2 * QEMU NE2000 emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "hw/pci/pci.h"
28 #include "hw/loader.h"
29 #include "sysemu/sysemu.h"
31 /* debug NE2000 card */
32 //#define DEBUG_NE2000
34 #define MAX_ETH_FRAME_SIZE 1514
36 #define E8390_CMD 0x00 /* The command register (for all pages) */
37 /* Page 0 register offsets. */
38 #define EN0_CLDALO 0x01 /* Low byte of current local dma addr RD */
39 #define EN0_STARTPG 0x01 /* Starting page of ring bfr WR */
40 #define EN0_CLDAHI 0x02 /* High byte of current local dma addr RD */
41 #define EN0_STOPPG 0x02 /* Ending page +1 of ring bfr WR */
42 #define EN0_BOUNDARY 0x03 /* Boundary page of ring bfr RD WR */
43 #define EN0_TSR 0x04 /* Transmit status reg RD */
44 #define EN0_TPSR 0x04 /* Transmit starting page WR */
45 #define EN0_NCR 0x05 /* Number of collision reg RD */
46 #define EN0_TCNTLO 0x05 /* Low byte of tx byte count WR */
47 #define EN0_FIFO 0x06 /* FIFO RD */
48 #define EN0_TCNTHI 0x06 /* High byte of tx byte count WR */
49 #define EN0_ISR 0x07 /* Interrupt status reg RD WR */
50 #define EN0_CRDALO 0x08 /* low byte of current remote dma address RD */
51 #define EN0_RSARLO 0x08 /* Remote start address reg 0 */
52 #define EN0_CRDAHI 0x09 /* high byte, current remote dma address RD */
53 #define EN0_RSARHI 0x09 /* Remote start address reg 1 */
54 #define EN0_RCNTLO 0x0a /* Remote byte count reg WR */
55 #define EN0_RTL8029ID0 0x0a /* Realtek ID byte #1 RD */
56 #define EN0_RCNTHI 0x0b /* Remote byte count reg WR */
57 #define EN0_RTL8029ID1 0x0b /* Realtek ID byte #2 RD */
58 #define EN0_RSR 0x0c /* rx status reg RD */
59 #define EN0_RXCR 0x0c /* RX configuration reg WR */
60 #define EN0_TXCR 0x0d /* TX configuration reg WR */
61 #define EN0_COUNTER0 0x0d /* Rcv alignment error counter RD */
62 #define EN0_DCFG 0x0e /* Data configuration reg WR */
63 #define EN0_COUNTER1 0x0e /* Rcv CRC error counter RD */
64 #define EN0_IMR 0x0f /* Interrupt mask reg WR */
65 #define EN0_COUNTER2 0x0f /* Rcv missed frame error counter RD */
68 #define EN1_CURPAG 0x17
71 #define EN2_STARTPG 0x21 /* Starting page of ring bfr RD */
72 #define EN2_STOPPG 0x22 /* Ending page +1 of ring bfr RD */
74 #define EN3_CONFIG0 0x33
75 #define EN3_CONFIG1 0x34
76 #define EN3_CONFIG2 0x35
77 #define EN3_CONFIG3 0x36
79 /* Register accessed at EN_CMD, the 8390 base addr. */
80 #define E8390_STOP 0x01 /* Stop and reset the chip */
81 #define E8390_START 0x02 /* Start the chip, clear reset */
82 #define E8390_TRANS 0x04 /* Transmit a frame */
83 #define E8390_RREAD 0x08 /* Remote read */
84 #define E8390_RWRITE 0x10 /* Remote write */
85 #define E8390_NODMA 0x20 /* Remote DMA */
86 #define E8390_PAGE0 0x00 /* Select page chip registers */
87 #define E8390_PAGE1 0x40 /* using the two high-order bits */
88 #define E8390_PAGE2 0x80 /* Page 3 is invalid. */
90 /* Bits in EN0_ISR - Interrupt status register */
