spapr: Fix machine reset deadlock from replay-record
[qemu/ar7.git] / hw / ppc / spapr.c
blobc0b0ada121f9285fe050de049738319c27dd51a3
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
27 #include "qemu/osdep.h"
28 #include "qemu/datadir.h"
29 #include "qemu/memalign.h"
30 #include "qemu/guest-random.h"
31 #include "qapi/error.h"
32 #include "qapi/qapi-events-machine.h"
33 #include "qapi/qapi-events-qdev.h"
34 #include "qapi/visitor.h"
35 #include "sysemu/sysemu.h"
36 #include "sysemu/hostmem.h"
37 #include "sysemu/numa.h"
38 #include "sysemu/qtest.h"
39 #include "sysemu/reset.h"
40 #include "sysemu/runstate.h"
41 #include "qemu/log.h"
42 #include "hw/fw-path-provider.h"
43 #include "elf.h"
44 #include "net/net.h"
45 #include "sysemu/device_tree.h"
46 #include "sysemu/cpus.h"
47 #include "sysemu/hw_accel.h"
48 #include "kvm_ppc.h"
49 #include "migration/misc.h"
50 #include "migration/qemu-file-types.h"
51 #include "migration/global_state.h"
52 #include "migration/register.h"
53 #include "migration/blocker.h"
54 #include "mmu-hash64.h"
55 #include "mmu-book3s-v3.h"
56 #include "cpu-models.h"
57 #include "hw/core/cpu.h"
59 #include "hw/ppc/ppc.h"
60 #include "hw/loader.h"
62 #include "hw/ppc/fdt.h"
63 #include "hw/ppc/spapr.h"
64 #include "hw/ppc/spapr_nested.h"
65 #include "hw/ppc/spapr_vio.h"
66 #include "hw/ppc/vof.h"
67 #include "hw/qdev-properties.h"
68 #include "hw/pci-host/spapr.h"
69 #include "hw/pci/msi.h"
71 #include "hw/pci/pci.h"
72 #include "hw/scsi/scsi.h"
73 #include "hw/virtio/virtio-scsi.h"
74 #include "hw/virtio/vhost-scsi-common.h"
76 #include "exec/ram_addr.h"
77 #include "hw/usb.h"
78 #include "qemu/config-file.h"
79 #include "qemu/error-report.h"
80 #include "trace.h"
81 #include "hw/nmi.h"
82 #include "hw/intc/intc.h"
84 #include "hw/ppc/spapr_cpu_core.h"
85 #include "hw/mem/memory-device.h"
86 #include "hw/ppc/spapr_tpm_proxy.h"
87 #include "hw/ppc/spapr_nvdimm.h"
88 #include "hw/ppc/spapr_numa.h"
89 #include "hw/ppc/pef.h"
91 #include "monitor/monitor.h"
93 #include <libfdt.h>
95 /* SLOF memory layout:
97 * SLOF raw image loaded at 0, copies its romfs right below the flat
98 * device-tree, then position SLOF itself 31M below that
100 * So we set FW_OVERHEAD to 40MB which should account for all of that
101 * and more
103 * We load our kernel at 4M, leaving space for SLOF initial image
105 #define FDT_MAX_ADDR 0x80000000 /* FDT must stay below that */
106 #define FW_MAX_SIZE 0x400000
107 #define FW_FILE_NAME "slof.bin"
108 #define FW_FILE_NAME_VOF "vof.bin"
109 #define FW_OVERHEAD 0x2800000
110 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
112 #define MIN_RMA_SLOF (128 * MiB)
114 #define PHANDLE_INTC 0x00001111
116 /* These two functions implement the VCPU id numbering: one to compute them
117 * all and one to identify thread 0 of a VCORE. Any change to the first one
118 * is likely to have an impact on the second one, so let's keep them close.
120 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
122 MachineState *ms = MACHINE(spapr);
123 unsigned int smp_threads = ms->smp.threads;
125 assert(spapr->vsmt);
126 return
127 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
129 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
130 PowerPCCPU *cpu)
132 assert(spapr->vsmt);
133 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
136 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
138 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
139 * and newer QEMUs don't even have them. In both cases, we don't want
140 * to send anything on the wire.
142 return false;
145 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
146 .name = "icp/server",
147 .version_id = 1,
148 .minimum_version_id = 1,
149 .needed = pre_2_10_vmstate_dummy_icp_needed,
150 .fields = (VMStateField[]) {
151 VMSTATE_UNUSED(4), /* uint32_t xirr */
152 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
153 VMSTATE_UNUSED(1), /* uint8_t mfrr */
154 VMSTATE_END_OF_LIST()
158 static void pre_2_10_vmstate_register_dummy_icp(int i)
160 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
161 (void *)(uintptr_t) i);
164 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
166 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
167 (void *)(uintptr_t) i);
170 int spapr_max_server_number(SpaprMachineState *spapr)
172 MachineState *ms = MACHINE(spapr);
174 assert(spapr->vsmt);
175 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
178 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
179 int smt_threads)
181 int i, ret = 0;
182 g_autofree uint32_t *servers_prop = g_new(uint32_t, smt_threads);
183 g_autofree uint32_t *gservers_prop = g_new(uint32_t, smt_threads * 2);
184 int index = spapr_get_vcpu_id(cpu);
186 if (cpu->compat_pvr) {
187 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
188 if (ret < 0) {
189 return ret;
193 /* Build interrupt servers and gservers properties */
194 for (i = 0; i < smt_threads; i++) {
195 servers_prop[i] = cpu_to_be32(index + i);
196 /* Hack, direct the group queues back to cpu 0 */
197 gservers_prop[i*2] = cpu_to_be32(index + i);
198 gservers_prop[i*2 + 1] = 0;
200 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
201 servers_prop, sizeof(*servers_prop) * smt_threads);
202 if (ret < 0) {
203 return ret;
205 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
206 gservers_prop, sizeof(*gservers_prop) * smt_threads * 2);
208 return ret;
211 static void spapr_dt_pa_features(SpaprMachineState *spapr,
212 PowerPCCPU *cpu,
213 void *fdt, int offset)
215 uint8_t pa_features_206[] = { 6, 0,
216 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
217 uint8_t pa_features_207[] = { 24, 0,
218 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
219 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
220 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
221 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
222 uint8_t pa_features_300[] = { 66, 0,
223 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
224 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
225 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
226 /* 6: DS207 */
227 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
228 /* 16: Vector */
229 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
230 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
231 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
232 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
233 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
234 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
235 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
236 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
237 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
238 /* 42: PM, 44: PC RA, 46: SC vec'd */
239 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
240 /* 48: SIMD, 50: QP BFP, 52: String */
241 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
242 /* 54: DecFP, 56: DecI, 58: SHA */
243 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
244 /* 60: NM atomic, 62: RNG */
245 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
247 uint8_t *pa_features = NULL;
248 size_t pa_size;
250 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
251 pa_features = pa_features_206;
252 pa_size = sizeof(pa_features_206);
254 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
255 pa_features = pa_features_207;
256 pa_size = sizeof(pa_features_207);
258 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
259 pa_features = pa_features_300;
260 pa_size = sizeof(pa_features_300);
262 if (!pa_features) {
263 return;
266 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
268 * Note: we keep CI large pages off by default because a 64K capable
269 * guest provisioned with large pages might otherwise try to map a qemu
270 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
271 * even if that qemu runs on a 4k host.
272 * We dd this bit back here if we are confident this is not an issue
274 pa_features[3] |= 0x20;
276 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
277 pa_features[24] |= 0x80; /* Transactional memory support */
279 if (spapr->cas_pre_isa3_guest && pa_size > 40) {
280 /* Workaround for broken kernels that attempt (guest) radix
281 * mode when they can't handle it, if they see the radix bit set
282 * in pa-features. So hide it from them. */
283 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
286 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
289 static hwaddr spapr_node0_size(MachineState *machine)
291 if (machine->numa_state->num_nodes) {
292 int i;
293 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
294 if (machine->numa_state->nodes[i].node_mem) {
295 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
296 machine->ram_size);
300 return machine->ram_size;
303 static void add_str(GString *s, const gchar *s1)
305 g_string_append_len(s, s1, strlen(s1) + 1);
308 static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid,
309 hwaddr start, hwaddr size)
311 char mem_name[32];
312 uint64_t mem_reg_property[2];
313 int off;
315 mem_reg_property[0] = cpu_to_be64(start);
316 mem_reg_property[1] = cpu_to_be64(size);
318 sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
319 off = fdt_add_subnode(fdt, 0, mem_name);
320 _FDT(off);
321 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
322 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
323 sizeof(mem_reg_property))));
324 spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid);
325 return off;
328 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
330 MemoryDeviceInfoList *info;
332 for (info = list; info; info = info->next) {
333 MemoryDeviceInfo *value = info->value;
335 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
336 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
338 if (addr >= pcdimm_info->addr &&
339 addr < (pcdimm_info->addr + pcdimm_info->size)) {
340 return pcdimm_info->node;
345 return -1;
348 struct sPAPRDrconfCellV2 {
349 uint32_t seq_lmbs;
350 uint64_t base_addr;
351 uint32_t drc_index;
352 uint32_t aa_index;
353 uint32_t flags;
354 } QEMU_PACKED;
356 typedef struct DrconfCellQueue {
357 struct sPAPRDrconfCellV2 cell;
358 QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
359 } DrconfCellQueue;
361 static DrconfCellQueue *
362 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
363 uint32_t drc_index, uint32_t aa_index,
364 uint32_t flags)
366 DrconfCellQueue *elem;
368 elem = g_malloc0(sizeof(*elem));
369 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
370 elem->cell.base_addr = cpu_to_be64(base_addr);
371 elem->cell.drc_index = cpu_to_be32(drc_index);
372 elem->cell.aa_index = cpu_to_be32(aa_index);
373 elem->cell.flags = cpu_to_be32(flags);
375 return elem;
378 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt,
379 int offset, MemoryDeviceInfoList *dimms)
381 MachineState *machine = MACHINE(spapr);
382 uint8_t *int_buf, *cur_index;
383 int ret;
384 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
385 uint64_t addr, cur_addr, size;
386 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
387 uint64_t mem_end = machine->device_memory->base +
388 memory_region_size(&machine->device_memory->mr);
389 uint32_t node, buf_len, nr_entries = 0;
390 SpaprDrc *drc;
391 DrconfCellQueue *elem, *next;
392 MemoryDeviceInfoList *info;
393 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
394 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
396 /* Entry to cover RAM and the gap area */
397 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
398 SPAPR_LMB_FLAGS_RESERVED |
399 SPAPR_LMB_FLAGS_DRC_INVALID);
400 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
401 nr_entries++;
403 cur_addr = machine->device_memory->base;
404 for (info = dimms; info; info = info->next) {
405 PCDIMMDeviceInfo *di = info->value->u.dimm.data;
407 addr = di->addr;
408 size = di->size;
409 node = di->node;
412 * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
413 * area is marked hotpluggable in the next iteration for the bigger
414 * chunk including the NVDIMM occupied area.
416 if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM)
417 continue;
419 /* Entry for hot-pluggable area */
420 if (cur_addr < addr) {
421 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
422 g_assert(drc);
423 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
424 cur_addr, spapr_drc_index(drc), -1, 0);
425 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
426 nr_entries++;
429 /* Entry for DIMM */
430 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
431 g_assert(drc);
432 elem = spapr_get_drconf_cell(size / lmb_size, addr,
433 spapr_drc_index(drc), node,
434 (SPAPR_LMB_FLAGS_ASSIGNED |
435 SPAPR_LMB_FLAGS_HOTREMOVABLE));
436 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
437 nr_entries++;
438 cur_addr = addr + size;
441 /* Entry for remaining hotpluggable area */
442 if (cur_addr < mem_end) {
443 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
444 g_assert(drc);
445 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
446 cur_addr, spapr_drc_index(drc), -1, 0);
447 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
448 nr_entries++;
451 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
452 int_buf = cur_index = g_malloc0(buf_len);
453 *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
454 cur_index += sizeof(nr_entries);
456 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
457 memcpy(cur_index, &elem->cell, sizeof(elem->cell));
458 cur_index += sizeof(elem->cell);
459 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
460 g_free(elem);
463 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
464 g_free(int_buf);
465 if (ret < 0) {
466 return -1;
468 return 0;
471 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt,
472 int offset, MemoryDeviceInfoList *dimms)
474 MachineState *machine = MACHINE(spapr);
475 int i, ret;
476 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
477 uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
478 uint32_t nr_lmbs = (machine->device_memory->base +
479 memory_region_size(&machine->device_memory->mr)) /
480 lmb_size;
481 uint32_t *int_buf, *cur_index, buf_len;
484 * Allocate enough buffer size to fit in ibm,dynamic-memory
486 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
487 cur_index = int_buf = g_malloc0(buf_len);
488 int_buf[0] = cpu_to_be32(nr_lmbs);
489 cur_index++;
490 for (i = 0; i < nr_lmbs; i++) {
491 uint64_t addr = i * lmb_size;
492 uint32_t *dynamic_memory = cur_index;
494 if (i >= device_lmb_start) {
495 SpaprDrc *drc;
497 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
498 g_assert(drc);
500 dynamic_memory[0] = cpu_to_be32(addr >> 32);
501 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
502 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
503 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
504 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
505 if (memory_region_present(get_system_memory(), addr)) {
506 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
507 } else {
508 dynamic_memory[5] = cpu_to_be32(0);
510 } else {
512 * LMB information for RMA, boot time RAM and gap b/n RAM and
513 * device memory region -- all these are marked as reserved
514 * and as having no valid DRC.
516 dynamic_memory[0] = cpu_to_be32(addr >> 32);
517 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
518 dynamic_memory[2] = cpu_to_be32(0);
519 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
520 dynamic_memory[4] = cpu_to_be32(-1);
521 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
522 SPAPR_LMB_FLAGS_DRC_INVALID);
525 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
527 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
528 g_free(int_buf);
529 if (ret < 0) {
530 return -1;
532 return 0;
536 * Adds ibm,dynamic-reconfiguration-memory node.
537 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
538 * of this device tree node.
540 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr,
541 void *fdt)
543 MachineState *machine = MACHINE(spapr);
544 int ret, offset;
545 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
546 uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32),
547 cpu_to_be32(lmb_size & 0xffffffff)};
548 MemoryDeviceInfoList *dimms = NULL;
550 /* Don't create the node if there is no device memory. */
551 if (!machine->device_memory) {
552 return 0;
555 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
557 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
558 sizeof(prop_lmb_size));
559 if (ret < 0) {
560 return ret;
563 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
564 if (ret < 0) {
565 return ret;
568 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
569 if (ret < 0) {
570 return ret;
573 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
574 dimms = qmp_memory_device_list();
575 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
576 ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms);
577 } else {
578 ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms);
580 qapi_free_MemoryDeviceInfoList(dimms);
582 if (ret < 0) {
583 return ret;
586 ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset);
588 return ret;
591 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt)
593 MachineState *machine = MACHINE(spapr);
594 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
595 hwaddr mem_start, node_size;
596 int i, nb_nodes = machine->numa_state->num_nodes;
597 NodeInfo *nodes = machine->numa_state->nodes;
599 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
600 if (!nodes[i].node_mem) {
601 continue;
603 if (mem_start >= machine->ram_size) {
604 node_size = 0;
605 } else {
606 node_size = nodes[i].node_mem;
607 if (node_size > machine->ram_size - mem_start) {
608 node_size = machine->ram_size - mem_start;
611 if (!mem_start) {
612 /* spapr_machine_init() checks for rma_size <= node0_size
613 * already */
614 spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size);
615 mem_start += spapr->rma_size;
616 node_size -= spapr->rma_size;
618 for ( ; node_size; ) {
619 hwaddr sizetmp = pow2floor(node_size);
621 /* mem_start != 0 here */
622 if (ctzl(mem_start) < ctzl(sizetmp)) {
623 sizetmp = 1ULL << ctzl(mem_start);
626 spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp);
627 node_size -= sizetmp;
628 mem_start += sizetmp;
632 /* Generate ibm,dynamic-reconfiguration-memory node if required */
633 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) {
634 int ret;
636 g_assert(smc->dr_lmb_enabled);
637 ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt);
638 if (ret) {
639 return ret;
643 return 0;
646 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset,
647 SpaprMachineState *spapr)
649 MachineState *ms = MACHINE(spapr);
650 PowerPCCPU *cpu = POWERPC_CPU(cs);
651 CPUPPCState *env = &cpu->env;
652 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
653 int index = spapr_get_vcpu_id(cpu);
654 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
655 0xffffffff, 0xffffffff};
656 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
657 : SPAPR_TIMEBASE_FREQ;
658 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
659 uint32_t page_sizes_prop[64];
660 size_t page_sizes_prop_size;
661 unsigned int smp_threads = ms->smp.threads;
662 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
663 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
664 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
665 SpaprDrc *drc;
666 int drc_index;
667 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
668 int i;
670 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
671 if (drc) {
672 drc_index = spapr_drc_index(drc);
673 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
676 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
677 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
679 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
680 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
681 env->dcache_line_size)));
682 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
683 env->dcache_line_size)));
684 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
685 env->icache_line_size)));
686 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
687 env->icache_line_size)));
689 if (pcc->l1_dcache_size) {
690 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
691 pcc->l1_dcache_size)));
692 } else {
693 warn_report("Unknown L1 dcache size for cpu");
695 if (pcc->l1_icache_size) {
696 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
697 pcc->l1_icache_size)));
698 } else {
699 warn_report("Unknown L1 icache size for cpu");
702 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
703 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
704 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
705 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
706 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
707 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
709 if (ppc_has_spr(cpu, SPR_PURR)) {
710 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
712 if (ppc_has_spr(cpu, SPR_PURR)) {
713 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
716 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
717 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
718 segs, sizeof(segs))));
721 /* Advertise VSX (vector extensions) if available
722 * 1 == VMX / Altivec available
723 * 2 == VSX available
725 * Only CPUs for which we create core types in spapr_cpu_core.c
726 * are possible, and all of those have VMX */
727 if (env->insns_flags & PPC_ALTIVEC) {
728 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
729 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
730 } else {
731 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
735 /* Advertise DFP (Decimal Floating Point) if available
736 * 0 / no property == no DFP
737 * 1 == DFP available */
738 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
739 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
742 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
743 sizeof(page_sizes_prop));
744 if (page_sizes_prop_size) {
745 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
746 page_sizes_prop, page_sizes_prop_size)));
749 spapr_dt_pa_features(spapr, cpu, fdt, offset);
751 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
752 cs->cpu_index / vcpus_per_socket)));
754 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
755 pft_size_prop, sizeof(pft_size_prop))));
757 if (ms->numa_state->num_nodes > 1) {
758 _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu));
761 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
763 if (pcc->radix_page_info) {
764 for (i = 0; i < pcc->radix_page_info->count; i++) {
765 radix_AP_encodings[i] =
766 cpu_to_be32(pcc->radix_page_info->entries[i]);
768 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
769 radix_AP_encodings,
770 pcc->radix_page_info->count *
771 sizeof(radix_AP_encodings[0]))));
775 * We set this property to let the guest know that it can use the large
776 * decrementer and its width in bits.
