest on an Intel machine without "
3136 "unrestricted mode\n"
3137 "support, the failure can be most likely due to the guest "
3138 "entering an invalid\n"
3139 "state for Intel VT. For example, the guest maybe running "
3140 "in big real mode\n"
3141 "which is not supported on less recent Intel processors."
3146 case KVM_EXIT_EXCEPTION
:
3147 fprintf(stderr
, "KVM: exception %d exit (error code 0x%x)\n",
3148 run
->ex
.exception
, run
->ex
.error_code
);
3151 case KVM_EXIT_DEBUG
:
3152 DPRINTF("kvm_exit_debug\n");
3153 qemu_mutex_lock_iothread();
3154 ret
= kvm_handle_debug(cpu
, &run
->debug
.arch
);
3155 qemu_mutex_unlock_iothread();
3157 case KVM_EXIT_HYPERV
:
3158 ret
= kvm_hv_handle_exit(cpu
, &run
->hyperv
);
3160 case KVM_EXIT_IOAPIC_EOI
:
3161 ioapic_eoi_broadcast(run
->eoi
.vector
);
3165 fprintf(stderr
, "KVM: unknown exit reason %d\n", run
->exit_reason
);
3173 bool kvm_arch_stop_on_emulation_error(CPUState
*cs
)
3175 X86CPU
*cpu
= X86_CPU(cs
);
3176 CPUX86State
*env
= &cpu
->env
;
3178 kvm_cpu_synchronize_state(cs
);
3179 return !(env
->cr
[0] & CR0_PE_MASK
) ||
3180 ((env
->segs
[R_CS
].selector
& 3) != 3);
3183 void kvm_arch_init_irq_routing(KVMState
*s
)
3185 if (!kvm_check_extension(s
, KVM_CAP_IRQ_ROUTING
)) {
3186 /* If kernel can't do irq routing, interrupt source
3187 * override 0->2 cannot be set up as required by HPET.
3188 * So we have to disable it.
3192 /* We know at this point that we're using the in-kernel
3193 * irqchip, so we can use irqfds, and on x86 we know
3194 * we can use msi via irqfd and GSI routing.
3196 kvm_msi_via_irqfd_allowed
= true;
3197 kvm_gsi_routing_allowed
= true;
3199 if (kvm_irqchip_is_split()) {
3202 /* If the ioapic is in QEMU and the lapics are in KVM, reserve
3203 MSI routes for signaling interrupts to the local apics. */
3204 for (i
= 0; i
< IOAPIC_NUM_PINS
; i
++) {
3205 struct MSIMessage msg
= { 0x0, 0x0 };
3206 if (kvm_irqchip_add_msi_route(s
, msg
, NULL
) < 0) {
3207 error_report("Could not enable split IRQ mode.");
3214 int kvm_arch_irqchip_create(MachineState
*ms
, KVMState
*s
)
3217 if (machine_kernel_irqchip_split(ms
)) {
3218 ret
= kvm_vm_enable_cap(s
, KVM_CAP_SPLIT_IRQCHIP
, 0, 24);
3220 error_report("Could not enable split irqchip mode: %s\n",
3224 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
3225 kvm_split_irqchip
= true;
3233 /* Classic KVM device assignment interface. Will remain x86 only. */
3234 int kvm_device_pci_assign(KVMState
*s
, PCIHostDeviceAddress
*dev_addr
,
3235 uint32_t flags
, uint32_t *dev_id
)
3237 struct kvm_assigned_pci_dev dev_data
= {
3238 .segnr
= dev_addr
->domain
,
3239 .busnr
= dev_addr
->bus
,
3240 .devfn
= PCI_DEVFN(dev_addr
->slot
, dev_addr
->function
),
3245 dev_data
.assigned_dev_id
=
3246 (dev_addr
->domain
<< 16) | (dev_addr
->bus
<< 8) | dev_data
.devfn
;
3248 ret
= kvm_vm_ioctl(s
, KVM_ASSIGN_PCI_DEVICE
, &dev_data
);
3253 *dev_id
= dev_data
.assigned_dev_id
;
3258 int kvm_device_pci_deassign(KVMState
*s
, uint32_t dev_id
)
3260 struct kvm_assigned_pci_dev dev_data
= {
3261 .assigned_dev_id
= dev_id
,
3264 return kvm_vm_ioctl(s
, KVM_DEASSIGN_PCI_DEVICE
, &dev_data
);
3267 static int kvm_assign_irq_internal(KVMState