91 #define ENISR_RX 0x01 /* Receiver, no error */
92 #define ENISR_TX 0x02 /* Transmitter, no error */
93 #define ENISR_RX_ERR 0x04 /* Receiver, with error */
94 #define ENISR_TX_ERR 0x08 /* Transmitter, with error */
95 #define ENISR_OVER 0x10 /* Receiver overwrote the ring */
96 #define ENISR_COUNTERS 0x20 /* Counters need emptying */
97 #define ENISR_RDC 0x40 /* remote dma complete */
98 #define ENISR_RESET 0x80 /* Reset completed */
99 #define ENISR_ALL 0x3f /* Interrupts we will enable */
101 /* Bits in received packet status byte and EN0_RSR*/
102 #define ENRSR_RXOK 0x01 /* Received a good packet */
103 #define ENRSR_CRC 0x02 /* CRC error */
104 #define ENRSR_FAE 0x04 /* frame alignment error */
105 #define ENRSR_FO 0x08 /* FIFO overrun */
106 #define ENRSR_MPA 0x10 /* missed pkt */
107 #define ENRSR_PHY 0x20 /* physical/multicast address */
108 #define ENRSR_DIS 0x40 /* receiver disable. set in monitor mode */
109 #define ENRSR_DEF 0x80 /* deferring */
111 /* Transmitted packet status, EN0_TSR. */
112 #define ENTSR_PTX 0x01 /* Packet transmitted without error */
113 #define ENTSR_ND 0x02 /* The transmit wasn't deferred. */
114 #define ENTSR_COL 0x04 /* The transmit collided at least once. */
115 #define ENTSR_ABT 0x08 /* The transmit collided 16 times, and was deferred. */
116 #define ENTSR_CRS 0x10 /* The carrier sense was lost. */
117 #define ENTSR_FU 0x20 /* A "FIFO underrun" occurred during transmit. */
118 #define ENTSR_CDH 0x40 /* The collision detect "heartbeat" signal was lost. */
119 #define ENTSR_OWC 0x80 /* There was an out-of-window collision. */
121 typedef struct PCINE2000State
{
126 void ne2000_reset(NE2000State
*s
)
130 s
->isr
= ENISR_RESET
;
131 memcpy(s
->mem
, &s
->c
.macaddr
, 6);
135 /* duplicate prom data */
136 for(i
= 15;i
>= 0; i
--) {
137 s
->mem
[2 * i
] = s
->mem
[i
];
138 s
->mem
[2 * i
+ 1] = s
->mem
[i
];
142 static void ne2000_update_irq(NE2000State
*s
)
145 isr
= (s
->isr
& s
->imr
) & 0x7f;
146 #if defined(DEBUG_NE2000)
147 printf("NE2000: Set IRQ to %d (%02x %02x)\n",
148 isr
? 1 : 0, s
->isr
, s
->imr
);
150 qemu_set_irq(s
->irq
, (isr
!= 0));
153 static int ne2000_buffer_full(NE2000State
*s
)
155 int avail
, index
, boundary
;
157 index
= s
->curpag
<< 8;
158 boundary
= s
->boundary
<< 8;
159 if (index
< boundary
)
160 avail
= boundary
- index
;
162 avail
= (s
->stop
- s
->start
) - (index
- boundary
);
163 if (avail
< (MAX_ETH_FRAME_SIZE
+ 4))
168 #define MIN_BUF_SIZE 60
170 ssize_t
ne2000_receive(NetClientState
*nc
, const uint8_t *buf
, size_t size_
)
172 NE2000State
*s
= qemu_get_nic_opaque(nc
);
175 unsigned int total_len
, next
, avail
, len
, index
, mcast_idx
;
177 static const uint8_t broadcast_macaddr
[6] =
178 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
180 #if defined(DEBUG_NE2000)
181 printf("NE2000: received len=%d\n", size