778 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
779 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
780 pcc->lrg_decr_bits)));
783 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr)
785 CPUState **rev;
786 CPUState *cs;
787 int n_cpus;
788 int cpus_offset;
789 int i;
791 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
792 _FDT(cpus_offset);
793 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
794 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
797 * We walk the CPUs in reverse order to ensure that CPU DT nodes
798 * created by fdt_add_subnode() end up in the right order in FDT
799 * for the guest kernel the enumerate the CPUs correctly.
801 * The CPU list cannot be traversed in reverse order, so we need
802 * to do extra work.
804 n_cpus = 0;
805 rev = NULL;
806 CPU_FOREACH(cs) {
807 rev = g_renew(CPUState *, rev, n_cpus + 1);
808 rev[n_cpus++] = cs;
811 for (i = n_cpus - 1; i >= 0; i--) {
812 CPUState *cs = rev[i];
813 PowerPCCPU *cpu = POWERPC_CPU(cs);
814 int index = spapr_get_vcpu_id(cpu);
815 DeviceClass *dc = DEVICE_GET_CLASS(cs);
816 g_autofree char *nodename = NULL;
817 int offset;
819 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
820 continue;
823 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
824 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
825 _FDT(offset);
826 spapr_dt_cpu(cs, fdt, offset, spapr);
829 g_free(rev);
832 static int spapr_dt_rng(void *fdt)
834 int node;
835 int ret;
837 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
838 if (node <= 0) {
839 return -1;
841 ret = fdt_setprop_string(fdt, node, "device_type",
842 "ibm,platform-facilities");
843 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
844 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
846 node = fdt_add_subnode(fdt, node, "ibm,random-v1");
847 if (node <= 0) {
848 return -1;
850 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
852 return ret ? -1 : 0;
855 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
857 MachineState *ms = MACHINE(spapr);
858 int rtas;
859 GString *hypertas = g_string_sized_new(256);
860 GString *qemu_hypertas = g_string_sized_new(256);
861 uint32_t lrdr_capacity[] = {
864 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32),
865 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff),
866 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
869 /* Do we have device memory? */
870 if (MACHINE(spapr)->device_memory) {
871 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
872 memory_region_size(&MACHINE(spapr)->device_memory->mr);
874 lrdr_capacity[0] = cpu_to_be32(max_device_addr >> 32);
875 lrdr_capacity[1] = cpu_to_be32(max_device_addr & 0xffffffff);
878 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
880 /* hypertas */
881 add_str(hypertas, "hcall-pft");
882 add_str(hypertas, "hcall-term");
883 add_str(hypertas, "hcall-dabr");
884 add_str(hypertas, "hcall-interrupt");
885 add_str(hypertas, "hcall-tce");
886 add_str(hypertas, "hcall-vio");
887 add_str(hypertas, "hcall-splpar");
888 add_str(hypertas, "hcall-join");
889 add_str(hypertas, "hcall-bulk");
890 add_str(hypertas, "hcall-set-mode");
891 add_str(hypertas, "hcall-sprg0");
892 add_str(hypertas, "hcall-copy");
893 add_str(hypertas, "hcall-debug");
894 add_str(hypertas, "hcall-vphn");
895 if (spapr_get_cap(spapr, SPAPR_CAP_RPT_INVALIDATE) == SPAPR_CAP_ON) {
896 add_str(hypertas, "hcall-rpt-invalidate");
899 add_str(qemu_hypertas, "hcall-memop1");
901 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
902 add_str(hypertas, "hcall-multi-tce");
905 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
906 add_str(hypertas, "hcall-hpt-resize");
909 add_str(hypertas, "hcall-watchdog");
911 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
912 hypertas->str, hypertas->len));
913 g_string_free(hypertas, TRUE);
914 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
915 qemu_hypertas->str, qemu_hypertas->len));
916 g_string_free(qemu_hypertas, TRUE);
918 spapr_numa_write_rtas_dt(spapr, fdt, rtas);
921 * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
922 * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
924 * The system reset requirements are driven by existing Linux and PowerVM
925 * implementation which (contrary to PAPR) saves r3 in the error log
926 * structure like machine check, so Linux expects to find the saved r3
927 * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
928 * does not look at the error value).
930 * System reset interrupts are not subject to interlock like machine
931 * check, so this memory area could be corrupted if the sreset is
932 * interrupted by a machine check (or vice versa) if it was shared. To
933 * prevent this, system reset uses per-CPU areas for the sreset save
934 * area. A system reset that interrupts a system reset handler could
935 * still overwrite this area, but Linux doesn't try to recover in that
936 * case anyway.
938 * The extra 8 bytes is required because Linux's FWNMI error log check
939 * is off-by-one.
941 * RTAS_MIN_SIZE is required for the RTAS blob itself.
943 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_MIN_SIZE +
944 RTAS_ERROR_LOG_MAX +
945 ms->smp.max_cpus * sizeof(uint64_t) * 2 +
946 sizeof(uint64_t)));
947 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
948 RTAS_ERROR_LOG_MAX));
949 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
950 RTAS_EVENT_SCAN_RATE));
952 g_assert(msi_nonbroken);
953 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
956 * According to PAPR, rtas ibm,os-term does not guarantee a return
957 * back to the guest cpu.
959 * While an additional ibm,extended-os-term property indicates
960 * that rtas call return will always occur. Set this property.
962 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
964 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
965 lrdr_capacity, sizeof(lrdr_capacity)));
967 spapr_dt_rtas_tokens(fdt, rtas);
971 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
972 * and the XIVE features that the guest may request and thus the valid
973 * values for bytes 23..26 of option vector 5:
975 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
976 int chosen)
978 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
980 char val[2 * 4] = {
981 23, 0x00, /* XICS / XIVE mode */
982 24, 0x00, /* Hash/Radix, filled in below. */
983 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
984 26, 0x40, /* Radix options: GTSE == yes. */
987 if (spapr->irq->xics && spapr->irq->xive) {
988 val[1] = SPAPR_OV5_XIVE_BOTH;
989 } else if (spapr->irq->xive) {
990 val[1] = SPAPR_OV5_XIVE_EXPLOIT;
991 } else {
992 assert(spapr->irq->xics);
993 val[1] = SPAPR_OV5_XIVE_LEGACY;
996 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
997 first_ppc_cpu->compat_pvr)) {
999 * If we're in a pre POWER9 compat mode then the guest should
1000 * do hash and use the legacy interrupt mode
1002 val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
1003 val[3] = 0x00; /* Hash */
1004 spapr_check_mmu_mode(false);
1005 } else if (kvm_enabled()) {
1006 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1007 val[3] = 0x80; /* OV5_MMU_BOTH */
1008 } else if (kvmppc_has_cap_mmu_radix()) {
1009 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1010 } else {
1011 val[3] = 0x00; /* Hash */
1013 } else {
1014 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1015 val[3] = 0xC0;
1017 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1018 val, sizeof(val)));
1021 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset)
1023 MachineState *machine = MACHINE(spapr);
1024 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1025 uint8_t rng_seed[32];
1026 int chosen;
1028 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1030 if (reset) {
1031 const char *boot_device = spapr->boot_device;
1032 g_autofree char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1033 size_t cb = 0;
1034 g_autofree char *bootlist = get_boot_devices_list(&cb);
1036 if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1037 _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1038 machine->kernel_cmdline));
1041 if (spapr->initrd_size) {
1042 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1043 spapr->initrd_base));
1044 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1045 spapr->initrd_base + spapr->initrd_size));
1048 if (spapr->kernel_size) {
1049 uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr),
1050 cpu_to_be64(spapr->kernel_size) };
1052 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1053 &kprop, sizeof(kprop)));
1054 if (spapr->kernel_le) {
1055 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1058 if (machine->boot_config.has_menu && machine->boot_config.menu) {
1059 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", true)));
1061 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1062 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1063 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1065 if (cb && bootlist) {
1066 int i;
1068 for (i = 0; i < cb; i++) {
1069 if (bootlist[i] == '\n') {
1070 bootlist[i] = ' ';
1073 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1076 if (boot_device && strlen(boot_device)) {
1077 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1080 if (spapr->want_stdout_path && stdout_path) {
1082 * "linux,stdout-path" and "stdout" properties are
1083 * deprecated by linux kernel. New platforms should only
1084 * use the "stdout-path" property. Set the new property
1085 * and continue using older property to remain compatible
1086 * with the existing firmware.
1088 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1089 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1093 * We can deal with BAR reallocation just fine, advertise it
1094 * to the guest
1096 if (smc->linux_pci_probe) {
1097 _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1100 spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1103 qemu_guest_getrandom_nofail(rng_seed, sizeof(rng_seed));
1104 _FDT(fdt_setprop(fdt, chosen, "rng-seed", rng_seed, sizeof(rng_seed)));
1106 _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5"));
1109 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1111 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1112 * KVM to work under pHyp with some guest co-operation */
1113 int hypervisor;
1114 uint8_t hypercall[16];
1116 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1117 /* indicate KVM hypercall interface */
1118 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1119 if (kvmppc_has_cap_fixup_hcalls()) {
1121 * Older KVM versions with older guest kernels were broken
1122 * with the magic page, don't allow the guest to map it.
1124 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1125 sizeof(hypercall))) {
1126 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1127 hypercall, sizeof(hypercall)));
1132 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
1134 MachineState *machine = MACHINE(spapr);
1135 MachineClass *mc = MACHINE_GET_CLASS(machine);
1136 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1137 uint32_t root_drc_type_mask = 0;
1138 int ret;
1139 void *fdt;
1140 SpaprPhbState *phb;
1141 char *buf;
1143 fdt = g_malloc0(space);
1144 _FDT((fdt_create_empty_tree(fdt, space)));
1146 /* Root node */
1147 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1148 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1149 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1151 /* Guest UUID & Name*/
1152 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1153 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1154 if (qemu_uuid_set) {
1155 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1157 g_free(buf);
1159 if (qemu_get_vm_name()) {
1160 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1161 qemu_get_vm_name()));
1164 /* Host Model & Serial Number */
1165 if (spapr->host_model) {
1166 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1167 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1168 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1169 g_free(buf);
1172 if (spapr->host_serial) {
1173 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1174 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1175 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1176 g_free(buf);
1179 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1180 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1182 /* /interrupt controller */
1183 spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1185 ret = spapr_dt_memory(spapr, fdt);
1186 if (ret < 0) {
1187 error_report("couldn't setup memory nodes in fdt");
1188 exit(1);
1191 /* /vdevice */
1192 spapr_dt_vdevice(spapr->vio_bus, fdt);
1194 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1195 ret = spapr_dt_rng(fdt);
1196 if (ret < 0) {
1197 error_report("could not set up rng device in the fdt");
1198 exit(1);
1202 QLIST_FOREACH(phb, &spapr->phbs, list) {
1203 ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1204 if (ret < 0) {
1205 error_report("couldn't setup PCI devices in fdt");
1206 exit(1);
1210 spapr_dt_cpus(fdt, spapr);
1212 /* ibm,drc-indexes and friends */
1213 if (smc->dr_lmb_enabled) {
1214 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_LMB;
1216 if (smc->dr_phb_enabled) {
1217 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PHB;
1219 if (mc->nvdimm_supported) {
1220 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PMEM;
1222 if (root_drc_type_mask) {
1223 _FDT(spapr_dt_drc(fdt, 0, NULL, root_drc_type_mask));
1226 if (mc->has_hotpluggable_cpus) {
1227 int offset = fdt_path_offset(fdt, "/cpus");
1228 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1229 if (ret < 0) {
1230 error_report("Couldn't set up CPU DR device tree properties");
1231 exit(1);
1235 /* /event-sources */
1236 spapr_dt_events(spapr, fdt);
1238 /* /rtas */
1239 spapr_dt_rtas(spapr, fdt);
1241 /* /chosen */
1242 spapr_dt_chosen(spapr, fdt, reset);
1244 /* /hypervisor */
1245 if (kvm_enabled()) {
1246 spapr_dt_hypervisor(spapr, fdt);
1249 /* Build memory reserve map */
1250 if (reset) {
1251 if (spapr->kernel_size) {
1252 _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr,
1253 spapr->kernel_size)));
1255 if (spapr->initrd_size) {
1256 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1257 spapr->initrd_size)));
1261 /* NVDIMM devices */
1262 if (mc->nvdimm_supported) {
1263 spapr_dt_persistent_memory(spapr, fdt);
1266 return fdt;
1269 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1271 SpaprMachineState *spapr = opaque;
1273 return (addr & 0x0fffffff) + spapr->kernel_addr;
1276 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1277 PowerPCCPU *cpu)
1279 CPUPPCState *env = &cpu->env;
1281 /* The TCG path should also be holding the BQL at this point */
1282 g_assert(qemu_mutex_iothread_locked());
1284 g_assert(!vhyp_cpu_in_nested(cpu));
1286 if (FIELD_EX64(env->msr, MSR, PR)) {
1287 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1288 env->gpr[3] = H_PRIVILEGE;
1289 } else {
1290 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1294 struct LPCRSyncState {
1295 target_ulong value;
1296 target_ulong mask;
1299 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1301 struct LPCRSyncState *s = arg.host_ptr;
1302 PowerPCCPU *cpu = POWERPC_CPU(cs);
1303 CPUPPCState *env = &cpu->env;
1304 target_ulong lpcr;
1306 cpu_synchronize_state(cs);
1307 lpcr = env->spr[SPR_LPCR];
1308 lpcr &= ~s->mask;
1309 lpcr |= s->value;
1310 ppc_store_lpcr(cpu, lpcr);
1313 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1315 CPUState *cs;
1316 struct LPCRSyncState s = {
1317 .value = value,
1318 .mask = mask
1320 CPU_FOREACH(cs) {
1321 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1325 /* May be used when the machine is not running */
1326 void spapr_init_all_lpcrs(target_ulong value, target_ulong mask)
1328 CPUState *cs;
1329 CPU_FOREACH(cs) {
1330 PowerPCCPU *cpu = POWERPC_CPU(cs);
1331 CPUPPCState *env = &cpu->env;
1332 target_ulong lpcr;
1334 lpcr = env->spr[SPR_LPCR];
1335 lpcr &= ~(LPCR_HR | LPCR_UPRT);
1336 ppc_store_lpcr(cpu, lpcr);
1341 static bool spapr_get_pate(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu,
1342 target_ulong lpid, ppc_v3_pate_t *entry)
1344 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1345 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
1347 if (!spapr_cpu->in_nested) {
1348 assert(lpid == 0);
1350 /* Copy PATE1:GR into PATE0:HR */
1351 entry->dw0 = spapr->patb_entry & PATE0_HR;
1352 entry->dw1 = spapr->patb_entry;
1354 } else {
1355 uint64_t patb, pats;
1357 assert(lpid != 0);
1359 patb = spapr->nested_ptcr & PTCR_PATB;
1360 pats = spapr->nested_ptcr & PTCR_PATS;
1362 /* Check if partition table is properly aligned */
1363 if (patb & MAKE_64BIT_MASK(0, pats + 12)) {
1364 return false;
1367 /* Calculate number of entries */
1368 pats = 1ull << (pats + 12 - 4);
1369 if (pats <= lpid) {
1370 return false;
1373 /* Grab entry */
1374 patb += 16 * lpid;
1375 entry->dw0 = ldq_phys(CPU(cpu)->as, patb);
1376 entry->dw1 = ldq_phys(CPU(cpu)->as, patb + 8);
1379 return true;
1382 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1383 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1384 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1385 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1386 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1389 * Get the fd to access the kernel htab, re-opening it if necessary
1391 static int get_htab_fd(SpaprMachineState *spapr)
1393 Error *local_err = NULL;
1395 if (spapr->htab_fd >= 0) {
1396 return spapr->htab_fd;
1399 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1400 if (spapr->htab_fd < 0) {
1401 error_report_err(local_err);
1404 return spapr->htab_fd;
1407 void close_htab_fd(SpaprMachineState *spapr)
1409 if (spapr->htab_fd >= 0) {
1410 close(spapr->htab_fd);
1412 spapr->htab_fd = -1;
1415 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1417 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1419 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1422 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1424 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1426 assert(kvm_enabled());
1428 if (!spapr->htab) {
1429 return 0;
1432 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1435 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1436 hwaddr ptex, int n)
1438 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1439 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1441 if (!spapr->htab) {
1443 * HTAB is controlled by KVM. Fetch into temporary buffer
1445 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1446 kvmppc_read_hptes(hptes, ptex, n);
1447 return hptes;
1451 * HTAB is controlled by QEMU. Just point to the internally
1452 * accessible PTEG.