*s
, uint32_t dev_id
,
3268 uint32_t irq_type
, uint32_t guest_irq
)
3270 struct kvm_assigned_irq assigned_irq
= {
3271 .assigned_dev_id
= dev_id
,
3272 .guest_irq
= guest_irq
,
3276 if (kvm_check_extension(s
, KVM_CAP_ASSIGN_DEV_IRQ
)) {
3277 return kvm_vm_ioctl(s
, KVM_ASSIGN_DEV_IRQ
, &assigned_irq
);
3279 return kvm_vm_ioctl(s
, KVM_ASSIGN_IRQ
, &assigned_irq
);
3283 int kvm_device_intx_assign(KVMState
*s
, uint32_t dev_id
, bool use_host_msi
,
3286 uint32_t irq_type
= KVM_DEV_IRQ_GUEST_INTX
|
3287 (use_host_msi
? KVM_DEV_IRQ_HOST_MSI
: KVM_DEV_IRQ_HOST_INTX
);
3289 return kvm_assign_irq_internal(s
, dev_id
, irq_type
, guest_irq
);
3292 int kvm_device_intx_set_mask(KVMState
*s
, uint32_t dev_id
, bool masked
)
3294 struct kvm_assigned_pci_dev dev_data
= {
3295 .assigned_dev_id
= dev_id
,
3296 .flags
= masked
? KVM_DEV_ASSIGN_MASK_INTX
: 0,
3299 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_INTX_MASK
, &dev_data
);
3302 static int kvm_deassign_irq_internal(KVMState
*s
, uint32_t dev_id
,
3305 struct kvm_assigned_irq assigned_irq
= {
3306 .assigned_dev_id
= dev_id
,
3310 return kvm_vm_ioctl(s
, KVM_DEASSIGN_DEV_IRQ
, &assigned_irq
);
3313 int kvm_device_intx_deassign(KVMState
*s
, uint32_t dev_id
, bool use_host_msi
)
3315 return kvm_deassign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_GUEST_INTX
|
3316 (use_host_msi
? KVM_DEV_IRQ_HOST_MSI
: KVM_DEV_IRQ_HOST_INTX
));
3319 int kvm_device_msi_assign(KVMState
*s
, uint32_t dev_id
, int virq
)
3321 return kvm_assign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_HOST_MSI
|
3322 KVM_DEV_IRQ_GUEST_MSI
, virq
);
3325 int kvm_device_msi_deassign(KVMState
*s
, uint32_t dev_id
)
3327 return kvm_deassign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_GUEST_MSI
|
3328 KVM_DEV_IRQ_HOST_MSI
);
3331 bool kvm_device_msix_supported(KVMState
*s
)
3333 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
3334 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
3335 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_MSIX_NR
, NULL
) == -EFAULT
;
3338 int kvm_device_msix_init_vectors(KVMState
*s
, uint32_t dev_id
,
3339 uint32_t nr_vectors
)
3341 struct kvm_assigned_msix_nr msix_nr
= {
3342 .assigned_dev_id
= dev_id
,
3343 .entry_nr
= nr_vectors
,
3346 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_MSIX_NR
, &msix_nr
);
3349 int kvm_device_msix_set_vector(KVMState
*s
, uint32_t dev_id
, uint32_t vector
,
3352 struct kvm_assigned_msix_entry msix_entry
= {
3353 .assigned_dev_id
= dev_id
,
3358 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_MSIX_ENTRY
, &msix_entry
);
3361 int kvm_device_msix_assign(KVMState
*s
, uint32_t dev_id
)
3363 return kvm_assign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_HOST_MSIX
|
3364 KVM_DEV_IRQ_GUEST_MSIX
, 0);
3367 int kvm_device_msix_deassign(KVMState
*s
, uint32_t dev_id
)
3369 return kvm_deassign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_GUEST_MSIX
|
3370 KVM_DEV_IRQ_HOST_MSIX
);
3373 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry
*route
,
3374 uint64_t address
, uint32_t data
, PCIDevice
*dev
)
3379 int kvm_arch_msi_data_to_gsi(uint32_t data
)