);
184 if (s
->cmd
& E8390_STOP
|| ne2000_buffer_full(s
))
187 /* XXX: check this */
188 if (s
->rxcr
& 0x10) {
189 /* promiscuous: receive all */
191 if (!memcmp(buf
, broadcast_macaddr
, 6)) {
192 /* broadcast address */
193 if (!(s
->rxcr
& 0x04))
195 } else if (buf
[0] & 0x01) {
197 if (!(s
->rxcr
& 0x08))
199 mcast_idx
= compute_mcast_idx(buf
);
200 if (!(s
->mult
[mcast_idx
>> 3] & (1 << (mcast_idx
& 7))))
202 } else if (s
->mem
[0] == buf
[0] &&
203 s
->mem
[2] == buf
[1] &&
204 s
->mem
[4] == buf
[2] &&
205 s
->mem
[6] == buf
[3] &&
206 s
->mem
[8] == buf
[4] &&
207 s
->mem
[10] == buf
[5]) {
215 /* if too small buffer, then expand it */
216 if (size
< MIN_BUF_SIZE
) {
217 memcpy(buf1
, buf
, size
);
218 memset(buf1
+ size
, 0, MIN_BUF_SIZE
- size
);
223 index
= s
->curpag
<< 8;
224 if (index
>= NE2000_PMEM_END
) {
227 /* 4 bytes for header */
228 total_len
= size
+ 4;
229 /* address for next packet (4 bytes for CRC) */
230 next
= index
+ ((total_len
+ 4 + 255) & ~0xff);
232 next
-= (s
->stop
- s
->start
);
233 /* prepare packet header */
235 s
->rsr
= ENRSR_RXOK
; /* receive status */
236 /* XXX: check this */
242 p
[3] = total_len
>> 8;
245 /* write packet data */
247 if (index
<= s
->stop
)
248 avail
= s
->stop
- index
;
254 memcpy(s
->mem
+ index
, buf
, len
);
257 if (index
== s
->stop
)
261 s
->curpag
= next
>> 8;
263 /* now we can signal we have received something */
265 ne2000_update_irq(s
);
270 static void ne2000_ioport_write(void *opaque
, uint32_t addr
, uint32_t val
)
272 NE2000State
*s
= opaque
;
273 int offset
, page
, index
;
277 printf("NE2000: write addr=0x%x val=0x%02x\n", addr
, val
);
279 if (addr
== E8390_CMD
) {
280 /* control register */
282 if (!(val
& E8390_STOP
)) { /* START bit makes no sense on RTL8029... */
283 s
->isr
&= ~ENISR_RESET
;
284 /* test specific case: zero length transfer */
285 if ((val
& (E8390_RREAD
| E8390_RWRITE
)) &&
288 ne2000_update_irq(s
);
290 if (val
& E8390_TRANS
) {
291 index
= (s
->tpsr
<< 8);
292 /* XXX: next 2 lines are a hack to make netware 3.11 work */
293 if (index
>= NE2000_PMEM_END
)
294 index
-= NE2000_PMEM_SIZE
;
295 /* fail safe: check range on the transmitted length */
296 if (index
+ s
->tcnt
<= NE2000_PMEM_END
) {
297 qemu_send_packet(qemu_get_queue(s
->nic
), s
->mem
+ index
,
300 /* signal end of transfer */
303 s
->cmd
&= ~E8390_TRANS
;
304 ne2000_update_irq(s
);
309 offset
= addr
| (page
<< 4);
312 if (val
<< 8 <= NE2000_PMEM_END
) {
317 if (val
<< 8 <= NE2000_PMEM_END
) {
322 if (val
<< 8 < NE2000_PMEM_END
) {
328 ne2000_update_irq(s
);
334 s
->tcnt
= (s
->tcnt
& 0xff00) | val
;
337 s
->tcnt
= (s
->tcnt
& 0x00ff) | (val
<< 8);
340 s
->rsar
= (s
->rsar
& 0xff00) | val
;
343 s
->rsar
= (s
->rsar
& 0x00ff) | (val
<< 8);
346 s
->rcnt
= (s
->rcnt
& 0xff00) | val
;
349 s
->rcnt
= (s
->rcnt
& 0x00ff) | (val
<< 8);
358 s
->isr