1454 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1457 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1458 const ppc_hash_pte64_t *hptes,
1459 hwaddr ptex, int n)
1461 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1463 if (!spapr->htab) {
1464 g_free((void *)hptes);
1467 /* Nothing to do for qemu managed HPT */
1470 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1471 uint64_t pte0, uint64_t pte1)
1473 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1474 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1476 if (!spapr->htab) {
1477 kvmppc_write_hpte(ptex, pte0, pte1);
1478 } else {
1479 if (pte0 & HPTE64_V_VALID) {
1480 stq_p(spapr->htab + offset + HPTE64_DW1, pte1);
1482 * When setting valid, we write PTE1 first. This ensures
1483 * proper synchronization with the reading code in
1484 * ppc_hash64_pteg_search()
1486 smp_wmb();
1487 stq_p(spapr->htab + offset, pte0);
1488 } else {
1489 stq_p(spapr->htab + offset, pte0);
1491 * When clearing it we set PTE0 first. This ensures proper
1492 * synchronization with the reading code in
1493 * ppc_hash64_pteg_search()
1495 smp_wmb();
1496 stq_p(spapr->htab + offset + HPTE64_DW1, pte1);
1501 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1502 uint64_t pte1)
1504 hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_C;
1505 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1507 if (!spapr->htab) {
1508 /* There should always be a hash table when this is called */
1509 error_report("spapr_hpte_set_c called with no hash table !");
1510 return;
1513 /* The HW performs a non-atomic byte update */
1514 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1517 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1518 uint64_t pte1)
1520 hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_R;
1521 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1523 if (!spapr->htab) {
1524 /* There should always be a hash table when this is called */
1525 error_report("spapr_hpte_set_r called with no hash table !");
1526 return;
1529 /* The HW performs a non-atomic byte update */
1530 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1533 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1535 int shift;
1537 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1538 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1539 * that's much more than is needed for Linux guests */
1540 shift = ctz64(pow2ceil(ramsize)) - 7;
1541 shift = MAX(shift, 18); /* Minimum architected size */
1542 shift = MIN(shift, 46); /* Maximum architected size */
1543 return shift;
1546 void spapr_free_hpt(SpaprMachineState *spapr)
1548 qemu_vfree(spapr->htab);
1549 spapr->htab = NULL;
1550 spapr->htab_shift = 0;
1551 close_htab_fd(spapr);
1554 int spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, Error **errp)
1556 ERRP_GUARD();
1557 long rc;
1559 /* Clean up any HPT info from a previous boot */
1560 spapr_free_hpt(spapr);
1562 rc = kvmppc_reset_htab(shift);
1564 if (rc == -EOPNOTSUPP) {
1565 error_setg(errp, "HPT not supported in nested guests");
1566 return -EOPNOTSUPP;
1569 if (rc < 0) {
1570 /* kernel-side HPT needed, but couldn't allocate one */
1571 error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d",
1572 shift);
1573 error_append_hint(errp, "Try smaller maxmem?\n");
1574 return -errno;
1575 } else if (rc > 0) {
1576 /* kernel-side HPT allocated */
1577 if (rc != shift) {
1578 error_setg(errp,
1579 "Requested order %d HPT, but kernel allocated order %ld",
1580 shift, rc);
1581 error_append_hint(errp, "Try smaller maxmem?\n");
1582 return -ENOSPC;
1585 spapr->htab_shift = shift;
1586 spapr->htab = NULL;
1587 } else {
1588 /* kernel-side HPT not needed, allocate in userspace instead */
1589 size_t size = 1ULL << shift;
1590 int i;
1592 spapr->htab = qemu_memalign(size, size);
1593 memset(spapr->htab, 0, size);
1594 spapr->htab_shift = shift;
1596 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1597 DIRTY_HPTE(HPTE(spapr->htab, i));
1600 /* We're setting up a hash table, so that means we're not radix */
1601 spapr->patb_entry = 0;
1602 spapr_init_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1603 return 0;
1606 void spapr_setup_hpt(SpaprMachineState *spapr)
1608 int hpt_shift;
1610 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
1611 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1612 } else {
1613 uint64_t current_ram_size;
1615 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1616 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1618 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1620 if (kvm_enabled()) {
1621 hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift);
1623 /* Check our RMA fits in the possible VRMA */
1624 if (vrma_limit < spapr->rma_size) {
1625 error_report("Unable to create %" HWADDR_PRIu
1626 "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB",
1627 spapr->rma_size / MiB, vrma_limit / MiB);
1628 exit(EXIT_FAILURE);
1633 void spapr_check_mmu_mode(bool guest_radix)
1635 if (guest_radix) {
1636 if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
1637 error_report("Guest requested unavailable MMU mode (radix).");
1638 exit(EXIT_FAILURE);
1640 } else {
1641 if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
1642 && !kvmppc_has_cap_mmu_hash_v3()) {
1643 error_report("Guest requested unavailable MMU mode (hash).");
1644 exit(EXIT_FAILURE);
1649 static void spapr_machine_reset(MachineState *machine, ShutdownCause reason)
1651 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1652 PowerPCCPU *first_ppc_cpu;
1653 hwaddr fdt_addr;
1654 void *fdt;
1655 int rc;
1657 pef_kvm_reset(machine->cgs, &error_fatal);
1658 spapr_caps_apply(spapr);
1660 first_ppc_cpu = POWERPC_CPU(first_cpu);
1661 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1662 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1663 spapr->max_compat_pvr)) {
1665 * If using KVM with radix mode available, VCPUs can be started
1666 * without a HPT because KVM will start them in radix mode.
1667 * Set the GR bit in PATE so that we know there is no HPT.
1669 spapr->patb_entry = PATE1_GR;
1670 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1671 } else {
1672 spapr_setup_hpt(spapr);
1675 qemu_devices_reset(reason);
1677 spapr_ovec_cleanup(spapr->ov5_cas);
1678 spapr->ov5_cas = spapr_ovec_new();
1680 ppc_init_compat_all(spapr->max_compat_pvr, &error_fatal);
1683 * This is fixing some of the default configuration of the XIVE
1684 * devices. To be called after the reset of the machine devices.
1686 spapr_irq_reset(spapr, &error_fatal);
1689 * There is no CAS under qtest. Simulate one to please the code that
1690 * depends on spapr->ov5_cas. This is especially needed to test device
1691 * unplug, so we do that before resetting the DRCs.
1693 if (qtest_enabled()) {
1694 spapr_ovec_cleanup(spapr->ov5_cas);
1695 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1698 spapr_nvdimm_finish_flushes();
1700 /* DRC reset may cause a device to be unplugged. This will cause troubles
1701 * if this device is used by another device (eg, a running vhost backend
1702 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1703 * situations, we reset DRCs after all devices have been reset.
1705 spapr_drc_reset_all(spapr);
1707 spapr_clear_pending_events(spapr);
1710 * We place the device tree just below either the top of the RMA,
1711 * or just below 2GB, whichever is lower, so that it can be
1712 * processed with 32-bit real mode code if necessary
1714 fdt_addr = MIN(spapr->rma_size, FDT_MAX_ADDR) - FDT_MAX_SIZE;
1716 fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
1717 if (spapr->vof) {
1718 spapr_vof_reset(spapr, fdt, &error_fatal);
1720 * Do not pack the FDT as the client may change properties.
1721 * VOF client does not expect the FDT so we do not load it to the VM.
1723 } else {
1724 rc = fdt_pack(fdt);
1725 /* Should only fail if we've built a corrupted tree */
1726 assert(rc == 0);
1728 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT,
1729 0, fdt_addr, 0);
1730 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1732 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1734 g_free(spapr->fdt_blob);
1735 spapr->fdt_size = fdt_totalsize(fdt);
1736 spapr->fdt_initial_size = spapr->fdt_size;
1737 spapr->fdt_blob = fdt;
1739 /* Set machine->fdt for 'dumpdtb' QMP/HMP command */
1740 machine->fdt = fdt;
1742 /* Set up the entry state */
1743 first_ppc_cpu->env.gpr[5] = 0;
1745 spapr->fwnmi_system_reset_addr = -1;
1746 spapr->fwnmi_machine_check_addr = -1;
1747 spapr->fwnmi_machine_check_interlock = -1;
1749 /* Signal all vCPUs waiting on this condition */
1750 qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond);
1752 migrate_del_blocker(spapr->fwnmi_migration_blocker);
1755 static void spapr_create_nvram(SpaprMachineState *spapr)
1757 DeviceState *dev = qdev_new("spapr-nvram");
1758 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1760 if (dinfo) {
1761 qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo),
1762 &error_fatal);
1765 qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal);
1767 spapr->nvram = (struct SpaprNvram *)dev;
1770 static void spapr_rtc_create(SpaprMachineState *spapr)
1772 object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc,
1773 sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1774 &error_fatal, NULL);
1775 qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal);
1776 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1777 "date");
1780 /* Returns whether we want to use VGA or not */
1781 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1783 vga_interface_created = true;
1784 switch (vga_interface_type) {
1785 case VGA_NONE:
1786 return false;
1787 case VGA_DEVICE:
1788 return true;
1789 case VGA_STD:
1790 case VGA_VIRTIO:
1791 case VGA_CIRRUS:
1792 return pci_vga_init(pci_bus) != NULL;
1793 default:
1794 error_setg(errp,
1795 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1796 return false;
1800 static int spapr_pre_load(void *opaque)
1802 int rc;
1804 rc = spapr_caps_pre_load(opaque);
1805 if (rc) {
1806 return rc;
1809 return 0;
1812 static int spapr_post_load(void *opaque, int version_id)
1814 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1815 int err = 0;
1817 err = spapr_caps_post_migration(spapr);
1818 if (err) {
1819 return err;
1823 * In earlier versions, there was no separate qdev for the PAPR
1824 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1825 * So when migrating from those versions, poke the incoming offset
1826 * value into the RTC device
1828 if (version_id < 3) {
1829 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1830 if (err) {
1831 return err;
1835 if (kvm_enabled() && spapr->patb_entry) {
1836 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1837 bool radix = !!(spapr->patb_entry & PATE1_GR);
1838 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1841 * Update LPCR:HR and UPRT as they may not be set properly in
1842 * the stream
1844 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1845 LPCR_HR | LPCR_UPRT);
1847 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1848 if (err) {
1849 error_report("Process table config unsupported by the host");
1850 return -EINVAL;
1854 err = spapr_irq_post_load(spapr, version_id);
1855 if (err) {
1856 return err;
1859 return err;
1862 static int spapr_pre_save(void *opaque)
1864 int rc;
1866 rc = spapr_caps_pre_save(opaque);
1867 if (rc) {
1868 return rc;
1871 return 0;
1874 static bool version_before_3(void *opaque, int version_id)
1876 return version_id < 3;
1879 static bool spapr_pending_events_needed(void *opaque)
1881 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1882 return !QTAILQ_EMPTY(&spapr->pending_events);
1885 static const VMStateDescription vmstate_spapr_event_entry = {
1886 .name = "spapr_event_log_entry",
1887 .version_id = 1,
1888 .minimum_version_id = 1,
1889 .fields = (VMStateField[]) {
1890 VMSTATE_UINT32(summary, SpaprEventLogEntry),
1891 VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1892 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1893 NULL, extended_length),
1894 VMSTATE_END_OF_LIST()
1898 static const VMStateDescription vmstate_spapr_pending_events = {
1899 .name = "spapr_pending_events",
1900 .version_id = 1,
1901 .minimum_version_id = 1,
1902 .needed = spapr_pending_events_needed,
1903 .fields = (VMStateField[]) {
1904 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1905 vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1906 VMSTATE_END_OF_LIST()
1910 static bool spapr_ov5_cas_needed(void *opaque)
1912 SpaprMachineState *spapr = opaque;
1913 SpaprOptionVector *ov5_mask = spapr_ovec_new();
1914 bool cas_needed;
1916 /* Prior to the introduction of SpaprOptionVector, we had two option
1917 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1918 * Both of these options encode machine topology into the device-tree
1919 * in such a way that the now-booted OS should still be able to interact
1920 * appropriately with QEMU regardless of what options were actually
1921 * negotiatied on the source side.
1923 * As such, we can avoid migrating the CAS-negotiated options if these
1924 * are the only options available on the current machine/platform.
1925 * Since these are the only options available for pseries-2.7 and
1926 * earlier, this allows us to maintain old->new/new->old migration
1927 * compatibility.
1929 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1930 * via default pseries-2.8 machines and explicit command-line parameters.
1931 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1932 * of the actual CAS-negotiated values to continue working properly. For
1933 * example, availability of memory unplug depends on knowing whether
1934 * OV5_HP_EVT was negotiated via CAS.
1936 * Thus, for any cases where the set of available CAS-negotiatable
1937 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1938 * include the CAS-negotiated options in the migration stream, unless
1939 * if they affect boot time behaviour only.
1941 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1942 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1943 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1945 /* We need extra information if we have any bits outside the mask
1946 * defined above */
1947 cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
1949 spapr_ovec_cleanup(ov5_mask);
1951 return cas_needed;
1954 static const VMStateDescription vmstate_spapr_ov5_cas = {
1955 .name = "spapr_option_vector_ov5_cas",
1956 .version_id = 1,
1957 .minimum_version_id = 1,
1958 .needed = spapr_ov5_cas_needed,
1959 .fields = (VMStateField[]) {
1960 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1961 vmstate_spapr_ovec, SpaprOptionVector),
1962 VMSTATE_END_OF_LIST()
1966 static bool spapr_patb_entry_needed(void *opaque)
1968 SpaprMachineState *spapr = opaque;
1970 return !!spapr->patb_entry;
1973 static const VMStateDescription vmstate_spapr_patb_entry = {
1974 .name = "spapr_patb_entry",
1975 .version_id = 1,
1976 .minimum_version_id = 1,
1977 .needed = spapr_patb_entry_needed,
1978 .fields = (VMStateField[]) {
1979 VMSTATE_UINT64(patb_entry, SpaprMachineState),
1980 VMSTATE_END_OF_LIST()
1984 static bool spapr_irq_map_needed(void *opaque)
1986 SpaprMachineState *spapr = opaque;
1988 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1991 static const VMStateDescription vmstate_spapr_irq_map = {
1992 .name = "spapr_irq_map",
1993 .version_id = 1,
1994 .minimum_version_id = 1,
1995 .needed = spapr_irq_map_needed,
1996 .fields = (VMStateField[]) {
1997 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
1998 VMSTATE_END_OF_LIST()
2002 static bool spapr_dtb_needed(void *opaque)
2004 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
2006 return smc->update_dt_enabled;
2009 static int spapr_dtb_pre_load(void *opaque)
2011 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2013 g_free(spapr->fdt_blob);
2014 spapr->fdt_blob = NULL;
2015 spapr->fdt_size = 0;
2017 return 0;
2020 static const VMStateDescription vmstate_spapr_dtb = {
2021 .name = "spapr_dtb",
2022 .version_id = 1,
2023 .minimum_version_id = 1,
2024 .needed = spapr_dtb_needed,
2025 .pre_load = spapr_dtb_pre_load,
2026 .fields = (VMStateField[]) {
2027 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
2028 VMSTATE_UINT32(fdt_size, SpaprMachineState),
2029 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
2030 fdt_size),
2031 VMSTATE_END_OF_LIST()
2035 static bool spapr_fwnmi_needed(void *opaque)
2037 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2039 return spapr->fwnmi_machine_check_addr != -1;
2042 static int spapr_fwnmi_pre_save(void *opaque)
2044 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2047 * Check if machine check handling is in progress and print a
2048 * warning message.
2050 if (spapr->fwnmi_machine_check_interlock != -1) {
2051 warn_report("A machine check is being handled during migration. The"
2052 "handler may run and log hardware error on the destination");
2055 return 0;
2058 static const VMStateDescription vmstate_spapr_fwnmi = {
2059 .name = "spapr_fwnmi",
2060 .version_id = 1,
2061 .minimum_version_id = 1,
2062 .needed = spapr_fwnmi_needed,
2063 .pre_save = spapr_fwnmi_pre_save,
2064 .fields = (VMStateField[]) {
2065 VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState),
2066 VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState),
2067 VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState),
2068 VMSTATE_END_OF_LIST()
2072 static const VMStateDescription vmstate_spapr = {
2073 .name = "spapr",
2074 .version_id = 3,
2075 .minimum_version_id = 1,
2076 .pre_load = spapr_pre_load,
2077 .post_load = spapr_post_load,
2078 .pre_save = spapr_pre_save,
2079 .fields = (VMStateField[]) {
2080 /* used to be @next_irq */
2081 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2083 /* RTC offset */
2084 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2086 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2087 VMSTATE_END_OF_LIST()
2089 .subsections = (const VMStateDescription*[]) {
2090 &vmstate_spapr_ov5_cas,
2091 &vmstate_spapr_patb_entry,
2092 &vmstate_spapr_pending_events,
2093 &vmstate_spapr_cap_htm,
2094 &vmstate_spapr_cap_vsx,
2095 &vmstate_spapr_cap_dfp,
2096 &vmstate_spapr_cap_cfpc,
2097 &vmstate_spapr_cap_sbbc,
2098 &vmstate_spapr_cap_ibs,
2099 &vmstate_spapr_cap_hpt_maxpagesize,
2100 &vmstate_spapr_irq_map,
2101 &vmstate_spapr_cap_nested_kvm_hv,
2102 &vmstate_spapr_dtb,
2103 &vmstate_spapr_cap_large_decr,
2104 &vmstate_spapr_cap_ccf_assist,
2105 &vmstate_spapr_cap_fwnmi,
2106 &vmstate_spapr_fwnmi,
2107 &vmstate_spapr_cap_rpt_invalidate,
2108 NULL
2112 static int htab_save_setup(QEMUFile *f, void *opaque)
2114 SpaprMachineState *spapr = opaque;
2116 /* "Iteration" header */
2117 if (!spapr->htab_shift) {
2118 qemu_put_be32(f, -1);
2119 } else {
2120 qemu_put_be32(f, spapr->htab_shift);
2123 if (spapr->htab) {
2124 spapr->htab_save_index = 0;
2125 spapr->htab_first_pass = true;
2126 } else {
2127 if (spapr->htab_shift) {
2128 assert(kvm_enabled());
2133 return 0;
2136 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2137 int chunkstart, int n_valid, int n_invalid)
2139 qemu_put_be32(f, chunkstart);
2140 qemu_put_be16(f, n_valid);
2141 qemu_put_be16(f, n_invalid);
2142 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2143 HASH_PTE_SIZE_64 * n_valid);
2146 static void htab_save_end_marker(QEMUFile *f)
2148 qemu_put_be32(f, 0);
2149 qemu_put_be16(f, 0);
2150 qemu_put_be16(f, 0);
2153 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2154 int64_t max_ns)
2156 bool has_timeout = max_ns != -1;
2157 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2158 int index = spapr->htab_save_index;
2159 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2161 assert(spapr->htab_first_pass);
2163 do {
2164 int chunkstart;
2166 /* Consume invalid HPTEs */
2167 while ((index < htabslots)
2168 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2169 CLEAN_HPTE(HPTE(spapr->htab, index));
2170 index++;
2173 /* Consume valid HPTEs */
2174 chunkstart = index;
2175 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2176 && HPTE_VALID(HPTE(spapr->htab, index))) {
2177 CLEAN_HPTE(HPTE(spapr->htab, index));
2178 index++;
2181 if (index > chunkstart) {
2182 int n_valid = index - chunkstart;
2184 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2186 if (has_timeout &&
2187 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2188 break;
2191 } while ((index < htabslots) && !migration_rate_exceeded(f));
2193 if (index >= htabslots) {
2194 assert(index == htabslots);
2195 index = 0;
2196 spapr->htab_first_pass = false;
2198 spapr->htab_save_index = index;
2201 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2202 int64_t max_ns)
2204 bool final = max_ns < 0;
2205 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2206 int examined = 0, sent = 0;
2207 int index = spapr->htab_save_index;
2208 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2210 assert(!spapr->htab_first_pass);
2212 do {
2213 int chunkstart, invalidstart;
2215 /* Consume non-dirty HPTEs */
2216 while ((index < htabslots)
2217 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2218 index++;
2219 examined++;
2222 chunkstart = index;
2223 /* Consume valid dirty HPTEs */
2224 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2225 && HPTE_DIRTY(HPTE(spapr->htab, index))
2226 && HPTE_VALID(HPTE(spapr->htab, index))) {
2227 CLEAN_HPTE(HPTE(spapr->htab, index));
2228 index++;
2229 examined++;
2232 invalidstart = index;
2233 /* Consume invalid dirty HPTEs */
2234 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2235 && HPTE_DIRTY(HPTE(spapr->htab, index))
2236 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2237 CLEAN_HPTE(HPTE(spapr->htab, index));
2238 index++;
2239 examined++;
2242 if (index > chunkstart) {
2243 int n_valid = invalidstart - chunkstart;
2244 int n_invalid = index - invalidstart;
2246 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2247 sent += index - chunkstart;
2249 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2250 break;
2254 if (examined >= htabslots) {
2255 break;
2258 if (index >= htabslots) {
2259 assert(index == htabslots);
2260 index = 0;
2262 } while ((examined < htabslots) && (!migration_rate_exceeded(f) || final));
2264 if (index >= htabslots) {
2265 assert(index == htabslots);
2266 index = 0;
2269 spapr->htab_save_index = index;
2271 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2274 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2275 #define MAX_KVM_BUF_SIZE 2048
2277 static int htab_save_iterate(QEMUFile *f, void *opaque)
2279 SpaprMachineState *spapr = opaque;
2280 int fd;
2281 int rc = 0;
2283 /* Iteration header */
2284 if (!spapr->htab_shift) {
2285 qemu_put_be32(f, -1);
2286 return 1;
2287 } else {
2288 qemu_put_be32(f, 0);
2291 if (!spapr->htab) {
2292 assert(kvm_enabled());
2294 fd = get_htab_fd(spapr);
2295 if (fd < 0) {
2296 return fd;
2299 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2300 if (rc < 0) {
2301 return rc;
2303 } else if (spapr->htab_first_pass) {
2304 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2305 } else {
2306 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2309 htab_save_end_marker(f);
2311 return rc;
2314 static int htab_save_complete(QEMUFile *f, void *opaque)
2316 SpaprMachineState *spapr = opaque;
2317 int fd;
2319 /* Iteration header */
2320 if (!spapr->htab_shift) {
2321 qemu_put_be32(f, -1);
2322 return 0;
2323 } else {
2324 qemu_put_be32(f, 0);
2327 if (!spapr->htab) {
2328 int rc;
2330 assert(kvm_enabled());
2332 fd = get_htab_fd(spapr);
2333 if (fd < 0) {
2334 return fd;
2337 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2338 if (rc < 0) {
2339 return rc;
2341 } else {
2342 if (spapr->htab_first_pass) {
2343 htab_save_first_pass(f, spapr, -1);
2345 htab_save_later_pass(f, spapr, -1);
2348 /* End marker */
2349 htab_save_end_marker(f);
2351 return 0;
2354 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2356 SpaprMachineState *spapr = opaque;
2357 uint32_t section_hdr;
2358 int fd = -1;
2359 Error *local_err = NULL;
2361 if (version_id < 1 || version_id > 1) {
2362 error_report("htab_load() bad version");
2363 return -EINVAL;
2366 section_hdr = qemu_get_be32(f);
2368 if (section_hdr == -1) {
2369 spapr_free_hpt(spapr);
2370 return 0;
2373 if (section_hdr) {
2374 int ret;
2376 /* First section gives the htab size */
2377 ret = spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2378 if (ret < 0) {
2379 error_report_err(local_err);
2380 return ret;
2382 return 0;
2385 if (!spapr->htab) {
2386 assert(kvm_enabled());
2388 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2389 if (fd < 0) {
2390 error_report_err(local_err);
2391 return fd;
2395 while (true) {
2396 uint32_t index;
2397 uint16_t n_valid, n_invalid;
2399 index = qemu_get_be32(f);
2400 n_valid = qemu_get_be16(f);
2401 n_invalid = qemu_get_be16(f);
2403 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2404 /* End of Stream */
2405 break;
2408 if ((index + n_valid + n_invalid) >
2409 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2410 /* Bad index in stream */
2411 error_report(
2412 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2413 index, n_valid, n_invalid, spapr->htab_shift);
2414 return -EINVAL;
2417 if (spapr->htab) {
2418 if (n_valid) {
2419 qemu_get_buffer(f, HPTE(spapr->htab, index),
2420 HASH_PTE_SIZE_64 * n_valid);
2422 if (n_invalid) {
2423 memset(HPTE(spapr->htab, index + n_valid), 0,
2424 HASH_PTE_SIZE_64 * n_invalid);
2426 } else {
2427 int rc;
2429 assert(fd >= 0);
2431 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid,
2432 &local_err);
2433 if (rc < 0) {
2434 error_report_err(local_err);
2435 return rc;
2440 if (!spapr->htab) {
2441 assert(fd >= 0);
2442 close(fd);
2445 return 0;
2448 static void htab_save_cleanup(void *opaque)
2450 SpaprMachineState *spapr = opaque;
2452 close_htab_fd(spapr);
2455 static SaveVMHandlers savevm_htab_handlers = {
2456 .save_setup = htab_save_setup,
2457 .save_live_iterate = htab_save_iterate,
2458 .save_live_complete_precopy = htab_save_complete,
2459 .save_cleanup = htab_save_cleanup,
2460 .load_state = htab_load,
2463 static void spapr_boot_set(void *opaque, const char *boot_device,
2464 Error **errp)
2466 SpaprMachineState *spapr = SPAPR_MACHINE(opaque);
2468 g_free(spapr->boot_device);
2469 spapr->boot_device = g_strdup(boot_device);
2472 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2474 MachineState *machine = MACHINE(spapr);
2475 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2476 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2477 int i;
2479 g_assert(!nr_lmbs || machine->device_memory);
2480 for (i = 0; i < nr_lmbs; i++) {
2481 uint64_t addr;
2483 addr = i * lmb_size + machine->device_memory->base;
2484 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2485 addr / lmb_size);
2490 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2491 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2492 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2494 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2496 int i;
2498 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2499 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2500 " is not aligned to %" PRIu64 " MiB",
2501 machine->ram_size,
2502 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2503 return;
2506 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2507 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2508 " is not aligned to %" PRIu64 " MiB",
2509 machine->ram_size,
2510 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2511 return;
2514 for (i = 0; i < machine->numa_state->num_nodes; i++) {
2515 if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2516 error_setg(errp,
2517 "Node %d memory size 0x%" PRIx64
2518 " is not aligned to %" PRIu64 " MiB",
2519 i, machine->numa_state->nodes[i].node_mem,
2520 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2521 return;
2526 /* find cpu slot in machine->possible_cpus by core_id */
2527 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2529 int index = id / ms->smp.threads;
2531 if (index >= ms->possible_cpus->len) {
2532 return NULL;
2534 if (idx) {
2535 *idx = index;
2537 return &ms->possible_cpus->cpus[index];
2540 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2542 MachineState *ms = MACHINE(spapr);
2543 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2544 Error *local_err = NULL;
2545 bool vsmt_user = !!spapr->vsmt;
2546 int kvm_smt = kvmppc_smt_threads();
2547 int ret;
2548 unsigned int smp_threads = ms->smp.threads;
2550 if (tcg_enabled()) {
2551 if (smp_threads > 1 &&
2552 !ppc_type_check_compat(ms->cpu_type, CPU_POWERPC_LOGICAL_2_07, 0,
2553 spapr->max_compat_pvr)) {
2554 error_setg(errp, "TCG only supports SMT on POWER8 or newer CPUs");
2555 return;
2558 if (smp_threads > 8) {
2559 error_setg(errp, "TCG cannot support more than 8 threads/core "
2560 "on a pseries machine");
2561 return;
2564 if (!is_power_of_2(smp_threads)) {
2565 error_setg(errp, "Cannot support %d threads/core on a pseries "
2566 "machine because it must be a power of 2", smp_threads);
2567 return;
2570 /* Detemine the VSMT mode to use: */
2571 if (vsmt_user) {
2572 if (spapr->vsmt < smp_threads) {
2573 error_setg(errp, "Cannot support VSMT mode %d"
2574 " because it must be >= threads/core (%d)",
2575 spapr->vsmt, smp_threads);
2576 return;
2578 /* In this case, spapr->vsmt has been set by the command line */
2579 } else if (!smc->smp_threads_vsmt) {
2581 * Default VSMT value is tricky, because we need it to be as
2582 * consistent as possible (for migration), but this requires
2583 * changing it for at least some existing cases. We pick 8 as
2584 * the value that we'd get with KVM on POWER8, the
2585 * overwhelmingly common case in production systems.
2587 spapr->vsmt = MAX(8, smp_threads);
2588 } else {
2589 spapr->vsmt = smp_threads;
2592 /* KVM: If necessary, set the SMT mode: */
2593 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2594 ret = kvmppc_set_smt_threads(spapr->vsmt);
2595 if (ret) {
2596 /* Looks like KVM isn't able to change VSMT mode */
2597 error_setg(&local_err,
2598 "Failed to set KVM's VSMT mode to %d (errno %d)",
2599 spapr->vsmt, ret);
2600 /* We can live with that if the default one is big enough
2601 * for the number of threads, and a submultiple of the one
2602 * we want. In this case we'll waste some vcpu ids, but
2603 * behaviour will be correct */
2604 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2605 warn_report_err(local_err);
2606 } else {
2607 if (!vsmt_user) {
2608 error_append_hint(&local_err,
2609 "On PPC, a VM with %d threads/core"
2610 " on a host with %d threads/core"
2611 " requires the use of VSMT mode %d.\n",
2612 smp_threads, kvm_smt, spapr->vsmt);
2614 kvmppc_error_append_smt_possible_hint(&local_err);
2615 error_propagate(errp, local_err);
2619 /* else TCG: nothing to do currently */
2622 static void spapr_init_cpus(SpaprMachineState *spapr)
2624 MachineState *machine = MACHINE(spapr);
2625 MachineClass *mc = MACHINE_GET_CLASS(machine);
2626 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2627 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2628 const CPUArchIdList *possible_cpus;
2629 unsigned int smp_cpus = machine->smp.cpus;
2630 unsigned int smp_threads = machine->smp.threads;
2631 unsigned int max_cpus = machine->smp.max_cpus;
2632 int boot_cores_nr = smp_cpus / smp_threads;
2633 int i;
2635 possible_cpus = mc->possible_cpu_arch_ids(machine);
2636 if (mc->has_hotpluggable_cpus) {
2637 if (smp_cpus % smp_threads) {
2638 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2639 smp_cpus, smp_threads);
2640 exit(1);
2642 if (max_cpus % smp_threads) {
2643 error_report("max_cpus (%u) must be multiple of threads (%u)",
2644 max_cpus, smp_threads);
2645 exit(1);
2647 } else {
2648 if (max_cpus != smp_cpus) {
2649 error_report("This machine version does not support CPU hotplug");
2650 exit(1);
2652 boot_cores_nr = possible_cpus->len;
2655 if (smc->pre_2_10_has_unused_icps) {
2656 int i;
2658 for (i = 0; i < spapr_max_server_number(spapr); i++) {
2659 /* Dummy entries get deregistered when real ICPState objects
2660 * are registered during CPU core hotplug.