&= ~(val
& 0x7f);
359 ne2000_update_irq(s
);
361 case EN1_PHYS
... EN1_PHYS
+ 5:
362 s
->phys
[offset
- EN1_PHYS
] = val
;
365 if (val
<< 8 < NE2000_PMEM_END
) {
369 case EN1_MULT
... EN1_MULT
+ 7:
370 s
->mult
[offset
- EN1_MULT
] = val
;
376 static uint32_t ne2000_ioport_read(void *opaque
, uint32_t addr
)
378 NE2000State
*s
= opaque
;
379 int offset
, page
, ret
;
382 if (addr
== E8390_CMD
) {
386 offset
= addr
| (page
<< 4);
398 ret
= s
->rsar
& 0x00ff;
403 case EN1_PHYS
... EN1_PHYS
+ 5:
404 ret
= s
->phys
[offset
- EN1_PHYS
];
409 case EN1_MULT
... EN1_MULT
+ 7:
410 ret
= s
->mult
[offset
- EN1_MULT
];
428 ret
= 0; /* 10baseT media */
431 ret
= 0x40; /* 10baseT active */
434 ret
= 0x40; /* Full duplex */
442 printf("NE2000: read addr=0x%x val=%02x\n", addr
, ret
);
447 static inline void ne2000_mem_writeb(NE2000State
*s
, uint32_t addr
,
451 (addr
>= NE2000_PMEM_START
&& addr
< NE2000_MEM_SIZE
)) {
456 static inline void ne2000_mem_writew(NE2000State
*s
, uint32_t addr
,
459 addr
&= ~1; /* XXX: check exact behaviour if not even */
461 (addr
>= NE2000_PMEM_START
&& addr
< NE2000_MEM_SIZE
)) {
462 *(uint16_t *)(s
->mem
+ addr
) = cpu_to_le16(val
);
466 static inline void ne2000_mem_writel(NE2000State
*s
, uint32_t addr
,
469 addr
&= ~1; /* XXX: check exact behaviour if not even */
471 (addr
>= NE2000_PMEM_START
&& addr
< NE2000_MEM_SIZE
)) {
472 stl_le_p(s
->mem
+ addr
, val
);
476 static inline uint32_t ne2000_mem_readb(NE2000State
*s
, uint32_t addr
)
479 (addr
>= NE2000_PMEM_START
&& addr
< NE2000_MEM_SIZE
)) {
486 static inline uint32_t ne2000_mem_readw(NE2000State
*s
, uint32_t addr
)
488 addr
&= ~1; /* XXX: check exact behaviour if not even */
490 (addr
>= NE2000_PMEM_START
&& addr
< NE2000_MEM_SIZE
)) {
491 return le16_to_cpu(*(uint16_t *)(s
->mem
+ addr
));
497 static inline uint32_t ne2000_mem_readl(NE2000State
*s
, uint32_t addr
)
499 addr
&= ~1; /* XXX: check exact behaviour if not even */
501 (addr
>= NE2000_PMEM_START
&& addr
< NE2000_MEM_SIZE
)) {
502 return ldl_le_p(s
->mem
+ addr
);
508 static inline void ne2000_dma_update(NE2000State
*s
, int len
)
512 /* XXX: check what to do if rsar > stop */
513 if (s
->rsar
== s
->stop
)
516 if (s
->rcnt
<= len
) {
518 /* signal end of transfer */
520 ne2000_update_irq(s
);
526 static void ne2000_asic_ioport_write(void *opaque
, uint32_t addr
, uint32_t val
)
528 NE2000State
*s
= opaque
;
531 printf("NE2000: asic write val=0x%04x\n", val
);
535 if (s
->dcfg
& 0x01) {
537 ne2000_mem_writew(s
, s
->rsar
, val
);
538 ne2000_dma_update(s
, 2);
541 ne2000_mem_writeb(s
, s
->rsar
, val
);
542 ne2000_dma_update(s
, 1);
546 static uint32_t ne2000_asic_ioport_read(void *opaque
, uint32_t addr
)
548 NE2000State
*s
= opaque
;
551 if (s
->dcfg
& 0x01) {
553 ret
= ne2000_mem_readw(s
, s
->rsar
);
554 ne2000_dma_update(s
, 2);
557 ret
= ne2000_mem_readb(s
, s
->rsar