2662 pre_2_10_vmstate_register_dummy_icp(i);
2666 for (i = 0; i < possible_cpus->len; i++) {
2667 int core_id = i * smp_threads;
2669 if (mc->has_hotpluggable_cpus) {
2670 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2671 spapr_vcpu_id(spapr, core_id));
2674 if (i < boot_cores_nr) {
2675 Object *core = object_new(type);
2676 int nr_threads = smp_threads;
2678 /* Handle the partially filled core for older machine types */
2679 if ((i + 1) * smp_threads >= smp_cpus) {
2680 nr_threads = smp_cpus - i * smp_threads;
2683 object_property_set_int(core, "nr-threads", nr_threads,
2684 &error_fatal);
2685 object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id,
2686 &error_fatal);
2687 qdev_realize(DEVICE(core), NULL, &error_fatal);
2689 object_unref(core);
2694 static PCIHostState *spapr_create_default_phb(void)
2696 DeviceState *dev;
2698 dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE);
2699 qdev_prop_set_uint32(dev, "index", 0);
2700 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
2702 return PCI_HOST_BRIDGE(dev);
2705 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp)
2707 MachineState *machine = MACHINE(spapr);
2708 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2709 hwaddr rma_size = machine->ram_size;
2710 hwaddr node0_size = spapr_node0_size(machine);
2712 /* RMA has to fit in the first NUMA node */
2713 rma_size = MIN(rma_size, node0_size);
2716 * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2717 * never exceed that
2719 rma_size = MIN(rma_size, 1 * TiB);
2722 * Clamp the RMA size based on machine type. This is for
2723 * migration compatibility with older qemu versions, which limited
2724 * the RMA size for complicated and mostly bad reasons.
2726 if (smc->rma_limit) {
2727 rma_size = MIN(rma_size, smc->rma_limit);
2730 if (rma_size < MIN_RMA_SLOF) {
2731 error_setg(errp,
2732 "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2733 "ldMiB guest RMA (Real Mode Area memory)",
2734 MIN_RMA_SLOF / MiB);
2735 return 0;
2738 return rma_size;
2741 static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr)
2743 MachineState *machine = MACHINE(spapr);
2744 int i;
2746 for (i = 0; i < machine->ram_slots; i++) {
2747 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i);
2751 /* pSeries LPAR / sPAPR hardware init */
2752 static void spapr_machine_init(MachineState *machine)
2754 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2755 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2756 MachineClass *mc = MACHINE_GET_CLASS(machine);
2757 const char *bios_default = spapr->vof ? FW_FILE_NAME_VOF : FW_FILE_NAME;
2758 const char *bios_name = machine->firmware ?: bios_default;
2759 g_autofree char *filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2760 const char *kernel_filename = machine->kernel_filename;
2761 const char *initrd_filename = machine->initrd_filename;
2762 PCIHostState *phb;
2763 bool has_vga;
2764 int i;
2765 MemoryRegion *sysmem = get_system_memory();
2766 long load_limit, fw_size;
2767 Error *resize_hpt_err = NULL;
2769 if (!filename) {
2770 error_report("Could not find LPAR firmware '%s'", bios_name);
2771 exit(1);
2773 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2774 if (fw_size <= 0) {
2775 error_report("Could not load LPAR firmware '%s'", filename);
2776 exit(1);
2780 * if Secure VM (PEF) support is configured, then initialize it
2782 pef_kvm_init(machine->cgs, &error_fatal);
2784 msi_nonbroken = true;
2786 QLIST_INIT(&spapr->phbs);
2787 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2789 /* Determine capabilities to run with */
2790 spapr_caps_init(spapr);
2792 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2793 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2795 * If the user explicitly requested a mode we should either
2796 * supply it, or fail completely (which we do below). But if
2797 * it's not set explicitly, we reset our mode to something
2798 * that works
2800 if (resize_hpt_err) {
2801 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2802 error_free(resize_hpt_err);
2803 resize_hpt_err = NULL;
2804 } else {
2805 spapr->resize_hpt = smc->resize_hpt_default;
2809 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2811 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2813 * User requested HPT resize, but this host can't supply it. Bail out
2815 error_report_err(resize_hpt_err);
2816 exit(1);
2818 error_free(resize_hpt_err);
2820 spapr->rma_size = spapr_rma_size(spapr, &error_fatal);
2822 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2823 load_limit = MIN(spapr->rma_size, FDT_MAX_ADDR) - FW_OVERHEAD;
2826 * VSMT must be set in order to be able to compute VCPU ids, ie to
2827 * call spapr_max_server_number() or spapr_vcpu_id().
2829 spapr_set_vsmt_mode(spapr, &error_fatal);
2831 /* Set up Interrupt Controller before we create the VCPUs */
2832 spapr_irq_init(spapr, &error_fatal);
2834 /* Set up containers for ibm,client-architecture-support negotiated options
2836 spapr->ov5 = spapr_ovec_new();
2837 spapr->ov5_cas = spapr_ovec_new();
2839 if (smc->dr_lmb_enabled) {
2840 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2841 spapr_validate_node_memory(machine, &error_fatal);
2844 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2846 /* Do not advertise FORM2 NUMA support for pseries-6.1 and older */
2847 if (!smc->pre_6_2_numa_affinity) {
2848 spapr_ovec_set(spapr->ov5, OV5_FORM2_AFFINITY);
2851 /* advertise support for dedicated HP event source to guests */
2852 if (spapr->use_hotplug_event_source) {
2853 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2856 /* advertise support for HPT resizing */
2857 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2858 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2861 /* advertise support for ibm,dyamic-memory-v2 */
2862 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2864 /* advertise XIVE on POWER9 machines */
2865 if (spapr->irq->xive) {
2866 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2869 /* init CPUs */
2870 spapr_init_cpus(spapr);
2872 spapr->gpu_numa_id = spapr_numa_initial_nvgpu_numa_id(machine);
2874 /* Init numa_assoc_array */
2875 spapr_numa_associativity_init(spapr, machine);
2877 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2878 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2879 spapr->max_compat_pvr)) {
2880 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300);
2881 /* KVM and TCG always allow GTSE with radix... */
2882 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2884 /* ... but not with hash (currently). */
2886 if (kvm_enabled()) {
2887 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2888 kvmppc_enable_logical_ci_hcalls();
2889 kvmppc_enable_set_mode_hcall();
2891 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2892 kvmppc_enable_clear_ref_mod_hcalls();
2894 /* Enable H_PAGE_INIT */
2895 kvmppc_enable_h_page_init();
2898 /* map RAM */
2899 memory_region_add_subregion(sysmem, 0, machine->ram);
2901 /* initialize hotplug memory address space */
2902 if (machine->ram_size < machine->maxram_size) {
2903 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2904 hwaddr device_mem_base;
2907 * Limit the number of hotpluggable memory slots to half the number
2908 * slots that KVM supports, leaving the other half for PCI and other
2909 * devices. However ensure that number of slots doesn't drop below 32.
2911 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2912 SPAPR_MAX_RAM_SLOTS;
2914 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2915 max_memslots = SPAPR_MAX_RAM_SLOTS;
2917 if (machine->ram_slots > max_memslots) {
2918 error_report("Specified number of memory slots %"
2919 PRIu64" exceeds max supported %d",
2920 machine->ram_slots, max_memslots);
2921 exit(1);
2924 device_mem_base = ROUND_UP(machine->ram_size, SPAPR_DEVICE_MEM_ALIGN);
2925 machine_memory_devices_init(machine, device_mem_base, device_mem_size);
2928 if (smc->dr_lmb_enabled) {
2929 spapr_create_lmb_dr_connectors(spapr);
2932 if (spapr_get_cap(spapr, SPAPR_CAP_FWNMI) == SPAPR_CAP_ON) {
2933 /* Create the error string for live migration blocker */
2934 error_setg(&spapr->fwnmi_migration_blocker,
2935 "A machine check is being handled during migration. The handler"
2936 "may run and log hardware error on the destination");
2939 if (mc->nvdimm_supported) {
2940 spapr_create_nvdimm_dr_connectors(spapr);
2943 /* Set up RTAS event infrastructure */
2944 spapr_events_init(spapr);
2946 /* Set up the RTC RTAS interfaces */
2947 spapr_rtc_create(spapr);
2949 /* Set up VIO bus */
2950 spapr->vio_bus = spapr_vio_bus_init();
2952 for (i = 0; serial_hd(i); i++) {
2953 spapr_vty_create(spapr->vio_bus, serial_hd(i));
2956 /* We always have at least the nvram device on VIO */
2957 spapr_create_nvram(spapr);
2960 * Setup hotplug / dynamic-reconfiguration connectors. top-level
2961 * connectors (described in root DT node's "ibm,drc-types" property)
2962 * are pre-initialized here. additional child connectors (such as
2963 * connectors for a PHBs PCI slots) are added as needed during their
2964 * parent's realization.
2966 if (smc->dr_phb_enabled) {
2967 for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2968 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2972 /* Set up PCI */
2973 spapr_pci_rtas_init();
2975 phb = spapr_create_default_phb();
2977 for (i = 0; i < nb_nics; i++) {
2978 NICInfo *nd = &nd_table[i];
2980 if (!nd->model) {
2981 nd->model = g_strdup("spapr-vlan");
2984 if (g_str_equal(nd->model, "spapr-vlan") ||
2985 g_str_equal(nd->model, "ibmveth")) {
2986 spapr_vlan_create(spapr->vio_bus, nd);
2987 } else {
2988 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2992 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2993 spapr_vscsi_create(spapr->vio_bus);
2996 /* Graphics */
2997 has_vga = spapr_vga_init(phb->bus, &error_fatal);
2998 if (has_vga) {
2999 spapr->want_stdout_path = !machine->enable_graphics;
3000 machine->usb |= defaults_enabled() && !machine->usb_disabled;
3001 } else {
3002 spapr->want_stdout_path = true;
3005 if (machine->usb) {
3006 if (smc->use_ohci_by_default) {
3007 pci_create_simple(phb->bus, -1, "pci-ohci");
3008 } else {
3009 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
3012 if (has_vga) {
3013 USBBus *usb_bus = usb_bus_find(-1);
3015 usb_create_simple(usb_bus, "usb-kbd");
3016 usb_create_simple(usb_bus, "usb-mouse");
3020 if (kernel_filename) {
3021 uint64_t loaded_addr = 0;
3023 spapr->kernel_size = load_elf(kernel_filename, NULL,
3024 translate_kernel_address, spapr,
3025 NULL, &loaded_addr, NULL, NULL, 1,
3026 PPC_ELF_MACHINE, 0, 0);
3027 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
3028 spapr->kernel_size = load_elf(kernel_filename, NULL,
3029 translate_kernel_address, spapr,
3030 NULL, &loaded_addr, NULL, NULL, 0,
3031 PPC_ELF_MACHINE, 0, 0);
3032 spapr->kernel_le = spapr->kernel_size > 0;
3034 if (spapr->kernel_size < 0) {
3035 error_report("error loading %s: %s", kernel_filename,
3036 load_elf_strerror(spapr->kernel_size));
3037 exit(1);
3040 if (spapr->kernel_addr != loaded_addr) {
3041 warn_report("spapr: kernel_addr changed from 0x%"PRIx64
3042 " to 0x%"PRIx64,
3043 spapr->kernel_addr, loaded_addr);
3044 spapr->kernel_addr = loaded_addr;
3047 /* load initrd */
3048 if (initrd_filename) {
3049 /* Try to locate the initrd in the gap between the kernel
3050 * and the firmware. Add a bit of space just in case
3052 spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size
3053 + 0x1ffff) & ~0xffff;
3054 spapr->initrd_size = load_image_targphys(initrd_filename,
3055 spapr->initrd_base,
3056 load_limit
3057 - spapr->initrd_base);
3058 if (spapr->initrd_size < 0) {
3059 error_report("could not load initial ram disk '%s'",
3060 initrd_filename);
3061 exit(1);
3066 /* FIXME: Should register things through the MachineState's qdev
3067 * interface, this is a legacy from the sPAPREnvironment structure
3068 * which predated MachineState but had a similar function */
3069 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3070 register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
3071 &savevm_htab_handlers, spapr);
3073 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine));
3075 qemu_register_boot_set(spapr_boot_set, spapr);
3078 * Nothing needs to be done to resume a suspended guest because
3079 * suspending does not change the machine state, so no need for
3080 * a ->wakeup method.
3082 qemu_register_wakeup_support();
3084 if (kvm_enabled()) {
3085 /* to stop and start vmclock */
3086 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3087 &spapr->tb);
3089 kvmppc_spapr_enable_inkernel_multitce();
3092 qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond);
3093 if (spapr->vof) {
3094 spapr->vof->fw_size = fw_size; /* for claim() on itself */
3095 spapr_register_hypercall(KVMPPC_H_VOF_CLIENT, spapr_h_vof_client);
3098 spapr_watchdog_init(spapr);
3101 #define DEFAULT_KVM_TYPE "auto"
3102 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3105 * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to
3106 * accomodate the 'HV' and 'PV' formats that exists in the
3107 * wild. The 'auto' mode is being introduced already as
3108 * lower-case, thus we don't need to bother checking for
3109 * "AUTO".
3111 if (!vm_type || !strcmp(vm_type, DEFAULT_KVM_TYPE)) {
3112 return 0;
3115 if (!g_ascii_strcasecmp(vm_type, "hv")) {
3116 return 1;
3119 if (!g_ascii_strcasecmp(vm_type, "pr")) {
3120 return 2;
3123 error_report("Unknown kvm-type specified '%s'", vm_type);
3124 return -1;
3128 * Implementation of an interface to adjust firmware path
3129 * for the bootindex property handling.
3131 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3132 DeviceState *dev)
3134 #define CAST(type, obj, name) \
3135 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3136 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
3137 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3138 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3139 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3141 if (d && bus) {
3142 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3143 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3144 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3146 if (spapr) {
3148 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3149 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3150 * 0x8000 | (target << 8) | (bus << 5) | lun
3151 * (see the "Logical unit addressing format" table in SAM5)
3153 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3154 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3155 (uint64_t)id << 48);
3156 } else if (virtio) {
3158 * We use SRP luns of the form 01000000 | (target << 8) | lun
3159 * in the top 32 bits of the 64-bit LUN
3160 * Note: the quote above is from SLOF and it is wrong,
3161 * the actual binding is:
3162 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3164 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3165 if (d->lun >= 256) {
3166 /* Use the LUN "flat space addressing method" */
3167 id |= 0x4000;
3169 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3170 (uint64_t)id << 32);
3171 } else if (usb) {
3173 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3174 * in the top 32 bits of the 64-bit LUN
3176 unsigned usb_port = atoi(usb->port->path);
3177 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3178 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3179 (uint64_t)id << 32);
3184 * SLOF probes the USB devices, and if it recognizes that the device is a
3185 * storage device, it changes its name to "storage" instead of "usb-host",
3186 * and additionally adds a child node for the SCSI LUN, so the correct
3187 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3189 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3190 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3191 if (usb_device_is_scsi_storage(usbdev)) {
3192 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3196 if (phb) {
3197 /* Replace "pci" with "pci@800000020000000" */
3198 return g_strdup_printf("pci@%"PRIX64, phb->buid);
3201 if (vsc) {
3202 /* Same logic as virtio above */
3203 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3204 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3207 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3208 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3209 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3210 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3213 if (pcidev) {
3214 return spapr_pci_fw_dev_name(pcidev);
3217 return NULL;
3220 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3222 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3224 return g_strdup(spapr->kvm_type);
3227 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3229 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3231 g_free(spapr->kvm_type);
3232 spapr->kvm_type = g_strdup(value);
3235 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3237 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3239 return spapr->use_hotplug_event_source;
3242 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3243 Error **errp)
3245 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3247 spapr->use_hotplug_event_source = value;
3250 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3252 return true;
3255 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3257 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3259 switch (spapr->resize_hpt) {
3260 case SPAPR_RESIZE_HPT_DEFAULT:
3261 return g_strdup("default");
3262 case SPAPR_RESIZE_HPT_DISABLED:
3263 return g_strdup("disabled");
3264 case SPAPR_RESIZE_HPT_ENABLED:
3265 return g_strdup("enabled");
3266 case SPAPR_RESIZE_HPT_REQUIRED:
3267 return g_strdup("required");
3269 g_assert_not_reached();
3272 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3274 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3276 if (strcmp(value, "default") == 0) {
3277 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3278 } else if (strcmp(value, "disabled") == 0) {
3279 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3280 } else if (strcmp(value, "enabled") == 0) {
3281 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3282 } else if (strcmp(value, "required") == 0) {
3283 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3284 } else {
3285 error_setg(errp, "Bad value for \"resize-hpt\" property");
3289 static bool spapr_get_vof(Object *obj, Error **errp)
3291 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3293 return spapr->vof != NULL;
3296 static void spapr_set_vof(Object *obj, bool value, Error **errp)
3298 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3300 if (spapr->vof) {
3301 vof_cleanup(spapr->vof);
3302 g_free(spapr->vof);
3303 spapr->vof = NULL;
3305 if (!value) {
3306 return;
3308 spapr->vof = g_malloc0(sizeof(*spapr->vof));
3311 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3313 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3315 if (spapr->irq == &spapr_irq_xics_legacy) {
3316 return g_strdup("legacy");
3317 } else if (spapr->irq == &spapr_irq_xics) {
3318 return g_strdup("xics");
3319 } else if (spapr->irq == &spapr_irq_xive) {
3320 return g_strdup("xive");
3321 } else if (spapr->irq == &spapr_irq_dual) {
3322 return g_strdup("dual");
3324 g_assert_not_reached();
3327 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3329 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3331 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3332 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3333 return;
3336 /* The legacy IRQ backend can not be set */
3337 if (strcmp(value, "xics") == 0) {
3338 spapr->irq = &spapr_irq_xics;
3339 } else if (strcmp(value, "xive") == 0) {
3340 spapr->irq = &spapr_irq_xive;
3341 } else if (strcmp(value, "dual") == 0) {
3342 spapr->irq = &spapr_irq_dual;
3343 } else {
3344 error_setg(errp, "Bad value for \"ic-mode\" property");
3348 static char *spapr_get_host_model(Object *obj, Error **errp)
3350 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3352 return g_strdup(spapr->host_model);
3355 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3357 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3359 g_free(spapr->host_model);
3360 spapr->host_model = g_strdup(value);
3363 static char *spapr_get_host_serial(Object *obj, Error **errp)
3365 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3367 return g_strdup(spapr->host_serial);
3370 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3372 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3374 g_free(spapr->host_serial);
3375 spapr->host_serial = g_strdup(value);
3378 static void spapr_instance_init(Object *obj)
3380 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3381 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3382 MachineState *ms = MACHINE(spapr);
3383 MachineClass *mc = MACHINE_GET_CLASS(ms);
3386 * NVDIMM support went live in 5.1 without considering that, in
3387 * other archs, the user needs to enable NVDIMM support with the
3388 * 'nvdimm' machine option and the default behavior is NVDIMM
3389 * support disabled. It is too late to roll back to the standard
3390 * behavior without breaking 5.1 guests.
3392 if (mc->nvdimm_supported) {
3393 ms->nvdimms_state->is_enabled = true;
3396 spapr->htab_fd = -1;
3397 spapr->use_hotplug_event_source = true;
3398 spapr->kvm_type = g_strdup(DEFAULT_KVM_TYPE);
3399 object_property_add_str(obj, "kvm-type",
3400 spapr_get_kvm_type, spapr_set_kvm_type);
3401 object_property_set_description(obj, "kvm-type",
3402 "Specifies the KVM virtualization mode (auto,"
3403 " hv, pr). Defaults to 'auto'. This mode will use"
3404 " any available KVM module loaded in the host,"
3405 " where kvm_hv takes precedence if both kvm_hv and"
3406 " kvm_pr are loaded.");
3407 object_property_add_bool(obj, "modern-hotplug-events",
3408 spapr_get_modern_hotplug_events,
3409 spapr_set_modern_hotplug_events);
3410 object_property_set_description(obj, "modern-hotplug-events",
3411 "Use dedicated hotplug event mechanism in"
3412 " place of standard EPOW events when possible"
3413 " (required for memory hot-unplug support)");
3414 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3415 "Maximum permitted CPU compatibility mode");
3417 object_property_add_str(obj, "resize-hpt",
3418 spapr_get_resize_hpt, spapr_set_resize_hpt);
3419 object_property_set_description(obj, "resize-hpt",
3420 "Resizing of the Hash Page Table (enabled, disabled, required)");
3421 object_property_add_uint32_ptr(obj, "vsmt",
3422 &spapr->vsmt, OBJ_PROP_FLAG_READWRITE);
3423 object_property_set_description(obj, "vsmt",
3424 "Virtual SMT: KVM behaves as if this were"
3425 " the host's SMT mode");
3427 object_property_add_bool(obj, "vfio-no-msix-emulation",
3428 spapr_get_msix_emulation, NULL);
3430 object_property_add_uint64_ptr(obj, "kernel-addr",
3431 &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE);
3432 object_property_set_description(obj, "kernel-addr",
3433 stringify(KERNEL_LOAD_ADDR)
3434 " for -kernel is the default");
3435 spapr->kernel_addr = KERNEL_LOAD_ADDR;
3437 object_property_add_bool(obj, "x-vof", spapr_get_vof, spapr_set_vof);
3438 object_property_set_description(obj, "x-vof",
3439 "Enable Virtual Open Firmware (experimental)");
3441 /* The machine class defines the default interrupt controller mode */
3442 spapr->irq = smc->irq;
3443 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3444 spapr_set_ic_mode);
3445 object_property_set_description(obj, "ic-mode",
3446 "Specifies the interrupt controller mode (xics, xive, dual)");
3448 object_property_add_str(obj, "host-model",
3449 spapr_get_host_model, spapr_set_host_model);
3450 object_property_set_description(obj, "host-model",
3451 "Host model to advertise in guest device tree");
3452 object_property_add_str(obj, "host-serial",
3453 spapr_get_host_serial, spapr_set_host_serial);
3454 object_property_set_description(obj, "host-serial",
3455 "Host serial number to advertise in guest device tree");
3458 static void spapr_machine_finalizefn(Object *obj)
3460 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3462 g_free(spapr->kvm_type);
3465 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3467 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3468 PowerPCCPU *cpu = POWERPC_CPU(cs);
3469 CPUPPCState *env = &cpu->env;
3471 cpu_synchronize_state(cs);
3472 /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
3473 if (spapr->fwnmi_system_reset_addr != -1) {
3474 uint64_t rtas_addr, addr;
3476 /* get rtas addr from fdt */
3477 rtas_addr = spapr_get_rtas_addr();
3478 if (!rtas_addr) {
3479 qemu_system_guest_panicked(NULL);
3480 return;
3483 addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2;
3484 stq_be_phys(&address_space_memory, addr, env->gpr[3]);
3485 stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0);
3486 env->gpr[3] = addr;
3488 ppc_cpu_do_system_reset(cs);
3489 if (spapr->fwnmi_system_reset_addr != -1) {
3490 env->nip = spapr->fwnmi_system_reset_addr;
3494 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3496 CPUState *cs;
3498 CPU_FOREACH(cs) {
3499 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3503 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3504 void *fdt, int *fdt_start_offset, Error **errp)
3506 uint64_t addr;
3507 uint32_t node;
3509 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3510 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3511 &error_abort);
3512 *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr,
3513 SPAPR_MEMORY_BLOCK_SIZE);
3514 return 0;
3517 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3518 bool dedicated_hp_event_source)
3520 SpaprDrc *drc;
3521 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3522 int i;
3523 uint64_t addr = addr_start;
3524 bool hotplugged = spapr_drc_hotplugged(dev);
3526 for (i = 0; i < nr_lmbs; i++) {
3527 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3528 addr / SPAPR_MEMORY_BLOCK_SIZE);
3529 g_assert(drc);
3532 * memory_device_get_free_addr() provided a range of free addresses
3533 * that doesn't overlap with any existing mapping at pre-plug. The
3534 * corresponding LMB DRCs are thus assumed to be all attachable.
3536 spapr_drc_attach(drc, dev);
3537 if (!hotplugged) {
3538 spapr_drc_reset(drc);
3540 addr += SPAPR_MEMORY_BLOCK_SIZE;
3542 /* send hotplug notification to the
3543 * guest only in case of hotplugged memory
3545 if (hotplugged) {
3546 if (dedicated_hp_event_source) {
3547 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3548 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3549 g_assert(drc);
3550 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3551 nr_lmbs,
3552 spapr_drc_index(drc));
3553 } else {
3554 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3555 nr_lmbs);
3560 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3562 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3563 PCDIMMDevice *dimm = PC_DIMM(dev);
3564 uint64_t size, addr;
3565 int64_t slot;
3566 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3568 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3570 pc_dimm_plug(dimm, MACHINE(ms));
3572 if (!is_nvdimm) {
3573 addr = object_property_get_uint(OBJECT(dimm),
3574 PC_DIMM_ADDR_PROP, &error_abort);
3575 spapr_add_lmbs(dev, addr, size,
3576 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT));
3577 } else {
3578 slot = object_property_get_int(OBJECT(dimm),
3579 PC_DIMM_SLOT_PROP, &error_abort);
3580 /* We should have valid slot number at this point */
3581 g_assert(slot >= 0);
3582 spapr_add_nvdimm(dev, slot);
3586 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3587 Error **errp)
3589 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3590 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3591 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3592 PCDIMMDevice *dimm = PC_DIMM(dev);
3593 Error *local_err = NULL;
3594 uint64_t size;
3595 Object *memdev;
3596 hwaddr pagesize;
3598 if (!smc->dr_lmb_enabled) {
3599 error_setg(errp, "Memory hotplug not supported for this machine");
3600 return;
3603 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3604 if (local_err) {
3605 error_propagate(errp, local_err);
3606 return;
3609 if (is_nvdimm) {
3610 if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) {
3611 return;
3613 } else if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3614 error_setg(errp, "Hotplugged memory size must be a multiple of "
3615 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3616 return;
3619 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3620 &error_abort);
3621 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3622 if (!spapr_check_pagesize(spapr, pagesize, errp)) {
3623 return;
3626 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3629 struct SpaprDimmState {
3630 PCDIMMDevice *dimm;
3631 uint32_t nr_lmbs;
3632 QTAILQ_ENTRY(SpaprDimmState) next;
3635 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3636 PCDIMMDevice *dimm)
3638 SpaprDimmState *dimm_state = NULL;
3640 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3641 if (dimm_state->dimm == dimm) {
3642 break;
3645 return dimm_state;
3648 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3649 uint32_t nr_lmbs,
3650 PCDIMMDevice *dimm)
3652 SpaprDimmState *ds = NULL;
3655 * If this request is for a DIMM whose removal had failed earlier
3656 * (due to guest's refusal to remove the LMBs), we would have this
3657 * dimm already in the pending_dimm_unplugs list. In that
3658 * case don't add again.
3660 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3661 if (!ds) {
3662 ds = g_new0(SpaprDimmState, 1);
3663 ds->nr_lmbs = nr_lmbs;
3664 ds->dimm = dimm;
3665 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3667 return ds;
3670 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3671 SpaprDimmState *dimm_state)
3673 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3674 g_free(dimm_state);
3677 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3678 PCDIMMDevice *dimm)
3680 SpaprDrc *drc;
3681 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3682 &error_abort);
3683 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3684 uint32_t avail_lmbs = 0;
3685 uint64_t addr_start, addr;
3686 int i;
3688 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3689 &error_abort);
3691 addr = addr_start;
3692 for (i = 0; i < nr_lmbs; i++) {
3693 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3694 addr / SPAPR_MEMORY_BLOCK_SIZE);
3695 g_assert(drc);
3696 if (drc->dev) {
3697 avail_lmbs++;
3699 addr += SPAPR_MEMORY_BLOCK_SIZE;
3702 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3705 void spapr_memory_unplug_rollback(SpaprMachineState *spapr, DeviceState *dev)
3707 SpaprDimmState *ds;
3708 PCDIMMDevice *dimm;
3709 SpaprDrc *drc;
3710 uint32_t nr_lmbs;
3711 uint64_t size, addr_start, addr;
3712 g_autofree char *qapi_error = NULL;
3713 int i;
3715 if (!dev) {
3716 return;
3719 dimm = PC_DIMM(dev);
3720 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3723 * 'ds == NULL' would mean that the DIMM doesn't have a pending
3724 * unplug state, but one of its DRC is marked as unplug_requested.
3725 * This is bad and weird enough to g_assert() out.
3727 g_assert(ds);
3729 spapr_pending_dimm_unplugs_remove(spapr, ds);
3731 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3732 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3734 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3735 &error_abort);
3737 addr = addr_start;
3738 for (i = 0; i < nr_lmbs; i++) {
3739 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3740 addr / SPAPR_MEMORY_BLOCK_SIZE);
3741 g_assert(drc);
3743 drc->unplug_requested = false;
3744 addr += SPAPR_MEMORY_BLOCK_SIZE;
3748 * Tell QAPI that something happened and the memory
3749 * hotunplug wasn't successful. Keep sending
3750 * MEM_UNPLUG_ERROR even while sending
3751 * DEVICE_UNPLUG_GUEST_ERROR until the deprecation of
3752 * MEM_UNPLUG_ERROR is due.
3754 qapi_error = g_strdup_printf("Memory hotunplug rejected by the guest "
3755 "for device %s", dev->id);
3757 qapi_event_send_mem_unplug_error(dev->id ? : "", qapi_error);
3759 qapi_event_send_device_unplug_guest_error(dev->id,
3760 dev->canonical_path);
3763 /* Callback to be called during DRC release. */
3764 void spapr_lmb_release(DeviceState *dev)
3766 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3767 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3768 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3770 /* This information will get lost if a migration occurs
3771 * during the unplug process. In this case recover it. */
3772 if (ds == NULL) {
3773 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3774 g_assert(ds);
3775 /* The DRC being examined by the caller at least must be counted */
3776 g_assert(ds->nr_lmbs);
3779 if (--ds->nr_lmbs) {
3780 return;
3784 * Now that all the LMBs have been removed by the guest, call the
3785 * unplug handler chain. This can never fail.
3787 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3788 object_unparent(OBJECT(dev));
3791 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3793 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3794 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3796 /* We really shouldn't get this far without anything to unplug */
3797 g_assert(ds);
3799 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3800 qdev_unrealize(dev);
3801 spapr_pending_dimm_unplugs_remove(spapr, ds);
3804 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3805 DeviceState *dev, Error **errp)
3807 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3808 PCDIMMDevice *dimm = PC_DIMM(dev);
3809 uint32_t nr_lmbs;
3810 uint64_t size, addr_start, addr;
3811 int i;
3812 SpaprDrc *drc;
3814 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
3815 error_setg(errp, "nvdimm device hot unplug is not supported yet.");
3816 return;
3819 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3820 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3822 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3823 &error_abort);
3826 * An existing pending dimm state for this DIMM means that there is an
3827 * unplug operation in progress, waiting for the spapr_lmb_release
3828 * callback to complete the job (BQL can't cover that far). In this case,
3829 * bail out to avoid detaching DRCs that were already released.
3831 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3832 error_setg(errp, "Memory unplug already in progress for device %s",
3833 dev->id);
3834 return;
3837 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3839 addr = addr_start;
3840 for (i = 0; i < nr_lmbs; i++) {
3841 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3842 addr / SPAPR_MEMORY_BLOCK_SIZE);
3843 g_assert(drc);
3845 spapr_drc_unplug_request(drc);
3846 addr += SPAPR_MEMORY_BLOCK_SIZE;
3849 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3850 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3851 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3852 nr_lmbs, spapr_drc_index(drc));
3855 /* Callback to be called during DRC release. */
3856 void spapr_core_release(DeviceState *dev)
3858 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3860 /* Call the unplug handler chain. This can never fail. */
3861 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3862 object_unparent(OBJECT(dev));
3865 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3867 MachineState *ms = MACHINE(hotplug_dev);
3868 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3869 CPUCore *cc = CPU_CORE(dev);
3870 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3872 if (smc->pre_2_10_has_unused_icps) {
3873 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3874 int i;
3876 for (i = 0; i < cc->nr_threads; i++) {
3877 CPUState *cs = CPU(sc->threads[i]);
3879 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3883 assert(core_slot);
3884 core_slot->cpu = NULL;
3885 qdev_unrealize(dev);
3888 static
3889 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3890 Error **errp)
3892 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3893 int index;
3894 SpaprDrc *drc;
3895 CPUCore *cc = CPU_CORE(dev);
3897 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3898 error_setg(errp, "Unable to find CPU core with core-id: %d",
3899 cc->core_id);
3900 return;
3902 if (index == 0) {
3903 error_setg(errp, "Boot CPU core may not be unplugged");
3904 return;
3907 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3908 spapr_vcpu_id(spapr, cc->core_id));
3909 g_assert(drc);
3911 if (!spapr_drc_unplug_requested(drc)) {
3912 spapr_drc_unplug_request(drc);
3916 * spapr_hotplug_req_remove_by_index is left unguarded, out of the
3917 * "!spapr_drc_unplug_requested" check, to allow for multiple IRQ
3918 * pulses removing the same CPU. Otherwise, in an failed hotunplug
3919 * attempt (e.g. the kernel will refuse to remove the last online
3920 * CPU), we will never attempt it again because unplug_requested
3921 * will still be 'true' in that case.