);
558 ne2000_dma_update(s
, 1);
561 printf("NE2000: asic read val=0x%04x\n", ret
);
566 static void ne2000_asic_ioport_writel(void *opaque
, uint32_t addr
, uint32_t val
)
568 NE2000State
*s
= opaque
;
571 printf("NE2000: asic writel val=0x%04x\n", val
);
576 ne2000_mem_writel(s
, s
->rsar
, val
);
577 ne2000_dma_update(s
, 4);
580 static uint32_t ne2000_asic_ioport_readl(void *opaque
, uint32_t addr
)
582 NE2000State
*s
= opaque
;
586 ret
= ne2000_mem_readl(s
, s
->rsar
);
587 ne2000_dma_update(s
, 4);
589 printf("NE2000: asic readl val=0x%04x\n", ret
);
594 static void ne2000_reset_ioport_write(void *opaque
, uint32_t addr
, uint32_t val
)
596 /* nothing to do (end of reset pulse) */
599 static uint32_t ne2000_reset_ioport_read(void *opaque
, uint32_t addr
)
601 NE2000State
*s
= opaque
;
606 static int ne2000_post_load(void* opaque
, int version_id
)
608 NE2000State
* s
= opaque
;
610 if (version_id
< 2) {
616 const VMStateDescription vmstate_ne2000
= {
619 .minimum_version_id
= 0,
620 .post_load
= ne2000_post_load
,
621 .fields
= (VMStateField
[]) {
622 VMSTATE_UINT8_V(rxcr
, NE2000State
, 2),
623 VMSTATE_UINT8(cmd
, NE2000State
),
624 VMSTATE_UINT32(start
, NE2000State
),
625 VMSTATE_UINT32(stop
, NE2000State
),
626 VMSTATE_UINT8(boundary
, NE2000State
),
627 VMSTATE_UINT8(tsr
, NE2000State
),
628 VMSTATE_UINT8(tpsr
, NE2000State
),
629 VMSTATE_UINT16(tcnt
, NE2000State
),
630 VMSTATE_UINT16(rcnt
, NE2000State
),
631 VMSTATE_UINT32(rsar
, NE2000State
),
632 VMSTATE_UINT8(rsr
, NE2000State
),
633 VMSTATE_UINT8(isr
, NE2000State
),
634 VMSTATE_UINT8(dcfg
, NE2000State
),
635 VMSTATE_UINT8(imr
, NE2000State
),
636 VMSTATE_BUFFER(phys
, NE2000State
),
637 VMSTATE_UINT8(curpag
, NE2000State
),
638 VMSTATE_BUFFER(mult
, NE2000State
),
639 VMSTATE_UNUSED(4), /* was irq */
640 VMSTATE_BUFFER(mem
, NE2000State
),
641 VMSTATE_END_OF_LIST()
645 static const VMStateDescription vmstate_pci_ne2000
= {
648 .minimum_version_id
= 3,
649 .fields
= (VMStateField
[]) {
650 VMSTATE_PCI_DEVICE(dev
, PCINE2000State
),
651 VMSTATE_STRUCT(ne2000
, PCINE2000State
, 0, vmstate_ne2000
, NE2000State
),
652 VMSTATE_END_OF_LIST()
656 static uint64_t ne2000_read(void *opaque
, hwaddr addr
,
659 NE2000State
*s
= opaque
;
661 if (addr
< 0x10 && size
== 1) {
662 return ne2000_ioport_read(s
, addr
);
663 } else if (addr
== 0x10) {
665 return ne2000_asic_ioport_read(s
, addr
);
667 return ne2000_asic_ioport_readl(s
, addr
);
669 } else if (addr
== 0x1f && size
== 1) {
670 return ne2000_reset_ioport_read(s
, addr
);
672 return ((uint64_t)1 << (size
* 8)) - 1;
675 static void ne2000_write(void *opaque
, hwaddr addr
,
676 uint64_t data
, unsigned size
)
678 NE2000State
*s
= opaque
;
680 if (addr
< 0x10 && size
== 1) {
681 ne2000_ioport_write(s
, addr
, data
);
682 } else if (addr
== 0x10) {
684 ne2000_asic_ioport_write(s
, addr
, data
);