3923 spapr_hotplug_req_remove_by_index(drc);
3926 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3927 void *fdt, int *fdt_start_offset, Error **errp)
3929 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3930 CPUState *cs = CPU(core->threads[0]);
3931 PowerPCCPU *cpu = POWERPC_CPU(cs);
3932 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3933 int id = spapr_get_vcpu_id(cpu);
3934 g_autofree char *nodename = NULL;
3935 int offset;
3937 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3938 offset = fdt_add_subnode(fdt, 0, nodename);
3940 spapr_dt_cpu(cs, fdt, offset, spapr);
3943 * spapr_dt_cpu() does not fill the 'name' property in the
3944 * CPU node. The function is called during boot process, before
3945 * and after CAS, and overwriting the 'name' property written
3946 * by SLOF is not allowed.
3948 * Write it manually after spapr_dt_cpu(). This makes the hotplug
3949 * CPUs more compatible with the coldplugged ones, which have
3950 * the 'name' property. Linux Kernel also relies on this
3951 * property to identify CPU nodes.
3953 _FDT((fdt_setprop_string(fdt, offset, "name", nodename)));
3955 *fdt_start_offset = offset;
3956 return 0;
3959 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3961 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3962 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3963 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3964 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3965 CPUCore *cc = CPU_CORE(dev);
3966 CPUState *cs;
3967 SpaprDrc *drc;
3968 CPUArchId *core_slot;
3969 int index;
3970 bool hotplugged = spapr_drc_hotplugged(dev);
3971 int i;
3973 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3974 g_assert(core_slot); /* Already checked in spapr_core_pre_plug() */
3976 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3977 spapr_vcpu_id(spapr, cc->core_id));
3979 g_assert(drc || !mc->has_hotpluggable_cpus);
3981 if (drc) {
3983 * spapr_core_pre_plug() already buys us this is a brand new
3984 * core being plugged into a free slot. Nothing should already
3985 * be attached to the corresponding DRC.
3987 spapr_drc_attach(drc, dev);
3989 if (hotplugged) {
3991 * Send hotplug notification interrupt to the guest only
3992 * in case of hotplugged CPUs.
3994 spapr_hotplug_req_add_by_index(drc);
3995 } else {
3996 spapr_drc_reset(drc);
4000 core_slot->cpu = OBJECT(dev);
4003 * Set compatibility mode to match the boot CPU, which was either set
4004 * by the machine reset code or by CAS. This really shouldn't fail at
4005 * this point.
4007 if (hotplugged) {
4008 for (i = 0; i < cc->nr_threads; i++) {
4009 ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
4010 &error_abort);
4014 if (smc->pre_2_10_has_unused_icps) {
4015 for (i = 0; i < cc->nr_threads; i++) {
4016 cs = CPU(core->threads[i]);
4017 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
4022 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4023 Error **errp)
4025 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
4026 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
4027 CPUCore *cc = CPU_CORE(dev);
4028 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
4029 const char *type = object_get_typename(OBJECT(dev));
4030 CPUArchId *core_slot;
4031 int index;
4032 unsigned int smp_threads = machine->smp.threads;
4034 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
4035 error_setg(errp, "CPU hotplug not supported for this machine");
4036 return;
4039 if (strcmp(base_core_type, type)) {
4040 error_setg(errp, "CPU core type should be %s", base_core_type);
4041 return;
4044 if (cc->core_id % smp_threads) {
4045 error_setg(errp, "invalid core id %d", cc->core_id);
4046 return;
4050 * In general we should have homogeneous threads-per-core, but old
4051 * (pre hotplug support) machine types allow the last core to have
4052 * reduced threads as a compatibility hack for when we allowed
4053 * total vcpus not a multiple of threads-per-core.
4055 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
4056 error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads,
4057 smp_threads);
4058 return;
4061 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
4062 if (!core_slot) {
4063 error_setg(errp, "core id %d out of range", cc->core_id);
4064 return;
4067 if (core_slot->cpu) {
4068 error_setg(errp, "core %d already populated", cc->core_id);
4069 return;
4072 numa_cpu_pre_plug(core_slot, dev, errp);
4075 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
4076 void *fdt, int *fdt_start_offset, Error **errp)
4078 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
4079 int intc_phandle;
4081 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
4082 if (intc_phandle <= 0) {
4083 return -1;
4086 if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
4087 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
4088 return -1;
4091 /* generally SLOF creates these, for hotplug it's up to QEMU */
4092 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
4094 return 0;
4097 static bool spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4098 Error **errp)
4100 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4101 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4102 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4103 const unsigned windows_supported = spapr_phb_windows_supported(sphb);
4104 SpaprDrc *drc;
4106 if (dev->hotplugged && !smc->dr_phb_enabled) {
4107 error_setg(errp, "PHB hotplug not supported for this machine");
4108 return false;
4111 if (sphb->index == (uint32_t)-1) {
4112 error_setg(errp, "\"index\" for PAPR PHB is mandatory");
4113 return false;
4116 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4117 if (drc && drc->dev) {
4118 error_setg(errp, "PHB %d already attached", sphb->index);
4119 return false;
4123 * This will check that sphb->index doesn't exceed the maximum number of
4124 * PHBs for the current machine type.
4126 return
4127 smc->phb_placement(spapr, sphb->index,
4128 &sphb->buid, &sphb->io_win_addr,
4129 &sphb->mem_win_addr, &sphb->mem64_win_addr,
4130 windows_supported, sphb->dma_liobn,
4131 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
4132 errp);
4135 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4137 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4138 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4139 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4140 SpaprDrc *drc;
4141 bool hotplugged = spapr_drc_hotplugged(dev);
4143 if (!smc->dr_phb_enabled) {
4144 return;
4147 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4148 /* hotplug hooks should check it's enabled before getting this far */
4149 assert(drc);
4151 /* spapr_phb_pre_plug() already checked the DRC is attachable */
4152 spapr_drc_attach(drc, dev);
4154 if (hotplugged) {
4155 spapr_hotplug_req_add_by_index(drc);
4156 } else {
4157 spapr_drc_reset(drc);
4161 void spapr_phb_release(DeviceState *dev)
4163 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
4165 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
4166 object_unparent(OBJECT(dev));
4169 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4171 qdev_unrealize(dev);
4174 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4175 DeviceState *dev, Error **errp)
4177 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4178 SpaprDrc *drc;
4180 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4181 assert(drc);
4183 if (!spapr_drc_unplug_requested(drc)) {
4184 spapr_drc_unplug_request(drc);
4185 spapr_hotplug_req_remove_by_index(drc);
4186 } else {
4187 error_setg(errp,
4188 "PCI Host Bridge unplug already in progress for device %s",
4189 dev->id);
4193 static
4194 bool spapr_tpm_proxy_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4195 Error **errp)
4197 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4199 if (spapr->tpm_proxy != NULL) {
4200 error_setg(errp, "Only one TPM proxy can be specified for this machine");
4201 return false;
4204 return true;
4207 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4209 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4210 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4212 /* Already checked in spapr_tpm_proxy_pre_plug() */
4213 g_assert(spapr->tpm_proxy == NULL);
4215 spapr->tpm_proxy = tpm_proxy;
4218 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4220 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4222 qdev_unrealize(dev);
4223 object_unparent(OBJECT(dev));
4224 spapr->tpm_proxy = NULL;
4227 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4228 DeviceState *dev, Error **errp)
4230 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4231 spapr_memory_plug(hotplug_dev, dev);
4232 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4233 spapr_core_plug(hotplug_dev, dev);
4234 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4235 spapr_phb_plug(hotplug_dev, dev);
4236 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4237 spapr_tpm_proxy_plug(hotplug_dev, dev);
4241 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4242 DeviceState *dev, Error **errp)
4244 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4245 spapr_memory_unplug(hotplug_dev, dev);
4246 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4247 spapr_core_unplug(hotplug_dev, dev);
4248 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4249 spapr_phb_unplug(hotplug_dev, dev);
4250 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4251 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4255 bool spapr_memory_hot_unplug_supported(SpaprMachineState *spapr)
4257 return spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT) ||
4259 * CAS will process all pending unplug requests.
4261 * HACK: a guest could theoretically have cleared all bits in OV5,
4262 * but none of the guests we care for do.
4264 spapr_ovec_empty(spapr->ov5_cas);
4267 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4268 DeviceState *dev, Error **errp)
4270 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4271 MachineClass *mc = MACHINE_GET_CLASS(sms);
4272 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4274 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4275 if (spapr_memory_hot_unplug_supported(sms)) {
4276 spapr_memory_unplug_request(hotplug_dev, dev, errp);
4277 } else {
4278 error_setg(errp, "Memory hot unplug not supported for this guest");
4280 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4281 if (!mc->has_hotpluggable_cpus) {
4282 error_setg(errp, "CPU hot unplug not supported on this machine");
4283 return;
4285 spapr_core_unplug_request(hotplug_dev, dev, errp);
4286 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4287 if (!smc->dr_phb_enabled) {
4288 error_setg(errp, "PHB hot unplug not supported on this machine");
4289 return;
4291 spapr_phb_unplug_request(hotplug_dev, dev, errp);
4292 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4293 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4297 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4298 DeviceState *dev, Error **errp)
4300 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4301 spapr_memory_pre_plug(hotplug_dev, dev, errp);
4302 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4303 spapr_core_pre_plug(hotplug_dev, dev, errp);
4304 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4305 spapr_phb_pre_plug(hotplug_dev, dev, errp);
4306 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4307 spapr_tpm_proxy_pre_plug(hotplug_dev, dev, errp);
4311 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4312 DeviceState *dev)
4314 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4315 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4316 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4317 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4318 return HOTPLUG_HANDLER(machine);
4320 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4321 PCIDevice *pcidev = PCI_DEVICE(dev);
4322 PCIBus *root = pci_device_root_bus(pcidev);
4323 SpaprPhbState *phb =
4324 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4325 TYPE_SPAPR_PCI_HOST_BRIDGE);
4327 if (phb) {
4328 return HOTPLUG_HANDLER(phb);
4331 return NULL;
4334 static CpuInstanceProperties
4335 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4337 CPUArchId *core_slot;
4338 MachineClass *mc = MACHINE_GET_CLASS(machine);
4340 /* make sure possible_cpu are intialized */
4341 mc->possible_cpu_arch_ids(machine);
4342 /* get CPU core slot containing thread that matches cpu_index */
4343 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4344 assert(core_slot);
4345 return core_slot->props;
4348 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4350 return idx / ms->smp.cores % ms->numa_state->num_nodes;
4353 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4355 int i;
4356 unsigned int smp_threads = machine->smp.threads;
4357 unsigned int smp_cpus = machine->smp.cpus;
4358 const char *core_type;
4359 int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4360 MachineClass *mc = MACHINE_GET_CLASS(machine);
4362 if (!mc->has_hotpluggable_cpus) {
4363 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4365 if (machine->possible_cpus) {
4366 assert(machine->possible_cpus->len == spapr_max_cores);
4367 return machine->possible_cpus;
4370 core_type = spapr_get_cpu_core_type(machine->cpu_type);
4371 if (!core_type) {
4372 error_report("Unable to find sPAPR CPU Core definition");
4373 exit(1);
4376 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4377 sizeof(CPUArchId) * spapr_max_cores);
4378 machine->possible_cpus->len = spapr_max_cores;
4379 for (i = 0; i < machine->possible_cpus->len; i++) {
4380 int core_id = i * smp_threads;
4382 machine->possible_cpus->cpus[i].type = core_type;
4383 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4384 machine->possible_cpus->cpus[i].arch_id = core_id;
4385 machine->possible_cpus->cpus[i].props.has_core_id = true;
4386 machine->possible_cpus->cpus[i].props.core_id = core_id;
4388 return machine->possible_cpus;
4391 static bool spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4392 uint64_t *buid, hwaddr *pio,
4393 hwaddr *mmio32, hwaddr *mmio64,
4394 unsigned n_dma, uint32_t *liobns,
4395 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4398 * New-style PHB window placement.
4400 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4401 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4402 * windows.
4404 * Some guest kernels can't work with MMIO windows above 1<<46
4405 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4407 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4408 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
4409 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
4410 * 1TiB 64-bit MMIO windows for each PHB.
4412 const uint64_t base_buid = 0x800000020000000ULL;
4413 int i;
4415 /* Sanity check natural alignments */
4416 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4417 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4418 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4419 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4420 /* Sanity check bounds */
4421 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4422 SPAPR_PCI_MEM32_WIN_SIZE);
4423 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4424 SPAPR_PCI_MEM64_WIN_SIZE);
4426 if (index >= SPAPR_MAX_PHBS) {
4427 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4428 SPAPR_MAX_PHBS - 1);
4429 return false;
4432 *buid = base_buid + index;
4433 for (i = 0; i < n_dma; ++i) {
4434 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4437 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4438 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4439 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4441 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4442 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4443 return true;
4446 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4448 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4450 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4453 static void spapr_ics_resend(XICSFabric *dev)
4455 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4457 ics_resend(spapr->ics);
4460 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4462 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4464 return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4467 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4468 Monitor *mon)
4470 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4472 spapr_irq_print_info(spapr, mon);
4473 monitor_printf(mon, "irqchip: %s\n",
4474 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4478 * This is a XIVE only operation
4480 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
4481 uint8_t nvt_blk, uint32_t nvt_idx,
4482 bool cam_ignore, uint8_t priority,
4483 uint32_t logic_serv, XiveTCTXMatch *match)
4485 SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
4486 XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
4487 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
4488 int count;
4490 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
4491 priority, logic_serv, match);
4492 if (count < 0) {
4493 return count;
4497 * When we implement the save and restore of the thread interrupt
4498 * contexts in the enter/exit CPU handlers of the machine and the
4499 * escalations in QEMU, we should be able to handle non dispatched
4500 * vCPUs.
4502 * Until this is done, the sPAPR machine should find at least one
4503 * matching context always.
4505 if (count == 0) {
4506 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
4507 nvt_blk, nvt_idx);
4510 return count;
4513 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4515 return cpu->vcpu_id;
4518 bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4520 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4521 MachineState *ms = MACHINE(spapr);
4522 int vcpu_id;
4524 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4526 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4527 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4528 error_append_hint(errp, "Adjust the number of cpus to %d "
4529 "or try to raise the number of threads per core\n",
4530 vcpu_id * ms->smp.threads / spapr->vsmt);
4531 return false;
4534 cpu->vcpu_id = vcpu_id;
4535 return true;
4538 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4540 CPUState *cs;
4542 CPU_FOREACH(cs) {
4543 PowerPCCPU *cpu = POWERPC_CPU(cs);
4545 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4546 return cpu;
4550 return NULL;
4553 static bool spapr_cpu_in_nested(PowerPCCPU *cpu)
4555 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4557 return spapr_cpu->in_nested;
4560 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4562 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4564 /* These are only called by TCG, KVM maintains dispatch state */
4566 spapr_cpu->prod = false;
4567 if (spapr_cpu->vpa_addr) {
4568 CPUState *cs = CPU(cpu);
4569 uint32_t dispatch;
4571 dispatch = ldl_be_phys(cs->as,
4572 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4573 dispatch++;
4574 if ((dispatch & 1) != 0) {
4575 qemu_log_mask(LOG_GUEST_ERROR,
4576 "VPA: incorrect dispatch counter value for "
4577 "dispatched partition %u, correcting.\n", dispatch);
4578 dispatch++;
4580 stl_be_phys(cs->as,
4581 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4585 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4587 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4589 if (spapr_cpu->vpa_addr) {
4590 CPUState *cs = CPU(cpu);
4591 uint32_t dispatch;
4593 dispatch = ldl_be_phys(cs->as,
4594 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4595 dispatch++;
4596 if ((dispatch & 1) != 1) {
4597 qemu_log_mask(LOG_GUEST_ERROR,
4598 "VPA: incorrect dispatch counter value for "
4599 "preempted partition %u, correcting.\n", dispatch);
4600 dispatch++;
4602 stl_be_phys(cs->as,
4603 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4607 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4609 MachineClass *mc = MACHINE_CLASS(oc);
4610 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4611 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4612 NMIClass *nc = NMI_CLASS(oc);
4613 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4614 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4615 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4616 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4617 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
4618 VofMachineIfClass *vmc = VOF_MACHINE_CLASS(oc);
4620 mc->desc = "pSeries Logical Partition (PAPR compliant)";
4621 mc->ignore_boot_device_suffixes = true;
4624 * We set up the default / latest behaviour here. The class_init
4625 * functions for the specific versioned machine types can override
4626 * these details for backwards compatibility
4628 mc->init = spapr_machine_init;
4629 mc->reset = spapr_machine_reset;
4630 mc->block_default_type = IF_SCSI;
4633 * Setting max_cpus to INT32_MAX. Both KVM and TCG max_cpus values
4634 * should be limited by the host capability instead of hardcoded.