686 ne2000_asic_ioport_writel(s
, addr
, data
);
688 } else if (addr
== 0x1f && size
== 1) {
689 ne2000_reset_ioport_write(s
, addr
, data
);
693 static const MemoryRegionOps ne2000_ops
= {
695 .write
= ne2000_write
,
696 .endianness
= DEVICE_LITTLE_ENDIAN
,
699 /***********************************************************/
700 /* PCI NE2000 definitions */
702 void ne2000_setup_io(NE2000State
*s
, DeviceState
*dev
, unsigned size
)
704 memory_region_init_io(&s
->io
, OBJECT(dev
), &ne2000_ops
, s
, "ne2000", size
);
707 static NetClientInfo net_ne2000_info
= {
708 .type
= NET_CLIENT_OPTIONS_KIND_NIC
,
709 .size
= sizeof(NICState
),
710 .receive
= ne2000_receive
,
713 static void pci_ne2000_realize(PCIDevice
*pci_dev
, Error
**errp
)
715 PCINE2000State
*d
= DO_UPCAST(PCINE2000State
, dev
, pci_dev
);
719 pci_conf
= d
->dev
.config
;
720 pci_conf
[PCI_INTERRUPT_PIN
] = 1; /* interrupt pin A */
723 ne2000_setup_io(s
, DEVICE(pci_dev
), 0x100);
724 pci_register_bar(&d
->dev
, 0, PCI_BASE_ADDRESS_SPACE_IO
, &s
->io
);
725 s
->irq
= pci_allocate_irq(&d
->dev
);
727 qemu_macaddr_default_if_unset(&s
->c
.macaddr
);
730 s
->nic
= qemu_new_nic(&net_ne2000_info
, &s
->c
,
731 object_get_typename(OBJECT(pci_dev
)), pci_dev
->qdev
.id
, s
);
732 qemu_format_nic_info_str(qemu_get_queue(s
->nic
), s
->c
.macaddr
.a
);
735 static void pci_ne2000_exit(PCIDevice
*pci_dev
)
737 PCINE2000State
*d
= DO_UPCAST(PCINE2000State
, dev
, pci_dev
);
738 NE2000State
*s
= &d
->ne2000
;
740 qemu_del_nic(s
->nic
);
741 qemu_free_irq(s
->irq
);
744 static void ne2000_instance_init(Object
*obj
)
746 PCIDevice
*pci_dev
= PCI_DEVICE(obj
);
747 PCINE2000State
*d
= DO_UPCAST(PCINE2000State
, dev
, pci_dev
);
748 NE2000State
*s
= &d
->ne2000
;
750 device_add_bootindex_property(obj
, &s
->c
.bootindex
,
751 "bootindex", "/ethernet-phy@0",
752 &pci_dev
->qdev
, NULL
);
755 static Property ne2000_properties
[] = {
756 DEFINE_NIC_PROPERTIES(PCINE2000State
, ne2000
.c
),
757 DEFINE_PROP_END_OF_LIST(),
760 static void ne2000_class_init(ObjectClass
*klass
, void *data
)
762 DeviceClass
*dc
= DEVICE_CLASS(klass
);
763 PCIDeviceClass
*k
= PCI_DEVICE_CLASS(klass
);
765 k
->realize
= pci_ne2000_realize
;
766 k
->exit
= pci_ne2000_exit
;
767 k
->romfile
= "efi-ne2k_pci.rom",
768 k
->vendor_id
= PCI_VENDOR_ID_REALTEK
;
769 k
->device_id
= PCI_DEVICE_ID_REALTEK_8029
;
770 k
->class_id
= PCI_CLASS_NETWORK_ETHERNET
;
771 dc
->vmsd
= &vmstate_pci_ne2000
;
772 dc
->props
= ne2000_properties
;
773 set_bit(DEVICE_CATEGORY_NETWORK
, dc
->categories
);
776 static const TypeInfo ne2000_info
= {
778 .parent
= TYPE_PCI_DEVICE
,
779 .instance_size
= sizeof(PCINE2000State
),
780 .class_init
= ne2000_class_init
,
781 .instance_init
= ne2000_instance_init
,
784 static void ne2000_register_types(void)
786 type_register_static(&ne2000_info
);
789 type_init(ne2000_register_types
)