4635 * max_cpus for KVM guests will be checked in kvm_init(), and TCG
4636 * guests are welcome to have as many CPUs as the host are capable
4637 * of emulate.
4639 mc->max_cpus = INT32_MAX;
4641 mc->no_parallel = 1;
4642 mc->default_boot_order = "";
4643 mc->default_ram_size = 512 * MiB;
4644 mc->default_ram_id = "ppc_spapr.ram";
4645 mc->default_display = "std";
4646 mc->kvm_type = spapr_kvm_type;
4647 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4648 mc->pci_allow_0_address = true;
4649 assert(!mc->get_hotplug_handler);
4650 mc->get_hotplug_handler = spapr_get_hotplug_handler;
4651 hc->pre_plug = spapr_machine_device_pre_plug;
4652 hc->plug = spapr_machine_device_plug;
4653 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4654 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4655 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4656 hc->unplug_request = spapr_machine_device_unplug_request;
4657 hc->unplug = spapr_machine_device_unplug;
4659 smc->dr_lmb_enabled = true;
4660 smc->update_dt_enabled = true;
4661 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.2");
4662 mc->has_hotpluggable_cpus = true;
4663 mc->nvdimm_supported = true;
4664 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4665 fwc->get_dev_path = spapr_get_fw_dev_path;
4666 nc->nmi_monitor_handler = spapr_nmi;
4667 smc->phb_placement = spapr_phb_placement;
4668 vhc->cpu_in_nested = spapr_cpu_in_nested;
4669 vhc->deliver_hv_excp = spapr_exit_nested;
4670 vhc->hypercall = emulate_spapr_hypercall;
4671 vhc->hpt_mask = spapr_hpt_mask;
4672 vhc->map_hptes = spapr_map_hptes;
4673 vhc->unmap_hptes = spapr_unmap_hptes;
4674 vhc->hpte_set_c = spapr_hpte_set_c;
4675 vhc->hpte_set_r = spapr_hpte_set_r;
4676 vhc->get_pate = spapr_get_pate;
4677 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4678 vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4679 vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4680 xic->ics_get = spapr_ics_get;
4681 xic->ics_resend = spapr_ics_resend;
4682 xic->icp_get = spapr_icp_get;
4683 ispc->print_info = spapr_pic_print_info;
4684 /* Force NUMA node memory size to be a multiple of
4685 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4686 * in which LMBs are represented and hot-added
4688 mc->numa_mem_align_shift = 28;
4689 mc->auto_enable_numa = true;
4691 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4692 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4693 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4694 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4695 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4696 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4697 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4698 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4699 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4700 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
4701 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON;
4702 smc->default_caps.caps[SPAPR_CAP_RPT_INVALIDATE] = SPAPR_CAP_OFF;
4705 * This cap specifies whether the AIL 3 mode for
4706 * H_SET_RESOURCE is supported. The default is modified
4707 * by default_caps_with_cpu().
4709 smc->default_caps.caps[SPAPR_CAP_AIL_MODE_3] = SPAPR_CAP_ON;
4710 spapr_caps_add_properties(smc);
4711 smc->irq = &spapr_irq_dual;
4712 smc->dr_phb_enabled = true;
4713 smc->linux_pci_probe = true;
4714 smc->smp_threads_vsmt = true;
4715 smc->nr_xirqs = SPAPR_NR_XIRQS;
4716 xfc->match_nvt = spapr_match_nvt;
4717 vmc->client_architecture_support = spapr_vof_client_architecture_support;
4718 vmc->quiesce = spapr_vof_quiesce;
4719 vmc->setprop = spapr_vof_setprop;
4722 static const TypeInfo spapr_machine_info = {
4723 .name = TYPE_SPAPR_MACHINE,
4724 .parent = TYPE_MACHINE,
4725 .abstract = true,
4726 .instance_size = sizeof(SpaprMachineState),
4727 .instance_init = spapr_instance_init,
4728 .instance_finalize = spapr_machine_finalizefn,
4729 .class_size = sizeof(SpaprMachineClass),
4730 .class_init = spapr_machine_class_init,
4731 .interfaces = (InterfaceInfo[]) {
4732 { TYPE_FW_PATH_PROVIDER },
4733 { TYPE_NMI },
4734 { TYPE_HOTPLUG_HANDLER },
4735 { TYPE_PPC_VIRTUAL_HYPERVISOR },
4736 { TYPE_XICS_FABRIC },
4737 { TYPE_INTERRUPT_STATS_PROVIDER },
4738 { TYPE_XIVE_FABRIC },
4739 { TYPE_VOF_MACHINE_IF },
4744 static void spapr_machine_latest_class_options(MachineClass *mc)
4746 mc->alias = "pseries";
4747 mc->is_default = true;
4750 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4751 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4752 void *data) \
4754 MachineClass *mc = MACHINE_CLASS(oc); \
4755 spapr_machine_##suffix##_class_options(mc); \
4756 if (latest) { \
4757 spapr_machine_latest_class_options(mc); \
4760 static const TypeInfo spapr_machine_##suffix##_info = { \
4761 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4762 .parent = TYPE_SPAPR_MACHINE, \
4763 .class_init = spapr_machine_##suffix##_class_init, \
4764 }; \
4765 static void spapr_machine_register_##suffix(void) \
4767 type_register(&spapr_machine_##suffix##_info); \
4769 type_init(spapr_machine_register_##suffix)
4772 * pseries-8.2
4774 static void spapr_machine_8_2_class_options(MachineClass *mc)
4776 /* Defaults for the latest behaviour inherited from the base class */
4779 DEFINE_SPAPR_MACHINE(8_2, "8.2", true);
4782 * pseries-8.1
4784 static void spapr_machine_8_1_class_options(MachineClass *mc)
4786 spapr_machine_8_2_class_options(mc);
4787 compat_props_add(mc->compat_props, hw_compat_8_1, hw_compat_8_1_len);
4790 DEFINE_SPAPR_MACHINE(8_1, "8.1", false);
4793 * pseries-8.0
4795 static void spapr_machine_8_0_class_options(MachineClass *mc)
4797 spapr_machine_8_1_class_options(mc);
4798 compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len);
4801 DEFINE_SPAPR_MACHINE(8_0, "8.0", false);
4804 * pseries-7.2
4806 static void spapr_machine_7_2_class_options(MachineClass *mc)
4808 spapr_machine_8_0_class_options(mc);
4809 compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len);
4812 DEFINE_SPAPR_MACHINE(7_2, "7.2", false);
4815 * pseries-7.1
4817 static void spapr_machine_7_1_class_options(MachineClass *mc)
4819 spapr_machine_7_2_class_options(mc);
4820 compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len);
4823 DEFINE_SPAPR_MACHINE(7_1, "7.1", false);
4826 * pseries-7.0
4828 static void spapr_machine_7_0_class_options(MachineClass *mc)
4830 spapr_machine_7_1_class_options(mc);
4831 compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len);
4834 DEFINE_SPAPR_MACHINE(7_0, "7.0", false);
4837 * pseries-6.2
4839 static void spapr_machine_6_2_class_options(MachineClass *mc)
4841 spapr_machine_7_0_class_options(mc);
4842 compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len);
4845 DEFINE_SPAPR_MACHINE(6_2, "6.2", false);
4848 * pseries-6.1
4850 static void spapr_machine_6_1_class_options(MachineClass *mc)
4852 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4854 spapr_machine_6_2_class_options(mc);
4855 compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
4856 smc->pre_6_2_numa_affinity = true;
4857 mc->smp_props.prefer_sockets = true;
4860 DEFINE_SPAPR_MACHINE(6_1, "6.1", false);
4863 * pseries-6.0
4865 static void spapr_machine_6_0_class_options(MachineClass *mc)
4867 spapr_machine_6_1_class_options(mc);
4868 compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
4871 DEFINE_SPAPR_MACHINE(6_0, "6.0", false);
4874 * pseries-5.2
4876 static void spapr_machine_5_2_class_options(MachineClass *mc)
4878 spapr_machine_6_0_class_options(mc);
4879 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
4882 DEFINE_SPAPR_MACHINE(5_2, "5.2", false);
4885 * pseries-5.1
4887 static void spapr_machine_5_1_class_options(MachineClass *mc)
4889 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4891 spapr_machine_5_2_class_options(mc);
4892 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
4893 smc->pre_5_2_numa_associativity = true;
4896 DEFINE_SPAPR_MACHINE(5_1, "5.1", false);
4899 * pseries-5.0
4901 static void spapr_machine_5_0_class_options(MachineClass *mc)
4903 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4904 static GlobalProperty compat[] = {
4905 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" },
4908 spapr_machine_5_1_class_options(mc);
4909 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
4910 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4911 mc->numa_mem_supported = true;
4912 smc->pre_5_1_assoc_refpoints = true;
4915 DEFINE_SPAPR_MACHINE(5_0, "5.0", false);
4918 * pseries-4.2
4920 static void spapr_machine_4_2_class_options(MachineClass *mc)
4922 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4924 spapr_machine_5_0_class_options(mc);
4925 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
4926 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4927 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF;
4928 smc->rma_limit = 16 * GiB;
4929 mc->nvdimm_supported = false;
4932 DEFINE_SPAPR_MACHINE(4_2, "4.2", false);
4935 * pseries-4.1
4937 static void spapr_machine_4_1_class_options(MachineClass *mc)
4939 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4940 static GlobalProperty compat[] = {
4941 /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4942 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4945 spapr_machine_4_2_class_options(mc);
4946 smc->linux_pci_probe = false;
4947 smc->smp_threads_vsmt = false;
4948 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4949 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4952 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4955 * pseries-4.0
4957 static bool phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4958 uint64_t *buid, hwaddr *pio,
4959 hwaddr *mmio32, hwaddr *mmio64,
4960 unsigned n_dma, uint32_t *liobns,
4961 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4963 if (!spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma,
4964 liobns, nv2gpa, nv2atsd, errp)) {
4965 return false;
4968 *nv2gpa = 0;
4969 *nv2atsd = 0;
4970 return true;
4972 static void spapr_machine_4_0_class_options(MachineClass *mc)
4974 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4976 spapr_machine_4_1_class_options(mc);
4977 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4978 smc->phb_placement = phb_placement_4_0;
4979 smc->irq = &spapr_irq_xics;
4980 smc->pre_4_1_migration = true;
4983 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4986 * pseries-3.1
4988 static void spapr_machine_3_1_class_options(MachineClass *mc)
4990 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4992 spapr_machine_4_0_class_options(mc);
4993 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4995 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4996 smc->update_dt_enabled = false;
4997 smc->dr_phb_enabled = false;
4998 smc->broken_host_serial_model = true;
4999 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
5000 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
5001 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
5002 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
5005 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
5008 * pseries-3.0
5011 static void spapr_machine_3_0_class_options(MachineClass *mc)
5013 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5015 spapr_machine_3_1_class_options(mc);
5016 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
5018 smc->legacy_irq_allocation = true;
5019 smc->nr_xirqs = 0x400;
5020 smc->irq = &spapr_irq_xics_legacy;
5023 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
5026 * pseries-2.12
5028 static void spapr_machine_2_12_class_options(MachineClass *mc)
5030 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5031 static GlobalProperty compat[] = {
5032 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
5033 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
5036 spapr_machine_3_0_class_options(mc);
5037 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
5038 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5040 /* We depend on kvm_enabled() to choose a default value for the
5041 * hpt-max-page-size capability. Of course we can't do it here
5042 * because this is too early and the HW accelerator isn't initialzed
5043 * yet. Postpone this to machine init (see default_caps_with_cpu()).
5045 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
5048 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
5050 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
5052 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5054 spapr_machine_2_12_class_options(mc);
5055 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
5056 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
5057 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
5060 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
5063 * pseries-2.11
5066 static void spapr_machine_2_11_class_options(MachineClass *mc)
5068 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5070 spapr_machine_2_12_class_options(mc);
5071 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
5072 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
5075 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
5078 * pseries-2.10
5081 static void spapr_machine_2_10_class_options(MachineClass *mc)
5083 spapr_machine_2_11_class_options(mc);
5084 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
5087 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
5090 * pseries-2.9
5093 static void spapr_machine_2_9_class_options(MachineClass *mc)
5095 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5096 static GlobalProperty compat[] = {
5097 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
5100 spapr_machine_2_10_class_options(mc);
5101 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
5102 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5103 smc->pre_2_10_has_unused_icps = true;
5104 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
5107 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
5110 * pseries-2.8
5113 static void spapr_machine_2_8_class_options(MachineClass *mc)
5115 static GlobalProperty compat[] = {
5116 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
5119 spapr_machine_2_9_class_options(mc);
5120 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
5121 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5122 mc->numa_mem_align_shift = 23;
5125 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
5128 * pseries-2.7
5131 static bool phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
5132 uint64_t *buid, hwaddr *pio,
5133 hwaddr *mmio32, hwaddr *mmio64,
5134 unsigned n_dma, uint32_t *liobns,
5135 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
5137 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
5138 const uint64_t base_buid = 0x800000020000000ULL;
5139 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
5140 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
5141 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
5142 const uint32_t max_index = 255;
5143 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
5145 uint64_t ram_top = MACHINE(spapr)->ram_size;
5146 hwaddr phb0_base, phb_base;
5147 int i;
5149 /* Do we have device memory? */
5150 if (MACHINE(spapr)->device_memory) {
5151 /* Can't just use maxram_size, because there may be an
5152 * alignment gap between normal and device memory regions
5154 ram_top = MACHINE(spapr)->device_memory->base +
5155 memory_region_size(&MACHINE(spapr)->device_memory->mr);
5158 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
5160 if (index > max_index) {
5161 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
5162 max_index);
5163 return false;
5166 *buid = base_buid + index;
5167 for (i = 0; i < n_dma; ++i) {
5168 liobns[i] = SPAPR_PCI_LIOBN(index, i);
5171 phb_base = phb0_base + index * phb_spacing;
5172 *pio = phb_base + pio_offset;
5173 *mmio32 = phb_base + mmio_offset;
5175 * We don't set the 64-bit MMIO window, relying on the PHB's
5176 * fallback behaviour of automatically splitting a large "32-bit"
5177 * window into contiguous 32-bit and 64-bit windows
5180 *nv2gpa = 0;
5181 *nv2atsd = 0;
5182 return true;
5185 static void spapr_machine_2_7_class_options(MachineClass *mc)
5187 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5188 static GlobalProperty compat[] = {
5189 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
5190 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
5191 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
5192 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
5195 spapr_machine_2_8_class_options(mc);
5196 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
5197 mc->default_machine_opts = "modern-hotplug-events=off";
5198 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
5199 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5200 smc->phb_placement = phb_placement_2_7;
5203 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
5206 * pseries-2.6
5209 static void spapr_machine_2_6_class_options(MachineClass *mc)
5211 static GlobalProperty compat[] = {
5212 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
5215 spapr_machine_2_7_class_options(mc);
5216 mc->has_hotpluggable_cpus = false;
5217 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
5218 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5221 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
5224 * pseries-2.5
5227 static void spapr_machine_2_5_class_options(MachineClass *mc)
5229 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5230 static GlobalProperty compat[] = {
5231 { "spapr-vlan", "use-rx-buffer-pools", "off" },
5234 spapr_machine_2_6_class_options(mc);
5235 smc->use_ohci_by_default = true;
5236 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
5237 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5240 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
5243 * pseries-2.4
5246 static void spapr_machine_2_4_class_options(MachineClass *mc)
5248 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5250 spapr_machine_2_5_class_options(mc);
5251 smc->dr_lmb_enabled = false;
5252 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
5255 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
5258 * pseries-2.3
5261 static void spapr_machine_2_3_class_options(MachineClass *mc)
5263 static GlobalProperty compat[] = {
5264 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
5266 spapr_machine_2_4_class_options(mc);
5267 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
5268 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5270 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
5273 * pseries-2.2
5276 static void spapr_machine_2_2_class_options(MachineClass *mc)
5278 static GlobalProperty compat[] = {
5279 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
5282 spapr_machine_2_3_class_options(mc);
5283 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
5284 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5285 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
5287 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
5290 * pseries-2.1
5293 static void spapr_machine_2_1_class_options(MachineClass *mc)
5295 spapr_machine_2_2_class_options(mc);
5296 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
5298 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
5300 static void spapr_machine_register_types(void)
5302 type_register_static(&spapr_machine_info);
5305 type_init(spapr_machine_register_types)